
Anna Lubiw
Mohammad Salavatipour
Meng He (Eds.)

LN
CS

 1
28

08

Algorithms
and Data Structures
17th International Symposium, WADS 2021
Virtual Event, August 9–11, 2021
Proceedings

Lecture Notes in Computer Science 12808

Founding Editors

Gerhard Goos
Karlsruhe Institute of Technology, Karlsruhe, Germany

Juris Hartmanis
Cornell University, Ithaca, NY, USA

Editorial Board Members

Elisa Bertino
Purdue University, West Lafayette, IN, USA

Wen Gao
Peking University, Beijing, China

Bernhard Steffen
TU Dortmund University, Dortmund, Germany

Gerhard Woeginger
RWTH Aachen, Aachen, Germany

Moti Yung
Columbia University, New York, NY, USA

https://orcid.org/0000-0001-9619-1558
https://orcid.org/0000-0001-8816-2693

More information about this subseries at http://www.springer.com/series/7407

http://www.springer.com/series/7407

Anna Lubiw • Mohammad Salavatipour •

Meng He (Eds.)

Algorithms
and Data Structures
17th International Symposium, WADS 2021
Virtual Event, August 9–11, 2021
Proceedings

123

Editors
Anna Lubiw
University of Waterloo
Waterloo, ON, Canada

Mohammad Salavatipour
University of Alberta
Edmonton, AB, Canada

Meng He
Dalhousie University
Halifax, Canada

ISSN 0302-9743 ISSN 1611-3349 (electronic)
Lecture Notes in Computer Science
ISBN 978-3-030-83507-1 ISBN 978-3-030-83508-8 (eBook)
https://doi.org/10.1007/978-3-030-83508-8

LNCS Sublibrary: SL1 – Theoretical Computer Science and General Issues

© Springer Nature Switzerland AG 2021, corrected publication 2022
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this book are
believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors
give a warranty, expressed or implied, with respect to the material contained herein or for any errors or
omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

This Springer imprint is published by the registered company Springer Nature Switzerland AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

https://orcid.org/0000-0002-2338-361X
https://orcid.org/0000-0002-7650-2045
https://orcid.org/0000-0003-0358-7102
https://doi.org/10.1007/978-3-030-83508-8

Preface

This proceedings volume contains the papers presented at the 17th International
Algorithms and Data Structures Symposium (WADS 2021), which was held on-line
August 9–11, 2021, organized from Dalhousie University, Halifax, Nova Scotia,
Canada. WADS, which alternates with the Scandinavian Symposium and Workshops
on Algorithm Theory (SWAT), is a venue for researchers in the area of design and
analysis of algorithms and data structures to present their work. In response to the call
for papers, 123 papers were submitted to WADS this year. Each submission received at
least three reviews. From these, the Program Committee selected 48 papers for pre-
sentation, of which 47 reached the final stage.

In addition, two invited talks were given by Vida Dujmović (University of Ottawa),
and Ola Svensson (EPFL). Special issues of papers selected from WADS 2021 are
planned for two journals, Algorithmica, and Computational Geometry: Theory and
Applications.

The Alejandro López-Ortiz Best Paper Award for WADS 2021 was given to the
paper “Better distance labeling for unweighted planar graphs,” by Paweł Gawry-
chowski and Przemysław Uznański. An award for the best student presentation was
decided at the conference and will be announced in a future proceedings. From the
previous WADS conference, the 2019 Alejandro López-Ortiz Best Paper Award was
given to the paper “Succinct Data Structures for Families of Interval Graphs,” by
Hüseyin Acan, Sankardeep Chakraborty, Seungbum Jo, and Srinivasa Rao Satti.

We thank the Program Committee for their hard work and good judgement and
thank all the subreviewers who contributed to the reviewing process. We thank the
organizing committee team at Dalhousie University for local arrangements. We
gratefully acknowledge sponsorship from Elsevier, Springer, the Faculty of Computer
Science at Dalhousie University, AARMS, Fields, and PIMS.

June 2021 Meng He
Anna Lubiw

Mohammad Salavatipour

The original version of the book was revised: a forgotten volume editor was added. The
correction to the book is available at https://doi.org/10.1007/978-3-030-83508-8_48

https://doi.org/10.1007/978-3-030-83508-8_48

Organization

Local Arrangements

Nathaniel Brown Dalhousie University, Canada
Travis Gagie Dalhousie University, Canada
Younan Gao Dalhousie University, Canada
Meng He (Chair) Dalhousie University, Canada
Zhen Liu Dalhousie University, Canada
Michael St Denis Dalhousie University, Canada

Steering Committee

Faith Ellen University of Toronto, Canada
David Eppstein University of California, Irvine, USA
Zachary Friggstad University of Alberta, Canada
Ian Munro University of Waterloo, Canada
Jörg Sack Carleton University, Canada
Mohammad Salavatipour University of Alberta, Canada

Program Committee

Mohammad Ali Abam Sharif University of Technology, Iran
Ahmad Biniaz University of Windsor, Canada
Anthony Bonato Ryerson University, Canada
Parinya Chalermsook Aalto University, Finland
Steven Chaplick Maastricht University, The Netherlands
Giordano Da Lozzo University of California, Irvine, USA
Khaled Elbassioni Masdar Institute, UAE
Ruy Fabila-Monroy Departamento de Matemáticas, Cinvestav, Mexico
Moran Feldman University of Haifa, Israel
Travis Gagie Dalhousie University, Canada
Meng He (Chair) Dalhousie University, Canada
Pinar Heggernes University of Bergen, Norway
Zhiyi Huang The University of Hong Kong, Hong Kong
John Iacono Université Libre de Bruxelles, Belgium
Shahin Kamali University of Manitoba, Canada
Matthew Katz Ben-Gurion University of the Negev, Israel
Guohui Lin University of Alberta, Canada
Anna Lubiw (Chair) University of Waterloo, Canada
Brendan Lucier Microsoft Research, USA
Pat Morin Carleton University, Canada
Yakov Nekrich Michigan Technological University, USA

Yoshio Okamoto University of Electro-Communications, Japan
Denis Pankratov Concordia University, Canada
Venkatesh Raman Institute of Mathematical Sciences, Chennai, India
Mohammad Salavatipour

(Chair)
University of Alberta, Canada

Laura Sanita Eindhoven University of Technology, The Netherlands
José A. Soto Universidad de Chile, Chile
He Sun University of Edinburgh, UK
Dimitrios Thilikos Université de Montpellier, France
Aravindan Vijayaraghavan Northwestern University, USA
Carola Wenk Tulane University, USA

viii Organization

Abstracts of Invited Talks

Adjacency Labelling of Planar Graphs
(and Beyond)1

Vida Dujmović

University of Ottawa, Canada
vdujmovi@uottawa.ca

Adjacency labelling schemes, which have been studied since the 1980’s, ask for short
labels for n-vertex graphs G such that the labels of two vertices u and v are sufficient to
determine (quickly) if uv is an edge of G. One of the long-standing problems in the area
was the optimal length of labels for planar graphs. The problem is closely related to the
size of the smallest universal graph for all n-vertex planar graphs. In this talk I will
show how we resolved this problem (up to lower order terms) with the help of a new
graph theoretic tool: a product-structure theorem for planar graphs. This new tool and
our result are applicable not only to planar graphs but also to bounded genus graphs,
apex-minor-free graphs, bounded-degree graphs from minor closed families, and k-
planar graphs.

1 Supported by NSERC.

Algorithms for Explainable Clustering1

Ola Svensson

EPFL, Switzerland
ola.svensson@epfl.ch

An important topic in current machine learning research is to explain and/or interpret
how models actually make their decisions. Motivated by this, Moshkovitz, Dasgupta,
Rashtchian, and Frost recently formalized the problem of explainable clustering. A k-
clustering is said to be explainable if it is given by a decision tree where each internal
node splits data points with a threshold cut in a single dimension (feature), and each
of the k leaves corresponds to a cluster.

In this talk, we see an algorithm that outputs an explainable clustering that loses at
most a factor of O(log2 k) compared to an optimal (not necessarily explainable)
clustering for the k-medians objective, and a factor of O(k log2 k) for the k-means
objective. This improves over the previous best upper bounds of O(k) and O(k2)$,
respectively, and nearly matches the previous Xðlog kÞ lower bound for k-medians and
our new XðkÞ lower bound for k-means. Moreover, the algorithm is remarkably simple
and, given an initial not necessarily explainable clustering, it is oblivious to the data
points and runs in time O(dk log2 k), independent of the number of data points n.

This is joint work with Buddhima Gamlath, Xinrui Jia, and Adam Polak.

1 Supported by the Swiss National Science Foundation project 200021-184656 “Randomness
in Problem Instances and Randomized Algorithms.”

Contents

On the Spanning and Routing Ratios of the Directed H6-Graph 1
Hugo A. Akitaya, Ahmad Biniaz, and Prosenjit Bose

The Minimum Moving Spanning Tree Problem . 15
Hugo A. Akitaya, Ahmad Biniaz, Prosenjit Bose, Jean-Lou De Carufel,
Anil Maheshwari, Luís Fernando Schultz Xavier da Silveira,
and Michiel Smid

Scheduling with Testing on Multiple Identical Parallel Machines 29
Susanne Albers and Alexander Eckl

Online Makespan Minimization with Budgeted Uncertainty 43
Susanne Albers and Maximilian Janke

Pattern Matching in Doubling Spaces . 57
Corentin Allair and Antoine Vigneron

Reachability Problems for Transmission Graphs . 71
Shinwoo An and Eunjin Oh

On Minimum Generalized Manhattan Connections 85
Antonios Antoniadis, Margarita Capretto, Parinya Chalermsook,
Christoph Damerius, Peter Kling, Lukas Nölke, Nidia Obscura Acosta,
and Joachim Spoerhase

HalftimeHash: Modern Hashing Without 64-Bit Multipliers
or Finite Fields . 101

Jim Apple

Generalized Disk Graphs . 115
Ívar Marrow Arnþórsson, Steven Chaplick, Jökull Snær Gylfason,
Magnús M. Halldórsson, Jökull Máni Reynisson, and Tigran Tonoyan

A 4-Approximation of the 2p
3 -MST . 129

Stav Ashur and Matthew J. Katz

Dynamic Dictionaries for Multisets and Counting Filters with Constant
Time Operations . 144

Ioana O. Bercea and Guy Even

The Neighborhood Polynomial of Chordal Graphs 158
Helena Bergold, Winfried Hochstättler, and Uwe Mayer

Incomplete Directed Perfect Phylogeny in Linear Time 172
Giulia Bernardini, Paola Bonizzoni, and Paweł Gawrychowski

Euclidean Maximum Matchings in the Plane—Local to Global 186
Ahmad Biniaz, Anil Maheshwari, and Michiel Smid

Solving Problems on Generalized Convex Graphs via Mim-Width 200
Flavia Bonomo-Braberman, Nick Brettell, Andrea Munaro,
and Daniël Paulusma

Improved Bounds on the Spanning Ratio of the Theta-5-Graph. 215
Prosenjit Bose, Darryl Hill, and Aurélien Ooms

Computing Weighted Subset Transversals in H-Free Graphs. 229
Nick Brettell, Matthew Johnson, and Daniël Paulusma

Computing the Fréchet Distance Between Uncertain Curves
in One Dimension . 243

Kevin Buchin, Maarten Löffler, Tim Ophelders, Aleksandr Popov,
Jérôme Urhausen, and Kevin Verbeek

Finding a Largest-Area Triangle in a Terrain in Near-Linear Time 258
Sergio Cabello, Arun Kumar Das, Sandip Das, and Joydeep Mukherjee

Planar Drawings with Few Slopes of Halin Graphs
and Nested Pseudotrees . 271

Steven Chaplick, Giordano Da Lozzo, Emilio Di Giacomo,
Giuseppe Liotta, and Fabrizio Montecchiani

An APTAS for Bin Packing with Clique-Graph Conflicts 286
Ilan Doron-Arad, Ariel Kulik, and Hadas Shachnai

Fast Deterministic Algorithms for Computing All Eccentricities
in (Hyperbolic) Helly Graphs . 300

Feodor F. Dragan, Guillaume Ducoffe, and Heather M. Guarnera

ANN for Time Series Under the Fréchet Distance . 315
Anne Driemel and Ioannis Psarros

Strictly In-Place Algorithms for Permuting and Inverting Permutations 329
Bartłomiej Dudek, Paweł Gawrychowski, and Karol Pokorski

A Stronger Lower Bound on Parametric Minimum Spanning Trees 343
David Eppstein

Online Bin Packing of Squares and Cubes . 357
Leah Epstein and Loay Mualem

xiv Contents

Exploration of k-Edge-Deficient Temporal Graphs. 371
Thomas Erlebach and Jakob T. Spooner

Parameterized Complexity of Categorical Clustering with Size Constraints . . . 385
Fedor V. Fomin, Petr A. Golovach, and Nidhi Purohit

Graph Pricing with Limited Supply . 399
Zachary Friggstad and Maryam Mahboub

Fair Correlation Clustering with Global and Local Guarantees 414
Zachary Friggstad and Ramin Mousavi

Better Distance Labeling for Unweighted Planar Graphs 428
Paweł Gawrychowski and Przemysław Uznański

How to Catch Marathon Cheaters: New Approximation Algorithms
for Tracking Paths. 442

Michael T. Goodrich, Siddharth Gupta, Hadi Khodabandeh,
and Pedro Matias

Algorithms for Radius-Optimally Augmenting Trees in a Metric Space 457
Joachim Gudmundsson and Yuan Sha

Upper and Lower Bounds for Fully Retroactive Graph Problems 471
Monika Henzinger and Xiaowei Wu

Characterization of Super-Stable Matchings . 485
Changyong Hu and Vijay K. Garg

Uniform Embeddings for Robinson Similarity Matrices 499
Jeannette Janssen and Zhiyuan Zhang

Particle-Based Assembly Using Precise Global Control 513
Jakob Keller, Christian Rieck, Christian Scheffer, and Arne Schmidt

Independent Sets in Semi-random Hypergraphs. 528
Yash Khanna, Anand Louis, and Rameesh Paul

A Query-Efficient Quantum Algorithm for Maximum Matching
on General Graphs . 543

Shelby Kimmel and R. Teal Witter

Support Optimality and Adaptive Cuckoo Filters. 556
Tsvi Kopelowitz, Samuel McCauley, and Ely Porat

Computing the Union Join and Subset Graph of Acyclic Hypergraphs
in Subquadratic Time . 571

Arne Leitert

Contents xv

Algorithms for the Line-Constrained Disk Coverage
and Related Problems . 585

Logan Pedersen and Haitao Wang

A Universal Cycle for Strings with Fixed-Content (Which Are Also
Known as Multiset Permutations) . 599

J. Sawada and A. Williams

Routing on Heavy-Path WSPD-Spanners . 613
Prosenjit Bose and Tyler Tuttle

Mapping Multiple Regions to the Grid with Bounded Hausdorff Distance . . . 627
Ivor van der Hoog, Mees van de Kerkhof, Marc van Kreveld,
Maarten Löffler, Frank Staals, Jérôme Urhausen,
and Jordi L. Vermeulen

Diverse Partitions of Colored Points . 641
Marc van Kreveld, Bettina Speckmann, and Jérôme Urhausen

Reverse Shortest Path Problem for Unit-Disk Graphs. 655
Haitao Wang and Yiming Zhao

Correction to: Algorithms and Data Structures . C1
Anna Lubiw, Mohammad Salavatipour, and Meng He

Author Index . 669

xvi Contents

On the Spanning and Routing Ratios
of the Directed Θ6-Graph

Hugo A. Akitaya1, Ahmad Biniaz2, and Prosenjit Bose3(B)

1 Department of Computer Science, University of Massachusetts Lowell, Lowell, USA
Hugo Akitaya@uml.edu

2 School of Computer Science, University of Windsor, Windsor, Canada
abiniaz@uwindsor.ca

3 School of Computer Science, Carleton University, Ottawa, Canada
jit@scs.carleton.ca

Abstract. The family of Θk-graphs is an important class of sparse geo-
metric spanners with a small spanning ratio. Although they are a well-
studied class of geometric graphs, no bound is known on the spanning
and routing ratios of the directed Θ6-graph. We show that the directed

Θ6-graph of a point set P , denoted
−→
Θ 6(P), is a 7-spanner and there

exist point sets where the spanning ratio is at least 4 − ε, for any ε > 0.
It is known that the standard greedy Θ-routing algorithm may have an

unbounded routing ratio on
−→
Θ 6(P). We design a simple, online, local,

memoryless routing algorithm on
−→
Θ 6(P) whose routing ratio is at most

14 and show that no algorithm can have a routing ratio better than 6−ε.

Keywords: Spanners · Theta graphs · Routing algorithms

1 Introduction

A geometric graph G = (V,E) is a graph whose vertex set V is a set of points in
the plane and whose edge set E is a set of segments joining vertices. Typically,
the edges are weighted with the Euclidean distance between their endpoints and
we refer to such graphs as Euclidean geometric graphs. A spanning subgraph
H of a weighted graph G is a t-spanner of G provided that the weight of the
shortest path in H between any pair of vertices is at most t times the weight of
the shortest path in G. The smallest constant t for which H is a t-spanner of G
is known as the spanning ratio or the stretch factor of H.

There is a vast literature outlining different algorithms for constructing var-
ious geometric (1 + ε)-spanners of the complete Euclidean geometric graph (see
[13,18] for a survey of the field). One can view a t-spanner H of a graph G as an
approximation of G. From this perspective, there are many parameters that can
be used to measure how good the approximation is. The obvious parameter is the
spanning ratio, however, many other parameters have been studied in addition

Research supported in part by NSERC.

c© Springer Nature Switzerland AG 2021
A. Lubiw et al. (Eds.): WADS 2021, LNCS 12808, pp. 1–14, 2021.
https://doi.org/10.1007/978-3-030-83508-8_1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-83508-8_1&domain=pdf
https://doi.org/10.1007/978-3-030-83508-8_1

2 H. A. Akitaya et al.

to the spanning ratio such as the size, the weight, the maximum degree, con-
nectivity, diameter to name a few. The study of spanners is a rich subfield and
many of the challenges stem from the fact that these parameters are sometimes
opposed to each other. For example, a spanner with high connectivity cannot
have low maximum degree. As such, many different construction methods have
been proposed which outline trade-offs between the various parameters.

A geometric graph H being a (1 + ε)-spanner of the complete Euclidean
geometric graph certifies the existence of a short path in H between every pair of
vertices. Finding such a short path is as fundamental a problem as constructing a
good spanner. Typically, most path-planning or routing algorithms are assumed
to have access to the whole graph when computing a short path [12,15,17].
However, in many settings, the routing must be performed in an online manner.
This presents different challenges since the whole graph is not available to the
algorithm but the routing algorithm must explore the graph as it attempts to
find a path. By providing the routing algorithm with a sufficient amount of
memory or a large enough stream of random bits, one can successfully route
online using a random walk [14,19] or Depth-First Search [15]. The situation is
more challenging if the online routing algorithm is to be memoryless and local,
i.e. the only information available to the algorithm, prior to deciding which edge
to follow out of the current vertex, consists of the coordinates of the current
vertex, the coordinates of the vertices adjacent to the current vertex and the
coordinates of the destination vertex. The routing ratio of such an algorithm
is analogous to the spanning ratio except that the ratio is with the weight of
the path followed by the routing algorithm as opposed to the shortest path in
the spanner. Thus, the routing ratio, by definition, is an upper bound on the
spanning ratio. The main difficulty in designing these types of algorithms is
that deterministic routing algorithms that are memoryless and local often fail
by cycling [9].

Introduced independently by Clarkson [11] and Keil and Gutwin [16], Θk-
graphs are an important class of (1 + ε)-spanners of the complete Euclidean
geometric graph for ε > 0. Θk-graphs have bounded spanning ratio [2,6,7,11,
16,20] for all k > 3 and unbounded spanning ratio [1] for k = 2, 3. Informally,
a Θk-graph is constructed in the following way: the plane around each vertex
v is partitioned into k cones with apex v and cone angle θ = 2π/k. In each
cone, v is joined to the point whose projection on the bisector of the cone is
closest to v. Although this naturally gives rise to a directed graph (where the
previously described edges are directed away from v), much of the literature on
Θk-graphs has focused on the underlying undirected graph. For example, the
tightest upper and lower bounds on the spanning ratio for Θk-graphs are proven
on the underlying undirected graphs (see [7] for a survey). Given a planar point
set P , to avoid any confusion, we will denote the directed version of the Θk-graph
as

−→
Θ k(P) and the underlying undirected graph as Θk(P). While it is harder to

obtain routing algorithms for
−→
Θ k(P) because of the extra constraint imposed by

the directed edges,
−→
Θ k(P) has the advantage of maximum out-degree bounded

by k, which allows for local routing algorithms in ad-hoc networks where each

On the Spanning and Routing Ratios of the Directed Θ6-Graph 3

node’s storage is limited by a constant. In contrast, the Θk(P) graph can have
maximum degree linear in |P |.

Note that the definition of
−→
Θ k-graphs gives rise to a simple, online, local

routing algorithm often referred to as greedy Θ-routing: when searching for
a path from a vertex s to a vertex d, follow the edge from s in the cone that
contains d. Repeat this procedure until the destination is reached. At each step,
the only information used to make the routing decision is the location of the
destination and the edge out of the current vertex that contains the destination.
Thus, greedy Θ-routing is online, local and memoryless. Ruppert and Seidel [20]
showed that greedy Θ-routing has a routing ratio of 1/(1−2 sin(π/k)) for k ≥ 7.
For 3 < k < 7, it was shown that the routing ratio is unbounded [5]. Intuitively,
it seems that the routing ratio should be worse than the spanning ratio for
all values of k, since an online routing algorithm must explore the graph while
searching for a short path. Indeed, this is true for all values of k ≥ 7, except
when k ≡ 0 mod 4, in which case the upper bound on the routing ratio and the
spanning ratio is (cos(π/k) + sin(π/k))/(cos(π/k) − sin(π/k)).

Recently, it was shown that
−→
Θ 4 has bounded routing ratio [6]. Although this

is not claimed explicitly by the authors, a careful analysis of their proof shows
that their result actually carries over to the directed setting. It was shown that
the Half-Θ6 graph – a subgraph of the Θ6 graph whose edges only consist of
those defined in even cones – has an optimal spanning ratio of 2 and an optimal
routing ratio of 5/

√
3 [4,8,10]. This is the first result we are aware of that shows a

strict separation between the optimal spanning and routing ratios. However, the
routing algorithm is defined on the undirected graph and the algorithm explicitly
follows edges in the wrong direction. No tight bounds are known for the spanning
ratios in

−→
Θ k, except when k ≥ 7 and k ≡ 2 mod 4, for which it is known that

the spanning ratio is 1+2 sin(π/k), and this bound is tight in the worst case [7].
For a comprehensive overview of the current best known spanning and routing
ratios for Θk, for k ≥ 7, we refer the reader to [7] (Table 1).

1.1 Our Contributions

We focus on fundamental questions related to
−→
Θ 6(P). All that is known is that it

is strongly-connected [5]. We show that
−→
Θ 6(P) is a 7-spanner (Sect. 3). Although

Table 1. Partial summary of the best known upper bounds for spanning and routing
ratios. Bold numbers indicate results from this paper. Results followed by * have a
known matching lower bound. See Bose et al. [7] for other results on general Θk when
k mod 4 �= 0, or the full version of the paper for a more complete table including lower
bounds.

Θ4/
−→
Θ 4 Θ6/

−→
Θ 6 Θ4k/

−→
Θ 4k, k > 1

Spanning 17/17 [6] 2* [4]/7 cos(θ/2)+sin(θ/2)
cos(θ/2)−sin(θ/2)

[7]/ cos(θ/2)+sin(θ/2)
cos(θ/2)−sin(θ/2)

[7]

Routing 17/17 [6] 5√
3
* [8]/14 cos(θ/2)+sin(θ/2)

cos(θ/2)−sin(θ/2)
[7]/ cos(θ/2)+sin(θ/2)

cos(θ/2)−sin(θ/2)
[7]

4 H. A. Akitaya et al.

our proof is constructive, it cannot be converted into a local routing algorithm
since the construction of the routing path between given points requires knowl-
edge of the whole graph. However, we are able to successfully design an online,
local, memoryless routing algorithm on

−→
Θ 6(P) whose routing ratio is at most

14 (Sect. 4). Our algorithm is simple but different from greedy Θ-routing, and,
the analysis of the routing ratio is non-trivial since our algorithm makes some
decisions that are counter-intuitive. For example, even if there exists a greedy
edge whose endpoint is close to the destination, under certain circumstances, our
algorithm chooses to go to a vertex that is farther away in a cone that does not
contain the destination. In essence, greed is not always good. We complement
these upper bounds with the following lower bounds in the full version of this
paper. We note that our lower bounds are proven on the strongest model (for any
online local algorithm even with arbitrary memory) of online routing and our
upper bound is designed on the weakest model (online, local, and memoryless).
We summarize our main results below.

Theorem 1. The spanning ratio of
−→
Θ 6 is at most 7 and there exists a point set

P such that the spanning ratio of
−→
Θ 6(P) is at least 4 − ε for any ε > 0.

Theorem 2. There exists an online, local, memoryless routing algorithm whose
routing ratio on

−→
Θ6 is at most 14. For any ε > 0 and any local routing algorithm

A in
−→
Θ 6(P), the routing ratio of A is at least 6 − ε.

2 Preliminaries

In this section, we outline some notation and definitions. Given two points a, b
in the plane, ‖ab‖ refers to their Euclidean distance. A convex polygon C is
regular if all its edges are of the same length. By ‖C‖, we refer to the side
length of C. The boundary of C is denoted as bd(C) and the interior of C is
denoted as int(C). We call a triangle (resp. hexagon) aligned if each of its
edges is parallel to a line of slope

√
3, slope 0 or slope −

√
3. Given two distinct

points u, v in the plane, the canonical triangle of u with respect to v, denoted
�v

u is the regular aligned triangle where u is one of the vertices and v is on
the edge of the triangle opposite u. Note that �v

u is congruent to �u
v . Let u v

be the regular aligned hexagon centered at u that has v on its boundary. The
lines through u having slope

√
3, slope 0 and slope −

√
3, respectively, partition

the hexagon into 6 regular aligned triangles. Label these triangles �0
uv, . . . ,�5

uv

in counter-clockwise order with the convention that �0
uv is the triangle below

u with a horizontal base. When referring to these triangles or sets related to
these triangles, indices are manipulated modulo 6. When it is clear from the
context, to make notation a little less cumbersome, we drop the subscript uv
(see Fig. 1). Note that �i for the i ∈ {0, . . . , 5} that has v on its base is identical
to �v

u. This implies that i = v
u = u v . Finally, we note that a regular

aligned hexagon defines a distance metric. Given two points u, v in the plane,
the hexagonal distance between u and v, d (u, v) = u v = v u .

On the Spanning and Routing Ratios of the Directed Θ6-Graph 5

Fig. 1. Illustrations of our defi-
nitions.

A directed edge (u, v) in a graph is an
ordered pair and represents an edge directed
from vertex u to vertex v. We refer to u as the
tail of the edge and v as the head of the edge.
To simplify the discussion and avoid situations
where points are bordering on two cones, we
make the following general position assumption
on a point set P : no two points lie on a line
of slope

√
3, slope 0 or slope −

√
3. Note that

a slight rotation of the point set removes this,
as such, this assumption does not take away
from the generality of our results. Given a set
of points P in the plane, the directed Θ6-graph
whose vertex set is P is denoted

−→
Θ6(P). A directed edge (a, b) exists in

−→
Θ6(P)

provided that �b
a does not contain any point of P \ {a, b}. An equivalent way

to construct
−→
Θ6(P) is the following. For each u ∈ P , the lines through u with

slopes −
√

3, 0,
√

3 partition the plane into 6 cones. We label these cones ∧i
u,

i ∈ {0, . . . , 5} counterclockwise with ∧0
u being the cone directly below u. For

each cone ∧i
u, add edge (u, v) if v ∈ ∧i

u is the closest point to u in the d� metric.
This makes explicit the fact that the maximum out-degree of

−→
Θ6(P) is 6.

2.1 The Routing Model

Given a graph G = (V,E), with vertex set V and edge set E, an online, �-local
routing algorithm can be expressed as a function f : V × V × H × M → V × M ,
where M = {0, 1}∗. The parameters of f(u, d,G�(u),m) are: u the current vertex,
d the destination vertex, G�(u) the subgraph of G that consists of all paths
rooted at u with length at most � and m is a bit-string representing the memory.
An invocation of the routing function f(u, d,G�(u),m) updates m and returns
v ∈ V such that the edge (u, v) should be followed out of u to reach destination
d. This is the strongest model of online routing where the algorithm has infinite
memory and is aware of the graph induced on the �-neighborhood prior to making
a routing decision. With this model, one can perform Depth-First Search on G.
The algorithm is considered 1-local or local if � = 1. It is considered memoryless
if M = ∅, that is, the algorithm has no memory or knowledge of where it started
or where it has been. The weakest model is online, local and memoryless. For
example, one cannot even perform Depth-First Search in this model. Although
quite restrictive, our routing algorithm falls within the weakest model.

3 Upper Bound on the Spanning Ratio

In this section, we show that
−→
Θ 6(P) is a 7-spanner. Given a destination vertex

d ∈ −→
Θ6(P), we define the greedy edge of vertex v with respect to d to be the

outgoing edge of v in �d
v. Recall that the routing strategy of repeatedly following

6 H. A. Akitaya et al.

the greedy edge at every step until the destination is reached is called greedy
routing or Θ-routing. The path found by the greedy routing algorithm is called
the greedy path. Thus, the greedy path from s to d, denoted π(s, d), is the path
in

−→
Θ6(P) starting at s and where at every step, the greedy edge with respect to

d is selected, until the destination d is reached.
Given a starting vertex s and a destination vertex d, by construction, we have

that the canonical triangle, �d
s , is contained in the hexagon d s. Let (s, a) be

the first greedy edge in π(s, d). Then, since a is in �d
s we have that d�(a, d) <

d�(s, d). The inequality is strict since by our general position assumption a is
contained in int(�d

s), or a = d. Therefore, at every step of the greedy routing
algorithm, the hexagonal distance to the destination decreases. Since there are
a finite number of points in P and the fact that the hexagonal distance to the
destination is strictly decreasing at every step, the greedy algorithm terminates
at d. We summarize this in the following lemma.

Lemma 1. Given any pair of points s, d ∈ P , there always exists a greedy path
from s to d in

−→
Θ6(P). Furthermore, let x be a vertex in π(s, d) different from s

and d. Then the following hold:

– d x is contained in (d s)
– d�(x, d) < d�(s, d)
– π(x, d) is contained in d x

Fig. 2. From [5]. Colored triangles are interior-
empty triangles �v

u that define an edge (u, v) of−→
Θ6(P). Different colors encode different canon-
ical triangles in {�0

uv, . . . , �5
uv}. The spanning

ratio of the greedy path from the perimeter to
the center of the red hexagon is not bounded by
a constant. (Color figure online)

Although the greedy routing
algorithm always reaches its des-
tination, its spanning ratio is not
bounded by a constant [5]. The
issue is that π(s, d), although get-
ting closer to d with respect to
the hexagonal distance, can spi-
ral around d many times (see
Fig. 2).

However, if there happens to
be an edge from d to s, i.e.
(d, s) ∈ −→

Θ6(P), then π(s, d) can
no longer spiral around d since
�s

d is empty of points of P and
acts as a barrier, as we shall prove
in Lemma 2. This prevents the
path from cutting across �s

d. We then prove that if (d, s) is an edge of
−→
Θ6(P)

then the spanning ratio of π(s, d) is at most 6 ‖�s
d‖ (Corollary 1).

For i ∈ {0, . . . , 5}, let Ti = {(a, b) ∈ π(s, d) | a ∈ �i
ds}. Ti is the set of all

edges of π(s, d) whose tail is in �i. Define the weight of Ti, denoted ‖Ti‖, to be∑
(a,b)∈Ti

∥
∥�b

a

∥
∥. For ease of reference, label the sequence of vertices in π(s, d) as

s = u0, . . . , uk = d where k is the number of edges.

On the Spanning and Routing Ratios of the Directed Θ6-Graph 7

Lemma 2. If (ua, ua+1) is an edge of π(s, d) in Ti for a ∈ {0, . . . , k − 1} and
i ∈ {0, . . . , 5}, then ua+1 can only be in one of �i−1

ds ,�i
ds or �i+1

ds .

Proof. Without loss of generality, assume that ua is in �0
ds. Let h+(d) be the half-

plane above the horizontal line through d. Since the edge of �d
ua

that contains d
is horizontal and the interior of the triangle lies below the horizontal line through
d, we have that int(�d

ua
) ∩ h+(d) = ∅. Therefore, ua+1 cannot be in �2,�3 or

�4, since the interiors of all those triangles are in h+(d). The lemma follows. �

Note that Lemma 2 immediately implies that the greedy path cannot spiral
around d since that would require π(s, d) to contain a point of P in int(�s

d),
contradicting the existence of edge (d, s). This lets us bound the length of π(s, d).

Fig. 3. (a) Illustration of Lemma 3. (b) Illustrations of Theorem 3.

Lemma 3. Assume (d, s) is an edge of
−→
Θ6(P) and let ua be a vertex of π(s, d)

in �i
ds. Let ub be the next vertex in π(s, d) after ua that appears in �i

ds, i.e.
b > a. Then, int(�ua+1

ua) ∩ int(�ub

d) = ∅.

Proof. Without loss of generality, assume that ua is in �0
ds. We have two cases:

either ub = ua+1 or ub �= ua+1. We begin with the former. If ub = ua+1 then the
lemma holds trivially since �ua+1

ua and �ua+1
d are separated by a horizontal line.

We now consider the case where ub �= ua+1, i.e. b > a + 1 (Fig. 3(a)). By
Lemma 2 and ub’s definition, ua+1 must either be in �1 or �5. Without loss of
generality, assume that ua+1 is in �5. Consider the edge (ub−1, ub) of π(s, d). By
Lemma 2, ub−1 must be in �5 since, by the existence of (d, s), the path cannot
spiral around d and enter �0 from �1. By Lemma 1, ub−1 must be contained
in �ua+1

d . Moreover, since (ua, ua+1) is an edge of the path, we have that �ua+1
ua

is empty, which means that ub−1 lies above the horizontal line through ua+1.
This implies that ub also lies above the horizontal line through ua+1 since the
canonical triangle �ub

ub−1
has a horizontal edge and lies above the horizontal line

through ub−1. Therefore, int(�ua+1
ua) ∩ int(�ub

d) = ∅. �

Lemma 4. If (d, s) ∈ −→
Θ6(P), then ‖Ti‖ ≤ ‖�s

d‖, for i ∈ {0, . . . , 5}.

8 H. A. Akitaya et al.

Proof. We show the bound for T0. Let (a, b) ∈ T0. Let a′ (resp. b′) be the
intersection of a horizontal line through a (resp. b) with the left side of �0

ds.
Since �b

a is equilateral, ‖a′b′‖ ≥ ‖ab‖. If (a1, b1) and (a2, b2) are two edges in T0,
by Lemma 3, a′

1b
′
1 and a′

2b
′
2 do not overlap. Therefore, ‖T0‖ is at most ‖�s

d‖. �

We are now able to bound the length of π(s, d) when (d, s) ∈ −→
Θ6(P). As each

edge of π(s, d) appears in only one Ti, the bound follows from Lemma 4.

Corollary 1. If (d, s) ∈ −→
Θ6(P), then π(s, d) 6 s

d = 6 d s .

Corollary 1 implies that
−→
Θ6(P)’s spanning ratio is upper bounded by 12

√
3.

This follows from the fact that Θ6(P)’s spanning ratio is 2 and for each edge e in
Θ6(P) there is a directed path of length at most 6

√
3 ‖e‖ from one endpoint of e

to the other in
−→
Θ6(P) (the

√
3 term comes from the hexagonal distance metric).

A more careful analysis lets us prove a better spanning ratio. In order to
do this, we uncover a structural property of greedy paths in

−→
Θ6(P). We note

that a weaker version of this claim is proven by Bonichon et al. [3] (proof of
Theorem 1). Thus, we omit the proof here which is given in the full version.

Theorem 3. Between any pair of points s, d ∈ P , there exists an x ∈ P in �d
s

such that the following hold (note that if the interior of �d
s is empty then x = d):

1. π(s, x) and π(d, x) are both in �d
s,

2. ‖π(s, x)‖ ≤ ‖�x
s‖,

3. ‖π(d, x)‖ ≤ ‖�x
d‖ .

Proof Sketch. See Fig. 3(b) for an example. We prove the claim by induction on
the rank of pairs of points (s, d) as sorted order by ‖ �d

s ‖. The induction step
builds the required paths using the greedy edge from s in d’s direction and the
path obtained by applying a stronger induction hypothesis. �

We now prove the main result of this section.

Theorem 4. Between any pair of points s, d ∈ P , there exists a directed path
δ(s, d) in

−→
Θ6(P) such that the length of δ(s, d) is at most 7 ‖sd‖.

Proof. Given a greedy path π(u, v), the reverse path, denoted ρ(v, u), is a
directed path from v to u where every edge (x, y) in π(u, v) is replaced with
the greedy path π(y, x). By Theorem 3, between any pair of points s, d ∈ P ,
there exists an x ∈ �d

s such that π(s, x) and π(d, x) are both in �d
s , ‖π(s, x)‖ ≤

‖�x
s‖ ≤

∥
∥�d

s

∥
∥, and ‖π(d, x)‖ ≤ ‖�x

d‖. Let δ(s, d) be the path resulting from the
concatenation of π(s, x) and ρ(x, d). By construction, δ(s, d) is a directed path
from s to d. Let A be one of the two triangles obtained from �d

s \�s
d. Let a, b and

s be the vertices of �d
s with a being incident to A. Without loss of generality,

assume the orientation shown in Fig. 3(b) and that x ∈ A. Consider the triangle
defined by s, a, d and let γ be the angle at s. By elementary trigonometry, we have
that the spanning ratio is ‖δ(s, d)‖ / ‖sd‖ ≤ (sin(2π/3−γ)+6 sin γ)/ sin(π/3) ≤
7, since the maximum is attained when γ = π/3. �

On the Spanning and Routing Ratios of the Directed Θ6-Graph 9

Fig. 4. (a) Examples of some of the notation used. (b) Example in which Algorithm 1
takes the non-greedy (s, u). (c) Example in which Algorithm 1 takes the greedy edge
(s, v).

Although the proof of the spanning ratio of 7 for
−→
Θ6(P) is constructive,

unfortunately, it does not provide an online routing algorithm. There are 3 main
obstacles. First, in the proof, the path is constructed from both ends, where we
build a greedy path from s to x and another from d to x. Second, the point x
is not easily identifiable locally. And third, when finding the reverse path of an
edge (a, b), one needs to know both a and b, which may not be information that
is available if we are only aware of outgoing edges.

4 Routing Algorithm and Upper Bound on Routing
Ratio

This section provides a routing algorithm in
−→
Θ 6. We first describe some notation

used in this section. Similar to u v , we denote by u v the axis aligned hexagon
rotated by π/6 that is centered at u and contains v on its boundary. For an
example, see the shaded hexagon in Fig. 5. The following definitions refer to a
hexagon d s. Refer to Fig. 4 (a). Let �0 be the vertical line through d and �1,
�2, �3, �4, and �5 be the lines through d with slopes −

√
3, − 1√

3
, 0, 1√

3
, and

√
3

respectively. For a point u ∈ �0
ds, we define point u′ as the orthogonal projection

of u on �1 or �5, whichever is closest to u. We also define points u→, u↗, u↖, and
u← as the intersections between �1 or �5 and the rays from u with angles 0, π/3,
2π/3, and π from the positive x-direction. We define 0 and 0 to be the left
and right triangles obtained from partitioning �0

ds with �0. We also partition
�0

ds into four congruent triangles with the line segments through two of the
three midpoints of sides of �0

ds. Denote by 0, 0, 0, 0 the top, left, right,
and middle triangles respectively. We apply the appropriate rotations to obtain
the analogous definitions for �i

ds, i ∈ {1, . . . , 5}. For example, 3 in Fig. 4 (a)
is the bottom triangle in �3

ds.

10 H. A. Akitaya et al.

Algorithm 1: DirectedRoute(s, d, N(s))

1 s is the current vertex, d is the destination and N(s) is the
1-neighborhood of s.

2 Assume that s is in 0
ds otherwise apply the appropriate rotations

and/or reflection;
3 Let (s, v) be the edge from s in ∧3

s;
// Greedy Edge

4 Let (s, u) be the edge from s in ∧4
s;

// Non-greedy Edge if it exists
5 if u exists and u ∈ 0

ds ∪ 0
ds ∪ 0

ds then
6 Return u; // Take Non-greedy Edge
7 else
8 Return v; // Take Greedy Edge
9 end

We define the potential of a point p ∈ P as Φ(p) = 3
2 d p . Let

(u0 = s, u1, . . . , uk = d) be the sequence of vertices visited by Algorithm 1.
The following lemma shows that the potential decreases with each step of the
algorithm. We provide its proof in the full version.

Lemma 5. Let (ua, ua+1) be an edge taken by Algorithm 1. Then Φ(ua+1) <

Φ(ua), and d ua+1 < d ua

Fig. 5. The shaded hexagon

d s
contains points whose

potentials are the same or
lower than s. The red triangle
is �d

s and the blue triangle is

�q↖
s . (Color figure online)

Since the potential of a point is a function of its
position, Lemma 5 implies that no point is visited
twice and the destination is always reached. We
now bound the routing ratio. We apply a charging
scheme for each edge taken by the algorithm based
on its type. We classify the edges (ua, ua+1) taken

by the algorithm as follows. If ua+1 is in 1
ds we

call the edge a long step. Otherwise, we call the
edge a short step.
Informal Overview of the Charging Scheme.
Each step (ua, ua+1) will be associated with a
decrease in potential Φ(ua) − Φ(ua+1) quantifying
how much closer the current point ua+1 is to d than
the previous point ua. We show in Lemma 6 that
for short steps, the decrease in potential is enough
to pay for the size of the step ‖uaua+1‖. For long
steps, the potential might decrease by an arbitrarily small amount. So in addi-
tion to the decrease in potential, we charge the step to a region of the hexagon
d s . The charged regions are axis-aligned trapezoids whose non-parallel edges
are on �i, i ∈ {1, 2, 3}. Lemma 7 quantifies how the size of the charged trapezoids
relates to the size of the step. We then show that the charged trapezoids have
disjoint interiors, i.e., the same region cannot be double charged. This is what
allows us to bound the cost of the path.

On the Spanning and Routing Ratios of the Directed Θ6-Graph 11

Fig. 6. Charging scheme for long steps.

For two points u and v in the interior of the same cone ∧i
d, define the trape-

zoid v
u as �u

d \ �v
d. Note that v

u = if ‖�u
d‖ ≤ ‖�v

d‖, i.e. �u
d ⊂ �v

d.

Case 1 ((ua, ua+1) is short) Charge to the decrease in potential Φ(ua)−Φ(ua+1).
Case 2 ((ua, ua+1) is long) Charge to the decrease in potential Φ(ua) − Φ(ua+1)

and to a region t
ua+1 where t is defined as follows. Refer to Fig. 6 (b). Let

p be the upper right corner of �ua+1
ua and r be the intersection between the

upper edge of �ua+1
ua and �2. We define t to be the midpoint of rp.

Lemmas 6 and 7 formalize the charging scheme. Due to space restrictions,
their proofs are in the full version.

Lemma 6. In Case 1 where (ua, ua+1) is a short step, the decrease in potential
is at least half the size of the step, i.e., ‖uaua+1‖

2 ≤ Φ(ua) − Φ(ua+1).

We define the length
t
ua+1 of a trapezoid t

ua+1 to be the length of one

of its non parallel sides. Note that in the context of Case 2,
t
ua+1

= tua+1 .

Lemma 7. In Case 2 where (ua, ua+1) is a long step, the decrease in potential
plus the length of the charged region is at least half the size of the step, i.e.,

uaua+1
Φ(ua) Φ(ua+1) + t

ua+1
.

Let T be the set of all charged trapezoids, and ‖T ‖ be the sum of lengths of
all trapezoids in T . We show a property that allows us to upper bound ‖T ‖.

Lemma 8. Let (ua, . . . , ub) be a subsequence of steps taken by Algorithm 1 where
all visited points are in the same cone of d. Without loss of generality, let this
cone be ∧0

d, and let ua
0
dua. If ub+1 is in ∧5

d, then ub+1 d ua . If ub+1 is
in ∧1

d, then ub+1 d q where q is the midpoint of the bottom edge of �0
dua

.

12 H. A. Akitaya et al.

Proof. Refer to Fig. 7 (a). If ub+1 is not in ∧0
d, then by Algorithm 1, (ub, ub+1)

is greedy. By Lemma 2, ub+1 is either in �1
dua

or �5
dua

. Since all edges of the
subsequence are short edges, by definition, we have that ua+1 is in the pentagon
qq↗du↖

a ua. A simple inductive argument shows that this implies that ub is in
the region qq↗du↖

a ua. Hence, since (ub, ub+1) is a greedy edge, we have that
ub+1
ub

1
dua

d ua and
ub+1
ub

5
dua

d q The lemma follows. �

Fig. 7. (a) Illustration of Lemma 8. (b)–(c) Algorithm 1 cannot enter
t
ua+1 once it

leaves triangle tua+1t
∗.

Lemma 9. Let t
ua+1 be the trapezoid charged by a long step (ua, ua+1), and

let (ua+1, . . . , ub), a < b be the maximal subpath traversed by Algorithm 1 with
ub

t
ua+1 . Then, every step in the subpath is short, and every point in it

(ui, i ∈ {a + 1, . . . , b}) is in the equilateral triangle whose bottom edge is tua+1.

Proof Sketch. The full proof is in the full version. Refer to Figs. 7 (b)–(c). Let
tua+1t

∗ be the equilateral triangle whose bottom edge is tua+1. From ua+1,
Algorithm 1 can only take short steps before leaving such triangle to a point uc.
We show that after uc, the path output by the algorithm can never return to
tua+1t

∗. Then, no point visited after uc can be in t
ua+1. �

Corollary 2. The trapezoids in T are pairwise interior disjoint.

Proof. For contradiction, assume that trapezoids ta
ua+1

tb
ub+1 , charged by long

steps (ua, ua+1) and (ub, ub+1) with a < b, intersect. Then, the larger base of
tb
ub+1 is between the two bases of ta

ua+1. By construction of the trapezoids, ub

is in ta
ua+1 contradicting Lemma 9. �

Theorem 5. The routing ratio of Algorithm 1 is at most 14.

On the Spanning and Routing Ratios of the Directed Θ6-Graph 13

Proof. By Lemmas 6 and 7, the length of the path returned by Algorithm 1 is
at most

k−1∑

i=1

‖uiui+1‖ ≤ 2(Φ(s) − Φ(d) + ‖T ‖).

By definition, Φ(s) < ‖sd‖ and Φ(d) = 0. By Corollary 2, ‖T ‖ ≤ 6 ‖sd‖ since the
trapezoids can only fill the initial hexagon d s. Then,

∑k−1
i=1 ‖uiui+1‖ ≤ 14 ‖sd‖

as required. �

5 Conclusions

We have provided upper and lower bounds for the spanning and routing ratios
of

−→
Θ 6(P). There are still gaps between the bounds as they are not matching.

We believe that the actual bound is closer to the lower bounds, mainly because
in the analysis of the upper bound of both the spanning and routing ratios, we
account for the possibility that the path from source to destination goes around
intermediate points and/or the destination. However, intuition seems to suggest
that this does not actually happen and there is a shorter path that cuts in after
going half-way around, which is the case in our lower bound constructions. We
leave the closing of the gap between the upper and lower bounds as an open
problem.

References

1. Aichholzer, O., et al.: Theta-3 is connected. Comput. Geom.: Theory Appl. 47(9),
910–917 (2014)

2. Barba, L., Bose, P., De Carufel, J.L., van Renssen, A., Verdonschot, S.: On the
stretch factor of the theta-4 graph. In: Dehne, F., Solis-Oba, R., Sack, J.R. (eds.)
Algorithms and Data Structures. LNCS, vol. 8037, pp. 109–120. Springer, Heidel-
berg (2013). https://doi.org/10.1007/978-3-642-40104-6 10

3. Bonichon, N., Bose, P., Carmi, P., Kostitsyna, I., Lubiw, A., Verdonschot, S.:
Gabriel triangulations and angle-monotone graphs: local routing and recognition.
In: International Symposium on Graph Drawing and Network Visualization, pp.
519–531. Springer, Heidelberg (2016)

4. Bonichon, N., Gavoille, C., Hanusse, N., Ilcinkas, D.: Connections between theta-
graphs, delaunay triangulations, and orthogonal surfaces. In: Thilikos, D.M. (ed.)
Graph Theoretic Concepts in Computer Science. LNCS, vol. 6410, pp. 266–278.
Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-16926-7 25

5. Bose, P., De Carufel, J.-L., Devillers, O.: Expected complexity of routing in Θ6

and half-Θ6 graphs. arXiv preprint arXiv:1910.14289 (2019)
6. Bose, P., De Carufel, J.-L., Hill, D., Smid, M.H.M.: On the spanning and routing

ratio of Theta-four. In: Symposium on Discrete Algorithms, pp. 2361–2370. SIAM
(2019)

7. Bose, P., De Carufel, J.-L., Morin, P., van Renssen, A., Verdonschot, S.: Towards
tight bounds on theta-graphs: more is not always better. Theoret. Comput. Sci.
616, 70–93 (2016)

https://doi.org/10.1007/978-3-642-40104-6_10
https://doi.org/10.1007/978-3-642-16926-7_25
http://arxiv.org/abs/1910.14289

14 H. A. Akitaya et al.

8. Bose, P., Fagerberg, R., van Renssen, A., Verdonschot, S.: Optimal local routing on
delaunay triangulations defined by empty equilateral triangles. SIAM J. Comput.
44(6), 1626–1649 (2015)

9. Bose, P., Morin, P.: Online routing in triangulations. SIAM J. Comput. 33(4),
937–951 (2004)

10. Chew, P.: There are planar graphs almost as good as the complete graph. J. Com-
put. Syst. Sci. 39(2), 205–219 (1989)

11. Clarkson, K.: Approximation algorithms for shortest path motion planning. In:
Proceedings of the 19th Annual ACM Symposium on Theory of Computing (STOC
1987), pp. 56–65 (1987)

12. Dijkstra, E.: A note on two problems in connexion with graphs. Numer. Math. 1,
269–271 (1959)

13. Eppstein, D.: Spanning trees and spanners. In: Handbook of Computational Geom-
etry, pp. 425–461 (1999)

14. Grimmett, G.: Probability on Graphs: Random Processes on Graphs and Lattices,
2nd edn. Cambridge University Press, Cambridge (2018)

15. Hopcroft, J., Tarjan, R.: Algorithm 447: efficient algorithms for graph manipula-
tion. Commun. ACM 16(6), 372–378 (1973)

16. Keil, J.M., Gutwin, C.A.: Classes of graphs which approximate the complete
Euclidean graph. Discret. Comput. Geom. 7, 13–28 (1992). https://doi.org/10.
1007/BF02187821

17. Lee, C.Y.: An algorithm for path connection and its applications. IRE Trans.
Electron. Comput. EC–10(3), 346–365 (1961)

18. Narasimhan, G., Smid, M.: Geometric Spanner Networks. Cambridge University
Press, Cambridge (2007)

19. Pearson, K.: The problem of the random walk. Nature 72, 294 (1865)
20. Ruppert, J., Seidel, R.: Approximating the d-dimensional complete Euclidean

graph. In: Proceedings of the 3rd Canadian Conference on Computational Geom-
etry (CCCG 1991), pp. 207–210 (1991)

https://doi.org/10.1007/BF02187821
https://doi.org/10.1007/BF02187821

The Minimum Moving Spanning Tree
Problem

Hugo A. Akitaya1, Ahmad Biniaz3(B), Prosenjit Bose2, Jean-Lou De Carufel4,
Anil Maheshwari2, Lúıs Fernando Schultz Xavier da Silveira2,

and Michiel Smid2

1 Department of Computer Science, University of Massachusetts Lowell, Lowell, USA
2 School of Computer Science, Carleton University, Ottawa, Canada

{jit,anil,michiel}@scs.carleton.ca, schultz@ime.usp.br
3 School of Computer Science, University of Windsor, Windsor, Canada

abiniaz@uwindsor.ca
4 School of Electrical Engineering and Computer Science, University of Ottawa,

Ottawa, Canada
jdecaruf@uottawa.ca

Abstract. We investigate the problem of finding a spanning tree of a set
of moving points in the plane that minimizes the maximum total weight
(sum of Euclidean distances between edge endpoints) or the maximum
bottleneck throughout the motion. The output is a single tree, i.e., it
does not change combinatorially during the movement of the points. We
call these trees the minimum moving spanning tree, and the minimum
bottleneck moving spanning tree, respectively. We show that, although
finding the minimum bottleneck moving spanning tree can be done in
O(n2) time, it is NP-hard to compute the minimum moving spanning
tree. We provide a simple O(n2)-time 2-approximation and a O(n log n)-
time (2 + ε)-approximation for the latter problem.

Keywords: Minimum spanning tree · Moving points · NP-hardness ·
Convex distance function · Approximation algorithms

1 Introduction

The Euclidean minimum spanning tree (EMST) of a point set is the minimum
weight graph that connects the given point set, where the weight of the graph
is given by the sum of Euclidean distances between endpoints of edges. EMST
is a classic data structure in computational geometry and it has found many
uses in network design and in approximating NP-hard problems. In the visual-
ization community, a series of methods generalize Euler diagrams to represent
spatial data [2,8,9,16]. These approaches represent a set by a connected colored
shape containing the points in the plane that are in the given set. In order to

Supported by NSERC.

c© Springer Nature Switzerland AG 2021
A. Lubiw et al. (Eds.): WADS 2021, LNCS 12808, pp. 15–28, 2021.
https://doi.org/10.1007/978-3-030-83508-8_2

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-83508-8_2&domain=pdf
https://doi.org/10.1007/978-3-030-83508-8_2

16 H. A. Akitaya et al.

reduce visual clutter, approaches such as Kelp Diagrams [9] and colored span-
ning graphs [13] try to minimize the area (or “ink”) of such colored shapes. Each
shape can be considered as a generalization of the EMST of points in the set.

Motivated by visualizations of time-varying spatial data, we investigate a
natural generalization of the minimum spanning tree (MST) and the minimum
bottleneck spanning tree (MBST) for a set of moving points. In general it is
desirable that visualizations are stable, i.e., small changes in the input should
produce small changes in the output [17]. In this paper, we want to maintain
all points connected throughout the motion by the same tree (the tree does
not change topologically during the time frame) . Consider points in the plane
moving on a straight line with constant speed over a time interval [0, 1]. The
weight of an edge pq between points p and q is defined to be the Euclidean
distance ‖pq‖. Note that the weight of an edge changes over time. We define
the Minimum Moving Spanning Tree (MMST) of a set of moving points to be a
spanning tree that minimizes the maximum sum of weights of its edges during
the time interval. Analogously, we define Minimum Bottleneck Moving Spanning
Tree (MBMST) of a set of moving points to be a spanning tree that minimizes
the maximum individual weight of edges in the tree during the time interval.

Apart from this motivation, the concepts of MMST and MBMST are rele-
vant in the context of moving networks. Motivated by the increase in mobile
data consumption, network architecture containing mobile nodes have been con-
sidered [14]. In this setting, the design of the topology of the networks is a chal-
lenge. Due to the mobility of the vertices, existing methods update the topology
dynamically and the stability becomes important since there are costs associ-
ated with establishing new connections and handing over ongoing sessions. The
MMST and MBMST offer stability in mobile networks.
Results and Organization. We study the problems of finding an MMST and
an MBMST of a set of points moving linearly, each at constant speed. Section 2
provides formal definitions and proves that the distance function between points
is convex in this setting. We use this property in an exact O(n2)-time algorithm
for the MBMST as shown in Sect. 3. Our algorithm computes the minimum
bottleneck tree in a complete graph G on the moving points in which the weight
of each edge is the maximum distance between the pairs of points during the
time frame. In Sect. 4.1 we present an O(n2)-time 2-approximation for MMST by
computing the MST of G. In the full version of the paper we provide an example
that shows our analysis for the approximation ratio is tight. In Sect. 4.2, we show
that the MMST is equal to the minimum spanning tree of a point set in R

4 with
a non-Euclidean metric. Since this metric space has doubling dimension O(1),
we obtain an O(n log n)-time (2 + ε)-approximation algorithm. Finally, we show
that the problem of finding the MMST is NP-hard in Sect. 4.3 by reducing from
the Partition problem.
Related work. Examples of other visualizations of time-varying spatial data
are space-time cubes [15], that represent varying 2D data points with a third
dimension, and motion rugs [6,21], that reduces the dimentionality of the move-
ment of data points to 1D, presenting a 2D static overview visualizations. The

The Minimum Moving Spanning Tree Problem 17

representation of time-varying geometric sets were also the theme of a recent
Dagstuhl Seminar 19192 “Visual Analytics for Sets over Time and Space” [10]. In
the context of algorithms dealing with time-varying data Meulemans et al. [17]
introduces a metric for stability, analysing the trade-off between quality and
stability of results, and applying it to the EMST of moving points. Monma and
Suri [18] study the number of topological changes that occur in the EMST when
one point is allowed to move.

The problem of finding the MMST and MBMST of moving points can be
seen as a bicriteria optimization problem if the points move linearly (as shown
in Sect. 2.2). In this context, the addition of a new criterion could lead to an NP-
hard problem, such as the bi-criteria shortest path problem in weighted graphs.
Garey and Johnson show that given a source and target vertices, minimizing
both length and weight of a path from source to target is NP-hard [11, p. 214].
Arkin et al. analyse other criteria combined with the shortest path problem [4],
such as the total turn length and different norms for path length.

Maintaining the EMST and other geometric structures of a set of moving
points have been investigated by several papers since 1985 [5]. Kinetic data
structures have been proposed to maintain the EMST [1,20]. Research in this
area have focused on bounds on the number of combinatorial changes in the
EMST and efficient algorithms. To the best of our knowledge, the problem of
finding the MMST and MBMST (a single tree that does not change during the
movement of points) has not been investigated.

2 Preliminaries

In this section we formally define the minimum moving spanning tree and the
minimum bottleneck moving spanning tree of a set of moving points. We then
prove that, for points moving linearly, the distance function between a pair of
points is convex.

2.1 Definitions

A moving point p in the plane is a continuous function p : [0, 1] → R
2. We

assume that p moves on a straight line segment in R
2. We say that p is at p(t)

at time t. We are given a set S = {p1, ..., pn} of moving points in the plane.
A moving spanning tree T of S has S as its vertex set and weight function
wT : [0, 1] → R defined as wT (t) =

∑
pq∈T ‖p(t)q(t)‖. Let T (S) denote the set

of all moving spanning trees of S. Let w(T) = supt wT (t) be the weight of the
moving spanning tree T . A minimum moving spanning tree (MMST) of S is a
moving spanning tree of S with minimum weight. In other words an MMST is
in

arg min
T∈T (S)

(w(T)) .

18 H. A. Akitaya et al.

Let bT (t) = suppq∈T ‖p(t)q(t)‖ denote the bottleneck of a tree T at time
t. A minimum bottleneck moving spanning tree (MBMST) of S is a moving
spanning tree of S that minimizes the bottleneck over all t ∈ [0, 1]. In other
words an MBMST is in

arg min
T∈T (S)

(
max

t
bT (t)

)
.

2.2 Convexity

Let p and q be two moving points in the plane. We assume that these points
move along (possibly different) lines at (possibly different) constant velocities.
Thus, for any real number t, we can write the positions of p and q at time t as

p(t) = (ap + upt, bp + vpt)

and

q(t) = (aq + uqt, bq + vqt),

where ap, up, bp, vp are constants associated with the point p. At time t = 0, p is
at (ap, bp), and the velocity vector of p is (up, vp). Let d(t) = ‖p(t)q(t)‖ denote
the Euclidean distance between p and q at time t. In the next lemma we prove
that d is a convex function. The convexity of d is also implied by a result of Alt
and Godau [3] that the free space diagram of any two line segments is convex.

Lemma 1. The function d is convex.

Proof. It suffices to prove that the second derivative of d is non-negative for all
real numbers t. We can write

d(t) =
√

At2 + Bt + C,

where A, B, and C depend only on ap, up, bp, vp, aq, uq, bq, and vq. Observe that
A ≥ 0. Since d(t) represents a distance, At2+Bt+C ≥ 0 for all t in R. It follows
that the discriminant of this quadratic function is non-positive, i.e.,

B2 − 4AC ≤ 0. (1)

Let α = −B/2A and β = C/A − B2/(4A2). Then

d(t) =
√

A ·
√

(t − α)2 + β.

The second derivative of the function f(t) =
√

t2 + β is given by

f ′′(t) =
β

(t2 + β)3/2
.

It follows from (1) that β ≥ 0. Thus, f ′′(t) ≥ 0 for all t in R. Since d(t) =√
A · f(t − α), we have d′′(t) ≥ 0 for all t in R, and in particular, for t ∈ [0, 1]. �	

The Minimum Moving Spanning Tree Problem 19

The convexity of the distance function between two moving points (Lemma 1)
implies the following corollary.

Corollary 1. The largest distance between two moving points is attained either
at the start time or at the finish time.

Let S be a set of n moving points in the plane. For two points p and q in
S, we denote by ‖p(0)q(0)‖ and ‖p(1)q(1)‖ the distances between p and q at
times t = 0 and t = 1, respectively. Moreover, we denote by |pq|max the largest
distance between p and q during time interval [0, 1]. By Corollary 1 we have

|pq|max = max{‖p(0)q(0)‖, ‖p(1)q(1)‖}. (2)

3 Minimum Bottleneck Moving Spanning Tree

Since by Corollary 1 the largest length of an edge is attained either at time 0 or
at time 1, it might be tempting to think that the MBMST of S is also attained
at times 0 or 1. However the example in Fig. 1(a) shows that this may not be
true. In this example we have four points a, b, c, and d that move from time 0
to time 1 as depicted in the figure. The MBST of these points at time 0 is the
red tree R, and their MBST at time 1 is the blue tree B. Recall that bT (t) is the
bottleneck of tree T at time t. Let b(T) = maxt bT (t) be the bottleneck of T . In R
the weight of ab at time 0 is 1 while its weight at time 1 is 3, and thus b(R) = 3.
In B the weight of ad at time 1 is 1 while its weigh at time 0 is 3, and thus
b(B) = 3. However, for this point set the tree T = {ac, cb, cd} has bottleneck 2.

a0 b0 c0 d0

a1 d1 c1 b1

1 1 1R

B

a b c d3 1 1
2

2

3

(a) (b)

Fig. 1. Four points that move from time 0 to time 1. (a) R is the MBST at time 0,
and B is the MBST at time 1. (b) The graph G; green edges form an MBST of this
graph. (Color figure online)

Although the above example shows that the computation of the MBMST is
not straightforward, we present a simple algorithm for finding the MBMST. Let
G be the complete graph on points of S where the weight w(pq) of every edge
pq is the largest distance between p and q during time interval [0, 1], that is,
w(pq) = |pq|max; see Fig. 1(b).

Lemma 2. The bottleneck of an MBMST of S is not smaller than the bottleneck
of an MBST of G.

20 H. A. Akitaya et al.

Proof. Our proof is by contradiction. Let T ∗ be an MBMST of S and let T be an
MBST of G. For the sake of contradiction assume that b(T ∗) < b(T), where we
abuse the notation for simplicity making b(T) = maxpq∈T w(pq) the bottleneck
of T . Let pq be a bottleneck edge of T , that is b(T) = w(pq). Denote by Tp and Tq

the two subtrees obtained by removing pq from T , and denote by Vp and Vq the
vertex sets of these subtrees. Since the vertex set of T is the same as that of T ∗,
there is an edge, say rs, in T ∗ that connects a vertex of Vp to a vertex of Vq. Since
the bottleneck of T ∗ is its largest edge-length in time interval [0, 1], we have that
|rs|max � b(T ∗). Since in G we have w(rs) = |rs|max, the following inequality is
valid: w(rs) = |rs|max � b(T ∗) < b(T) = w(pq). Let T ′ be the spanning tree of
G that is obtained by connecting Tp and Tq by rs. Then b(T ′) � b(T ∗). If we
repeat this process for all bottleneck edges of T , then we obtain a tree T ′ whose
bottleneck is strictly smaller than that of T . This contradicts the fact that T is
an MBST of G. �	

It is implied from Lemma 2 that any MBST of G is an MBMST of S. Since an
MBST of a graph can be computed in time linear in the size of the graph [7], an
MBST of G can be computed in O(n2) time. The following theorem summarizes
our result in this section.

Theorem 1. A minimum bottleneck moving spanning tree of n moving points
in the plane can be computed in O(n2) time.

4 Minimum Moving Spanning Tree

In this section we study the problem of computing an MMST of moving points.
At the end of this section we prove that this problem is NP-hard. We start by
proposing a 2-approximation algorithm for the MST problem. In the full version
of the paper we show that our analysis of the approximation ratio is tight.

4.1 A 2-approximation Algorithm

Our algorithm is very simple and just computes a MST of the graph G that is
constructed in Sect. 3.

Lemma 3. The weight of any MST of G is at most two times the weight of any
MMST of S.

Proof. Let T be any MST of G and let T ∗ be any MMST of S. Let w(T ∗) =
supt wT (t) be the weight of the moving spanning tree T ∗. We abuse the notation
for simplicity making w(T) =

∑
pq∈T w(pq) the weight of the spanning tree T .

We are going to show that w(T) � 2 ·w(T ∗). Let T ′ be a tree that is combinato-
rially equivalent to T ∗, i.e., has the same topology as T ∗. Assign to each edge pq
of T ′ the weight w(pq) = |pq|max. After this weight assignment, T ′ is a spanning
tree of G. Since T is a MST of G, we have w(T) � w(T ′).

By Corollary 1 the largest distance between two points is achieved either at
time 0 or at time 1. Let E∗

0 be the set of edges of T ∗ whose endpoints largest

The Minimum Moving Spanning Tree Problem 21

distance is achieved at time 0. Define E∗
1 analogously. Then w(E∗

0) � w(T ∗)
and w(E∗

1) � w(T ∗). Moreover, w(T ′) = w(E∗
0) + w(E∗

1). By combining these
inequalities we get

w(T) � w(T ′) = w(E∗
0) + w(E∗

1) � w(T ∗) + w(T ∗) = 2 · w(T ∗).

�	

A minimum spanning tree of G can be computed in O(n2) time using Prim’s
MST algorithm. The following theorem summarizes our result in this section.

Theorem 2. There is an O(n2)-time 2-approximation algorithm for computing
the minimum moving spanning tree of n moving points in the plane.

4.2 An O(n log n)-time (2 + ε)-approximation Algorithm

Section 4.1 showed that the weight of the minimum spanning tree of the graph
G, defined in Sect. 3, gives a 2-approximation to the MMST. Since G has Θ(n2)
edges, it takes Θ(n2) time to compute its MST. In this section, we prove that
a (1 + ε)-approximation to the minimum spanning tree of G can be computed
in O(n log n) expected time. Thus, if we replace ε by ε/2, we obtain a (2 + ε)-
approximation to computing the MMST of a set of linearly moving points S.

For any point p in S, define the point

P = (p(0), p(1))

in R
4. Doing this for all points in S, we obtain a set S′ of n points in R

4. For
any two points P and Q in S′, define their distance to be

dist(P,Q) = max(‖p(0)q(0)‖, ‖p(1)q(1)‖).

Since dist(P,Q) = w(pq), the minimum spanning tree of our graph G has
the same weight as the minimum spanning tree (under dist) of the point set S′.

Lemma 5 below states that dist satisfies the properties of a metric. Its proof
uses the following lemma, which is probably well known.

Lemma 4. Let V be an arbitrary set and let d1 : V ×V → R and d2 : V ×V → R

be two functions, such that both (V, d1) and (V, d2) are metric spaces. Define the
function d : V × V → R by

d(a, b) = max(d1(a, b), d2(a, b))

for all a and b in V . Then (V, d) is a metric space.

Proof. It is clear that, for all a and b in V , d(a, a) = 0, d(a, b) > 0 if a
= b, and
d(a, b) = d(b, a). It remains to prove that the triangle inequality holds.

Let a, b, and c be elements of V . Then

d(a, b) = max(d1(a, b), d2(a, b))
≤ max(d1(a, c) + d1(c, b), d2(a, c) + d2(c, b)).

22 H. A. Akitaya et al.

Using the inequality

max(α + β, γ + δ) ≤ max(α, γ) + max(β, δ),

it follows that

d(a, b) ≤ max(d1(a, c), d2(a, c)) + max(d1(c, b), d2(c, b))
= d(a, c) + d(c, b).

�	

Lemma 5. The pair (S′,dist) is a metric space.

Proof. The proof follows from Lemma 4 and the definition of dist. �	

The next lemma states that the metric space (S′,dist) has bounded doubling
dimension. We recall the definition. For any point P in S′ and any real number
ρ > 0, the ball with center P and radius ρ is the set

balldist(P, ρ) = {Q ∈ S′ : dist(P,Q) ≤ ρ}.

Let λ be the smallest integer such that for every real number ρ > 0, every
ball of radius ρ can be covered by at most λ balls of radius ρ/2. The doubling
dimension of (S′,dist) is defined to be log λ.

Lemma 6. The doubling dimension of the metric space (S′,dist) is O(1).

Proof. Recall that S′ is a set of points in R
4. We denote the Euclidean distance

between two points P and Q of S′ by ‖PQ‖. The Euclidean ball with center P
and radius ρ is denoted by balle(P, ρ). Thus,

balle(P, ρ) = {Q ∈ S′ : |PQ| ≤ ρ}.

It is easy to verify that

dist(P,Q) ≤ ‖PQ‖ ≤
√

2 · dist(P,Q). (3)

Let P be a point in S′, let ρ > 0 be a real number, and let Bdist =
balldist(P, ρ). We will prove that Bdist can be covered by O(1) balls of radius
ρ/2.

Let Be be the Euclidean ball with center P and radius ρ ·
√

2. It follows from
(3) that

Bdist ⊆ Be.

It is well known that the doubling dimension of the Euclidean space R
4 is

bounded by a constant. Thus, by applying the definition of doubling dimension
twice, we can cover Be by k = O(1) Euclidean balls Be

1, . . . , B
e
k balls, each

The Minimum Moving Spanning Tree Problem 23

of radius ρ ·
√

2/4 ≤ ρ/2. Let these balls have centers C1, . . . , Ck. For each
i = 1, . . . , k, define Bdist

i = balldist(Ci, ρ/2). It follows from (3) that

Be
i ⊆ Bdist

i .

Thus,

Bdist ⊆ Be ⊆
k⋃

i=1

Be
i ⊆

k⋃

i=1

Bdist
i ,

i.e., we have covered the ball Bdist by k = O(1) balls of radius ρ/2. �	

Lemma 7. Let ε > 0 be a constant. In O(n log n) expected time, we can com-
pute a (1 + ε)-approximation to the minimum spanning tree of the metric space
(S′,dist).

Proof. As (S′,dist) has a constant doubling dimension (by Lemma 6), a result of
Har-Peled and Mendel [12] implies that a (1+ ε)-spanner of (S′,dist) with O(n)
edges can be computed in O(n log n) expected time. Their algorithm assumes
that any distance in the metric space can be computed in O(1) time; this is the
case for our distance function dist.

It is known that a minimum spanning tree of a (1 + ε)-spanner is a (1 + ε)-
approximation to the minimum spanning tree. (See, e.g., [19, Theorem 1.3.1]).

Since the spanner has O(n) edges, its minimum spanning tree can be com-
puted in O(n log n) time using Prim’s MST algorithm combined with a binary
min-heap. �	

As a consequence of Lemma 7 and the fact that dist(P,Q) = w(pq), we have
the following theorem.

Theorem 3. In O(n log n) expected time, we can compute a (2 + ε)-
approximation for the minimum moving spanning tree of a set of linearly moving
points in the plane.

4.3 NP-hardness of MMST

Inspired by Arkin et al. [4], we reduce the Partition problem, which is known
to be NP-hard [11], to the MMST problem. In one formulation of the Partition
problem, we are given n > 0 positive integers a0, . . . , an−1 and must decide
whether there is a subset S ⊆ {0, . . . , n − 1} such that

∑

i∈S

ai =
1
2

n−1∑

i=0

ai.

24 H. A. Akitaya et al.

A0

B0
C0

D0
E0

A1

B1

C1

D1

E1

A2

B2

C2

E2

D2

A3

B3

C3

E3

D3

Fig. 2. The positions of the points in P at time t = 1/4 when n = 4 and
(a0, a1, a2, a3) = (1, 2, 4, 3). The velocities of C2, E2, C3 and E3 are depicted.

Construction. We construct an instance of a decision version of the MMST
problem defined as follows. First we let
 = max{a0, . . . , an−1} and then, for
each i ∈ {0, . . . , n − 1}, we put the following points into our set P of moving
points (Fig. 2):

– Ai, stationary at (i
, 0);
– Bi, stationary at (i
,
);
– Ci, moving from (i
,
) to (i
,
 + ai);
– Di, stationary at (i
,
 + ai); and
– Ei, moving from (i
,
 + ai) to (i
,
).

We then ask whether there is a moving spanning tree T with

w(T) ≤ (2n − 1)
 +
3
2

n−1∑

i=0

ai.

Theorem 4. The decision version of the MMST problem is weakly NP-hard.

Proof. Let T be a moving spanning tree on vertex set P . Recall that wT (t)
denotes the weight of T at time t. By Lemma 1, wT is a convex function and
the weight of T is indeed w(T) = max

{
wT (0), wT (1)

}
.

Let K0 be the set of edges AiBi for i ∈ {0, . . . , n − 1} and AiAi+1 for
i ∈ {0, . . . , n − 2} and let K1 be the set of edges among Bi, Ci, Di and Ei

The Minimum Moving Spanning Tree Problem 25

A0

B0

C0

D0

E0

A1 A2 A3

B1

C1

D1

E1

B2

C2

D2

E2

B3

C3

D3

E3

Fig. 3. The (topological) edges in K0 (dashed) and in K1 \ K0 (solid).

for each i ∈ {0, . . . , n − 1} together with K0 (Fig. 3). We claim that there is a
moving spanning tree T ∗ of minimum cost, i.e., an optimal solution to the MMST
problem, whose edges are all in K1. Assume the contrary for contradiction. Let
T be an MMST whose intersection with K1 is maximum. By assumption, T has
at least an edge e
∈ K1. We now consider the two components obtained from
deleting e from T . There must be at least one edge e′ ∈ K1 between the two
components, since K1 spans P . However, at any point in time, every edge in
K1 weights at most
 while every edge outside of K1 weights at least
, so if
we bridge the two components with e′, we will be left with a spanning tree T ′

with w(T ′) ≤ w(T) and with a larger intersection with K1, contradicting the
definition of T .

As every edge in K0 is a bridge in the graph (P,K1), the spanning tree T ∗

must contain K0, so T ∗ consists of K0 and, for each i ∈ {0, . . . , n − 1}, of a
subtree Ti spanning {Bi, Ci,Di, Ei}. The weights wTi

(0) and wTi
(1) must both

be a multiple of ai since so are the Euclidean distances between the vertices
of Ti at these two times. There are two notable ways to build Ti: one is Ti =
{BiCi, CiDi,DiEi}, which satisfies wTi

(0) = ai and wTi
(1) = 2ai and is thus

called the (1, 2)-tree; and the other is Ti = {BiEi, EiDi,DiCi}, which satisfies
wTi

(0) = 2ai and wTi
(1) = ai and is thus called the (2, 1)-tree.

We shall show that the (1, 2)-tree or the (2, 1)-tree have minimum weight
among all moving spanning trees of {Bi, Ci,Di, Ei}. Indeed, Ti is made of three
edges and, since there are no three edges with weight zero at time 0, as can be
seen in Fig. 4, we must have wTi

(0) ≥ ai and, similarly, wTi
(1) ≥ ai. Further-

more, each edge between Bi, Ci, Di and Ei adds up to at least ai in terms of
their weight at time 0 and at time 1. Therefore, wTi

(0)+wTi
(1) ≥ 3ai, so either

wTi
(0) ≥ 2ai, , or wTi

(1) ≥ 2ai . As a result, we may assume, without loss of
generality, that Ti is either the (1, 2)-tree or the (2, 1)-tree.

26 H. A. Akitaya et al.

Bi

Ci Ei

Di

0, ai ai, 0

ai, ai

ai, 0 0, ai

ai, ai

Fig. 4. Edges between Bi, Ci, Di and Ei labeled with their weights at times 0 and 1.

Let now S∗ ⊆ {0, . . . , n − 1} be the set of indices i such that Ti is the
corresponding (2, 1)-tree. As |K0| = 2n − 1, we have

wT∗(0) = (2n − 1)
 +
n−1∑

i=0

ai +
∑

i∈S∗
ai,

while

wT∗(1) = (2n − 1)
 +
n−1∑

i=0

ai +
∑

i∈{0,...,n−1}\S∗
ai.

Therefore, the cost of T ∗ is

(2n − 1)
 +
n−1∑

i=0

ai + max

⎧
⎨

⎩

∑

i∈S∗
ai,

∑

i∈{0,...,n−1}\S∗
ai

⎫
⎬

⎭
.

Because

∑

i∈S∗
ai ≥ 1

2

n−1∑

i=0

ai or
∑

i∈{0,...,n−1}\S∗
ai ≥ 1

2

n−1∑

i=0

ai,

then the following holds

w(T ∗) ≥ (2n − 1)
 +
3
2

n−1∑

i=0

ai. (4)

We claim that (4) holds with equality if and only if our instance of the
Partition problem has a solution, i.e., there is a set S ⊆ {0, . . . , n − 1} such that

The Minimum Moving Spanning Tree Problem 27

the sum of ai for i ∈ S is half of a0 + · · · + an−1. Indeed, if the equality holds,
we can simply let S = S∗. To show the converse, we build a tree T from the
solution S of the Partition problem. This tree contains K0, the corresponding
(2, 1)-trees for i in S and the corresponding (1, 2)-trees for i ∈ {0, . . . , n−1}\S,
resulting in a weight of

w(T) = (2n − 1)
 +
3
2

n−1∑

i=0

ai.

Because T ∗ is an MMST, w(T ∗) ≤ w(T), so the equality holds. �	

Acknowledgement. This research was carried out at the Eighth Annual Workshop
on Geometry and Graphs, held at the Bellairs Research Institute in Barbados, January
31–February 7, 2020. The authors are grateful to the organizers and to the participants
of this workshop. We thank Günther Rote for pointing us to the work of Arkin et al.
[4].

References

1. Abam, M.A., Rahmati, Z., Zarei, A.: Kinetic pie delaunay graph and its applica-
tions. In: Fomin, F.V., Kaski, P. (eds.) Algorithm Theory. LNCS, vol. 7357, pp.
48–58. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-31155-0 5

2. Alper, B., Riche, N., Ramos, G., Czerwinski, M.: Design study of linesets, a novel
set visualization technique. IEEE Trans. Vis. Comput. Graph. 17(12), 2259–2267
(2011)

3. Alt, H., Godau, M.: Computing the Fréchet distance between two polygonal curves.
Int. J. Comput. Geom. Appl. 5, 75–91 (1995)

4. Arkin, E.M., Mitchell, J.S., Piatko, C.D.: Bicriteria shortest path problems in the
plane. In: Proceedings of 3rd Canadian Conference on Computational Geometry,
pp. 153–156 (1991)

5. Atallah, M.J.: Some dynamic computational geometry problems. Comput. Math.
Appl. 11(12), 1171–1181 (1985)

6. Buchmüller, J., Jäckle, D., Cakmak, E., Brandes, U., Keim, D.A.: Motionrugs:
visualizing collective trends in space and time. IEEE Trans. Vis. Comput. Graph.
25(1), 76–86 (2018)

7. Camerini, P.M.: The min-max spanning tree problem and some extensions. Inf.
Process. Lett. 7(1), 10–14 (1978)

8. Collins, C., Penn, G., Carpendale, S.: Bubble sets: revealing set relations with
isocontours over existing visualizations. IEEE Trans. Vis. Comput. Graph. 15(6),
1009–1016 (2009). Proceedings of the IEEE Conference on Information Visualiza-
tion

9. Dinkla, K., van Kreveld, M.J., Speckmann, B., Westenberg, M.A.: Kelp diagrams:
point set membership visualization. Comput. Graph. Forum 31(3pt1), 875–884
(2012)

10. Fabrikant, S.I., Miksch, S., Wolff, A.: Visual analytics for sets over time and space
(Dagstuhl Seminar 19192). Dagstuhl Rep. 9(5), 31–57 (2019)

11. Garey, M.R., Johnson, D.S.: Computers and Intractability, vol. 174. Freeman, San
Francisco (1979)

https://doi.org/10.1007/978-3-642-31155-0_5

28 H. A. Akitaya et al.

12. Har-Peled, S., Mendel, M.: Fast construction of nets in low-dimensional metrics
and their applications. SIAM J. Comput. 35(5), 1148–1184 (2006)

13. Hurtado, F., et al.: Colored spanning graphs for set visualization. Comput. Geom.
68, 262–276 (2018). Special Issue in Memory of Ferran Hurtado

14. Jaffry, S., Hussain, R., Gui, X., Hasan, S.F.: A comprehensive survey on moving
networks. arXiv preprint arXiv:2003.09979 (2020)

15. Kraak, M.-J.: The space-time cube revisited from a geovisualization perspective. In:
Proceedings of 21st International Cartographic Conference, pp. 1988–1996 (2003)

16. Meulemans, W., Riche, N.H., Speckmann, B., Alper, B., Dwyer, T.: KelpFusion:
a hybrid set visualization technique. IEEE Trans. Vis. Comput. Graph. 19(11),
1846–1858 (2013)

17. Meulemans, W., Speckmann, B., Verbeek, K., Wulms, J.: A framework for algo-
rithm stability and its application to kinetic Euclidean MSTs. In: Bender, M.,
Farach-Colton, M., Mosteiro, M. (eds.) Theoretical Informatics. LNCS, vol. 10807,
pp. 805–819. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-77404-
6 58

18. Monma, C.L., Suri, S.: Transitions in geometric minimum spanning trees. Discret.
Comput. Geom. 8, 265–293 (1992)

19. Narasimhan, G., Smid, M.: Geometric Spanner Networks. Cambridge University
Press, Cambridge (2007)

20. Rahmati, Z., Zarei, A.: Kinetic Euclidean minimum spanning tree in the plane. J.
Discret. Algorithms 16, 2–11 (2012). Selected papers from the 22nd International
Workshop on Combinatorial Algorithms (IWOCA 2011)

21. Wulms, J., Buchmüller, J., Meulemans, W., Verbeek, K., Speckmann, B.: Spatially
and temporally coherent visual summaries. arXiv preprint arXiv:1912.00719 (2019)

http://arxiv.org/abs/2003.09979
https://doi.org/10.1007/978-3-319-77404-6_58
https://doi.org/10.1007/978-3-319-77404-6_58
http://arxiv.org/abs/1912.00719

Scheduling with Testing on Multiple
Identical Parallel Machines

Susanne Albers1 and Alexander Eckl1,2(B)

1 Department of Informatics, Technical University of Munich,
Boltzmannstr. 3, 85748 Garching, Germany
albers@in.tum.de, alexander.eckl@tum.de

2 Advanced Optimization in a Networked Economy, Technical University of Munich,
Arcisstraße 21, 80333 Munich, Germany

Abstract. Scheduling with testing is a recent online problem within the
framework of explorable uncertainty motivated by environments where
some preliminary action can influence the duration of a task. Jobs have
an unknown processing time that can be explored by running a test.
Alternatively, jobs can be executed for the duration of a given upper
limit. We consider this problem within the setting of multiple identical
parallel machines and present competitive deterministic algorithms and
lower bounds for the objective of minimizing the makespan of the sched-
ule. In the non-preemptive setting, we present the SBS algorithm whose
competitive ratio approaches 3.1016 if the number of machines becomes
large. We compare this result with a simple greedy strategy and a lower
bound which approaches 2. In the case of uniform testing times, we can
improve the SBS algorithm to be 3-competitive. For the preemptive case
we provide a 2-competitive algorithm and a tight lower bound which
approaches the same value.

Keywords: Online scheduling · Identical parallel machines ·
Explorable uncertainty · Makespan minimization · Competitive analysis

1 Introduction

One of the most fundamental problems in online scheduling is makespan mini-
mization on multiple parallel machines. An online sequence of n jobs with pro-
cessing times pj has to be assigned to m identical machines. The objective is to
minimize the makespan of the schedule, i.e. the maximum load on any machine.
In 1966, Graham [25] showed that the List Scheduling algorithm, which assigns
every job to the currently least loaded machine, is (2 − 1

m)-competitive. Since
then the upper bound has been improved multiple times, most recently to 1.9201

Funded by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation)
– 277991500/GRK2201, and by the European Research Council, Grant Agreement No.
691672.

c© Springer Nature Switzerland AG 2021
A. Lubiw et al. (Eds.): WADS 2021, LNCS 12808, pp. 29–42, 2021.
https://doi.org/10.1007/978-3-030-83508-8_3

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-83508-8_3&domain=pdf
https://doi.org/10.1007/978-3-030-83508-8_3

30 S. Albers and A. Eckl

by Fleischer and Wahl [22]. At the same time, the lower bound has also been
the focus of a lot of research, the current best result is 1.88 by Rudin [37].

We consider this classical problem in the framework of explorable uncertainty,
where part the input is initially unknown to the algorithm and can be explored
by investing resources which are added as costs to the objective function. Let
n jobs be given. Every job j has a processing time pj and an upper bound uj .
It holds 0 ≤ pj ≤ uj for all j. Each job also has a testing time tj ≥ 0. A job
can be executed on one of m identical machines in one of two modes: It can
either be run untested, which takes time uj , or be tested and then executed,
which takes a total time of tj + pj . The number of jobs n, as well as all testing
times tj and upper bounds uj are known to the algorithm in the beginning. In
particular, an algorithm can sort/order the jobs in a convenient way based on
these parameters. The processing time pj for job j is revealed once the test tj
is completed. This scheduling with testing setting has been recently studied by
Dürr et al. [13], and Albers and Eckl [3] on a single machine.

We differentiate between preemptive and non-preemptive settings: If preemp-
tion is allowed, a job may be interrupted at any time, and then continued later
on a possibly different machine. No two machines may work on the same job at
the same time. In case a job is tested, any section of the test must be scheduled
earlier than any section of the actual job processing. In the non-preemptive set-
ting, a job assigned to a machine has be fully scheduled without interruption on
this machine, independent of whether it is tested or not. We also introduce the
notion of test-preemptive scheduling, where a job can only be interrupted right
after its test is completed.

Scheduling with testing is well-motivated by real world settings where a pre-
liminary evaluation or operation can be executed to improve the duration or
difficulty of a task. Examples for the case of multiple machines include e.g. a
manufacturing plan where a number of jobs with uncertain length have to be
assigned to multiple workers, or a distributed computing setting where tasks
with unknown parameters have to be allocated to remote computing nodes by
a central scheduler. Several examples for applicable settings for scheduling with
testing can also be found in [3,13].

In summary, we study the classical problem of makespan minimization on
identical parallel machines in the framework of explorable uncertainty. We use
competitive analysis to compare the value of an algorithm with an optimal offline
solution. The setting closely relates to online machine scheduling problems stud-
ied previously in the literature. We investigate deterministic algorithms and
lower bounds for the preemptive and non-preemptive variations of this problem.

1.1 Related Work

Scheduling with testing describes the setting where jobs with uncertain process-
ing times have to be scheduled tested or untested on a given number of machines.
The problem has been first studied by Dürr et al. [13,14] for the special case of
scheduling jobs on a single machine with uniform testing times tj ≡ 1. They
presented several algorithms and lower bounds for the objectives of the sum of

Scheduling with Testing on Identical Machines 31

completion times and the makespan. More recently, Albers and Eckl [3] con-
sidered the one machine case with testing times tj ≥ 0, presenting generalized
algorithms for both objectives. In this paper, we consider scheduling with testing
on identical parallel machines, a natural generalization of the previously studied
one machine case.

Makespan minimization in online scheduling with identical machines has been
studied extensively in the past decades, ever since Graham [25] established his
(2− 1

m)-competitive List Scheduling algorithm in 1966. In the deterministic set-
ting, a series of publications improved Graham’s result to competitive ratios of
2 − 1

m − εm [23] where εm → 0 for large m, 1.985 [8], 1.945 [31], and 1.923 [1],
before Fleischer and Wahl [22] presented the current best result of 1.9201. In
terms of the deterministic lower bound for general m, research has been just as
fruitful. The bound was improved from 1.707 [19], to 1.837 [9], and 1.852 [1].
The best currently known bound of 1.88 is due to Rudin [37]. For the random-
ized variant, the lower bound has a current value of e

e−1 ≈ 1.582 [11,38], while
the upper bound is 1.916 [2]. For the deterministic preemptive setting, Chen
et al. [12] provide a tight bound of e

e−1 for large values of m.
More recently, various extension of this basic case have emerged. In resource

augmentation settings the algorithm receives some extra resources like machines
with higher speed [30], parallel schedules [6,33], or a reordering buffer [15,33]. A
variation that is closely related to our setting is semi-online scheduling, where
some additional piece of information is available to the online algorithm in
advance. Possible pieces of information include for example the sum of all pro-
cessing times [5,32,33], the value of the optimum [7], or information about the job
order [26]. Refer also to the survey by Epstein [16] for an overview of makespan
minimization in semi-online scheduling.

Scheduling with testing is directly related to explorable uncertainty, a research
area concerned with obtaining additional information of unknown parameters
through queries with a given cost. Kahan [29] pioneered this line of research in
1991 by studying approximation guarantees for the number of queries necessary
to obtain the maximum and median value of a set of uncertain elements. Follow-
ing this, a variety of problems have been studied in this setting, for example find-
ing the median or k-smallest value [21,27,34], geometric tasks [10], caching [36],
as well as combinatorial problems like minimum spanning tree [18,35], shortest
path [20], and knapsack [24]. We refer to the survey by Erlebach and Hoffmann
[17] for an overview. In the scheduling with testing model, the cost of the queries
is added to the objective function. Similar settings are considered for example in
Weitzman’s pandora’s box problem [40], or in the recent ’price of information’
model by Singla [39].

1.2 Contribution

In this paper we provide the first results for makespan minimization on multiple
machines with testing. We differentiate between general tests tj ≥ 0 and uniform
tests tj = 1, and consider non-preemptive as well as preemptive environments. In

32 S. Albers and A. Eckl

Table 1, we illustrate our results for these cases. The parameter m corresponds
to the number of machines in the instance.

Table 1. Overview of results

Setting General tests Uniform tests Lower bound

Non-preemptive c(m) −−−−→
m→∞

3.1016 c1(m) −−−−→
m→∞

3 max(ϕ, 2 − 1
m

)

Preemptive 2 2 max(ϕ, 2 − 2
m

+ 1
m2)

In the non-preemptive setting, we present our main algorithm with compet-
itive ratio c(m), which we refer to as the SBS algorithm. The function c(m) is
increasing in m and has a value of approximately 3.1016 for m → ∞. For uni-
form tests, we can improve the algorithm to a competitive ratio of c1(m), which
approaches 3 for large values of m. Additionally, we analyze a simple Greedy algo-
rithm for general tests with a competitive ratio of ϕ(2 − 1

m), where ϕ ≈ 1.6180
is the golden ratio. We also provide a lower bound with value max(ϕ, 2 − 1

m).
The values of c(m), c1(m), the Greedy algorithm and the lower bound are sum-
marized in Table 2. For all values of m > 1 the SBS algorithm has better ratios
compared to Greedy. At the same time, the uniform version of the algorithm
improves these results further. Though our algorithms work for any number of
machines m, they all achieve the same ratio for m = 1 as was already proven in
[13] and [3] for uniform and general tests, respectively.

If the scheduler is allowed to use preemption, we obtain a 2-approximation
for both general and uniform tests. The result holds even in the more restrictive
test-preemptive setting. The corresponding lower bound of max(ϕ, 2 − 2

m + 1
m2)

is tight when the number of machines becomes large.
We utilize various methods for our algorithms and lower bounds. The Greedy

algorithm we present is a variation of the well-known List Scheduling algorithm
introduced by Graham [25]. For the more involved SBS algorithm and its uniform
version we employ testing rules for jobs based on the ratio between their upper
bound and testing time similar to [3]. We additionally divide the schedule into
phases based on these ratios, therefore sorting the jobs by the given parameters
to guarantee competitiveness. In the preemptive setting, we divide the schedule
into two independent phases, testing and execution, and use an offline algorithm

Table 2. Results in the non-preemptive setting for selected values of m

1 2 3 4 5 10 100 ∞
Greedy 1.6180 2.4271 2.6967 2.8316 2.9125 3.0743 3.2199 3.2361

SBS 1.6180 2.3806 2.6235 2.7439 2.8158 2.9591 3.0874 3.1016

Uniform-SBS 1.6180 2.3112 2.5412 2.6560 2.7248 2.8625 2.9862 3

Lower bound 1.6180 1.6180 1.6667 1.75 1.8 1.9 1.99 2

Scheduling with Testing on Identical Machines 33

for makespan minimization to solve each instance separately. Lastly, the lower
bounds we provide are loosely based on a common construction for the classical
makespan minimization setting on multiple machines, where a large number of
small jobs is followed by a single larger job.

The rest of the paper is structured in the following way: We start by giving
some general definitions needed for later sections. In Sect. 2 we then first prove
the competitive ratio of Greedy and the lower bound, before describing the
main algorithm for the general case. At the end of the section, we then build a
special version of the algorithm for the uniform case. In Sect. 3 we consider the
preemptive setting and give an algorithm as well as a tight lower bound. We
conclude the paper by describing some open problems.

1.3 Preliminary Definitions

We use the following notations throughout the document: For a job j ∈ [n], the
optimal offline running time of j, i.e. the time needed by the optimum to schedule
j on a machine, is denoted as ρj := min(tj+pj , uj), while the algorithmic running
time of j, i.e. the time needed for an algorithm to run j on a machine, is given
by

pA
j :=

{
tj + pj if j is tested,
uj if j is not tested.

(1)

It is clear that ρj ≤ pA
j for any job j. Additionally, it holds that pj ≤ ρj ,

since the processing times pj are upper bounded by uj .
At times, we may use the definition of the minimal running time of job j,

which is given by τj := min(tj , uj).
It is clear that any job must fulfill τj ≤ ρj . In total, we get the following

estimation for the different running times:

τj ≤ ρj ≤ pA
j , ∀j ∈ [n] (2)

Since an algorithm does not know the values pj , the testing decisions for the
jobs are non-trivial. A partial goal for any competitive algorithm is to define a
testing scheme such that the algorithmic running times are not too large com-
pared to the optimal offline running times. We provide the following result which
was used previously in [3] and is based on Theorem 14 of [13]. The given testing
scheme based on the ratio rj = uj/tj between upper bound and testing time is
used multiple times within this paper.

Proposition 1. Let job j be tested iff rj ≥ α for some α ≥ 1. Then:

(a) ∀j ∈ [n] tested: pA
j ≤ (

1 + 1
α

)
ρj

(b) ∀j ∈ [n] not tested: pA
j ≤ αρj

As a direct consequence of Proposition 1, an optimal testing scheme for a
single job is given by setting the threshold α to the golden ratio ϕ ≈ 1.6180 [13].

34 S. Albers and A. Eckl

2 Non-preemptive Setting

In this section we assume that preemption is not allowed. Any job has to be
assigned to one of m available machines. Since we only consider makespan min-
imization, we may assume that there is no idle time on the machines and the
actual ordering of the executions on a machine does not influence the outcome
of the objective. It is therefore sufficient to only consider the assignment of the
jobs to the machines.

2.1 Lower Bound and Greedy Algorithm

We first prove a straightforward lower bound and extend the simple List Schedul-
ing algorithm from the classical setting to our problem.

For the lower bound we choose negligibly small testing times coupled with
very large upper bounds. This forces the algorithm to test all jobs and thus
having to decide on a machine for a given job while having no information about
its real execution time.

Theorem 1. No online algorithm is better than (2 − 1
m)-competitive for the

problem of makespan minimization on m identical machines with testing, even
if all testing times are equal to 1.

We note that ϕ ≈ 1.6180 is always a lower bound for our problem (see [13]),
which is relevant only for small values of m ≤ 2. The proof of Theorem 1 is
provided in the full version of this paper [4].

To prove a simple upper bound, we can generalize the List Scheduling algo-
rithm to our problem variant as follows:

Consider the given jobs in any order. For a job j to be scheduled next, test j if
and only if uj/tj ≥ ϕ and then execute it completely on the current least-loaded
machine.

Theorem 2. The extension of List Scheduling described above is ϕ (2 − 1
m)-

competitive for minimizing the makespan on m identical machines with non-
uniform testing, where ϕ ≈ 1.6180 is the golden ratio. This analysis is tight.

The proof structure is similar to the proof of List Scheduling and uses com-
mon lower bounds for makespan minimization. We again refer to the full version
for all details.

2.2 SBS Algorithm

In this section we provide a 3.1016-competitive algorithm for the non-preemptive
setting. It assigns jobs into three classes S1, B, and S2 based on their ratios
between upper bounds and testing times.

Let [n] be the set of all jobs. We define a threshold function T (m) for all m and
divide the jobs into disjoint sets [n] = B ∪̇ S, where S will be further subdivided
into S1 and S2. The set B corresponds to jobs where the ratio rj = uj/tj between

Scheduling with Testing on Identical Machines 35

upper bound and testing time is large, while jobs in S have a small ratio. We
define

B := {j ∈ [n] : rj ≥ T (m)} ,

S :=[n] \ B.

For the set S, we would like the algorithm to be able to distinguish jobs based on
their optimal offline running time ρj . Of course, without testing the algorithm
does not know these values, so we instead use the minimal running time τj , which
can be computed directly using offline input only, to divide the set S further.

We define S1 ⊂ S, such that |S1| = min(m, |S|) and ∀j1 ∈ S1, j2 ∈ S \ S1:
τj1 ≥ τj2 . In other words, S1 is the set of at most m jobs in S with the largest
minimal running times. If this definition of S1 is not unique, we may choose any
such set. We set S2 := S \ S1. It follows that if |S| ≤ m, then S2 = ∅.

The idea behind dividing S into two sets is to identify the m largest jobs
according to minimal running time and schedule them first, each on a separate
machine. This allows us to lower bound the runtime of the remaining jobs later
in the schedule.

In Algorithm 1 we describe the SBS algorithm which solves the non-uniform
case and works in three phases corresponding to the sets S1, B and S2:

Algorithm 1: SBS algorithm
1 B ← {j ∈ [n] : rj ≥ T (m)};
2 S ← [n] \ B;
3 S1 ← S′ ⊂ S s.t. |S′| = min(m, |S|), τj1 ≥ τj2 ∀j1∈S′, j2∈S\S′;
4 S2 ← S \ S1;
5 foreach j ∈ S1 do
6 if rj ≥ ϕ then
7 test and run j on an empty machine;
8 else
9 run j untested on an empty machine;

10 end

11 end
12 foreach j ∈ B do
13 test and run j on the current least-loaded machine;
14 end
15 foreach j ∈ S2 do
16 run j untested on the current least-loaded machine;
17 end

In order to have a non-trivial testing decision for jobs in S1, it makes sense to
require that T (m) ≥ ϕ for all m. More specifically, we will define the threshold
function T (m) in the non-uniform setting as follows:

T (m) =
(3 +

√
5)m − 2 +

√
(38 + 6

√
5)m2 − 4(11 +

√
5)m + 12

6m − 2

36 S. Albers and A. Eckl

Theorem 3. Let T (m) be a parameter function of m defined as above. The
SBS algorithm is T (m)

(
3
2 − 1

2m

)
-competitive for minimizing the makespan on

m identical machines with non-uniform testing.

The function T (m) is increasing for all m ≥ 1 and fulfills T (1) = ϕ as well
as approximately T (m) → 2.0678 for m → ∞. The competitive ratio of the
algorithm is explicitly given by

c(m) =
(3 +

√
5)m − 2 +

√
(38 + 6

√
5)m2 − 4(11 +

√
5)m + 12

4m
.

For this function we have c(1) = ϕ as well as approximately c(m) → 3.1016 if m
approaches infinity. Additionally, it holds that c(m) < ϕ

(
2 − 1

m

)
for all m > 1.

Proof. We assume w.l.o.g. that the job indices are sorted by non-increasing opti-
mal offline running times ρ1 ≥ · · · ≥ ρn. We denote the last job to finish in the
schedule of the algorithm as l and the minimum machine load before job l as t.
It follows that the value of the algorithm is t + pA

l .

The value of the optimum is at least as large as the average sum of the
optimal offline running times, or

L :=
1
m

∑
j∈[n]

ρj ≤ OPT, (3)

since in any schedule at least one machine must have a load of at least this
average. At the same time, we know that the optimum has to schedule every job
on some machine:

ρj ≤ OPT ∀j ∈ [n] (4)

We also utilize another common lower bound in makespan minimization, which
is the sum of the processing times of the m-th and (m+1)-th largest job. If there
are at least m + 1 jobs, then some machine has to schedule at least 2 of these
jobs:

ρm + ρm+1 ≤ OPT. (5)

Here, ρj is defined as 0 if the instance has less than j jobs.
We differentiate between jobs handled by the algorithm in different phases

and bound the algorithmic running times against the optimal offline running
times. We write pA

j ≤ αjρj and define different values for αj depending on the
set j belongs to. It holds that

αj =

⎧⎪⎨
⎪⎩

ϕ if j ∈ S1,

1 + 1
T (m) if j ∈ B,

T (m) if j ∈ S2,

(6)

by Proposition 1 and the testing strategy of the algorithm.
The objective value of the algorithm depends on the set job l belongs to,

so we differentiate between three cases. The following proposition upper bounds
the algorithmic value ALG = t + pA

l for each of these cases:

Scheduling with Testing on Identical Machines 37

Proposition 2. The value of the algorithm can be estimated as follows:

ALG ≤

⎧⎪⎪⎨
⎪⎪⎩

ϕOPT if l ∈ S1,(
ϕ +

(
1 + 1

T (m)

) (
1 − 1

m

))
OPT if l ∈ B,

T (m)
(
3
2 − 1

2m

)
OPT if l ∈ S2.

To prove this proposition, we utilize the lower bounds (3)–(5) and the estimates
(6) for the value of αj . A critical step lies in the estimation of pA

l for l ∈ S2,
where we are able to lower bound τl using the size of the m-th and (m+1)-th
largest job because the algorithm already ran m jobs from S1 in the beginning
of the schedule. We refer to the full version [4] for a detailed proof.

It remains to take the maximum over all three cases and minimize the value
in dependence of T (m). The value in the case l ∈ S1 is always less than the
values given by the other cases, therefore we only want to minimize

max
(

ϕ +
(

1 +
1

T (m)

)(
1 − 1

m

)
, T (m)

(
3
2

− 1
2m

))
.

The left side of the maximum is decreasing in T (m), while the right side
is increasing. The minimal maximum is therefore attained when both sides are
equal. It can be easily verified that for the given definition of the threshold
function T (m) both sides of the maximum are equal for all values of m ≥ 1.

It follows that the final ratio can be estimated by ALG
OPT ≤ T (m)

(
3
2 − 1

2m

)
. ��

2.3 An Improved Algorithm for the Uniform Case

The previous section established an algorithm with a competitive ratio of approx-
imately 3.1016. We now present an algorithm with a better ratio in the case when
tj = 1 for all jobs. We define the threshold function T1(m) as follows:

T1(m) =
2m − 1 +

√
16m2 − 14m + 3

3m − 1

The Uniform-SBS algorithm works as follows: Sort the jobs by non-increasing
uj . Go through the sorted list of jobs and put the next job on the machine with
the lowest current load. A job j is tested if uj ≥ T1(m), otherwise it is run
untested.

Theorem 4. Uniform-SBS is a T1(m)(32 − 1
2m)-competitive algorithm for uni-

form instances.

For uniform jobs with tj = 1, sorting by non-increasing upper bound uj is
consistent with sorting by non-increasing ratio rj . Hence, Uniform-SBS is similar
to the SBS algorithm reduced to the phases corresponding to the sets B and S,
where S contains all small jobs. The reason behind running the m largest jobs
of S first in the SBS algorithm was to upper bound the remaining jobs in S. For
uniform testing times, this bound can be achieved without this special structure.

38 S. Albers and A. Eckl

The function T1(m) is increasing for all m ≥ 1 and fulfills T1(1) = ϕ as well
as T1(m) → 2 for m → ∞. Computing the competitive ratio explicitly yields

c1(m) =
2m − 1 +

√
16m2 − 14m + 3
2m

.

These values start from c1(1) = ϕ and approach c1(m) → 3 if m → ∞. Addition-
ally, it holds that c1(m) < c(m) for all m > 1. In other words, this special version
of the algorithm is strictly better than the general SBS algorithm described in
Sect. 2.2. We defer the proof of Theorem 4 to the full version of the paper [4].

3 Results with Preemption

In this section we assume that jobs can be preempted at any time during their
execution. An interrupted job may be continued on a possibly different machine,
but no two machines may work on the same job at the same time. Testing a job
must be completely finished before any part of its execution can take place.

It makes sense to additionally consider the following stricter definition of
preemption within scheduling with testing: Untested jobs must be run without
interruption on a single machine. If a job is tested, its test must also be run
without interruption on one machine. The execution after the test may then be
run without interruption on a possibly different machine. We call this setting
test-preemptive, referring to the fact that the only place where we might preempt
a job is exactly when its test is completed. From an application point of view,
the test-preemptive setting is a natural extension of the non-preemptive setting,
allowing the scheduler to reconsider the assignment of a job after receiving more
information through the test.

Clearly, the difficulty of settings within scheduling with testing increases in
the following order: preemptive, test-preemptive and non-preemptive. We now
present the 2-competitive Two Phases algorithm for the test-preemptive setting,
which can be applied directly to the ordinary preemptive case. Additionally, we
construct a lower bound of 2 − 2/m + 1/m2 for the ordinary preemptive case.
This lower bound then also holds for test-preemption, and is therefore tight for
both settings when the number of machines m approaches infinity.

The Two Phases algorithm for the test-preemptive setting works as follows:
Let OFF denote an optimal offline algorithm for makespan minimization on m
machines. In the first phase, the algorithm schedules all jobs for their minimal
running time τj using the algorithm OFF. Herein, the algorithm tests all jobs
except trivial jobs with tj > uj , where running the upper bound is optimal. In
the second phase, all remaining jobs are already tested, hence the algorithm now
knows all remaining processing times pj . We then use the offline algorithm OFF
again to schedule the remaining jobs optimally. Finally, the algorithm obliviously
puts the second schedule on top of the first.

Theorem 5. The Two Phases algorithm is 2-competitive for minimizing the
makespan on m machines with testing in the test-preemptive setting.

Scheduling with Testing on Identical Machines 39

The proof makes use of the assumption that the algorithm has access to
unlimited computational power, which is a common assumption in online opti-
mization. If we do not give the online algorithm this power, the result is slightly
worse, since offline makespan minimization is strongly NP-hard. We may then
make use of the PTAS for offline makespan minimization by Hochbaum and
Shmoys [28] to achieve a ratio of 2 + ε for any ε > 0, where the runtime of the
algorithm increases exponentially with 1/ε. All details of the proof can be found
in the full version [4].

For the lower bound result we now consider the standard preemptive setting
where a job can be interrupted at any time.

Theorem 6. In the preemptive setting, no online algorithm for makespan min-
imization on m identical machines with testing can have a better competitive
ratio than 2 − 2/m + 1/m2, even if all testing times are equal to 1.

We note that ϕ ≈ 1.6180 also remains a lower bound even for the preemptive
case, since two machines cannot run the same job concurrently. It holds 2 −
2/m + 1/m2 < ϕ only for values of m ≤ 4.

Proof. Let us consider the following example: Let M be a sufficiently large num-
ber and let m(m − 1) small jobs be given with tj = 1, pj = 0, uj = M as well
as one large job f with tf = 1, pf = m − 1, uf = M . As argued in the proof of
Theorem 1, OPT has a value of m and we may assume that the algorithm tests
every job.

In the preemptive setting we required that any execution of the actual pro-
cessing time of a job can only happen after its test is completed, therefore any
job j that finished testing at some time t is completed not earlier than t+pj . The
adversary decides the processing time of j by the following rule: If t ≥ m−1+1/m
and job f has not yet been assigned, set pj = m − 1 (i.e. set j = f). Else, set
pj = 0.

If the adversary assigns job f at any point, then job f finished testing at
time t ≥ m − 1 + 1/m. It follows that

ALG ≥ t + pf ≥ m − 1 +
1
m

+ m − 1 = 2m − 2 +
1
m

.

Hence the competitive ratio is at least ALG
OPT ≥ 2 − 2

m + 1
m2 .

All that remains is to show that this assignment of f happens at some point
during the runtime of the algorithm. Assume that this is not the case, i.e. all
jobs finish testing earlier than m−1+1/m. The adversary sets all pj = 0, hence
it follows directly that all jobs are completely finished before m − 1 + 1/m. But
this means that the algorithmic solution has a value of ALG < m − 1 + 1/m.

Since tj = 1 for all jobs, we know that the average load L fulfills

L ≥ 1
m

(m(m − 1) + 1) = m − 1 + 1/m.

But L is a lower bound on the optimal value of the instance, even in the pre-
emptive setting, contradicting ALG < m − 1 + 1/m. ��

40 S. Albers and A. Eckl

4 Conclusion

We presented algorithms and lower bounds for the problem of scheduling with
testing on multiple identical parallel machines with the objective of minimizing
the makespan. Such settings arise whenever a preliminary action influences cost,
duration or difficulty of a task. Our main results were a 3.1016-competitive
algorithm for the non-preemptive case and a tight 2-competitive algorithm for
the preemptive case if the number of machines becomes large.

Apart from closing the gaps between our ratios and the lower bounds, we
propose the following consideration for future work: A natural generalization of
our setting is to consider fully-online arrivals, where jobs arrive one by one and
have to be scheduled immediately. It is clear that this setting is at least as hard
as the problem considered in this paper. In the full version [4], we provide a
simple lower bound with value 2 for this generalization that holds for all values
of m ≥ 2. An upper bound is clearly given by the Greedy algorithm we provided
in Sect. 2. Finding further algorithms or lower bounds for this new setting is a
compelling direction for future research.

References

1. Albers, S.: Better bounds for online scheduling. SIAM J. Comput. 29(2), 459–473
(1999). https://doi.org/10.1137/S0097539797324874

2. Albers, S.: On randomized online scheduling. In: Proceedings of the Thirty-Fourth
Annual ACM Symposium on Theory of Computing, pp. 134–143. STOC 2002,
Association for Computing Machinery, New York, NY, USA (2002). https://doi.
org/10.1145/509907.509930

3. Albers, S., Eckl, A.: Explorable uncertainty in scheduling with non-uniform testing
times. In: Kaklamanis, C., Levin, A. (eds.) WAOA 2020. LNCS, vol. 12806, pp.
127–142. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-80879-2 9

4. Albers, S., Eckl, A.: Scheduling with testing on multiple identical parallel machines
(2021). arXiv: https://arxiv.org/abs/2105.02052

5. Albers, S., Hellwig, M.: Semi-online scheduling revisited. Theoret. Comput. Sci.
443, 1–9 (2012). https://doi.org/10.1016/j.tcs.2012.03.031

6. Albers, S., Hellwig, M.: Online makespan minimization with parallel schedules.
Algorithmica 78(2), 492–520 (2017). https://doi.org/10.1007/s00453-016-0172-5

7. Azar, Y., Regev, O.: On-line bin-stretching. Theoret. Comput. Sci. 268(1), 17–41
(2001). https://doi.org/10.1016/S0304-3975(00)00258-9

8. Bartal, Y., Fiat, A., Karloff, H., Vohra, R.: New algorithms for an ancient schedul-
ing problem. In: Proceedings of the Twenty-Fourth Annual ACM Symposium on
Theory of Computing, pp. 51–58. STOC 1992, Association for Computing Machin-
ery, New York, NY, USA (1992). https://doi.org/10.1145/129712.129718

9. Bartal, Y., Karloff, H., Rabani, Y.: A better lower bound for on-line schedul-
ing. Inf. Process. Lett. 50(3), 113–116 (1994). https://doi.org/10.1016/0020-
0190(94)00026-3

10. Bruce, R., Hoffmann, M., Krizanc, D., Raman, R.: Efficient update strategies
for geometric computing with uncertainty. Theoret. Comput. Sci. 38(4), 411–423
(2005). https://doi.org/10.1007/s00224-004-1180-4

https://doi.org/10.1137/S0097539797324874
https://doi.org/10.1145/509907.509930
https://doi.org/10.1145/509907.509930
https://doi.org/10.1007/978-3-030-80879-2_9
https://arxiv.org/abs/2105.02052
https://doi.org/10.1016/j.tcs.2012.03.031
https://doi.org/10.1007/s00453-016-0172-5
https://doi.org/10.1016/S0304-3975(00)00258-9
https://doi.org/10.1145/129712.129718
https://doi.org/10.1016/0020-0190(94)00026-3
https://doi.org/10.1016/0020-0190(94)00026-3
https://doi.org/10.1007/s00224-004-1180-4

Scheduling with Testing on Identical Machines 41

11. Chen, B., van Vliet, A., Woeginger, G.J.: A lower bound for randomized on-line
scheduling algorithms. Inf. Process. Lett. 51(5), 219–222 (1994). https://doi.org/
10.1016/0020-0190(94)00110-3

12. Chen, B., van Vliet, A., Woeginger, G.J.: An optimal algorithm for preemptive on
line scheduling. In: van Leeuwen, J. (ed.) Algorithms ESA 1994. LNCS, vol. 855,
pp. 300–306. Springer, Heidelberg (1994). https://doi.org/10.1007/BFb0049417

13. Durr, C., Erlebach, T., Megow, N., Meißner, J.: Scheduling with explorable
uncertainty. In: Karlin, A.R. (ed.) 9th Innovations in Theoretical Computer Sci-
ence Conference (ITCS 2018). Leibniz International Proceedings in Informatics
(LIPIcs), vol. 94, pp. 30:1–30:14. Schloss Dagstuhl-Leibniz-Zentrum fuer Infor-
matik, Dagstuhl, Germany (2018). https://doi.org/10.4230/LIPIcs.ITCS.2018.30

14. Dürr, C., Erlebach, T., Megow, N., Meißner, J.: An adversarial model for schedul-
ing with testing. Algorithmica 82(12), 3630–3675 (2020). https://doi.org/10.1007/
s00453-020-00742-2

15. Englert, M., Özmen, D., Westermann, M.: The power of reordering for online mini-
mum makespan scheduling. In: 2008 49th Annual IEEE Symposium on Foundations
of Computer Science, pp. 603–612 (2008). https://doi.org/10.1109/FOCS.2008.46

16. Epstein, L.: A survey on makespan minimization in semi-online environments. J.
Sched. 21(3), 269–284 (2018). https://doi.org/10.1007/s10951-018-0567-z

17. Erlebach, T., Hoffmann, M.: Query-competitive algorithms for computing with
uncertainty. Bull. EATCS 2(116), 1–19 (2015)

18. Erlebach, T., Hoffmann, M., Krizanc, D., Mihal’ák, M., Raman, R.: Computing
minimum spanning trees with uncertainty. In: Albers, S., Weil, P. (eds.) 25th Inter-
national Symposium on Theoretical Aspects of Computer Science. LIPIcs, vol. 1,
pp. 277–288. Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik, Dagstuhl, Ger-
many (2008). https://doi.org/10.4230/LIPIcs.STACS.2008.1358

19. Faigle, U., Kern, W., Turan, G.: On the performance of on-line algorithms for
partition problems. Acta Cybern. 9(2), 107–119 (1989)

20. Feder, T., Motwani, R., O’Callaghan, L., Olston, C., Panigrahy, R.: Computing
shortest paths with uncertainty. J. Algorithms 62(1), 1–18 (2007). https://doi.
org/10.1016/j.jalgor.2004.07.005

21. Feder, T., Motwani, R., Panigrahy, R., Olston, C., Widom, J.: Computing the
median with uncertainty. SIAM J. Comput. 32(2), 538–547 (2003). https://doi.
org/10.1137/S0097539701395668

22. Fleischer, R., Wahl, M.: On-line scheduling revisited. J. Sched. 3(6), 343–353 (2000)
23. Galambos, G., Woeginger, G.J.: An on-line scheduling heuristic with better worst-

case ratio than Graham’s list scheduling. SIAM J. Comput. 22(2), 349–355 (1993).
https://doi.org/10.1137/0222026

24. Goerigk, M., Gupta, M., Ide, J., Schöbel, A., Sen, S.: The robust knapsack problem
with queries. Comput. Oper. Res. 55, 12–22 (2015). https://doi.org/10.1016/j.cor.
2014.09.010

25. Graham, R.L.: Bounds for certain multiprocessing anomalies. Bell Syst. Techn. J.
45(9), 1563–1581 (1966). https://doi.org/10.1002/j.1538-7305.1966.tb01709.x

26. Graham, R.L.: Bounds on multiprocessing timing anomalies. SIAM J. Appl. Math.
17(2), 416–429 (1969). https://doi.org/10.1137/0117039

27. Gupta, M., Sabharwal, Y., Sen, S.: The update complexity of selection and related
problems. In: Chakraborty, S., Kumar, A. (eds.) IARCS Annual Conference on
Foundations of Software Technology and Theoretical Computer Science (FSTTCS
2011). Leibniz International Proceedings in Informatics (LIPIcs), vol. 13, pp.
325–338. Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik, Dagstuhl, Germany
(2011). https://doi.org/10.4230/LIPIcs.FSTTCS.2011.325

https://doi.org/10.1016/0020-0190(94)00110-3
https://doi.org/10.1016/0020-0190(94)00110-3
https://doi.org/10.1007/BFb0049417
https://doi.org/10.4230/LIPIcs.ITCS.2018.30
https://doi.org/10.1007/s00453-020-00742-2
https://doi.org/10.1007/s00453-020-00742-2
https://doi.org/10.1109/FOCS.2008.46
https://doi.org/10.1007/s10951-018-0567-z
https://doi.org/10.4230/LIPIcs.STACS.2008.1358
https://doi.org/10.1016/j.jalgor.2004.07.005
https://doi.org/10.1016/j.jalgor.2004.07.005
https://doi.org/10.1137/S0097539701395668
https://doi.org/10.1137/S0097539701395668
https://doi.org/10.1137/0222026
https://doi.org/10.1016/j.cor.2014.09.010
https://doi.org/10.1016/j.cor.2014.09.010
https://doi.org/10.1002/j.1538-7305.1966.tb01709.x
https://doi.org/10.1137/0117039
https://doi.org/10.4230/LIPIcs.FSTTCS.2011.325

42 S. Albers and A. Eckl

28. Hochbaum, D.S., Shmoys, D.B.: Using dual approximation algorithms for schedul-
ing problems theoretical and practical results. J. ACM 34(1), 144–162 (1987).
https://doi.org/10.1145/7531.7535

29. Kahan, S.: A model for data in motion. In: Proceedings of the Twenty-third Annual
ACM Symposium on Theory of Computing, pp. 265–277. STOC 1991, ACM, New
York, NY, USA (1991). https://doi.org/10.1145/103418.103449

30. Kalyanasundaram, B., Pruhs, K.: Speed is as powerful as clairvoyance. J. ACM
47(4), 617–643 (2000). https://doi.org/10.1145/347476.347479

31. Karger, D.R., Phillips, S.J., Torng, E.: A better algorithm for an ancient scheduling
problem. J. Algorithms 20(2), 400–430 (1996). https://doi.org/10.1006/jagm.1996.
0019

32. Kellerer, H., Kotov, V., Gabay, M.: An efficient algorithm for semi-online multi-
processor scheduling with given total processing time. J. Sched. 18(6), 623–630
(2015). https://doi.org/10.1007/s10951-015-0430-4

33. Kellerer, H., Kotov, V., Speranza, M.G., Tuza, Z.: Semi on-line algorithms for
the partition problem. Oper. Res. Lett. 21(5), 235–242 (1997). https://doi.org/10.
1016/S0167-6377(98)00005-4

34. Khanna, S., Tan, W.C.: On computing functions with uncertainty. In: Proceedings
of the Twentieth ACM SIGMOD-SIGACT-SIGART Symposium on Principles of
Database Systems, pp. 171–182. PODS 2001, Association for Computing Machin-
ery, New York, NY, USA (2001). https://doi.org/10.1145/375551.375577

35. Megow, N., Meißner, J., Skutella, M.: Randomization helps computing a mini-
mum spanning tree under uncertainty. SIAM J. Comput. 46(4), 1217–1240 (2017).
https://doi.org/10.1137/16M1088375

36. Olston, C., Widom, J.: Offering a precision-performance tradeoff for aggregation
queries over replicated data. In: 26th International Conference on Very Large Data
Bases (VLDB 2000), pp. 144–155. VLDB 2000, Morgan Kaufmann Publishers Inc.,
San Francisco, CA, USA (2000)

37. Rudin III, J.F.: Improved bounds for the on-line scheduling problem. Ph.D. Thesis
(2001)

38. Sgall, J.: A lower bound for randomized on-line multiprocessor scheduling. Inf. Pro-
cess. Lett. 63(1), 51–55 (1997). https://doi.org/10.1016/S0020-0190(97)00093-8

39. Singla, S.: The price of information in combinatorial optimization. In: Proceed-
ings of the Twenty-Ninth Annual ACM-SIAM Symposium on Discrete Algorithms.
p. 2523–2532. SODA ’18, Society for Industrial and Applied Mathematics, USA
(2018). https://doi.org/10.1137/1.9781611975031.161

40. Weitzman, M.L.: Optimal search for the best alternative. Econometrica 47(3),
641–654 (1979). https://doi.org/10.2307/1910412

https://doi.org/10.1145/7531.7535
https://doi.org/10.1145/103418.103449
https://doi.org/10.1145/347476.347479
https://doi.org/10.1006/jagm.1996.0019
https://doi.org/10.1006/jagm.1996.0019
https://doi.org/10.1007/s10951-015-0430-4
https://doi.org/10.1016/S0167-6377(98)00005-4
https://doi.org/10.1016/S0167-6377(98)00005-4
https://doi.org/10.1145/375551.375577
https://doi.org/10.1137/16M1088375
https://doi.org/10.1016/S0020-0190(97)00093-8
https://doi.org/10.1137/1.9781611975031.161
https://doi.org/10.2307/1910412

Online Makespan Minimization with
Budgeted Uncertainty

Susanne Albers and Maximilian Janke(B)

Department of Computer Science, Technical University of Munich, Munich, Germany
maximilian@janke.tech

Abstract. We study Online Makespan Minimization with uncertain job
processing times. Jobs are assigned to m parallel and identical machines.
Preemption is not allowed. Each job has a regular processing time while
up to Γ jobs fail and require additional processing time. The goal is to
minimize the makespan, the time it takes to process all jobs if these Γ
failing jobs are chosen worst possible. This models real-world applica-
tions where acts of nature beyond control have to be accounted for.

So far Makespan Minimization With Budgeted Uncertainty has only
been studied as an offline problem. We are first to provide a comprehen-
sive analysis of the corresponding online problem.

We provide a lower bound of 2 for general deterministic algorithms
showing that the problem is more difficult than its special case, classical
Online Makespan Minimization. We further analyze Graham’s Greedy
strategy and show that it is precisely

(
3 − 2

m

)
-competitive. This bound

is tight. We finally provide a more sophisticated deterministic algorithm
whose competitive ratio approaches 2.9052.

Keywords: Scheduling · Makespan Minimization · Online algorithm ·
Competitive analysis · Lower bound · Uncertainty · Budgeted
Uncertainty

1 Introduction

Scheduling is universal in countless areas of computing, decision making and
management: Machines simultaneously produce diverse specialized equipment;
server hubs execute numerous types of programs at the same time; employees
need to perform various tasks in parallel. Innumerous scheduling problems in
the literature are derived from such applications and model fuzzy real-world
problems using precise mathematical language and problem specifications. This
unnatural precision leads to failure when classical approaches are applied to real-
world environments. Real-world settings are less clear-cut with multiple sources
of uncertainty that vastly affect results. Consider acts of nature beyond control
and predictability occurring rarely but regularly: For example, machines mal-
function and need to be repaired; programs exhibit bugs, which require restarts

Work supported by the European Research Council, Grant Agreement No. 691672,
project APEG.

c© Springer Nature Switzerland AG 2021
A. Lubiw et al. (Eds.): WADS 2021, LNCS 12808, pp. 43–56, 2021.
https://doi.org/10.1007/978-3-030-83508-8_4

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-83508-8_4&domain=pdf
https://doi.org/10.1007/978-3-030-83508-8_4

44 S. Albers and M. Janke

and debugging; changes in working environment—such as a global pandemic—
require new solutions such as working from home. Most tasks are eventually
adapted to the situation and performed as efficiently as before. Still, a few
remaining ones suddenly require a lot more time and effort in our daily schedules.
Such errors in the expected difficulty of tasks easily render theoretical predictions
void and motivated various models incorporating uncertainty in the literature.

A prolific line of research on online algorithms, [14,15,17,19,23,26,30] and
references therein, considers explorable uncertainty. This type of uncertainty can
be queried and explored by the online algorithm. Such approaches are sensible for
many practical applications but fail if uncertainty is inherently unpredictable—
or unexplorable—even to the offline algorithm.

Offline approaches, dating back to the1950 s [13], propose stochastic models;
more recent approaches, particularly Budgeted Uncertainty, consider worst-case
scenarios, which accustom risk-averse decision makers. To date, many offline
problems, Scheduling [8,9,38], Bin Packing [34] and Linear Optimization [6,7]
among them, have been analyzed under Budgeted Uncertainty assumptions.

Surprisingly, these studies never extended to online settings. Current online
analyses measure the price of not having information regarding the future—
an online algorithm is prepared for whatever may come—but are not the least
skeptical about information once it is “obtained”.

This paper studies the most basic scheduling problem of Online Makespan
Minimization under Budgeted Uncertainty assumptions: Jobs have to be assigned
to m identical and parallel machines. Preemption is not allowed. The goal is to
minimize the time it takes to process them all, the makespan. Each job Ji is
defined by two processing times. Its regular processing time p̃i is its time required
under normal circumstances. Its additional time Δpi has to be added in rare cases
of failure for reparation, potential reduced performance or other application-
specific slowdown. Since failures are the exception, it would be extremely pes-
simistic to assume that jobs in general take time p̃i + Δpi. Instead, one only
accounts for at most Γ such failures. Given an assignment of jobs, we consider
the maximum time required for processing these jobs in parallel if up to Γ fail-
ures occurred in total. This time is called the uncertain makespan or simply the
makespan. The objective is to minimize this quantity.

For Γ = 0 the problem reduces to classical makespan minimization. Only
regular processing times p̃i matter. Similarly, the “paranoid case” Γ = ∞, where
every program has a bug and every machine constantly malfunctions, yields
classical makespan minimization using worst-case processing times pi = p̃i+Δpi.

To an online algorithm A jobs are revealed one by one and each has to
be scheduled immediately and irrevocably before the next one is revealed. In
particular, A never “learns” which jobs fail and cannot perform optimally on
arbitrary input sequences. The (uncertain) makespan of A, denoted by A(J),
is then compared to the optimum makespan OPT(J). Online algorithm A is
c-competitive, c ≥ 1, if A(J) exceeds OPT(J) by at most a factor c on all input
sequences J . The smallest such factor is the competitive ratio c = supJ

A(J)
OPT(J) .

The goal is to design online algorithms achieving small competitive ratios.

Online Makespan Minimization with Budgeted Uncertainty 45

Related Work: Scheduling is a fundamental problem in theoretical computer
science and has been studied extensively in both offline and online variants,
see e.g. [4,16,20,22,24,31] and references therein. We thus only focus on results
most relevant to our work beginning with robust scheduling. Early work stud-
ied arbitrary, mostly finite sets of scenarios, see e.g. [3,28,29,32]. More modern
work [8,9,38] has adapted to the model of Budgeted Uncertainty from [6]. In par-
ticular, Bougeret et al. [9] habe provided a first 3-approximation for the offline
version of the problem studied in this paper and a PTAS for constant Γ . This
result has been recently improved by the same authors and Jansen [8]. They
provide an EPTAS for general Γ and show that, assuming P �= NP , the best
possible approximation ratio for unrelated machines lies in the interval [2,3].

Online Makespan minimization is very thoroughly researched. We again only
review results most relevant for our work. Already in the1960 s Graham [22]
established that his famed Greedy strategy obtains a strong competitive ratio of
precisely 2− 1

m . It took nearly thirty years till a breakthrough of Galambos and
Woeginger [21] sparked a fruitful line of research [1,4,27] leading to the currently
best competitive ratio of 1.9201 from [20]. Chen et al. [10] have given an online
algorithm whose competitiveness is at most 1 + ε times the best possible ratio
but no explicit bounds on this ratio are obtained. For general m, lower bounds
are given in [1,5,18,35]. The currently best lower bound is 1.885 due to [35].

More recent results on Online Makespan Minimization consider semi-online
settings, which equip the online algorithm with additional capabilities or infor-
mation ahead of time [11,16,36]; different approaches weaken the adversary’s
ability to determine the job-order [2,16]; yet other settings analyze more involved
objective functions: particularly the model of vector scheduling [12,25] also con-
siders jobs that have two or even more “processing times”. Unlike in our model,
these “times” represent multidimensional resource requirements.

A related line of research on online algorithms considers “explorable uncer-
tainty”. In 1991, Kahan [26] has investigated the number of queries necessary to
determine median and maximum of a set of “uncertain” numbers. This sparked
a long line of research covering many problems, such as finding the median
or general rank-k-elements [19,23,26,30], caching [33] or most recently schedul-
ing [14,15]. The latter work, in fact, adds the cost of querying to the general cost
paid by the algorithm for performing its task at hand. We refer to the survey by
Erlebach et al. [17] and references therein for more results on this topic.

Modern work of Singla [37] introduces the ‘price of information’ into classical
stochastic uncertainty settings, which results in a model highly related to the
Budgeted Uncertainty model.

Our Contribution: We study online makespan minimization with Budgeted
Uncertainty in depth. First, we give tight bounds on the competitive ratio of the
Greedy strategy under Budgeted Uncertainty, which shows surprising parallels
to the traditional result. It is precisely

(
3 − 2

m

)
-competitive. This already beats

the oldest published offline approximation ratio [9], while being a much simpler
approach at the same time. The lower bound showing that Greedy is not better

46 S. Albers and M. Janke

than
(
3 − 2

m

)
-competitive can be chosen such that p̃i = 0 for all i raising the

question whether this important special case is as hard the general problem.
Next, we provide a better deterministic algorithm particularly suited for large

values of m and Γ . Our algorithm adapts the proven strategy from [20] and earlier
work of prioritizing schedules exhibiting a steep load profile. These profiles are
highly desirable and generally pose no problem to the online algorithm. It is then
shown that difficult input sequences leading to less desirable profiles cannot be
efficiently scheduled by any algorithm, including the optimum offline algorithm.
This ameliorates the possibly higher makespan of the online algorithm on these
difficult sequences.

Precise competitive ratios for small m and Γ , Fig. 2, attest a strong perfor-
mance unless Γ is extremely small and m is big. The latter setting is rather
unnatural since one expects the number of errors to scale with the num-
ber of machines (and jobs). For large m and Γ the competitive ratio rapidly
approaches 2.9052. In general, the algorithm outperforms the Greedy strategy.

We end with a lower bound of 2 for the competitive ratio achievable by any
deterministic algorithm. The general model of Budgeted Uncertainty is therefore
strictly more difficult than the classical model without uncertainty where even
Graham’s Greedy strategy is

(
2 − 1

m

)
-competitive.

2 Problem Definition

Consider any input sequence J = J1, . . . Jn. Job Ji is defined by a pair (p̃i,Δpi)
of non-negative real numbers where p̃i is the regular processing time of Ji, while
Δpi is its additional time. The time job Ji takes to be processed in the worst
case is pi = p̃i + Δpi, its robust time.

A schedule is simply a function σ : J → M mapping job J ∈ J to the
machine σ(J) = M ∈ M processing it. The regular load of a machine M ∈ M
is l̃M =

∑
σ(Ji)=M p̃i, the time it takes said machine to process all jobs in the

best-case. The additional times we have to account for in the worst-case is the
additional load ΔlM , the sum of the Γ largest additional times of jobs (or all
additional times, if less than Γ jobs are scheduled on M). Formally ΔlM =
max

(∑
Ji∈J ′ Δpi | J ′ ⊆ σ−1(M), |J ′| ≤ Γ

)
. Let us fix any set J ′(M) where

the maximum in the previous term is obtained. We break ties by preferring
jobs Ji that came later, i.e. with larger indices i, and by choosing J ′(M) of
minimal size. We say for each job Ji ∈ J ′(M) that Ji fails in σ. This allows
us to write ΔlM =

∑
Ji fails M Δpi. Finally, the robust load lM of a machine M

is the maximum time machine M may require if up to Γ jobs fail: Formally
lM = l̃M + ΔlM =

∑
Ji∈σ−1(M) p̃i +

∑
Ji fails M Δpi.

Given any algorithm A, which outputs the schedule σ, its (robust) makespan
is then A(J) = maxM lM . The goal is to design algorithms exhibiting low
makespans. Technically, in the classical problem only Γ jobs fail in total. For
the analysis a more general, equivalent version leads to a better intuition: Since
the definition of each ΔlM only makes use of the fact that at most Γ jobs fail on
M , the problem stays equivalent if we allowed up to Γ jobs to fail per machine.

Online Makespan Minimization with Budgeted Uncertainty 47

Let OPT be any (fixed) offline algorithm that on any input sequence J outputs
an optimum schedule. By some abuse of notation we also denote the optimum
makespan OPT(J) by OPT, if the corresponding sequence J is clear.

An Algorithm A is called an online algorithm, if it assigns each job Ji in
J = J1, . . . , Jn independent of future jobs, i.e. Ji+1, . . . , Jn. It’s competitive
ratio is then c = supJ

A(J)
OPT(J) , the quantity we wish to minimize.

3 Graham’s Greedy Strategy

In his seminal work [22] Graham analyzed the greedy strategy and showed
that it is

(
2 − 1

m

)
-competitive. In general, the scheduling literature differen-

tiates between pre-greedy and post-greedy strategies. The former simply choose
a least loaded machine; the latter choose a machine such that the resulting load
is minimal. Ties can be broken arbitrarily. For classical Makespan Minimization
these notions coincide and all greedy strategies are identical up to permutations
of machines. For our problem, the pre-greedy strategies perform significantly
worse, which is why we focus on post-greedy strategies.

We then are going to establish the following theorem.

Theorem 1. The competitive ratio of the post-greedy strategy is precisely 3− 2
m .

In particular, we will also present a lower bound on which any neither the
post-greedy nor the pre-greedy strategy does perform better. This lower bound,
interestingly, can be chosen such that p̃ = 0 for all jobs, which might be evidence
that this case is not easier than the general case. A bound on which the pre-
greedy strategy performs worse is omitted.

3.1 Upper Bound

Let us consider the case of classical makespan minimization, i.e. we assume that
Δpi = 0 for all jobs Ji. The core idea of Graham [22] was to consider the average
load of any schedule, that is L̃ = 1

m

∑
M l̃M = 1

m

∑
Ji∈J p̃i. The second term

shows that this average load is independent of the schedule considered. This has
two important consequences. First, OPT ≥ L̃ since even the optimal schedule
cannot have all machine loads below average. On the other hand, no scheduler,
not even the worst one, can bring all machine loads above the average load L̃.
Graham thus argues that the least loaded machine considered by his greedy
strategy has load at most L̃ ≤ OPT. Since the job placed on it cannot have
processing time greater than OPT either, it thus cannot cause a load exceeding
2OPT. In other words, for classical makespan minimization the greedy strategy
is 2-competitive.

In our setting, the core argument of Graham does not work anymore. For
Δpi �= 0, the average robust load L is far from being independent of the schedule
in question. In fact, it may differ by a factor of m. Before giving an example
let us introduce the required notation. Consider the schedule computed by any

48 S. Albers and M. Janke

algorithm A on input sequence J and let L[A] = L[A,J] = 1
m

∑
M lM denote its

average (robust) load. Similarly, let ΔL[A] = ΔL[A,J] = 1
m

∑
M ΔlM = L[A] −

L̃. Consider m · Γ (or more) jobs with processing vector (p̃i,Δpi) = (0, 1/Γ).
Let A be the strategy that always uses a machine of least load and let B be the
algorithm which only uses one single machine. Then L[A] = 1 while L[B] = 1

m .
The average robust load thus highly depends upon the algorithm considered.
Interestingly, we can bound said average load using the optimum makespan
OPT.

Lemma 1. The average (robust) load L[A,J] of any algorithm A on input J =
J1, . . . , Jn is at most L[OPT,J] +

(
1 − 1

m

)
OPT(J).

Proof. Let us fix the sequence J and omit it from the notation. Let T be the set
of jobs that fail A but not OPT. If T is empty, all jobs that fail A also fail OPT
and thus L[A,J] ≤ L[OPT,J]. The lemma follows. Else, consider Jmax ∈ T
of maximum additional processing time Δpmax. Consider the machine M that
contains Jmax in the optimum schedule. Since Jmax does not fail OPT there
are Γ different jobs of additional processing time at least Δpmax assigned to M
which fail OPT. Let G be the set of these jobs. We obtain

ΔL[A,J] − ΔL[OPT,J] ≤ 1
m

∑

Ji∈T

Δpi − 1
m

∑

Ji∈G

Δpi

≤ 1
m

· (|T | − |G|)Δpmax.

At most Γ jobs can fail any machine, therefore |T | ≤ Γm. By definition |G| = Γ .
Finally, Δpmax ≤ OPT

Γ since the Γ jobs in G all have additional processing time
at least Δpmax while their total additional processing is at most OPT. Now the
previous inequality yields

ΔL[A,J] − ΔL[OPT,J] ≤ Γm − Γ

m
· OPT

Γ
=

(
1 − 1

m

)
OPT(J).

Recall that the average regular load L̃ = 1
m

∑
Ji

p̃i is the same for every algo-
rithm. Therefore L[A,J]−L[OPT,J] = ΔL[A,J]−ΔL[OPT,J]. Together with
the previous inequality this implies L[A,J] ≤ L[OPT,J]+

(
1 − 1

m

)
OPT(J). 	

Lemma 2. The post-greedy strategy incurs makespan at most
(
3 − 2

m

)
OPT(J).

Proof. Let J = J1, . . . , Jn. Using induction over n we may assume that the
statement of the lemma holds right before job Jn is scheduled. By definition of
a post-greedy assignment it then suffices to see that there exists a machine M
whose load will not exceed (3 − 2/m) OPT(J) if we assign Jn to it.

Let (pn,Δpn) be the processing vector of Jn. Consider the greedy schedule
of the first n−1 jobs and preliminarily assign job Jn to any machine that causes
it to fail, i.e. contains less than Γ jobs of processing time strictly exceeding Δpn.
If no such machine exists, schedule job Jn on an arbitrary machine. Let L be

Online Makespan Minimization with Budgeted Uncertainty 49

the average robust load of this schedule. We replace each job Ji by a job Ĵi

whose regular processing time is p̂i = p̃i if the job does not fail this preliminary
schedule and p̂i = pi = p̃i + Δpi else. Per definition that does not change the
load of any machine. Also, L = 1

m

∑
i p̂i. Now, we remove the last job Ĵn from

the machine it was scheduled on and assign it to a least loaded machine M
(with regards to the processing times p̂i). After removing the job Ĵn the average
load of the schedule is L − 1

m · p̂n. Hence, after assigning Ĵn to the least loaded
machine the makespan is at most L +

(
1 − 1

m

)
p̂n. Now, replace the jobs Ĵi by

their original variants Ji. This can only cause the load of M to decrease. Indeed,
by our choice of preliminary assignment we had p̂n = pn unless there was no
machine on which Jn could fail, so job Jn contributes at most p̂n to the load of
M . For other jobs that fail M it is clear that they continue to do so if we remove
Jn. Thus, these jobs contribute processing time pi = p̂i. Jobs that do not fail
only contribute processing time p̃i ≤ p̂i.

We have shown that assigning Jn to machine M causes its load to be at most
L+

(
1 − 1

m

)
p̃n ≤ L̃[J ,OPT]+

(
1 − 1

m

)
OPT+

(
1 − 1

m

)
p̃n ≤ (

3 − 2
m

)
OPT. The

first inequality is due to Lemma1 (there is some algorithm computing the pre-
liminary schedule), the second due to the fact that the average load L̃[J ,OPT]
of the optimum schedule as well as p̃n, the robust processing time of any job,
are both lower bounds for OPT. By definition a post-greedy strategy will not
cause a makespan exceeding the one it could obtain by choosing M . 	

3.2 Lower Bound

Lemma 3. Neither pre-greedy nor post-greedy strategy can be better than(
3 − 2

m

)
-competitive, even when all jobs have regular processing time p̃ = 0.

Figure 1 illustrates the lower bound; the formal proof is left to the full version.

Fig. 1. The lower bound for greedy strategies, where all jobs have regular processing
time p̃ = 0. First, tiny sand-like jobs fill the greedy schedule (on the left) to a height of
almost 1. Small jobs increase the height to 2−2/m. Finally, a large job of size 1 causes
a makespan of size 3 − 2/m. The optimum schedule (on the right) places the sand-like
jobs on a single machine. Since only Γ jobs fail the load is 1. The next m− 1 machines
are filled with small jobs to a height of 1. The final machine captures the large job.

50 S. Albers and M. Janke

4 An Improved Deterministic Algorithm

The shortcoming of the Greedy strategy is that it creates ‘critically flat’ sched-
ules. Jobs with high additional time tend to be spread thin onto separate
machines when it would be better to cluster them. Moreover, a single large
job J assigned to a flat schedule easily causes a high makespan. OPT commonly
can ‘sink J down’ profiting a lot. Our algorithm thus tries to avoid flat schedules.
When presented with one, it prefers to use a medium machine to make it steeper.
Of course, recklessly using a medium machine on a dangerous schedule is folly.
Said machine is only used if the algorithm can guarantee c-competitiveness. We
specify the competitive ratio c = cΓ,m, depending on both Γ and m, later.

For any input sequence J = J1, . . . , Jn and any time t consider the schedule
of the algorithm right after after job Jt is scheduled. For t = 0 consider the empty
schedule. We order machines by their robust loads, breaking ties arbitrarily
but consistently. We call the d =

⌊
c−2

c m
⌋ ≈ 0.3116m least loaded machines

small ; the following d machines are medium and the remaining m − 2d most-
loaded ones are large. Let Mt

med be the set of medium machines and let Lt
med =

1
|Mt

med|
∑

M∈Mt
med

ltM be their average robust load. Let M t
med be the machine

in Mt
med of least robust load ltmed = minM∈Mt

med
ltM . Note that ltmed ≤ Lt

med.
We use similar notation for the small and large machines: Mt

med, Lt
med, ltmed,

Mt
large, etc. with the index chosen accordingly. In particular, M t

small denotes the
least-loaded machine. Finally, let Lt denote the average (robust) load at time t.

We call the schedule at time t ≥ 0 steep if Lt−1
small ≤

(
1 − 1

2(c−1)

)
Lt−1
large and

flat else. Steep schedules are highly desirable. Our algorithm can and will always
pick the least loaded machine. If the schedule is flat, our goal should be to make
it steep again. Thus, first the least loaded medium machine M t−1

med is sampled.
If scheduling a job on machine M t−1

med will not cause its load to exceed c
2Lt−1,

i.e. if lt−1
med + pt ≤ c

2Lt−1, we use M t−1
med . This guarantees c-competitiveness, see

Lemma 4. Else, the least loaded machine Msmall has to be used. Seeing that this
does not break c-competitiveness is the main challenge for the analysis.

Algorithm 1. How to schedule job Jt with processing time pt.

1: if Lt−1
small >

(
1 − 1

2(c−1)

)
Lt−1

large and lt−1
med + pt ≤ c

2
Lt−1 then

2: Schedule job Jt on the least loaded medium machine M t−1
med;

3: else schedule job Jt on the least loaded machine M t−1
small.

The values of c. Recall that d =
⌊

c−2
c m

⌋
. Let Γ ≥ 2. The competitive ratio c

is chosen minimally such that c ≥ 7+
√
17

4 ≈ 2.7808 and the following holds:
(

1 − d

2(c − 1)m
− 2

Γ + 1
cΓ

)(
1 +

c

2m

)d

+ 2
Γ + 1
cΓ

≥ 2
c − 1

· m − 1
m

. (1)

Unless m is chosen extremely small c is determined by Inequality (1) and fulfills
it with equality. We show in the full version that c is below 2.9052 for m,Γ → ∞.

Online Makespan Minimization with Budgeted Uncertainty 51

The following is the main result of this paper.

Theorem 2. The algorithm is c-competitive with c < 2.9052 for Γ large.

Using a suitable data-structure that maintains the values Lt−1
small, Lt−1

large and
lt−1
med the algorithm can schedule each job efficiently in time O(log(m + Γ)).

10 15 25 50 100 150 250 500 1,000
2.84

2.86

2.88

2.9

2.92

2.94

2.96

Γ

Dependency on the number of errors Γ.

m = 20 m = 30
m = 50 m = 100
m = 200 m = 500

10 15 25 50 100 150 250 500 1,000

2.8

2.85

2.9

m

Dependency on the number of machines m.

Γ = 20
Γ = 30
Γ = 50
Γ = 100
Γ = 200
Γ = 1000

Fig. 2. The competitive ratios for different m and Γ . The ratio c is monotonously
decreasing in Γ and tends to increase in m albeit not monotoneously due to the round-
ing involved in d. The x-axes are log-scaled. The graphs are colored.

Analysis of the Algorithm. Consider any input sequence J = J1, . . . , Jn

and let OPT = OPT(J1, . . . , Jn). By induction on n the makespan of the online
algorithm did not exceed cOPT before job Jn was scheduled. We need to show
that Jn did not cause the makespan to exceed this value either. Let L = Ln

be the average robust load of the online schedule after all jobs in J have been
scheduled.

Lemma 4. We have L ≤ 2OPT. In particular, if job Jn was scheduled on the
least loaded medium machine Mn−1

med the makespan was at most cOPT.

Proof. The first part follows from Lemma 1. Now, observe that if job Jn was
assigned to machine Mn−1

med its load could not have exceeded c
2Ln−1 ≤ cOPT

afterwards per definition of the algorithm. 	

We focus for simplicity on the case m → ∞. The improvements required for

small values of m are detailed at the end of the paragraph in Remark 1. Consider
the case that Jn is scheduled on a least loaded machine. Let λ be its robust load.
We need to bound λ + pn, its load after receiving job Jn. Since pn ≤ OPT, we
thus need to show that λ ≤ (c − 1)OPT. If λ ≤ c−1

2 L this is a consequence of
Lemma 4. Hence, we are left to consider the case where all machines have load
at least λ > c−1

2 L. We call such a schedule critically flat.1 Our algorithm cannot

1 The term ‘critically flat’ is not a misnomer, by Remark 2 such a schedule is, in
particular, flat.

52 S. Albers and M. Janke

always prevent such schedules. The main part of our analysis shows that such
schedules exhibit a highly specific structure.

Lemma 5. If a schedule is critically flat, i.e. all machines have load λ > c−1
2 L,

then every machine contains a job of processing time at least λ
2(c−1) .

We are going to prove this lemma in the next section. Let us first use it to
conclude the analysis.

Proof of Theorem 2. By the previous analysis we only need to consider the case
that job Jn is scheduled on a critically flat schedule where the least loaded
machine has load λ. Since λ ≤ L ≤ 2OPT we are done if job Jn has processing
time pn ≤ λ

2(c−1) ≤ OPT
c−1 ≤ (c − 2)OPT. The last inequality uses the condition

c ≥ 2.7808. If pn ≤ λ
2(c−1) job Jn could only cause a makespan of λ + pn ≤

2OPT + (c − 2)OPT = cOPT.
But else, we have shown that the sequence J1, . . . , Jn contains m + 1 jobs of

processing time λ
2(c−1) . One of them is Jn while the remaining m exist due to

Lemma 5. By the pigeonhole principle OPT needs to place two such jobs on a
single machine, attaining a makespan of at least 2 λ

2(c−1) = λ
c−1 . But this shows

that λ ≤ (c − 1)OPT and thus λ + pn ≤ (c − 1)OPT + OPT = cOPT. 	

Remark 1. Our previous definition of critically flat schedules given for m → ∞
can be improved if m, the number of machines, is small. We then call the schedule
critically flat if λ > c−1

2
m

m−1Ln−1. Note that both definitions agree for m → ∞.
The previous arguments can be generalized to show that we are c-competitive if
job Jn is not assigned to a schedule which is critically flat using this definition.
The proof is left to the full version.

Understanding how Critically Flat Schedules are Formed. In our anal-
ysis we have to differentiate between early and late jobs. The latter will be
scheduled on a full and flat schedule. For them to be assigned to a least loaded
machine they will need to be fairly sizable. This requires the adversary to present
quite large jobs constituting a lot of processing volume to achieve a critically flat
schedule. Formally, we call a job Jt late if two conditions are met. We require
job Jt to be scheduled on a flat schedule and we require machine M t−1

med to have
load at least λ before job Jt is scheduled. If a job Jt is not late or followed by a
job which is not late, we call it early. In particular, a job can be both early and
late. We next are going to consider late jobs.

Lemma 6. If job Jt is late and caused a machine to first reach load λ, its
(robust) processing time is at least pt ≥ λ

2(c−1) .

Proof. Let l = lt−1
med be the load of M t−1

med. By assumption of Jt being late there
holds l ≥ λ. Since Jt caused a machine to first reach load λ it was not scheduled
on M t−1

med but on the least loaded machine M t−1
small instead. Since the schedule was

flat, job Jt must have had processing time exceeding c
2Lt−1−l, i.e. pt > c

2Lt−1−l.

Online Makespan Minimization with Budgeted Uncertainty 53

If the least loaded machine M t−1
small, which Jt caused to reach load λ, had load

less than λ − λ
2(c−1) , the statement of the lemma follows immediately. Else, all

small machines had load at least λ − λ
2(c−1) and all medium and large machines

had load at least l. Thus Lt−1 ≥ m−d
m l + d

m

(
λ − λ

2(c−1)

)
. In particular

pt >
c

2
Lt−1 − l ≥ c

2

(
m − d

m
l +

d

m

(
λ − λ

2(c − 1)

))
− l.

Note that d was chosen precisely maximal such that d ≤ c−2
c m, or equivalently

c
2

m−d
m − 1 ≥ 0. In fact, this inequality motivates the choice of d. The inequality

implies that the previous term is non-decreasing in l and minimal for l = λ.
Setting l = λ, we get that

pt ≥ c

2

(
1 − d

2(c − 1)m

)
λ − λ >

(
c

2
− c − 2

4(c − 1)
− 1

)
λ ≥ 1

2(c − 1)
λ.

The first inequality uses that d < c−2
c m. The second inequality is simply an

algebraic computation which uses that c ≥ 7+
√
17

4 . 	

The Critical Machines. We call a time t early or late if job Jt had this
property. So far, we have treated late times. Now, we need to establish a cor-
responding result for early times. This requires us to understand a certain set
of critical machines. Given any time t, let Mt−1

crit be the set of d most-loaded
machines whose load has not yet reached λ before job Jt is scheduled. If less
than d machines fulfill the latter condition, then all of them belong to Mt−1

crit .
Let Lt−1

crit = 1
|Mt−1

crit |
∑

M∈Mt−1
crit

lt−1
M be their average load. We use the convention

1/0 = ∞, or in other words set Lt−1
crit = ∞ if Mt−1

crit = ∅. The following lemma is
fairly technical and will be proven in the full version.

Lemma 7. Let s be the last early time, i.e. if t > s, then t is late. Then Ls
crit ≤(

1 − 1
2(c−1)

)
λ.

Remark 2. The lemma implies that Ms
crit �= ∅. Using that Mn−1

crit = ∅ we get
that s < n − 1 or, equivalently, that critically flat schedules are always flat.

Recall that our algorithm considers certain machines to be small, large and
medium. It turns out that if it was not for the online setting, i.e. if the algorithm
had advance knowledge of the sequence, the critical machines are the true con-
testants for the label “medium”. To be precise we will establish that the critical
machines separate “large” machines of load at least λ from ‘small’ ones of load
at most

(
1 − 1

2(c−1)

)
λ. The following claim is the first step towards establishing

this result in Lemma 8.

Claim. Assume that Lt
crit ≤

(
1 − 1

2(c−1)

)
λ. If M t−1

med ∈ Mt−1
crit then the schedule

is steep. In particular, our algorithm never uses machine in Mt−1
crit \ {M t−1

small}.

54 S. Albers and M. Janke

Proof. Assume M t−1
med ∈ Mt−1

crit . Since d−1 machines lie strictly in between M t−1
med

and the machines in Mt−1
large the latter must be disjoint from Mt−1

crit . Thus, they all
had load λ. In particular, Lt−1

large ≥ λ. Using this, we conclude that the schedule
was steep and, consequently, that the algorithm used M t−1

small:

Lt−1
small ≤ Lt

small ≤ Lt
crit ≤

(
1 − 1

2(c − 1)

)
λ ≤

(
1 − 1

2(c − 1)

)
Lt−1
large.

	

Lemma 8. If t is early, Lt−1

crit ≤
(
1 − 1

2(c−1)

)
λ. Moreover job Jt was either

scheduled on a machine of load at least λ or on a machine of load at most(
1 − 1

2(c−1)

)
λ.

Proof. Assume for contradiction sake that an early time t existed with Lt−1
crit >(

1 − 1
2(c−1)

)
λ. We may wlog. choose t maximal with that property. Then there

holds Lt
crit ≤

(
1 − 1

2(c−1)

)
λ either by the maximality of t or by Lemma 7. Thus

job Jt caused Lcrit to decrease. This can only happen if job Jt was assigned to a
machine in Mt−1

crit that was not M t−1
small. But by the previous claim this does not

happen, a contradiction.
For the second part observe that job Jt is either scheduled on a machine

having load λ or on a machine of load at most Lt−1
crit ≤

(
1 − 1

2(c−1)

)
λ, which is

either the least loaded machine in Mcrit or a machine of lesser load. 	

We now conclude our analysis by proving the structural Lemma5.

Proof of Lemma 5. Given any machine M , we show that job Jt that caused M to
first reach (robust) load λ had processing time at least λ

2(c−1) . If job Jt was late,
this already follows from Lemma 6. Else, by Lemma 8, job Jt was scheduled on
a machine which had (robust) load

(
1 − 1

2(c−1)

)
λ before and λ after receiving

job Jt. Thus job Jt had (robust) processing time at least λ
2(c−1) . 	

4.1 Deterministic Lower Bounds

We can show that no general competitive ratio below 2 is possible unless very
small numbers of machines are considered. We leave the proof to the full version.

Theorem 3. No deterministic algorithm is better than 2-competitive for general
m and Γ = 2.

It may also be interesting to consider the debugging model, where all jobs
have real processing time 0. In this case the classical lower bounds still apply if
Γ is not chosen too small. For example, the lower bound of 1.852 for [1] holds
for Γ ≥ 4. On the other hand it is not clear that any algorithm performs better
in tise case. Lemma 3 shows that Greedy does not.

Online Makespan Minimization with Budgeted Uncertainty 55

References

1. Albers, S.: Better bounds for online scheduling. SIAM J. Comput. 29(2), 459–473
(1999)

2. Albers, S., Janke, M.: Scheduling in the random-order model. In: 47th International
Colloquium on Automata, Languages, and Programming (ICALP 2020). Schloss
Dagstuhl-Leibniz-Zentrum für Informatik (2020)

3. Aloulou, M.A., Croce, F.D.: Complexity of single machine scheduling problems
under scenario-based uncertainty. Oper. Res. Lett. 36(3), 338–342 (2008)

4. Bartal, Y., Fiat, A., Karloff, H., Vohra, R.: New algorithms for an ancient schedul-
ing problem. In: Proceedings of the Twenty-Fourth Annual ACM Symposium on
Theory of Computing, pp. 51–58 (1992)

5. Bartal, Y., Karloff, H.J., Rabani, Y.: A better lower bound for on-line scheduling.
Inf. Process. Lett. 50(3), 113–116 (1994)

6. Bertsimas, D., Sim, M.: Robust discrete optimization and network flows. Math. Pro-
gram. Ser. B 98(1–3), 49–71 (2003). https://doi.org/10.1007/s10107-003-0396-4

7. Bertsimas, D., Sim, M.: The price of robustness. Oper. Res. 52(1), 35–53 (2004)
8. Bougeret, M., Jansen, K., Poss, M., Rohwedder, L.: Approximation results for

makespan minimization with budgeted uncertainty. In: Bampis, E., Megow, N.
(eds.) WAOA 2019. LNCS, vol. 11926, pp. 60–71. Springer, Cham (2020). https://
doi.org/10.1007/978-3-030-39479-0 5

9. Bougeret, M., Pessoa, A.A., Poss, M.: Robust scheduling with budgeted uncer-
tainty. Discrete Appl. Math. 261, 93–107 (2019)

10. Chen, L., Ye, D., Zhang, G.: Approximating the optimal algorithm for online
scheduling problems via dynamic programming. Asia-Pac. J. Oper. Res. 32(01),
1540011 (2015)

11. Cheng, T.E., Kellerer, H., Kotov, V.: Semi-on-line multiprocessor scheduling with
given total processing time. Theor. Comput. Scie. 337(1–3), 134–146 (2005)

12. Cohen, I., Im, S., Panigrahi, D.: Online two-dimensional load balancing. In: 47th
International Colloquium on Automata, Languages, and Programming (ICALP
2020). Schloss Dagstuhl-Leibniz-Zentrum für Informatik (2020)

13. Dantzig, G.B.: Linear programming under uncertainty. Manage. Sci. 1(3–4), 197–
206 (1955)

14. Dürr, C., Erlebach, T., Megow, N., Meißner, J.: Scheduling with explorable uncer-
tainty. In: 9th Innovations in Theoretical Computer Science Conference (ITCS
2018). Schloss Dagstuhl-Leibniz-Zentrum für Informatik (2018)

15. Dürr, C., Erlebach, T., Megow, N., Meißner, J.: An adversarial model for schedul-
ing with testing. Algorithmica 82(12), 3630–3675 (2020). https://doi.org/10.1007/
s00453-020-00742-2

16. Englert, M., Özmen, D., Westermann, M.: The power of reordering for online mini-
mum makespan scheduling. In: 2008 49th Annual IEEE Symposium on Foundations
of Computer Science, pp. 603–612. IEEE (2008)

17. Erlebach, T., Hoffmann, M., Kammer, F.: Query-competitive algorithms for cheap-
est set problems under uncertainty. Theor. Comput. Sci. 613, 51–64 (2016)

18. Faigle, U., Kern, W., Turán, G.: On the performance of on-line algorithms for
partition problems. Acta Cybernetica 9(2), 107–119 (1989)

19. Feder, T., Motwani, R., Panigrahy, R., Olston, C., Widom, J.: Computing the
median with uncertainty. In: Proceedings of the Thirty-Second Annual ACM Sym-
posium on Theory of Computing, pp. 602–607 (2000)

20. Fleischer, R., Wahl, M.: On-line scheduling revisited. J. Sched. 3(6), 343–353 (2000)

https://doi.org/10.1007/s10107-003-0396-4
https://doi.org/10.1007/978-3-030-39479-0_5
https://doi.org/10.1007/978-3-030-39479-0_5
https://doi.org/10.1007/s00453-020-00742-2
https://doi.org/10.1007/s00453-020-00742-2

56 S. Albers and M. Janke

21. Galambos, G., Woeginger, G.J.: An on-line scheduling heuristic with better worst-
case ratio than Graham’s list scheduling. SIAM J. Comput. 22(2), 349–355 (1993)

22. Graham, R.L.: Bounds for certain multiprocessing anomalies. Bell Syst. Tech. J.
45(9), 1563–1581 (1966)

23. Gupta, M., Sabharwal, Y., Sen, S.: The update complexity of selection and related
problems. arXiv preprint arXiv:1108.5525 (2011)

24. Hochbaum, D.S., Shmoys, D.B.: Using dual approximation algorithms for scheduling
problems theoretical and practical results. J. ACM (JACM) 34(1), 144–162 (1987)

25. Im, S., Kell, N., Kulkarni, J., Panigrahi, D.: Tight bounds for online vector schedul-
ing. In: 2015 IEEE 56th Annual Symposium on Foundations of Computer Science,
pp. 525–544. IEEE (2015)

26. Kahan, S.: A model for data in motion. In: Proceedings of the Twenty-Third Annual
ACM Symposium on Theory of Computing, pp. 265–277 (1991)

27. Karger, D.R., Phillips, S.J., Torng, E.: A better algorithm for an ancient scheduling
problem. J. Algor. 20(2), 400–430 (1996)

28. Kasperski, A., Kurpisz, A., Zieliński, P.: Approximating a two-machine flow shop
scheduling under discrete scenario uncertainty. Eur. J. Oper. Res. 217(1), 36–43
(2012)

29. Kasperski, A., Kurpisz, A., Zieliński, P.: Parallel machine scheduling under uncer-
tainty. In: Greco, S., Bouchon-Meunier, B., Coletti, G., Fedrizzi, M., Matarazzo,
B., Yager, R.R. (eds.) IPMU 2012. CCIS, vol. 300, pp. 74–83. Springer, Heidelberg
(2012). https://doi.org/10.1007/978-3-642-31724-8 9

30. Khanna, S., Tan, W.C.: On computing functions with uncertainty. In: Proceedings
of the Twentieth ACM SIGMOD-SIGACT-SIGART Symposium on Principles of
Database Systems, pp. 171–182 (2001)

31. Lenstra, J.K., Shmoys, D.B., Tardos, E.: Approximation algorithms for scheduling
unrelated parallel machines. Math. Program. 46(1–3), 259–271 (1990). https://doi.
org/10.1007/BF01585745

32. Mastrolilli, M., Mutsanas, N., Svensson, O.: Approximating single machine schedul-
ing with scenarios. In: Goel, A., Jansen, K., Rolim, J.D.P., Rubinfeld, R. (eds.)
APPROX/RANDOM-2008. LNCS, vol. 5171, pp. 153–164. Springer, Heidelberg
(2008). https://doi.org/10.1007/978-3-540-85363-3 13

33. Olston, C., Widom, J.: Offering a Precision-Performance Tradeoff for Aggregation
Queries Over Replicated Data. Tech. rep, Stanford (2000)

34. Basu Roy, A., Bougeret, M., Goldberg, N., Poss, M.: Approximating robust bin pack-
ing with budgeted uncertainty. In: Friggstad, Z., Sack, J.-R., Salavatipour, M.R.
(eds.) WADS 2019. LNCS, vol. 11646, pp. 71–84. Springer, Cham (2019). https://
doi.org/10.1007/978-3-030-24766-9 6

35. Rudin, J.F.: Improved bounds for the on-line scheduling problem (2001)
36. Sanders, P., Sivadasan, N., Skutella, M.: Online scheduling with bounded migra-

tion. Math. Oper. Res. 34(2), 481–498 (2009)
37. Singla, S.: The price of information in combinatorial optimization. In: Proceedings

of the Twenty-Ninth Annual ACM-SIAM Symposium on Discrete Algorithms, pp.
2523–2532. SIAM (2018)

38. Tadayon, B., Smith, J.C.: Algorithms and complexity analysis for robust single-
machine scheduling problems. J. Sched. 18(6), 575–592 (2015). https://doi.org/10.
1007/s10951-015-0418-0

http://arxiv.org/abs/1108.5525
https://doi.org/10.1007/978-3-642-31724-8_9
https://doi.org/10.1007/BF01585745
https://doi.org/10.1007/BF01585745
https://doi.org/10.1007/978-3-540-85363-3_13
https://doi.org/10.1007/978-3-030-24766-9_6
https://doi.org/10.1007/978-3-030-24766-9_6
https://doi.org/10.1007/s10951-015-0418-0
https://doi.org/10.1007/s10951-015-0418-0

Pattern Matching in Doubling Spaces

Corentin Allair1 and Antoine Vigneron2(B)

1 École Polytechnique, Paris, France
corentin.allair@polytechnique.edu

2 School of Electrical and Computer Engineering, UNIST, Ulsan, Republic of Korea
antoine@unist.ac.kr

Abstract. We consider the problem of matching a metric space (X, dX)
of size k with a subspace of a metric space (Y, dY) of size n � k,
assuming that these two spaces have constant doubling dimension δ.
More precisely, given an input parameter ρ � 1, the ρ-distortion prob-
lem is to find a one-to-one mapping from X to Y that distorts dis-
tances by a factor at most ρ. We first show by a reduction from k-
clique that, in doubling dimension log2 3, this problem is NP-hard and
W[1]-hard. Then we provide a near-linear time approximation algorithm
for fixed k: Given an approximation ratio 0 < ε � 1, and a positive
instance of the ρ-distortion problem, our algorithm returns a solution to
the (1 + ε)ρ-distortion problem in time (ρ/ε)O(1)n log n. We also show
how to extend these results to the minimum distortion problem, which
is an optimization version of the ρ-distortion problem where we allow
scaling. For doubling spaces, we prove the same hardness results, and
for fixed k, we give a (1 + ε)-approximation algorithm running in time
(dist(X, Y)/ε)O(1)n2 log n, where dist(X, Y) denotes the minimum dis-
tortion between X and Y .

Keywords: Pattern matching · Approximation algorithms · Doubling
spaces

1 Introduction

A metric space has doubling dimension δ if any ball can be covered by at most
2δ balls of half its radius. When δ = O(1), we say that this space is doubling.
(See Sect. 2.) For instance, the Euclidean space R

d has doubling dimension O(d),
hence doubling spaces are generalizations of fixed-dimensional Euclidean spaces.

In this paper, we study pattern matching problems in doubling spaces. Given
two doubling spaces (X, dX) and (Y, dY) of doubling dimension δ, and sizes
|X| = k and |Y | = n, where k � n, our goal is to find a subspace of Y that

This work was supported by Basic Science Research Program through the National
Research Foundation of Korea (NRF) funded by the Ministry of Education
(2017R1D1A1B04036529). Work by C. Allair was conducted during an internship in
UNIST.

c© Springer Nature Switzerland AG 2021
A. Lubiw et al. (Eds.): WADS 2021, LNCS 12808, pp. 57–70, 2021.
https://doi.org/10.1007/978-3-030-83508-8_5

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-83508-8_5&domain=pdf
http://orcid.org/0000-0003-3586-3431
https://doi.org/10.1007/978-3-030-83508-8_5

58 C. Allair and A. Vigneron

resembles the pattern X. More precisely, we consider the ρ-distortion problem
and the minimum distortion problem, which we describe below.

Given ρ � 1, the ρ-distortion problem is to find, if it exists, a mapping
σ : X → Y such that

(1/ρ)dX(x, x′) � dY (σ(x), σ(x′)) � ρdX(x, x′) (1)

for all x, x′ ∈ X. It follows from this definition that σ is injective.
The ρ-distortion problem is analogous to the problem of matching two point-

sets in Euclidean space under rigid transformations, which are compositions
of translations and rotations. If, in addition, we allow scaling, then an anal-
ogous problem in general metric spaces is the minimum distortion problem.
The goal is to minimize the distortion dist(σ) = expansion(σ) × expansion(σ−1)
over all injections σ : X → Y , where expansion(σ) = maxx,x′∈X

x�=x′

dY (σ(x),σ(x′))
dX(x,x′)

and expansion(σ−1) = maxx,x′∈X
x�=x′

dX(x,x′)
dY (σ(x),σ(x′)) . The minimum of dist(σ) over

all injections σ : X → Y is denoted dist(X,Y), and it is easy to see that
dist(X,Y) � 1. The minimum distortion problem was introduced by Kenyon et
al. [20] in the case where k = n, and thus σ is a bijection.

Motivated by applications to natural language processing, bioinformatics and
computer vision, Ding and Ye [13] recently proposed a practical algorithm for a
pattern matching problem in doubling spaces. However, this algorithm may only
return an approximation of a local minimum, and its time bound is not given
as a function of the input size. (The time bound depends on a factor γ that
counts the number of rounds of the algorithm, which is not bounded in terms of
the input parameters.) One of our goals is thus to provide a provably efficient
algorithm for pattern matching in doubling spaces. Another motivation for our
work is that, even though the complexity of the minimum distortion problem has
been studied for several types of metrics, it appears that no result was previously
known for two doubling metrics. (See the comparison with previous work below.)

Our Results. We first give a hardness result: We show that for any ρ � 1, the
k-clique problem reduces to ρ-distortion in doubling dimension log2 3. It implies
that the ρ-distortion problem is NP-hard, and is W[1]-hard when parameterized
by k (Corollary 2). It also shows that this problem cannot be solved in time
f(k)·no(k) for any computable function f , unless the exponential time hypothesis
(ETH) is false (Corollary 3).

On the positive side, we present a near-linear time approximation algorithm
for small values of k. More precisely, if ρ � 1 and 0 < ε � 1, our algorithm
returns in 2O(k2 log k)(ρ2/ε)2kδn log n time a solution to the (1 + ε)ρ-distortion
problem whenever a solution to the ρ-distortion problem exists. In this time
bound, it is reasonable to assume that ρ is a small constant, say ρ � 10, as a
larger value would mean that we allow a relative error of more than 900% in the
quality of the matching, which is probably too much for most applications.

We also show how to extend these results to the minimum distortion problem.
In particular, we show that the minimum distortion problem cannot be solved in

Pattern Matching in Doubling Spaces 59

time f(k) ·no(k) for any computable function f , unless ETH is false, and we give
a 2O(k2 log k)(dist(X,Y)2kδ/ε2kδ+O(1))n2 log n time, (1 + ε)-approximation algo-
rithm. Here again, it is reasonable to assume that dist(X,Y) = O(1), and then
for any fixed k, this algorithm is an FPTAS with running time (1/ε)O(1)n2 log n.

Comparison with Previous Work. One of the main differences between our results
and previous work on point pattern matching under rigid transformations, or on
the minimum distortion problem, is that we parameterize the problem by k, and
hence k is regarded as a small number. The advantage is that the dependency
of our time bounds in n are low (near-linear or near-quadratic). However, we
obtain an exponential dependency in k.

Geometric point pattern matching problems have been studied extensively.
(See for instance the survey by Alt and Guibas [2].) In the fixed-dimensional
Euclidean space Rd, these problems are usually tractable, as the space of transfor-
mations has a constant number of degrees of freedom. For instance, when k = n,
we may want to decide whether X and Y are congruent, which means that there
is a rigid transformation μ such that μ(X) = Y . Alt et al. [3] showed how to find
such a transformation in time O(nd−2 log n), when it exists. In practice, however,
we cannot expect that point coordinates are known exactly, so it is unlikely that
an exact match exists. We may thus want to find the smallest ε > 0 such that each
point of X is brought to distance at most ε from a point in Y . (In other words, we
allow an additive error ε.) Chew et al. gave an O(k3n2 log2(nk))-time algorithm
to solve this problem in the plane under rigid transformations [8].

As mentioned above, to the best of our knowledge, the only work published
so far on pattern matching in doubling spaces presents a practical algorithm for
matching two doubling spaces [13]. However it has not been proven to return a
good approximation of the optimal solution in the worst case. Other problems
studied in doubling spaces include approximate near-neighbor searching [4,9,19],
spanners [5], routing [7,16], TSP [25], clustering [15], Steiner forest [6] . . .

The minimum distortion problem has been studied under various metrics,
when k = n. Kenyon et al. [20] gave a polynomial-time algorithm for line met-
rics (1-dimensional point sets) when dist(X,Y) < 5 + 2

√
6. They also gave an

algorithm that computes dist(X,Y) when dX is the metric associated with an
unweighted graph over X and dY is the metric associated with a bounded degree
tree over Y , with a running time exponential in the maximum degree and doubly
exponential in dist(X,Y). For general metrics, the minimum distortion is hard
to approximate within a factor less than log1/4−γ n, for any γ > 0 [22]. Hall and
Papadimitriou [18] showed that even for line metrics, the distortion is hard to
approximate when it is large.

When k � n, Fellows et al. [14] showed that the problem of deciding whether
dist(X,Y) � D is fixed-parameter tractable when parameterized by Δ and D,
where dX is the metric associated with an unweighted graph over X, and dY is
the metric associated with a tree of degree at most Δ over Y . For two unweighted
graph metrics, Cygan et al. [11] showed that the problem cannot be solved in time
2o(n log n) unless ETH is false. When X is an arbitrary finite metric space and Y
is a subset of the real line, Nayyeri and Raichel [24] showed that a constant-factor

60 C. Allair and A. Vigneron

approximation of dist(X,Y) can be computed in time Φ(X)O((dist(x,y))2)(kn)O(1),
where Φ(X) is the spread of X. (See Sect. 2.)

In summary, the previously known theoretical results on the minimum dis-
tortion problem are either hardness results, or algorithms for cases where dY

is a subset of a line metric or a tree metric. The algorithms presented in this
paper, on the other hand, apply when dX and dY are doubling metrics, which
are generalizations of fixed-dimensional Euclidean metrics.

Our Approach. In Sect. 3, we present hardness results on the ρ-distortion prob-
lem. We reduce an instance G(V,E) of k-clique to an instance of ρ-distortion
consisting of two metric spaces (X, dX) and (Y, dY) of sizes k and km, respec-
tively, where m = |V |. The pattern (X, dX) is an ultrametric, with exponentially
increasing distances. The space (Y, dY) consists of k rings, each ring consisting
of m points regularly spaced on a circle of perimeter 1. Each of these m points is
associated with a vertex of the k-clique instance. The distances between the rings
increase exponentially, and the input graph is encoded by having slightly longer
edges for pairs of vertices lying in different rings that correspond to edges in the
input graph. We prove that these two spaces have doubling dimension log2 3,
and that this instance of ρ-distortion is equivalent to the k-clique instance we
started from.

In Sect. 4, we give a self-contained description of a first approximation algo-
rithm for the ρ-distortion problem that runs in time 2O(k2 log k)(ρ2/ε)3kδn +
O(kn log Φ(Y)) where Φ(Y) is the spread of Y . (See Sect. 2.) We first construct
a navigating net over Y [23]. A navigating net is essentially a coordinate-free
quadtree that records a metric space. It represents Y at all resolutions r where
r is a powers of 2. At each scale r, our navigating net records an r-net Yr of Y ,
which is a subset of Y whose points are a distance at least r apart, and such
that the radius-r balls centered at Yr cover Y .

Let rX be the smallest scale that is at least ρ times the diameter of X. Our
algorithm constructs, for each point y ∈ YrX

, a sparse set of matchings whose
images are in the radius-3rX ball centered at y. (By sparse, we mean that any
two such matchings send at least one point of X to two points of Y that are a
distance at least εrX/(2ρ2) apart.) The union of these sets of matchings over all
y ∈ YrX

is denoted L(X, ε, rX), and we show that any solution to the ρ-distortion
problem is close to at least one matching in L(X, ε, rX).

We compute L(X, ε, rX) recursively from L(P, β, rP) and L(Q, β, rQ) for β =
ε/(8k − 8), where P and Q form a partition of X. More precisely, we obtain
P and Q by running Kruskal’s algorithm on X, and stopping at the second
last step. It ensure that P and Q are well separated, and it follows that any
ρ-matching σ̄ : X → Y can be approximated by a combination of two (1 + β)ρ-
matchings σ̄P

β : P → Y and σ̄Q
β : Q → Y recorded in L(P, β, rP) and L(Q, β, rQ),

respectively. (See Fig. 1.) After computing L(X, ε, rX), we simply return one of
the matchings that it records, if any.

In the full version of this paper [1, Section 5], we show how to improve this
time bound to 2O(k2 log k)(ρ2/ε)2kδn log n. We achieve it using the approximate
near-neighbor (ANN) data structure by Cole and Gottlieb [9]. First, this data

Pattern Matching in Doubling Spaces 61

(a) (b)

Fig. 1. Recursive construction of L(X, ε, rX). The pattern X is split into P and Q.
(a) Bottom-up phase: We compute L(P, β, rX) and L(Q, β, rX) from L(P, β, rP) and
L(P, β, rQ). (b) An approximate matching σ̄ε : X → Y in L(X, ε, rX) is obtained by
combining two matchings σ̄P

β : P → Y and σ̄Q
β : Q → Y .

structure allows us to efficiently prune the sets of matchings recorded at layer rX ,
by only inserting a new matching if it is far enough from all previously inserted
matching. It can be checked by performing a constant number of ANN queries in
the set of matchings. As the space of matchings is doubling (Corollary 1), it takes
logarithmic time. This saves a factor k(ρ2/ε)kδ/ log n in our time bound. Second,
instead of computing the whole navigating net, which takes time O(n log Φ(Y)),
we show how to compute any layer in O(n log n) time using ANN queries. As our
algorithm only requires k layers of the navigating net, it removes the dependency
on Φ(Y) from the time bound.

Finally, we show how to extend our results on the ρ-distortion problem to
the minimum distortion problem [1, Section 6]. For the hardness result, it suffices
to add an extra point to X and Y that is far enough from the other points, in
order to make the reduction work. For the algorithms, we use the reduction
by Kenyon et al. [20] of the minimum distortion problem to the ρ-distortion
problem, which we speed-up using exponential search, and using a well-separated
pairs decomposition, which allows us to reduce the number of candidate values
for dist(X,Y).

2 Notation and Preliminary

Let (S, dS) be a finite metric space. The ball b(x, r) centered at x with radius
r is the set of points x′ ∈ S such that dS(x, x′) � r. The minimum and
maximum interpoint distances in S are denoted dmin(S) and diam(S), respec-
tively. In other words, diam(S) is the diameter of S. The spread of S is the
ratio Φ(S) = diam(S)/dmin(S). The distance from a point x to a subset T

62 C. Allair and A. Vigneron

of S is dS(x, T) = mint∈T dS(x, t). The distance between two sets T and U is
dS(T,U) = mint∈T,u∈U dS(t, u).

A metric space (S, dS) has doubling dimension δ if any ball of radius r is
contained in the union of at most 2δ balls of radius r/2. When δ = O(1), we say
that this space is doubling. This notion of dimension generalizes the dimension of
a Euclidean space: In particular, the Euclidean space R

d has doubling dimension
O(d) [17]. In this paper, we will consider spaces of constant doubling dimension,
so we assume that δ = O(1). We will need the following packing lemma:

Lemma 1 ([21]). If a metric space (S, dS) has doubling dimension δ, then |S| �
(4Φ(S))δ.

We will also make use of the fact that a product of doubling metrics is doubling.
A proof can be found in the full version of this paper [1, Lemma 2]

Lemma 2. Let (S1, d1), . . . , (Sk, dk) be metric spaces with doubling dimensions
δ1, . . . , δk, respectively. Then the product metric (S, dS) where S = S1 × · · · ×
Sk and dS((u1, . . . , uk), (v1, . . . , vk)) = max(d1(u1, v1), . . . , dk(uk, vk)) for all
(u1, . . . , uk), (v1, . . . , vk) ∈ S has doubling dimension δ1 + · · · + δk.

We call a mapping σ satisfying Eq. (1) a ρ-matching from X to Y . The
distance between two matchings σ and σ′ from X to Y is dM (σ, σ′) =
maxx∈X dY (σ(x), σ′(x)). We denote by x1, x2, . . . , xk the k elements of X. So
a matching σ : X → Y can be identified with a sequence of n points (y1, . . . , yk)
where y1 = σ(x1), . . . , yk = σ(xk). In other words, the space of matchings from
X to Y can be identified with (Y k, dM). Then it follows from Lemma 2 that:

Corollary 1. The space of matchings from X to Y has doubling dimension kδ.

3 Reduction from k-Clique

Given an integer k � 1 and a graph G(V,E), the k-clique problem is to decide
whether there exists a subset C ⊆ V of k vertices such that any two of these
vertices are connected by an edge in E. This subset C is called a k-clique. In
this section, we present a reduction from the k-clique problem to the ρ-distortion
problem. So let G(V,E) be an instance of k-clique with m vertices. We denote
V = {v1, . . . , vm}, and we assume that m � 24. For any ρ � 1, we will show how
to construct an equivalent instance of the ρ-distortion problem consisting of two
metric spaces (X, dX) and (Y, dY) of respective sizes k and km, and of doubling
dimension log2 3.

Let us first build Y , and its associated metric dY . We define an m-point ring
gadget as a set Ri = {pi1, .., pim} of m points spaced regularly on a circle of
perimeter 1, so that the distance between any two points is the usual distance
along this circle:

dY (pij , pij′) = (1/m) · min (j′ − j,m + j − j′) whenever 1 � j � j′ � m. (2)

We define Y = R1 ∪ · · · ∪ Rk as the disjoint union of k ring gadgets. The
index j of the point pij ∈ Ri corresponds to the vertex vj of G. The distances

Pattern Matching in Doubling Spaces 63

between points in different rings are defined as follows. For any i, i′ ∈ {1, . . . , k}
such that i �= i′, and for any j, j′ ∈ {1, . . . , m},

dY (pij , pi′j′) =

{
2max(i,i′) if (vj , vj′) ∈ E, and
2max(i,i′) − (1/m) otherwise.

(3)

Thus, the distance between two vertices in different rings is a power of 2 if and
only if their associated vertices in G are connected by an edge. The distance
between two points in the same ring is given by Eq. (2).

The pattern set X consists of k distinct points x1, . . . , xk, associated with
the metric dX(xi, xi′) = 2max(i,i′)ρ for all i �= i′. The two spaces (X, dX) and
(Y, dY) are metric spaces with doubling dimension log2 3. A proof is given in the
full version of this paper [1, Lemma 4–6].

So given an instance G = (V,E) of the k-clique problem, we construct the
metric spaces (X, dX) and (Y, dY) as described above. These two metric spaces
form an instance of the ρ-distortion problem. We need to show that these two
instances of k-clique and ρ-distortion are equivalent:

Theorem 1. The graph G admits a k-clique if and only if (X, dX), (Y, dY) is
a positive instance of the ρ-distortion problem.

A proof of the theorem above is given in the full version of this paper [1,
Theorem 9]. The main idea is that, in order for a mapping with distortion ρ to
exist, we need to map each point xi to a point yi in the ring Ri, such that the
lengths of the edges connecting the yi’s are powers of 2. Then the vertices in G
corresponding to these points form a clique.

The construction of (X, dX) and (Y, dY) from G is performed in polynomial
time. It is also an FPT-reduction with parameter k. As k-clique is NP-complete
and W [1]-hard, it follows that:

Corollary 2. The ρ-distortion problem for doubling spaces of dimension log2 3
is NP-hard, and is W [1]-hard when parameterized by k.

Unless the exponential time hypothesis (ETH) is false, our reduction also
shows that that the ρ-distortion problem cannot be solved in time no(k). More
precisely, it follows from a hardness result on k-clique [12, Theorem 14.21] that:

Corollary 3. The ρ-distortion problem for doubling spaces of dimension log2 3
cannot be solved in time f(k) · no(k) for any computable function f , unless ETH
is false.

4 Approximation Algorithm for the ρ-Distortion Problem

In this section, we present an approximation algorithm for the ρ-distortion prob-
lem. We assume that the doubling dimension is constant, that is, δ = O(1). As
we saw in Sect. 3, the ρ-distortion problem is hard, so we relax the problem

64 C. Allair and A. Vigneron

slightly: Given a parameter 0 < ε � 1, the (ρ, ε)-distortion problem is to find
a (1 + ε)ρ-matching whenever a ρ-matching exists. If there is no ρ-matching,
then our algorithm either returns a (1 + ε)ρ-matching, or it does not return any
result.

Navigating Nets. Our algorithm records Y in a navigating net, which is a data
structure representing Y at different resolutions. This structure was introduced
by Krauthgamer and Lee [23]. We will use a slightly modified version of it. Our
version of the navigating net has the advantages that each layer is an r-net of Y
(see definition below), and that it can easily be computed in O(n log Φ(Y)) time.
On the other hand, it does not allow efficient deletions. Several other variations
exist [9,19].

For any r � 0, an r-net of Y is a subset Yr ⊆ Y such that dmin(Yr) � r
and Y ⊆ ⋃

y∈Yr
b(y, r). An r-net can be constructed incrementally by repeat-

edly adding new points that lie outside of the current union of balls, until Y is
completely covered. Intuitively, an r-net represents Y at resolution r.

A scale is a rational number r = 2i such that i ∈ Z. Our navigating
net records a sequence of r-nets Yrmin , Y2rmin , . . . , Yrmax such that rmin and
rmax are scales satisfying the inequalities dmin(Y)/2 < rmin � dmin(Y) and
diam(Y)/2 � rmax < 2 diam(Y). At the largest scale rmax, the rmax-net Yrmax

consists of a single point yroot, and thus Y = b(yroot, rmax). At the lowest
scale, we set Yrmin = Y . So the navigating net represents Y at all scales r
such that rmin � r � rmax by an r-net Yr. All scales r > rmax are represented by
Yr = Yrmax = {yroot}, but we do not construct these copies of Yrmax explicitly.

We may assume that log(Φ(Y)) � 1 as otherwise, |Y | = O(1) by Lemma 1,
and the ρ-distortion problem can be solved in O(1) time by brute force. So
we only construct Yr at O(log(Φ(Y)) different scales r such that dmin(Y)/2 <
rmin � r � rmax < 2 diam(Y).

We construct a graph over these r-nets. First, at each scale r such that rmin �
r � rmax, we connect any two nodes y, y′ ∈ Yr such that dY (y, y′) � 6r by an
edge, that we call a horizontal edge. At each scale r such that 2rmin � r � rmax,
we also connect with a vertical edge each y ∈ Yr/2 to a node p(y) ∈ Yr, called
the parent of y, such that dY (y, p(y)) � r. At least one such node p(y) exists
since Yr is an r-net. We call y a child of p(y). More generally, we say that y
is a descendant of y′ if y is a child of y′, or y is a child of a descendant of y′.
Conversely, we say that y′ is an ancestor of y if y is a descendant of y′. When
r′ > rmax, the node yroot ∈ Yr′ is an ancestor of any node at a lower level.

These r-nets, together with the horizontal and vertical edges, form our nav-
igating net. We will need the 4 lemma below, whose proofs are given in the full
version of this paper [1, Lemma 12–15].

Lemma 3. Each node of the navigating net has degree O(1).

Lemma 4. The navigating net of Y can be computed in O(n log Φ(Y)) time.

We associate the ball b(y, 2r) with each node y in an r-net Yr. These balls
have the following properties.

Pattern Matching in Doubling Spaces 65

Lemma 5. At any scale r, and for any subset S ⊆ Y such that diam(S) � r,
there exists a node y ∈ Yr such that S ⊆ b(y, 2r).

Lemma 6. Let r and r′ be two scales such that r < r′. For any y ∈ Yr, and for
any ancestor y′ ∈ Yr′ of y, we have b(y, 2r) ⊆ b(y′, 2r′).

In summary, the balls b(y, 2r), connected by the vertical edges, form a tree
such that each ball is contained in each of its ancestors. The horizontal edges
will help us traverse this tree within a given level.

Splitting the Pattern. Our algorithm proceeds recursively, by partitioning X
into two well-separated subsets P and Q at each stage. More precisely, we will
split X as follows. (Remember that k = |X|.)
Lemma 7. If k � 2, we can partition X into two non-empty subsets P and Q
such that diam(X) � (k − 1) · dX(P,Q).

Proof. We obtain P and Q by running Kruskal’s algorithm [10] for computing a
minimum spanning tree of X, and stopping at the second-last step. So starting
from the forest (X, ∅), we repeatedly insert the shortest edge that connects any
two trees of the current forest, until we are left with exactly two trees P and Q. At
the last step, P and Q are then connected with an edge of length
 = dX(P,Q),
which is not shorter than any edge in the spanning trees we constructed for P
and Q. Thus, diam(P) � (|P | − 1)
 and diam(Q) � (|Q| − 1)
. It follows that
diam(X) � (|P | − 1)
 +
 + (|Q| − 1)
 = (k − 1)
.

Recording Approximate Matchings. Our algorithm for the (ρ, ε)-distortion
problem records a collection of approximate matchings for some layers of the
navigating net. More precisely, for some non-empty subset W of X, for some
0 < β � 1 and for some scales r � ρdiam(W), we will construct a data structure
L(W,β, r) that records at least one (1 + β)ρ-matching from W to Y if a ρ-
matching from W to Y exists. In particular, we will compute L(X, ε, rX) at an
appropriate scale rX , which records a solution to the (ρ, ε)-distortion problem if
there is one. We first give three invariants of L(W,β, r), and then we show how
to compute L(X, ε, rX) recursively.

The data structure L(W,β, r) records a set M(y,W, β, r) of matchings at
each node y ∈ Yr. These sets satisfy the following properties.

Property 1. Let r be a scale such that r � ρdiam(W).

(a) For any y ∈ Yr, each matching σβ ∈ M(y,W, β, r) is a (1 + β)ρ-matching
from W to Y such that σβ(W) ⊆ b(y, 3r).

(b) For any y ∈ Yr and any two distinct σβ , σ′
β ∈ M(y,W, β, r), we have

dM (σβ , σ′
β) � βr/(2ρ2).

(c) For any ρ-matching σ : W → Y , there exist y ∈ Yr and σβ ∈ M(y,W, β, r)
such that dM (σ, σβ) � βr/ρ2.

66 C. Allair and A. Vigneron

These properties imply the following bound on the sizes of these sets.

Lemma 8. For any y ∈ Yr, we have |M(y,W, β, r)| = O((ρ2/β)kδ).

Proof. Property 1a implies that any two matchings in M(y,W, β, r) are at dis-
tance at most 6r from each other, that is, diam(M(y,W, β, r)) � 6r. Property 1b
means that dmin(M(y,W, β, r)) � βr/(2ρ2), hence Φ(M(y,W, β, r)) � 12ρ2/β.
Then by Lemma 1 and Corollary 1, we have |M(y,W, β, r)| � (48ρ2/β)kδ.

Recursive Construction. Our algorithm constructs L(W,β, r) recursively, for
some subsets W of X and some values β and r. We start with the base case, then
we show how to compute L(W,β, r′) from L(W,β, r) when ρdiam(W) � r < r′.
Finally, we show how to recursively compute L(X, ε, rX) at an appropriate scale
rX by splitting X into P and Q according to Lemma 7. (See Fig. 1.)

Base case where |W | = 1 and r = rmin. We have W = {xi}, so a (1 + β)ρ-
matching simply maps xi to any element of Y . Therefore, at scale r = rmin, we
have Yr = Y , so for each y ∈ Y , we record the matching that sends xi to y in
M(y,W, β, rmin).

Bottom-up Construction. Suppose that L(W,β, r) has been computed for some
scale r � ρdiam(W). Given a larger scale r′ > r, we now show how to construct
L(W,β, r′).

For each y′ ∈ Yr′ , we proceed as follows. Initially, we set M(y′,W, β, r′) = ∅.
Then for each descendant y ∈ Yr of y′, and for each matching σβ ∈ M(y,W, β, r),
we check by brute force whether dM (σβ , σ′

β) � βr′/(2ρ2) for each matching σ′
β

that was previously inserted into M(y′,W, β, r′). If it is the case, we insert σβ

into M(y′,W, β, r′), and otherwise we discard σβ . It ensures that Property 1b
holds for M(y′,W, β, r′).

We now prove that Property 1a holds. Let σβ ∈ M(y′,W, β, r′). By construc-
tion, σβ ∈ M(y,W, β, r) for some descendant y of y′. As Property 1a holds at
scale r, it follows that σβ is a (1 + β)ρ-matching, and that σβ(W) ⊆ b(y, 3r).
Since y is a descendant of y′, by Lemma 6, we have b(y, 2r) ⊆ b(y′, 2r′), and
thus b(y, 3r) ⊆ b(y′, 2r′ + r) ⊆ b(y′, 3r′). It follows that σβ(W) ⊆ b(y′, 3r′), and
thus Property 1a holds for M(y′,W, β, r′).

Finally, we prove that Property 1c holds as well. Let σ : W → Y be a ρ-
matching. As Property 1c holds for L(W,β, r), there must be a node y ∈ Yr

and σβ ∈ M(y,W, β, r) such that dM (σ, σβ) � βr/ρ2. Let y′ ∈ Yr′ be the
ancestor of y at scale r′. If σβ was inserted into M(y′,W, β, r′), then we are
done because dM (σ, σβ) � βr/ρ2 � βr′/ρ2. Otherwise, we must have inserted
a matching σ′

β such that dM (σβ , σ′
β) < βr′/(2ρ2). It follows that dM (σ, σ′

β) �
dM (σ, σβ) + dM (σβ , σ′

β) � β(r + r′/2)/ρ2 � βr′/ρ2, which completes the proof
that Property 1 holds for L(W,β, r′).

We now analyze this algorithm. First we need to find all the descendants
of each node y′ ∈ Yr′ . We can do this by traversing the navigating net, which
takes time O(n log Φ(Y)) as there are O(log Φ(Y)) levels in the navigating net.
By Lemma 8, we have |M(y′,W, β, r′)| = O((ρ2/β)kδ). Therefore, each time

Pattern Matching in Doubling Spaces 67

we attempt to insert a matching σβ into M(y′,W, β, r′), we compare it with
O((ρ2/β)kδ) previously inserted matchings, so it takes O(k(ρ2/β)kδ) time as
the distance between two matchings can be computed in O(k) time. Since
|Yr| � n, and each set M(y,W, β, r) has cardinality O((ρ2/β)kδ), we spend
O(nk(ρ2/β)2kδ) time for computing L(W,β, r′). So we just proved the following.

Lemma 9. Let r and r′ be two scales such that ρdiam(W) � r < r′. Given
L(W,β, r), we can compute L(W,β, r′) in O(nk(ρ2/β)2kδ + n log Φ(Y)) time.

Computing L(X, ε, rX) by splitting X. Suppose that k � 2. Let rX be the small-
est scale that is at least as large as ρdiam(X), hence rX = 2�log2(ρ diam(X))�.
In particular, we have rX/2 < ρdiam(X) � rX . If rX < rmin, then we have
ρdiam(X) < rmin � dmin(Y), and there cannot be any ρ-matching, so our algo-
rithm does not return any matching. Therefore, from now on, we may assume
that rX � rmin.

Let P and Q be the sets obtained by splitting X as described in Lemma 7, so
diam(X) � (k − 1) · dX(P,Q). Let β = ε/(8k − 8), and suppose that L(P, β, rX)
and L(Q, β, rX) have been computed earlier. We now show how to compute
L(X, ε, rX).

For any two matchings σP : P → Y and σQ : Q → Y , we denote by σP · σQ

the matching from X to Y whose restrictions to P and Q are σP and σQ,
respectively. In other words, if σ = σP · σQ, then we have σ(x) = σP (x) for all
x ∈ P and σ(x) = σQ(x) for all x ∈ Q.

We compute L(X, ε, rX) as follows. For each node y ∈ YrX
, we consider

all the pairs of matchings consisting of a matching σP
β ∈ M(yP , P, β, rX) and a

matching σQ
β ∈ M(yQ, Q, β, rX), where yP and yQ are in YrX

and are at distance
at most 6rX from y. Then we consider σε = σP

β · σQ
β as a candidate for being

inserted into M(y,X, ε, rX). We first check whether σε is a (1+ε)ρ-matching and
σε(X) ⊆ b(y, 3rX). If it is the case, and if σε is at distance at least εrX/(2ρ2)
from any matching previously inserted into M(y,X, ε, rX), we insert σε into
M(y,X, ε, rX).

We first prove that this algorithm is correct. So we must prove that Property 1
holds for each set M(y,X, ε, rX). Property 1a follows from the fact that we only
insert σε if it is a (1 + ε)ρ-matching and if σε(X) ⊆ b(y, 3rX). Property 1b
follows from fact that we only insert σε if it is at distance at least εrX/(2ρ2)
from all the previously inserted matchings.

We now prove that Property 1c holds. So given a ρ-matching σ̄ : X → Y ,
we want to prove that there exist ȳ ∈ YrX

and σ̄ε ∈ M(ȳ, X, ε, rX) such
that dM (σ̄, σ̄ε) � εrX/ρ2. Let σ̄P be the restriction of σ̄ to P . In other words,
σ̄P : P → Y is defined by σ̄P (x) = σ̄(x) for all x ∈ P . Similarly, let σ̄Q

be the restriction of σ̄ to Q. Then σ̄P and σ̄Q are ρ-matchings. As Property 1c
holds for L(P, β, rX), there exist ȳP ∈ YrX

and σ̄P
β ∈ M(ȳP , P, β, rX) such that

dY (σ̄P , σ̄P
β) � βrX/ρ2. Similarly, there exist ȳQ ∈ YrX

and σ̄Q
β ∈ M(ȳQ, Q, β, rX)

such that dY (σ̄Q, σ̄Q
β) � βrX/ρ2.

68 C. Allair and A. Vigneron

The matching σ̄ε = σ̄P
β · σ̄Q

β satisfies dM (σ̄, σ̄ε) � βrX/ρ2 < εrX/ρ2. The
lemma below, which is proved in the full version of this paper [1, Lemma 20],
shows that it is a (1 + ε)ρ-matching.

Lemma 10. The matching σ̄ε is a (1 + ε)ρ-matching from X to Y .

As σ̄ is a ρ-matching, we have diam(σ̄(X)) � ρdiam(X) and thus
diam(σ̄(X)) � rX . By Lemma 5, it implies that there exists ȳ ∈ YrX

such that
σ̄(X) ⊆ b(ȳ, 2rX), and thus σ̄P (P) ⊆ b(ȳ, 2rX). As dM (σ̄P , σ̄P

β) � βrX/ρ2 �
rX/8, we have σ̄P

β (P) ⊆ b(ȳ, 17rX/8). By Property 1a, we also have σ̄P
β (P) ⊆

b(ȳP , 3rX), so the balls b(ȳ, 17rX/8) and b(ȳP , 3rX) intersect, which implies
that dY (ȳ, ȳP) < 6rX . The same proof shows that dY (ȳ, ȳQ) < 6rX .

Therefore, our algorithm considers σε = σP
β · σQ

β as a candidate solution for
each σP

β ∈ M(ȳP , P, β, rX) and each σQ
β ∈ M(ȳQ, Q, β, rX). In particular, we

must have considered the matching σ̄ε = σ̄P
β · σ̄Q

β . As dM (σ̄, σ̄ε) < εrX/ρ2 and
σ̄(X) ⊆ b(ȳ, 2rX), we have σ̄ε(X) ⊆ b(ȳ, 3rX), and thus we must have attempted
to insert σ̄ε into M(ȳ, X, ε, rX). If σ̄ε was inserted into M(ȳ, X, ε, rX), then we
are done. Otherwise, it means that there exists σ′

ε ∈ M(ȳ, X, ε, rX) such that
dM (σ̄ε, σ

′
ε) < εrX/(2ρ2). Since dM (σ̄, σ̄ε) � βrX/ρ2 < εrX/(2ρ2), it follows that

dM (σ̄, σ′
ε) < εrX/ρ2. In any case, it shows that Property 1c holds. So we obtain

the following result.

Lemma 11. Suppose that k � 2 and β = ε/(8k − 8). Then we can compute
L(X, ε, rX) from L(P, β, rX) and L(Q, β, rX) in O(nk(ρ2/β)3kδ) time.

Proof. The discussion above shows that our algorithm is correct. We still need to
analyze its running time. Let y ∈ YrX

. As dY (y, yP) � 6rX and dY (y, yQ) � 6rX ,
the nodes yP and yQ are connected to y by horizontal edges. As the nodes of the
navigating net have constant degree, it implies that there are O(1) pairs (yP , yQ)
to consider. By Lemma 8, there are O((ρ2/β)kδ) matchings in M(yP , P, β, rX)
and M(yQ, Q, β, rX). Therefore, we consider O((ρ2/β)2kδ) matchings σε when
constructing M(y,X, ε, rX). Each of these matchings is then compared with
previously inserted matchings. We have |M(y,X, ε, rX)| = O((ρ2/ε)kδ) =
O((ρ2/β)kδ) by Lemma 8. We can compute the distance between two match-
ings in O(k) time, so it takes O(k(ρ2/β)3kδ) time to compute M(y,X, ε, rX). As
there are at most n nodes y ∈ YrX

, the overall time bound is O(nk(ρ2/β)3kδ).

Putting Everything Together. We can now describe our algorithm for the
(ρ, ε)-distortion problem. We first compute the navigating net in O(n log Φ(Y))
time. If rX < rmin, then ρdiam X < dmin(Y), and thus there is no ρ-matching.
Otherwise, we recursively compute L(X, ε, rX), as described below. If L(X, ε, rX)
contains at least one matching, then we return one of them, which by Property 1a
is a (1 + ε)ρ-matching. By Property 1c, if there is a solution to the ρ-distortion
problem, then at least one (1 + ε)ρ-matching must be recorded in L(X, ε, rX),
which shows that this algorithm indeed solves the (ρ, ε)-distortion problem.

Pattern Matching in Doubling Spaces 69

We now explain how to compute L(X, ε, rX) recursively. The base case is
k = 1 and rX = rmin. As explained above, it can be done in O(n) time by
recording a trivial matching at each leaf node.

When k � 2, we split X into P and Q as described in Lemma 7. Then we
compute recursively L(P, β, rP) and L(Q, β, rQ) where β = ε/(8k−8) and rP and
rQ are the smallest scales at least as large as ρdiam(P) and ρdiam(Q), respec-
tively. We compute L(P, β, rX) and L(Q, β, rX) using Lemma 9, which takes
time O(nk(ρ2/β)2kδ + n log Φ(Y)). Then we obtain L(X, ε, rX) by Lemma 11 in
O(nk(ρ2/β)3kδ) time.

So the running time T (n, k, ρ, ε) of our algorithm satisfies the relation

T (n, k, ρ, ε) = T (n, k1, ρ, β) + T (n, k2, ρ, β) + O(nk(ρ2/β)3kδ + n log Φ(Y)),

where k1 + k2 = k, 1 � k1 � k − 1 and β = ε/(8k − 8). This expression
expands into a sum of k−1 terms O(nk(ρ2(8k)k/ε)3kδ +n log Φ(Y)) and k terms
O(n) for the base cases. Hence we have T (n, k, ρ, ε) = 2O(k2 log k)n(ρ2/ε)3kδ +
O(kn log Φ(Y)). We just proved the following:

Theorem 2. The (ρ, ε)-distortion problem can be solved in time
2O(k2 log k)(ρ2/ε)3kδn + O(kn log Φ(Y)).

In the full version of this paper [1, Section 5], we show how to improve this
time bound to 2O(k2 log k)(ρ2/ε)2kδn log n. A brief description is also given above,
at the end of Sect. 1 in this extended abstract.

Acknowledgments. We thank the anonymous referees for their helpful comments.

References

1. Allair, C., Vigneron, A.: Pattern matching in doubling spaces. CoRR
abs/2012.10919 (2020)

2. Alt, H., Guibas, L.J.: Discrete geometric shapes: Matching, interpolation, and
approximation. In: Handbook of Computational Geometry, pp. 121–153. Elsevier
(2000)

3. Alt, H., Mehlhorn, K., Wagener, H., Welzl, E.: Congruence, similarity, and symme-
tries of geometric objects. Discrete Comput. Geom. 3(3), 237–256 (1988). https://
doi.org/10.1007/BF02187910

4. Arya, S., Mount, D.M., Vigneron, A., Xia, J.: Space-time tradeoffs for proximity
searching in doubling spaces. In: Halperin, D., Mehlhorn, K. (eds.) ESA 2008.
LNCS, vol. 5193, pp. 112–123. Springer, Berlin, Heidelberg (2008). https://doi.
org/10.1007/978-3-540-87744-8 10

5. Borradaile, G., Le, H., Wulff-Nilsen, C.: Greedy spanners are optimal in doubling
metrics. In: Proceedings of Symposium on Discrete Algorithms, pp. 2371–2379
(2019)

6. Chan, T.H., Hu, S., Jiang, S.H.: A PTAS for the Steiner forest problem in doubling
metrics. SIAM J. Comput. 47(4), 1705–1734 (2018)

7. Chan, T.H., Li, M., Ning, L., Solomon, S.: New doubling spanners: better and
simpler. SIAM J. Comput. 44(1), 37–53 (2015)

https://doi.org/10.1007/BF02187910
https://doi.org/10.1007/BF02187910
https://doi.org/10.1007/978-3-540-87744-8_10
https://doi.org/10.1007/978-3-540-87744-8_10

70 C. Allair and A. Vigneron

8. Chew, L.P., Goodrich, M.T., Huttenlocher, D.P., Kedem, K., Kleinberg, J.M.,
Kravets, D.: Geometric pattern matching under Euclidean motion. Comput. Geom.
7, 113–124 (1997)

9. Cole, R., Gottlieb, L.: Searching dynamic point sets in spaces with bounded dou-
bling dimension. In: Proceedings of ACM Symposium on Theory of Computing,
pp. 574–583 (2006)

10. Cormen, T.H., Leiserson, C.E., Rivest, R.L., Stein, C.: Introduction to Algorithms,
3rd edn. MIT Press, Cambridge (2009)

11. Cygan, M., et al.: Tight lower bounds on graph embedding problems. J. ACM
64(3), 18:1-18:22 (2017)

12. Cygan, M., et al.: Parameterized Algorithms. Springer, Cham (2015). https://doi.
org/10.1007/978-3-319-21275-3 15

13. Ding, H., Ye, M.: On geometric alignment in low doubling dimension. In: Proceed-
ings of AAAI Conference on Artificial Intelligence, pp. 1460–1467 (2019)

14. Fellows, M.R., Fomin, F.V., Lokshtanov, D., Losievskaja, E., Rosamond, F.A.,
Saurabh, S.: Distortion is fixed parameter tractable. In: Albers, S., Marchetti-
Spaccamela, A., Matias, Y., Nikoletseas, S., Thomas, W. (eds.) ICALP 2009.
LNCS, vol. 5555, pp. 463–474. Springer, Berlin, Heidelberg (2009). https://doi.
org/10.1007/978-3-642-02927-1 39

15. Friggstad, Z., Rezapour, M., Salavatipour, M.R.: Local search yields a PTAS for
k-means in doubling metrics. SIAM J. Comput. 48(2), 452–480 (2019)

16. Gottlieb, L., Roditty, L.: Improved algorithms for fully dynamic geometric spanners
and geometric routing. In: Proceedings of ACM-SIAM Symposium on Discrete
Algorithms, pp. 591–600 (2008)

17. Gupta, A., Krauthgamer, R., Lee, J.R.: Bounded geometries, fractals, and low-
distortion embeddings. In: Proceedings of IEEE Symposium on Foundations of
Computer Science, pp. 534–543 (2003)

18. Hall, A., Papadimitriou, C.: Approximating the distortion. In: Chekuri, C., Jansen,
K., Rolim, J.D.P., Trevisan, L. (eds.) APPROX 2005, RANDOM 2005. LNCS, vol.
3624, pp. 111–122. Springer, Berlin, Heidelberg (2005). https://doi.org/10.1007/
11538462 10

19. Har-Peled, S., Mendel, M.: Fast construction of nets in low-dimensional metrics
and their applications. SIAM J. Comput. 35(5), 1148–1184 (2006)

20. Kenyon, C., Rabani, Y., Sinclair, A.: Low distortion maps between point sets.
SIAM J. Comput. 39(4), 1617–1636 (2009)

21. Kerber, M., Nigmetov, A.: Metric spaces with expensive distances. CoRR
abs/1901.08805 (2019)

22. Khot, S., Saket, R.: Hardness of embedding metric spaces of equal size. In:
Charikar, M., Jansen, K., Reingold, O., Rolim, J.D.P. (eds.) APPROX 2007, RAN-
DOM 2007. LNCS, vol. 4627, pp. 218–227. Springer, Berlin, Heidelberg (2007).
https://doi.org/10.1007/978-3-540-74208-1 16

23. Krauthgamer, R., Lee, J.R.: Navigating nets: simple algorithms for proximity
search. In: Proceedings of ACM-SIAM Symposium on Discrete Algorithms, pp.
798–807 (2004)

24. Nayyeri, A., Raichel, B.: Reality distortion: Exact and approximate algorithms for
embedding into the line. In: Proceedings of IEEE Symposium on Foundations of
Computer Science, pp. 729–747 (2015)

25. Talwar, K.: Bypassing the embedding: algorithms for low dimensional metrics. In:
Proceedings of ACM Symposium on Theory of Computing, pp. 281–290 (2004)

https://doi.org/10.1007/978-3-319-21275-3_15
https://doi.org/10.1007/978-3-319-21275-3_15
https://doi.org/10.1007/978-3-642-02927-1_39
https://doi.org/10.1007/978-3-642-02927-1_39
https://doi.org/10.1007/11538462_10
https://doi.org/10.1007/11538462_10
https://doi.org/10.1007/978-3-540-74208-1_16

Reachability Problems for Transmission
Graphs

Shinwoo An and Eunjin Oh(B)

Department of Computer Science and Engineering, POSTECH, Pohang-si, Korea
{shinwooan,eunjin.oh}@postech.ac.kr

Abstract. Let P be a set of n points in the plane where each point p of
P is associated with a radius rp > 0. The transmission graph G = (P,E)
of P is defined as the directed graph such that E contains an edge from
p to q if and only if |pq| ≤ rp for any two points p and q in P , where
|pq| denotes the Euclidean distance between p and q. In this paper, we
present a data structure of size O(n5/3) such that for any two points in
P , we can check in O(n2/3) time if there is a path in G between the two
points. This is the first data structure for answering reachability queries
whose performance depends only on n but not on the radius ratio.

Keywords: Reachability · Intersection graph · Directed graph

1 Introduction

Consider a set S of unit disks in the plane. The intersection graph for S is defined
as the undirected graph whose vertices correspond to the disks in S such that
two vertices are connected by an edge if and only if the two disks corresponding
to them intersect. It can be used as a model for broadcast networks: The disks
of S represent transmitter-receiver stations with the same transmission power.
One can view the broadcast range of a transmitter as a unit disk.

One straightforward way to deal with the intersection graph for S is to con-
struct the intersection graph explicitly, and then run algorithms designed for
general graphs. However, the intersection graph for S has complexity Θ(n2) in
the worst case even though it can be (implicitly) represented as n disks. There-
fore, it is natural to seek faster algorithms for an intersection graph implicitly
represented as its underlying set of disks. For instance, the shortest path between
two vertices in a unit-disk intersection graph can be computed in near linear
time [21]. For more examples, refer to [3,5,12].

A transmission graph is a directed intersection graph, which is introduced
to model broadcast networks in the case that transmitter-receiver stations have
different transmission power [18,20]. Let P be a set of n points in the plane where
each point p of P is associated with a radius rp > 0. The transmission graph

This work was supported by the National Research Foundation of Korea (NRF) grant
funded by the Korea government (MSIT) (No. 2020R1C1C1012742).
c© Springer Nature Switzerland AG 2021
A. Lubiw et al. (Eds.): WADS 2021, LNCS 12808, pp. 71–84, 2021.
https://doi.org/10.1007/978-3-030-83508-8_6

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-83508-8_6&domain=pdf
https://doi.org/10.1007/978-3-030-83508-8_6

72 S. An and E. Oh

G = (V,E) of P is an weighted directed graph whose vertex set corresponds to
P . There is an edge (p, q) in E for two points p and q in P if and only if the
Euclidean distance |pq| between p and q is at most rp. The weight of an edge
(p, q) is defined as |pq|. It is sometimes convenient to consider a point p of P
as the disk of radius rp centered at p. We call it the associated disk of p, and
denote it by Dp. We say p is reachable to q if there is a p-q path in G.

In this paper, we consider the reachability problem for transmission graphs:
Given a set P of points associated with radii, check if a point of P is reachable
to another point of P in the transmission graph. In the context of broadcast net-
works, this problem asks if a transmission station can transmit information to a
receiver. We consider three versions of the reachability problem: the single-source
reachability problem, (discrete) reachability oracles, and continuous reachabil-
ity oracles. The single-source reachability problem asks to compute all vertices
reachable from a given source node p ∈ P in the transmission graph of P . Indeed,
we consider the more general problem that asks to compute a t-spanner of size
O(n). Once we have a t-spanner of size O(n), we can compute all vertices reach-
able from a given source node in linear time. A (discrete) reachability oracle is
a data structure for P so that, given any two query points p and q in P , we can
check if p is reachable to q in G efficiently. A continuous reachability oracle is a
data structure for P for answering reachability queries that takes two points in
the plane, one in P and one not necessarily in P , as a query.

Previous Work. The reachability problems and shortest-path problems have
been extensively studied not only for general graphs but also for special classes
of graphs; directed planar graphs [9], Euclidean spanners [8,17], and disk-
intersection graphs [3,5]. In the following, we introduce several results for trans-
mission graphs of disks in the plane. Let Ψ be the ratio between the largest and
the smallest radii associated with the points in P .

– t-Spanners (Single-source reachability problem). One can solve the
single-source reachability problem for transmission graphs in O(n log4 n) time
by constructing a dynamic data structures for weighted nearest neighbor
queries [4,14]. Kaplan et al. [13] presented two algorithms for the more gen-
eral problem that asks to compute a t-spanner of size O(n) for any constant
t > 1, one with O(n log4 n) time and one with O(n log n + n logΨ) time.
Recently, Ashur and Carmi [2] also considered this problem, and presented
an O(n2 log n)-time algorithm for computing a t-spanner of which every node
has a constant in-degree, and the total weight is bounded by a function of n
and Ψ . Also, spanners for transmission graphs in an arbitrary metric space
also have been considered [18,19].

– Discrete reachability oracles. Kaplan et al. [11] presented three reacha-
bility oracles: one for Ψ <

√
3, two for an arbitrary Ψ > 1. For an arbitrary

Ψ , their first reachability oracle has performance which polynomially depends
on Ψ , and the second one has performance which polylogarmically depends
on Ψ . More specifically, the first data structure uses space O(Ψ3n1/2), and
has query time O(Ψ5n3/2). The second one uses space Õn,Ψ (n5/3), and has

Reachability Problems for Transmission Graphs 73

query time Õn,Ψ (n2/3), where Õn,Ψ hides polylogarithmic factors in Ψ and n.
This data structure is randomized in the sense that it allows to answer all
queries correctly with high probability.

– Continuous reachability oracles. Kaplan et al. [13] shows that a discrete
reachability oracle for the transmission graph G of P can be extended to
a continuous reachability oracle. More specifically, given a discrete reacha-
bility oracle for G with space S(n) and query time Q(n), one can obtain
in O(n log n logΨ) time a continuous reachability oracle for G with space
S(n) + O(n logΨ) and query time O(Q(n) + log n logΨ).

Our Results. As mentioned above, we improve the previously best-known
results of the three versions of the reachability problem for transmission graphs.

– t-Spanners (Single-source reachability problem). We first present an
O(n log3 n)-time algorithm for computing a t-spanner for a constant t > 0 in
Sect. 2, which improves the running time of the algorithm by [13] by a factor of
O(log n). Our construction is based on the Θ-graph and grid-like range tree
introduced by [16]. This algorithm is also used for computing reachability
oracles in Sects. 3 and 4.

– Discrete reachability oracles. We present two discrete reachability oracles
for the transmission graph of P . The first one described in Sect. 3 uses space
O(n5/3) and has query time O(n2/3), and can be computed in O(n5/3) time.
This is the first reachability oracle for a transmission graph whose perfor-
mance is independent of Ψ .
We omit the second one in this paper, which will be described in the full
version of the paper. Its performance parameters depend polylogarithmically
on the radius ratio Ψ . More specifically, it uses space ÕΨ (n5/2), and has query
time ÕΨ (n3/2). It can be constructed in ÕΨ (n5/2), where ÕΨ (·) hides poly-
logarithmic factors in Ψ . To obtain this, we combine two reachability oracles
given by [11] whose performance parameters using a balanced separator of
smaller size introduced by [7].

– Continuous reachability oracles. We also present a continuous reach-
ability oracle with space O(n5/3), query time O(n2/3), and preprocessing
time O(n5/3 log2 n) in Sect. 4, which is the first continuous reachability ora-
cle whose performance is independent of Ψ . Instead of using the approach
in [13], we use auxiliary data structures whose performance is independent of
Ψ together with the reachability oracle described in Sect. 3.

Due to lack of space, some proofs and details are omitted. The missing proofs
and details can be found in the full version of this paper.

2 Improved Algorithm for Computing a t-Spanner

Let P be a set of n points associated with radii, and G = (P,E) be the transmis-
sion graph of P . A subgraph H of G is called a t-spanner of G if for every pair

74 S. An and E. Oh

Fig. 1. Theta graph construction for k = 8. (a) The k cones of F subdivides the plane.
(b) nF (p) = y, and nS(p) = y. (c) The edge (y, p) is picked.

of vertices of G, the distance in H between them is at most t times the distance
in G between them. A sparse t-spanner is useful for constructing a reachability
oracle efficiently; a t-spanner preserves the reachability information of G, and
it allows us to investigate a small number of edges. Therefore, we first consider
the problem of constructing a t-spanner of G in this section, and we use it for
constructing a reachability oracle in Sect. 3.

In this section, we present an O(n log3 n)-time algorithm for computing a
t-spanner of G of size O(n) for any constant t > 1. This improves the running
time of the algorithm proposed by Kaplan et al. [11], which runs in O(n log4 n)
time.1 The spanner constructed by Kaplan et al. is a variant of the Yao graph.
They first show that a variant of the Yao graph is a t-spanner for G, and then
show how to construct it efficiently.

2.1 Theta Graphs and t-Spanners of Transmission Graphs

Our spanner construction is based on the Θ-graph, which is a geometric spanner
similar to the Yao graph. Let k > 0 be a constant, which will be specified later,
depending on t. Imagine that we subdivide the plane into k interior-disjoint
cones with opening angle 2π/k which have the origin as their apexes. Let F be
the set of such cones. See Fig. 1(a). For a cone F ∈ F and a point p ∈ P , let Fp

denote the translated cone of F so that the apex of Fp lies on p. For each point
p ∈ P , we pick k incoming edges for p, one for each cone of F , as follows.

For a point q contained in Fp, let q� denote the orthogonal projection of q on
the angle-bisector of Fp. Also, we let dF (p, q) be the Euclidean distance between
p and q�, and let nF (p) denote the point q in Fp with (q, p) ∈ E that minimizes
dF (p, q). See Fig. 1(b). Note that nF (p) might not exist. For each cone F ∈ F
and each point p ∈ P , we choose (nF (p), p). See Fig. 1(c). Let Hk be the graph
consisting of the points in P and the chosen edges. If it is clear from the context,
we simply use H to denote Hk.

Lemma 1. For an integer k > 8, Hk is a tan(π
4 + 2π

k)-spanner of G.

1 Kaplan et al. mentioned that this algorithm takes an O(n log5 n) time. However, this
can be improved automatically into O(n log4 n) using a data structure of [4].

Reachability Problems for Transmission Graphs 75

Note that t = tan(π
4 +

2π
k) > 1 converges to tan(π

4) = 1 as k → ∞. Therefore,
for any constant t > 1, we can find a constant k such that Hk is a t-spanner of
the transmission graph.

2.2 Efficient Algorithm for Computing the t-Spanner

In this section, we give an O(n log3 n)-time algorithm to construct Hk for a
constant k > 6. To compute all edges of Hk, for each point p ∈ P and each
cone F ∈ F , consider the translated cone Fp of F so that the apex lies on p,
and compute nF (p). We show how to do this for a cone F ∈ F only. The others
can be handled analogously. Without loss of generality, we assume that the
counterclockwise angle from the positive x-axis to two rays of F are 0 and 2π/k,
respectively. Let �1 and �2 be two lines orthogonal to the two rays, respectively.

Approach of Kaplan et al. The spanner constructed by Kaplan et al. [11] is a
variation of the Yao graph. For each cone F ∈ F and a point p ∈ P , they pick
the closest point in Fp to p among all points q with p ∈ Dq. Since they choose the
closest point in a cone with respect to the Euclidean distance, they need to fit
grid cells into a cone. To resolve this, they use various data structures including
a compressed quadtree, a power diagram, a well-separated pair decomposition,
and a dynamic nearest neighbor search data structure.

Our Approach. Instead, our construction is based on the Θ-graph. Recall that we
pick the closest point in a cone with respect to dF (·, ·) instead of the Euclidean
distance. The order of the points of Fp ∩ P sorted with respect to dF (p, ·) is
indeed the order of them sorted with respect to their projection points onto the
angle-bisector of F .

In the following, we present an O(n log3 n)-time algorithms for computing all
edges of Hk constructed for F . To do this, we use grid-like range trees proposed
by Moidu et al. [16] together with a power diagram. With a slight abuse of
notation, for a region S contained in Fp, let nS(p) be the point q of S ∩ P with
(q, p) ∈ E that minimizes dF (p, q). See Fig. 1(b).

Data Structures. We construct the two-level grid-like range tree introduced
by Moidu et al. [16] with respect to �1 and �2. It is a two-level balanced binary
search tree. The first-level tree T1 is a balanced binary search tree on the �1-
projections of the points of P . Each node α in the first-level tree corresponds to
a slab I(α) orthogonal to �1. It is also associated with the second-level tree Tα

which is a binary search tree, not necessarily balanced, on the points of P ∩I(α).
Unlike the standard range tree [6], Tα is obtained from a balanced binary search
tree T2 on the �2-projections of the points of P . More specifically, we remove the
subtrees rooted at all nodes of T2 whose corresponding parallelograms contain
no point in P ∩ I(α) in their union, and contract all nodes which have only
one child. Then Tα is not necessarily balanced but a full binary tree of depth
O(log n).

76 S. An and E. Oh

Given a point p of P , there are O(log2 n) interior-disjoint parallelograms
whose union contains all points of P ∩ Fp. We denote the set of these parallelo-
grams by Bp. By construction, the cells of Bp are aligned for any point p ∈ P so
that we can consider them as a grid of size O(log n) × O(log n). See Fig. 2.

Lemma 2 [16]. The two-level grid-like range tree on a set of n points in the
plane can be computed in O(n log n) time. Moreover, its size is O(n log n).

Then for each node v of the second-level trees, we construct a balanced
binary search tree of the �-projections of P ∩ B(v) as the third-level tree, where
� denotes the angle bisector of F . For a node β of the third-level trees, let P (β)
denote the set of the points stored in the subtree rooted at β. We construct the
power diagram of P (β). The power diagram is a weighted version of the Voronoi
diagram. More specifically, the power distance between a point p and a disk Dq is
defined as |pq|2 −r2q . The power diagram partitions the plane into n regions such
that all points in a same region have the same closest disk in power distance.
The power diagram of n disks can be constructed in O(n log n) time with O(n)
space. Also, we can locate the disk D that minimizes the power distance from a
query point p in O(log n) time. As a consequence, we can determine in O(log n)
time if the query point p is in the union of disks by checking if p ∈ D [10,14].

The construction time of the first, second, and third-level trees is O(n log3 n)
in total. Then we construct the power diagram for each node of a third-level
tree in a bottom-up fashion. In particular, we start from constructing the power
diagrams of the leaf nodes. For each internal node, we compute its power diagram
by merging the power diagram of its two children. Therefore, we can construct
the power diagrams for all nodes of a third-level tree in O(m logm) time, where
m denotes the number of points corresponding to the root of the third-level tree.
Since the sum of m’s over all third-level trees is O(n log2 n), the whole data
structure can be constructed in O(n log3 n) time.

Query Algorithm. For each cell B ∈ Bp, we compute nB(p) in O(log2 n) as
follows. We start from the root of the third-level tree associated with B. We
check if there is a point q ∈ P (β) with (q, p) ∈ E using the power diagram
stored in the root node. If it does not exist, nB(p) does not exist. Otherwise,
we traverse the third-level tree until we reach a leaf node. For each node β we
encounter during the traversal, we consider the left child of β, say βL. We check
if there is a point q ∈ P (βL) with (q, p) ∈ E using the power diagram stored in
βL. If it exists, we move to βL. Otherwise, we move to the right child of β. We
do this until we reach a leaf node, which stores nB(p).

In the following, we show how to choose O(log n) cells of Bp, one of which
contains nB(p). The cells of Bp are aligned along �1 and �2. They can be con-
sidered as a grid of O(log n) × O(log n) cells. We represent each row (parallel
to �1) by integers 1, . . . , O(log n), and each column (parallel to �2) by integers
1, . . . , O(log n). We represent each cell of Bp by a pair B(i, j) of indices such
that i is the row-index and j is the column-index of the cell. For illustration, see
Fig. 2(a). A cell B = B(i, j) is said to be useful if nB(p) exists. Also, a useful

Reachability Problems for Transmission Graphs 77

cell B = B(i, j) is called an extreme cell of Bp if no cell B(i′, j′) is useful for
indices i′ and j′ such that i − j = i′ − j′ and i′ < i.

Lemma 3. The cell of Bp containing nF (p) is an extreme cell. Moreover, the
number of extreme cells of Bp is O(log n).

Fig. 2. (a) Index of the grid-like range tree (b) useful cells are colored with gray or
red, and extreme cells are colored red. (Color figure online)

To compute nF (p), we first compute Bp in O(log2 n) time. For each cell
B ∈ Bp, we check if it is useful using the power diagram of P ∩ B, which is
stored in the root node of the third-level tree in O(log3 n) time in total. Then
we choose O(log n) extreme cells among the useful cells of Bp. For each cell B
of them, we compute nB(p) in O(log2 n) time, and thus the total query time is
O(log3 n).

Theorem 1. Given a point set P and a constant t > 1, we can construct a
t-spanner of the transmission graph of P within O(n log3 n) time.

Also, we can compute a BFS tree of G using H.

Theorem 2. Let P be a set of n points, each associated with a radius. Given a
t-spanner H of the transmission graph G of P as in Theorem 1, we can construct
a BFS tree of G within O(n log n) time.

3 Reachability Oracle for Unbounded Radius Ratio

In this section, we present a data structure of size O(n5/3) so that given any
two points p and q in P , we can check if p is reachable from q in O(n2/3) time.
Moreover, this data structure can be constructed in O(n5/3) time. Note that this
result is independent to the radius ratio Ψ .

We say a set of disks is k-thick if for any point p in the plane, there are at
most k disks that contains p. Similarly, we say a transmission graph is k-thick if
its underlying disk set is k-thick.

78 S. An and E. Oh

Fig. 3. (a) A set P of points associated with radii. (b) The disks in the same chain
are colored with the same color, and the points in R are colored black. (Color figure
online)

Lemma 4 [15, Theorem 5.1]. For any set D of disks that is k-thick, there is a
circle S intersecting O(

√
kn) disks of D such that the number of disks of D with

|Sin|, |Sout| ≤ 2n
3 , where Sin and Sout denote the set of disks of D contained in

the interior of S and the exterior of S, respectively. In this case, We call S a
separating circle. Moreover, we can compute S, Sin and Sout in linear time.

Consider a separating circle S of the disk set induced by P . By Lemma4,
P is partitioned into three sets Sin, Sout, and Scross = {p ∈ P | Dp ∩ S �= ∅}
such that every path in G connecting a point of Sin and a point of Sout visits a
point in Scross. We call Scross a separator of G (or P). Using separators, we build
a separation tree by repeatedly applying the algorithm in Lemma4. As we will
see in Sect. 3.2, the separation tree enables us to construct a reachability oracle
efficiently. However, the transmission graph of a set of n points is n-thick in the
worst case, and in this case, Lemma 4 does not give a non-trivial bound.

To resolve this, we partition P into O(n2/3) chains, each consisting of O(n1/3)
points of P , and the remaining set R of points of P not belonging to any of
the chains. Then we show that R is O(n1/3)-thick, and thus Lemma 4 gives an
efficient reachability oracle for the subgraph of G induced by R. Additionally,
we construct an auxiliary data structure for each chain.

3.1 Chain

We call a sequence 〈p1, . . . , pk〉 of points of P sorted in the ascending order of
their associated radii a chain if (pj , pi) ∈ E for all indices i and j with 1 ≤ i < j.
In other words, |pipj | ≤ rpj

. In this section, we construct O(n1/3)-length chains
as many as possible so that the remaining set R is k-thick for a small k.

To compute chains, we need a dynamic data structure for a set D of disks,
dynamically changing by insertions and deletions, such that for a query point,
we can check if there is a disk of D that contains the query point. This can be
obtained using dynamic 3-D halfspace lower envelope data structure, which is

Reachability Problems for Transmission Graphs 79

given by [4], together with the standard lifting transformation. In particular, this
data structure can be built in O(n log n) time and its insertion time, deletion
time and query time are O(log2 n), O(log4 n) and O(log2 n), respectively. For
the convenience, we denote this data structure by DNN(D).

Lemma 5. Let D be a set of disks, and p be a point in the plane. Given DNN(D),
we can check if there are n1/3 disks of D containing p in O(n1/3 log4 n) time.
Moreover, if they exist, we can return them, and delete them from D and DNN(D)
within the same time bound.

Let D be the set of disks induced by P , and we construct DNN(D). We
choose the smallest disk Dp of D and remove Dp from D. Then we update
DNN(D) accordingly. We check if there are n1/3 disks of D containing the center
p of Dp by applying the algorithm in Lemma 5. If it returns n1/3 disks, let Lp

be the set consisting of p and the centers of those disks. Since D is updated, we
can apply this procedure again. We do this until D is empty. As a result of this
repetition, we obtain sets Lp’s of points of P . Note that the disks induced by Lp

contain p, and the number of Lp’s is O(n2/3).
Next, for each set Lp, we consider six interior-disjoint cones with opening

angle π/3 with apex p. For each cone F , we sort the points of Lp ∩ F in the
ascending order of their associated radii. Then we claim that the sorted list is a
chain, and thus we obtain six chains for each set Lp. Therefore, we have O(n2/3)
chains in total.

Lemma 6. The sequence of the points of Lp ∩ F sorted in the ascending order
of their associated radii is a chain.

Therefore, we have a set C of O(n2/3) chains of length O(n1/3). We call the
set of points of P not contained in any of the chains of C the remaining set. Also,
we use R to denote the subgraph of G induced by R, and call it the remaining
graph.

Lemma 7. The graph R is 6n1/3-thick.

Proof. We first claim that the remaining set R does not have a n1/3-length chain.
Assume to the contrary that there is a n1/3-length chain C, and let p be the
first point in C. At some moment in the course of the algorithm, Dp becomes
the smallest disk of D. At this moment, all disks associated with the points in C
are contained in D. That is, at least n1/3 disks of D contain p, and thus p must
be contained in a chain of C, which contradicts that p is a point of R.

Then we show that R is 6n1/3-thick. For any point x in the plane, we consider
six interior-disjoint cones with opening angle π/3 with apex x. For a cone F ,
consider the list L of the points p of R ∩ F with rp ≥ |px| sorted in the ascending
order of their associated radii. The proof of Lemma 6 implies that L is a chain.
By the claim mentioned above, the size of L is less than n1/3. Now consider
the union of the lists for all of the six cones, which has size less than 6n1/3.
Notice that it is the set of all points p ∈ P with rp ≥ |px|, and thus the lemma
holds. �

80 S. An and E. Oh

By Lemma 5, we can compute all Lp’s in O(n4/3 log4 n) time, and for each
Lp, we can compute six chains in O(n1/3 log n) time. Since the number of Lp’s
is O(n2/3), the total time for computing all chains of C is O(n4/3 log4 n) time.

3.2 Separation Tree of R
In this section, we build a reachability oracle for R, which is similar to the
reachability oracle proposed by Kaplan et al. [11, Section 4.2]. In this case, since
R is O(n1/3)-thick, we can derive a better result. Then Lemma 4 shows that
there is a separator of size O(n2/3). Recall that R is the vertex set of R.

Data Structure. We construct the separation tree T of R recursively as follows.
We compute a separator Scross of R and two subsets Sin and Sout separated by
Scross. We recursively construct the separation trees of Sin and Sout. Then we
make a new node v, and connect v with the roots of the separation trees of Sin
and Sout. We let Gv denote the subgraph of G induced by R.

For each node v, we store the reachability information as follows: For every
point p ∈ Gv, we store two lists of points of Scross which is reachable to p and
which is reachable from p within Gv. In particular, we construct a 2-spanner of
Gv. Then, for each point s ∈ Scross, we apply the BFS algorithm in Sect. 2 from
s. Also, we reverse the spanner and again apply the BFS algorithm from s.

Query Algorithm. Given two query points p, q ∈ R, we want to check if q is
reachable from p in R. To do this, we observe the following. Let v and u be
the two nodes of the separation tree T such that the separators of Gv and Gu

contain p and q, respectively. They are uniquely defined because each point of R
is contained in exactly one separator stored in T . Let L be the path of T from
the lowest common ancestor of v and u to the root. Consider a path π from p
to q in R, if it exists. By construction, there is a node w in L such that the
separator of Gw intersects π. Among them, consider the node closest to the root
node. Then Gw contains π. Therefore, it suffices to check if q is reachable from
p in Gx for every node x in L.

To use this observation, we first compute v, u and L in O(log n) time. Then
for each node w of L, we check if there is a point x in separator such that p is
reachable to x and q is reachable from x in O(m) time, where m denotes the
size of the separator of Gw. We return YES if and only if there is such a point x.
Since the size of the separators stored in each node is geometrically increasing
along L, the total size is dominated by the size of the separator of R, which is
O(n2/3). Therefore, our query algorithm takes O(n2/3) time.

Lemma 8. We can construct a separation tree T of R with associated reachabil-
ity information in O(n5/3) time and O(n5/3) space. Then, we can query whether
there is path from p to q in R within O(n2/3) time.

Reachability Problems for Transmission Graphs 81

3.3 Chain Indices

In this section, we construct a reachability oracle for each chain C ∈ C: Given
any two points p and q in P , we can check if there is a path from p to q intersects
C. For each chain C = 〈p1, ..., pt〉, we can construct the oracle in O(n) time once
we have a 2-spanner of G. To do this, we need the following lemma. See Fig. 4.

Lemma 9. For two points p and q in P , let i be the largest index such that p is
reachable to pi, and j be the smallest index such that pj is reachable to q. Then,
there is a p-q path that intersects C if and only if j ≤ i.

Fig. 4. (a) There is a p-q path via C if j(q) ≤ i(p). (b) There is no p-q path that
intersects C if j(q) > i(p)

For every point q ∈ P , we store the largest index i(q) such that q is reachable
to pi(q), and store the smallest index j(q) such that pj(q) is reachable to q.

Lemma 10. We can compute the indices i(·) and j(·) for every q ∈ P and every
C ∈ C in O(n5/3) time. Also, the total number of indices we store is O(n5/3).

3.4 Reachability Oracles

Given two points p, q ∈ P , we can check if p is reachable from q as follows.
Suppose there is a p-q path π. If there is a chain C that intersects π at a point
of C, say pk. Then j(q) ≤ k ≤ i(p) for the indices j(q) and i(p) stored in C by
Lemma 9. In this case, we can find such a chain C in O(n2/3) time by computing
indices j(q) and i(p) for all chains of C. Otherwise, no chain of C intersects π.
Then π is contained in R, and thus we can use the reachability oracle for R
described in Sect. 3.2. This takes O(n2/3) by Lemma 8.

Theorem 3. Given a set P of points associated with radii, we can compute a
reachability oracle for the transmission graph of P in O(n5/3) time. The reach-
ability oracle has size O(n5/3) and supports the query time O(n2/3).

82 S. An and E. Oh

4 Continuous Reachability Oracle

In this section, we present a continuous reachability oracle which its complexity
is independent of the radius ratio Ψ . In particular, our data structure has size
O(n5/3) so that for any two point s ∈ P and t ∈ R

2, we can check if s is
reachable to t in O(n2/3 log2 n) time. Also, this data structure can be constructed
in O(n5/3) time. If t is reachable from s, there is a point p ∈ P reachable from
s with t ∈ Dp. In this case, we define a s-t path in G as the concatenation of a
s-p path in G and the segment connecting p and t.

Consider two query points s ∈ P and t ∈ R
2. If there is a s-t path π, we denote

the vertex incident to t in π by p(π). We construct auxiliary data structures for
R and C to handle the following two cases. We first consider the case that there
is a s-t path π with p(π) ∈ R. In this case, we choose a set R0 of O(1) points in
R so that there is a s-t path π′ with p(π′) ∈ R0 if and only if there is a s-t path
π with p(π) ∈ R. If it is not the case, for any s-t path π, p(π) is contained in a
chain of C. We can handle this by investigating every chain of C, and finding the
first point in the chain whose associated disk contains t. In addition to this, we
construct the discrete reachability oracle for G described in Sect. 3.

The Remaining Set R, Revisited. We construct the data structure so that
we can check if there is a s-t path π with p(π) ∈ R. To do this, wee construct the
O(n)-sized data structure proposed by Afshani and Chan [1] such that for P and
a query point t, we can find all points in P whose associated disks contain t ∈ R

2

in O(log n+ k) time, where k is the number of disks that contain t. Moreover, it
can be constructed in O(n log n) time. Since R is O(n1/3)-thick, this query time
is bounded by O(n1/3).

Given two points p ∈ P and t ∈ R
2, we compute a set Rt of O(n1/3) points

of P whose associated disks contain t within O(n1/3) time. Then we choose a
subset R0 of Rt of size O(1) such that there is a s-t path π′ with p(π′) ∈ R0 if
and only if there is a s-t path π with p(π) ∈ R.

Lemma 11. Assume that we are given a point t ∈ R
2 and a set Rt of points of

R whose associated disks contain t. We can compute a O(1)-sized set R0 ⊂ Rt

such that R0 ∩ Dp �= ∅ for every point p ∈ Rt in O(|Rt|) time.

Then we can answer the continuous reachability query using the discrete
reachability oracle for all points q ∈ R0 in O(n2/3) time by Theorem 3.

The Set C of Chains, Revisited. We construct a data structure for each
chain C ∈ C so that we can compute the first point in C which contains t. To
do this, we construct a balanced binary search tree of the indices in [1, t] for
C = 〈p1, . . . , pt〉. For each node u of the binary search tree, we construct the
power diagram of the points stored in the subtree rooted at u. Note that this
data structure is a variation of the third-level tree proposed in Sect. 2.2. We sort
the points along their indices here, while we sort the points along �-projections in
Sect. 2.2. Therefore, as we showed in Sect. 2.2, the construction takes O(m logm)

Reachability Problems for Transmission Graphs 83

time, and we can compute the first point in C which contains t within O(log2 m)
time for each chain C, where m = |C|. In this way, we can construct the auxiliary
data structures for all chains of C in O(n log n) time.

Given two points s ∈ P and t ∈ R
2, we can check if s is reachable to t as

follows. Suppose there is a s-t path π. If p(π) is contained in a chain C ∈ C, let
k be the index of p(π) in C = 〈p1, . . . , pt〉, that is, pk = p(π). We let j(t) denote
the index of the first point in C which contains t, and let i(s) denote the index
of the last point in C which is reachable from s. Recall that i(s) is stored in the
discrete reachability oracle, and j(t) can be computed using the auxiliary data
structure for C as mentioned above. Then there is a s-t path π with p(π) ∈ C if
and only if j(t) ≤ k ≤ i(s). We do this for all chains in C. Since we can compute
the first point that contains t for every chain of C in O(n2/3 log2 n) time, the total
query time is O(n2/3 log2 n) time. Therefore, we have the following theorem.

Theorem 4. Given a set P of points associated with radii, we can compute
a continuous reachability oracle for the transmission graph of P in O(n5/3)
time. The reachability oracle has size O(n5/3) and supports the query time
O(n2/3 log2 n).

References

1. Afshani, P., Chan, T.: Optimal halfspace range reporting in three dimensions. In:
Proceedings of the Twentieth Annual ACM-SIAM Symposium on Discrete Algo-
rithms (SODA 2009), pp. 180–186 (2009)

2. Ashur, S., Carmi, P.: t-Spanners for transmission graphs using the path-greedy
algorithm. In: 36th European Workshop on Computational Geometry (EuroCG
2020), Book of Abstracts, pp. 60:1–60:6 (2020)

3. Cabello, S., Jejčič, M.: Shortest paths in intersection graphs of unit disks. Comput.
Geom. 48(4), 360–367 (2015)

4. Chan, T.M.: Dynamic geometric data structures via shallow cuttings. In: Proceed-
ings of the 35th International Symposium on Computational Geometry (SoCG
2019), pp. 24:1–24:13 (2019)

5. Chan, T.M., Skrepetos, D.: Approximate shortest paths and distance oracles in
weighted unit-disk graphs. J. Comput. Geom. 10(2), 3–20 (2019)

6. de Berg, M., Cheong, O., van Kreveld, M., Overmars, M.: Computational Geom-
etry: Algorithms and Applications. Springer, Heidelberg (2008). https://doi.org/
10.1007/978-3-540-77974-2

7. Fox, J., Pach, J.: Separator theorems and turán-type results for planar intersection
graphs. Adv. Math. 219(3), 1070–1080 (2008)

8. Gudmundsson, J., Levcopoulos, C., Narasimhan, G., Smid, M.: Approximate dis-
tance oracles for geometric spanners. ACM Trans. Algorithms 4(1), 1–34 (2008)

9. Holm, J., Rotenberg, E., Thorup, M.: Planar reachability in linear space and con-
stant time. In: Proceedings of the 56th Annual Symposium on Foundations of
Computer Science (FOCS 2015), pp. 370–389 (2015)

10. Imai, H., Iri, M., Murota, K.: Voronoi diagram in the Laguerre geometry and its
applications. SIAM J. Comput. 14(1), 93–105 (1985)

11. Kaplan, H., Mulzer, W., Roditty, L., Seiferth, P.: Spanners and reachability ora-
cles for directed transmission graphs. In; Proceedings of the 31st International
Symposium on Computational Geometry (SoCG 2015), pp. 156–170 (2015)

https://doi.org/10.1007/978-3-540-77974-2
https://doi.org/10.1007/978-3-540-77974-2

84 S. An and E. Oh

12. Kaplan, H., Mulzer, W., Roditty, L., Seiferth, P.: Routing in unit disk graphs.
Algorithmica 80(3), 830–848 (2018)

13. Kaplan, H., Mulzer, W., Roditty, L., Seiferth, P.: Spanners for directed transmis-
sion graphs. SIAM J. Comput. 47(4), 1585–1609 (2018)

14. Kaplan, H., Mulzer, W., Roditty, L., Seiferth, P., Sharir, M.: Dynamic planar
Voronoi diagrams for general distance functions and their algorithmic applications.
In: Proceedings of the Twenty-Eighth Annual ACM-SIAM Symposium on Discrete
Algorithms (SODA 2017), pp. 2495–2504 (2017)

15. Miller, G., Teng, S.-H., Varasis, S.: A unified geometric approach to graph separa-
tors. In: Proceedings of the 32nd Annual Symposium on Foundations of Computer
Science (FOCS 1991), pp. 538–547 (1991)

16. Moidu, N., Agarwal, J., Kothapalli, K.: Planar convex hull range query and related
problems. In: Proceedings of the 25th Canadian Conference on Computational
Geometry (CCCG 2013) (2013)

17. Oh, E.: Shortest-path queries in geometric networks. In: Proceedings of the 31st
International Symposium on Algorithms and Computation (ISAAC 2020), pp.
52:1–52:15 (2020)

18. Peleg, D., Roditty, L.: Localized spanner construction for ad hoc networks with
variable transmission range. ACM Trans. Sens. Netw. 7(3), 1–14 (2010)

19. Peleg, D., Roditty, L.: Relaxed spanners for directed disk graphs. Algorithmica
65(1), 146–158 (2013)

20. Von Rickenbach, P., Wattenhofer, R., Zollinger, A.: Algorithmic models of interfer-
ence in wireless ad hoc and sensor networks. IEEE/ACM Trans. Network. 17(1),
172–185 (2009)

21. Wang, H., Xue, J.: Near-optimal algorithms for shortest paths in weighted unit-disk
graphs. Discrete Comput. Geom. 64(4), 1141–1166 (2020)

On Minimum Generalized Manhattan
Connections

Antonios Antoniadis1, Margarita Capretto2, Parinya Chalermsook3,
Christoph Damerius4(B), Peter Kling4, Lukas Nölke5, Nidia Obscura Acosta3,

and Joachim Spoerhase3

1 University of Twente, Enschede, The Netherlands
a.antoniadis@utwente.nl

2 Universidad Nacional de Rosario, Rosario, Argentina
3 Aalto University, Espoo, Finland

{parinya.chalermsook,nidia.obscuraacosta,joachim.spoerhase}@aalto.fi
4 University of Hamburg, Hamburg, Germany

{christoph.damerius,peter.kling}@uni-hamburg.de
5 University of Bremen, Bremen, Germany

noelke@uni-bremen.de

Abstract. We consider minimum-cardinality Manhattan connected sets
with arbitrary demands: Given a collection of points P in the plane,
together with a subset of pairs of points in P (which we call demands), find
a minimum-cardinality superset of P such that every demand pair is con-
nected by a path whose length is the �1-distance of the pair. This problem
is a variant of three well-studied problems that have arisen in computa-
tional geometry, data structures, and network design: (i) It is a node-cost
variant of the classical Manhattan network problem, (ii) it is an exten-
sion of the binary search tree problem to arbitrary demands, and (iii) it
is a special case of the directed Steiner forest problem. Since the problem
inherits basic structural properties from the context of binary search trees,
an O(log n)-approximation is trivial. We show that the problem is NP-
hard and present an O(

√
log n)-approximation algorithm. Moreover, we

provide an O(log log n)-approximation algorithm for complete k-partite
demands as well as improved results for unit-disk demands and several
generalizations. Our results crucially rely on a new lower bound on the
optimal cost that could potentially be useful in the context of BSTs.

Keywords: Manhattan networks · Binary search tree · NP-hardness

1 Introduction

Given a collection of points P ⊂ R
2 on the plane, the Manhattan Graph GP of P

is an undirected graph with vertex set V (GP) = P and arcs E(GP) that connect
any vertically- or horizontally-aligned points. Point p is said to be Manhattan-
connected (M-connected) to point q if GP contains a shortest rectilinear path

The full version of this paper [1] can be found at https://arxiv.org/abs/2010.14338.
c© Springer Nature Switzerland AG 2021
A. Lubiw et al. (Eds.): WADS 2021, LNCS 12808, pp. 85–100, 2021.
https://doi.org/10.1007/978-3-030-83508-8_7

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-83508-8_7&domain=pdf
https://arxiv.org/abs/2010.14338
https://doi.org/10.1007/978-3-030-83508-8_7

86 A. Antoniadis et al.

Fig. 1. Left: A Manhattan instance with input points in P drawn as black disks and
demands in D drawn as orange rectangles. Right: The Manhattan Graph GP∪Q of a
feasible solution Q, with points in Q drawn as crosses. Points p2 and p4 are Manhattan-
connected via the red path p2 - q1 - p3 - q2 - p4. Points p1 and p3 are not Manhattan-
connected but also not a demand pair in D. (Color figure online)

from p to q (i.e. a path of length ||p − q||1). In this paper, we initiate the study
of the following problem: Given points P ⊂ R

2 and demands D ⊆ P × P , we
want to find a smallest set Q ⊂ R

2 such that every pair of vertices in D is
M -connected in GP ∪ Q. We call this problem Minimum Generalized Man-
hattan Connections (MinGMConn), see Fig. 1 for an illustration. Variants
of this problem have appeared and received a lot of attention in many areas
of theoretical computer science, including data structures, approximation algo-
rithms, and computational geometry. Below, we briefly discuss them, as well as
the implications of our results in those contexts.

Binary Search Trees (BSTs). The Dynamic Optimality Conjecture [19] is one
of the most fundamental open problems in dynamic data structures, postulat-
ing the existence of an O(1)-competitive binary search tree. Despite continuing
efforts and important progress for several decades (see, e.g., [3,7,10,11,18] and
references therein), the conjecture has so far remained elusive, with the best
known competitive ratio of O(log log n) obtained by Tango trees [11]. Even in the
offline setting, the best known algorithm is also a O(log log n)-approximation;
the problem is not even known to be NP-hard. Demaine, Harmon, Iacono, Kane,
and Pătraşcu [10] showed that approximating BST is equivalent (up to a con-
stant in the approximation factor) to approximating the node-cost Manhattan
problem with “evolving demand” (that is, points added to the solution create
demands to all existing points).1

The long-standing nature of the O(log log n) upper bound could suggest the
lower bound answer. However, the understanding of lower bound techniques for
BSTs has been completely lacking: It is not even known whether the problem
is NP-hard! Our work is inspired by the following question. Is it NP-hard to
(exactly) compute a minimum-cost binary search tree? We are, unfortunately,
unable to answer this question. In this paper, we instead present a proof that a
natural generalization of the problem from the geometric point of view (which

1 In fact, the problem stated in [10] is called MinASS which appears different from
Manhattan problem, but they can be shown to be equivalent, see the Appendix of
the full version [1].

On Minimum Generalized Manhattan Connections 87

is exactly our MinGMConn) is NP-hard2. We believe that our construction
and its analysis could be useful in further study of the BST problem from the
perspective of lower bounds.

Edge-Cost Manhattan Problem. Closely related to MinGMConn is the
edge-cost variant of Manhattan Network [15]: Given P ⊂ R

2, our goal is to com-
pute Q ⊂ R

2 such that every pair in P is M -connected in GP ∪ Q, while min-
imizing the total lengths of the edges used for the connections. The problem is
motivated by various applications in city planning, network layouts, distributed
algorithms and VLSI circuit design, and has received attention in the computa-
tional geometry community. Since the edge-cost variant is NP-hard [6], the focus
has been on approximation algorithms. Several groups of researchers presented 2-
approximation algorithms [5,16], and this has remained the best known approx-
imation ratio. Generalizations of the edge-cost variant have been proposed and
studied in two directions: In [9], the authors generalize the Manhattan problem to
higher dimension R

d for d � 2. The arbitrary-demand case was suggested in [5].
An O(log n)-approximation algorithm was presented in [8], which remains the
best known ratio. Our MinGMConn problem can be seen as an analogue of [8] in
the node-cost setting. We present an improved approximation ratio of O(

√
log n),

therefore, raising the possibility of similar improvements in the edge-cost variants.

Directed Steiner Forests (DSF). MinGMConn is a special case of node-
cost directed Steiner forest (DSF): Given a directed graph G = (V,E) and pairs
of terminals D ⊆ V × V , find a minimum cardinality subset S ⊆ V such that
G[S] contains a path from s to t for all (s, t) ∈ D. DSF is known to be highly
intractable, with hardness 2log

1−ε|V | unless NP ⊆ DTIME(npolylog n) [12]. The
best known approximation ratios are slightly sub-linear [4,13]. Manhattan prob-
lems can be thought of as natural, tractable special cases of DSF, with approx-
imability between constant and logarithmic regimes. For more details, see [9].

1.1 Our Contributions

In this paper, we present both hardness and algorithmic results for MinGM-
Conn.

Theorem 1. The MinGMConn problem is NP-hard, even if no two points in
the input are horizontally or vertically aligned.

This result can be thought of as a first step towards developing structural
understanding of Manhattan connectivity w.r.t. lower bounds. We believe such
understanding would come in handy in future study of binary search trees in the
geometric view.

Next, we present algorithmic results. Due to the BST structures, an O(log n)-
approximation is trivial. The main ingredient in obtaining a sub-logarithmic

2 Demaine et al. [10] prove NP-hardness for MinGMConn with uniform demands
but allow the input to contain multiple points on the same row. Their result is
incomparable to ours.

88 A. Antoniadis et al.

approximation is an approximation algorithm for the case of “few” x-coordinates.
Formally, we say an input instance is s-thin if points in P lie on at most s different
x-coordinates.

Theorem 2. There exists an efficient O(log s)-approximation algorithm for s-
thin instances of MinGMConn.

In fact, our algorithm produces solutions with O(log s · IS(P,D)) points,
where IS(P,D) � OPT(P,D) is the cardinality of a boundary independent set (a
notion introduced below). This is tight up to a constant factor, as there is an
input (P,D) on s different columns such that OPT(P,D) = Ω(IS(P,D)log s);
see the Appendix of [1].

This theorem, along with the boundary independent set analysis, turns out
to be an important building block for our approximation result, which achieves
an approximation ratio that is sublogarithmic in n.

Theorem 3. There is an O(
√
log n)-approximation algorithm for MinGM-

Conn.

This improves over the trivial O(log n)-approximation and may grant some new
hope with regards to an improvement over this factor for the edge-cost variants.

We provide improved approximation ratios for several settings when the
graph formed by the demands has a special structure. For example, we obtain
an O(log log n)-approximation algorithm for MinGMConn when the demands
form a complete k-partite graph, and an O(1)-approximation for unit-disk
demands; see the Appendix of [1].

1.2 Overview of Techniques

The NP-hardness proof is based on a reduction to 3-SAT. In contrast to the uni-
form case of MinGMConn (where there is a demand for each two input points),
the non-uniform case allows us to encode the structure of a 3-SAT formula in
a geometrical manner: we can use demand rectangles to form certain “paths”
(see Fig. 2). We exploit this observation in the reduction design by translat-
ing clauses and variables into gadgets, rectangular areas with specific placement
of input points and demands (see Fig. 3). Variable gadgets are placed between
clause gadgets and a dedicated starting point. The crux is to design the instance
such that a natural solution to the intra- and inter-gadget demands connects the
starting point to either the positive or the negative part of each variable gadget.
And, the M-paths leaving a variable gadget from that part can all reach only
clauses with a positive appearance or only clauses with a negative appearance of
that variable respectively. We refer to such solutions as boolean solutions, as they
naturally correspond to a variable assignment. Additional demands between the
starting point and the clause gadgets are satisfied by a boolean solution if and
only if it corresponds to a satisfying variable assignment. The main part of the
proof is to show that any small-enough solution is a boolean solution.

In the study of any optimization (in particular, minimization) problem, one
of the main difficulties is to come up with a strong lower bound on the cost of an

On Minimum Generalized Manhattan Connections 89

optimal solution that can be leveraged by algorithms. For binary search trees,
many such bounds were known, and the strongest known lower bound is called
an independent rectangle bound (IR). However, IR is provably too weak for the
purpose of MinGMConn, that is, the gap between the optimum and IR can
be as large as Ω(n). We propose to use a new bound, which we call vertically
separable demands (VS). This bound turns out to be relatively tight and plays
an important role in both our hardness and algorithmic results. In the hardness
result, we use our VS bound to argue about the cost of the optimum in the
soundness case.

Our O(
√
log n)-approximation follows the high-level idea of [2], which

presents a geometric O(log log n)-approximation for BST. Roughly speaking,
it argues (implicitly) that two combinatorial properties, which we refer to as (A)
and (B), are sufficient for the existence of an O(log log n)-approximation: (A)
the lower bound function is “subadditive” with respect to a certain instance par-
titioning, and (B) the instance is “sparse” in the sense that for any input (P,D),
there exists an equivalent input (P ′,D′) such that |P ′| = O(OPT(P,D)). In the
context of BST, (A) holds for the Wilber bound and (B) is almost trivial to
show.

In the MinGMConn problem, we prove that Property (A) holds for the new
VS bound. However, proving Property (B) seems to be very challenging. We
instead show a corollary of Property (B): There is an O(log s)-approximation
algorithm for MinGMConn, where s is the number of columns containing at
least one input point. The proof of this relaxed property is the main new ingre-
dient of our algorithmic result and is stated in Theorem 2. Finally, we argue that
this weaker property still suffices for an O(

√
log n)-approximation algorithm. For

completeness, we discuss special cases where we prove that Property (B) holds
and thus an O(log log n)-approximation exists. See the full version [1].

1.3 Outlook and Open Problems

Inspired by the study of structural properties of Manhattan connected sets and
potential applications in BSTs, we initiate the study of MinGMConn by proving
NP-hardness and giving several algorithmic results.

There are multiple interesting open problems. First, can we show that the
BST problem is NP-hard? We hope that our construction and analysis using
the new VS bound would be useful for this purpose. Another interesting open
problem is to obtain a o(log n)-approximation for the edge-cost variant of the
generalized Manhattan network problem.

Finally, it can be shown that our VS bound is sandwiched between OPT and
IR. It is an interesting question to study the tightness of the VS bound when
estimating the value of an optimal solution. Is VS within a constant factor from
the optimal cost of BST? Can we approximate the value of VS efficiently within
a constant factor?

90 A. Antoniadis et al.

2 Model and Preliminaries

Let P ⊂ R
2 be a set of points on the plane. We say that points p, q ∈ P

are Manhattan-connected (M-connected) in P if there is a sequence of points
p = x0, x1, . . . , xk = q such that (i) the points xi and xi+1 are horizontally or
vertically aligned for i = 0, . . . , k−1, and (ii) the total length satisfies

∑k−1
i=0 ||xi−

xi+1||1 = ||p − q||1.
In the minimum generalized Manhattan connections (MinGMConn) prob-

lem, we are given a set of input points P and their placement in a rectangular
grid with integer coordinates such that there are no two points in the same row
or in the same column. Additionally, we are given a set D ⊆ {(p, q)|p, q ∈ P} of
demands. The goal is to find a set of points Q of minimum cardinality such that
p and q are M-connected with respect to P ∪ Q for all (p, q) ∈ D. Denote by
OPT(P,D) the size of such a point set. We differentiate between the points of
P and Q by calling them input points and auxiliary points, respectively. Since
being M-connected is a symmetrical relation, we typically assume x(p) < x(q)
for all (p, q) ∈ D. Here, x(p) and y(p) denote the x- and y-coordinate of a point p,
respectively. In our analysis, we sometimes use the notations [n] := {1, 2, . . . , n}
and [n]0 := [n] ∪ {0}, where n ∈ N.

Connection to Binary Search Trees. In the uniform case, i.e. D =
{(p, q)|p, q ∈ P}, this problem is intimately connected to the Binary Search
Tree (BST) problem in the geometric model [10]. Here, we are given a point set
P and the goal is to compute a minimum set Q such that every pair in P ∪ Q
is M-connected in P ∪ Q. Denote by BST(P) the optimal value of the BST
problem.

Independent Rectangles and Vertically Separable Demands. Following
Demaine et al. [10], we define the independent rectangle number which is a lower
bound on OPT(P,D). For a demand (p, q) ∈ D, denote by R(p, q) the (unique)
axis-aligned closed rectangle that has p and q as two of its corners. We call it the
demand rectangle corresponding to (p, q). Two rectangles R(p, q), R(p′, q′) are
called non-conflicting if none contains a corner of the other in its interior. We
say a subset of demands D′ ⊆ D is independent, if all pairs of rectangles in D′

are non-conflicting. Denote by IR(P,D) the maximum integer k such that there
is an independent subset D′ of size k. We refer to k as the independent rectangle
number.

For uniform demands, the problem admits a 2-approximation. Here, the inde-
pendent rectangle number plays a crucial role. Specifically, it was argued in
Harmon’s PhD thesis [17] that a natural greedy algorithm costs at most the
independent rectangle number and thus yields a 2-approximation. In our gen-
eralized demand case, however, the independent rectangle number turns out to
be a bad estimate on the value of an optimal solution. Instead, we consider the
notion of vertically separable demands, used implicitly in [10].

We say that a subset of demands D′ ⊆ D is vertically separable if there exists
an ordering R1, R2, . . . , Rk of its demand rectangles and vertical line segments
�1, �2 . . . , �k such that �i connects the respective interiors of top and bottom

On Minimum Generalized Manhattan Connections 91

boundaries of Ri and does not intersect any Rj , for j > i. For an input (P,D),
denote by VS(P,D) the maximum cardinality of such a subset. We call a set of
demands D monotone, if either y(p) < y(q) for all (p, q) ∈ D or y(p) > y(q) for
all (p, q) ∈ D. We assume the former case holds as both are symmetrical. In the
following, we argue that VS is indeed a lower bound on OPT (the proof can be
found in the full version [1]).

Lemma 4 [10]. Let (P,D) be an input for MinGMConn. If D is monotone,
then IR(P,D) � VS(P,D) � OPT(P,D). In general 1

2 IR(P,D) � VS(P,D) �
2 · OPT(P,D).

The charging scheme described Lemma 4’s proof injectively maps a demand rect-
angle R to a point of the optimal solution in R. This implies the following corol-
lary.

Corollary 5. Let D be a vertically separable, monotone set of demands and
Q a feasible solution. If |Q| = |D|, there is a bijection c : Q → D such that
q ∈ R(c(q)) for all q ∈ Q. In particular, for Q′ ⊆ Q there are at least |Q′|
demands from D that each covers some q ∈ Q′.

In general, the independent rectangle number and the maximum size of a ver-
tically separable set are incomparable. By Lemma4, IR(P,D) � 2 · VS(P,D).
However, IR(P,D) may be smaller than VS(P,D) up to a factor of n. To see this,
consider n diagonally shifted copies of a demand, e.g. Ri = R

(
(i, i), (i+n, i+n)

)
,

for i = 1, . . . , n. Here, IR(P,D) = 1 and VS(P,D) = n. Thus, the concept of ver-
tical separability is more useful as a lower bound.

3 NP-Hardness

In this section, we show Theorem 1 by reducing the 3-SAT problem to MinGM-
Conn. In 3-SAT, we are given a formula φ consisting of m clauses C1, C2, . . . , Cm

over n variables X1,X2, . . . , Xn, each clause consisting of three literals. The goal
is to decide whether φ is satisfiable. For our reduction, we construct a MinGM-
Conn instance (Pφ,Dφ) and a positive integer α = α(φ) such that (Pφ,Dφ) has
an optimal solution of size α if and only if φ is satisfiable (see the full version
[1]). This immediately implies Theorem 1. In the following, we identify a demand
d ∈ Dφ with its demand rectangle R(d). This allows us to speak, for example,
of intersections of demands, corners of demands, or points covered by demands.

Our construction of the MinGMConn instance (Pφ,Dφ) is based on different
gadgets and their connections among each other. A gadget can be thought of as
a rectangle in the Euclidean plane that contains a specific set of input points
and demands between these. In the following, we give a coarse overview of our
construction, describing how gadgets are placed and how they interact (Fig. 2).
Moreover, we try to convey the majority of the intuition behind our reduction.
Because of space constraints the actual proof of the NP-hardness is given in the
full version [1].

92 A. Antoniadis et al.

Overview of the Construction. For each clause Cj , we create a clause gad-
get GCj and for each variable Xi, a variable gadget GXi. Clause gadgets are
arranged along a descending diagonal line, so all of GCj is to the bottom-right of
GCj−1. Variable gadgets are arranged in the same manner. This avoids unwanted
interference among different clause and variable gadgets, respectively. The vari-
able gadgets are placed to the bottom-left of all clause gadgets.

For each positive occurrence of a variable Xi in a clause Cj , we place a
dedicated connection point p+ij ∈ Pφ as well as suitable connection demands
from p+ij to a dedicated inner point of GXi and to a dedicated inner point of
GCj . Their purpose is to force optimal MinGMConn solutions to create specific
M-paths (going first up and then right in a narrow corridor) connecting a variable
to the clauses in which it appears positively. We call the area covered by these
two demands a (positive) variable-clause path. Similarly, there are connection
points p−

ij ∈ Pφ with suitable demands for negative appearances of Xi in Cj ,
creating a (negative) variable-clause path (going first right and then up in a
narrow corridor).

Finally, there is a starting point S ∈ Pφ to the bottom-left of all other points.
It has a demand to a clause point cj in the top-right of each clause gadget GCj

(an SC demand) and to a variable point xi in the bottom-left of each variable
gadget GXi (an SX demand). The inside of clause gadgets simply provides
different entrance points for the variable-clause paths, while the inside of variable
gadgets forces an optimal solution to choose between using either only positive
or only negative variable-clause paths. We will use these choices inside variable
gadgets to identify an optimal solution for (Pφ,Dφ) with a variable assignment
for φ.

The clause gadget GCj for clause Cj contains the clause point cj and three
(clause) literal points �j1, �j2, �j3. The clause point is in the top-right. The literal
points represent the literals of Cj and form a descending diagonal within the
gadget such that positive are above negative literals. For each literal point �jk,
there is a demand (�jk, cj). Moreover, if �jk is positive and corresponds to the
variable Xi, then there is a (positive) connection demand (p+ij , �jk). Similarly, if
�jk is negative, there is a (negative) connection demand (p−

ij , �jk). Finally, there
is the SC demand (S, cj).

The variable gadget GXi for variable Xi contains the variable point xi, two
(variable) literal points x+

i , x−
i , one demand point di, as well as n+

i positive and
n−

i negative literal connectors x+
ik and x−

ik, respectively. Here, n+
i and n−

i are
from [m]0 and denote the number of positive and negative occurrences of Xi in φ,
respectively. The variable point is in the bottom-left. The literal connectors and
the demand point form a descending diagonal in the top-right, with the positive
literal connectors above and the negative literal connectors below the demand
point. The literal points x+

i , x−
i lie in the interior of the rectangle spanned by

xi and di, close to the top-left and bottom-right corner respectively. They are
moved slightly inward to avoid identical x- or y-coordinates. Inside the gadgets,
we have demands of the form (x+

i , x+
ik) and (x−

i , x−
ik) between literal points and

literal connectors, (x+
i , di) and (x−

i , di) between literal points and the demand

On Minimum Generalized Manhattan Connections 93

point, as well as (xi, di) between the variable point and the demand point (an
XD demand). Towards the outside, we have the positive/negative connection
demandsbetween literal points and literal connectors (x+

ik, p+ij) if the k-th positive
literal of Xi occurs in Cj and (x−

ik, p−
ij) if the k-th negative literal of Xi occurs

in Cj as well as the SX demand (S, xi).

Fig. 2. MinGMConn instance (Pφ, Dφ) for φ = (X1 ∨¬X2 ∨X3)∧ (X1 ∨X2 ∨¬X4)∧
(¬X1 ∨ ¬X2 ∨ X4). Input points are shown as (red, yellow, or black) disks. For clause
and variable gadgets, we show only the clause points cj and the variable points xi;
their remaining inner points and demands are illustrated in Fig. 3. The small black
disks represent the connection points p+

ij , p
−
ij . Non-SC demands are shown as shaded,

orange rectangles, while SC demands are shown as dashed, red rectangles. (Color figure
online)

Intuition of the Reduction. Our construction is such that non-SC demands
(including those within gadgets) form a monotone, vertically separable demand
set. Thus, for

DSC := {d ∈ Dφ|d is not an SC demand} and α = α(φ) := |DSC |, (1)

Lemma 4 implies that any solution Qφ for (Pφ,Dφ) has size at least α.
The first part of the reduction shows that if φ is satisfiable, then there is

an (optimal) solution Qφ of size α. This is proven by constructing a family of
boolean solutions. These are (partial) solutions Qφ that can be identified with
a variable assignment for φ and that have the following properties: Qφ has size
α and satisfies all non-SC demands. Additionally, it can satisfy an SC demand
(S, cj) only by going through some variable xi, where such a path exists if and
only if Cj is satisfied by the value assigned to Xi by (the variable assignment)
Qφ. In particular, if φ is satisfiable, there is a boolean solution Qφ satisfying all
SC demands. This implies that Qφ is a solution to (Pφ,Dφ) of (optimal) size α.

We then provide the other direction of the reduction, stating that if there
is a solution Qφ for (Pφ,Dφ) of size α, then φ is satisfiable. Its proof is more

94 A. Antoniadis et al.

Fig. 3. Examples for a clause and a variable gadgets. As in Fig. 2, input points are
shown as circles and SC demands are shown as dashed, red rectangles. The XD demand
(xi, di) is shown as a shaded, yellow rectangle. All remaining (non-SC and non-XD)
demands are again shown as shaded, orange rectangles. (Color figure online)

involved and is made possible by careful placement of gadgets, connection points,
and demands. (See the full version [1] for the complete proof.) In a first step, we
show that the small size of Qφ implies that different parts of our construction
each must be satisfied by only a few, dedicated points from Qφ. For example,
Qφ has to use exactly n points to satisfy the n SX demands (S, xi). Another
result about “triangular” instances (e.g., the triangular grid formed by the n SX
demands, see Fig. 2) states that, here, optimal solutions must lie on grid lines
inside the “triangle”. See the full version [1]. We conclude that any M-path from
S to a clause point cj must go through exactly one variable point xi. Similarly, we
show that the 6m connection demands (forming the 3m variable-clause paths)
are satisfied by 6m points from Qφ and, since they are so few, each of these
points lies in the corner of a connection demand. This ensures that M-paths
cannot cheat by, e.g., “jumping” between different variable-clause paths. More
precisely, such a path can be entered only at the variable gadget where it starts
and be left only at the clause gadget where it ends.

All that remains to show is that there cannot be two M-paths entering a
variable gadget GXi (which they must do via xi) such that one leaves through a
positive and the other through a negative variable-clause path. We can then inter-
pret Qφ as a boolean solution (the variable assignment for Xi being determined
by whether M-paths leave GXi through positive or through negative variable-
clause paths). Since Qφ satisfies all demands, in particular all SC demands, the
corresponding variable assignment satisfies all clauses.

4 An Approximation Algorithm for s-Thin Instances

In this section, we present an approximation algorithm for s-thin instances
(points in P lie on at most s distinct x-coordinates). In particular, we allow

On Minimum Generalized Manhattan Connections 95

more than one point to share the same x-coordinate. However, we still require
any two points to have distinct y-coordinates. We show an approximation ratio
of O(log s), proving Theorem2.

An x-group is a maximal subset of P having the same x-coordinate. Note
that an O(log s)-approximation for s-thin instances can be obtained via a natural
“vertical” divide-and-conquer algorithm that recursively divides the s many x-
groups in two subinstances with roughly s/2 many x-groups each. (Section 5
considered a more general version of this, subdividing into an arbitrary number
of subinstances.) The analysis of this algorithm uses the number of input points
as a lower bound on OPT. However, such a bound is not sufficient for our purpose
of deriving an O(

√
log n)-approximation.

In this section, we present a different algorithm, based on “horizontal” divide-
and-conquer (after a pre-processing step to sparsify the set of y-coordinates
in the input via minimum hitting sets). Using horizontal rather than vertical
divide-and-conquer may seem counter-intuitive at first glance as the number of
y-coordinates in the input is generally unbounded in s. Interestingly enough, we
can give a stronger guarantee for this algorithm by bounding the cost of the
approximate solution against what we call a boundary independent set. Addi-
tionally, we show that the size of a such set is always upper bounded by the
maximum number of vertically separable demands. This directly implies The-
orem2, since 2OPT is an upper bound on the number of vertically separable
demands (c.f. Lemma 4). Even more importantly, our stronger bound allows us
to prove Theorem 3 in the next section since vertically separable demands ful-
fill the subadditivity property mentioned in the introduction. In the proof of
Theorem 3, an arbitrary O(log s)-approximation algorithm would not suffice.

By losing a factor 2 in the approximation ratio, we may assume that the
demands are monotone (we can handle pairs with x(p) < x(q) and y(p) > y(q)
symmetrically).

Definition 6 (Left & right demand segments). Let (P,D) be an input
instance. For each R(p, q) ∈ Q, denote by λ(p, q) the vertical segment that con-
nects (x(p), y(p)) and (x(p), y(q)). Similarly, denote by ρ(p, q) the vertical seg-
ment that connects (x(q), y(p)) and (x(q), y(q)). That is, λ(p, q) and ρ(p, q) are
simply the left and right boundaries of rectangle R(p, q).

Boundary Independent Sets. A left boundary independent set consists of
pairwise non-overlapping segments λ(p, q), a right boundary independent set of
pairwise non-overlapping segments ρ(p, q). A boundary independent set refers to
either a left or a right boundary independent set. Denote by IS(P,D) the size of
a maximum boundary independent set.

The following lemma implies that it suffices to work with boundary indepen-
dent sets instead of vertical separability. The main advantage of doing so, is that
(i) for IS, we do not have to identify any ordering of the demand subset, (ii) one
can compute IS(P,D) efficiently, and (iii) we can exploit geometric properties of
interval graphs, as we will do below.

96 A. Antoniadis et al.

Algorithm 1: HorizontalDC(P,D,R)
input : Instance (P, D) with rows R
output : Feasible solution to (P, D) computed via horizontal

divide-and-conquer
1 Q ← ∅; m ← median of R;
2 Dm ← { (p, q) ∈ D | y(p) � m � y(q) };
3 foreach (p, q) ∈ Dm do
4 Q ← Q ∪ {(x(p), m), (x(q), m)};

5 Dt ← { (p, q) ∈ D | y(p) > m }; Db ← { (p, q) ∈ D | y(q) < m };
6 Pt ← { p, q | (p, q) ∈ Dt }; Pb ← { p, q | (p, q) ∈ Db };
7 Rt ← { r ∈ R | r > m }; Rb ← { r ∈ R | r < m };
8 Q ← Q ∪ HorizontalDC(Pt, Dt, Rt) ∪ HorizontalDC(Pb, Db, Rb);
9 return Q;

Lemma 7. For any instance (P,D) we have that IS(P,D) � VS(P,D). More-
over, one can compute a maximum boundary independent set in polynomial time.

Algorithm Description. Our algorithm, which we call HorizontalMan-
hattan, produces a Manhattan solution of cost O(log s) · IS(P,D), where s
is the number of x-groups in P . The algorithm initially computes a set of
“crucial rows” R ⊆ R by computing a minimum hitting set in the interval
set I = {[y(p), y(q)] | (p, q) ∈ D}. In particular, the set R has the following
property. For each j ∈ R, let �j be a horizontal line drawn at y-coordinate j.
Then the lines {�j}j∈R stab every rectangle in {R(p, q)}(p,q)∈D. The following
observation follows from the fact that the interval hitting set is equal to the
maximum interval independent set.

Observation. |R| � IS(P,D).
After computing R, the algorithm calls a subroutine HorizontalDC (see

Algorithm1), which recursively adds points to each such row in a way that
guarantees a feasible solution. We now proceed to the analysis of the algorithm.

Lemma 8 (Feasibility). The algorithm HorizontalManhattan produces a
feasible solution in polynomial time.

Lemma 9 (Cost). For any s-thin instance (P,D), algorithm Horizontal-
Manhattan outputs a solution of cost O(log s) · IS(P,D).

Proof. Let r = |R| be the number of rows computed in HorizontalManhat-
tan. Define L = {λ(p, q) | [y(p), y(q)] ∈ I} to be the set of corresponding left
sides of the demands in I. In particular, the segments in L are disjoint and
|L| = r. We upper bound the cost of our solution as follows. For each added
point, define a witness interval, witnessing its cost. The total number of points
is then roughly bounded by the number of witness intervals, which we show to
be O(log s)IS(P,D).

On Minimum Generalized Manhattan Connections 97

We enumerate the recursion levels of Algorithm 1 from 1 to �log r	 in a top-
down fashion in the recursion tree. In each recursive call, at most s many points
are added to Q in line 4—one for each distinct x-coordinate. Hence, during the
first �log r	−�log s	 recursion levels at most s · 2�log r�−�log s� = O(s · r

s) = O(r)
many points are added to Q in total. We associate each of these points with one
unique left side in L in an arbitrary manner. For each of these points, we call its
associated left side the witness of this point.

For any point added to Q in line 4 in one of the last �log s	 recursion levels,
pick the first (left or right) side of a demand rectangle that led to including
this point. More precisely, if, in line 4, we add point (x(p),m) to Q for the first
time (which means that this point has not yet been added to Q via a different
demand) then associate λ(p, q) as a witness. Analogously, if we add (x(q),m) for
the first time then associate ρ(p, q) as a witness.

Overall, we have associated to each point in the final solution a uniquely
determined witness, which is a left or a right side of some demand rectangle.
Note that any (left or right) side of a rectangle may be assigned as a witness
to two solution points (once in the top recursion levels and once in the bottom
levels). In such a case we create a duplicate of the respective side and consider
them to be distinct witnesses.

Two witnesses added in the last �log s	 recursion levels can intersect only
if the recursive calls lie on the same root-to-leaf path in the recursion tree.
Otherwise, they are separated by the median row of the lowest common ancestor
in the recursion tree and cannot intersect. With this observation and the fact
that the witnesses in L form an independent set, we can bound the maximum
clique size in the intersection graph of all witnesses by 1 + �log s	.

This graph is an interval graph. Since interval graphs are perfect [14], there
exists a (1 + �log s)-coloring in this graph. Hence, there exists an independent
set of witnesses of size 1/(�log s	+ 1) times the size of the Manhattan solution.
Taking all left or all right sides of demands in this independent set (whichever is
larger) gives a boundary independent set of size at least 1/(2(1+ �log s)) times
the cost of the Manhattan solution.
�

We conclude the section by noting that the proof of Theorem 2 directly
follows by combining Lemmata 4, 7 and 9. As mentioned in the introduc-
tion, the factor O(log s) in Lemma 9 is tight in the strong sense that there
is a MinGMConn instance (P,D) with s distinct x-coordinates such that
OPT(P,D) = Ω(IS(P,D)log s). See the appendix of the full version [1].

5 A Sublogarithmic Approximation Algorithm

In this section, we give an overview of how to leverage the O(log s)-approximation
for s-thin instances to design an O(

√
log n)-approximation algorithm for general

instances.

Sub-instances. Let (P,D) be an instance of MinGMConn and let B be a
bounding box for P , that is, P ⊆ B. Let S = {S1, . . . , Ss} be a collection of

98 A. Antoniadis et al.

Fig. 4. An illustration of the inter-strip instance. Each strip Si is collapsed into one
column. The red demands are demands between pairs of points lying inside different
strips. The black demands are demands that are handled by intra-strip instances. (Color
figure online)

s vertical strips, ordered from left to right, that are obtained by drawing s − 1
vertical lines that partition B. We naturally create s+1 sub-instances as follows.
(See also Fig. 4.) First, we have s intra-strip instances {(Pi,Di)}i∈[s] such that
Pi = P ∩ Si and Di = D ∩ (Si × Si). Next, we have the inter-strip instance
πS(D) = (P ′,D′) where P ′ is obtained by collapsing each strip in S into a single
column and D′ is obtained from collapsing demands accordingly. For each point
p ∈ P , denote by πS(p) a copy of p in P ′ after collapsing. Note that this is
a simplified description of the instances that avoids some technicalities. For a
precise definition, see the appendix in the full version [1].

Sub-additivity of VS. The following is our sub-additivity property that we
use crucially in our divide-and-conquer algorithm.

Lemma 10. If (P,D) is an instance of MinGMConn with strip subdivision S,
then

VS(P,D) � VS(πS(P,D)) +
∑

S∈S
VS(P ∩ S,D ∩ (S × S)).

Divide-and-Conquer. Choose the strips S so that s = |S| = 2
√
log n. Thus the

inter-strip instance admits an approximation of ratio O(log s) = O(
√
log n); in

fact, we obtain a solution of cost O(
√
log n)VS(πS(P,D)). We recursively solve

each intra-strip instance (Pi,Di), and combine the solutions from these s + 1
sub-instances. (Details on how the solution can be combined are deferred to [1].)

We show by induction on the number of points that for any instance (P,D)
the cost of the computed solution is O(

√
log n)VS(P,D). (Here, we do not

take into account the cost incurred by combining the solutions to the sub-
instances.) By induction hypothesis, we have for each (Pi,Di) a solution of cost
O(

√
log n)VS(Pi,Di) since |Pi| < |P |. Note that we cannot use the induction

hypothesis for the inter-strip instance since |P ′| = |P |, which is why we need the
O(log s)-approximation algorithm. Using sub-additivity we obtain:

O(
√

log n)
(
VS(πS(P,D))+

∑

S∈S
VS(P ∩S,D∩ (S ×S))

)
= O(

√
log n)VS(P,D).

On Minimum Generalized Manhattan Connections 99

There is an additional cost incurred by combining the solutions of the sub-
instances to a feasible solution of the current instance. In the full version [1], we
argue that this can be done at a cost of O(OPT) for each of the log n/log s =√
log n many levels of the recursion. (This prevents us from further improving

the approximation factor by picking s = 2o(
√
log n).)

References

1. Antoniadis, A., et al.: On minimum generalized Manhattan connections. CoRR
abs/2010.14338 (2020). https://arxiv.org/abs/2010.14338

2. Chalermsook, P., Chuzhoy, J., Saranurak, T.: Pinning down the strong Wilber 1
bound for binary search trees. arXiv preprint arXiv:1912.02900 (2019)

3. Chalermsook, P., Goswami, M., Kozma, L., Mehlhorn, K., Saranurak, T.: Pattern-
avoiding access in binary search trees. In: 2015 IEEE 56th Annual Symposium on
Foundations of Computer Science, pp. 410–423. IEEE (2015)

4. Chekuri, C., Even, G., Gupta, A., Segev, D.: Set connectivity problems in undi-
rected graphs and the directed Steiner network problem. ACM Trans. Algorithms
(TALG) 7(2), 1–17 (2011)

5. Chepoi, V., Nouioua, K., Vaxes, Y.: A rounding algorithm for approximating min-
imum Manhattan networks. Theoret. Comput. Sci. 390(1), 56–69 (2008)

6. Chin, F.Y., Guo, Z., Sun, H.: Minimum Manhattan network is NP-complete. Dis-
crete Comput. Geom. 45(4), 701–722 (2011)

7. Cole, R.: On the dynamic finger conjecture for splay trees. part II: the proof. SIAM
J. Comput. 30(1), 44–85 (2000)

8. Das, A., Fleszar, K., Kobourov, S., Spoerhase, J., Veeramoni, S., Wolff, A.:
Approximating the generalized minimum Manhattan network problem. Algorith-
mica 80(4), 1170–1190 (2018)

9. Das, A., Gansner, E.R., Kaufmann, M., Kobourov, S., Spoerhase, J., Wolff, A.:
Approximating minimum Manhattan networks in higher dimensions. Algorithmica
71(1), 36–52 (2015)

10. Demaine, E.D., Harmon, D., Iacono, J., Kane, D., Pătraşcu, M.: The geometry of
binary search trees. In: Proceedings of the Twentieth Annual ACM-SIAM Sympo-
sium on Discrete Algorithms, pp. 496–505. SIAM (2009)

11. Demaine, E.D., Harmon, D., Iacono, J., Pătraşcu, M.: Dynamic optimality-almost.
SIAM J. Comput. 37(1), 240–251 (2007)

12. Dodis, Y., Khanna, S.: Design networks with bounded pairwise distance. In: Pro-
ceedings of the Thirty-first Annual ACM Symposium on Theory of Computing,
pp. 750–759 (1999)

13. Feldman, M., Kortsarz, G., Nutov, Z.: Improved approximation algorithms for
directed Steiner forest. J. Comput. Syst. Sci. 78(1), 279–292 (2012)

14. Golumbic, M.C.: Algorithmic Graph Theory and Perfect Graphs. Annals of Dis-
crete Mathematics, vol. 57. North-Holland Publishing Co., NLD (2004)

15. Gudmundsson, J., Levcopoulos, C., Narasimhan, G.: Approximating a minimum
Manhattan network. Nordic J. Comput. 8(2), 219–232 (2001). http://dl.acm.org/
citation.cfm?id=766533.766536

16. Guo, Z., Sun, H., Zhu, H.: A fast 2-approximation algorithm for the minimum
Manhattan network problem. In: Fleischer, R., Xu, J. (eds.) AAIM 2008. LNCS,
vol. 5034, pp. 212–223. Springer, Heidelberg (2008). https://doi.org/10.1007/978-
3-540-68880-8_21

https://arxiv.org/abs/2010.14338
http://arxiv.org/abs/1912.02900
http://dl.acm.org/citation.cfm?id=766533.766536
http://dl.acm.org/citation.cfm?id=766533.766536
https://doi.org/10.1007/978-3-540-68880-8_21
https://doi.org/10.1007/978-3-540-68880-8_21

100 A. Antoniadis et al.

17. Harmon, D.D.K.: New bounds on optimal binary search trees. Ph.D. thesis, Mas-
sachusetts Institute of Technology (2006)

18. Iacono, J., Langerman, S.: Weighted dynamic finger in binary search trees. In:
Proceedings of the Twenty-Seventh Annual ACM-SIAM Symposium on Discrete
Algorithms, pp. 672–691. SIAM (2016)

19. Sleator, D.D., Tarjan, R.E.: Self-adjusting binary search trees. J. ACM (JACM)
32(3), 652–686 (1985)

HalftimeHash: Modern Hashing Without
64-Bit Multipliers or Finite Fields

Jim Apple(B)

Los Gatos, USA

Abstract. HalftimeHash is a new algorithm for hashing long strings.
The goals are few collisions (different inputs that produce identical out-
put hash values) and high performance.

Compared to the fastest universal hash functions on long strings
(clhash and UMASH), HalftimeHash decreases collision probability while
also increasing performance by over 50%, exceeding 16 bytes per cycle.

In addition, HalftimeHash does not use any widening 64-bit multipli-
cations or any finite field arithmetic that could limit its portability.

Keywords: Universal hashing · Randomized algorithms

1 Introduction

A hash family is a map from a set of seeds S and a domain D to a codomain C.
A hash family H is called is ε-almost universal (“ε-AU” or just “AU”) when

∀x, y ∈ D,x �= y =⇒ Prs∈S [H(s, x) = H(s, y)] ≤ ε ∈ o(1)

The intuition behind this definition is that collisions can be made unlikely by
picking randomly from a hash family independent of the input strings, rather
than anchoring on a specific hash function such as MD5 that does not take a
seed as an input. AU hash families are useful in hash tables, where collisions slow
down operations and, in extreme cases, can turn linear algorithms into quadratic
ones [2,10,18,25].

HalftimeHash is a new “universe collapsing” hash family, designed to hash
long strings into short ones [1,11,21]. This differs from short-input families like
SipHash or tabulation hashing, which are suitable for hashing short strings to a
codomain of 64 bits [3,25]. Universe collapsing families are especially useful for
composition with short-input families: when n long strings are to be handled by
a hash-based algorithm, a universe-collapsing family that reduces them to hash
values of length c lg n bits for some suitable c > 2 produces zero collisions with
probability 1 − O(n2−c). A short-input hash family can then treat the hashed
values as if they were the original input values [3,9,24,25]. This technique applies
not only to hash tables, but also to message-authentication codes, load balancing
in distributed systems, privacy amplification, randomized geometric algorithms,
Bloom filters, and randomness extractors [4,9,12,13,22,23].
c© Springer Nature Switzerland AG 2021
A. Lubiw et al. (Eds.): WADS 2021, LNCS 12808, pp. 101–114, 2021.
https://doi.org/10.1007/978-3-030-83508-8_8

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-83508-8_8&domain=pdf
http://orcid.org/0000-0002-8685-9451
https://doi.org/10.1007/978-3-030-83508-8_8

102 J. Apple

On strings longer than 1 KB, HalftimeHash is typically 55% faster than
clhash, the AU hash family that comes closest in performance.

HalftimeHash also has tunable output length and low probabilities of collision
for applications that require them, such as one-time authentication [5]. The
codomain has size 16, 24, 32, or 40 bytes, and ε varies depending on the codomain
(see Fig. 2 and Sect. 6).

1.1 Portability

In addition to high speed on long strings, HalftimeHash is designed for a sim-
ple implementation that is easily portable between programming languages and
machine ISA’s. HalftimeHash uses less than 1200 lines of code in C++ and can
take advantage of vector ISA extensions, including AVX-512, AVX2, SSE, and
NEON.1

Additionally, no multiplications from Z264 ×Z264 to Z2128 are needed. This is
in support of two portability goals – the first is portability to platforms or pro-
gramming languages without native widening unsigned 64-bit multiplications.
Languages like Java, Python, and Swift can do these long multiplications, but
not without calling out to C or slipping into arbitrary-precision-integer code. The
other reason HalftimeHash avoids 64-bit multiplications is portability to SIMD
ISA extensions, which generally do not contain widening 64-bit multiplication.

1.2 Prior Almost-Universal Families

There are a number of fast hash algorithms that run at rates exceeding 8
bytes per cycle on modern x86-64 processors, including Fast Positive Hash,
falkhash, xxh, MeowHash, and UMASH, and clhash [26]. Of these, only clhash
and UMASH include claims of being AU; each of these uses finite fields and the
x86-64 instruction for carryless (polynomial) multiplication.

Rather than tree hashing, hash families like clhash and UMASH use polyno-
mial hashing (based on Horner’s method) to hash variable-length strings down to
fixed-size output. That approach requires 64-bit multiplication and also reduc-
tion modulo a prime (in Z or in Z2[x]), limiting its usability in SIMD ISA
extensions.

1.3 Outline

The rest of this paper is organized as follows: Sect. 3 covers prior work that
HalftimeHash builds upon. Section 4 introduces a new generalization of Nandi’s
“Encode, Hash, Combine” algorithm [20]. Section 5 discusses specific implemen-
tation choices in HalftimeHash to increase performance. Section 6 analyzes and
tests HalftimeHash’s performance.

1 https://github.com/jbapple/HalftimeHash.

https://github.com/jbapple/HalftimeHash

HalftimeHash: Modern Hashing Without 64-Bit Multipliers or Finite Fields 103

2 Notations and Conventions

Input string length n is measured in 32-bit words. “32-bit multiplication” means
multiplying two unsigned 32-bit words and producing a single 64-bit word. “64-
bit multiplication” similarly refers to the operation producing a 128-bit product.
All machine integers are unsigned.

Sequences are denoted by angled brackets: “〈”, “〉”, and � prepends a value
onto a sequence. Subscripts indicate a numbered component of a sequence, start-
ing at 0. Contiguous half-open subsequences are denoted “x[y, z)”, meaning
〈xy, xy+1, . . . , xz−1〉.

⊥ is a new symbol not otherwise in the alphabet of words.
In the definition of ε-almost universal, ε is called the collision probability of

H; it is inversely related to H’s output entropy, − lg ε. The seed is sometimes
referred as input entropy, which is distinguished from the output entropy both
because it is an explicit part of the input and because it is measured in words
or bytes, not bits.

Each step of HalftimeHash applies various transforms to groups of input
values. These groups are called instances. The processing of a transform on a
single instance is called an execution.

Instances are logically contiguous but physically strided, for the purpose of
simplifying SIMD processing. A physically contiguous set between two items in
a single instance is called a block; the number of words in a block is called the
block size. Because instances are logically contiguous, when possible, the analysis
will elide references to the block size.

Tree hashing examples use a hash family parameter H that takes two words
as input, but this can be easily extended to hash functions taking more than
two words of input, in much the same way that binary trees are a special case
of B-trees.

HalftimeHash produces output that is collision resistant among strings of the
same length. Adding collision resistance between strings of different lengths to
such a hash family requires only appending the length at the end of the output.

HalftimeHash variants will be specified by their number of output bytes:
HalftimeHash16, HalftimeHash24, HalftimeHash32, or HalftimeHash40.

Except where otherwise mentioned, all benchmarks were run on an Intel i7-
7800x (a Skylake X chip that supports AVX512), running Ubuntu 18.04, with
Clang++ 11.0.1.

3 Prior Work

This section reviews hashing constructions that form components of Halftime-
Hash. In order to put these in context, a broad outline of HalftimeHash is in order.

HalftimeHash can be thought of as a tree-based, recursively-defined hash
function. The leaves of the tree are the words of the unhashed input; the root is
the output value. Every internal node has multiple inputs and a single output,
corresponding with the child and parent nodes in the tree.

104 J. Apple

To a first approximation, a string is hashed by breaking it up into some
number of contiguous parts, hashing each part, then combining those hash values.
When the size of the input is low enough, rather than recurse, a construction
called “Encode, Hash, Combine” (or “EHC”) is used to hash the input.

3.1 Tree Hash

HalftimeHash’s structure is based on a tree-like hash as described by Carter and
Wegman [8, Section 3]. To hash a string, we use
lg n� randomly-selected keys
ki and a hash family H that hashes two words down to one. Then the tree hash
T of a string s[0, n) is defined recursively as:

T (k, 〈x〉) def
= x

T (k, s[0, n)) def
= H(k�lg n−1�, T (k, s[0, 2�lg n−1�)), T (k, s[2�lg n−1�, n)))

(1)

Carter and Wegman show that if H is ε-AU, T is mε-AU for input that has
length exactly 2m. Later, Boesgaard et al. extended this proof to strings with
lengths that are not a power of two [7].

3.2 NH

In HalftimeHash, NH, an almost-universal hash family, is used at the nodes of
tree hash to hash small, fixed-length sequences [6]:

m∑

i=0

(d2i + s2i)(d2i+1 + s2i+1)

where d, s ∈ Z
2m+2
232 are the input string and the input entropy, respectively. The

dj + sj additions are in the ring Z232 , while all other operations are in the ring
Z264 . NH is 2−32-AU. In fact, it satisfies a stronger property, 2−32-AΔU [6]:

Definition 1. A hash family H is said to be ε-almost Δ-universal (or just AΔU)
when

∀x, y, δ,Pr
s

[H(s, x) − H(s, y) = δ] ≤ ε ∈ o(1)

In tree nodes (though not in EHC, covered below), a variant of NH is used
in which the last input pair is not hashed, thereby increasing performance:

(
m−1∑

i=0

(d2i + s2i)(d2i+1 + s2i+1)

)
+ d2m + 232d2m+1

This hash family is still 2−32-AU [7].

HalftimeHash: Modern Hashing Without 64-Bit Multipliers or Finite Fields 105

3.3 Encode, Hash, Combine

At the leaves of the tree hash, HalftimeHash uses the “Encode, Hash, Combine”
algorithm [20]. EHC is parameterized by an erasure code with “minimum dis-
tance” k, which is a map on sequences of words such that any two input values
that differ in any location produce encoded outputs that differ in at least k > 1
locations after encoding.

The EHC algorithm is:

1. A sequence of words is processed by an erasure code with minimum distance
k, producing a longer encoded sequence.

2. Each word in the encoded sequence is hashed using an AΔU family with
independently and randomly chosen input entropy.

3. A linear transformation T is applied to the resulting sequence of hash values.
The codomain of T has dimension k, and T must have the property that any
k columns of it are linearly independent.

Nandi proved that if the EHC matrix product is over a finite field, EHC is εk-
AU. This AU collision probability could be achieved on the same input by instead
running k copies of NH, but that would perform mk multiplications to hash m
words, while EHC requires m + k multiplications, excluding the multiplications
implicit in applying T . That exclusion is the topic of Sect. 4.

4 Generalized EHC

At first glance, EHC might not look like it will reduce the number of multi-
plications needed, as the application of linear transformations usually requires
multiplication. However, since T is not part of the randomness of the hash fam-
ily, it can be designed to contain only values that are trivial to multiply by, such
as powers of 2.

The constraint in [20] requires that any k columns of T form an invertible
matrix. This is not feasible in linear transformations on Z264 in most useful
dimensions. For instance, in HalftimeHash24, a 3×9 matrix T is used. Any such
matrix will have at least one set of three columns with an even determinant, and
which therefore has a non-trivial kernel.

Proof. Let U be a matrix over Z2 formed by reducing each entry of T modulo
2. Then (det T) mod 2 ≡ det U . Since there are only 7 unique non-zero columns
of size 3 over Z2, by the pigeonhole principle, some two columns x, y of U must
be equal. Any set of columns that includes both x and y has a determinant of
0 mod 2. �

Let k be the minimum distance of the erasure code. While Nandi proved that
EHC is εk-AU over a finite field, Z264 is not a finite field. However, there are
similarities to a finite field, in that there are some elements in Z264 with inverses.
Some other elements in Z264 are zero divisors, but only have one value that they
can be multiplied by to produce 0. A variant of Nandi’s proof is presented here
as a warm-up to explain the similarities [20].

106 J. Apple

Lemma 1. When the matrix product is taken over a field, if the hash function
H used in step 2 is ε-AΔU, EHC is εk-AΔU.

Proof. Let H̄ be defined as H̄(s, x)i def
= H(si, xi). Let J be the encoding function

that acts on x and y, producing an encoding of length e. Given that x and y
differ, let F be k locations where J(x)i �= J(y)i. Let T |F be the matrix formed
by the columns of T where the column index is in F and let H̄|F similarly be H̄
restricted to the indices in F . Conditioning over the e − k indices not in F , we
want to bound

Pr
s

[T |F H̄|F (s, J(x)) − T |F H̄|F (s, J(y)) = δ] (2)

Since any k columns of T are independent, T |F is non-singular, and the equation
is equivalent to H̄|F (s, J(x)) − H̄|F (s, J(y)) = T |F −1

δ, which implies
∧

i∈F

H(si, J(x)i) − H(si, J(y)i) = βi

where β def
= T |F −1

δ.
Since the si are all chosen independently, the probability of the conjunction

is the product of the probabilities, showing

Prs[T |F H̄|F (s, J(x)) − T |F H̄|F (s, J(y)) = δ]
≤ ∏

i∈F Prs[H(si, J(x)i) − H(si, J(y)i) = βi]

and since H is AΔU, this probability is εk. �
Note that this lemma depends on k being the minimum distance of the code.

If the distance were less than k, then the matrix would be smaller, increasing
the probability of collisions.

In the non-field ring Z264 , the situation is altered. “Good” matrices are those
in which the determinant of any k columns is divisible only by a small power
of two. The intuition is that, since matrices in Z264 with odd determinants are
invertible, the “closer” a determinant is to odd (meaning it is not divisible by
large powers of two), the “closer” it is to invertible.

Theorem 1. Let p be the largest power of 2 that divides the determinant of any
k columns in T . The EHC step of HalftimeHash is 2k(p−32)-AΔU when using
NH as the hash family.

Proof. In HalftimeHash, the proof of the lemma above unravels at the reliance
upon the trivial kernel of T |F . The columns of T in HalftimeHash are linearly
independent, so the matrix T |F is injective in rings without zero dividers, but
not necessarily injective in Z264 .

However, even in Z264 , the adjugate matrix adj(A) has the property that
A · adj(A) = adj(A) · A = det(A)I. Let det(T |F) = q2p

′
, where q is odd and

p′ ≤ p. Now (2) reduces to

HalftimeHash: Modern Hashing Without 64-Bit Multipliers or Finite Fields 107

Prs[T |F H̄|F (s, x) − T |F H̄|F (s, y) = δ]
≤ Prs[adj(T |F)T |F H̄|F (s, x) − adj(T |F)T |F H̄|F (s, y) = adj(T |F)δ]
= Prs[q2p

′
H̄|F (s, x) − q2p

′
H̄|F (s, y) = adj(T |F)δ]

= Prs[2p
′
H̄|F (s, x) − 2p

′
H̄|F (s, y) = q−1 adj(T |F)δ]

Now letting β = q−1 adj(T |F)δ and letting the modulo operator extend point-
wise to vectors, we have

= Prs[H̄|F (s, x) − H̄|F (s, y) ≡ β mod 264−p′
]

= Prs
[∧

i∈F H(si, xi) − H(si, yi) ≡ βi mod 264−p′
]

=
∏

i∈F Prs
[
H(si, xi) − H(si, yi) ≡ βi mod 264−p′

]

=
(
2p

′
2−32

)|F |
= 2k(p

′−32)

This quantity is highest when p′ is at its maximum over all potential sets of
columns F , and p′ is at most p, by the definition of p. �

This generalized version of EHC is used in the implementation of Halftime-
Hash described in Sect. 5, with p ≤ 23.

5 Implementation

This section describes the specific implementation choices made in HalftimeHash
to ensure high output entropy and high performance. The algorithm performs
the following steps:

– Generalized EHC on instances of the unhashed input, producing 2, 3, 4, or 5
output words (of 64 bits each) per input instance

– 2, 3, 4, or 5 executions of tree hash (with independently and randomly cho-
sen input entropy) on the output of EHC, with NH at each internal node,
producing a sequence of words logarithmic in the length of the input string,
as described below in Eq. 3

– NH on the output of each tree hash, producing 16, 24, 32, or 40 bytes.

5.1 EHC

In addition to the trivial distance-2 erasure code of XOR’ing the words together
and appending that as an additional word, HalftimeHash uses non-linear erasure
codes discovered by Gabrielyan with minimum distance 3, 4, or 5 [14–16]. These
codes can be computed without ady multiplications.

For the linear transformations, HalftimeHash uses matrices T selected so that
the largest power of 2 that divides any determinant is 22 or 23. For instance, for
the HalftimeHash24 variant, T has a p of 22:

108 J. Apple

⎛

⎝
0 0 1 4 1 1 2 2 1
1 1 0 0 1 4 1 2 2
1 4 1 1 0 0 2 1 2

⎞

⎠

For other output widths, HalftimeHash uses

HalftimeHash16 HalftimeHash32 HalftimeHash40

T

(
1 0 1 1 2 1 4
0 1 1 2 1 4 1

)
⎛

⎜⎜⎝

0 0 0 1 1 4 2 4 1 1
0 1 2 0 0 1 1 2 4 1
2 0 1 0 4 0 1 1 1 1
1 1 0 1 0 0 4 1 2 8

⎞

⎟⎟⎠

⎛

⎜⎜⎜⎜⎝

1 0 0 0 0 1 1 2 4
0 1 0 0 0 1 2 1 7
0 0 1 0 0 1 3 8 5
0 0 0 1 0 1 4 9 8
0 0 0 0 1 1 5 3 9

⎞

⎟⎟⎟⎟⎠

p 22 23 23

The input group lengths for the EHC input are 6, 7, 7, and 5, as can be seen
from the dimensions of the matrices: columns+1− rows. Note that each of these
matrices contains coefficients that can be multiplied by with no more than two
shifts and one addition.

5.2 Tree Hash

For the tree hashing at internal nodes (above the leaf nodes, which use EHC),
k ∈ {2, 3, 4, 5} tree hashes are executed with independently-chosen input entropy,
producing output entropy of −k lg ε. From the result from Carter and Wegman
on the entropy of tree hash of a tree of height m, the resulting hash function is
mεk-AU.

The key lemma they need is that almost universality is compossable:

Lemma 2 (Carter and Wegman). If F is εF -AU, G is εG-AU, then

– F ◦ G where F ◦ G(〈kF , kG〉, x) def
= F (kF , G(kG, x)) is (εF + εG)-AU.

– 〈F,G〉 where 〈F,G〉(〈kF , kG〉, 〈x, y〉) def
= 〈F (kF , x), G(kG, y)〉, is max(εF , εG)-

AU, even if F = G and kF = kG.

The approach in Badger of using Eq. 1 to handle words that are not in perfect
trees can be increased in speed with the following method: For HalftimeHash,
define T̂ as a family taking as input sequences of any length n and producing
sequences of length
lg n� as follows, using Carter and Wegman’s T defined in
Sect. 3:

T̂0(k, 〈〉) def
= 〈⊥〉

T̂0(k, 〈x〉) def
= 〈x〉

T̂i+1(k, s[0, n)) def
=

{
⊥ � T̂i(k, s[0, n)) if 2i > n

T (k, s[0, 2i))) � T̂i(k, s[2i, n)) if 2i ≤ n

(3)

There is one execution of T for every 1 in the binary representation of n. By
an induction on
lg n� using the composition lemma, T̂ is ε
lg n�-AU.

HalftimeHash: Modern Hashing Without 64-Bit Multipliers or Finite Fields 109

The output of T̂ is then hashed using an NH instance of size
lg n�. This
differs from Badger, where T is used to fully consume the input without the use of
additional input entropy; T produces a single word per execution, while T̂ needs
to be paired with NH post-processing in order to achieve that [7]. Empirically,
T̂ has better performance than the Badger approach.

6 Performance

This section tests and analyzes HalftimeHash performance, including an analysis
of the output entropy.

6.1 Analysis

The parameters used in this analysis are:

b the number of 64-bit words in a block. Blocks are used to take advantage of
SIMD units.

d is the number of elements in each EHC instance before applying the encoding.
e is the number of blocks in EHC after applying the encoding.
f is fanout, the width of the NH instance at tree hash nodes.
k is the number of blocks produced by the Combine step of EHC. This is also

the minimum distance of the erasure code, as described above.
p is the maximum power of 2 that divides a determinant of any k × k matrix

made from columns of the matrix T ; doubling p increases ε by a factor of
2k.

w is the number of blocks in each item used in the Encode step of EHC.

In HalftimeHash24,

(b, d, e, f, k, p, w) = (8, 7, 9, 8, 3, 22, 3)

Each EHC execution reads in dw blocks, produces e blocks, uses ew words
of input entropy, and performs ew multiplications.

For the tree hash portion of HalftimeHash, the height of the k trees drives
multiple metrics. Each tree has �n/bdw� blocks as input and every level exe-
cution forms a complete f -ary execution tree. The height of the tree is thus
h def

=

⌊
logf�n/bdw�⌋.

Lemma 3. The tree hash is 2k lg h−32k-AU.

Proof. Carter and Wegman showed that tree hash has collision probability of hε,
where ε is the collision probability of a single node. Each tree node uses NH, so
a single tree has collision probability h2−32. A collision occurs for HalftimeHash
at the tree hash stage if and only if all k trees collide, which has probability(
h2−32

)k, assuming that the EHC step didn’t already induce a collision. �

110 J. Apple

The amount of input entropy needed is proportional to the height of the
tree, with f − 1 words needed for every level. HalftimeHash uses different input
entropy for the k different trees, so the total number of 64-bit words of input
entropy used in the tree hash step is (f − 1)hk.

The number of multiplications performed is identical to the number of 64-bit
words input, kb�n/bdw�.

The result of the tree hash is processed through NH, which uses bfhk words
of entropy and just as many multiplications.

There can also be as much as bdw words of data in the raw input that are
not read by HalftimeHash, as they are less than the input size of one instance
of EHC. Again, NH is used on this data, but now hashing k times, since this
data has not gone through EHC. That requires bdwk words of entropy and just
as many multiplications.

For this previously-unread data, the number of words of entropy needed can
be reduced by nearly a factor of k using the Toeplitz construction. Let r be the
sequence of random words used to hash it. Instead of using r[ibdw, (i + 1)bdw)
as the keys to hash component i with, HalftimeHash uses r[i, bdw + i). This
construction for multi-part hash output is AΔU [20,27].

6.2 Cumulative Analysis

The combined collision probability is 2−32k
(
2kp + hk + 1

)
. For HalftimeHash24,

and for strings less than an exabyte in length, this is more than 83 bits of entropy.
The combined input entropy needed (in words) is ew + (f − 1)hk + bfhk +

bdw + k − 1 HalftimeHash24 requires 8.4 KB input entropy for strings of length
up to one megabyte and 34KB entropy for strings of length up to one exabyte.

The number of multiplications is dominated by the EHC step, since the total
is (ew+k)b�n/bdw�+O(log n) and ew is significantly larger than k. For a string of
length 1MB, 84% of the multiplications happen in the EHC step. Intel’s VTune
tool show the same thing: 86% of the clock cycles are spent in the EHC step.2

6.3 Benchmarks

HalftimeHash passes all correctness and randomness tests in the SMHasher test
suite; for a performance comparison, see Fig. 1 and [26].

Figure 2 displays the relationship between output entropy and throughput
for HalftimeHash, UMASH, and clhash.3 Adding more output entropy increases
the number of non-linear arithmetic operations that any hash function has to
perform [20]. The avoidance of doubling the number of multiplications for twice
the output size is one of the primary reasons that HalftimeHash24, -32, and -40
are faster than running clhash or UMASH with 128-bit output. (The other is
that carryless multiplication is not supported as a SIMD instruction.)

2 Similarly, clhash and UMASH, which are based on 64-bit carryless NH, have their
execution times dominated by the multiplications in their base step [17,19].

3 UMASH and clhash are the fastest AU families for string hashing.

HalftimeHash: Modern Hashing Without 64-Bit Multipliers or Finite Fields 111

 0
 2
 4
 6
 8

 10
 12
 14
 16
 18

clhash

Halftim
eHash40

M
eowHash128

xxh128

xxh3

Halftim
eHash32

t1ha0_aes_avx2
falkhash
Halftim

eHash24
Halftim

eHash16
by

te
s p

er
 c

yc
le

SMhasher speed tests (higher is better)

Fig. 1. The two fastest variants of HalftimeHash are faster than all hash families in
the SMHasher suite on 256 KiB strings on an i7-7800x, even families that come with
no AU guarantees [26]. Of the families here, only HalftimeHash and xxh128 pass all
SMHasher tests, and only HalftimeHash and clhash are AU.

 10

 20

 30

 40

 50

 60

 70

20 40 60 80 100

120

140

160
by

te
s p

er
 n

an
os

ec
on

d

output entropy

Output entropy vs. B/ns (upper right is better)

HalftimeHash32

HalftimeHash24
HalftimeHash16

HalftimeHash40

UMASH_128

UMASH_64

clhash

clhash (twice)

Fig. 2. Trade-offs for almost-universal string hashing functions on strings of size 250 KB
on an i7-7800x. UMASH comes in two variants based on the output width in bits; clhash
doesn’t, but running clhash twice is included in the chart. For each clhash/UMASH
version, at least one version of HalftimeHash is faster and has lower collision probability.

Figure 3 adds comparisons between clhash, UMASH, and HalftimeHash
across input sizes and processor manufacturers. Although these two machines
support different ISA vector extensions, the pattern is similar: for large enough
input, HalftimeHash’s throughput exceeds that of the carryless multiplication
families.

112 J. Apple

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

10 0
10 1
10 2
10 3
10 4
10 5
10 6

by
te

s p
er

 n
an

os
ec

on
d

input length in bytes

i7-7800x speed (higher is better)

HalftimeHash24
clhash
umash

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

10 0
10 1
10 2
10 3
10 4
10 5
10 6

input length in bytes

7R32 speed (higher is better)

HalftimeHash24v3
clhash
umash

Fig. 3. Comparison of Intel (i7-7800x) and AMD (EC2 c5a.large, 7R32) performance.
On both chips HalftimeHash24 is faster than clhash and UMASH for long strings. The
“v3” after the name of the AMD HalftimeHash indicates block size: v3 means a 256-bit
block size, while v4 (the default) means 512-bit block size. AMD chips do not support
AVX-512, but still HalftimeHash with 256-bit blocks exceeds the speed of clmul-based
hashing methods by up to a factor of 2.

7 Future Work

Areas of future research include:

– Tuning for JavaScript, which has no native 32-bit multiplication support, as
it natively supports only double-precision floating point numbers

– Comparisons against hash algorithms in the Linux kernel, including Poly1305
and crc32 pclmul le 16

– Benchmarks on POWER and ARM ISA’s
– EHC benchmarks using 64-bit multiplication – carryless or integral.

Acknowledgments. Thanks to Daniel Lemire, Paul Khuong, and Guy Even for help-
ful discussions and feedback.

References

1. Alon, N., Dietzfelbinger, M., Miltersen, P.B., Petrank, E., Tardos, G.: Linear hash
functions. J. ACM 46(5), 667–683 (1999). https://doi.org/10.1145/324133.324179

2. Apple, J.: Ensure monotonic count (distinct x) performance (2015). https://issues.
apache.org/jira/browse/IMPALA-2653. Accessed 22 Dec 2020

3. Aumasson, J.P., Bernstein, D.J.: SipHash: a fast short-input PRF. In: Galbraith,
S., Nandi, M. (eds.) INDOCRYPT 2012. LNCS, vol. 7668, pp. 489–508. Springer,
Heidelberg (2012). https://doi.org/10.1007/978-3-642-34931-7 28

https://doi.org/10.1145/324133.324179
https://issues.apache.org/jira/browse/IMPALA-2653
https://issues.apache.org/jira/browse/IMPALA-2653
https://doi.org/10.1007/978-3-642-34931-7_28

HalftimeHash: Modern Hashing Without 64-Bit Multipliers or Finite Fields 113

4. Bernstein, D.J.: The Poly1305-AES message-authentication code. In: Gilbert, H.,
Handschuh, H. (eds.) FSE 2005. LNCS, vol. 3557, pp. 32–49. Springer, Heidelberg
(2005). https://doi.org/10.1007/11502760 3

5. Bernstein, D.J.: Cryptography in NaCl. Network. Cryptogr. Libr. 3, 385 (2009)
6. Black, J., Halevi, S., Krawczyk, H., Krovetz, T., Rogaway, P.: UMAC: fast and

secure message authentication. In: Wiener, M. (ed.) CRYPTO 1999. LNCS, vol.
1666, pp. 216–233. Springer, Heidelberg (1999). https://doi.org/10.1007/3-540-
48405-1 14

7. Boesgaard, M., Christensen, T., Zenner, E.: Badger - a fast and provably secure
MAC. In: Ioannidis, J., Keromytis, A., Yung, M. (eds.) ACNS 2005. LNCS,
vol. 3531, pp. 176–191. Springer, Heidelberg (2005). https://doi.org/10.1007/
11496137 13

8. Carter, J.L., Wegman, M.N.: Universal classes of hash functions. J. Comput.
Syst. Sci. 18(2), 143–154 (1979). http://www.sciencedirect.com/science/article/
pii/0022000079900448

9. Chung, K.M., Mitzenmacher, M., Vadhan, S.: Why simple hash functions work:
exploiting the entropy in a data stream. Theory Comput. 9(30), 897–945 (2013).
http://www.theoryofcomputing.org/articles/v009a030

10. Crosby, S.A., Wallach, D.S.: Denial of service via algorithmic complexity attacks.
In: Proceedings of the 12th USENIX Security Symposium, pp. 29–44 (2003)

11. Dietzfelbinger, M.: Universal hashing via integer arithmetic without primes, revis-
ited. In: Böckenhauer, H.J., Komm, D., Unger, W. (eds.) Adventures Between
Lower Bounds and Higher Altitudes. LNCS, vol. 11011, pp. 257–279. Springer,
Cham (2018). https://doi.org/10.1007/978-3-319-98355-4 15

12. Dietzfelbinger, M., Hagerup, T., Katajainen, J., Penttonen, M.: A reliable random-
ized algorithm for the closest-pair problem. J. Algorithms 25(1), 19–51 (1997)

13. Dodis, Y., Ostrovsky, R., Reyzin, L., Smith, A.: Fuzzy extractors: how to generate
strong keys from biometrics and other noisy data. SIAM J. Comput. 38(1), 97–139
(2008). https://doi.org/10.1137/060651380

14. Gabrielyan, E.: Erasure resilient (10,7) code (2005). https://docs.switzernet.com/
people/emin-gabrielyan/051102-erasure-10-7-resilient/. Accessed 26 Nov 2020

15. Gabrielyan, E.: Erasure resilient MDS code with four redundant packets
(2005). https://docs.switzernet.com/people/emin-gabrielyan/051103-erasure-9-5-
resilient/. Accessed 26 Nov 2020

16. Gabrielyan, E.: Erausre resulient (9,7)-code (2005). https://docs.switzernet.com/
people/emin-gabrielyan/051101-erasure-9-7-resilient/. Accessed 26 Nov 2020

17. Khuong, P.: UMASH: a fast and universal enough hash (2020). https://engineering.
backtrace.io/2020-08-24-umash-fast-enough-almost-universal-fingerprinting/

18. Landau, J.: Exposure of HashMap iteration order allows for O(n2) blowup (2016).
https://github.com/rust-lang/rust/issues/36481. Accessed 22 Dec 2020

19. Lemire, D., Kaser, O.: Faster 64-bit universal hashing using carry-less multipli-
cations. J. Cryptogr. Eng. 6(3), 171–185 (2015). https://doi.org/10.1007/s13389-
015-0110-5

20. Nandi, M.: On the minimum number of multiplications necessary for universal
hash functions. In: Cid, C., Rechberger, C. (eds.) FSE 2014. LNCS, vol. 8540, pp.
489–508. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-46706-
0 25

21. Pagh, R., Rodler, F.F.: Cuckoo hashing. J. Algorithms 51(2), 122–144 (2004).
http://www.sciencedirect.com/science/article/pii/S0196677403001925

https://doi.org/10.1007/11502760_3
https://doi.org/10.1007/3-540-48405-1_14
https://doi.org/10.1007/3-540-48405-1_14
https://doi.org/10.1007/11496137_13
https://doi.org/10.1007/11496137_13
http://www.sciencedirect.com/science/article/pii/0022000079900448
http://www.sciencedirect.com/science/article/pii/0022000079900448
http://www.theoryofcomputing.org/articles/v009a030
https://doi.org/10.1007/978-3-319-98355-4_15
https://doi.org/10.1137/060651380
https://docs.switzernet.com/people/emin-gabrielyan/051102-erasure-10-7-resilient/
https://docs.switzernet.com/people/emin-gabrielyan/051102-erasure-10-7-resilient/
https://docs.switzernet.com/people/emin-gabrielyan/051103-erasure-9-5-resilient/
https://docs.switzernet.com/people/emin-gabrielyan/051103-erasure-9-5-resilient/
https://docs.switzernet.com/people/emin-gabrielyan/051101-erasure-9-7-resilient/
https://docs.switzernet.com/people/emin-gabrielyan/051101-erasure-9-7-resilient/
https://engineering.backtrace.io/2020-08-24-umash-fast-enough-almost-universal-fingerprinting/
https://engineering.backtrace.io/2020-08-24-umash-fast-enough-almost-universal-fingerprinting/
https://github.com/rust-lang/rust/issues/36481
https://doi.org/10.1007/s13389-015-0110-5
https://doi.org/10.1007/s13389-015-0110-5
https://doi.org/10.1007/978-3-662-46706-0_25
https://doi.org/10.1007/978-3-662-46706-0_25
http://www.sciencedirect.com/science/article/pii/S0196677403001925

114 J. Apple

22. Renner, R., König, R.: Universally composable privacy amplification against quan-
tum adversaries. In: Kilian, J. (ed.) TCC 2005. LNCS, vol. 3378, pp. 407–425.
Springer, Heidelberg (2005). https://doi.org/10.1007/978-3-540-30576-7 22

23. Stoica, I., Morris, R., Karger, D., Kaashoek, M.F., Balakrishnan, H.: Chord: a
scalable peer-to-peer lookup service for internet applications. ACM SIGCOMM
Comput. Commun. Rev. 31(4), 149–160 (2001)

24. Thorup, M.: String hashing for linear probing, pp. 655–664. Society for Indus-
trial and Applied Mathematics (2009). https://epubs.siam.org/doi/abs/10.1137/
1.9781611973068.72

25. Thorup, M.: Fast and powerful hashing using tabulation. CoRR abs/1505.01523
(2017). http://arxiv.org/abs/1505.01523

26. Urban, R., et al.: Smhasher (2020). https://github.com/rurban/smhasher
27. Woelfel, P.: Efficient strongly universal and optimally universal hashing. In: Kuty-

owski, M., Pacholski, L., Wierzbicki, T. (eds.) MFCS 1999. LNCS, vol. 1672, pp.
262–272. Springer, Heidelberg (1999). https://doi.org/10.1007/3-540-48340-3 24

https://doi.org/10.1007/978-3-540-30576-7_22
https://epubs.siam.org/doi/abs/10.1137/1.9781611973068.72
https://epubs.siam.org/doi/abs/10.1137/1.9781611973068.72
http://arxiv.org/abs/1505.01523
https://github.com/rurban/smhasher
https://doi.org/10.1007/3-540-48340-3_24

Generalized Disk Graphs

Ívar Marrow Arnþórsson1, Steven Chaplick2, Jökull Snær Gylfason1,

Magnús M. Halldórsson1, Jökull Máni Reynisson1, and Tigran Tonoyan3(B)

1 Reykjavík University, Reykjavík, Iceland
{ivara16,jokull17,mmh,jokull16}@ru.is

2 Maastricht University, Maastricht, The Netherlands
s.chaplick@maastrichtuniversity.nl

3 Technion, Haifa, Israel

Abstract. A graph G is a Generalized Disk Graph if for some dimen-
sion η ≥ 1, a non-decreasing sub-linear function f and natural num-
ber t, each vertex vi can be assigned a length li and set Pi ⊆ R

η

of t points such that vivj is an edge of G if and only if li ≤ lj and
d(Pi, Pj) ≤ lif(lj/li) + lif(1), where d(·, ·) is the least distance between
points in either set. Generalized disk graphs were introduced as a model
of wireless network interference and have been shown to be dramatically
more accurate than disk graphs or other previously known graph classes.
However, their properties have not been studied extensively before.

We give a geometric representation of these graphs as intersection
graphs of convex shapes, relate them to other geometric intersection
graph classes, and solve several important optimization problems on
these graphs using the geometric representation; either exactly (in two-
dimensions) or approximately (in higher dimensions).

Keywords: Conflict graph · SINR model · Intersection graph

1 Introduction

The efficient use of wireless networks requires effective scheduling of its com-
munication links. A clean approach is to model the wireless interference as a
graph relation and to solve the corresponding scheduling problems – such as the
minimum coloring problem or the maximum weighted independent set problem
– in the graphs. The most natural graph formulation is to model each link in
the plane by a two-dimensional disk of radius proportional to the power used.
However, it is well known that such a formulation is a poor representation of
reality, at least in a worst-case sense. Such limitations remain for any formula-
tion involving fixed-sized 2-dimensional objects. A more faithful representation
of wireless interference is the physical (or SINR) model, that models interfer-
ence as a (geometrically defined) hypergraph. This, however, brings with it added

Work supported by grant 174484-051 from Icelandic Research Fund and grant 208348-
0091 from Icelandic Student Innovation Fund.
c© Springer Nature Switzerland AG 2021
A. Lubiw et al. (Eds.): WADS 2021, LNCS 12808, pp. 115–128, 2021.
https://doi.org/10.1007/978-3-030-83508-8_9

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-83508-8_9&domain=pdf
https://doi.org/10.1007/978-3-030-83508-8_9

116 Í. M. Arnþórsson et al.

complications, since few optimization tools are available in hypergraph settings.
Having a graph-based formulation is preferable for many reasons: simplicity, ease
of analysis, and availability of effective algorithms.

A new graph class was proposed in [13] to better represent interference between
wireless links. Whereas the adjacency predicate in disk graphs is a linear combi-
nation of the lengths li, lj of the two links, it is here generalized to involve a func-
tion of the relative link lengths lif(lj/li) (when li < lj), where f is a function
parameter. This formulation attains a much greater fidelity to the SINR model
than previously known, resulting in greatly improved approximation algorithms
for the underlying wireless optimization problems in the SINR model.

Specifically, we say that a graph formulation properly represents a set of
wireless links if any feasible subset of links (links whose transmissions can be
correctly decoded under the SINR rules, when they transmit simultaneously)
correctly forms an independent set in the graph. It is then a conservative repre-
sentation: a coloring of the graph yields a valid TDMA (time-division multiplexed
access) schedule of the wireless links. To capture how well the graph formulation
works, we define its performance gap as the size of the largest clique in the graph
whose corresponding links form a feasible set (in worst case, over all instances).
The performance gap then indicates the worst-case slowdown that the optimal
coloring of the graph has over the optimal TDMA schedule. Applying an approx-
imation algorithm on the graph then yields another factor of slowdown.

Disk graph formulations have a performance gap proportional to Λ [19], the
length diversity of the link set, or the number of different link lengths (rounded
to powers of 2). In contrast, the graph class of [13] has a performance gap
of only Θ(log∗ Λ), for an appropriately chosen function f . This results in the
only sublinear approximation factors (in terms of Λ) known for a wide range of
wireless scheduling problems and settings (see [4] for generalizations). Given the
dominant status of this new graph class, it is natural to ask about its fundamental
graph-theoretic properties and its relationship with other known classes.

The challenge of these generalized disk graphs (GDG), as we call them, over
the geometric graph classes, is the increased level of abstraction, making rea-
soning and design of optimization algorithms more challenging. It is therefore
an intriguing question if these graphs can be reformulated as geometric intersec-
tion graphs. Doing so would likely allow the placement of these graphs into the
broader zoo of classes of geometric intersection graphs and unlock the potential
to reuse many algorithmic results concerning optimization problems therein.

Our Results. We show that generalized disk graphs can indeed be represented
as intersection graphs of convex geometric objects, by moving to the one higher
dimension. This holds under modest restrictions on the functions used, covering
the ones treated in [13]. In fact, the objects are fat, which allows us to imme-
diately apply some known algorithms, and are grounded, i.e., the additional
dimension is only used to give the “height” of the objects.

In particular, Chan’s [7] polynomial-time approximation scheme (PTAS) for
maximum weighted independent set problem (MWIS) carries over to GDGs.
Moreover, we show that the dependence on the dimension in the time

Generalized Disk Graphs 117

complexity can be reduced by using the fact that the objects are grounded. We
also show that the result holds as well for an extension where each object consists
of multiple nearby fat pieces (Theorem 4). This implies an improvement in the con-
stant factor of the approximation ratio of [13] for the key problem of Maximum
Weighted Independent Set of Links in the SINR model, a problem that underlies
the solution methods for the vast majority of wireless scheduling problems [4].
This algorithm necessarily requires knowledge of the geometric representation.

We initiate a study of the structural and algorithmic properties of GDGs,
with a particular focus on one-dimensional GDGs (represented in 2-D), namely
when the nodes are embedded in a line. We relate 1-D GDGs to other classes
of geometric intersection graphs, showing that they properly contain interval
graphs, are properly contained in outerstring graphs [18], but are incomparable
to max-point tolerance graphs [5,21], another class of grounded convex objects.
We show that two core optimization problems can be solved exactly in polyno-
mial time in 1-D when given the representation: maximum clique and maximum
weight independent sets.

We also derive structural properties of general GDGs with implications
to optimization problems: k-simpliciality and k-inductive independence. Our
bounds improve on the (more general) bounds of [13] and match those of ordi-
nary disk graphs. This leads to graph coloring approximations that match the
best results known for disk graphs. Overall, we find GDGs to be a rich class,
with a number of combinatorially desirable properties.

Related Work. GDGs were introduced in [13] to model wireless network interfer-
ence, with the modeling extended in [4]. Adding another dimension to capture
SINR effects has been successfully applied in [16] and [3] in different scenarios
without links or explicit receivers.

In [12] an approximation scheme is given for MWIS of disks, which can be
extended to higher dimensions and applies to the graphs we consider in this
paper. However, a similar method given in [6], which is better suited to our
graphs, implies a PTAS for MWIS of fat objects in arbitrary dimensions. We are
able to project the intersection of the geometric shapes of our graphs to get fat
objects and get improved time complexity for our graphs.

In [17] a polynomial-time algorithm for the independent set on outerstring
graphs is given with time complexity O(N3), where N is the number of line
segments needed to represent all strings in total. Since GDGs on one-dimensional
point sets are indeed outerstring graphs, this result holds for them also. However,
for the functions we study, a naive representation of the n-vertex graphs would
involve N ∈ Ω(n2) segments, resulting in a higher complexity than we obtain.

A related graph class is the set of the max point-tolerance graphs (MPT),
which are the intersection graphs of intervals with an assigned point, such that
two nodes are adjacent when the intersection of the corresponding intervals
includes the point of both intervals. These have been shown to be equivalent
to L-shapes grounded on a line with negative slopes [5]. In the same paper,
the class of interval graphs was shown to be a subclass and a polynomial time
algorithm for MWIS was given.

118 Í. M. Arnþórsson et al.

Notation and Definitions. We use V (G) and E(G) to denote the vertex set and
edge set of graph G, respectively. The open (closed) neighborhood of a vertex v
in G is denoted by NG(v) (NG[v]), and with the subscript omitted when clear
from the context.

A function f is sub-linear if f(x) = o(x). For a tuple x = (x1, . . . , xd) ∈ R
η

and z ∈ R, we use x ◦ z = (x1, . . . , xd, z) ∈ R
η+1 to denote their concatenation.

Let d(x, y) denote the Euclidean distance between (points) x and y.
For ease of discussion, we use the term cone to refer to a right spherical cone

of any dimension. For example, a 2-dimensional cone is an equilateral triangle, a
3-dimensional cone is a finite right circular cone, a 4-dimensional cone is a finite
right spherical cone, and so on.

2 Geometric Representation

Each vertex vi in a Generalized Disk Graph (GDG) has an associated length
li and a set Pi ⊂ R

η of t points. The adjacency of two vertices depends on
a function f , and therefore the class is parameterized by the dimension η, the
cardinality t of the point sets Pi and the function f . We begin by defining the
class of Generalized Disk Graphs given these parameters and then show that
such a graph can be represented as a geometric intersection graph where each
vertex is associated with t cone-like objects we call f -cones.

Definition 1. Let η, t ≥ 1 be integers and f : R+ → R+ be a non-negative sub-
linear function. The family GDGη,t

f consists of graphs G = (V,E) where it is
possible to associate a set Pi = {pi1 , . . . , pit

} ⊂ R
η and a length li to each vertex

vi ∈ V , such that for every pair vi, vj ∈ V of vertices, vi and vj, with li ≤ lj,
are adjacent in G if and only if

dij ≤ li · f (lj/li) + li · f(1) ,

where dij = min{d(pik
, pjk′) | 1 ≤ k, k′ ≤ t}. If t = 1, we let pi = pi1 .

Note that there is slight difference between the definition above and that in [13],
but they are equivalent modulo transformation g(x) = f(x) + 1. Observe that
when f is the identity function f(x) = x, GDG1,1

f corresponds to interval graphs
and GDG2,1

f corresponds to disk graphs1. As we shall see, the constant function
f(x) = 1 leads to a graph class that is a known subclass of the MPT graphs.

We now define the (η + 1)-dimensional body we associate with each vertex.

Definition 2. Let G ∈ GDGη,t
f . For each vertex vi, let gi(x) = x · f(li/x), and

let Ci = {Ci1 , . . . , Cit
} be the set of f -cones associated with vi and given by

Cik
= {x ◦ h | x ∈ R

η, d(pik
,x) ≤ gi(h), 0 ≤ h ≤ li} .

1 We sometimes consider f(x) = x as an example; it is not sublinear but it satisfies
all important properties we need (e.g., it is grounded w.r.t. hyperplane h = 1).

Generalized Disk Graphs 119

Observe that in the definition, gi(0) = 0 · fi(li/0) = limx→0 x · fi(li/x) = 0,
is well-defined, since we have f(x) = o(x).

We sometimes refer to the h coordinate as the height. If t = 1, there is
only one f -cone, and we denote it by Ci. The sets Ci and Cj intersect when
(
⋃

C∈Ci
C) ∩ (

⋃
C′∈Cj

C ′) 	= ∅. We require three properties for the set C of f -
cones associated with a graph G ∈ GDGη,t

f :

1. Grounded. The set C is grounded if every cone in C intersects the hyperplane
Z0 = {x ◦ 0 | x ∈ R

η}, and for every point x ◦ h ∈ C, we have h ≥ 0. We
assume that f is non-negative and sub-linear, in which case C is grounded.
Moreover, pik

∈ Z0, for all i, k.
2. Convex. We require that each cone Cik

in C is a convex body. It is easy to
see that this requirement is satisfied when gi is a concave function on [0,∞),
for every i. We assume that f is concave and twice differentiable on [0,∞),
in which case gi is concave for x ≥ 0, since g′′

i (x) = (l2i /x3)f ′′(li/x), and it
is well-known that for every twice-differentiable concave function, its second
derivative is non-positive.

3. Expanding. The cones in C are expanding if each gi is non-decreasing.
Geometrically, this means that for each cone Cik

, the η-dimensional balls
Cik

∩ Zh, where Zh = {x ◦ h | x ∈ R
η}, have diameter that does

not decrease with increasing height h. The previous conditions – non-
negativity, concavity, and differentiability of f – give us non-decreasing gi.
Since g′

i(x) = f(li/x) − (li/x)f ′(li/x), we have non-decreasing gi when
f(x) ≥ x · f ′(x). It is well known that for any concave differentiable func-
tion f , f(x) ≥ f(y) + f ′(x)(x − y) for all x, y in its domain. This gives us
f(x) ≥ f(0) + f ′(x) · x ≥ x · f ′(x).

For the geometric representation of a graph G ∈ GDGη,t
f to fit these condi-

tions, it is then sufficient that f is a non-negative, concave, twice-differentiable
function. In the rest of the paper we assume that every f satisfies these condi-
tions, i.e., is well-behaved. Observe that the key functions used in [13], f(x) = xδ,
for δ ∈ [0, 1], and f(x) = log(x + 1) of any base, satisfy these criteria.

As noted above, when the f -cones of G satisfy these conditions, the intersec-
tion of the height-x hyperplane Zx and an f -cone induces a η-dimensional ball
(while the cone is (η + 1)-dimensional). We will show that the intersection of a
pair of sets Ci and Cj can be determined by considering this set of balls, and
hence the adjacency of two vertices in a GDG can be determined by considering
the corresponding vertices in the induced ball graph. We define these objects for
future reference.

Definition 3. Let G ∈ GDGη,t
f , and vi ∈ V (G). We let Dx

i (G) = Zx ∩ Ci

denote the set of balls at height x associated with vertex vi. We also let Dx(G) =⋃
vi∈V (G) Dx

i (G). When clear from the context, we drop G and write Dx, Dx
i .

Lemma 1. Let G ∈ GDGη,t
f , and let vi, vj ∈ V (G) be vertices in G with li ≤ lj.

It holds that Ci and Cj intersect iff Dli
i and Dli

j intersect.

120 Í. M. Arnþórsson et al.

Fig. 1. Left: illustration of Definition 3; each plane Zx induces a set of balls. Right:
intersection of two f -cones is determined by the smaller height.

Proof. The sets Ci and Cj intersect iff Dx
i and Dx

j intersect for some x. It is clear
that x ≤ li, since otherwise Dx

i = ∅. Since x ≤ li and the f -cones are expanding,
it follows that Dx

i and Dx
j intersect iff Dli

i and Dli
j intersect (see Fig. 1).

With these preliminaries at hand, we are ready to prove the following represen-
tation theorem.

Theorem 1. Each graph G in GDGη,t
f is the intersection graph of t-tuples of

f-cones in R
η+1.

Proof. Let G ∈ GDGη,t
f , and vi, vj ∈ V (G) be such that li ≤ lj . By Lemma

1, the intersection of Ci and Cj is determined by the set of balls Dli
i ∪ Dli

j . Let
Di ∈ Dli

i and Dj ∈ Dli
j be the balls with the minimum distance of all such pairs.

The radii ri of Di and rj of Dj are by definition gi(li) and gj(li), respectively.
Hence Di and Dj intersect iff di,j ≤ rj + ri = gj(li)+ gi(li) = lif(lj/li)+ lif(1).
This shows that Ci and Cj intersect iff vi and vj are adjacent in G.

If f is a homomorphism, i.e., f(x1 · x2) = f(x1)f(x2) for all x1, x2, then the
conditions for geometric representation are greatly simplified. We then require
only that f is non-negative, non-decreasing, and sub-linear. By defining the
geometric sets differently (letting the height vary instead of the width) we can
represent the vertices as sets of (η + 1)-dimensional (ordinary) cones satisfying
all the required properties. We show this in the next theorem.

Theorem 2. Let G ∈ GDGη,t
f . If f(a · b) = f(a) · f(b) then we can represent

G geometrically by associating each vertex vi with the set �i = {�i1 , . . . ,�it
} of

cones where

�ik
= {x ◦ h | x ∈ R

η, d(pik
,x) ≤ h · f(li), 0 ≤ h ≤ li/f(li)}.

Proof. The proof is similar to that of Theorem 1. Let vi, vj ∈ V (G), with li ≤ lj .
Since f is a homomorphism, the two closest cones of vi and vj intersect iff
di,j ≤ lif(li)/f(li)+ li

f(li)
f(lj) = lif(1)+ lif(lj/li), i.e., iff vi, vj is an edge in G.

We prefer to use this representation when dealing with f(x) = xδ in partic-
ular. When t = 1 we write �i instead of �i1 .

Generalized Disk Graphs 121

Several interesting properties of GDG representations can be obtained; e.g.,
they are invariant under scaling, and closed under stretching. Due to lack of
space, we omit their routine and somewhat technical proofs. We conclude this
section with an important property that relies on them.

A well studied geometric property is the concept of fatness. A non-trivial
number of geometric algorithms require or work faster for fat objects. Definitions
of fatness vary between applications and many different definitions exist, but
they are often equivalent for convex objects; see [1,2,22] or the large number
of citations in [10] for a variety of flavors of fatness. Commonly, an object is
considered R-fat for R ≥ 1 if its slimness factor is at most R. A natural definition
of the slimness factor is the ratio between the side length of the smallest enclosing
hypercube of the object and the side length of the largest enclosed hypercube.
Using this definition, the closer the object is to having a slimness factor of 1 the
“fatter” it is. We show that f -cones have a bounded slimness factor and thus
benefit from many algorithms that exploit this property.

Lemma 2. For every G ∈ GDGη,t
f , there is an isomorphic graph G′ ∈ GDGη,t

f̂

with a geometric representation by f̂-cones with slimness factor at most 1+√
η.

Proof. Let G ∈ GDGd
f . By the stretching/scaling invariance mentioned above,

there is an isomorphic graph G′ with f̂(x) = f(x)
2f(1) such that all vertices

vi ∈ V (G′) have gi(li) = li
2 . Each f̂ -cone in Ci is contained in a hypercube

of side length li. Since each such f̂ -cone is convex it in turn contains a (η + 1)-
dimensional cone of length li and diameter li. Hence, it is sufficient to consider the
case where f̂ is a constant function and thus each f̂ -cone is a (η+1)-dimensional
cone. Consider a vertex vi and assume (without loss of generality) that li = 1.
Let s ∈ [0, 1]. Let C be a cone in Ci. Bs = C ∩ Zs is a η-dimensional ball of
diameter s. Ball Bs contains a η-dimensional hypercube with diagonal s and
side length s/

√
η (by Euclidean distance in R

η). This implies that C contains
a (η + 1)-dimensional hypercube of side length min(1 − s, s/

√
η). The latter is

maximized by s =
√

η

1+
√

η , showing that C contains a hypercube of side length
1

1+
√

η , and has slimness factor at most 1 +
√

η (Fig. 2).

Fig. 2. On the left, we stretch a cone to fit the box completely. The figure on the right
shows that the ratio between the enclosing and inscribed boxes is constant.

122 Í. M. Arnþórsson et al.

3 Approximation Scheme for Weighted Independent Sets

Recall that the in the maximum weighted independent set (MWIS) problem, we
are given a graph G together with a positive weight assignment w : V (G) → R+

to the vertices, and the goal is to compute an independent set I in G with
maximum weight

∑
v∈I w(v).

In the context of wireless network modeling, MWIS is perhaps the most
prominent problem on GDGs. Even the Maximum Independent Set (MIS) prob-
lem (MWIS where w(v) = 1 for each vertex v) is NP-complete in GDGs, since
it is NP-complete in unit disk graphs [8], which is a subclass of GDGη,t

f (give
all f -cones the same length). However, the geometric representation allows us
to use results from [6] to get a polynomial-time approximation scheme (PTAS).
The definitions below are as in [6].

For a collection C of objects in R
m, the packing problem is to find a largest

subcollection of disjoint objects. This corresponds to solving the MIS problem in
the geometric intersection graph of C. The size of an object S is the side length of
its smallest enclosing hypercube. Here we use the following definition of fatness.
A collection C is fat if there is a constant c such that the following holds: For
any r, and size-r axis-aligned box R, there is a set T ⊆ R

m of size c, such that
for every object S of size at least r, R ∩ S 	= ∅ implies T ∩ S 	= ∅. Chan [6] gives
a (1 + ε)-approximation algorithm for the packing problem of fat objects in R

m

that has runtime and space nO(1/εm−1). Our geometric representation of a graph
G ∈ GDGη

f consists of a collection of fat objects, under the definition above.
This can be seen by using the convexity of f -cones, as well as the fact that by
Lemma 2 they have a constant aspect ratio, that is, the ratio between the size of
the smallest enclosing and the largest enclosed hypercube. This directly implies
a PTAS for MWIS for GDGη

f , with runtime and space n(1/ε)η

, since the f -cones
are in R

η+1. Below, we improve on this by leveraging the groundedness of the
f -cones and a closer examination of the algorithm.

An r-grid interval is an interval of the form [ri, r(i + 1)] for an integer i,
and an r-grid cell in R

m is the Cartesian product of m r-grid intervals. We
will consider r-grid cells for r = 2−l over all integers l called quadtree cells. An
object having size r is k-aligned if it is inside a quadtree cell of size at most
kr. The algorithm is based on the following two ideas, where we let k ≈ m/ε:
1. If the objects in C are k-aligned then an nO(km−1) time and space dynamic
programming algorithm gives an exact solution, 2. There is a set v1, . . . , vk ∈ R

m

of vectors, s.t. for every object S, all but m of the shifts S+vi are 2k-aligned. The
complexity of the algorithm stems from the dynamic programming subroutine [6,
Lemma 3.1], while the latter is dominated by nO(K), where K is the maximum
size of a disjoint subcollection of objects of size at least r/k intersecting the
boundary of an m-dimensional box R of size r.

The argument for general fat shapes is as follows: Since R can be covered with
2mkm−1 boxes of size r/k, fatness implies that any disjoint subcollection must
have size at most K ≤ 2cmkm−1. This gives us the complexity nO(K) = nO(km−1)

(details omitted due to lack of space). To improve this, consider a set S of disjoint

Generalized Disk Graphs 123

f -cones of size at least r/k in R
m, as well as a box R of size r whose boundary

the f -cones intersect. Since the f -cones are expanding and grounded, they also
intersect the box that is obtained by translating R in the height coordinate until
it becomes grounded. Now, observe that the collection of (m − 1)-dimensional
balls Dr/k

i obtained by intersecting the f -cones from S with the hyperplane
Zr/k is a disjoint collection of (m − 1)-dimensional balls of size at least r/k that
intersects R∩Zr/k, which is just a (m−1)-dimensional box of size r. Since these
balls are in m − 1 dimensions and unit radius balls are fat, we can bound K by
2c′mkm−2, for a constant c′. This reduces the complexity of the algorithm to
nO(km−2). Note that η = m − 1 and hence the complexity in terms of η is given
by nO(kη−1). Thus, in our case, we can replace [6, Lemma 3.1] with the following
lemma, which as mentioned above, leads to the improved overall complexity.

Lemma 3. If all cones in C corresponding to G ∈ GDGη,1
f are k-aligned, then

the weighted packing problem can be solved in nO(kη−1) time and space.

Theorem 3. Given a graph G ∈ GDGη,1
f , we can find a (1 + ε)-factor approxi-

mation for the MWIS in nO(1/εη−1) time and space.

For t > 1, we get a PTAS for MWIS if the representation of the graph is
O(1)-clustered, as defined below. This definition is motivated by link scheduling
in wireless networks, where the corresponding graph is 1-clustered [13].

Definition 4. Graph G ∈ GDGη,t
f , with t > 1, is β-clustered if for every vertex

vi ∈ V (G) and each pair of points pj , pk ∈ Pi, we have d(pj , pk) ≤ β · li.

Consider a β-clustered graph G ∈ GDGη,t
f . Let us first show that the objects

Ci (each a cardinality t set of f -cones) are fat. Since G is β-clustered, the size
of Ci is at most βli. Consider a box R of size r, and a disjoint collection C of
objects corresponding to a subset of vertices where each object has size at least
r, consists of t f -conses, and intersects R. It follows from the bound on the size
of objects that each f -cone in an object Ci in C has size at least r/β. Partition
R into O(βη+1) boxes of size r/β, which we call small boxes. We know that
each object Ci ∈ C has at least one representative f -cone intersecting R, and
hence intersecting a small box. Note that the set of representative cones is also
disjoint. Since f -cones are fat, for each small box R′, there is a set TR′ ⊆ R

η+1

of c points, such that if a f -cone (of size r/β) intersects R′ then it intersects TR′ .
Taking the union of TR′ over all R′, we get a set T of O(βη+1) · c points, such
that if a collection C of disjoint objects of size at least r intersect R then they
intersect T as well. If β = O(1), this shows that the set of objects corresponding
to a β-clustered GDG is fat. This allows us to apply the result of [6] to this
case directly. It is also straightforward to extend the optimizations that led to
Theorem 3 to O(1)-clustered GDGs.

Theorem 4. Given a O(1)-clustered graph G ∈ GDGη,t
f , we can find a (1 + ε)-

approximation for the MWIS in nO(1/εη−1) time and space.

124 Í. M. Arnþórsson et al.

4 Structural Properties

The following concept generalizes the perfect elimination ordering of chordal
graphs. It was introduced in [14] and [23], but we shall use the definition of [15].

Definition 5. A graph G is k-simplicial if there is an order v1 . . . vn of the
vertices such that for each vertex vi, the set {vj : vj ∈ N(vi), j > i} can be
partitioned into k cliques in G.

GDGs were shown to be constant-simplicial in doubling metrics [13], with
rather large constants. We give a simpler proof in Euclidean spaces, with smaller
constants.

We additionally assume in this section (only) that f is strictly sub-linear,
in the sense that for every x ≥ y ≥ 1, f(x) ≤ yf(x/y). This holds, e.g., for
f(x) ∼ xδ (δ ∈ [0, 1]).

Theorem 5. Let G ∈ GDGη,t
f . If η = 1 then G is 2t-simplicial, and if η = 2

then G is 6t-simplicial.

Proof. Consider the case η = 2. It suffices to show that there is a vertex v whose
neighborhood can be covered with 6t cliques, since we can remove that vertex
and repeat the argument, to obtain the simplicial ordering. Let vk ∈ V (G)
be such that lk = min{lj : vj ∈ V (G)}. By Lemma 1, we can focus on the
intersection of disks in Dlk . Let p ∈ Pk. Partition Zlk into six π/3-angle sectors
with rays centered at p, and let X be one sector (see Fig. 3). Consider the set
VX of vertices vj , such that there is a pj ∈ Pj ∩X, with the f -cones of vk and vj

intersecting. It suffices to show that VX induces a clique, since there are 6 sectors
for each p ∈ Pk, and |Pk| = t. Let vi, vj ∈ VX , with li ≤ lj , and pi ∈ Pi and
pj ∈ Pj be the corresponding points in X. The segments [p, pi] and [p, pj] form
an angle of size at most π/3. Since the segment [pi, pj] is opposite this angle,
|pi − pj | ≤ max{|p − pi|, |p − pj |}, and Using the intersection of f -cones,

|pi − pj | ≤ max{lkf(li/lk) + lkf(1), lkf(lj/lk) + lkf(1)} ≤ lif(lj/li) + lif(1) ,

since f is strictly sub-linear and non-decreasing. Hence, vi and vj are adjacent,
which also implies that VX induces a clique, as required. The proof for η = 1 is
similar and is omitted.

This gives us algorithmic bounds on the chromatic number χ(G) in terms of
the clique number ω(G).

Corollary 1. Graphs in GDG1,t
f (GDG2,t

f) can be colored with at most 2tω(G)
(6tω(G)) colors without knowledge of the geometric representation, resulting in
a 2t (5t) approximation algorithm, respectively.

Proof. An ordering v1, v2, . . . vn is d-inductive if for each vertex vi, the set N ′ =
{vj : vj ∈ N(vi), j > i} satisfies |N ′| ≤ d. A k-simplicial graph is necessarily
d-inductive for d ≤ k(ω(G) − 1) + 1 ≤ kω(G)-inductive, and a greedy coloring
algorithm uses at most d + 1 colors.

Generalized Disk Graphs 125

Fig. 3. The partitioning of the plane (left), and one part of the partition (right).

Given the representation, We can obtain a slightly better approximation by
analyzing a related property. A graph is said to be k-inductive independent [23]
if there is an ordering of the vertices so that each vertex has at most k mutually
non-adjacent neighbors that follow it in the ordering. Such an ordering can be
found in polynomial time when k is constant. This leads to k-approximation
algorithms for coloring and weighted independent sets [23].

Theorem 6. Graphs in GDG2,t
f are 5t-inductive independent. There is a 5t-

approximation algorithm for MWIS and coloring graphs in GDG2,t
f without

knowledge of the representation, when t is constant.

The same approximation ratio has been shown to hold for disk graphs (see
[11]) and, to our knowledge, no better results have been achieved.

5 One-Dimensional Case

We explore here relationship of GDG1,1
f to other classes, and show some exact

algorithms for this restricted case.
An n-vertex graph H is an outerstring graph if it has an intersection rep-

resentation of a set of n curves inside a disk such that one endpoint of every
curve is on the boundary of the disk. Since there exists a homeomorphism from
the disk to the halfspace, the geometric set corresponding to G ∈ GDG1,1

f is
topologically equivalent to an outerstring graph.

Theorem 7. GDG1,1
f is a subclass of outerstring graphs.

A graph G is an interval graph if each vertex vi can be associated with an
interval Ii ⊆ R, such that two vertices vi and vj are adjacent iff Ii ∩ Ij 	= ∅.

Theorem 8. Interval graphs are a subclass of GDG1,1
f , for every increasing

well-behaved function f .

Proof. Let I be an interval graph with a given representation, and (v1, . . . , vk) be
an ordering of vertices in increasing order of the right endpoints of the intervals.
We construct a representation in GDG1,1

f , by adding f -cones in this order. It

126 Í. M. Arnþórsson et al.

Fig. 4. How a GDG is constructed from an interval graph.

has the property that li ≥ lj , for i > j. The first vertex v1 has position p1 = 0
and length l1 = 1. Consider a j > 1, and assume lj−1 ≥ li, for i < j − 1. For
vertex vj , we let pj = pj−1 + clj−1, where the c > 1 is such that f(x) ≤ cx/3,
for all x ≥ 0. If vj is not adjacent to any of v1, . . . , vj−1, we set lj = lj−1, which
ensures the non-adjacency: gj−1(lj−1) + gj(lj−1) = 2f(1)lj−1 ≤ (2c/3)lj−1 <
dj,j−1. Otherwise, let vi be the first vertex adjacent to vj . We let lj = γli,
for γ = f−1 (di,j/li − f(1)) = f−1 (clj−1/li − f(1)); since f is increasing and
continuously differentiable, it has an increasing inverse (cf. The Inverse Function
Theorem from standard Calculus). Thus, we have that lj ≥ lj−1, as otherwise
we would have f−1(clj−1/li − f(1))li < lj−1, and since f(1) ≤ c/3, li ≤ lj−1,
and f−1 is increasing, f−1((2c/3)lj−1/li) ≤ lj−1/li. We apply f on both sides,
and since f is increasing, we get (2c/3)lj−1/li ≤ f(lj−1/li), which contradicts
the choice of c. Thus, we get lj ≥ li, for i < j, and also gj(li) + gi(li) = di,j ,
which means that the right corner of the f -cone Ci is on the left edge of Cj ,
and in particular, vi and vj are adjacent in GDG1,1

f (see Fig. 4). Let us show
the correctness of the construction. Let vk, vm be a pair of vertices with k < m.
Suppose that vkvm ∈ E(I). If vk is the least-index vertex adjacent to vm then
Ck, Cm intersect, by construction. Otherwise, there is s < k, s.t. vsvm ∈ E(I).
We have ps < pk < pm and ls ≤ lk ≤ lm, and Cs and Cm intersect. Clearly, then
Ck and Cm intersect too, as required. Next, suppose that vkvm 	∈ E(I). If vm is
not adjacent to any vertex vs with s < m then their cones do not intersect, by
construction. Otherwise there is a vertex vs with s < m and vsvm ∈ E(I). Since
I is an interval graph, we must have k < s. Assume vs is the vertex of least
index adjacent to um. Then Cs and Cm intersect in exactly one point, i.e., the
right corner point of Cs. Since pk < ps and lk ≤ ls, the right corner of Ck is to
the left of the right corner of Cs, and at most on the same height. Thus, Ck and
Cm cannot intersect.

It is known that interval graphs are a subclass of Max Point-Tolerance (MPT)
graphs [5]. In the full version, we show that for f(x) = xδ, δ ∈ (0, 1), K2,2,2 ∈
GDG1,1

f and K3,3 /∈ GDG1,1
f . This implies, in particular that the classes GDG1,1

f ,
for such f , are incompatible with MPT, since for MPT, the opposite inclusions
have been demonstrated [5,20].

Generalized Disk Graphs 127

The Maximum Clique problem in unit disk graphs is solved in O(n4.5) time
by reducing it to MIS in a bipartite graph [8]. A similar approach gives us a
O(n3.5) time algorithm for Maximum Clique in GDG1,1

f . In the full version, we
also give a dynamic programming algorithm for exact MWIS in GDG1,1

f .

Theorem 9. Maximum Clique in GDG1,1
f is solvable in O(n3.5) time.

Proof. Let vi ∈ V (G) be such that li = min{lj : vj ∈ V (G)}, and H = G[N [vi]].
By Theorem 5, H is covered by at most two cliques, and thus H̄ is bipartite,
and we can use the Edmonds-Karp algorithm [9] to solve MIS in H̄ in O(n2.5)
time. This solves Maximum Clique in H in O(n2.5) time. Repeating this process
for each vertex in G solves Maximum Clique in O(n3.5) time.

Theorem 10. MWIS in GDG1,1
f is solvable in O(n3) time.

6 Conclusion and Open Questions

We have given a geometric formulation of GDGs that allows for improved opti-
mization algorithms and the clarification of relations to other graph classes.

There are several questions that remain unanswered. We conjecture that
for η = 2, t = 1, and f(x) = xδ with δ ∈ (0, 1), the class GDG2,1

f properly
contains disk graphs. We have seen the corresponding containment holds for the
1-dimensional analogs (i.e., interval graphs). We also believe that it does not
matter which value of δ is chosen: that GDGη,t

f are all equal when f(x) = xδ

and 0 < δ < 1.

References

1. Agarwal, P.K., Katz, M.J., Sharir, M.: Computing depth orders for fat objects and
related problems. Comput. Geom. 5(4), 187–206 (1995)

2. Alt, H., et al.: Approximate motion planning and the complexity of the boundary
of the union of simple geometric figures. Algorithmica 8(1), 391–406 (1992)

3. Aronov, B., Bar-On, G., Katz, M.J.: Resolving SINR queries in a dynamic setting.
In: Chatzigiannakis, I., Kaklamanis, C., Marx, D., Sannella, D. (eds.), 45th Inter-
national Colloquium on Automata, Languages, and Programming, ICALP 2018,
9–13 July 2018, Prague, Czech Republic, volume 107 of LIPIcs, pp. 145:1–145:13.
Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2018)

4. Ásgeirsson, E.I., Halldórsson, M.M., Tonoyan, T.: Universal framework for wireless
scheduling problems. In: 44th International Colloquium on Automata, Languages,
and Programming, ICALP 2017, 10–14 July 2017, Warsaw, Poland, pp. 129:1–
129:15 (2017)

5. Catanzaro, D., et al.: Max point-tolerance graphs. Discret. Appl. Math. 216, 84–97
(2017)

6. Chan, T.M.: Polynomial-time approximation schemes for packing and piercing fat
objects. J. Algorithms 46(2), 178–189 (2003)

7. Chan, T.M., Har-Peled, S.: Approximation algorithms for maximum independent
set of pseudo-disks. Discret. Comput. Geom. 48(2), 373–392 (2012)

128 Í. M. Arnþórsson et al.

8. Clark, B.N., Colbourn, C.J., Johnson, D.S.: Unit disk graphs. Discret. Math. 86(1–
3), 165–177 (1990)

9. Edmonds, J., Karp, R.M.: Theoretical improvements in algorithmic efficiency for
network flow problems. J. ACM 19(2), 248–264 (1972)

10. Efrat, A., Katz, M.J., Nielsen, F., Sharir, M.: Dynamic data structures for fat
objects and their applications. Comput. Geom. 15(4), 215–227 (2000)

11. Erlebach, T., Fiala, J.: Independence and coloring problems on intersection graphs
of disks. In: Bampis, E., Jansen, K., Kenyon, C. (eds.) Efficient Approximation
and Online Algorithms. LNCS, vol. 3484, pp. 135–155. Springer, Berlin (2006).
https://doi.org/10.1007/11671541_5

12. Erlebach, T., Jansen, K., Seidel, E.: Polynomial-time approximation schemes for
geometric intersection graphs. SIAM J. Comput. 34, 1302–1323 (2005)

13. Halldorsson, M.M., Tonoyan, T.: How well can graphs represent wireless interfer-
ence? In: Proceedings of the Forty-Seventh Annual ACM Symposium on Theory
of Computing. STOC 2015, pp. 635–644. Association for Computing Machinery,
New York, NY, USA (2015)

14. Jamison, R.E., Mulder, H.M.: Tolerance intersection graphs on binary trees with
constant tolerance 3. Discret. Math. 215(1), 115–131 (2000)

15. Kammer, F., Tholey, T.: Approximation algorithms for intersection graphs. Algo-
rithmica 68(2), 312–336 (2012)

16. Kantor, E., Lotker, Z., Parter, M., Peleg, D.: The topology of wireless communi-
cation. J. ACM 62(5), 37:1-37:32 (2015)

17. Keil, J.M., Mitchell, J.S.B., Pradhan, D., Vatshelle, M.: An algorithm for the max-
imum weight independent set problem on outerstring graphs. Comput. Geom. 60,
19–25 (2017). The Twenty-Seventh Canadian Conference on Computational Geom-
etry August 2015

18. Kratochvíl, J.: String graphs. I. The number of critical nonstring graphs is infinite.
J. Comb. Theory, Ser. B 52(1), 53–66 (1991)

19. Moscibroda, T., Wattenhofer, R.: The complexity of connectivity in wireless net-
works. In: INFOCOM, pp. 1–13. IEEE (2006)

20. Paul, S.: On characterizing proper-max-point tolerance graphs (2020)
21. Soto, M., Caro, C.T.: p-BOX: a new graph model. Discret. Math. Theor. Comput.

Sci. 17(1), 169–186 (2015)
22. van Kreveld, M.: On fat partitioning, fat covering and the union size of polygons.

Comput. Geom. 9(4), 197–210 (1998)
23. Ye, Y., Borodin, A.: Elimination graphs. ACM Trans. Algorithms 8, 2 (2012)

https://doi.org/10.1007/11671541_5

A 4-Approximation of the 2π
3 -MST

Stav Ashur and Matthew J. Katz(B)

Ben-Gurion University of the Negev, Beersheba, Israel
stavshe@post.bgu.ac.il, matya@cs.bgu.ac.il

Abstract. Bounded-angle (minimum) spanning trees were first intro-
duced in the context of wireless networks with directional antennas. They
are reminiscent of bounded-degree (minimum) spanning trees, which
have received significant attention. Let P be a set of n points in the
plane, and let 0 < α < 2π be an angle. An α-spanning tree (α-ST) of
P is a spanning tree of the complete Euclidean graph over P , with the
following property: For each vertex pi ∈ P , the (smallest) angle that is
spanned by all the edges incident to pi is at most α. An α-minimum
spanning tree (α-MST) is an α-ST of P of minimum weight, where the
weight of an α-ST is the sum of the lengths of its edges. In this paper,
we consider the problem of computing an α-MST for the important case
where α = 2π

3
. We present a 4-approximation algorithm, thus improving

upon the previous results of Aschner and Katz and Biniaz et al., who
presented algorithms with approximation ratios 6 and 16

3
, respectively.

To obtain this result, we devise an O(n)-time algorithm that, given
any Hamiltonian path Π of P , constructs a 2π

3
-ST T of P , such that T ’s

weight is at most twice that of Π and, moreover, T is a 3-hop spanner
of Π. This latter result is optimal in the sense that for any ε > 0 there
exists a polygonal path for which every 2π

3
-ST (of the corresponding set

of points) has weight greater than 2 − ε times the weight of the path.

Keywords: Bounded-angle spanning tree · Bounded-degree spanning
tree · Hop-spanner

1 Introduction

Let P = {p1, . . . , pn} be a set of n points in the plane. An α-spanning tree (α-
ST) of P , for an angle 0 < α < 2π, is a spanning tree of the complete Euclidean
graph over P , with the following property: For each vertex pi ∈ P , the (smallest)
angle that is spanned by all the edges incident to pi is at most α (see Fig. 1). An
α-minimum spanning tree (α-MST) is then an α-ST of P of minimum weight,
where the weight of an α-ST is the sum of the lengths of its edges.

Since there always exists a MST of P in which the degree of each vertex is at
most 5 [12], the interesting range for α is (0, 8π

5). The concept of bounded-angle
(minimum) spanning tree (i.e., of an α-(M)ST) was introduced by Aschner and

M. Katz was supported by grant 1884/16 from the Israel Science Foundation.

c© Springer Nature Switzerland AG 2021
A. Lubiw et al. (Eds.): WADS 2021, LNCS 12808, pp. 129–143, 2021.
https://doi.org/10.1007/978-3-030-83508-8_10

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-83508-8_10&domain=pdf
https://doi.org/10.1007/978-3-030-83508-8_10

130 S. Ashur and M. J. Katz

Fig. 1. A 2π
3
-ST.

Katz [3], who arrived at it through the study of wireless networks with directional
antennas. However, it is interesting in its own right. The study of bounded-
angle (minimum) spanning trees is also related to the study of bounded-degree
(minimum) spanning trees, which received considerable attention (see, e.g., [8–
11,13]). (A degree-k ST, is a spanning tree in which the degree of each vertex is
at most k, and a degree-k MST is a degree-k ST of minimum weight.).

It is easy to see that an α-ST of P , for α < π
3 , does not always exist; think,

for example, of the corners of an equilateral triangle. On the other hand, it is
known (see [1,2,7]) that for any α ≥ π

3 , there always exists an α-ST of P .
The next natural question is what is the status of the problem of computing

an α-MST, for a given ‘typical’ angle α. Aschner and Katz [3] proved that (at
least) for α = π and for α = 2π

3 the problem is NP-hard, and, therefore, it calls
for efficient approximation algorithms.

Obviously, the weight of an α-MST of P , for any angle α, is at least the
weight of a MST of P , so if we develop an algorithm for constructing an α-ST,
for some angle α, and prove that the weight of the trees constructed by the
algorithm never exceeds some constant c times the weight of the corresponding
MSTs, then we have a c-approximation algorithm for computing an α-MST.
Aschner et al. [4] showed that this approach is relevant only if α ≥ π

2 , since for
any α < π

2 , there exists a set of points for which the ratio between the weights
of the α-MST and the MST is Ω(n).

In this paper, we focus on the important case where α = 2π
3 . That is, we are

interested in an algorithm for computing a ‘good’ approximation of 2π
3 -MST,

where by good we mean that the weight of the output 2π
3 -ST is not much larger

than that of a MST (and thus of a 2π
3 -MST). Aschner and Katz [3] presented

a 6-approximation algorithm for the problem. Subsequently, Biniaz et al. [6]
described an improved 16

3 -approximation algorithm. In this paper, we manage
to reduce the approximation ratio to 4, by taking a different approach than the
two previous algorithms.

Most of the paper is devoted to proving Theorem 7, which is of independent
interest. Our main result, i.e., the 4-approximation algorithm, is obtained as
an easy corollary of this theorem. Let Π denote the polygonal path (p1, ..., pn).
Then, Theorem 7 states that one can construct a 2π

3 -ST T of P , such that (i)
the weight of T , ω(T), is at most 2ω(Π), and (ii) T is a 3-hop spanner of Π

A 4-Approximation of the 2π
3
-MST 131

(i.e., if there is an edge between p and q in Π, then there is a path consisting of
at most 3 edges between p and q in T). Notice that 2 is the best approximation
ratio that one can hope for, since Biniaz et al. [6] showed that for any α < π,
the weight of an α-MST of a set of n points on the line, such that the distance
between consecutive points is 1, is at least 2n−3, whereas the weight of the MST
(i.e., the polygonal path) is clearly n − 1. (This lower bound is also mentioned
without a proof in [3].).

We prove Theorem 7 by presenting an O(n)-time algorithm for construct-
ing T and proving its correctness. The algorithm is very simple and easy to
implement, but arriving at it and proving its correctness is far from trivial. One
approach for constructing a 2π

3 -ST of P is to assign to each vertex of P an ori-
entation, where an orientation of a vertex p is a cone of angle 2π

3 with apex at p.
The assignment of orientations induces a transmission graph G (over P), where
{pi, pj} is an edge of G if and only if pj is in pi’s cone and pi is in pj ’s cone.
Now, if G is connected, then by computing a minimum spanning tree of G one
obtains a 2π

3 -ST of P . The challenge is of course to determine the orientations
of the vertices, so that G is connected and the weight of a minimum spanning
tree of G is bounded by a small constant times ω(Π).

Next, we describe some of the ideas underlying our algorithm for constructing
T . Assume for simplicity that n is even and consider the sequence of edges X
obtained from Π by removing all the edges at even position (i.e., by removing
the edges {p2, p3}, {p4, p5}, . . .). For each edge e = {p, q} ∈ X, we consider the
partition of the plane into four regions induced by e, see Fig. 2. This partition
determines for each of e’s vertices three ‘allowable’ orientations, see Fig. 3. Our
algorithm assigns to each vertex of Π one of its three allowable orientations,
such that the resulting transmission graph G contains the edges in X and at
least one edge between any two adjacent edges in X. Finally, by keeping only
the edges in X and a single edge between any two adjacent edges, we obtain
T . The novelty of the algorithm is in the way it assigns the orientations to the
vertices to ensure that the resulting graph satisfies these conditions.

We now discuss the two previous results on computing an approximation of
a 2π

3 -MST of P , and some of the related results. The first stage in the previous
algorithms, as well as in the new one, is to compute a MST of P , MST(P), and
from it a spanning path Π of P of weight at most 2ω(MST(P)). (Π is obtained
by listing the vertices of P through a pre-order traversal of MST(P), where a
vertex is added to the list when it is visited for the first time.) The algorithm
of Aschner and Katz [3] operates on the path Π. It constructs a 2π

3 -ST of P
from Π of weight at most 3ω(Π), and thus of weight at most 6ω(MST(P)). The
algorithm of Biniaz et al. [6] can operate only on non-crossing paths, so it first
transforms Π to a non-crossing path Π ′ (through a sequence of O(n3) basic
untangle operations), such that ω(Π ′) ≤ ω(Π). Then, it constructs a 2π

3 -ST of
P from Π ′ of weight at most 8

3ω(Π ′), and thus of weight at most 16
3 ω(MST(P)).

The new algorithm operates directly on Π, but in a completely different manner
than its predecessors. It constructs a 2π

3 -ST of P from Π of weight at most
2ω(Π), and thus of weight at most 4ω(MST(P)).

132 S. Ashur and M. J. Katz

Notice that 4 is the best approximation ratio possible, for any such two-stage
algorithm, provided the stages are independent. This is true since (i) Fekete et
al. [9] showed that for any ε > 0 there exists a point set for which any spanning
path has weight at least 2 − ε times the weight of a MST, and (ii) as mentioned
above, for any ε > 0, there exists a point set and a corresponding spanning path
for which any 2π

3 -ST has weight at least 2 − ε times the weight of the path.
As for other values of α, Aschner and Katz [3] presented a 16-approximation

algorithm for computing a π
2 -MST of P . The best known approximations of

the degree-k MST, for k = 2, 3, 4, imply a 2-approximation of the π-MST, a
1.402-approximation of the 4π

3 -MST [8], and a 1.1381-approximation of the 3π
2 -

MST [8,10].

2 Preliminaries

Fig. 2. The partition of the plane Pu,v induced by the ordered pair of points (u, v).

Definition 1. Any ordered pair (u, v) of points in the plane, induces a partition
of the plane into four regions, which we denote by Pu,v; see Fig. 2. We denote
the four regions by P1

u,v, P2
u,v, P3

u,v, and P4
u,v, as depicted in Fig. 2. Notice that

the partitions Pu,v and Pv,u are identical, where P1
u,v = P3

v,u, P2
u,v = P4

v,u,
etc. Sometimes, we prefer to consider the points u and v as an unordered pair
of points, in which case we denote the partition induced by them as P{u,v}. In
P{u,v}, we distinguish between the two side regions, which are P1

u,v and P3
u,v

(alternatively, P3
v,u and P1

v,u), and the two center regions, which are P2
u,v and

P4
u,v (alternatively, P4

v,u and P2
v,u).

The orientation of a point u, is the orientation of a 2π
3 -cone with apex at u;

we refer to this cone as the transmission cone of u. In the following definition,
we define the three basic orientations of u with respect to another point v, based
on Pu,v; see Fig. 3.

Definition 2. For a pair of points u and v, the three basic orientations of u
with respect to v are:

A 4-Approximation of the 2π
3
-MST 133

Fig. 3. The three basic orientations of u with respect to v; the superscripts u, d, and
c stand for up, down, and center, respectively.

uu
v: The only orientation of u, such that P2

u,v is fully contained in the transmis-
sion cone of u,

ud
v: The only orientation of u, such that P4

u,v is fully contained in the transmis-
sion cone of u, and

uc
v: The only orientation of u, such that P3

u,v is fully contained in the transmis-
sion cone of u.

Notice that in each of the basic orientations of u with respect to v, we have
that v lies in u’s cone. Therefore, for any assignment of basic orientation to u
(with respect to v) and any assignment of basic orientation to v (with respect
to u), the edge {u, v} will be present in the resulting transmission graph.

Next, we prove three claims concerning the relationship between P{u,v} and
P{x,y}, where {u, v} and {x, y} are unordered pairs of points.

Fig. 4. Proof of Claim 1: If y ∈ P3
u,v and u ∈ P3

x,y, then x must lie in the green region.
(Color figure online)

Claim 1. Let {u, v} and {x, y} be two unordered pairs of points. If x lies in one
of the side regions of P{u,v} and y lies in the other, then both u and v lie in the
union of the center regions of P{x,y}.

Proof. Assume, e.g., that x ∈ P1
u,v and y ∈ P3

u,v. If u is not in one of the center
regions of P{x,y}, then it is in one of the side regions of P{x,y}. But, if u ∈ P1

x,y,

134 S. Ashur and M. J. Katz

then it is impossible that y ∈ P3
u,v, and if u ∈ P3

x,y, then it is impossible that
x ∈ P1

u,v. Consider for example the latter case, i.e., u ∈ P3
x,y, and assume,

without loss of generality, that the line segment uv is horizontal, with u to the
left of v, and that y is not below the line containing uv (see Fig. 4). Then, the
requirement u ∈ P3

x,y implies that one of the rays delimiting P3
x,y is in the

2π
3 -wedge defined by the ray emanating from y and passing through u and the

ray ρ1, and the other ray delimiting P3
x,y is in the 2π

3 -wedge defined by the ray
emanating from y and passing through u and the ray ρ2. So, u ∈ P3

x,y implies
that P3

x,y and the green region in the figure are disjoint (when viewed as open
regions), which, in turn, implies that x must lie in the green region. But this is
impossible since the green region and P1

u,v are disjoint.

Fig. 5. Left: If u ∈ P1
x,y but v /∈ P1

x,y, then y, which is on the dashed ray emanating
from x, is necessarily in P3

u,v. Right: If v ∈ P3
x,y but u /∈ P3

x,y, then x, which is on the
dashed ray emanating from y, is necessarily in P2

u,v. (Color figure online)

Claim 2. Let {u, v} and {x, y} be two unordered pairs of points, such that x
lies in one of the side regions of P{u,v}, say in the one adjacent to v, and y lies
in one of the center regions of P{u,v}. Then, if u lies in the side region adjacent
to x, then so does v.

Proof. Assume that u ∈ P1
x,y but v /∈ P1

x,y. We show that this implies that
y ∈ P3

u,v—a contradiction. Indeed, assume, without loss of generality, that the
segment uv is horizontal, with u to the left of v, and that x is not below the
line containing uv (see Fig. 5a). Since u and v are in different regions of Px,y,
we know that the border between P1

x,y (in which u resides) and P4
x,y (in which

v resides) crosses uv. But, this implies that the dashed ray emanating from x is
contained in P3

u,v, so y, which is somewhere on this ray, is in P3
u,v.

Claim 3. Let {u, v} and {x, y} be two unordered pairs of points, such that x
lies in one of the side regions of P{u,v}, say in the one adjacent to v, and y lies
in one of the center regions of P{u,v}. Then, if v lies in the side region adjacent
to y, then so does u.

A 4-Approximation of the 2π
3
-MST 135

Proof. Assume that v ∈ P3
x,y but u /∈ P3

x,y. We show that this implies that x is
in one of the center regions of Pu,v—a contradiction. Indeed, assume, without
loss of generality, that the segment uv is horizontal, with u to the left of v, and
that y ∈ P2

u,v (see Fig. 5b). Since u and v are in different regions of Px,y, we
know that the border between P3

x,y (in which v resides) and P4
x,y (in which u

resides) crosses uv. But, this implies that the dashed ray emanating from y is
contained in P2

u,v, so x, which is somewhere on this ray, is in P2
u,v.

3 Replacing an Arbitrary Path by a 2π
3
-Tree

Let {p1, . . . , pn} be a set of n ≥ 2 points in the plane, and let Π denote
the polygonal path (p1, . . . , pn). The weight of Π, ω(Π), is the sum of the
lengths of the edges of Π, i.e., ω(Π) =

∑n−1
i=1 |pipi+1|. Let X and Y be the

two natural matchings induced by Π, that is, X = {{p1, p2}, {p3, p4}, . . .} and
Y = {{p2, p3}, {p4, p5}, . . .}. Then, since X ∩ Y = ∅, either ω(X) or ω(Y) is at
most ω(Π)/2. Assume, without loss of generality, that ω(X) ≤ ω(Π)/2. More-
over, assume for now that n is even so X is a perfect matching.

In this section, we present an algorithm for replacing Π by a 2π
3 -tree, T , such

that ω(T) ≤ 2ω(Π) and, moreover, T is a 3-hop spanner of Π (i.e., if there is
an edge between p and q in Π, then there is a path consisting of at most three
edges between p and q in T). Our algorithm assigns to each of the vertices p of
Π an orientation, which is one of the three basic orientations of p with respect
to the vertex q matched to p in X.

In the subsequent description, we think of X as a sequence (rather than a
set) of edges. Our algorithm consists of three phases.

3.1 Phase I

In the first phase of the algorithm, we iterate over the edges of X. When reach-
ing the edge {pi, pi+1}, we examine it with respect to both its previous edge
{pi−2, pi−1} and its next edge {pi+2, pi+3} in X. (The first edge is only exam-
ined w.r.t. its next edge, and the last edge is only examined w.r.t. its previous
edge.) During the process, we either assign an orientation to one of pi, pi+1,
to both of them, or to neither of them. In this phase, we only assign center
orientations, i.e., uc

v or vc
u, where {u, v} is an edge in X.

Let e = {u, v} be the edge that is being considered and let f = {x, y} be one
of its (at most) two neighboring edges. We assign u the orientation uc

v due to f
if one of the following conditions holds:

1. One of f ’s vertices is in v’s region (i.e., in the side region adjacent to v) and
u is in the region of the other vertex of f ; see Fig. 6a.

2. Both x and y are in v’s region; see Fig. 6b.

Notice that it is possible that both conditions hold; see Fig. 6c. We say that u’s
orientation was determined by the second condition, only if the first condition

136 S. Ashur and M. J. Katz

Fig. 6. The conditions by which we assign u the orientation uc
v due to f = {x, y}.

Left: u’s orientation is determined by the first condition. Middle: u’s orientation is
determined by the second condition. Right: Both conditions hold, but we say that u’s
orientation is determined by the first condition.

does not hold; otherwise, we say that u’s orientation was determined by the first
condition.

Similarly, we assign v the orientation vc
u due to f if one of the conditions

above holds, when u is replaced by v.
The following series of claims deals with the outcome of examining an edge

e with respect to a neighboring edge f .

Claim 4. The orientation of at most one of the vertices of edge e = {u, v} is
determined, when e is examined with respect to a neighboring edge f = {x, y}.

Proof. Assume that both u and v were oriented due to f and consider the con-
ditions responsible for it. If the orientation of one of the vertices, say u, was
determined by the second condition, then neither of the conditions can apply to
v, since both conditions require that at least one of f ’s vertices is in u’s region. If,
however, the orientation of both u and v was determined by the first condition,
then, without loss of generality, x is in u’s region and y is in v’s region, and by
Claim 1 we conclude that u and v are in the center regions of Px,y, implying
that neither of the vertices of e was oriented due to f .

Claim 5. If the orientation of a vertex of edge e = {u, v} is determined by the
first condition, when e is examined with respect to a neighboring edge f = {x, y},
then the orientation of a vertex of f is determined by the first condition, when
f is examined with respect to e, and these two vertices induce an edge of the
transmission graph.

Proof. Assume that, e.g., u’s orientation is determined by the first condition
(i.e., u is assigned the orientation uc

v), when e is examined with respect to f .
This means that there is a vertex of f , say x, that is in v’s region, and that u
is in y’s region. Now, when we proceed to examine the edge f with respect to e,
we find that u is in y’s region and x is in v’s region, so by the first condition we
assign x the orientation xc

y.
It remains to show that u and x induce and edge of the transmission graph.

Indeed, x is in the transmission cone of u, since x is in v’s region and u’s cone

A 4-Approximation of the 2π
3
-MST 137

contains v’s region. Similarly, u is in the transmission cone of x, since u is in y’s
region and x’s cone contains y’s region.

Claim 6. If the orientation of a vertex of edge e = {u, v} is determined by
the second condition, when e is examined with respect to a neighboring edge
f = {x, y}, then neither of f ’s vertices is assigned an orientation due to e.

Proof. If the orientation of, e.g., u is determined by the second condition, when
e is examined with respect to f , then u is in one of the center regions of P{x,y}.
Therefore, when f is examined with respect to e, the only condition that may
hold is the first one. But if it does, then by Claim 5, the orientation of u is
determined by the first condition, contrary to our assumption. We conclude that
if the orientation of a vertex of e is determined by the second condition, then
neither of f ’s vertices is assigned an orientation due to e.

3.2 Phase II

After completing the first phase, in which we iterated over the edges of X only
once (i.e., a single round), we proceed to the second phase, in which we iterate
over the edges of X again and again (i.e., multiple rounds). The second phase
ends only after a full round is completed, in which no vertex is assigned an
orientation. In a single round, we iterate over the edges of X, and for each pair
of consecutive edges e = {u, v} and f = {x, y}, where e precedes f , we assign
orientations to the vertices of e and f , subject to the four rules listed below.

No reorienting: The orientation of a vertex is unmodifiable; that is, once the
orientation of a vertex has been fixed (possibly already in the first phase), it
cannot be changed.

Center orientation: A non-center orientation to a vertex u of an edge e is
allowed, only if u is the second vertex of e to be assigned an orientation.
Thus, if u is the first vertex of e to be assigned an orientation, then u must
be assigned a center orientation.

Edge creation: Every operation that is performed must result in the creation
of an edge of the transmission graph. This is achieved either by assigning
orientations to two vertices simultaneously, or by orienting a vertex towards
an already oriented vertex.

No double tapping: If one of e’s vertices was already oriented due to f , where
f is one of e’s neighboring edges, then the other vertex of e will not be
oriented due to f .

Notice that in this phase, unlike the previous one, the orientation decisions
that we make when examining an edge e with respect to the next edge f , also
depend on the orientations that some of the vertices of these edges may already
have, and not only on the relative positions of these vertices.

In the full version of this paper [5], we illustrate several types of operations
that are performed in the second phase, before proceeding to the third phase.

138 S. Ashur and M. J. Katz

3.3 Phase III

In this phase we perform one final round, in which we orient all the vertices that
were not yet oriented. More precisely, we iterate over the edges of X, considering
each edge e with respect to the next edge f . When considering e, we orient its
vertices that were not yet oriented, so that once we are done with e, both e itself
and an edge connecting e and f are present in the transmission graph that is
being constructed.

When considering the edge e = {u, v} with respect to the next edge f =
{x, y}, we know (by induction) that there already exists a transmission edge
connecting e and the previous edge, so at most one of e’s vertices was not yet
oriented. If both vertices of e were already oriented, then either there already
exists a transmission edge connecting e and f , or not. In the former case, proceed
to the next edge of X (i.e., to f), and in the latter case, orient a vertex of f
that was not yet oriented (there must be such a vertex), to obtain a transmission
edge between e and f . We prove below that this is always possible.

If only one of e’s vertices was already oriented, then let, e.g., u be the one that
is not yet oriented. Now, if there already exists a transmission edge connecting
e and f (i.e., v is connected to both the previous and the next edge of e), then
assign u the orientation uc

v (ensuring that e is a transmission edge). Otherwise,
if one can assign an orientation to u, so that a transmission edge is created
between u and an already oriented vertex of f , then do so. If this is impossible,
then orient u and a vertex of f that was not yet oriented (there must be such
a vertex), to obtain a transmission edge between e and f . We prove below that
this is always possible.

3.4 Correctness

We first consider the more interesting case, where (i) one of the vertices of e, say
u, is not yet oriented, (ii) there is no transmission edge between e and f , and
(iii) it is impossible to orient u so that a transmission edge is created between u
and an already oriented vertex of f . In this case, we need to prove that at least
one of f ’s vertices is not yet oriented and that it is possible to orient both u and
such a vertex of f to obtain a transmission edge between e and f .

We begin by showing that if both of f ’s vertices were already oriented, then
either assumption (ii) or assumption (iii) does not hold. Indeed, by Claim 4
and the No double tapping rule of the second phase, one of f ’s vertices, say x,
was oriented due to e. Now, if x was oriented during the first phase, then we
distinguish between two cases according to the condition by which the orientation
of x was determined.

x’s orientation was determined by the first condition. In this case, by
Claim 5, the edge {v, x} is already in the transmission graph. In more detail,
since u is not yet oriented, we must have that x ∈ P1

u,v and v ∈ P3
x,y.

x’s orientation was determined by the second condition. In this case,
both u and v are in y’s region and x is in one of the center regions of P{u,v}.
So, by orienting u appropriately, one can obtain the transmission edge {u, x}.

A 4-Approximation of the 2π
3
-MST 139

If, however, x was oriented during the second phase, then by the Edge creation
rule, an edge connecting e and f was already created.

We thus conclude that at least one of f ’s vertices is not yet oriented. We now
consider, separately, the case where only one of f ’s vertices is not yet oriented
and the case where both vertices of f are not yet oriented.

Only One of f ’sVertices is Not Yet Oriented. Assume, without loss of
generality, that y is the vertex of f that is already oriented. If y was oriented
due to e, then by replacing x with y in the proof above, we get that either
assumption (ii) or assumption (iii) does not hold. Therefore, we assume that y
was oriented due to the edge following f , which implies that y was oriented in the
first or second phase. Now, if u and x can be oriented to obtain the transmission
edge {u, x}, then we are done. Otherwise, u ∈ P1

x,y or x ∈ P1
u,v. We consider

these cases below and show, for both of them, that a transmission edge between
e and f can still be created.

u ∈ P1
x,y: Notice that since x is not yet oriented and y was oriented in the first

or second phase, y’s orientation is necessarily yc
x. We consider each of the possible

locations of v in Px,y, and show that regardless of v’s location a transmission
edge can be created.

1. If v ∈ P1
x,y, then y was oriented due to e during the first phase—contradiction.

2. If v ∈ P3
x,y, then, by Claim 1, x and y are in the center regions of Pu,v, which

allows us to orient u towards y to create the transmission edge {u, y}.
3. If v is in one of the center regions of Px,y, then we apply Claim 2 to show

that we can orient x towards v to create the transmission edge {v, x}. Indeed,
since (by assumption (iii)) we cannot orient u to create the transmission edge
{u, y}, we know that y ∈ P1

u,v. So by Claim 2, we get that x ∈ P1
u,v. Therefore,

since both x and y are in u’s region, v’s orientation was determined by the
second condition during the first phase, and x can be oriented towards v to
create the transmission edge {v, x}.

x ∈ P1
u,v: We first observe that if it is possible to create a transmission edge

between v and x (i.e., v �∈ P1
x,y), then it is possible to do so by assigning v a

center orientation (since x ∈ P1
u,v), and we would have created the edge {v, x} (by

assigning v a center orientation and x an appropriate orientation) in the second
phase, as y was oriented in the first or second phase. We assume therefore that
it is impossible to create a transmission edge between v and x, which implies
that v ∈ P1

x,y.
We now show that regardless of the location of y in Pu,v, we get that v �∈

P1
x,y—contradiction.

1. If y ∈ P3
u,v, then, by Claim 1, v is in a center region of Px,y.

2. If y ∈ P1
u,v, then an edge between v and y was created in the first phase (i.e.,

the orientations of both v and y were determined by the first condition of the
first phase).

3. If y is in one of the center regions of Pu,v, say y ∈ P2
u,v, then, by Claim 2 and

using the assertion that v ∈ P1
x,y, we get that u ∈ P1

x,y as well. Therefore, y

140 S. Ashur and M. J. Katz

was assigned a center orientation in the first phase due to e, in contradiction
to our assumption.

Both Vertices of f are Not Yet Oriented. If x, y ∈ P1
u,v, then v’s orienta-

tion was determined by the second condition in the first phase (since if it were
determined by the first condition, then we would already have an edge between
e and f). Therefore, v’s orientation is vc

u and v is in one of the center regions of
Px,y, and we orient either x or y towards v to create a transmission edge between
e and f .

Assume, therefore, that at least one of f ’s vertices, say x, is not in P1
u,v.

Now, if u /∈ P1
x,y, then we orient u and x towards each other to create the edge

{u, x}. So assume, in addition, that u ∈ P1
x,y. Under these assumptions, we show

that regardless of the location of x in Pu,v, y /∈ P1
u,v, so u and y can be oriented

towards each other to create the transmission edge {u, y}.

1. If x is in one of the center regions of Pu,v, say x ∈ P2
u,v, then y /∈ P1

u,v. Since,
y ∈ P1

u,v, x ∈ P2
u,v and u ∈ P1

x,y implies (by Claim 3) that y was already
oriented in the first phase.

2. If x ∈ P3
u,v, then again y /∈ P1

u,v. Since, y ∈ P1
u,v and x ∈ P3

u,v implies (see
Claim 1) that u is in one of the center regions of Px,y, contradicting the
assumption u ∈ P1

x,y.

We now tend to the case where both vertices of e are already oriented, but
there is no transmission edge between e and f . We first notice that this means
that one of the vertices of e, say u, was oriented due to f . Moreover, u’s orienta-
tion was determined by the second condition in the first phase, since otherwise
an edge connecting e and f would already exist in the transmission graph. Next,
we notice that at least one of the vertices of f was not yet oriented, since if both
were oriented, then, again, one of them was oriented due to e and its orientation
was determined by the second condition in the first phase. But, this implies that
the first condition applies to both u and this vertex of f and that a transmission
edge between them already exists.

Now, since u’s orientation was determined by the second condition in the first
phase, we know that it is in one of the center regions of Px,y. We can therefore
orient the vertex of f that is not yet oriented towards u to create the required
transmission edge.

At this point, the edge set of our transmission graph G contains X and at least
one edge, for each pair e, f of consecutive edges of X, connecting a vertex of e and
a vertex of f . Let T be the graph obtained from G by leaving only one (arbitrary)
edge, for each pair of consecutive edges of X. Then, T is a 2π

3 -spanning tree of P .
Denote by Y ′ the set of edges of T between (vertices of) consecutive edges of X.
Then, ω(T) = ω(X) + ω(Y ′) ≤ ω(X) + (2ω(X) + ω(Y)) = ω(Π) + 2ω(X) ≤
2ω(Π). Moreover, T is a 3-hop spanner of Π, in the sense that if {p, q} is an
edge of Π, then there is a path between p and q in T consisting of at most 3
edges.

A 4-Approximation of the 2π
3
-MST 141

It was convenient to assume that X is a perfect matching, but it is possible
of course that it is not. In the full version of this paper [5] we show how to deal
with this case.

Running Time. The first and third phases of the algorithm each consist of a
single round, whereas the second phase consists of O(n) rounds. In each round
we traverse the edges of X from first to last and spend O(1) time at each edge.
Thus, the running time of the first and third phases is O(n), whereas the running
time of the second phase is O(n2). We show below that the quadratic bound on
the running time is due to our desire to keep the description simple, and that by
slightly modifying the second phase we can reduce its running time to O(n). The
modification is based on the observation that beginning from the second round,
an operation is performed when considering the pair ei, ei+1 of edges of X (i.e.,
a transmission edge between them is created) if (i) an operation was performed
in the previous round when considering ei+1 and ei+2, or (ii) an operation was
performed in the current round when considering ei−1 and ei (or both).

Using this observation, we prove that two rounds are sufficient. Specifically,
in the first round, we traverse the edges of X from first to last, i.e., a forward
round, and in the second round, we traverse the edges of X from last to first,
i.e., a backward round. In both rounds, in each iteration we consider the current
edge and the following one, and check whether an operation can be performed
(i.e., a transmission edge can be created), under the four rules listed in Sect. 3.2.
We refer to such an operation as a legal operation.

We now prove that once we are done, no legal operation can be performed
when considering a pair of adjacent edges of X. Indeed, let g = {pi, pi+1},
f = {pi+2, pi+3}, e, and d be four consecutive edges of X, and assume that after
the backward round, one can still perform a legal operation when considering the
pair e and f . Then, the operation became legal after an operation was performed
when considering the pair f and g. Since, if it became legal after an operation
was performed when considering the pair d and e, then we would have performed
it during the backward round. However, by our assumption, no operation was
performed during the backward round when considering the pair e and f , and
therefore no operation was performed in this round when considering the pair f
and g—contradiction.

The following theorem summarizes the main result of this section.

Theorem 7. Let P = {p1, . . . , pn} be a set of n points in the plane, and let Π
denote the polygonal path (p1, ..., pn). Then, one can construct, in O(n)-time, a
2π
3 -spanning tree T of P , such that (i) ω(T) ≤ 2ω(Π), and (ii) T is a 3-hop
spanner of Π.

Corollary 8. Let P = {p1, . . . , pn} be a set of n points in the plane. Then,
one can construct in O(n log n)-time a 2π

3 -ST T of P , such that ω(T) ≤
4ω(MST(P)).

142 S. Ashur and M. J. Katz

4 Conclusion

Given a polygonal path Π, we have shown that it is possible to construct a
2π
3 -ST T of its corresponding set of points, whose weight is at most twice the

weight of Π. Moreover, T is a 3-hop spanner of Π. As mentioned, this result is
optimal in the sense that there exists a polygonal path for which it is impos-
sible to construct a 2π

3 -ST of weight less than 2 − ε times the path’s weight,
for any ε > 0. Consequently, we obtained a 4-approximation algorithm for com-
puting a 2π

3 -MST of a set of points P , significantly improving the best previous
approximation ratio of 16

3 due to Biniaz et al. [6].
In general, the problem of computing an α-MST is a fascinating geometric

problem (at least in our opinion). Moreover, it arises in the context of wireless
networks with directional antennas of angle α. Thus, we believe that it (and its
variants) will receive further attention in the future, similar to the older problem
of computing a bounded-k MST.

References

1. Ackerman, E., Gelander, T., Pinchasi, R.: Ice-creams and wedge graphs. Comput.
Geom. 46(3), 213–218 (2013). http://dx.doi.org/10.1016/j.comgeo.2012.07.003

2. Aichholzer, O., et al.: Maximizing maximal angles for plane straight-line graphs.
Comput. Geom. 46(1), 17–28 (2013). http://dx.doi.org/10.1016/j.comgeo.2012.
03.002

3. Aschner, R., Katz, M.J.: Bounded-angle spanning tree: modeling networks with
angular constraints. Algorithmica 77(2), 349–373 (2017). http://dx.doi.org/10.
1007/s00453-015-0076-9

4. Aschner, R., Katz, M.J., Morgenstern, G.: Symmetric connectivity with directional
antennas. Comput. Geom. 46(9), 1017–1026 (2013). http://dx.doi.org10.1016/
j.comgeo.2013.06.003/

5. Ashur, S., Katz, M.J.: A 4-approximation of the 2π
3
-MST. CoRR, abs/2010.11571

(2020). https://arxiv.org/abs/2010.11571
6. Biniaz, A., Bose, P., Lubiw, A., Maheshwari, A.: Bounded-angle minimum spanning

trees. In: 17th Scandinavian Symposium and Workshops on Algorithm Theory,
SWAT 2020, 22–24 June 2020, Tórshavn, Faroe Islands, pp. 14:1–14:22 (2020).
https://dx.doi.org/10.4230/LIPIcs.SWAT.2020.14

7. Carmi, P., Katz, M.J., Lotker, Z., Rosén, A.: Connectivity guarantees for wire-
less networks with directional antennas. Comput. Geom. 44(9), 477–485 (2011).
http://dx.doi.org/10.1016/j.comgeo.2011.05.003

8. Chan, T.M.: Euclidean bounded-degree spanning tree ratios. Discret. Comput.
Geom. 32(2), 177–194 (2004). http://www.springerlink.com/index/10.1007/s004
54-004-1117-3

9. Fekete, S.P., Khuller, S., Klemmstein, M., Raghavachari, B., Young, N.E.: A
network-flow technique for finding low-weight bounded-degree spanning trees. J.
Algorithms 24(2), 310–324 (1997). http://dx.doi.org/10.1006/jagm.1997.0862

10. Jothi, R., Raghavachari, B.: Degree-bounded minimum spanning trees. Discret.
Appl. Math. 157(5), 960–970 (2009). http://dx.doi.org/10.1016/j.dam.2008.03.037

11. Khuller, S., Raghavachari, B., Young, N.E.: Low-degree spanning trees of small
weight. SIAM J. Comput. 25(2), 355–368 (1996). http://dx.doi.org/10.1137/S009
7539794264585

http://dx.doi.org/10.1016/j.comgeo.2012.07.003
http://dx.doi.org/10.1016/j.comgeo.2012.03.002
http://dx.doi.org/10.1016/j.comgeo.2012.03.002
http://dx.doi.org/10.1007/s00453-015-0076-9
http://dx.doi.org/10.1007/s00453-015-0076-9
http://dx.doi.org/10.1016/j.comgeo.2013.06.003
http://dx.doi.org/10.1016/j.comgeo.2013.06.003
https://arxiv.org/abs/2010.11571
https://dx.doi.org/10.4230/LIPIcs.SWAT.2020.14
http://dx.doi.org/10.1016/j.comgeo.2011.05.003
http://www.springerlink.com/index/10.1007/s00454-004-1117-3
http://www.springerlink.com/index/10.1007/s00454-004-1117-3
http://dx.doi.org/10.1006/jagm.1997.0862
http://dx.doi.org/10.1016/j.dam.2008.03.037
http://dx.doi.org/10.1137/S0097539794264585
http://dx.doi.org/10.1137/S0097539794264585

A 4-Approximation of the 2π
3
-MST 143

12. Monma, C.L., Suri, S.: Transitions in geometric minimum spanning trees. Discret.
Comput. Geom. 8, 265–293 (1992). http://dx.doi.org/10.1007/BF02293049

13. Papadimitriou, C.H., Vazirani, U.V.: On two geometric problems related
to the traveling salesman problem. J. Algorithms 5(2), 231–246 (1984).
http://dx.doi.org/10.1016/0196-6774(84)90029-4

http://dx.doi.org/10.1007/BF02293049
http://dx.doi.org/10.1016/0196-6774(84)90029-4

Dynamic Dictionaries for Multisets
and Counting Filters with Constant Time

Operations

Ioana O. Bercea(B) and Guy Even

Tel Aviv University, Tel Aviv, Israel
ioana@cs.umd.edu, guy@eng.tau.ac.il

Abstract. We resolve the open problem posed by Arbitman, Naor,
and Segev [FOCS 2010] of designing a dynamic dictionary for multi-
sets in the following setting: (1) The dictionary supports multiplicity
queries and allows insertions and deletions to the multiset. (2) The dic-
tionary is designed to support multisets of cardinality at most n (i.e.,
including multiplicities). (3) The space required for the dictionary is
(1 + o(1)) · n log u

n
+ Θ(n) bits, where u denotes the cardinality of the

universe of the elements. This space is 1 + o(1) times the information-
theoretic lower bound for static dictionaries over multisets of cardinality
n if u = ω(n). (4) All operations are completed in constant time in the
worst case with high probability in the word RAM model.

A direct consequence of our construction is the first dynamic counting
filter (i.e., a dynamic data structure that supports approximate multiplic-
ity queries with a one-sided error) that, with high probability, supports
operations in constant time and requires space that is 1 + o(1) times the
information-theoretic lower bound for filters plus O(n) bits.

The main technical component of our solution is based on efficiently
storing variable-length bounded binary counters and its analysis via
weighted balls-into-bins experiments in which the weight of a ball is
logarithmic in its multiplicity.

Keywords: Ditionaries · Filters · Multisets

1 Introduction

We consider the dynamic dictionary problem for multisets. The special case of
dictionaries for sets (i.e., multiplicities are ignored) is a fundamental problem
in data structures and has been well studied [2,12,25,30]. In the case of multi-
sets, elements can have arbitrary (adversarial) multiplicities and we are given an

This research was supported by a grant from the United States-Israel Binational Sci-
ence Foundation (BSF), Jerusalem, Israel, and the United States National Science
Foundation (NSF)
A full version of this paper can be found at [5].

c© Springer Nature Switzerland AG 2021
A. Lubiw et al. (Eds.): WADS 2021, LNCS 12808, pp. 144–157, 2021.
https://doi.org/10.1007/978-3-030-83508-8_11

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-83508-8_11&domain=pdf
https://doi.org/10.1007/978-3-030-83508-8_11

Dynamic Dictionaries for Multisets 145

upper bound n on the total cardinality of the multiset (i.e., including multiplic-
ities) at any point in time. The goal is to design a data structure that supports
multiplicity queries (i.e., how many times does x appear in the multiset?) and
allows insertions and deletions to the multiset (i.e., the dynamic setting).

A related problem is that of supporting approximate membership and mul-
tiplicity queries. Approximate set membership queries allow for one-sided errors
in the form of false positives: given an error parameter ε > 0, the probability of
returning a “yes” on an element not in the set is at most ε. Such data structures
are known as filters. For multisets, the corresponding data structure is known as
a counting filter (or a spectral filter). A counting filter returns a count that is at
least the multiplicity of the element in the multiset and overcounts with proba-
bility bounded by ε. Counting filters have received significant attention over the
years due to their applicability in practice [7,10,17]. One of the main applica-
tions of dictionaries for multisets is in designing dynamic filters and counting
filters [2]. This application is based on Carter et al. [9] who showed that by
hashing each element into a random fingerprint, one can reduce a counting filter
to a dictionary for multisets by storing the fingerprints in the dictionary.

The lower bound on the space required for storing a dictionary follows from
a simple counting argument (i.e., information theoretic lower bound). Namely,
the space of a dictionary for multisets of cardinality n is at least log

(
u+n

n

)
=

n log(u/n) + Θ(n) bits, where u is the size of the universe.1, 2 In the case of
filters, the lower bound is at least n log(1/ε) + Θ(n) bits [23]. A data structure
is succinct if the total number of bits it requires is (1+o(1)) ·B, where B denotes
the lower bound on the space and the o(1) term converges to zero as n tends
to infinity. A data structure is space-efficient if it is succinct up to an additive
O(n) term in space.

For the design of both dictionaries and filters, the performance measures of
interest are the space the data structure takes and the time it takes to per-
form the operations. The first goal is to design data structures for dictionaries
over multisets that are space-efficient with high probability.3 Our dictionary
and counting filter are space-efficient for all ranges of parameters and succinct
if the lower bound on the space satisfies B = ω(n). Indeed, this is the case in a
dictionary if u = ω(n) and in a filter if ε = o(1).

The second goal is to support queries, insertions, and deletions in constant
time in the word RAM model. The constant time guarantees should be in the
worst case with high probability (see [1,2,8,21] for a discussion on the shortcom-
ings of expected or amortized performance in practical scenarios). We assume
that each memory access can read/write a word of w = log u contiguous bits.

1 All logarithms are base 2 unless otherwise stated. ln x is used to denote the natural
logarithm.

2 This equality holds when u is significantly larger than n.
3 By with high probability (whp), we mean with probability at least 1− 1/nΩ(1). The

constant in the exponent can be controlled by the designer and only affects the o(1)
term in the space of the dictionary or the filter.

146 I. O. Bercea and G. Even

The current best known dynamic dictionary for multisets was designed by
Pagh, Pagh, and Rao [25] based on the dictionary for sets of Raman and Rao [30].
The dictionary is space-efficient and supports membership queries in constant
time in the worst case. Insertions and deletions take amortized expected constant
time and multiplicity queries take O(log n) in the worst case. In the case of
sets, the state-of-the-art dynamic dictionary of Arbitman, Naor, and Segev [2]
achieves the “best of both worlds”: it is succinct and supports all operations
in constant time whp. Arbitman et al. [2] pose the open problem of whether a
similar result can be achieved for multisets.

Recently, progress on this problem was achieved by Bercea and Even [3] who
designed a constant-time dynamic space-efficient dictionary for random multi-
sets. In a random multiset, each element is sampled independently and uniformly
at random from the universe (with repetitions). Multiplicities of elements in
the dictionary in [3] are handled by storing duplicates. Namely, an element x
with multiplicity m(x) has m(x) duplicate copies in the dictionary. The analysis
employs ball-into-bins experiments in which the weight of a ball is linear in its
multiplicity (more precisely, log(u/n) ·m(x)). This analysis breaks if the multiset
is arbitrary (i.e., not random).4 Loosely speaking, in this paper, multiplicities are
counted using variable-length counters. Thus, the analysis deals with ball-into-
bins experiments in which the weight of a ball is logarithmic in its multiplicity
(more precisely, log(u/n)+O(log(m(x)))). The design distinguishes between low
and high multiplicities, where the threshold is log3 n, so that the length of the
variable-length counters for the low multiplicities is O(log m(x)) = O(log log n)
bits, and the length of counters for high multiplicities is log n bits.

1.1 Results

In the following theorem, overflow refers to the event that the space allocated in
advance for the dictionary does not suffice. Such an event occurs if the random
hash function fails to “balance loads”.

Theorem 1 (dynamic multiset dictionary). There exists a dynamic dictio-
nary that maintains dynamic multisets of cardinality at most n from the uni-
verse U = {0, 1}log2 u with the following guarantees: (1) For every polynomial
in n sequence of operations (multiplicity query, insertion, deletion), the dic-
tionary does not overflow whp. (2) If the dictionary does not overflow, then
every operation can be completed in constant time. (3) The required space is
(1 + o(1)) · n log(u/n) + O(n) bits.

Our dictionary construction considers a natural separation into the sparse
and dense case based on the size of the universe relative to n. The sparse case,
defined when log(u/n) = ω(log log n), enables us to store additional Θ(log log n)
bits per element without sacrificing space-efficiency. However, the encoding of
the elements is longer, so fewer encodings can be packed in a word. In this
4 For example, storing n copies of the same element would lead to almost all the

elements being stored in the second level spare, causing the spare to overflow.

Dynamic Dictionaries for Multisets 147

case, we propose a dictionary for multisets that is based on dynamic dictionaries
that support both membership queries and satellite data (i.e., it stores (key,
value) pairs where the key is the element and the value is its satellite data).
We use two separate dictionaries: (1) One dictionary is used for the elements
with multiplicity at most log3 n (in which the satellite data is the multiplicity
that is encoded using O(log log n) bits). (2) The second dictionary is used for
the elements with multiplicity at least log3 n (in which the satellite data is the
multiplicity that is encoded using log n bits). This construction is described in
Sect. 3.

The dictionary for the dense case deals with the case in which log(u/n) =
O(log log n).5 Following [3], we hash distinct elements into a first level that con-
sists of small space-efficient “bin dictionaries” of fixed capacity. The first level
only stores elements of multiplicity strictly smaller than log3 n, just like in the
dense case. However, we employ variable-length counters to encode multiplici-
ties and store them in a separate structure called a “counter dictionary”. We
allocate one counter dictionary for each bin dictionary. The space (i.e., number
of bits) of the counter dictionary is linear in the capacity of the associated bin
dictionary (i.e., maximum number of elements that it can store). Namely, we
spend a constant number of bits on average to encode the multiplicity of each
element in the first level.

Elements that do not fit in the first level are stored in a secondary data
structure called the spare. We prove that whp, the number of elements stored in
the spare is O(n/ log3 n). Hence, even if a log n-bit counter is attached to each
element in the spare, then the spare still requires o(n) bits. To bound the number
of elements that are stored in the spare, we cast the process of hashing counters
into counter dictionaries as a weighted balls-into-bins experiment in which balls
have logarithmic weights (see Sect. 4.5).

As a corollary of Theorem 1, we obtain a counting filter with the following
guarantees.6

Corollary 1 (dynamic counting filter). There exists a dynamic counting
filter for multisets of cardinality at most n from a universe U = {0, 1}u such
that the following hold: (1) For every polynomial in n sequence of operations
(multiplicity query, insertion, deletion), the filter does not overflow whp. (2) If
the filter does not overflow, then every operation can be completed in constant
time. (3) The required space is (1 + o(1)) · log(1/ε) · n + O(n) bits. (4) For every
multiplicity query, the probability of overcounting is bounded by ε.

1.2 Related Work

The dictionary for multisets of Pagh et al. [25] is space-efficient and supports
membership queries in constant time in the worst case. Insertions and deletions
5 The dense case is especially relevant in practical approximate membership (filter)

settings in which u/n = 1/ε due to the reduction of Carter et al. [9].
6 Note that we allow ε to be as small as n/u (below this threshold, we can simply use

a dictionary instead).

148 I. O. Bercea and G. Even

take amortized expected constant time and multiplicity queries take O(log c)
for a multiplicity of c. Multiplicities are represented “implicitly” by a binary
counter whose operations (query, increment, decrement) are simulated as queries
and updates to dictionaries on sets.7 Increments and decrements to the counter
take O(1) bit probes (and hence O(1) dictionary operations) but decoding the
multiplicity takes O(log n) time in the worst case. We are not aware of any other
dictionary constructions for multisets.8

Dynamic dictionaries for sets have been extensively studied [1,2,11–13,15,
19,28,30]. The dynamic dictionary for sets of Arbitman et al. [2] is succinct
and supports operations in constant time whp. In [2], they pose the problem of
designing a dynamic dictionary for multisets as an open question.

In terms of counting filters, several constructions do not come with worst case
guarantees for storing arbitrary multisets [7,17]. The only previous counting filter
with worst case guarantees we are aware of is the Spectral Bloom filter of Cohen
and Matias [10] (with over 480 citations in Google Scholar). The construction
is a generalization of the Bloom filter and hence requires Θ(log(1/ε)) memory
accesses per operation. The space usage is similar to that of a Bloom filter and
depends on the sum of logs of multiplicities. Consequently, when the multiset is
a set, the required space is 1.44 · log(1/ε) · n + Θ(n).

1.3 Paper Organization

Preliminaries are in Sect. 2. The construction for the sparse case can be found
in Sect. 3 and the one for the dense case is described and analyzed in Sect. 4.
Corollary 1 is proved in the full version of the paper [5].

2 Preliminaries

For k > 0, let [k] denote the set {0, . . . , �k� − 1}. Let U � [u] denote the universe
of all possible elements. We often abuse notation, and regard elements in [u] as
binary strings of length log u. For a string a ∈ {0, 1}∗, let |a| denote the length
of a in bits.

Definition 1 (multiset). A multiset M over U is a function M : U → N.
We refer to M(x) as the multiplicity of x. The cardinality of a multiset M is

denoted by |M| and defined by |M| �
∑

x∈U M(x). The support of the multiset
is denoted by σ(M) and is defined by σ(M) � {x | M(x) > 0}.

7 To be more exact, for each bit of the counter, the construction in Pagh et al. [25]
allocates a dictionary on sets such that the value of the bit can be retrieved by
performing a lookup in the dictionary. Updating a bit of the counter is done by
inserting or deleting elements in the associated dictionary.

8 Data structures for predecessor and successor queries such as [29] can support mul-
tisets but they do not meet the required performance guarantees for multiplicity
queries.

Dynamic Dictionaries for Multisets 149

Operations over Dynamic Multisets. We consider the following operations:
insert(x), delete(x), and count(x). Let Mt denote the multiset after t operations.
A dynamic multiset {Mt}t is specified by a sequence {opt}t≥1 of as follows.9

Mt(x) �

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

0 if t = 0
Mt−1(x) + 1 if opt = insert(x)
Mt−1(x) − 1 if opt = delete(x)
Mt−1(x) otherwise.

We say that a dynamic multiset {Mt}t has cardinality at most n if |Mt| ≤ n,

for every t.

Dynamic Dictionary for Multisets. A dynamic dictionary for multisets
maintains a dynamic multiset {Mt}t. The response to count(x) is simply Mt(x).

Dynamic Counting Filter. A dynamic counting filter maintains a dynamic
multiset {Mt}t and is parameterized by an error parameter ε ∈ (0, 1). Let outt
denote the response to a count(xt) at time t. We require that the output outt
satisfy the following conditions:

outt ≥ Mt(xt) (1)
Pr [outt > Mt(xt)] ≤ ε . (2)

Namely, outt is an approximation of Mt(xt) with a one-sided error.

Definition 2 (overcounting). Let Errt denote the event that opt = count(xt),
and outt > Mt(xt).

Note that overcounting generalizes false positive events in filters over sets.
Indeed, a false positive event occurs in a filter for sets if Mt(xt) = 0 and
outt > 0.10

2.1 The Model

Memory Access Model. We assume that the data structures are implemented
in the word RAM model in which every access to the memory accesses a word.
Let w denote the memory word length in bits. We assume that w = log u. See
the full version of the paper [5] for a discussion on how the computations we
perform over words are implemented in constant time.

Probability of Overflow. We prove that overflow occurs with probability at
most 1/ poly(n) and that one can control the degree of the polynomial (the degree

9 We require that opt = delete(xt) only if Mt−1(xt) > 0.
10 The probability space is induced only by the random choices (i.e., choice of hash

functions) that the filter makes. Note also that if opt = opt′ = count(x), then the
events Errt and Errt′ need not be independent.

150 I. O. Bercea and G. Even

of the polynomial only affects the o(1) term in the size bound). The probability
of an overflow depends only on the random choices that the dictionary makes.

Hash Functions. Our dictionary employs similar succinct hash functions as in
Arbitman et al. [2] which have a small representation and can be evaluated in
constant time. For simplicity, we first analyze the data structure assuming fully
random hash functions (Sect. 4.5). In the full version of the paper [5], we prove
that the same arguments hold when we use succinct hash functions and that the
techniques in [2] used for sets can also be employed for multisets. The counting
filter reduction additionally employs pairwise independent hash functions.

3 Dictionary for Multisets via Key-Value Dictionaries
(Sparse Case)

In this section, we show how to design a multiset dictionary based on a dictionary
on sets that supports attaching satellite data per element. Such a dictionary with
satellite data supports the operations: query, insert, delete, retrieve, and update.
A retrieve operation for x returns the satellite data of x. An update operation
for x with new satellite data d stores d as the new satellite data of x. Loosely
speaking, we use the satellite data to store a counter with Θ(log log n) bits.
Hence, a succinct multiset dictionary is obtained from a succinct (set) dictionary
only if log(u/n) = ω(log log n).

Let Dict(U , n, r) denote a dynamic dictionary for sets of cardinality at most
n over a universe U , where r bits of satellite data are attached to each element.
One can design Dict(U , n, r) from Dict(U ′, n, 0), where U ′ � U × [2s] if the first
component of an element is a key. Namely, we require that the dataset D′(t) ⊂
U × [2s] does not contain two elements (x1, d1) and (x2, d2) such that x1 = x2.
An implementation of Dict(U , n, r) (for r = O(log n)) with constant time per
operation can be obtained from the dictionary of Arbitman et al. [2] (see also [4]).
The space of such an implementation is (1 + o(1)) · (log(u/n) + r) · n + O(n).

Let MS-Dict(U , n) denote a dynamic dictionary for multisets over U of car-
dinality at most n. We propose a reduction that employs two dictionaries (with
satellite data). The space for these dictionaries is allocated up front before the
first element is inserted. (Hence, overflow of MS-Dict(n) occurs if one of these
dictionaries overflows.)

Observation 1. One can implement MS-Dict(U , n) using two dynamic dictio-
naries: D1 = Dict(U , n, 3 log log n) and D2 = Dict(U , n/(log3 n), log n). Each
operation over MS-Dict can be performed using a constant number of operations
over D1 and D2.

Proof (sketch). An element is light if its multiplicity is at most log3 n, otherwise it
is heavy. Dictionary D1 is used for storing the light elements, whereas dictionary
D2 is used for storing the heavy elements. The satellite data in both dictionaries
is a binary counter of the multiplicity. Counters in D1 are 3 log log n bits long,
whereas counters in D2 are log n bits long.

Dynamic Dictionaries for Multisets 151

Claim. If log(u/n) = ω(log log n), then there exists a dynamic multiset dictio-
nary that is succinct and supports operations in constant time in the worst case
whp.

Proof. The implementation suggested in Observation 1 employs two dictionaries
D1 and D2 (each with satellite data). The space of D1 is (1+o(1)) · ((log(u/n)+
3 log log n) ·n+O(n). The space of D2 is (1+ o(1)) · ((log((u log3 n)/n)+ log n) ·

n
log3 n

+ O(n
log3 n

) = o(log(u/n) · n). Hence, the space of the multiset dictionary
MS-Dict(n) is: (1 + o(1)) · ((log(u/n) + 3 log log n) · n + O(n). In the sparse case
log(u/n) = ω(log log n). The lower bound on the space per element is log(u/n)
bits, and hence the obtained MS-Dict(n) is succinct.

This completes the proof of Theorem 1 for the sparse case.

Remark. An alternative solution stores the multiplicities in an array separately
from a dictionary that stores the support of the multiset. Let s denote the car-
dinality of the support of the multiset. Let h : U → [s + o(s)] be a dynamic
perfect hashing that requires Θ(s log log s) bits and supports operations in con-
stant time (such as the one in [12]). Store the (variable-length) binary counter for
x at index h(x) in the array. The array can be implemented in space that is linear
in the total length of the counters and supports query and update operations in
constant time [6].

4 Dictionary for Multisets (Dense Case)

In this section, we prove Theorem 1 for the case in which log(u/n) = O(log log n),
which we call the dense case. We refer to this dictionary construction as the MS-
Dictionary (Multiset Dictionary) in the dense case.

The MS-Dictionary construction follows the same general structure as in [2,3,
12]. Specifically, it consists of two levels of dictionaries. The first level is designed
to store a (1 − o(1)) fraction of the elements (Sect. 4.3). An element is stored in
the first level provided that its multiplicity is at most log3 n and there is enough
capacity. Otherwise, the element is stored in the second level, which is called the
spare (Sect. 4.4).

The first level of the MS-Dictionary consists of m bin dictionaries {BDi}i∈[m]

together with m counter dictionaries {CDi}i∈[m]. Each bin dictionary can store
at most nB = (1 + δ)B distinct elements, where δ = o(1) and B � n/m denotes
the mean occupancy of bin dictionaries. We say that a bin dictionary is full if it
stores nB distinct elements.

Each counter dictionary stores variable-length binary counters. Each counter
represents the multiplicity of an element in the associated bin dictionary. Each
counter dictionary can store counters whose total length in bits is at most 12B.
We say that a counter dictionary is full if the total length of the counters stored
in it is 12B bits. (The length of a counter that stores the value c is �log2(c + 1)�
bits. The encoding of the counter is longer, namely 2(1 + �log2(c + 1)�) bits
because we employ variable-length encoding.)

152 I. O. Bercea and G. Even

The following invariant specifies which elements are stored in the spare.

Invariant 2 An element x such that Mt(x) > 0 is stored in the spare at time
t if: (1) Mt(x) ≥ log3 n, or (2) the bin dictionary corresponding to x is full, or
(3) the counter dictionary corresponding to x is full.

We emphasize that an element x cannot further stay in the spare if it does not
satisfy Invariant 2. Namely, if the justification for storing x in the spare does not
hold anymore, then it has to be transferred to first level. This transfer may be
performed in a “lazy” fashion. Namely, instead of searching for elements in the
spare that should be transferred to the first level, the transfer takes place when
we stumble on them while trying to insert an element.

We denote the upper bound on the cardinality of the support of the multiset
stored in the spare by nS . We say that the spare overflows when more than nS

elements are stored in it.

4.1 Parametrization

The choice of parameters in the design of the MS-Dictionary for the dense case
is summarized in Table 1.

Table 1. Setting of parameters in the MS-Dictionary in the dense case (i.e., log(u/n) =
O(log log n)).

Parameter value Meaning

u Cardinality of the universe U
n Maximum cardinality of the multiset M(t)

B � logn
log(u/n)

Average number of elements per bin

m � n
B

Number of bins

δ � Θ(log logn√
B

) Over-provisioning fraction per bin

nB � (1 + δ) · B Maximum number of distinct elements stored in a bin

ns � 3n
log3 n

Maximum number of distinct elements stored in the spare

4.2 Hash Functions

We employ a permutation π : U → U . We define hb : U → [m] to be the leftmost
log m bits of the binary representation of π(x) and by hr : U → [u/m] to be the
remaining log(u/m) bits of π(x). An element x is hashed to the bin dictionary of
index hb(x). Hence storing x in the first level of the dictionary amounts to storing
hr(x) in BDi, where i = hb(x), and storing Mt(x) in CDi. (This reduction in
the universe size is often called “quotienting” [12,22,25,26]).

The overflow analysis in Sect. 4.5 assumes truly random permutations. In
the full version of the paper [5], we discuss how one can replace this assumption
with the succinct hash functions of Arbitman et al. [2].

Dynamic Dictionaries for Multisets 153

4.3 The First Level of the Multiset Dictionary

The first level of the MS-Dictionary consists of bin dictionaries and counter
dictionaries.

Bin Dictionaries. Each bin dictionary (BD) is a deterministic dictionary for
sets of cardinality at most nB that supports queries, insertions and deletions.
Each bin dictionary can be implemented using global lookup tables [2] or Elias-
Fano encoding [3]. Implementation via global lookup tables is succinct, whereas
the Elias-Fano encoding requires 2 + log(u/n) bits per element, and is succinct
only if log(u/n) = ω(1). Moreover, each BD fits in a constant number of words
and performs queries, insertions and deletions in constant time.

Counter Dictionaries. Let (x1, . . . x�) denote the sequence of elements stored
in BDi. Let M(xi) denote the multiplicity of xi. The counter dictionary CDi

stores the sequence of multiplicities (M(x1), . . . ,M(x�)). Namely, the order of
the element multiplicities stored in CDi is the same order in which the corre-
sponding elements are stored in BDi. Multiplicities in CDi are encoded using
variable-length counters. We employ a trivial 2-bit alphabet to encode 0, 1 and
“end-of-counter” symbols for encoding the multiplicities. Hence, the length of a
counter that stores the value c is �log2(c+1)� bits while its encoding 2(1+�log2 c�)
bits long. The contents of CDi is simply a concatenation of the encoding of the
counters. We allocate 2(12B + nB) = O(B) bits per CD.11

The CD supports the operations of multiplicity query, increment and decre-
ment. These operations are carried out naturally in constant time because each
CDi fits in O(1) words. We note that an increment may cause the CD to be full,
in which case x is deleted from the bin dictionary and is inserted into the spare
together with its updated counter. Similarly, a decrement may zero the counter,
in which case x is deleted from the bin dictionary (and hence its multiplicity is
also deleted from the counter dictionary).

4.4 The Spare

Since the multiplicity of every element in the spare is at most n, the multiplicity
can be represented by a log n-bit counter. As in the dense case, the spare can
be implemented using a dynamic dictionary Dict(U , ns, log n). An additional
requirement from that spare is that it supports moving elements back to the
first level if their insertion no longer violates Invariant 2.

For this purpose, we propose to employ the dictionary of Arbitman et al. [1]
that is a de-amortized construction of the cuckoo hash table of Pagh and
Rodler [27]. Namely, each element is assigned two locations in an array. If upon
insertion, both locations are occupied, then space for the new element is made
by “relocating” an element occupying one of the two locations. Long chains of
relocations are “postponed” by employing a queue of pending insertions. Thus,
11 Note, however, that we define a CD to be full if the sum of counter lengths is 12B

(even if we did not use all its space). The justification for this definition is to simplify
the analysis.

154 I. O. Bercea and G. Even

each operation is guaranteed to perform in constant time in the worst case. The
space that the dictionary occupies is O(nS(log(u/n) + log n) + O(ns) = o(n).

The dynamic dictionary in [1] is used as a spare in the incremental filter in [2].
We use it a similar manner to maintain Invariant 2 in a “lazy” fashion. Namely,
if an element x residing in the spare is no longer in violation of Invariant 2
(for instance, due to a deletion in the bin dictionary), we do not immediately
move x from the spare back to its bin dictionary. Instead, we “delay” such an
operation until x is examined during a chain of relocations. Specifically, during
an insertion to the spare, for each relocated element, one checks if this element
is still in violation of Invariant 2. If it is not, then it is deleted from the spare
and inserted into the first level. This increases the time of operations only by a
constant and does not affect the overflow probability of the spare.

4.5 Overflow Analysis

The event of an overflow occurs if more than nS distinct elements are stored
in the spare. In this section, we prove that overflow does not occur whp with
respect to perfectly random hash functions.

Invariant 2 reduces the dynamic setting to the incremental setting in the
sense that the number of elements in the spare at time t depends only on D(t)
(and not on the complete history). The overflow analysis proceeds by proving
that, for every t, the spare does not overflow whp. By applying a union bound,
we conclude that overflow does not occur whp over a polynomial number of
operations in the dynamic setting.

Recall that each component of the first level of the dictionary has capacity
parameters: each bin dictionary has an upper bound of nB = (1 + δ)B on the
number of distinct elements it stores and each counter dictionary has an upper
bound of 12B on the total length of the counters it stores. Additionally, the
first level only stores elements whose multiplicity is strictly smaller than log3 n.
According to Invariant 2, if the insertion of some element x exceeds these bounds,
then x is moved to the spare.

We bound the number of elements that go to the spare due to failing one of the
conditions of Invariant 2 separately. The number of elements whose multiplicity
is at least log3 n is at most n/ log3 n. The number of distinct elements that are
stored in the spare because their bin dictionary is full is at most n/ log3 n whp.
The proof of this bound can be derived by modifying the proof of Claim 4.5 (see
also [2]). We focus on the number of distinct elements whose counter dictionary
is full.

Claim. The number of distinct elements whose corresponding CD is full is at
most n/ log3 n whp.

Proof. Recall that there are m = n/B counter dictionaries and that each CD
stores the multiplicities of at most nB = (1 + δ)B distinct elements of multi-
plicity strictly smaller than log3 n. In a full CD, the sum of the counter lengths
reaches 12B. We start by bounding the probability that the total length of the
counters in a CD is at least 12B.

Dynamic Dictionaries for Multisets 155

Formally, consider a multiset M of cardinality n consisting of s distinct
elements {xi}i∈[s] with multiplicities {fi}i∈[s] (note that

∑
i∈[s] fi = n). The

length of the counter for multiplicity fi is wi � �log(fi + 1)� (we refer to this
quantity as weight). For β ∈ [m], let Mβ denote the sub-multiset of M consisting
of the elements xi such that hb(xi) = β. Let Cβ denote the event that the weight
of Mβ is at least 12B, namely

∑
xi∈Mβ wi ≥ 12B. We begin by bounding the

probability of event Cβ occurring.
For i ∈ [s], define the random variable Xi ∈ {0, wi}, where Xi = wi if

hb(xi) = β and 0 otherwise. Since the values
{
(hb(xi), hq(xi))

}
i

are sampled at
random without replacement (i.e., obtained from a random permutation), the
random variables {Xi}i are negatively associated. Let μ � 1

m · ∑
i∈[s] wi denote

the expected weight per CD. Since wi ≤ log(2(1+fi)), by the concavity of log(x),
we have

μ ≤ s

m
log

∑
i∈[s] 2(1 + fi)

s
≤ s

m
log

(
2 +

2n

s

)
≤ 2B .

Since wi ≤ log log3 n (we omit the ceiling to improve readability), by Chernoff’s
bound:

Pr [Cβ] = Pr

⎡

⎣
∑

i∈[s]

Xi ≥ 6 · 2B

⎤

⎦ ≤ 2− 12B
log log3 n = 1/(log n)ω(1) .

Let I(Cβ) denote the indicator variable for event Cβ . Then E

[∑
β I(Cβ)

]
≤

n/(log n)ω(1). Moreover, the RVs {I(Cβ)}β are negatively associated (more
weight in bin b implies less weight in bin b′). By Chernoff’s bound:

Pr

[
∑

b

I(Cβ) ≥ n

log5 n

]

≤ O(2−n/(log5 n)) .

Whp, a bin is assigned at most log2 n elements. We conclude that the number of
elements that are stored in the spare due to events

⋃
b Cβ is at most n/(log3 n)

whp.

4.6 Space Analysis

Each bin dictionary takes nB log(u/n) + Θ(nB) bits, where nB = (1 + δ)B,
B = n/m and δ = o(1). Each CD occupies Θ(B) bits. Therefore, the first
level of the MS-Dictionary takes (1 + δ)n log(u/n) + Θ(n) bits. The spare takes
O(nS log(u/n)) = o(n) bits, since nS = Θ(n/ log3 n). Therefore, the space the
whole dictionary takes is (1 + o(1)) · log(u/n) + Θ(n) bits. This completes the
proof of Theorem 1 for the dense case.

156 I. O. Bercea and G. Even

References

1. Arbitman, Y., Naor, M., Segev, G.: De-amortized cuckoo hashing: Provable worst-
case performance and experimental results. In: Albers, S., Marchetti-Spaccamela,
A., Matias, Y., Nikoletseas, S., Thomas, W. (eds.) Automata, Languages and Pro-
gramming. ICALP 2009. Lecture Notes in Computer Science, vol. 5555. Springer,
Berlin, Heidelberg (2009). https://doi.org/10.1007/978-3-642-02927-1 11

2. Arbitman, Y., Naor, M., Segev, G.: Backyard cuckoo hashing: constant worst-case
operations with a succinct representation. In: 2010 IEEE 51st Annual Symposium
on Foundations of Computer Science. pp. 787–796. IEEE (2010)

3. Bercea, I.O., Even, G.: A dynamic space-efficient filter with constant time oper-
ations. In: 17th Scandinavian Symposium and Workshops on Algorithm The-
ory, SWAT 2020, June 22–24, 2020, pp. 11:1–11:17. Tórshavn, Faroe Islands
(2020). https://doi.org/10.4230/LIPIcs.SWAT.2020.11, https://doi.org/10.4230/
LIPIcs.SWAT.2020.11

4. Bercea, I.O., Even, G.: Fully-dynamic space-efficient dictionaries and filters with
constant number of memory accesses. CoRR abs/1911.05060 (2019). http://arxiv.
org/abs/1911.05060

5. Bercea, I.O., Even, G.: A space-efficient dynamic dictionary for multisets with
constant time operations. CoRR abs/2005.02143 (2020). https://arxiv.org/abs/
2005.02143

6. Blandford, D.K., Blelloch, G.E.: Compact dictionaries for variable-length keys and
data with applications. ACM Trans. Algorithms 4(2) (2008). https://doi.org/10.
1145/1361192.1361194

7. Bonomi, F., Mitzenmacher, M., Panigrahy, R., Singh, S., Varghese, G.: An
improved construction for counting Bloom filters. In: Azar, Y., Erlebach, T. (eds.)
Algorithms – ESA 2006. ESA 2006. Lecture Notes in Computer Science, vol. 4168.
Springer, Berlin, Heidelberg (2006). https://doi.org/10.1007/11841036 61

8. Broder, A., Mitzenmacher, M.: Using multiple hash functions to improve ip
lookups. In: Proceedings IEEE INFOCOM 2001. Conference on Computer Com-
munications. Twentieth Annual Joint Conference of the IEEE Computer and Com-
munications Society (Cat. No. 01CH37213). vol. 3, pp. 1454–1463. IEEE (2001)

9. Carter, L., Floyd, R., Gill, J., Markowsky, G., Wegman, M.: Exact and approximate
membership testers. In: Proceedings of the Tenth Annual ACM Symposium on
Theory of Computing, pp. 59–65. ACM (1978)

10. Cohen, S., Matias, Y.: Spectral Bloom filters. In: Proceedings of the 2003 ACM
SIGMOD International Conference on Management of Data, pp. 241–252 (2003)

11. Dalal, K., Devroye, L., Malalla, E., McLeish, E.: Two-way chaining with reassign-
ment. SIAM J. Comput. 35(2), 327–340 (2005)

12. Demaine, E.D., auf der Heide, F.M., Pagh, R., Pătraşcu, M.: De dictionariis
dynamicis pauco spatio utentibus. In: Correa, J.R., Hevia, A., Kiwi, M. (eds.)
LATIN 2006: Theoretical Informatics. LATIN 2006. Lecture Notes in Computer
Science, vol. 3887. Springer, Berlin, Heidelberg (2006). https://doi.org/10.1007/
11682462 34

13. Dietzfelbinger, M., auf der Heide, F.M.: A new universal class of hash functions
and dynamic hashing in real time. In: Paterson, M.S. (ed.) Automata, Languages
and Programming. ICALP 1990. Lecture Notes in Computer Science, vol. 443.
Springer, Berlin, Heidelberg (1990). https://doi.org/10.1007/BFb0032018

https://doi.org/10.1007/978-3-642-02927-1_11
https://doi.org/10.4230/LIPIcs.SWAT.2020.11
https://doi.org/10.4230/LIPIcs.SWAT.2020.11
https://doi.org/10.4230/LIPIcs.SWAT.2020.11
http://arxiv.org/abs/1911.05060
http://arxiv.org/abs/1911.05060
https://arxiv.org/abs/2005.02143
https://arxiv.org/abs/2005.02143
https://doi.org/10.1145/1361192.1361194
https://doi.org/10.1145/1361192.1361194
https://doi.org/10.1007/11841036_61
https://doi.org/10.1007/11682462_34
https://doi.org/10.1007/11682462_34
https://doi.org/10.1007/BFb0032018

Dynamic Dictionaries for Multisets 157

14. Dietzfelbinger, M., Rink, M.: Applications of a splitting trick. In: Albers,
S., Marchetti-Spaccamela, A., Matias, Y., Nikoletseas, S., Thomas, W. (eds.)
Automata, Languages and Programming. ICALP 2009. Lecture Notes in Com-
puter Science, vol. 5555. Springer, Berlin, Heidelberg (2009). https://doi.org/10.
1007/978-3-642-02927-1 30

15. Dietzfelbinger, M., Weidling, C.: Balanced allocation and dictionaries with tightly
packed constant size bins. Theoret. Comput. Sci. 380(1–2), 47–68 (2007)

16. Elias, P.: Efficient storage and retrieval by content and address of static files. J.
ACM 21(2), 246–260 (1974)

17. Fan, L., Cao, P., Almeida, J., Broder, A.Z.: Summary cache: a scalable wide-area
web cache sharing protocol. IEEE/ACM Trans. Network. 8(3), 281–293 (2000)

18. Fano, R.M.: On the Number of Bits Required to Implement an Associative Memory.
Memorandum 61. Computer Structures Group, Project MAC, MIT, Cambridge,
Mass (1971)

19. Fotakis, D., Pagh, R., Sanders, P., Spirakis, P.: Space efficient hash tables with
worst case constant access time. Theory Comput. Syst. 38(2), 229–248 (2005)

20. Kaplan, E., Naor, M., Reingold, O.: Derandomized constructions of k-wise (almost)
independent permutations. Algorithmica 55(1), 113–133 (2009)

21. Kirsch, A., Mitzenmacher, M.: Using a queue to de-amortize cuckoo hashing in
hardware. In: Proceedings of the Forty-Fifth Annual Allerton Conference on Com-
munication, Control, and Computing, vol. 75 (2007)

22. Knuth, D.E.: The Art of Computer Programming, vol. 3: Searching and sorting.
Addison-Wisley, Reading MA (1973)

23. Lovett, S., Porat, E.: A lower bound for dynamic approximate membership data
structures. In: 2010 IEEE 51st Annual Symposium on Foundations of Computer
Science, pp. 797–804. IEEE (2010)

24. Naor, M., Reingold, O.: On the construction of pseudorandom permutations: Luby-
Rackoff revisited. J. Cryptol. 12(1), 29–66 (1999)

25. Pagh, A., Pagh, R., Rao, S.S.: An optimal Bloom filter replacement. In: SODA,
pp. 823–829. SIAM (2005)

26. Pagh, R.: Low redundancy in static dictionaries with constant query time. SIAM
J. Comput. 31(2), 353–363 (2001)

27. Pagh, R., Rodler, F.F.: Cuckoo hashing. In: auf der Heide, F.M. (eds.) Algorithms
– ESA 2001. ESA 2001. Lecture Notes in Computer Science, vol. 2161. Springer,
Berlin, Heidelberg (2001). https://doi.org/10.1007/3-540-44676-1 10

28. Panigrahy, R.: Efficient hashing with lookups in two memory accesses. In: Proceed-
ings of the Sixteenth Annual ACM-SIAM Symposium on Discrete Algorithms, pp.
830–839. Society for Industrial and Applied Mathematics (2005)

29. Pătraşcu, M., Thorup, M.: Dynamic integer sets with optimal rank, select, and
predecessor search. In: 2014 IEEE 55th Annual Symposium on Foundations of
Computer Science, pp. 166–175. IEEE (2014)

30. Raman, R., Rao, S.S.: Succinct dynamic dictionaries and trees. In: Baeten, J.C.M.,
Lenstra, J.K., Parrow, J., Woeginger, G.J. (eds.) Automata, Languages and Pro-
gramming. ICALP 2003. Lecture Notes in Computer Science, vol. 2719. Springer,
Berlin, Heidelberg (2003). https://doi.org/10.1007/3-540-45061-0 30

31. Schmidt, J.P., Siegel, A., Srinivasan, A.: Chernoff-Hoeffding bounds for applica-
tions with limited independence. SIAM J. Discret. Math. 8(2), 223–250 (1995)

32. Siegel, A.: On universal classes of extremely random constant-time hash functions.
SIAM J. Comput. 33(3), 505–543 (2004)

https://doi.org/10.1007/978-3-642-02927-1_30
https://doi.org/10.1007/978-3-642-02927-1_30
https://doi.org/10.1007/3-540-44676-1_10
https://doi.org/10.1007/3-540-45061-0_30

The Neighborhood Polynomial of Chordal
Graphs

Helena Bergold1,2(B) , Winfried Hochstättler1 , and Uwe Mayer1

1 Fakultät für Mathematik und Informatik, FernUniversität in Hagen,
Hagen, Germany

winfried.hochstaettler@fernuni-hagen.de
2 Department of Computer Science, Freie Universität Berlin, Berlin, Germany

helena.bergold@fu-berlin.de

Abstract. In this paper, we study the neighborhood polynomial and
the complexity of its computation for chordal graphs. The neighborhood
polynomial of a graph is the generating function of subsets of its vertices
that have a common neighbor. We introduce a parameter for chordal
graphs called anchor width and an algorithm to compute the neighbor-
hood polynomial which runs in polynomial time if the anchor width is
polynomially bounded. The anchor width is the maximal number of dif-
ferent sub-cliques which appear as a common neighborhood. Furthermore
we study the anchor width for chordal graphs and some subclasses such as
chordal comparability graphs and chordal graphs with bounded leafage.
The leafage of a chordal graphs is the minimum number of leaves in the
host tree of a subtree representation. We show that the anchor width of a
chordal graph is at most n� where � denotes the leafage. This shows that
for some subclasses computing the neighborhood polynomial is possible
in polynomial time while it is NP-hard for general chordal graphs.

Keywords: Neighborhood polynomial · Domination polynomial ·
Chordal graph · Comparability graph · Leafage · Anchor width

1 Introduction

In this paper we study the neighborhood polynomial of graphs and give an
algorithm to compute the polynomial for chordal graphs in polynomial time
for some subclasses. Throughout the paper, all graphs are simple, finite and
undirected. For a graph G = (V,E), the neighborhood of a vertex v ∈ V is
the set of all adjacent vertices, denoted by NG(v) = {u ∈ V | uv ∈ E}. The
neighborhood complex of a graph G, first introduced by Lovász [13], consists of
all subsets of vertices W ⊆ V which have a common neighbor, that is NG =
{U ⊆ V | ∃v ∈ V : U ⊆ NG(v)}. This set-system is clearly hereditary, hence it is

The authors thank Kolja Knauer and Manfred Scheucher for helpful discussions and
the anonymous reviewers for helpful comments. Helena Bergold was partially supported
by DFG-GRK 2434.

c© Springer Nature Switzerland AG 2021
A. Lubiw et al. (Eds.): WADS 2021, LNCS 12808, pp. 158–171, 2021.
https://doi.org/10.1007/978-3-030-83508-8_12

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-83508-8_12&domain=pdf
http://orcid.org/0000-0002-9622-8936
http://orcid.org/0000-0001-7344-7143
https://doi.org/10.1007/978-3-030-83508-8_12

The Neighborhood Polynomial of Chordal Graphs 159

a simplicial complex. To count the number of sets with cardinality k in NG, we
define the neighborhood polynomial

NG(x) =
∑

U∈ NG

x|U |,

which is the generating function of the neighborhood complex NG. Since we
only consider finite graphs, the sum is finite and NG(x) is a polynomial such
as all other generating functions considered in this paper. We investigate the
complexity of computing the neighborhood polynomial of some graph classes. In
particular, we look at chordal graphs and subclasses like interval graphs, split
graphs and chordal comparability graphs. In order to do this, we introduce the
anchor width of a graph and develop an algorithm for computing the neighbor-
hood polynomial in Sect. 3. We will see that the anchor width is the essential
parameter for a polynomial runtime of our algorithm. If for any graph class the
anchor width is polynomially bounded in the number of vertices, our algorithm
is efficient. In particular our main result is the following theorem.

Theorem 1. Let G be a chordal graph with n vertices and anchor width k.
Computing the neighborhood polynomial takes at most O(n3k + n2k2) time.

In Sect. 4 we investigate the leafage �(G) introduced in [12] of a chordal graph
G on n vertices and show that the anchor width is at most n�(G) (cf. Theorem
2). For interval graphs, which are the graphs with leafage at most two, we give
a family with quadratic anchor width.

2 Preliminaries

The neighborhood polynomial was introduced by Brown and Nowakowski [5] who
investigated the effect of some elementary graph operations on the neighborhood
polynomial. Given two graphs G1 = (V1, E1) and G2 = (V2, E2) on disjoint
vertex sets, the union G1 ∪ G2 of the graphs is the graph on the vertex set
V1 ∪ V2 with edge set E1 ∪ E2. The join G1 + G2 of the two graphs is the graph
on the vertex set V1 ∪ V2 consisting of both graphs together with all possible
edges between vertices in V1 and vertices in V2, that is E = E1 ∪ E2 ∪ {v1v2 |
v1 ∈ V1, v2 ∈ V2}.

Proposition 1 ([5]). Let G1 and G2 be two graphs on disjoint vertex sets.
Then the neighborhood polynomial of the disjoint union G1 ∪ G2 is

NG1∪G2(x) = NG1(x) + NG2(x) − 1.

Proposition 2 ([5]). Let G1 = (V1, E1), G2 = (V2, E2) be two graphs on dis-
joint vertex sets. Then the neighborhood polynomial of the join G1 + G2 is

NG1+G2(x) = (1 + x)|V2|NG1(x) + (1 + x)|V1|NG2(x) − NG1(x)NG2(x).

160 H. Bergold et al.

The two graph operations, disjoint union and join, are used to define cographs.
Cographs are exactly the graphs which do not contain an induced P4, a path on
4 vertices. They can be constructed recursively. Starting with a single vertex as
a cograph, the disjoint union and the join of two cographs are cographs. For this
and other well-known graph theoretic facts, we refer to [9]. The neighborhood
polynomial of a single vertex graph is N(K1, x) = 1 and the two operations
disjoint union and join, given by the two formulas in Proposition 1 and Propo-
sition 2 are computable in linear time. Note that (1 + x)n can be computed in
linear time using the binomial theorem. Corneil et al. [6] present a linear time
algorithm to recognize cographs and give the corresponding recursive construc-
tion rules using disjoint union and join. Hence the neighborhood polynomial of
a cograph is computable in quadratic time.

Another graph operation is attaching one vertex v to a subset of vertices of
a graph G. This operation was studied by Alipour and Tittmann [1], who gave
an explicit formula for a neighborhood polynomial after attaching a vertex to
a subset of vertices. More formally for a graph G = (V,E), a subset U ⊆ V
of vertices and an additional vertex v /∈ V , we denote by GU�v the graph with
vertex set V ∪ {v} and edge set E ∪ {uv | u ∈ U}. We use the following notation
for all W ⊆ V :

N∩
G(W) =

⋂

w∈W

NG(w) and N∪
G(W) =

⋃

w∈W

NG(w).

Proposition 3 ([1]). Let G = (V,E) be a graph, U ⊆ V and v /∈ V . Then the
neighborhood polynomial of GU�v is

NGU�v
(x) = NG(x) +

∑

W⊆U,
W �=∅

φW +
∑

W⊆U,
W �=∅

(−1)|W |+1x(1 + x)|N∩
G(W)|,

where

φW =

{
x|W |, if N∩

G(W) = ∅;
0, otherwise.

Using this formula, Alipour and Tittmann [1] showed that for a fixed integer k,
computing the neighborhood polynomial of k-degenerate graphs is possible in
polynomial time. A k-degenerate graph is a graph where every subgraph has a
vertex v with deg(v) ≤ k. Using the degeneracy, we can pick one vertex of degree
≤ k after another and update the neighborhood polynomial by the formula of
Proposition 3 in order to get a polynomial runtime. As a corollary it follows that
there is a polynomial-time algorithm to compute the neighborhood polynomial
for planar (or more general graphs of bounded genus) and k-regular graphs [1].
This update formula of Alipour and Tittman (see Proposition 3) was the starting
point of our investigations for chordal graphs.

A graph G is said to be chordal if there is no induced cycle of length ≥ 4.
Equivalently a graph is chordal if and only if it has a perfect elimination order.
A perfect elimination order is an ordering of the vertices v1, . . . , vn such that

The Neighborhood Polynomial of Chordal Graphs 161

for all i the neighborhood of vi in G[{vi, . . . vn}] is a clique. Here for a subset
U ⊆ V the graph G[U] denotes the subgraph of G induced by U . A vertex, whose
neighborhood is a clique is called simplicial. It is well-known that every chordal
graph has at least two simplicial vertices, which gives us the perfect elimination
order (cf. [9]). In order to study the neighborhood polynomial of chordal graphs
and subclasses, we make use of the perfect elimination order to build the chordal
graph by attaching one vertex after another to a clique. We adapt the formula of
Alipour and Tittmann (Proposition 3) to our use. To get some complexity results
of computing the neighborhood polynomial, the connection to the domination
polynomial is useful. For this we introduce dominating sets. A dominating set
of a graph G = (V,E) is a set of vertices D ⊆ V such that

D ∪ N∪
G(D) = V.

The family of all dominating sets of a graph G is denoted by DG and the domi-
nation polynomial DG(x) is the generating function of DG that is

DG(x) =
∑

U∈DG

x|U |.

The following relation between domination polynomials and neighborhood poly-
nomials holds. For a proof see for example [11] or [7].

Proposition 4. For a graph G = (V,E) and its complement graph G it holds:

DG(x) + NG(x) = (1 + x)|V |.

The connection of these two polynomials can be used to determine the complex-
ity of computing the neighborhood polynomial. In particular, the neighborhood
polynomial is computable in polynomial time if and only if the domination poly-
nomial of the complement graph is computable in polynomial time. Furthermore
the contributions to the well-known graph problem DOMSET, imply some com-
plexity results for the neighborhood polynomial. DOMSET is the problem of
deciding whether a graph has a dominating set of size ≤ k for a given k.

Corollary 1. Let G be a class of graphs and G the class of the complement
graphs of G. If DOMSET is NP-complete on G, then computing the neighborhood
polynomial on G is NP-hard.

DOMSET is NP-hard on many graph classes such as chordal graphs [4]. Bertossi
[3] showed that it is NP-hard on bipartite graphs and split graphs. Split graphs
are the graphs where the vertex set can be partitioned into a clique and an
independent set. Since split graphs are exactly the graphs which are chordal and
co-chordal (i.e. the complement graph is chordal) [9], DOMSET is also NP-hard
on co-chordal graphs. This together with Corollary 1 shows the NP-hardness of
computing the neighborhood polynomial in split graphs (cf. [7]) and hence in
chordal graphs.

162 H. Bergold et al.

3 Algorithm for Chordal Graphs

Our algorithm relies on the perfect elimination order of chordal graphs and comes
from the vertex-attachment formula of Alipour and Tittmann, see Proposition 3.
First, we adapt this formula to our special case where we attach a vertex to a
clique. To study the new arising neighborhood sets after vertex attachment,
we introduce anchor sets, which are subsets of a clique appearing as a common
neighborhood of a set of vertices. The maximal number of anchor sets of a clique,
which we denote as anchor width, is the essential parameter in this algorithms
in order to get a polynomial runtime for our algorithm.

Fig. 1. An illustration of the introduced sets, the
periphery PC and a periphery set M with correspond-
ing anchor set AG(M, C) of a clique C.

Let C be a clique in a
graph G = (V,E). We define
the set of neighbors of the
clique C, not including the
clique itself as the periphery
of C, denoted by

PG(C) = N∪
G(C)\C.

A subset M ⊆ PG(C) of the
periphery is called periphery
set. Note that the empty set
is also a periphery set. We
call a non-empty subset A of
C anchor set, if it is the com-
mon neighborhood in C of
some periphery set M . See Fig. 1 for an illustration. In general not all subsets
of a clique are an anchor set. For every M ⊆ PG(C) we define the corresponding
anchor set in C as

AG(M,C) = N∩
G(M) ∩ C

if the intersection is non-empty. Note that several periphery sets M and M ′ can
correspond to the same anchor set AG(M,C) = AG(M ′, C). For an anchor set
A of C, the periphery sets M ⊆ PG(C) whose common neighborhood in C is A
build the family

PG(A,C) = {M ⊆ PG(C) | AG(M,C) = A} .

The generating function of PG(A,C) is called periphery polynomial and defined
by

PG(A,C, x) =
∑

M∈PG(A,C)

x|M |.

Note that PG(A,C) = ∅ and PG(A,C, x) = 0 if A is not an anchor set of C. The
family of all anchor sets of a clique C is

AG(C) = {A ⊆ C | A
= ∅ and ∃M ⊆ PG(C) : A = AG(M,C)}.

The Neighborhood Polynomial of Chordal Graphs 163

Note that C ∈ AG(C) for every clique C, since C is the anchor set of the empty
periphery set. The anchor width of a graph G on n vertices is the smallest number
k such that |AG(C)| ≤ k for all cliques C in G.

For a maximal clique Cmax and a clique C contained in Cmax the following
relations hold. We omit the proof due to length restriction (see full version [2]).

Lemma 1. Let C be a clique and Cmax a maximal clique containing C in a
graph G = (V,E). Then the following conditions hold:

(a) Cmax\C ⊆ PG(C) ⊆ PG(Cmax) ∪ (Cmax\C)
(b) AG(C) = {A ∩ C | A ∩ C
= ∅ and A ∈ AG(Cmax)}
(c) For every A ∈ AG(C) the periphery polynomial is

PG(A,C, x) = (1 + x)|Cmax\C| ∑

A′∈AG(Cmax)
A′∩C=A

PG(A′, Cmax, x).

This shows that it is sufficient to provide the information about anchor sets
and periphery polynomials for all maximal cliques of the graph. With this infor-
mation we are able to compute the necessary information for all other cliques.
Furthermore the anchor width only depends on the size of the anchor family of
the maximal cliques.

In the following, we derive a formula for the neighborhood polynomial after
vertex attachment using the periphery polynomial. For every set U ⊆ V of
vertices we define the local neighborhood NG(U) of U as the family consisting of
all vertex sets of G which have a common neighbor in U , that is

NG(U) = {W ⊆ V | ∃v ∈ U : W ⊆ NG(v)}.

Note that NG(V) = NG. For every clique C, we can partition the local neigh-
borhood NG(C) by the following lemma into the disjoint sets

NG(A,C) = {N ∈ NG(C) | N ∩ PG(C) ∈ PG(A,C)}, A ∈ AG(C).

Lemma 2. For every clique C of the graph G, it holds

NG(C) =
⋃̇

A∈AG(C)

NG(A,C).

Proof. For every N ∈ NG(C) there is by definition a v ∈ C which is adjacent to
every element in N . Hence the common neighborhood of N ∩ PG(C) inside C is
non-empty. This common neighborhood is an anchor set A. Since these anchor
sets differ for different families NG(A,C) the union is disjoint. ��
Lemma 2 is useful since we only have to determine the generating functions of
NG(A,C) for every A ∈ AG(C). Adding these generating functions, we maintain
the generating function of the local neighborhood NG(C). In the next lemma,
we derive a formula to compute the generating function of NG(A,C) for every
A ∈ AG(C).

164 H. Bergold et al.

Lemma 3. For a given anchor set A ∈ AG(C) of a clique C, the generating
function of NG(A,C) is

NG(A,C, x) = PG(A,C, x)
(
(1 + x)|C| − x|A|(1 + x)|C|−|A|

)
.

Proof. We count the number of sets with respect to the cardinality in NG(A,C).
Every M ∈ PG(A,C) is in NG(A,C). Hence PG(A,C, x) must be a summand
of NG(A,C, x). Furthermore there are supersets N for all M which contribute
to NG(A,C, x). Since we look at all M ∈ PG(A,C), it is enough to look at
supersets N = M ∪X, where X is a subset of C. In order to keep N in the local
neighborhood NG(C), we need a common neighbor in C. Since the common
neighborhood of M inside C is the anchor set A, the common neighborhood of
N must contain an element of A. Hence X cannot be the whole anchor set A.
In particular, the possibilities to extend M are the elements of the family

X = {X | ∃a ∈ A : X ⊆ C\{a}}.

All sets in X consist of a disjoint union of a proper subset of A and a subset of
C\A. This leads to the generating function

(
(1 + x)|A| − x|A|

)
(1 + x)|C|−|A| = (1 + x)|C| − x|A|(1 + x)|C|−|A|

of X . Note that the constant summand of this polynomial is 1. The generating
function of PG(A,C), which counts the different possibilities of M is counted by
PG(A,C, x). ��
This leads us to an update formula similar to Proposition 3 adapted to attaching
a vertex to a clique.

Corollary 2. Let G = (V,E) be a graph and C a clique in the graph. The
neighborhood polynomial of GC�v with vertex set V ∪ {v} is:

NGC�v
(x) = NG(x) + φG(C)

+ x
∑

A∈AG(C)

PG(A,C, x)
(
(1 + x)|C| − x|A|(1 + x)|C|−|A|

)
,

where

φG(C) =

{
x|C|, if C is a maximal clique in G;
0, otherwise .

Proof. Let X ∈ NGC�v
be a neighborhood set in the graph GC�v. We consider

the following three cases:

– If X ⊆ V and X
⊆ NG(v), then X ∈ NG is in the neighborhood complex of
G. Hence X is considered in the first summand NG(x) of the above formula.

The Neighborhood Polynomial of Chordal Graphs 165

– Now let X ⊆ V and X ⊆ NG(v). If X is a proper subset of C, it already has
a common neighbor in G, hence it is already counted in the first summand.
Similarly this holds if X = C and C is not a maximal clique in G, in other
words C has a common neighbor in G. Thus the only case where a new
neighborhood arises is if C is a maximal clique in G. In GC�v the common
neighbor of C is v. This is counted in φG(C).

– Let us now consider the case v ∈ X, i.e. X
⊆ V . Since v is connected to all
elements in C, we need to count all subsets Y ⊆ V which have a common
neighbor in C. This is equivalent to count the number of elements in NG(C).
Combining Lemma 2 and Lemma 3, we obtain

∑

A∈AG(C)

PG(A,C, x)
(
(1 + x)|C| − x|A|(1 + x)|C|−|A|

)

as the generating function of NG(C). In X there is one additional element v.
Hence we have to multiply the polynomial with x.

Since the above cases are disjoint, this leads to the formula of the neighborhood
polynomial as stated. ��
With this formula, we are able to compute the neighborhood polynomial after
attaching a vertex v to a clique C in a graph. In order to compute the neigh-
borhood polynomial of a chordal graph G, we need the perfect elimination order
v1, . . . , vn. If the chordal graph is connected, we add the vertices in reverse
order, starting with vn and then adding vi to the corresponding clique in
G[vi+1, . . . , vn]. For attaching one vertex, the neighborhood polynomial can be
computed with Corollary 2. If the chordal graph is not connected we use the
same procedure explained above for every connected component and compute
the neighborhood polynomial by adding the polynomials of the connected com-
ponents as in Proposition 1. In order to compute the formula of Corollary 2,
we need the anchor family of C and the corresponding periphery polynomials
PG(A,C, x) for every A ∈ AG(C). As we have seen in Lemma 1 it is enough
to store these informations for the maximal cliques and compute them in every
step for the required clique C. The details of updating this information will be
explained in the next paragraph.

We now study how to update the anchor families and periphery polynomials
for the maximal cliques after attaching a vertex in order to have the correct
ones in the next step. Fix a clique C of the graph G. The graph with attached
vertex v to C is denoted by G+ = GC�v. We get exactly one new maximal clique
C+ = C ∪ {v} which we have to add to the list of maximal cliques in the graph.
If C is a maximal clique in G we have to delete the C from the list of maximal
cliques.

We determine the anchor sets and periphery polynomial of the new arising
maximal clique C+. The periphery of C+ in G+ is PG+(C+) = PG(C) and the
family of anchor sets is AG+(C+) = AG(C) ∪ {C+} with the same periphery
polynomials as in G that is PG+(A,C+, x) = PG(A,C, x) for all A ∈ AG(C) and
PG+(C+, C+, x) = 1.

166 H. Bergold et al.

Now we go through the list of maximal cliques and update the necessary
information if needed. The maximal cliques in G which have no intersection
with C, do not change in G+ and hence we do not have to update anything.
Let Cmax be a maximal clique in G with Cmax ∩ C
= ∅. If C = Cmax, we are
done since this is not a maximal clique in G+. Hence we assume C
= Cmax. The
periphery of Cmax in G+ consists of the periphery of Cmax in G together with
the new element v. More formally it holds

PG+(Cmax) = PG(C) ∪ {v}.

Now we identify the anchor sets of Cmax in G+. Every anchor set of Cmax in G
remains an anchor set in G+. Since the new vertex v is attached to the subset
Cmax ∩ C of the considered clique Cmax, this subset Cmax ∩ C
= ∅ is a new anc-
hor set in G+, if it was not already an anchor set in G. Furthermore all subsets
of Cmax occurring as non-empty intersection of Cmax ∩ C with an anchor set
in AG(Cmax) build an anchor set of Cmax in G+. The family of anchor sets of
Cmax in G+ is:

AG+(Cmax) =
AG(Cmax) ∪ {A ∩ (Cmax ∩ C) | A ∩ (Cmax ∩ C)
= ∅ and A ∈ AG(Cmax)}.

Since Cmax ∈ AG(Cmax), Cmax ∩ C is an element of the second set in the above
equation. Now we determine the periphery polynomial PG+(A,Cmax, x) for every
anchor set A ∈ AG+(Cmax). Since C
= Cmax, the intersection Cmax ∩ C is a
proper subset of Cmax. We consider the following three cases:

– If A is a proper subset of C ∩Cmax, all corresponding periphery sets in G are
a corresponding periphery set in G+ and we can add v to every corresponding
periphery set M in G, since the intersection with the neighborhood NG+(v) =
C does not change the anchor set. In this case we get:

PG+(A,Cmax, x) = (1 + x)PG(A,Cmax, x).

– If A = C ∩ Cmax, the periphery sets in G with corresponding anchor set A
which are counted in PG(A,Cmax, x) still have the same anchor set in G+.
Furthermore v is a new periphery set with anchor set A = C ∩ Cmax and all
periphery sets which have a superset A′ of A as corresponding anchor set,
form together with v a periphery set with anchor set A. Hence the updated
periphery polynomial is

PG+(A,Cmax, x) =

PG(A,Cmax, x) + x

⎛

⎝1 +
∑

A′⊇A,A′∈AG(Cmax)

PG(A′, Cmax, x)

⎞

⎠ . (1)

– In the remaining case A is not a subset of C ∩ Cmax, hence v is not in a
periphery set with anchor set A. So the periphery polynomial stays the same,
which means

PG+(A,Cmax, x) = PG(A,Cmax, x).

The Neighborhood Polynomial of Chordal Graphs 167

This concludes the algorithm to compute the neighborhood polynomial of a
chordal graph. Recall that the anchor width of a graph G is the smallest k such
that |AG(C)| ≤ k for all cliques of C.

The algorithm explained above leads to a polynomial time algorithm if the
anchor width is polynomially bounded. For a detailed analysis of its complexity
as claimed in Theorem 1 we refer to the full version [2].

4 Complexity of the Anchor Width

In this section, we will discuss some subclasses of chordal graphs and study
their anchor width. We show that there are subclasses with polynomial bounded
anchor width. We arrived at these graph classes starting from interval graphs,
the first class for which we found a polynomial bound. For these subclasses the
algorithm explained in Sect. 3 runs in polynomial time. In contrast to this result,
we show that the anchor width of split graphs, a simple well-known subclass, is
not polynomially bounded (see the following proposition). Hence the algorithm
introduced in Sect. 3 might take super-polynomial time.

Proposition 5. For all n ∈ N there is a split graph on n vertices with anchor
width at least 2

n
2 − 1.

Proof. We construct an infinite family of split graphs Sm on n = 2m vertices
such that the anchor width is 2m −1. We start with a clique C = {c1, . . . , cm} of
size m and attach vertices p1, . . . , pm such that every pi (1 ≤ i ≤ m) is adjacent
to cj for all j
= i. This constructed graph is a split graph since C is a clique and
{p1, . . . , pm} an independent set. All vertices pi are therefore in the periphery
PC of C, hence |PC | = m = n

2 . All non-empty subsets of C are an anchor set,
hence the anchor width of this graph is 2m − 1 = 2

n
2 − 1. ��

Another interesting subclass are the chordal comparability graphs. For these
graphs we show a linear bound on the anchor width. A graph G = (V,E) is a
comparability graph if there is a poset (V,≺) such that two vertices u, v ∈ V are
adjacent in G if and only if u ≺ v or v ≺ u.

Proposition 6. The anchor width of a chordal comparability graph with n ver-
tices is at most 2n.

Proof. Let G be a chordal comparability graph with corresponding poset (V,≺).
Consider a maximal clique Cmax = {c1, . . . , cm} in G. A clique in the graph
corresponds to a chain in the poset. Hence the maximal clique Cmax of size m
corresponds to a maximal chain c1 ≺ . . . ≺ cm of length m in the poset. So
whenever there is a vertex v /∈ Cmax, which is adjacent to ci ∈ Cmax such that
v ≺ ci then v is adjacent to ck for all k ≥ i. Let i be the minimal element
of the clique such that v ≺ ci. Since the clique is maximal, i > 1 and v is not
comparable to ci−1. Similar we get for every vertex w /∈ Cmax which is connected
to a vertex cj of the clique with w � cj that w is connected to all elements ck of
the clique with k ≤ j. Let cj be the maximal element of the clique connected to

168 H. Bergold et al.

w, then j < m and cj+1 is not comparable to w. Hence an anchor set in Cmax is
a chain of the form ci ≺ ci+1 ≺ . . . ≺ cj−1 ≺ cj . Assume there is an anchor set
with 1 < i < j < m and vertices v and w such that v ≺ ci and w � cj . Then v
and w are connected by an edge since w � cj � ci � v holds. And since w and
cj+1 do not share an edge and analogously v and ci−1, we get an induced cycle
of length 4 which is not possible since the graph is chordal. In Fig. 2(a) the poset
is illustrated by its Hasse diagram and gives an illustration of the contradiction.
This shows that all anchor sets of Cmax are of the form c1 ≺ . . . ≺ cj−1 ≺ cj

for j ≤ m or ci ≺ ci+1 ≺ . . . ≺ cm for i ≥ 1. We have at most 2m − 1 ≤ 2n
possibilities for those sets. ��
Another interesting family of subclasses are the chordal graphs with bounded
leafage. For those graphs we can show a polynomial upper bound of the anchor
width. The leafage is a parameter which stems from the intersection graph rep-
resentation of chordal graphs. An intersection graph is the graph consisting of
one vertex for every set in the family. Two vertices are adjacent if and only if the
corresponding sets have a non-empty intersection. An interval graph is an inter-
section graph of a family of subtrees of a path and chordal graphs are exactly
the graphs which are the intersection graph of a family of subtrees of a host
tree [8]. We call a representation of a chordal graph by a family of subtrees a
subtree representation. Lin et al. [12] introduced the leafage of a chordal graph,
which measures how close a chordal graph is to an interval graph. More pre-
cisely, the leafage �(G) of a chordal graph G is defined as the minimum number
of leaves of the host tree among all subtree configurations of G. We call a subtree
representation optimal if it has the minimum number of leaves in the host tree.
The interval graphs are exactly the chordal graphs with leafage at most 2. The
split graphs Sm constructed earlier have leafage m and a host tree is the star
K1,m. Habib and Stacho present in [10] a polynomial-time algorithm in order to
compute the leafage of a chordal graph. As mentioned in [12] we may restrict to
host trees whose number of vertices is the number of maximal cliques of G.

Lemma 4. There exists an optimal representation such that the vertices of the
host tree are in one-to-one correspondence with the maximal cliques of the graph.

Proof. Since every pairwise intersecting family of subtrees has the Helly property,
i.e. the intersection of all subtrees of a clique is non-empty [9], there is at least
one common vertex vC in the host tree for every clique C of the chordal graph
G. A vertex in the host tree cannot belong to different maximal cliques since
their union has to form a clique as well and hence the cliques would not be
maximal. Furthermore all subtrees intersecting in a vertex v of the host tree
build a clique C. If C is not maximal, there is a maximal clique Cmax containing
C. Contracting the path from v to vCmax

in the host tree does not increase the
number of leaves. Thus, if we choose an optimal representation with few vertices
as possible, the claim follows. ��
We study the connection between the anchor width and the leafage of a chordal
graph and show an upper bound of the anchor width. In the following, we
describe a subtree of the host tree by its vertices.

The Neighborhood Polynomial of Chordal Graphs 169

Theorem 2. For a chordal graph G with leafage � = �(G) and n vertices, the
anchor width is at most n�.

Proof. Let C = Cmax be a maximal clique in the graph G. We consider an
optimal subtree representation of G such that the vertices of the host tree T are
in one-to-one correspondence with the maximal cliques of G (cf. Lemma 4). Let
vC be the vertex in the host tree which corresponds to the clique C of G. From
vC there is a unique path in the host tree to all � leaves which we denote by
P1, . . . , P�.

For a periphery set M ⊆ PC , the corresponding anchor set consists of those
elements of the clique whose neighborhood contains M . For every w ∈ M , there
is a tree Tw representing w in the subtree configuration. Since C is a maximal
clique, these trees Tw do not contain vC since otherwise w would belong to C.
For every path Pi, we define a vertex vi representing M on Pi as follows:

vi ∈ arg min
v∈Twi

∩Pi

dist(v, vc),

where wi is an element from the periphery such that

wi ∈ arg max
w∈M

min
v∈Tw∩Pi

dist(v, vc).

So for every w ∈ M such that Tw ∩ Pi
= ∅, we choose the closest vertex vw to
vC on the path Pi of the corresponding tree Tw. Among those vertices {vw}w,
the vertex vi is the vertex with maximal distance to vC . If there is no subtree
Tw of the periphery which has a non-empty intersection with the path Pi, we
set vi = vC . Note that the vi’s are not necessarily distinct.

Now the anchor set A = AG(M,C) consists exactly of all subtrees of the
clique C, which contain all v1, . . . , v� and vC . If there is no such subtree corre-
sponding to an element of the clique, there is no corresponding anchor set to M
in C. The anchor set A is fully determined by the vertices vi.

A chordal graph with n vertices has at most n maximal cliques. Hence the
host tree has at most n vertices which gives at most n choices for every vi. In
total we have at most n� choices for the tuple (v1, . . . , v�) and hence at most n�

different anchor sets. This shows the upper bound for the anchor width. ��
Since interval graphs are the graphs with leafage at most 2, it follows:

Corollary 3. The anchor width of interval graphs on n vertices is at most n2.

The magnitude of this bound is optimal since there is an infinite family of interval
graphs on n = 4m + 1 vertices with a clique of size 2m + 1 which has at least

m2 =
(

(n−1)
4

)2

different anchor sets. For the construction (see Fig. 2(b)), we
take the path P on 2m + 1 vertices v−m, . . . , v0, . . . , vm as a host tree. The
subtrees corresponding to the clique C are the 2m + 1 paths on the vertices

{v−m, . . . , vi} for i = 0, . . . ,m and {vi, . . . , vm} for i = −m + 1, . . . , 0.

170 H. Bergold et al.

Fig. 2. (a) Hasse diagram of a poset corresponding to a comparability graph with
induced C4 which gives a contradiction in the proof of Proposition 6; (b) Construction
of an interval graph with 21 vertices and a maximal clique of size 11 and 25 anchor
sets.

The common intersection vC of the clique is the vertex v0. Furthermore we define
the following subpaths, which are in the periphery of C:

{v−m, . . . , vi} for i = −m, . . . ,−1 and {vi, . . . , vm} for i = 1, . . . , m.

For every choice of i ∈ {−m, . . . ,−1} and j ∈ {1, . . . , m}, we consider the two
paths:

{v−m, . . . , vi} and {vj , . . . , vm}
of the periphery. The anchor set corresponding to this two-element periphery
set consists of all paths in the host tree corresponding to a clique vertex which
contain vi and vj . For every choice of i and j these anchor sets differ. Hence
there are at least m2 anchor sets.

5 Discussion

In this paper we studied an algorithm for computing the neighborhood polyno-
mial of chordal graphs, which is in general an NP-hard problem. The runtime of
the algorithm depends on the introduced parameter anchor width. If the anchor
width of a subclass of chordal graphs is bounded, we have a polynomial-time
algorithm to compute the neighborhood polynomial. In Sect. 4 we investigated
some subclasses and showed that the anchor width is bounded for chordal graphs
with bounded leafage and chordal comparability graphs. Furthermore we showed
that the anchor width is not bounded for split graphs. It would be interesting

The Neighborhood Polynomial of Chordal Graphs 171

to get further subclasses of chordal graphs with bounded anchor width. It might
be possible to give an upper bound for the anchor width using the asteroidal
number. In [12] it is shown that the leafage is an upper bound for the asteroidal
number for all chordal graphs and they coincide for chordal graphs whose host
tree is a subdivision of K1,n as shown in [14]. Furthermore an infinite family of
graphs similar to the one for interval graphs, which shows that the magnitude
of the upper bound is optimal, would be interesting.

On top of that there might be other problems on chordal graphs which are
hard in general but polynomial solvable on those subclasses with bounded anchor
width.

References

1. Alipour, M., Tittmann, P.: Graph operations and neighborhood polynomials. Dis-
cuss. Math. Graph. Theory. 41, 697–711 (2021). https://doi.org/10.7151/dmgt.
2347

2. Bergold, H., Hochstättler, W., Mayer, U.: The Neighborhood Polynomial of
Chordal Graphs. arXiv:2008.08349 (2020)

3. Bertossi, A.A.: Dominating sets for split and bipartite graphs. Inf. Process. Lett.
19(1), 37–40 (1984)

4. Booth, K.S., Johnson, J.H.: Dominating sets in chordal graphs. SIAM J. Comput.
11(1), 191–199 (1982)

5. Brown, J.I., Nowakowski, R.J.: The neighbourhood polynomial of a graph. Aus-
tralas. J. Comb. 42, 55–68 (2008)

6. Corneil, D.G., Perl, Y., Stewart, L.K.: A linear recognition algorithm for cographs.
SIAM J. Comput. 14(4), 926–934 (1985)

7. Day, D.: On the neighbourhood polynomial. Master thesis, Dalhousie University
(2017)

8. Gavril, F.: The intersection graphs of subtrees in trees are exactly the chordal
graphs. J. Comb. Theory Ser. B 16(1), 47–56 (1974)

9. Golumbic, M.C.: Algorithmic Graph Theory and Perfect Graphs (1980)
10. Habib, M., Stacho, J.: Polynomial-Time Algorithm for the Leafage of Chordal

Graphs. In: Fiat, A., Sanders, P. (eds.) ESA 2009. LNCS, vol. 5757, pp. 290–300.
Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-04128-0 27

11. Heinrich, I., Tittmann, P.: Neighborhood and domination polynomials of graphs.
Graphs Comb. 34, 1203–1216 (2018)

12. Lin, I.-J., McKee, T.A., West, D.B.: The leafage of a chordal graph. Discuss. Math.
Graph Theory 18(1), 23–48 (1998)

13. Lovász, L.: Kneser’s conjecture, chromatic number, and homotopy. J. Comb. The-
ory Ser. A 25(3), 319–324 (1978)

14. Prisner, E.: Representing triangulated graphs in stars. Abh. Math. Semin. Univ.
Hambg. 62, 29–41 (1992)

https://doi.org/10.7151/dmgt.2347
https://doi.org/10.7151/dmgt.2347
http://arxiv.org/abs/2008.08349
https://doi.org/10.1007/978-3-642-04128-0_27

Incomplete Directed Perfect Phylogeny
in Linear Time

Giulia Bernardini1,3(B) , Paola Bonizzoni1 , and Pawe�l Gawrychowski2

1 Università degli Studi di Milano - Bicocca, Milano, Italy
2 Institute of Computer Science, University of Wroc�law, Wroc�law, Poland

3 CWI, Amsterdam, The Netherlands
giulia.bernardini@cwi.nl

Abstract. Reconstructing the evolutionary history of a set of species
is a central task in computational biology. In real data, it is often the
case that some information is missing: the Incomplete Directed Perfect
Phylogeny (IDPP) problem asks, given a collection of species described
by a set of binary characters with some unknown states, to complete
the missing states in such a way that the result can be explained with
a directed perfect phylogeny. Pe’er et al. [SICOMP 2004] proposed a
solution that takes Õ(nm) time (the Õ(·) notation suppresses polylog
factors) for n species and m characters. Their algorithm relies on pre-
existing dynamic connectivity data structures: a computational study
recently conducted by Fernández-Baca and Liu showed that, in this
context, complex data structures perform worse than simpler ones with
worse asymptotic bounds.

This gives us the motivation to look into the particular properties of
the dynamic connectivity problem in this setting, so as to avoid the use
of sophisticated data structures as a blackbox. Not only are we successful
in doing so, and give a much simpler O(nm logn)-time algorithm for the
IDPP problem; our insights into the specific structure of the problem
lead to an asymptotically optimal O(nm)-time algorithm.

1 Introduction

A rooted phylogenetic tree models the evolutionary history of a set of species:
the leaves are in a one-to-one correspondence with the species, all of which have
a common ancestor represented by the root. A standard way of describing the
species is by a set of characters that can assume several possible states, so that
each species is described by the states of its characters. Such a representation is
naturally encoded by a matrix A, ai,j being the state of character j in species i.
When, for each possible character state, the set of all nodes that have the same
state induces a connected subtree, a phylogeny is called perfect. The problem of
reconstructing a perfect phylogeny from a set of species is known to be linearly-
solvable in the case when the characters are binary [11], and it is NP-hard in the
general case [2]. A popular variant of binary perfect phylogeny requires that the
characters are directed, that is, on any path from the root to a leaf a character
can change its state from 0 to 1, but the opposite cannot happen [5].
c© Springer Nature Switzerland AG 2021
A. Lubiw et al. (Eds.): WADS 2021, LNCS 12808, pp. 172–185, 2021.
https://doi.org/10.1007/978-3-030-83508-8_13

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-83508-8_13&domain=pdf
http://orcid.org/0000-0001-6647-088X
http://orcid.org/0000-0001-7289-4988
http://orcid.org/0000-0002-6993-5440
https://doi.org/10.1007/978-3-030-83508-8_13

Incomplete Directed Perfect Phylogeny in Linear Time 173

In this paper, we study the Incomplete Directed Perfect Phylogeny problem
(IDPP for short) introduced by Pe’er et al. [20]. The input of this problem is a
matrix of binary character vectors in which some character states are unknown,
and the question is whether it is possible to complete the missing states in such
a way that the result can be explained with a directed perfect phylogeny.

Related work. Besides being relevant in its own right [1,18,19,22,24], the prob-
lem of handling phylogenies with missing data is crucial in various tasks of com-
putational biology, like resolving genotypes with some missing information into
haplotypes [13,17] and inferring tumor phylogenies from single-cell sequencing
data with mutation losses [21]; a generalization of the perfect phylogeny model
where a character can be gained only once and can be lost at most k times,
called the k-Dollo model [3,4,6,12], has also been extensively studied. A deep
understanding of the IDPP problem leading to new efficient solutions may thus
highlight novel approaches for all such important tasks.

The algorithm proposed in [20] solves the IDPP problem for a matrix of
n species and m characters in Õ(nm) time1 with a graph-theoretic approach.
A crucial step of such algorithm is to maintain the connected components of
a graph under a sequence of edge deletions. The use of pre-existing dynamic
connectivity data structures for this purpose is the bottleneck in the overall
time complexity.

A connectivity data structure is fully-dynamic when both edge insertion and
deletion are allowed, and decremental when only edge deletion is considered. A
long line of results brought down the computational time required for updat-
ing the data structure after edge insertions and/or deletions, and for answering
connectivity queries, to roughly logarithmic: the following table summarizes the
existing results for a graph with N vertices and M edges. For fully-dynamic
connectivity we report the update time required for a single edge insertion or
deletion, while for decremental connectivity we report the overall time required
to eventually delete all the edges. All the listed results, except for [14], assume
that edge deletions can be interspersed with connectivity queries. The algorithm
of Henzinger et al. [14], in contrast, deletes edges in batches (b0 is the number
of batches that do not result in a new component) and connectivity queries can
be only asked between one batch of deletions and another.

Fully-dynamic Update time Query time

Holm et al. [15] O(log2 N), amortized O(log N/ log log N)

Gibb et al. [10] O(log4 N), worst case O(log N/ log log N) w.h.p.

Huang et al. [16] O(log N(log log N)2), expected amortized O(log N/ log log log N)

Decremental Total update time Query time

Even et al. [8] O(MN) O(1)

Thorup [25] O(M log2(N2/M) + N log3 N log log N), expected O(1)

Henzinger et al. [14] O(N2 log N + b0 min{N2, M log N}) O(1)

1 The Õ(·) notation suppresses polylog factors.

174 G. Bernardini et al.

By plugging in a dynamic connectivity structure, the worst case running time
of the algorithm of [20], given a matrix of n species and m characters, becomes
deterministic O(nm log2(n + m)) (using fully dynamic connectivity structure
of Holm et al. [15]), expected O(nm log((n + m)2/nm) + (n + m) log3(n +
m) log log(n + m)) (using decremental connectivity structure of Thorup [25]),
expected O(nm log(n + m)(log log(n + m))2) (using fully dynamic connectivity
structure of Huang et al. [16]), or deterministic O((n + m)2 log(n + m)) (using
decremental structure of Henzinger et al. [14]). This should be compared with a
lower bound of Ω(nm), following from the work of Gusfield on directed binary
perfect phylogeny [11] (under the natural assumption that the input is given
as a matrix). For n = m, the algorithm of [20] using [25] achieves this lower
bound at the expense of randomisation (and being very complicated), while for
the general case the asymptotically fastest solution is still at least one log factor
away from the lower bound.

A closer look to the algorithm of [20], that we describe in more details in
Sect. 2, reveals that it operates on bipartite graphs and only deletes vertices on
one of the sides. It seems plausible that some of the known dynamic connectivity
structures are actually asymptotically more efficient on such instances. However,
all of them are very complex (with the result of Holm et al. [15] being the
simplest, but definitely not simple), and this is not clear. Furthermore, recently
Fernández-Baca and Liu [9] performed an experimental study of the algorithm of
Pe’er et al. for IDPP [20] with the aim of assessing the impact of the underlying
dynamic graph connectivity data structure on their solution. Specifically, they
tested the use of the data structure of Holm et al. [15] against a simplified version
of the same method, and showed that, in this context, simple data structures
perform better than more sophisticated ones with better asymptotic bounds.

Our Results and Techniques. We are motivated to look for simpler, ad-hoc meth-
ods for the specific type of decremental connectivity that is used in IDPP: vertex
deletion from just one side of a bipartite graph. We start by describing a simple
structure that dynamically maintains the connected components of a bipartite
graph with N vertices on each side, whilst vertices are removed from one of the
sides. The starting point for our solution is an application of a particular ver-
sion of the sparsification technique of Eppstein et al. [7]: we define a hierarchical
decomposition of a bipartite graph, and maintain a forest representing the con-
nected components of each subgraph in this decomposition. Recall that the orig-
inal description of this technique focused on inserting and deleting edges, while
we are interested in deleting vertices (and only from one side of the graph). We
thus tweak the decomposition for our particular use case, obtaining an extremely
simple data structure with O(N2 log N) total update time, which we show to
imply an O(nm log n) algorithm for IDPP.

The main technical part of our paper refines this solution to shave the loga-
rithmic factor and thus obtain an asymptotically optimal algorithm. We stress
that while Eppstein et al. [7] did manage to avoid any extra log factors by
applying a more complex decomposition of the graph than a complete binary
tree (used in the conference version of their paper), this does not seem to trans-

Incomplete Directed Perfect Phylogeny in Linear Time 175

late to our setting, as we operate on vertices instead of edges. The high-level
idea of our solution is to amortize the time spent on updating the forest rep-
resenting the components of every subgraph with the progress in disconnecting
its vertices, and re-use the results from the subgraph on the previous level of
the decomposition to update the subgraph on the next level. As a consequence,
the IDPP problem can be solved in time linear in the input size. Under the
natural assumption that the input is given as a matrix, this is asymptotically
optimal [11].

Theorem 1. Given an incomplete matrix An×m, the IDPP problem can be
solved in time O(nm).

Paper Organization. In Sect. 2 we provide a description of the algorithm of
Pe’er et al. [20] and a series of preliminary observations. In Sect. 3 we show a
simple and self-contained decremental connectivity data structure that consid-
ers the removal of vertices from one side of a bipartite graph. This structure
implies an O(nm log n) time solution for the IDPP problem. Finally, in Sect. 4
we present our main result and describe a decremental connectivity data struc-
ture for removing vertices from one side of a bipartite graph that implies a
linear-time algorithm for IDPP.

2 Preliminaries

Let G = (V,E) be a graph. The subgraph induced by a subset of vertices V ′ ⊆ V
is GV ′ = (V ′, E ∩ (V ′ × V ′)). We say that a forest F = (V,E′) represents
the connected components of a graph G when the connected components of
F and G are the same (note that we do not require E′ ⊆ E). We denote by
S = {s1, . . . , sn} the set of species and by C = {c1, . . . , cm} the set of characters.
A matrix of character states An×m = [aij]n×m, where each entry is a state from
{0, 1, ?} and the rows correspond to the species, is said to be incomplete. The
state aij is one, zero or ? depending on whether character j is present, absent
or unknown for species i. A completion Bn×m of such An×m is obtained by
replacing the ? entries of An×m with either 0 or 1: formally, Bn×m is a binary
matrix with entries bij = aij for each i, j such that aij �= ?.

A directed perfect phylogeny for a binary matrix Bn×m is a rooted tree T
whose leaves are bijectively labelled by S and such that there is a surjection
from the characters C to the internal nodes of T with the following property:
if cj ∈ C is associated with a node x, then si is a leaf of the subtree rooted at
x if and only if bij = 1. In particular, the term directed means that characters
can be gained but not lost on any root-to-leaf path. We say that an incomplete
matrix admits a directed perfect phylogenetic tree if there exists a completion
of the matrix that has such a tree. The Incomplete Directed Perfect Phylogeny
problem (IDPP for short), introduced in [20], asks, given an incomplete matrix
A, to find a directed perfect phylogenetic tree for A, or determine that no such
tree exists.

176 G. Bernardini et al.

Algorithm 1: The high-level structure of Alg A [20].
1 while there is at least one character in G(A) do
2 Find the connected components of G(A)
3 for each connected component Ki of G(A) with at least one character do
4 Compute the set U of all characters in Ki which are

S(Ki)-semiuniversal in A
5 if U = ∅ then return FALSE

6 Deactivate every c ∈ U

7 return TRUE

The 1-set (resp. 0-set and ?-set) of a character cj in an incomplete matrix A
is the set of species {si|aij = 1} (resp. aij = 0 and aij = ?). For a subset S′ ⊆ S,
a character c is S′-semiuniversal in A if its 0-set does not intersect S′, that is, if
A[s, c] �= 0 for all s ∈ S′. It is convenient to represent the character state matrix
A as a graph: the vertices are V = S ∪ C and the edges are S × C, partitioned
into E1 ∪ E? ∪ E0, with Ex = {(si, cj)|aij = x} for x ∈ {0, 1, ?}. The edges of
E1, E?, E0 are called solid, optional, and forbidden, respectively. We denote by
G(A) = (S ∪C,E1) the bipartite graph consisting only of the solid edges. A Σ is
a subgraph induced by three vertices from S and two vertices from C, consisting
of exactly four edges that form a path of length 4.

Previous solutions. Pe’er et al. [20] consider a graph representation of the input
matrix A, and show that finding a subset D ⊆ (E1 ∪ E?) such that E1 ⊆ D
and (S ∪ C,D) is Σ-free, or determining that no such D exists, is equivalent
to solving IDPP. Their main algorithm exploits this characterization and the
following properties: (i) if A admits a phylogenetic tree, then so does the matrix
obtained by setting to 1 all the entries of column c, for each S-semiuniversal
c; (ii) given a partition (K1, . . . ,Kr) of S ∪ C, where each Ki is a connected
component of G(A), the matrix obtained by setting to 0 all entries corresponding
to edges between Ki and Kj , for i �= j, admits a phylogenetic tree if A does;
and (iii) if there is a component Ki with no S(Ki)-semiuniversal characters,
then for any D ⊆ (E1 ∪ E?) such that E1 ⊂ D, the graph (S ∪ C,D) is not Σ-
free (and thus A has no phylogenetic tree). It follows that there is no interaction
between the species and characters belonging to different connected components,
and therefore the whole reasoning can be repeated on each such component
separately.

We denote by S(K) and C(K) the set of species and characters, respectively,
of a connected component K of G(A); A|K denotes the submatrix of A consisting
of the species and characters in K. Deactivating a character c in G(A) consists
in deleting c and all its incident edges. At a high level Alg A, the main algorithm
of [20], works as follows. At each step, for each connected component Ki of G(A),
it computes the set U of S(Ki)-semiuniversal characters. If U = ∅, because
of property (iii) A does not admit a phylogenetic tree, and the process halts.
Otherwise, it sets to 1 the entries of A|Ki

corresponding to U , and sets to 0

Incomplete Directed Perfect Phylogeny in Linear Time 177

the entries of A between vertices that lay in different connected components. It
then deactivates all the characters in U and updates the connected components
of G(A) using some dynamic connectivity structure. Algorithm 1 summarizes
this process: for the sake of clarity, we only included the steps that compute the
information needed for determining whether A has a phylogenetic tree, and we
left out the operations that actually construct the tree.

2.1 Preliminary Results

Our goal is to improve Alg A by optimizing its bottleneck, that is maintaining
the connected components of G(A). We start by describing a data structure that
conveniently represents the connected components of a bipartite graph G.

Lemma 1. The connected components of a bipartite graph G = (S ∪ C,E) can
be represented in O(|S| + |C|) space so that, given a vertex, we can access its
component, including the size and a pointer to the list of species and characters
inside, in constant time, and move a vertex to another component (or remove it
from the graph) also in constant time.

Proof. Each component of G is represented by a doubly-linked list of its vertices
(more precisely, a list of species and a list of characters), and also stores the
size of the list. An array of length n + m, indexed by the vertices of G, stores
a pointer from each vertex to its component and a pointer from each vertex to
its position in the list of its component. The components are, in turn, organised
in a doubly-linked list. Such representation takes space linear in the number of
vertices and allows us to access all the required information in constant time.
Further, removing or moving a vertex to another component takes constant time.

	

We denote by cc(G) the data structure of Lemma 1, which encodes the connected
components of G. A graph F = (V,E′) consisting of a forest of rooted stars [23]
can be straightforwardly obtained from cc(G) as follows. For each component
K, we define the central vertex v ∈ K to be the head of the doubly-linked list
of characters of K in cc(G). Then, we add an edge (u, v) to E′, for any u ∈ K
with u �= v. This construction can be implemented in O(|V |) time. Although
we do not require E′ to be a subset of the edges of G, by construction the
connected components of F and G are the same. The useful property is that we
can use cc(G) to simulate access to the adjacency lists of F without constructing
it explicitly, as stated by the following lemma.

Lemma 2. Given a bipartite graph G = (S ∪C,E) and cc(G), the access to the
adjacency lists of a forest of rooted stars F with the same connected components
as G can be simulated in constant time without constructing F explicitly.

Proof. To simulate the access to the adjacency list of a vertex v, we first look
up its component K in cc(G) and retrieve the head u of the doubly-linked list of
characters of K. By Lemma 1, this operation requires constant time. If u = v,
then the adjacency list of v is the list of vertices of K stored in cc(G). Otherwise,
the adjacency list of v consists only of a single vertex u. 	

178 G. Bernardini et al.

Our intent is to solve the following special case of decremental connectivity.

Problem: (N�, Nr)-DC
Input: a bipartite graph G = (S ∪ C,E) with N� = |S| and Nr = |C|.
Update: deactivate a character c ∈ C.
Query: return the connected components of the subgraph induced by S and
the remaining characters.

When analysing the complexity of (N�, Nr)-DC, we allow preprocessing the
input graph G in O(N�Nr) time, and assume that all characters will be eventually
deactivated when analysing the total update time. We can of course deactivate
multiple characters at once by deactivating them one-by-one. The overall time
complexity of Algorithm 1 depends on the complexity of (N�, Nr)-DC as follows.

Lemma 3. Consider an n × m incomplete matrix A. If the (n,m)-DC problem
can be solved in f(n,m) total update time and g(n,m) query time, then the IDPP
problem can be solved for A in time O(nm + f(n,m) + min{n,m} · g(n,m)).

Proof. There are three nontrivial steps in every iteration of the while loop: find-
ing the connected components in line 2, computing the semiuniversal characters
of every connected component in line 4, and finally deactivating characters in
line 6. Every character is deactivated at most once, so the overall complexity
of all deactivations is O(f(n,m)). We claim that in every iteration of the while
loop, except possibly for the very last, (1) at least one character is deactivated,
and (2) there exist two species that cease to belong to the same connected com-
ponent. (1) is immediate, as otherwise we have a connected component Ki with
no S(Ki)-semiuniversal characters and the algorithm terminates. To prove (2),
assume otherwise, then we have a connected component Ki such that S(Ki)
does not change after deactivating all S(Ki)-semiuniversal characters. But then
in the next iteration the set of S(Ki)-semiuniversal characters is empty and
the algorithm terminates. (1) and (2) together imply that the number of itera-
tions is bounded by min{n,m}. The overall complexity of finding the connected
components is thus O(min{n,m} · g(n,m)).

It remains to bound the overall complexity of computing the semiuniversal
characters by O(nm). This has been implicitly done in [20, proof of Theorem
12], but we provide a full explanation for completeness. For every character
c ∈ C, we maintain the count of solid and optional edges connecting c (in the
graph representation of A) with the species that belong to its same connected
component of G(A) (recall that G(A) consists only of the solid edges of the graph
representation of A). Assuming that we can indeed maintain these counts, in
every iteration all the semiuniversal characters can be generated in O(m) time,
so in O(min{n,m} · m) = O(nm) overall time.

To update the counts, consider a connected component K that, after deac-
tivating some characters, is split into possibly multiple smaller components
K1,K2, . . . ,Kk. Note that we can indeed gather such information in O(n + m)
time, assuming access to a representation of the connected components before

Incomplete Directed Perfect Phylogeny in Linear Time 179

and after the deactivation. We assume that the connected components are main-
tained with the representation described in Lemma 1, and therefore we can access
a list of the vertices in every Ki. Then, we consider every pair i, j ∈ {1, 2, . . . , k}
such that i �= j, C(Ki) �= ∅ and S(Kj) �= ∅. We iterate over every c ∈ Ki and
s ∈ Kj , and if (s, c) is an edge in the graph of A (observe that it cannot be a solid
edge, as Ki and Kj are distinct connected components) we decrease the count of
c. By first preparing lists of components Ki such that C(Ki) �= ∅ and S(Ki) �= ∅,
this can be implemented in time bounded by the number of considered possible
edges (s, c), and every such possible edge is considered at most once during the
whole execution. Therefore, the overall complexity of maintaining the counts is
O(nm). Additionally, we need O(nm) time to initialise the (n,m)-DC structure.

	

Before proceeding to design an efficient solution for the (N�, Nr)-DC prob-
lem, we show that it is in fact enough to consider the (N,N)-DC problem.

Lemma 4. Assume that the (N,N)-DC problem can be solved in f(N) total
update time and g(N) query time. Then, for any N ′ ≥ N , both the (N,N ′)-DC
problem and the (N ′, N)-DC problem can be solved in O(N ′/N · f(N)) total
update time and O(N ′/N · g(N)) query time.

Proof. We first consider the (N,N ′)-DC problem, in which |S| < |C|. We create
�N ′/N instances of (N,N)-DC by partitioning C into groups of N vertices
(the last group might be smaller). In each instance we have the same set of
species S. Deactivating a character c ∈ C is implemented by deactivating it in
the corresponding instance of (N,N)-DC. Overall, this takes O(N ′/N · f(N))
time. To answer a query, we first query all the instances in O(N ′/N ·g(N)) time.
The output of each instance can be converted to a forest of rooted stars with the
same connected components in O(N) time. We take the union of all these forests
to obtain an auxiliary graph with at most �N ′/N · (N − 1) = O(N ′) edges, and
find its connected components in O(N ′) time. Assuming that f(N) ≥ N , this
takes O(N ′/N · f(N)) overall time and gives us the connected components of
the whole input graph.

Now we consider the (N ′, N)-DC problem. We create �N ′/N instances of
(N,N)-DC by partitioning S into groups of N vertices, and in each instance
we have the same set of characters C. Thus, deactivating a character c ∈ C is
implemented by deactivating it in every instance. This takes O(N ′/N · f(N))
total time. A query is implemented exactly as above by querying all the instances
and combining the results in O(N ′/N · f(N)) time. 	

3 (N,N)-DC in O(N2 logN) Total Update Time
and O(N) Time per Query

Our solution for the (N,N)-DC problem is based on a hierarchical decompo-
sition of G into multiple smaller subgraphs as in the sparsification technique
of Eppstein et al. [7] (as mentioned in the introduction, appropriately tweaked
for our use case). The decomposition is represented by a complete binary tree

180 G. Bernardini et al.

Fig. 1. The decomposition tree of K4,4.

DT(G) of depth log N . We identify the leaves of DT(G) with the characters C.
Each node v corresponds to the set of characters Cv identified with the leaves
in the subtree of v, and is responsible for the subgraph Gv of G induced by Cv

and the whole set of species S. Thus, the root is responsible for the whole G,
see Fig. 1. Each node v maintains cc(v), the connected components of Gv repre-
sented as per Lemma 1. We stress that, while cc(v) is explicitly maintained, we
do not explicitly store Gv at every node v. Given G, the preprocessing required
to construct DT(G) together with cc(v) for every node v takes O(N2) time by
the following argument. First, we construct cc(Gc) for every leaf c. This can be
done in O(N) time per leaf by simply iterating the neighbours of c in G. We
then proceed bottom-up and compute cc(v) for every inner node v in O(N) time
using the following lemma.

Lemma 5. Let v be an inner node of DT(G), and v�, vr be its children. Given
cc(v�) and cc(vr) we can compute cc(v) in O(N) time.

Proof. We construct the forests of rooted stars representing the connected
components of cc(v�) and cc(vr) in O(N) time and take their union. Then we
find the connected components of this union in O(N) time and save them as
cc(v). 	

We proceed to explain how to solve the (N,N)-DC problem in O(N log N)
time per update and O(N) time per query. The query simply returns cc(r), where
r is the root of DT(G). The update is implemented as follows. Deactivating a
character c possibly affects cc(v) for all ancestors v of leaf c. In particular, cc(c)
becomes a collection of isolated vertices and can be recomputed in O(1 + |S|) =
O(N) time. We iterate over all ancestors v, starting from the parent of c. For
each such v, let v� and vr be its left and right child, respectively. We can assume
that cc(v�) and cc(vr) have been already correctly updated. We compute cc(v)
from cc(v�) and cc(vr) by applying Lemma 5 in O(N) time. When summed over
all the ancestors, the update time becomes O(N log N), so O(N2 log N) over all
deactivations. By Lemmas 3 and 4, this implies that, given an incomplete matrix
An×m, the IDPP problem can be solved in time O(nm log(min{n,m})) without
using any dynamic connectivity data structure as a blackbox.

Incomplete Directed Perfect Phylogeny in Linear Time 181

Fig. 2. After having removed c from K to obtain K1,K2, . . . ,Kk, we want to remove
c from L.

4 (N,N)-DC in O(N2) Total Update Time and O(N)
Time per Query

Our faster solution is also based on a hierarchical decomposition DT(G) of G. As
before, every node v stores cc(v), so a query simply returns cc(r). The difference
is in implementing an update. We observe that, if for some ancestor v of a leaf c
the only change to cc(v) is removing c from its connected component, then this
also holds for all the subsequent ancestors, and therefore each of them can be
updated in constant time. This suggests that we should try to amortise the cost
of an update with the progress in splitting cc(v) into smaller components.

We will need to compare the situation before and after an update, and so
we introduce the following notation. A node v of DT(G) is responsible for the
subgraph Gv before the update and for the subgraph G′

v after the update; cc(v)
and cc′(v) denote the connected components of Gv and G′

v, respectively. The
crucial observation is that cc′(v) is obtained from cc(v) by removing c from
its connected component and, possibly, splitting this connected component into
multiple smaller ones, while leaving the others intact.

Deactivating a character c begins with updating naively cc(c) in O(N) time.
Then we iterate over the ancestors of c in DT(G). Let vi+1 be the currently
considered ancestor, vi the ancestor considered in the previous iteration, and ui

be the other child of vi+1 (sibling of vi). Let the component of Gvi
containing c be

K. As observed above, the components of G′
vi

are the same as the components of
Gvi

, except that K is replaced by possibly multiple components K1,K2, . . . ,Kk,
where

⋃k
j=1 Kj = K \{c}. If k = 1 then we trivially remove c from its connected

component in every Gvj
, for j = i + 1, i + 2, . . . and terminate the update, so

we can assume that k ≥ 2. We further assume that, after having updated the
components of Gvi

, we obtained a list of pointers to K1,K2, . . . ,Kk. Let L be
the connected component of c in Gvi+1 , with K ⊆ L because the subgraphs
are monotone with respect to inclusion on any leaf-to-root path. Now the goal
is to transform Gvi+1 into G′

vi+1
, to update its components (using cc′(vi) and

cc(ui)), and additionally to obtain a list of pointers to the components obtained
by splitting L. See Fig. 2 for an illustration.

182 G. Bernardini et al.

Fig. 3. The auxiliary graph implicitly constructed for a node vi+1 after deactivating
c8. Black edges are used for the star forest of vi, grey edges for the star forest of ui;
an inner circle identifies the central vertices. K1 is the component of c9; c7 is the next
vertex to be considered in the visit, and it will eventually become red.

We start by initialising G′
vi+1

to be Gvi+1 , and by removing c from L. As in
the proof of Lemma 5, we will use an auxiliary graph consisting of the union of
two star forests representing the connected components of G′

vi
and Gui

, respec-
tively. However, instead of explicitly constructing them, we simulate access to
the adjacency lists of every vertex in both forests using cc′(vi) and cc(ui), as per
Lemma 2. In turn, this allows us to simulate access to the adjacency list of every
vertex in the auxiliary graph. See Fig. 3 for an example of the auxiliary graph.

By renaming the components we can assume that |K1| ≥ |K2|, |K3|, . . . , |Kk|.
In order to determine the new connected components after the removal of c,
we will visit the vertices of L: when doing so, we will use different colours to
represent vertices whose new connected component contains K1 (red), vertices
whose new component is different from the one of K1 (black) and vertices whose
new component is still unknown (white). Initially, the vertices of K1 are red
and all of the other vertices of the auxiliary graph are white. This initialisation
is done implicitly, meaning that we will assume that all the vertices of K1 are
red and the rest are white without explicitly assigning the colours; whenever
retrieving the colour of a vertex u, we first check if u ∈ K1, and if so assume
that it is red. This allows us to implement the initialisation in constant time
instead of O(N) time. We will perform the visit of L by running the following
search procedure from an arbitrarily chosen vertex of each Kj , for j = 2, 3, . . . , k.

The search procedure run from a vertex x first checks if x is white, and
immediately terminates otherwise. Then, it starts visiting the vertices of the
connected component of x in the auxiliary graph: at any moment, each vertex
in such component is either white or red. As soon as the search encounters a red
vertex, it is terminated and all the vertices visited in the current invocation are
explicitly coloured red. Otherwise, the procedure has identified a new connected
component K ′ of G′

vi+1
. The vertices of K ′ are removed from L, all vertices of

K ′ are coloured black in the auxiliary graph, and a new component K ′ of G′
vi+1

is created in O(|K ′|) time. See Fig. 3 for an example.

Lemma 6. The total time spent on all calls to the search procedure in the cur-
rent iteration is O(|L| − |K1|).

Incomplete Directed Perfect Phylogeny in Linear Time 183

Proof. All vertices visited in the current iteration belong to L. The search is
terminated as soon as we encounter a red vertex, and all vertices of K1 are red
from the beginning. Therefore, each run of the search procedure encounters at
most one vertex of K1, and we can account for traversing the edge leading to
this vertex separately paying O(k − 1) = O(|L| − |K1|) overall. It remains to
bound the number of all other traversed edges. This is enough to bound the
overall time of the traversal, because every edge is traversed at most twice, and
the number of visited isolated vertices is at most k − 1 = O(|L| − |K1|).

For any other edge e = {u, v}, we have u, v ∈ L but u, v /∈ K1. These edges
can be partitioned into two forests, depending on whether they originate from
cc′(vi) or cc(ui). Consequently, we must analyse the total number of edges in a
union of two forests spanning L \ K1; but this is of course O(|L| − |K1|). 	

We now need to analyse the sum of |L|− |K1| over all the iterations. Because
⋃k

j=1 Kj ⊆ L, we can split this expression into two parts:

1. L \
⋃k

j=1 Kj ,
2.

∑k
j=2 |Kj |.

Because the sets L \
⋃k

j=1 Kj considered in different iterations are disjoint, the
first parts sum up to O(n). It remains to bound the sum of the second parts.
This will be done by the following argument. Consider an arbitrary Gv corre-
sponding to a subgraph induced by all the species and a subset of 2d characters.
Whenever its connected component K is split into smaller connected compo-
nents K1,K2, . . . ,Kk after deactivating a character c in the subtree of v, the
second part

∑k
j=2 |Kj | is distributed among the vertices of

⋃k
j=2 Kj . That is,

each vertex of
⋃k

j=2 Kj pays 1. Observe that the size of the connected com-
ponent containing such a vertex decreases by a factor of at least 2, because
|K2|, |K3|, . . . , |Kk| ≤ |K|/2. To bound the sum of second parts, we analyse the
total cost paid by all the vertices of Gv due to deactivating the characters in the
subtree of v (recall that in the end all such characters are deactivated).

Lemma 7. The total cost paid by the vertices of Gv, over all 2d deactivations
affecting v, is O(N · d).

Proof. We claim that in the whole process there can be at most 2t+1 deactiva-
tions incurring a cost from [N/2t+1, N/2t). Assume otherwise, then there exists
a vertex x charged twice by such deactivations. As a result of the first deactiva-
tion, the size of the connected component containing x drops from less than N/2t

to below N/2t+1. Consequently, during the next deactivation that charges x the
cost must be smaller than N/2t+1, a contradiction. As we have 2d deactivation
overall, the total cost can be at most:

d∑

t=0

2t+1 · N/2t = O(N · d)

	

184 G. Bernardini et al.

There are N/2d nodes of DT(G) affected by 2d deactivations, making the
sum of the second parts:

log n∑

d=0

N/2d · n · d < N2
∞∑

d=0

d/2d = O(N2).

Overall, the total update time is O(N2), so by Lemmas 3 and 4 we arrive at the
main result of this paper.

Theorem 1. Given an incomplete matrix An×m, the IDPP problem can be
solved in time O(nm).

Acknowledgements. This project has received funding from the European Union’s
Horizon 2020 research and innovation programme under the Marie Sk�lodowska-Curie
grant agreement No 872539. GB was supported by the Netherlands Organisation for
Scientific Research (NWO) under project OCENW.GROOT.2019.015 “Optimization
for and with Machine Learning (OPTIMAL)”.

References

1. Bashir, A., Ye, C., Price, A.L., Bafna, V.: Orthologous repeats and mammalian
phylogenetic inference. Genome Res. 15(7), 998–1006 (2005)

2. Bodlaender, H.L., Fellows, M.R., Hallett, M.T., Wareham, H.T., Warnow, T.J.:
The hardness of perfect phylogeny, feasible register assignment and other problems
on thin colored graphs. Theoret. Comput. Sci. 244(1–2), 167–188 (2000)

3. Bonizzoni, P., Braghin, C., Dondi, R., Trucco, G.: The binary perfect phylogeny
with persistent characters. Theoret. Comput. Sci. 454, 51–63 (2012)

4. Bonizzoni, P., Ciccolella, S., Della Vedova, G., Soto, M.: Beyond perfect phylogeny:
Multisample phylogeny reconstruction via ilp. In: 8th ACM-BCB, pp. 1–10 (2017)

5. Camin, J.H., Sokal, R.R.: A method for deducing branching sequences in phylogeny.
Evolution, pp. 311–326 (1965)

6. El-Kebir, M.: Sphyr: tumor phylogeny estimation from single-cell sequencing data
under loss and error. Bioinformatics 34(17), i671–i679 (2018)

7. Eppstein, D., Galil, Z., Italiano, G.F., Nissenzweig, A.: Sparsification-a technique
for speeding up dynamic graph algorithms. J. ACM 44(5), 669–696 (1997)

8. Even, S., Shiloach, Y.: An on-line edge-deletion problem. J. ACM 28(1), 1–4 (1981)
9. Fernández-Baca, D., Liu, L.: Tree compatibility, incomplete directed perfect phy-

logeny, and dynamic graph connectivity: An experimental study. Algorithms 12(3),
53 (2019)

10. Gibb, D., Kapron, B., King, V., Thorn, N.: Dynamic graph connectivity with
improved worst case update time and sublinear space. arXiv:1509.06464 (2015)

11. Gusfield, D.: Efficient algorithms for inferring evolutionary trees. Networks 21(1),
19–28 (1991)

12. Gusfield, D.: Persistent phylogeny: a galled-tree and integer linear programming
approach. In: 6th ACM-BCB, pp. 443–451 (2015)

13. Halperin, E., Karp, R.M.: Perfect phylogeny and haplotype assignment. In: Pro-
ceedings of the Eighth Annual International Conference on Resaerch in Computa-
tional Molecular Biology, pp. 10–19 (2004)

http://arxiv.org/abs/1509.06464

Incomplete Directed Perfect Phylogeny in Linear Time 185

14. Henzinger, M.R., King, V., Warnow, T.: Constructing a tree from homeomorphic
subtrees, with applications to computational evolutionary biology. Algorithmica
24(1), 1–13 (1999)

15. Holm, J., De Lichtenberg, K., Thorup, M.: Poly-logarithmic deterministic fully-
dynamic algorithms for connectivity, minimum spanning tree, 2-edge, and bicon-
nectivity. J. ACM 48(4), 723–760 (2001)

16. Huang, S.E., Huang, D., Kopelowitz, T., Pettie, S.: Fully dynamic connectivity in
O(log n(log logn)2) amortized expected time. In: 28th SODA, pp. 510–520. SIAM
(2017)

17. Kimmel, G., Shamir, R.: The incomplete perfect phylogeny haplotype problem. J.
Bioinform. Comput. Biol. 3(02), 359–384 (2005)

18. Kirkpatrick, B., Stevens, K.: Perfect phylogeny problems with missing values.
IEEE/ACM Trans. Comput. Biol. Bioinf. 11(5), 928–941 (2014)

19. Nikaido, M., Rooney, A.P., Okada, N.: Phylogenetic relationships among cetartio-
dactyls based on insertions of short and long interpersed elements: hippopotamuses
are the closest extant relatives of whales. Proc. Natl. Acad. Sci. 96(18), 10261–
10266 (1999)

20. Pe’er, I., Pupko, T., Shamir, R., Sharan, R.: Incomplete directed perfect phylogeny.
SIAM J. Comput. 33(3), 590–607 (2004)

21. Satas, G., Zaccaria, S., Mon, G., Raphael, B.J.: Scarlet: Single-cell tumor phylogeny
inference with copy-number constrained mutation losses. Cell Syst. 10(4), 323–332
(2020)

22. Satya, R.V., Mukherjee, A.: The undirected incomplete perfect phylogeny problem.
IEEE/ACM Trans. Comput. Biol. Bioinf. 5(4), 618–629 (2008)

23. Shiloach, Y., Vishkin, U.: An o(logn) parallel connectivity algorithm. J. Algorithms
3(1), 57–67 (1982)

24. Stevens, K., Gusfield, D.: Reducing multi-state to binary perfect phylogeny with
applications to missing, removable, inserted, and deleted data. In: Moulton, V.,
Singh, M. (eds.) Algorithms in Bioinformatics. WABI 2010. Lecture Notes in Com-
puter Science, vol. 6293. Springer, Berlin, Heidelberg (2010). https://doi.org/10.
1007/978-3-642-15294-8 23

25. Thorup, M.: Decremental dynamic connectivity. J. Algorithms 33(2), 229–243
(1999)

https://doi.org/10.1007/978-3-642-15294-8_23
https://doi.org/10.1007/978-3-642-15294-8_23

Euclidean Maximum Matchings
in the Plane—Local to Global

Ahmad Biniaz1(B), Anil Maheshwari2, and Michiel Smid2

1 University of Windsor, Windsor, Canada
ahmad.biniaz@gmail.com

2 Carleton University, Ottawa, Canada
{anil,michiel}@scs.carleton.ca

Abstract. Let M be a perfect matching on a set of points in the plane
where every edge is a line segment between two points. We say that M is
globally maximum if it is a maximum-length matching on all points. We
say that M is k-local maximum if for any subset M ′ = {a1b1, . . . , akbk}
of k edges of M it holds that M ′ is a maximum-length matching on
points {a1, b1, . . . , ak, bk}. We show that local maximum matchings are
good approximations of global ones.

Let µk be the infimum ratio of the length of any k-local maximum
matching to the length of any global maximum matching, over all finite
point sets in the Euclidean plane. It is known that µk � k−1

k
for any

k � 2. We show the following improved bounds for k ∈ {2, 3}: µ2 �
√

3/7
and µ3 � 1/

√
2. We also show that every pairwise crossing matching is

unique and it is globally maximum.
Towards our proof of the lower bound for µ2 we show the following

result which is of independent interest: If we increase the radii of pairwise
intersecting disks by factor 2/

√
3, then the resulting disks have a common

intersection.

Keywords: Planar points · Maximum matching · Global maximum ·
Local maximum · Pairwise crossing matching · Pairwise intersecting
disks

1 Introduction

A maximum-weight matching in an edge-weighted graph is a matching in which
the sum of edge weights is maximized. Maximum-weight matching is among
well-studied structures in graph theory and combinatorial optimization. It has
been studied from both combinatorial and computational points of view in both
abstract and geometric settings, see for example [1,3,4,8,10–12,15,16,18,23,24,
30]. Over the years, it has found applications in several areas such as scheduling,
facility location, and network switching. It has also been used as a key subroutine
in other optimization algorithms, for example, network flow algorithms [13,25],

Supported by NSERC.

c© Springer Nature Switzerland AG 2021
A. Lubiw et al. (Eds.): WADS 2021, LNCS 12808, pp. 186–199, 2021.
https://doi.org/10.1007/978-3-030-83508-8_14

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-83508-8_14&domain=pdf
https://doi.org/10.1007/978-3-030-83508-8_14

Euclidean Maximum Matchings in the Plane-Local to Global 187

maximum cut in planar graphs [19], and switch scheduling algorithms [27] to
name a few. In the geometric setting, where vertices are represented by points in
a Euclidean space and edges are line segments, the maximum-weight matching
is usually referred to as the maximum-length matching.

Let P be a set of 2n distinct points in the plane, and let M be a perfect
matching on P where every edge of M is a straight line segment. We say that
M is globally maximum if it is a maximum-length matching on P . For an integer
k � n we say that M is k-local maximum if for any subset M ′ = {a1b1, . . . , akbk}
of k edges of M it holds that M ′ is a maximum-length matching on points {a1, b1,
. . . , ak, bk}; in other words M ′ is a maximum-length matching on the endpoints
of its edges. Local maximum matchings appear in local search heuristics for
approximating global maximum matchings, see e.g. [2].

It is obvious that any global maximum matching is locally maximum. On the
other hand, local maximum matchings are known to be good approximations of
global ones. Let μk be the infimum ratio of the length of any k-local maximum
matching to the length of any global maximum matching, over all finite point
sets in the Euclidean plane. For k = 1, the ratio μ1 could be arbitrary small,
because any matching is 1-local maximum. For k � 2, however, it is known that
μk � k−1

k (see e.g. [2, Corollary 8]); this bound is independent of the Euclidean
metric and it is valid for any edge-weighted complete graph. A similar bound is
known for matroid intersection [26, Corollary 3.1]. We present improved bounds
for μ2 and μ3; this is going to be the main topic of this paper.

1.1 Our Contributions

The general lower bound k−1
k implies that μ2 � 1/2 and μ3 � 2/3. We

use the geometry of the Euclidean plane and improve these bounds to μ2 �√
3/7 ≈ 0.654 and μ3 � 1/

√
2 ≈ 0.707. In the discussion at the end of this

paper we show that analogous ratios for local minimum matchings could be
arbitrary large.

For an edge set E, we denote by w(E) the total length of its edges. To obtain
the lower bound 1/

√
2 for μ3 we prove that for any 3-local maximum matching M

it holds that w(M) � w(M∗)/
√

2 where M∗ is a global maximum matching for
the endpoints of edges in M . To do so, we consider the set D of diametral disks
of edges in M . A recent result of Bereg et al. [4] combined with Helly’s theorem
[21,29] implies that the disks in D have a common intersection. We take a point in
this intersection and connect it to endpoints of all edges of M to obtain a star S.
Then we show that w(M∗) � w(S) �

√
2 · w(M), which proves the lower bound.

Our proof approach for showing the lower bound
√

3/7 for μ2 is similar to
that of μ3. However, our proof consists of more technical ingredients. We show
that for any 2-local maximum matching M it holds that w(M) �

√
3/7 ·w(M∗)

where M∗ is a global maximum matching for the endpoints of edges of M .
Again we consider the set D of diametral disks of edges of M . A difficulty
arises here because now the disks in D may not have a common intersection,
although they pairwise intersect. To overcome this issue we enlarge the disks
in D to obtain a new set of disks that have a common intersection. Then we
take a point in this intersection and construct our star S as before, and we

188 A. Biniaz et al.

show that w(M∗) � w(S) �
√

7/3 · w(M). To obtain this result we face two
technical complications: (i) we need to show that the enlarged disks have a
common intersection, and (ii) we need to bound the distance from the center of
star S to endpoints of M . To overcome the first issue we prove that if we increase
the radii of pairwise intersecting disks by factor 2/

√
3 then the resulting disks

have a common intersection; the factor 2/
√

3 is the smallest that achieves this
property. This result has the same flavor as the problem of stabbing pairwise
intersecting disks with four points [6,7,20,31]. To overcome the second issue we
prove a result in distance geometry.

In a related result, which is also of independent interest, we show that every
pairwise crossing matching is unique and it is globally maximum. To show the
maximality we transform our problem into an instance of the “multicommodity
flows in planar graphs” that was studied by Okamura and Seymour [28] in 1981.

1.2 Some Related Works

From the computational point of view, Edmonds [11,12] gave a polynomial-
time algorithm for computing weighted matchings in general graphs (the term
weighted matching refers to both minimum-weight matching and maximum-
weight matching). Edmonds’ algorithm is a generalization of the Hungarian
algorithm for weighted matching in bipartite graphs [23,24]. There are several
implementations of Edmonds’ algorithm (see e.g. [15,17,18,25]) with the best
known running time O(mn + n2 log n) [15,16] where n and m are the number
of vertices and edges of the graph. One might expect faster algorithms for the
“maximum-length matching” in the geometric setting where vertices are points
in the plane and any two points are connected by a straight line segment; we
are not aware of any such algorithm. For general graphs, there is a linear-time
(1 − ε)-approximation of maximum-weight matching [8].

The analysis of maximum-length matching ratios has received attention in
the past. In a survey by Avis [3] it is shown that the matching obtained by a
greedy algorithm (that picks the largest available edge) is a 1/2-approximation
of the global maximum matching (even in arbitrary weighted graphs). Alon,
Rajagopalan, Suri [1] studied non-crossing matchings, where edges are not
allowed to cross each other. They showed that the ratio of the length of a
maximum-length non-crossing matching to the length of a maximum-length
matching is at least 2/π; this ratio is the best possible. Similar ratios have been
studied for non-crossing spanning trees, Hamiltonian paths and cycles [1,5,9].
Bereg et al. [4] showed the following combinatorial property of maximum-length
matchings: the diametral disks, introduced by edges of a maximum-length match-
ing, have a common intersection. A somewhat similar property was proved by
Huemer et al. [22] for bi-colored points.

2 A Lower Bound for k-Local Maximum Matchings

For the sake of completeness, and to facilitate comparisons with our improved
bounds, we repeat a proof of the general lower bound k−1

k , borrowed from [2].

Euclidean Maximum Matchings in the Plane-Local to Global 189

Theorem 1. Every k-local maximum matching is a k−1
k -approximation of a

global maximum matching for any k � 2.

Proof. Consider any k-local maximum matching M and a corresponding global
maximum matching M∗. The union of M and M∗ consists of even cycles and/or
single edges which belong to both matchings. It suffices to show, for each cycle C,
that the length of edges in C ∩ M is at least k−1

k times that of edges in C ∩ M∗.
Let e0, e1, . . . , e|C|−1 be the edges of C that appear in this order. Observe

that |C| � 4, and that the edges of C alternate between M and M∗. Let CM

and CM∗ denote the sets of edges of C that belong to M and M∗, respectively.
If |C| � 2k then w(CM) = w(CM∗) because M is k-local maximum, and thus
we are done. Assume that |C| � 2k + 2. After a suitable shifting of indices we
may assume that CM = {ei : i is even} and CM∗ = {ei : i is odd}. Since M is
k-local maximum, for each even index i we have

w(ei) + w(ei+2) + · · · + w(ei+2k−2) � w(ei+1) + w(ei+3) + · · · + w(ei+2k−3)

where all indices are taken modulo |C|. By summing this inequality over all
even indices, every edge of CM appears exactly k times and every edge of CM∗

appears exactly k − 1 times, and thus we get k · w(CM) � (k − 1) · w(CM∗). �

It is implied from Theorem 1 that μ2 � 1/2 and μ3 � 2/3. To establish
stronger lower bounds, we need to incorporate more powerful ingredients. We
use geometry of the Euclidean plane and improve both lower bounds.

3 Better Lower Bound for 3-Local Maximum Matchings

We describe our improved bound for 3-local maximum matchings first because
it is easier to understand. Our Theorem 4 implies that μ3 � 1/

√
2. The proof

of our theorem benefits from the following result of Bereg et al. [4] and Helly’s
theorem [21,29].

Theorem 2. (Bereg et al. [4]). Consider any maximum matching of any set
of six points in the plane. The diametral disks of the three edges in this matching
have a nonempty intersection.

Theorem 3. (Helly’s theorem in R2). If in a family of convex sets in the
plane every triple of sets has a nonempty intersection, then the entire family has
a nonempty intersection.

Theorem 4. Every 3-local Euclidean maximum matching is a 1√
2
-

approximation of a global Euclidean maximum matching.

Proof. Consider any 3-local maximum matching M . Let M∗ be a global maxi-
mum matching for the endpoints of edges of M . Consider the set D of diametral
disks introduced by edges of M . Since M is 3-local maximum, any three disks in
D have a common intersection (by Theorem 2). With this property, it is implied

190 A. Biniaz et al.

Fig. 1. Red edges belong to M , black edges belong to S, and blue edge belongs to M∗.

by Theorem 3 that the disks in D have a common intersection (the shaded region
in Fig. 1). Let c be a point in this intersection. Let S be the star obtained by
connecting c to all endpoints of edges of M as in Fig. 1. Since c is in the diametral
disk of every edge ab ∈ M , it is at distance at most |ab|/2 from the midpoint of
ab. By applying Lemma 1 (which will be proved in Sect. 4), with c playing the
role of p and r = 1, we have

|ca| + |cb| �
√

2 · |ab|. (1)

In Inequality (1), for every edge ab ∈ M , a unique pair of edges in S is charged
to ab. Therefore, w(S) �

√
2 · w(M). Now consider any edge a∗b∗ ∈ M∗. By the

triangle inequality we have that

|a∗b∗| � |ca∗| + |cb∗|. (2)

In Inequality (2), every edge of M∗ is charged to a unique pair of edges in S.
Therefore, w(M∗) � w(S). Combining the two resulting inequalities we have
that w(M) � w(M∗)/

√
2. �

Remark 1. In 1995, Fingerhut [14] conjectured that for any maximum-length
matching {(a1, b1), . . . , (an, bn)} on any set of 2n points in the plane there exists
a point c such that

|aic| + |bic| � α · |aibi| (3)

for all i ∈ {1, . . . , n}, where α = 2/
√

3. The smallest known value for α that
satisfies Inequality (3) is α =

√
2, which is implied by the result of [4]. A proof

of this conjecture, combined with an argument similar to our proof of Theorem 4,
would imply approximation ratio

√
3
2 ≈ 0.866 for 3-local maximum matchings.

4 Better Lower Bound for 2-Local Maximum Matchings

In this section we prove that μ2 �
√

3/7 ≈ 0.65, that is, 2-local maximum match-
ings are

√
3/7 approximations of global ones. Our proof approach employs an

Euclidean Maximum Matchings in the Plane-Local to Global 191

argument similar to that of 3-local maximum matchings. Here we are facing an
obstacle because diametral disks that are introduced by edges of a 2-local max-
imum matching may not have a common intersection. To handle this issue, we
require stronger tools. Our idea is to increase the radii of disks—while preserv-
ing their centers—to obtain a new set of disks that have a common intersection.
Then we apply our argument on this new set of disks. This gives rise to some-
what lengthier analysis. Also, two technical complications arise because now we
need to show that the new disks have a common intersection, and we need to
bound the total distance from any point in new disks to the endpoints of the
corresponding matching edges. The following lemmas play important roles in
our proof.

Fig. 2. Illustration of the proof of Lemma 1.

Lemma 1. Let r > 0 be a real number. If ab is a line segment in the plane and
p is a point at distance at most r·|ab|

2 from the midpoint of ab then

|pa| + |pb| �
√

r2 + 1 · |ab|.

Proof. After scaling by factor 2/|ab| we will have |ab| = 2 and p at distance at
most r from the midpoint of ab. After a suitable rotation and translation assume
that a = (−1, 0) and b = (1, 0). Any point p = (x, y) at distance at most r from
the midpoint of ab lies in the disk d of radius r that is centered at (0, 0) as in
Fig. 2. Since |ab| = 2, it suffices to prove that |pa| + |pb| � 2

√
r2 + 1. Without

loss of generality we may assume that x � 0 and y � 0. Let p′ be the vertical
projection of p onto the boundary of d as in Fig. 2. Observe that |pa| � |p′a|
and |pb| � |p′b|. Thus the largest value of |pa| + |pb| occurs when p is on the
boundary of d. Therefore, for the purpose of this lemma we assume that p is on
the boundary circle of d. The circle has equation x2 + y2 = r2. Therefore, we
can define |pa| + |pb| as a function of x as follows where 0 � x � r (recall that
x is the x-coordinate of p, and y is the y-coordinate of p).

192 A. Biniaz et al.

f(x) = |pa| + |pb| =
√

(x + 1)2 + y2 +
√

(x − 1)2 + y2

=
√

x2 + y2 + 1 + 2x +
√

x2 + y2 + 1 − 2x

=
√

r2 + 1 + 2x +
√

r2 + 1 − 2x.

We are interested in the largest value of f(x) on interval x ∈ [0, r]. By computing
its derivative it turns out that f(x) is decreasing on this interval. Thus the largest
value of f(x) is achieved at x = 0, and it is 2

√
r2 + 1. �

Lemma 2. Let a, p, b, q be the vertices of a convex quadrilateral that appear in
this order along the boundary. If |pa| = |pb| and ∠aqb � 2π/3 then |pq| � 2√

3
|pa|.

Proof. After a suitable scaling, rotation, and reflection assume that |pa| = 1,
ab is horizontal, and p lies below ab as in Fig. 3-left. Since |pa| = 1 in this new
setting, it suffices to prove that |pq| � 2/

√
3. Consider the ray emanating from p

and passing through q. Let q′ be the point on this ray such that ∠aq′b = 2π/3,
and observe that |pq′| � |pq|. Thus for the purpose of this lemma we can assume
that ∠aqb = 2π/3. The locus of all points q, with ∠aqb = 2π/3, is a circular arc
C with endpoints a and b. See Fig. 3-middle. Let c be the center of the circle
that defines arc C. Since ab is horizontal and |pa| = |pb|, the center c lies on
the vertical line through p. Let d be the disk of radius 1 centered at p. If c lies
on or below p then C lies in d and consequently q is in d. In this case |pq| � 1,
and we are done. Assume that c lies above p as in Fig. 3-middle. By the law
of cosines we have |pq| =

√|pc|2 + |cq|2 − 2|pc||cq| cos β where β is the angle
between segments cp and cq. Since |pc| and |cq| are fixed for all points q on C,
the largest value of |pq| is attained at β = π. Again for the purpose of this lemma
we can assume that β = π, in which case |qa| = |qb|. Let α denote the angle
between segments pa and pb. Define f(α) = |pq| where 0 � α � π. Recall that
∠aqb = 2π/3. This setting is depicted in Fig. 3-right. By the law of sines we have

f(α) = |pq| =
sin

(
π
6 + π−α

2

)

sin
(

π
3

) =
2 sin

(
4π−3α

6

)

√
3

,

where 0 � α � π. By computing the derivative of f(α) it turns out that its
largest value is attained at α = π/3, and it is 2/

√
3. �

Theorem 5. Let D be a set of pairwise intersecting disks. Let D′ be the set
of disks obtained by increasing the radii of all disks in D by factor 2/

√
3 while

preserving their centers. Then all disks in D′ have a common intersection. The
factor 2/

√
3 is tight.

Proof. It suffices to show that any three disks in D′ have a common intersection
because afterwards Theorem 3 implies that all disks in D′ have a common inter-
section. Consider any three disks d′

1, d′
2, d′

3 in D′ that are centered at c1, c2, c3,
and let d1, d2, d3 be their corresponding disks in D. If d1, d2, d3 have a common
intersection, so do d′

1, d′
2, and d′

3. Assume that d1, d2, d3 do not have a common

Euclidean Maximum Matchings in the Plane-Local to Global 193

Fig. 3. Illustration of the proof of Lemma 2.

intersection, as depicted in Fig. 4. Let u be the innermost intersection point of
boundaries of d1 and d2, v be the innermost intersection point of boundaries of
d2 and d3, and w be the innermost intersection point of boundaries of d3 and d1,
as in Fig. 4. We show that the Fermat point of triangle �uvw lies in all disks d′

1,
d′
2, and d′

3. This would imply that these three disks have a common intersection.
The Fermat point of a triangle is a point that minimizes the total distance to
the three vertices of the triangle. If all angles of the triangle are less than 2π/3
the Fermat point is inside the triangle and makes angle 2π/3 with every two
vertices of the triangle. If the triangle has a vertex of angle at least 2π/3 the
Fermat point is that vertex.

Fig. 4. Illustration of the proof of Theorem 5

Let f be the Fermat point of �uvw. First assume that all angles of �uvw
are less than 2π/3, as in Fig. 4-left. In this case f is inside �uvw and ∠ufw =
∠wfv = ∠vfu = 2π/3. By Lemma 2 we have |c1f | � 2√

3
|c1u| (w, c1, u, f play

the roles of a, p, b, q in the lemma, respectively). This and the fact that the radius
of d′

1 is 2√
3
|c1u| imply that f lies in d′

1. Analogously, we can show that f lies in
d′
2 and d′

3. This finishes our proof for this case.

194 A. Biniaz et al.

Now assume that one of the angles of �uvw, say the angle ∠uvw at v, is at
least 2π/3; see Fig. 4-right. In this case f = v. Since f is on the boundaries of
d2 and d3, it lies in d′

2 and d′
3. By Lemma 2 we have |c1f | � 2√

3
|c1u|. Similarly

to the previous case, this implies that f lies in d′
1. This finishes our proof.

The factor 2/
√

3 in the theorem is tight in the sense that if we replace it by
any smaller constant then the disks in D′ may not have a common intersection.
To verify this consider three disks of the same radius that pairwise touch (but
do not properly intersect). For example assume that d1, d2, d3 in Fig. 4-left have
radius 1 and pairwise touch at u, v, and w. In this case d′

1, d′
2, d′

3 have radius
2/

√
3. Moreover ∠wc1u = ∠uc2v = ∠vc3w = π/3 and f is inside �uvw. In this

setting |c1f | = |c2f | = |c3f | = 2/
√

3. This implies that f is the only point in
the common intersection of d′

1, d′
2 and d′

3. Therefore, if the radii of these disks
are less than 2/

√
3 then they wouldn’t have a common intersection. �

Theorem 6. Every 2-local Euclidean maximum matching is a
√

3/7 approxi-
mation of a global Euclidean maximum matching.

Proof. Our proof approach is somewhat similar to that of Theorem 4. Consider
any 2-local maximum matching M . Let M∗ be a global maximum matching
for the endpoints of edges of M . It is well known that that the two diametral
disks introduced by the two edges of any maximum matching, on any set of
four points in the plane, intersect each other (see e.g. [4]). Consider the set
D of diametral disks introduced by edges of M . Since M is 2-local maximum,
any two disks in D intersect each other. However, all disks in D may not have
a common intersection. We increase the radii of all disks in D by factor 2/

√
3

while preserving their centers. Let D′ be the resulting set of disks. By Theorem 5
the disks in D′ have a common intersection. Let c be a point in this intersection.
Let S be the star obtained by connecting c to all endpoints of edges of M .
Consider any edge ab ∈ M , and let d be its diametral disk in D and d′ be the
corresponding disk in D′. The radius of d′ is 2√

3
· |ab|

2 . Since c is in d′, its distance

from the center of d′ (which is the midpoint of ab) is at most 2√
3

· |ab|
2 . By

applying Lemma 1, with p = c and r = 2/
√

3, we have |ca| + |cb| �
√

7/3 · |ab|.
This implies that w(S) �

√
7/3 ·w(M). For any edge a∗b∗ ∈ M∗, by the triangle

inequality we have |a∗b∗| � |ca∗| + |cb∗|, and thus w(M∗) � w(S). Therefore,
w(M) �

√
3/7 · w(M∗). �

5 Pairwise-Crossing Matchings are Globally Maximum

A pairwise crossing matching is a matching in which every pair of edges cross
each other. It is easy to verify that any pairwise crossing matching is 2-local
maximum. We claim that such matchings are in fact global maximum. We also
claim that pairwise crossing matchings are unique. Both claims can be easily
verified for points in convex position. In this section we prove these claims for
points in general position, where no three points lie on a line.

Euclidean Maximum Matchings in the Plane-Local to Global 195

Observation 1. Let M be a pairwise crossing perfect matching on a point set
P . Then for any edge ab ∈ M it holds that the number of points of P on each
side of the line through ab is (|P | − 2)/2.

Theorem 7. A pairwise crossing perfect matching on a point set is unique if it
exists.

Proof. Consider any even-size point set P that has a pairwise crossing perfect
matching. For the sake of contradiction assume that P admits two different
perfect matchings M1 and M2 each of which is pairwise crossing. The union of
M1 and M2 consists of connected components which are single edges (belong to
both M1 and M2) and even cycles. Since M1 �= M2, M1 ∪ M2 contains some
even cycles. Consider one such cycle, say C. Let C1 and C2 be the sets of edges
of C that belong to M1 and M2 respectively. Observe that each of C1 and C2 is
a pairwise crossing perfect matching for vertices of C.

b1
b2

a

L R

Let a denote the lowest vertex of C; a is a vertex
of the convex hull of C. Let b1 and b2 be the vertices of
C that are matched to a via C1 and C2 respectively.
After a suitable reflection assume that b2 is to the
right side of the line through a and b1 as in the figure
to the right. Let L be the set of vertices of C that are
to the left side of the line through ab1, and let R be
the set of vertices of C that are to the right side of
the line through ab2. Since C1 is pairwise crossing, by
Observation 1 we have |L| = (|C|−2)/2. Analogously
we have |R| = (|C|−2)/2. Set C ′ = L∪R∪{a, b1, b2}, and observe that C ′ ⊆ C.
Since the sets L, R, and {a, b1, b2} are pairwise disjoint, |C ′| = |L| + |R| + 3 =
|C| + 1. This is a contradiction because C ′ is a subset of C. �

In Theorem 9 we prove that a pairwise crossing matching is globally max-
imum, i.e., it is a maximum-length matching for its endpoints. The following
“edge-disjoint paths problem” that is studied by Okamura and Seymour [28]
will come in handy for our proof of Theorem 9. To state this problem in a simple
way, we borrow some terminology from [32].

Let G = (V,E) be an embedded planar graph and let N = {(a1, b1), . . . ,
(ak, bk)} be a set of pairs of distinct vertices of V that lie on the outerface,
as in Fig. 5(a). A problem instance is a pair (G,N) where the augmented graph
(V,E∪{a1b1, . . . , akbk}) is Eulerian (i.e. it has a closed trail containing all edges).
We note that the augmented graph may not be planar. The problem is to decide
whether there are edge-disjoint paths P1, . . . , Pk in G such that each Pi connects
ai to bi.1 Okamura and Seymour [28] gave a necessary and sufficient condition
for the existence of such paths; this condition is stated below in Theorem 8. A
cut X is a nonempty proper subset of V . Let c(X) be the number of edges in G
with one endpoint in X and the other in V \X, and let d(X) be the number of
pairs (ai, bi) with one element in X and the other in V \X. A cut X is essential

1 This problem has applications in multicommodity flows in planar graphs [28].

196 A. Biniaz et al.

if the subgraphs of G induced by X and V \X are connected and neither set is
disjoint with the outerface of G. If X is essential then each of X and V \X shares
one single connected interval with the outerface; see Fig. 5(a).

Theorem 8 (Okamura and Seymour, 1981). An instance (G,N) is solvable
if and only if for any essential cut X it holds that c(X) − d(X) � 0.

Wagner and Weihe [32] studied a computational version of the problem and
presented a linear-time algorithm for finding edge-disjoint paths P1, . . . , Pk.

Fig. 5. (a) An essential cut X with c(X) = 4 and d(X) = 2. (b) Edge-disjoint paths
between endpoints of edges of M∗.

Theorem 9. Any pairwise crossing matching is globally maximum.

Proof. Consider any matching M with pairwise crossing segments, and let P be
the set of endpoints of edges of M . Let A be the arrangement defined by the
segments of M . Notice that w(A) = w(M), where w(A) is the total length of
segments in A. This arrangement is a planar graph where every vertex, that
is a point of P , has degree 1 and every vertex, that is an intersection point
of two segments of M , has degree 4 (assuming no three segments intersect at
the same point). Now consider any perfect matching M∗ on P ; M∗ could be a
global maximum matching. Denote the edges of M∗ by a1b1, a2b2, To prove
the theorem it suffices to show that w(M∗) � w(A). To show this inequality, we
prove existence of edge-disjoint paths between all pairs (ai, bi) in A, as depicted
in Fig. 5(b). We may assume that M and M∗ are edge disjoint because shared
edges have the same contribution to each side of the inequality.

Observe that the pair (A,M∗) is an instance of the problem of Okamura and
Seymour [28] because the augmented graph is Eulerian (here we slightly abuse
M∗ to refer to a set of pairs). In the augmented graph, every point of P has
degree 2, whereas the degree of every other vertex is the same as its degree in
A. Consider any essential cut X in A. Set XP = X ∩ P . Consider the two sets
XP and P \XP . Denote the smaller set by Y1 and the larger set by Y2. Notice

Euclidean Maximum Matchings in the Plane-Local to Global 197

that |Y1 ∪ Y2| = |P |, |Y1| � |P |/2, and |Y2| � |P |/2. We claim that no two
points of Y1 are matched to each other by an edge of M . To verify this claim we
use contradiction. Assume that for two points a and b in Y1 we have ab ∈ M .
Since X is essential, each of Y1 and Y2 consists of some points of P that are
consecutive on the outerface of A. This and the fact that M is pairwise crossing
imply that all points of Y2 lie on one side of the line through ab. This contradicts
Observation 1, and hence proves our claim.

The above claim implies that every point in Y1 is matched to a point in Y2 by
an edge of M . Any such edge of M introduces at least one edge between X and
A \X in A. Therefore c(X) � |Y1|. Since every ai and every bi belong to P , the
number of pairs (ai, bi) with one element in X and another one in A\X is the
same as the number of such pairs with one element in Y1 and the other in Y2. The
number of such pairs cannot be more than |Y1|, and thus d(X) � |Y1|. To this
end we have that c(X) � d(X). Having this constraint, Theorem 8 implies that
the instance (A,M∗) is solvable, and thus there are edge-disjoint paths between
all pairs (ai, bi). By the triangle inequality, w(M∗) is at most the total length of
these edge-disjoint paths, which is at most w(A). �

6 Discussion

We believe that 3-local Euclidean maximum matchings are “very good” approx-
imations of global Euclidean maximum matchings. In particular we think that
the lower bound on the length ratio should be closer to 1 than to 1/

√
2. A nat-

ural open problem is to use the geometry of the Euclidean plane and improve
the lower bounds on the length ratios for 2- and 3-local maximum matchings.

From the computational point of view, there are algorithms that compute a
global maximum matching in polynomial time [15–18,25] and there is a linear-
time algorithm that gives a (1 − ε)-approximation [8]. It would be interesting to
see how fast a k-local maximum matching can be computed. Theorem 1 suggests
a local search strategy where repeatedly k-subsets of the current matching are
tested for improvement. In its straightforward version this requires superlinear
time. It would be interesting to see whether geometric insights could speed up
the local search, maybe not (theoretically) matching the linear-time bound from
[8], but leading to a practical and in particular simple algorithm.

a

b

We note that analogous ratios for minimum-length
matchings could be arbitrary large. In the figure to the
right 2n points are placed on a circle such that distances
between consecutive points are alternating between 1
and arbitrary small constant ε. For a sufficiently large n,
the red matching which has n edges of length 1, would
be 2-local minimum (the two arcs in the figure are cen-
tered at a and b, and show that the length |ab| is larger
than the total length of two consecutive red edges). In this setting, the global
minimum matching would have n edges of length ε. This shows that the ratio of
the length of 2-local minimum matchings to that of global minimum matchings

198 A. Biniaz et al.

could be arbitrary large. By increasing the number of points (and hence flatten-
ing the perimeter of the circle) in this example, it can be shown that the length
ratio of k-local minimum matchings could be arbitrary large, for any fixed k � 2.

References

1. Alon, N., Rajagopalan, S., Suri, S.: Long non-crossing configurations in the plane.
Fundam. Inform. 22(4), 385–394 (1995). Also in SoCG 1993

2. Arkin, E.M., Hassin, R.: On local search for weighted k-set packing. Math. Oper.
Res. 23(3), 640–648 (1998). Also in ESA 1997

3. Avis, D.: A survey of heuristics for the weighted matching problem. Networks
13(4), 475–493 (1983)

4. Bereg, S., Chacón-Rivera, O., Flores-Peñaloza, D., Huemer, C., Pérez-Lantero, P.,
Seara, C.: On maximum-sum matchings of points (2019). arXiv:1911.10610

5. Biniaz, A., et al.: Maximum plane trees in multipartite geometric graphs. Algo-
rithmica 81(4), 1512–1534 (2019). Also in WADS 2017

6. Carmi, P., Katz, M.J., Morin, P.: Stabbing pairwise intersecting disks by four
points (2018). arXiv:1812.06907

7. Danzer, L.: Zur Lösung des Gallaischen Problems über Kreisscheiben in der Euk-
lidischen Ebene. Stud. Sci. Math. Hung. 21(1–2), 111–134 (1986)

8. Duan, R., Pettie, S.: Linear-time approximation for maximum weight matching. J.
ACM 61(1), 1:1–1:23 (2014)

9. Dumitrescu, A., Tóth, C.D.: Long non-crossing configurations in the plane. Discrete
Comput. Geom. 44(4), 727–752 (2010). Also in STACS 2010

10. Dyer, M., Frieze, A., McDiarmid, C.: Partitioning heuristics for two geometric
maximization problems. Oper. Res. Lett. 3(5), 267–270 (1984)

11. Edmonds, J.: Maximum matching and a polyhedron with 0,1-vertices. J. Res. Natl.
Bur. Stand. B 69, 125–130 (1965)

12. Edmonds, J.: Paths, trees, and flowers. Canad. J. Math. 17, 449–467 (1965)
13. Edmonds, J., Karp, R.M.: Theoretical improvements in algorithmic efficiency for

network flow problems. J. ACM 19(2), 248–264 (1972)
14. Eppstein, D.: Geometry junkyard. https://www.ics.uci.edu/∼eppstein/junkyard/

maxmatch.html
15. Gabow, H.N.: Data structures for weighted matching and nearest common ances-

tors with linking. In: Proceedings of the First Annual ACM-SIAM Symposium on
Discrete Algorithms (SODA), pp. 434–443 (1990)

16. Gabow, H.N.: Data structures for weighted matching and extensions to b-matching
and f-factors. ACM Trans. Algorithms 14(3), 39:1–39:80 (2018)

17. Gabow, H.N., Galil, Z., Spencer, T.H.: Efficient implementation of graph algo-
rithms using contraction. J. ACM 36(3), 540–572 (1989)

18. Galil, Z., Micali, S., Gabow, H.N.: An O(EV log V) algorithm for finding a maximal
weighted matching in general graphs. SIAM J. Comput. 15(1), 120–130 (1986).
Also in FOCS 1982

19. Hadlock, F.: Finding a maximum cut of a planar graph in polynomial time. SIAM
J. Comput. 4(3), 221–225 (1975)

20. Har-Peled, S., et al.: Stabbing pairwise intersecting disks by five points. In: 29th
International Symposium on Algorithms and Computation, ISAAC, pp. 50:1–50:12
(2018)

http://arxiv.org/abs/1911.10610
http://arxiv.org/abs/1812.06907
https://www.ics.uci.edu/~eppstein/junkyard/maxmatch.html
https://www.ics.uci.edu/~eppstein/junkyard/maxmatch.html

Euclidean Maximum Matchings in the Plane-Local to Global 199

21. Helly, E.: Über Mengen konvexer Körper mit gemeinschaftlichen Punkten. Jahres-
ber. Dtsch. Math. Ver. 32, 175–176 (1923)

22. Huemer, C., Pérez-Lantero, P., Seara, C., Silveira, R.I.: Matching points with disks
with a common intersection. Discrete Math. 342(7), 1885–1893 (2019)

23. Kuhn, H.W.: The Hungarian method for the assignment problem. Naval Res.
Logist. Q. 2, 83–97 (1955)

24. Kuhn, H.W.: Variants of the Hungarian method for assignment problems. Naval
Res. Logist. Q. 3, 253–258 (1956)

25. Lawler, E.: Combinatorial Optimization: Networks And Matroids. Holt, Rinehart
and Winston, New York (1976)

26. Lee, J., Sviridenko, M., Vondrák, J.: Submodular maximization over multiple
matroids via generalized exchange properties. Math. Oper. Res. 35(4), 795–806
(2010)

27. McKeown, N., Anantharam, V., Walrand, J.C.: Achieving 100% throughput in an
input-queued switch. In: Proceedings of the 15th IEEE INFOCOM, pp. 296–302
(1996)

28. Okamura, H., Seymour, P.D.: Multicommodity flows in planar graphs. J. Comb.
Theory Ser. B 31(1), 75–81 (1981)

29. Radon, J.: Mengen konvexer Körper, die einen gemeinsamen Punkt enthalten.
Math. Ann. 83(1), 113–115 (1921)

30. Rendl, F.: On the Euclidean assignment problem. J. Comput. Appl. Math. 23(3),
257–265 (1988)

31. Stachó, L.: A solution of Gallai’s problem on pinning down circles. Mat. Lapok
32(1–3), 19–47 (1981). (1981/1984)

32. Wagner, D., Weihe, K.: A linear-time algorithm for edge-disjoint paths in planar
graphs. Combinatorica 15(1), 135–150 (1995). Also in ESA 1993

Solving Problems on Generalized Convex
Graphs via Mim-Width

Flavia Bonomo-Braberman1 , Nick Brettell2 , Andrea Munaro3 ,
and Daniël Paulusma4(B)

1 ICC (CONICET-UBA) and Departamento de Computación,
Universidad de Buenos Aires, Buenos Aires, Argentina

fbonomo@dc.uba.ar
2 School of Mathematics and Statistics, Victoria University of Wellington,

Wellington, New Zealand
nick.brettell@vuw.ac.nz

3 School of Mathematics and Physics, Queen’s University Belfast, Belfast, UK
a.munaro@qub.ac.uk

4 Department of Computer Science, Durham University, Durham, UK
daniel.paulusma@durham.ac.uk

Abstract. A bipartite graph G = (A, B, E) is H-convex, for some fam-
ily of graphs H, if there exists a graph H ∈ H with V (H) = A such that
the set of neighbours in A of each b ∈ B induces a connected subgraph
of H. Many NP-complete problems become polynomial-time solvable for
H-convex graphs when H is the set of paths. In this case, the class of
H-convex graphs is known as the class of convex graphs. The underlying
reason is that this class has bounded mim-width. We extend the latter
result to families of H-convex graphs where (i) H is the set of cycles, or
(ii) H is the set of trees with bounded maximum degree and a bounded
number of vertices of degree at least 3. As a consequence, we can re-
prove and strengthen a large number of results on generalized convex
graphs known in the literature. To complement result (ii), we show that
the mim-width of H-convex graphs is unbounded if H is the set of trees
with arbitrarily large maximum degree or an arbitrarily large number of
vertices of degree at least 3. In this way we are able to determine com-
plexity dichotomies for the aforementioned graph problems. Afterwards
we perform a more refined width-parameter analysis, which shows even
more clearly which width parameters are bounded for classes of H-convex
graphs.

1 Introduction

Many computationally hard graph problems can be solved efficiently if we place
constraints on the input. Instead of solving individual problems in an ad hoc

Brettell and Paulusma received support from the Leverhulme Trust (RPG-
2016-258). Bonomo received support from UBACyT (20020170100495BA and
20020160100095BA). Brettell also received support from a Rutherford Foundation
Postdoctoral Fellowship, administered by the Royal Society Te Apārangi.
c© Springer Nature Switzerland AG 2021
A. Lubiw et al. (Eds.): WADS 2021, LNCS 12808, pp. 200–214, 2021.
https://doi.org/10.1007/978-3-030-83508-8_15

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-83508-8_15&domain=pdf
http://orcid.org/0000-0002-9872-7528
http://orcid.org/0000-0002-1136-418X
http://orcid.org/0000-0003-1509-8832
http://orcid.org/0000-0001-5945-9287
https://doi.org/10.1007/978-3-030-83508-8_15

Solving Problems on Generalized Convex Graphs via Mim-Width 201

way we may try to decompose the vertex set of the input graph into large
sets of “similarly behaving” vertices and to exploit this decomposition for an
algorithmic speed up that works for many problems simultaneously. This requires
some notion of an “optimal” vertex decomposition, which depends on the type
of vertex decomposition used and which may relate to the minimum number of
sets or the maximum size of a set in a vertex decomposition. An optimal vertex
decomposition gives us the “width” of the graph. A graph class has bounded width
if every graph in the class has width at most some constant c. Boundedness of
width is often the underlying reason why a graph-class-specific algorithm runs
efficiently: in such a case, the proof that the algorithm is efficient for some special
graph class reduces to a proof showing that the width of the class is bounded
by some constant. We will give examples, but also refer to the surveys [16,19,
22,26,42] for further details and examples.

Width parameters differ in strength. A width parameter p dominates a width
parameter q if there is a function f such that p(G) is at most f(q(G)) for every
graph G. If p dominates q but q does not dominate p, then we say that p is more
powerful than q. If both p and q dominate each other, then p and q are equivalent.
If neither p is more powerful than q nor q is more powerful than p, then p and
q are incomparable. If p is more powerful than q, then the class of graphs for
which p is bounded is larger than the class of graphs for which q is bounded and
so efficient algorithms for bounded p have greater applicability with respect to
the graphs under consideration. The trade-off is that fewer problems exhibit an
efficient algorithm for the parameter p, compared to the parameter q.

The notion of powerfulness leads to a large hierarchy of width parameters, in
which new width parameters continue to be defined. The well-known parameters
boolean-width, clique-width, module-width and rank-width are equivalent to
each other [10,34,38]. They are more powerful than the equivalent parameters
branch-width and treewidth [14,39,42] but less powerful than mim-width [42],
which is less powerful than sim-width [27]. To give another example, thinness
is more powerful than path-width [33], but less powerful than mim-width and
incomparable to clique-width or treewidth [4].

For each group of equivalent width parameters, a growing set of NP-complete
problems is known to be tractable on graph classes of bounded width. However,
there are still large families of graph classes for which boundedness of width is
not known for many width parameters.

Our Focus. We consider the relatively new width parameter mim-width, which
we define below. Recently, we showed in [7,8] that boundedness of mim-width
is the underlying reason why some specific hereditary graph classes, character-
ized by two forbidden induced subgraphs, admit polynomial-time algorithms
for a range of problems including k-Colouring and its generalization List
k-Colouring (the algorithms are given in [13,15,20]). Here we prove that
the same holds for certain superclasses of convex graphs known in the litera-
ture. Essentially all the known polynomial-time algorithms for such classes are
obtained by reducing to the class of convex graphs. We show that our new app-

202 F. Bonomo-Braberman et al.

roach via mim-width simplifies the analysis, unifies the sporadic approaches and
explains the reductions to convex graphs.

Mim-width. A set of edges M in a graph G is a matching if no two edges of
M share an endpoint. A matching M is induced if there is no edge in G between
vertices of different edges of M . Let (A,A) be a partition of the vertex set of a
graph G. Then G[A,A] denotes the bipartite subgraph of G induced by the edges
with one endpoint in A and the other in A. Vatshelle [42] introduced the notion of
maximum induced matching width, also called mim-width. Mim-width measures
the extent to which it is possible to decompose a graph G along certain vertex
partitions (A,A) such that the size of a maximum induced matching in G[A,A]
is small. The kind of vertex partitions permitted stem from classical branch
decompositions. A branch decomposition for a graph G is a pair (T, δ), where T
is a subcubic tree and δ is a bijection from V (G) to the leaves of T . Every edge
e ∈ E(T) partitions the leaves of T into two classes, Le and Le, depending on
which component of T − e they belong to. Hence, e induces a partition (Ae, Ae)
of V (G), where δ(Ae) = Le and δ(Ae) = Le. Let cutmimG(Ae, Ae) be the size of
a maximum induced matching in G[Ae, Ae]. Then the mim-width mimwG(T, δ)
of (T, δ) is the maximum value of cutmimG(Ae, Ae) over all edges e ∈ E(T). The
mim-width mimw(G) of G is the minimum value of mimwG(T, δ) over all branch
decompositions (T, δ) for G. We refer to Fig. 1 for an example.

Computing the mim-width is NP-hard [40], and approximating the mim-
width in polynomial time within a constant factor of the optimal is not possible
unless NP = ZPP [40]. It is not known how to compute in polynomial time
a branch decomposition for a graph G whose mim-width is bounded by some
function in the mim-width of G. However, for graph classes of bounded mim-
width this might be possible. In that case, the mim-width of G is said to be
quickly computable. One can then try to develop a polynomial-time algorithm
for the graph problem under consideration via dynamic programming over the
computed branch decomposition. We give examples of such problems later.
Convex Graphs and Generalizations. A bipartite graph G = (A,B,E) is
convex if there exists a path P with V (P) = A such that the neighbours in A of
each b ∈ B induce a connected subpath of P . Convex graphs generalize bipartite
permutation graphs (see, e.g., [5]) and form a well-studied graph class.

Belmonte and Vatshelle [1] proved that the mim-width of convex graphs is
bounded and quickly computable. We consider superclasses of convex graphs and
research to what extent mim-width can play a role in obtaining polynomial-time
algorithms for problems on these classes.

Let H be a family of graphs. A bipartite graph G = (A,B,E) is H-convex if
there exists a graph H ∈ H with V (H) = A such that the set of neighbours in
A of each b ∈ B induces a connected subgraph of H. If H consists of all paths,
we obtain the class of convex graphs. A caterpillar is a tree T that contains a
path P , the backbone of T , such that every vertex not on P has a neighbour
on P . A caterpillar with a backbone consisting of one vertex is a star. A comb is
a caterpillar such that every backbone vertex has exactly one neighbour outside
the backbone. The subdivision of an edge uv replaces uv by a new vertex w and

Solving Problems on Generalized Convex Graphs via Mim-Width 203

edges uw and wu. A triad is a tree that can be obtained from a 4-vertex star after
a sequence of subdivisions. For t,Δ ≥ 0, a (t,Δ)-tree is a tree with maximum
degree at most Δ and containing at most t vertices of degree at least 3; note that,
for example, a triad is a (1, 3)-tree. If H consists of all cycles, all trees, all stars,
all triads, all combs or all (t,Δ)-trees, then we obtain the class of circular convex
graphs, tree convex graphs, star convex graphs, triad convex graphs, comb convex
graphs or (t,Δ)-tree convex graphs, respectively. See Fig. 1 for an example.

To show the relationships between the above graph classes we need some extra
terminology. Let Ct,Δ be the class of (t,Δ)-tree convex graphs. For fixed t or Δ,
we have increasing sequences Ct,0 ⊆ Ct,1 ⊆ · · · and C0,Δ ⊆ C1,Δ ⊆ · · · . For t ∈ N,
the class of (t,∞)-tree convex graphs is

⋃
Δ∈N

Ct,Δ, denoted by Ct,∞. Similarly, for
Δ ∈ N, the class of (∞,Δ)-tree convex graphs is

⋃
t∈N

Ct,Δ, denoted by C∞,Δ.
Hence, Ct,∞ and C∞,Δ are the set-theoretic limits of the increasing sequences
{Ct,Δ}Δ∈N and {Ct,Δ}t∈N, respectively. The class of (∞,∞)-tree convex graphs
is

⋃
t,Δ∈N

Ct,Δ, which coincides with the class of tree convex graphs. Notice that
the class of convex graphs coincides with Ct,2, for any t ∈ N ∪ {∞}, and with
C0,Δ, for any Δ ∈ N∪{∞}. The class of star convex graphs coincides with C1,∞.
Moreover, each triad convex graph belongs to C1,3 and each comb convex graph
belongs to C∞,3. A bipartite graph is chordal bipartite if every induced cycle in
it has exactly four vertices. Every convex graph is chordal bipartite (see, e.g.,
[5]) and every chordal bipartite graph is tree convex (see [24,29]). In Fig. 2 we
display these and other relationships, which directly follow from the definitions.

Brault-Baron et al. [6] proved that chordal bipartite graphs have unbounded
mim-width. Hence, the result of [1] for convex graphs cannot be generalized to

Fig. 1. (a) A circular convex graph G = (A, B, E) with a circular ordering on A. (b)
A branch decomposition (T, δ) for G, where T is a caterpillar with a specified edge
e, together with the graph G[Ae, Ae]. The bold edges in G[Ae, Ae] form an induced
matching and it is easy to see that cutmimG(Ae, Ae) = 2.

204 F. Bonomo-Braberman et al.

chordal bipartite graphs. We determine the mim-width of the other classes in
Fig. 2 but first discuss known algorithmic results for these classes.

Fig. 2. The inclusion relations between the classes we consider. A line from a lower-level
class to a higher one means the first class is contained in the second.

Known Results. Belmonte and Vatshelle [1] and Bui-Xuan et al. [11] proved
that so-called Locally Checkable Vertex Subset and Vertex Partitioning (LC-
VSVP) problems are polynomial-time solvable on graph classes whose mim-
width is bounded and quickly computable. This result was extended by Bergoug-
noux and Kanté [2] to variants of such problems with additional constraints on
connectivity or acyclicity. Each of the problems mentioned below is a special
case of a Locally Checkable Vertex Subset (LCVS) problem possibly with one
of the two extra constraints. Panda et al. [36] proved that Induced Match-
ing is polynomial-time solvable for circular convex and triad convex graphs,
but NP-complete for star convex and comb convex graphs. Pandey and Panda
[37] proved that Dominating Set is polynomial-time solvable for circular con-
vex, triad convex and (1,Δ)-tree convex graphs for every Δ ≥ 1. Liu et al.
[31] proved that Connected Dominating Set is polynomial-time solvable for
circular convex and triad convex graphs. Chen et al. [12] showed that (Con-
nected) Dominating Set and Total Dominating Set are NP-complete
for star convex and comb convex graphs. Lu et al. [32] proved that Inde-
pendent Dominating Set is polynomial-time solvable for circular convex
and triad convex graphs. The latter result was shown already in [41] using a
dynamic programming approach instead of a reduction to convex graphs [32].
Song et al. [41] showed in fact a stronger result, namely that Independent

Solving Problems on Generalized Convex Graphs via Mim-Width 205

Dominating Set is polynomial-time solvable for (t,Δ)-tree convex graphs
for every t ≥ 1 and Δ ≥ 3. They also showed in [41] that Indepen-
dent Dominating Set is NP-complete for star convex and comb convex
graphs. Hence, they obtained a dichotomy: Independent Dominating Set is
polynomial-time solvable for (t,Δ)-tree convex graphs for every t ≥ 1 and Δ ≥ 3
but NP-complete for (∞, 3)-tree convex graphs and (1,∞)-tree convex graphs.

The same dichotomy (explicitly formulated in [44]) holds for Feedback
Vertex Set and is obtained similarly. Namely, Jiang et al. [25] proved that
this problem is polynomial-time solvable for triad convex graphs and mentioned
that their algorithm can be generalized to (t,Δ)-tree convex graphs for every
t ≥ 1 and Δ ≥ 3. Jiang et al. [24] proved that Feedback Vertex Set is NP-
complete for star convex and comb convex graphs. In addition, Liu et al. [30]
proved that Feedback Vertex Set is polynomial-time solvable for circular
convex graphs, whereas Jiang et al. [24] proved that the Weighted Feedback
Vertex Set problem is polynomial-time solvable for triad convex graphs.

It turns out that the above problems are polynomial-time solvable on circu-
lar convex graphs and subclasses of (t,Δ)-tree convex graphs, but NP-complete
for star convex graphs and comb convex graphs. In contrast, Panda and Chaud-
hary [35] proved that Dominating Induced Matching is not only polynomial-
time solvable on circular convex and triad convex graphs, but also on star convex
graphs. Nevertheless, we notice a common pattern: many dominating set, induced
matching and graph transversal type of problems are polynomial-time solvable
for (t,Δ)-tree convex graphs, for every t ≥ 1 and Δ ≥ 3, and NP-complete for
comb convex graphs, and thus for (∞, 3)-tree convex graphs, and star convex
graphs, or equivalently, (1,∞)-tree convex graphs. Moreover, essentially all the
polynomial-time algorithms reduce the input to a convex graph.

Our Results. We simplify the analysis, unify the above approaches and explain
the reductions to convex graphs, using mim-width. We prove three results that,
together with the fact that chordal bipartite graphs have unbounded mim-
width [6], explain the dotted line in Fig. 2. The first two results generalize the
result of [1] for convex graphs. The third result gives two new reasons why tree
convex graphs (that is, (∞,∞)-tree convex graphs) have unbounded mim-width.

Theorem 1. Let G be a circular convex graph. Then mimw(G) ≤ 2. Moreover,
we can construct in polynomial time a branch decomposition (T, δ) for G with
mimwG(T, δ) ≤ 2.

Theorem 2. Let G be a (t,Δ)-tree convex graph with t,Δ ∈ N and t ≥ 1 and
Δ ≥ 3. Let

f(t,Δ) = max

{

2

⌊(
Δ

2

)2
⌋

, 2Δ − 1

}

+ t2Δ.

Then mimw(G) ≤ f(t,Δ). Moreover, we can construct in polynomial time a
branch decomposition (T, δ) for G with mimwG(T, δ) ≤ f(t,Δ).

Theorem 3. The class of star convex graphs and the class of comb convex
graphs each has unbounded mim-width.

206 F. Bonomo-Braberman et al.

Hence, we obtain a structural dichotomy (recall that star convex graphs are the
(1,∞)-tree convex graphs and that comb convex graphs are (∞, 3)-tree convex):

Corollary 1. Let t,Δ ∈ N∪{∞} with t ≥ 1 and Δ ≥ 3. The class of (t,Δ)-tree
convex graphs has bounded mim-width if and only if {t,Δ} ∩ {∞} = ∅.

Algorithmic Consequences. As discussed, the following six problems were
shown to be NP-complete for star convex and comb convex graphs, and thus for
(1,∞)-tree convex graphs and (∞, 3)-tree convex graphs: Feedback Vertex
Set [2,24]; Dominating Set, Connected Dominating Set, Total Dom-
inating Set [12]; Independent Dominating Set [41]; Induced Match-
ing [36]. These problems are examples of LCVS problems, possibly with con-
nectivity or acyclicity constraints. Hence, they are polynomial-time solvable for
every graph class whose mim-width is bounded and quickly computable [1,2,11].
Recall that the same holds for Weighted Feedback Vertex Set [23] and
(Weighted) Subset Feedback Vertex Set [3]; these three problems gener-
alize Feedback Vertex Set and are thus NP-complete for star convex graphs
and comb convex graphs. Combining these results with Corollary 1 yields the
following complexity dichotomy.

Corollary 2. Let t,Δ ∈ N ∪ {∞} with t ≥ 1, Δ ≥ 3 and Π be one of the nine
problems mentioned above, restricted to (t,Δ)-tree convex graphs. If {t,Δ} ∩
{∞} = ∅, then Π is polynomial-time solvable; otherwise, Π is NP-complete.

It is worth noting that this complexity dichotomy does not hold for all LCVS
problems; recall that Dominating Induced Matching is polynomial-time
solvable on star convex graphs [35]. Theorems 1 and 2, combined with the result
of [11], imply that this problem is also polynomial-time solvable on circular con-
vex graphs and (t,Δ)-tree convex graphs for every t ≥ 1 and Δ ≥ 3.

Further Algorithmic Consequences. Theorems 1 and 2, combined with the
result of [28], also generalize a result of Díaz et al. [17] for List k-Colouring on
convex graphs to circular convex and (t,Δ)-tree convex graphs (t ≥ 1, Δ ≥ 3).

Additional Structural Results. We prove Theorems 1–3 in Sects. 2–4, respec-
tively. In Sect. 5 we perform a more refined analysis. We consider a hierarchy of
width parameters and determine exactly which of the generalized convex classes
considered in the previous sections have bounded width for each of these param-
eters. This does not yet yield any new algorithmic results. In the same section
we also give some other research directions.

Preliminaries. Let G = (V,E) be a graph. For v ∈ V , the neighbourhood
NG(v) is the set of vertices adjacent to v. The degree d(v) of a vertex v ∈ V is
the size |NG(v)|. A vertex of degree k is a k-vertex. A graph is subcubic if every
vertex has degree at most 3. We let Δ(G) = max{d(v) : v ∈ V }. For disjoint
S, T ⊆ V , we say that S is complete to T if every vertex of S is adjacent to every
vertex of T . For S ⊆ V , G[S] = (S, {uv : u, v ∈ S, uv ∈ E}) is the subgraph
of G induced by S. The disjoint union G + H of graphs G and H has vertex

Solving Problems on Generalized Convex Graphs via Mim-Width 207

set V (G) ∪ V (H) and edge set E(G) ∪ E(H). A graph is r-partite, for r ≥ 2,
if its vertex set admits a partition into r classes such that every edge has its
endpoints in different classes. A 2-partite graph is also called bipartite. A graph
G is a support for a hypergraph H = (V,S) if the vertices of G correspond to the
vertices of H and, for each hyperedge S ∈ S, the subgraph of G induced by S
is connected. When a bipartite graph G = (A,B,E) is viewed as a hypergraph
H = (A, {N(b) : b ∈ B}), then a support T for H with T ∈ H is a witness that
G is H-convex.

2 The Proof of Theorem 1

We need the following known lemma on recognizing circular convex graphs.

Lemma 1. (see, e.g., Buchin et al. [9]). Circular convex graphs can be
recognized and a cycle support computed, if it exists, in polynomial time.

For an integer � ≥ 1, an �-caterpillar is a subcubic tree T on 2� vertices with
V (T) = {s1, . . . , s�, t1, . . . , t�}, such that E(T) = {siti : 1 ≤ i ≤ �} ∪ {sisi+1 :
1 ≤ i ≤ � − 1}. Note that we label the leaves of an �-caterpillar t1, t2, . . . , t�, in
this order. Given a total ordering ≺ of length �, we say that (T, δ) is obtained
from ≺ if T is an �-caterpillar and δ is the natural bijection from the � ordered
elements to the leaves of T . We are now ready to prove Theorem 1.

Theorem 1 (restated). Let G be a circular convex graph. Then mimw(G) ≤ 2.
Moreover, we can construct in polynomial time a branch decomposition (T, δ) for
G with mimwG(T, δ) ≤ 2.

Proof. Let G = (A,B,E) be a circular convex graph with a circular ordering on
A. By Lemma 1, we construct in polynomial time such an ordering a1, . . . , an,
where n = |A| (see Fig. 1). Let B1 = N(an) and B2 = B \ B1. We obtain a
total ordering ≺ on V (G) by extending the ordering a1, . . . , an as follows. Each
b ∈ B1 is inserted after an, breaking ties arbitrarily. Each b ∈ B2 is inserted
immediately after the largest element of A it is adjacent to (hence immediately
after some ai with 1 ≤ i < n), breaking ties arbitrarily.

Let T be the |V (G)|-caterpillar obtained from ≺. Below we will prove that
mimwG(T, δ) ≤ 2. Let e ∈ E(T). We may assume without loss of generality
that e is not incident to a leaf of T . Let M be a maximum induced matching of
G[Ae, Ae]. As e is not incident to a leaf, we may assume without loss of generality
that each vertex in Ae is larger than any vertex in Ae in the ordering ≺.

We first observe that at most one edge of M has one endpoint in B2. Indeed,
suppose there exist two edges xy, x′y′ ∈ M , each with one endpoint in B2, say
without loss of generality {y, y′} ⊆ B2. Since each vertex in B2 is adjacent only
to smaller vertices, {y, y′} ⊆ Ae and {x, x′} ⊆ Ae. Without loss of generality,
y ≺ y′. However, N(y) and N(y′) are intervals of the ordering and so either
x ∈ N(y′) or x′ ∈ N(y), contradicting the fact that M is induced.

We now show that at most two edges in M have an endpoint in B1 and,
if exactly two such edges are in M , then no edge with an endpoint in B2 is.
First suppose that three edges of M have one endpoint in B1 and let u1, u2, u3

208 F. Bonomo-Braberman et al.

be these endpoints. Since N(u1), N(u2) and N(u3) are intervals of the circular
ordering on A all containing an, one of these neighbourhoods is contained in the
union of the other two, contradicting the fact that M is induced.

Finally suppose exactly two edges u1v1 and u2v2 ∈ M have one endpoint in
B1 and thus their other endpoint in A. Let {u1, u2} ⊆ Ae and {v1, v2} ⊆ Ae.
Then, as each vertex in Ae is larger than any vertex in Ae in ≺, we find that u1

and u2 belong to B1 and thus {v1, v2} ⊆ A. Now if there is some edge u3v3 ∈ M
such that u3 ∈ B2, then u3 ∈ Ae. Recall that N(u1) and N(u2) are intervals
of the circular ordering on A both containing an. Since M is induced, for each
i, j ∈ {1, 2}, we have that vi ∈ N(uj), if i = j, and vi /∈ N(uj), if i
= j. This
implies that one of v1 and v2 is larger than v3 in ≺ and so it is contained in
N(u3), contradicting the fact that M is induced. This concludes the proof. ��

3 The Proof of Theorem 2

We need the following lemma on recognizing (t,Δ)-tree convex graphs1.

Lemma 2. For t,Δ ∈ N, (t,Δ)-tree convex graphs can be recognized and a
(t,Δ)-tree support computed, if it exists, in O(nt+3) time.

Proof. Given a hypergraph H = (V,S) together with degrees di for each i ∈ V ,
Buchin et al. [9] provided an O(|V |3 + |S||V |2) time algorithm that solves the
following decision problem: Is there a tree support for H such that each vertex i
of the tree has degree at most di? If it exists, the algorithm computes a tree
support satisfying this property. Given as input a bipartite graph G = (A,B,E),
we consider the hypergraph H = (A,S), where S = {N(b) : b ∈ B}. For each of
the

(|A|
t

)
= O(|A|t) subsets A′ ⊆ A of size t we proceed as follows: we assign a

degree Δ to each of its elements and a degree 2 to each element in A \ A′. We
then apply the algorithm in [9] to the O(|A|t) instances thus constructed. If G
is (t,Δ)-tree convex, then the algorithm returns a (t,Δ)-tree support for H. ��
The proof of Theorem 2 heavily relies on the following result for mim-width.

Lemma 3. (Brettell et al. Let G be a graph and (X1, . . . , Xp) be a partition
of V (G) such that cutmimG(Xi,Xj) ≤ c for all distinct i, j ∈ {1, . . . , p}, and
p ≥ 2. Let h = max

{
c
⌊(

p
2

)2
⌋

,maxi∈{1,...,p}{mimw(G[Xi])} + c(p − 1)
}
. Then

mimw(G) ≤ h. Moreover, given a branch decomposition (Ti, δi) for G[Xi] for
each i, we can construct in O(p) time a branch decomposition (T, δ) for G with
mimwG(T, δ) ≤ h.

We also need the following lemma (proof omitted).
1 Jiang et al. [24] proved that Weighted Feedback Vertex Set is polynomial-time

solvable for triad convex graphs if a triad support is given as input. They observed
that an associated tree support can be constructed in linear time, but this does not
imply that a triad support can be obtained. Lemma 2 shows that indeed a triad
support can be obtained in polynomial time and need not be provided on input.

Solving Problems on Generalized Convex Graphs via Mim-Width 209

Lemma 4. Let G be a (1,Δ)-tree convex graph, for some Δ ≥ 3. Let f(Δ) =
max

{
2
⌊(

Δ
2

)2⌋
, 2Δ − 1

}
. Then mimw(G) ≤ f(Δ), and we can construct in

polynomial time a branch decomposition (T, δ) for G with mimwG(T, δ) ≤ f(Δ).

We are now ready to prove Theorem 2.

Theorem 2 (restated). Let G be a (t,Δ)-tree convex graph with t,Δ ∈ N and
t ≥ 1 and Δ ≥ 3. Let

f(t,Δ) = max

{

2

⌊(
Δ

2

)2
⌋

, 2Δ − 1

}

+ t2Δ.

Then mimw(G) ≤ f(t,Δ). Moreover, we can construct in polynomial time a
branch decomposition (T, δ) for G with mimwG(T, δ) ≤ f(t,Δ).

Proof. We use induction on t. If t = 1, the result follows from Lemma 4. Let
t > 1 and let G = (A,B,E) be a (t,Δ)-tree convex graph. By Lemma 2, we can
compute in polynomial time a (t,Δ)-tree T with V (T) = A and such that, for
each v ∈ B, NG(v) forms a subtree of T . Consider an edge uv ∈ E(T) such that
T −uv is the disjoint union of a (t1,Δ)-tree T1 containing u and a (t2,Δ)-tree T2

containing v, where max{t1, t2} < t and t1, t2 ≥ 1. Clearly such an edge can be
found in linear time. For i ∈ {1, 2}, let V (Ti) = Ai. Clearly, A = A1 ∪ A2. We
now partition B into two classes as follows. The set B1 contains all vertices in
B with at least one neighbour in A1, and B2 = B \ B1. In view of Lemma 3, we
then consider the partition (A1∪B1, A2∪B2) of V (G). For i ∈ {1, 2}, G[Ai ∪Bi]
is a (ti,Δ)-tree convex graph with ti < t and so, by the induction hypothesis,
mimw(G[Ai ∪ Bi]) ≤ max

{
2
⌊(

Δ
2

)2⌋
, 2Δ − 1

}
+ (t − 1)2Δ.

We now claim that cutmimG(A1 ∪ B1, A2 ∪ B2) ≤ Δ(t − 1). Let M be a
maximum induced matching in G[A1 ∪ B1, A2 ∪ B2]. Since no vertex in B2 has
a neighbour in A1, all edges in M have one endpoint in B1 and the other in A2.
We now consider the (t2,Δ)-tree T2 as a tree rooted at v, so that the nodes of
T2 inherit a corresponding ancestor/descendant relation. Since T2 has maximum
degree at most Δ and contains at most t2 vertices of degree at least 3, it has
at most Δt2 ≤ Δ(t − 1) leaves. Suppose, to the contrary, that |M | > Δ(t − 1).
We first claim that there exist xy, x′y′ ∈ M with {y, y′} ⊆ A2 and such that
y′ is a descendant of y. Indeed, for each leaf z of T2, consider the unique z, v-
path in T2. There are at most Δ(t − 1) such paths and each vertex of T2 is
contained in one of them. By the pigeonhole principle, there exist two matching
edges xy, x′y′ ∈ M , with {y, y′} ⊆ A2, such that y and y′ belong to the same
path; without loss of generality, y′ is then a descendant of y, as claimed. Since
NG(x′) induces a subtree of T , the definition of (A1 ∪ B1, A2 ∪ B2) implies that
NG(x′) ∩ V (T2) contains v and induces a subtree of T2. But then this subtree
contains y and so x′ is adjacent to y as well, contradicting the fact that M is
induced.

210 F. Bonomo-Braberman et al.

Combining the previous paragraphs and Lemma 3, we then obtain that

mimw(G) ≤ max

{
Δ(t − 1),max

{
2

⌊(
Δ

2

)2
⌋

, 2Δ − 1

}
+ (t − 1)2Δ + Δ(t − 1)

}

= max

{
2

⌊(
Δ

2

)2
⌋

, 2Δ − 1

}
+ (t − 1)2Δ + Δ(t − 1)

≤ max

{
2

⌊(
Δ

2

)2
⌋

, 2Δ − 1

}
+ t2Δ.

Finally, we compute a branch decomposition of G. We do this recursively by
using Lemmas 3 and 4. ��

4 The Proof of Theorem 3

For proving Theorem 3, we need the following lemma.

Lemma 5. (see Wang et al. [43]). Let G = (A,B,E) be a bipartite graph and
G′ be the bipartite graph obtained from G by making k new vertices complete
to B. If k = 1, then G′ is star convex. If k = |A|, then G′ is comb convex.

Theorem 3 (restated). The class of star convex graphs and the class of comb
convex graphs each has unbounded mim-width.

Proof. We show that, for every integer �, there exist star convex graphs and comb
convex graphs with mim-width larger than �. Therefore, let � ∈ N. There exists a
bipartite graph G = (A,B,E) such that mimw(G) > � (see, e.g., [7]). Let G′ be
the star convex graph obtained as in Lemma 5. Adding a vertex does not decrease
the mim-width [42]. Then mimw(G′) ≥ mimw(G) > �. Let now G′′ be the comb
convex graph obtained as in Lemma 5. Then mimw(G′′) ≥ mimw(G) > �. ��

5 A Refined Parameter Analysis and Final Remarks

We perform a more refined analysis on width parameters for the graph classes
listed in Fig. 2. We will consider the graph width parameters listed in Fig. 3.
Our results are summarized in Fig. 4. We omit the proofs but note that we
provide a complete picture with respect to the width parameters and graph
classes considered.

We are not aware of any new algorithmic implications. In particular, it would
be interesting to research if there are natural problems that are NP-complete
for graphs of bounded mim-width but polynomial-time solvable for graphs of
bounded thinness or bounded linear mim-width. In addition, it would also be
interesting to obtain dichotomies for more graph problems solvable in polynomial
time for graph classes whose mim-width is bounded and quickly computable. For
example, what is the complexity of List k-Colouring (k ≥ 3) for star convex
and comb convex graphs? We leave this for future research.

Solving Problems on Generalized Convex Graphs via Mim-Width 211

Fig. 3. The relationships between the different width parameters that we consider in
Sect. 5. Parameter p is more powerful than parameter q if and only if there exists a
directed path from p to q. To explain the incomparabilities, proper interval graphs
have proper thinness 1 [33] and unbounded clique-width [18], whereas trees have tree-
width 1 and unbounded linear mim-width [21]. Unreferenced arrows follow from the
definitions of the width parameters involved except for the arrow from proper thinness
to path-width whose proof we omitted.

Fig. 4. The inclusion relations between the classes we consider. A line from a lower-level
class to a higher one means the first class is contained in the second.

212 F. Bonomo-Braberman et al.

References

1. Belmonte, R., Vatshelle, M.: Graph classes with structured neighborhoods and
algorithmic applications. Theoret. Comput. Sci. 511, 54–65 (2013)

2. Bergougnoux, B., Kanté, M.M.: More applications of the d-neighbor equivalence
connectivity and acyclicity constraints. Proc ESA 2009. LIPIcs 144, 17:1-17:14
(2019)

3. Bergougnoux, B., Papadopoulos, C., Telle, J.A.: Node multiway cut and subset
feedback vertex set on graphs of bounded MIM-width. In: Adler, I., Müller, H.
(eds.) WG 2020. LNCS, vol. 12301, pp. 388–400. Springer, Cham (2020). https://
doi.org/10.1007/978-3-030-60440-0_31

4. Bonomo, F., de Estrada, D.: On the thinness and proper thinness of a graph.
Discrete Appl. Math. 261, 78–92 (2019)

5. Brandstädt, A., Le, V.B., Spinrad, J.P.: Graph Classes: A Survey. SIAM Mono-
graphs on Discrete Mathematics and Applications, Philadelphia, PA (1999)

6. Brault-Baron, J., Capelli, F., Mengel, S.: Understanding model counting for beta-
acyclic CNF-formulas. Proc. STACS 2015. LIPIcs 30, 143–156 (2015)

7. Brettell, N., Horsfield, J., Munaro, A., Paesani, G., Paulusma, D.: Bounding the
MIM-width of hereditary graph classes. Proc. IPEC 2020, LIPIcs 180, 6:1-6:18
(2020)

8. Brettell, N., Horsfield, J., Munaro, A., Paulusma, D.: List k-colouring Pt-free
graphs: a mim-width perspective. CoRR, abs/2008.01590 (2020)

9. Buchin, K., van Kreveld, M., Meijer, H., Speckmann, B., Verbeek, K.: On planar
supports for hypergraphs. J. Graph Algorithms Appl. 15, 533–549 (2011)

10. Bui-Xuan, B.M., Telle, J.A., Vatshelle, M.: Boolean-width of graphs. Theoret.
Comput. Sci. 412, 5187–5204 (2011)

11. Bui-Xuan, B.M., Telle, J.A., Vatshelle, M.: Fast dynamic programming for locally
checkable vertex subset and vertex partitioning problems. Theoret. Comput. Sci.
511, 66–76 (2013)

12. Chen, H., Lei, Z., Liu, T., Tang, Z., Wang, C., Xu, K.: Complexity of domination,
hamiltonicity and treewidth for tree convex bipartite graphs. J. Comb. Optim. 32,
1–16 (2015). https://doi.org/10.1007/s10878-015-9917-3

13. Chudnovsky, M., Spirkl, S., Zhong, M.: List 3-coloring Pt-free graphs with no
induced 1-subdivision of K1,s. Discrete Math. 343, 1–5 (2020)

14. Courcelle, B., Olariu, S.: Upper bounds to the clique width of graphs. Discrete
Appl. Math. 101, 77–114 (2000)

15. Couturier, J.F., Golovach, P.A., Kratsch, D., Paulusma, D.: List coloring in the
absence of a linear forest. Algorithmica 71, 21–35 (2015)

16. Dabrowski, K.K., Johnson, M., Paulusma, D.: Clique-width for hereditary graph
classes. Lond. Math. Soc. Lect. Note Ser. 456, 1–56 (2019)

17. Díaz, J., Diner, Ö.Y., Serna, M.J., Serra, O.: On list k-coloring convex bipartite
graphs. In: Gentile, C., Stecca, G., Ventura, P. (eds.) Graphs and Combinatorial
Optimization: From Theory to Applications. AIRO Springer Series, vol. 5, pp.
15–26. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-63072-0_2

18. Golumbic, M.C., Rotics, U.: On the clique-width of some perfect graph classes.
Int. J. Found. Comput. Sci. 11, 423–443 (2000)

19. Hliněný, P., Oum, S., Seese, D., Gottlob, G.: Width parameters beyond tree-width
and their applications. Comput. J. 51, 326–362 (2008)

20. Hoàng, C.T., Kamiński, M., Lozin, V.V., Sawada, J., Shu, X.: Deciding k-
colorability of P5-free graphs in polynomial time. Algorithmica 57, 74–81 (2010)

https://doi.org/10.1007/978-3-030-60440-0_31
https://doi.org/10.1007/978-3-030-60440-0_31
https://doi.org/10.1007/s10878-015-9917-3
https://doi.org/10.1007/978-3-030-63072-0_2

Solving Problems on Generalized Convex Graphs via Mim-Width 213

21. Høgemo, S., Telle, J.A., Vågset, E.R.: Linear MIM-width of trees. In: Sau, I.,
Thilikos, D.M. (eds.) WG 2019. LNCS, vol. 11789, pp. 218–231. Springer, Cham
(2019). https://doi.org/10.1007/978-3-030-30786-8_17

22. Jaffke, L.: Bounded Width Graph Classes in Parameterized Algorithms. Ph.D.
thesis, University of Bergen (2020)

23. Jaffke, L., Kwon, O., Telle, J.A.: Mim-width II the feedback vertex set problem.
Algorithmica 82, 118–145 (2020)

24. Jiang, W., Liu, T., Wang, C., Xu, K.: Feedback vertex sets on restricted bipartite
graphs. Theoret. Comput. Sci. 507, 41–51 (2013)

25. Jiang, W., Liu, T., Xu, K.: Tractable feedback vertex sets in restricted bipartite
graphs. In: Wang, W., Zhu, X., Du, D.-Z. (eds.) COCOA 2011. LNCS, vol. 6831, pp.
424–434. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-22616-
8_33

26. Kamiński, M., Lozin, V.V., Milanič, M.: Recent developments on graphs of bounded
clique-width. Discrete Appl. Math. 157, 2747–2761 (2009)

27. Kang, D.Y., Kwon, O., Strømme, T.J.F., Telle, J.A.: A width parameter useful for
chordal and co-comparability graphs. Theoret. Comput. Sci. 704, 1–17 (2017)

28. Kwon, O.: Personal communication (2020)
29. Liu, T.: Restricted bipartite graphs: comparison and hardness results. In: Gu, Q.,

Hell, P., Yang, B. (eds.) AAIM 2014. LNCS, vol. 8546, pp. 241–252. Springer,
Cham (2014). https://doi.org/10.1007/978-3-319-07956-1_22

30. Liu, T., Lu, M., Lu, Z., Xu, K.: Circular convex bipartite graphs: feedback vertex
sets. Theoret. Comput. Sci. 556, 55–62 (2014)

31. Liu, T., Lu, Z., Xu, K.: Tractable connected domination for restricted bipartite
graphs. J. Comb. Optim. 29(1), 247–256 (2014). https://doi.org/10.1007/s10878-
014-9729-x

32. Lu, M., Liu, T., Xu, K.: Independent domination: reductions from circular- and
triad-convex bipartite graphs to convex bipartite graphs. In: Fellows, M., Tan,
X., Zhu, B. (eds.) AAIM/FAW -2013. LNCS, vol. 7924, pp. 142–152. Springer,
Heidelberg (2013). https://doi.org/10.1007/978-3-642-38756-2_16

33. Mannino, C., Oriolo, G., Ricci, F., Chandran, S.: The stable set problem and the
thinness of a graph. Oper. Res. Lett. 35, 1–9 (2007)

34. Oum, S., Seymour, P.D.: Approximating clique-width and branch-width. J. Comb.
Theory Ser. B 96, 514–528 (2006)

35. Panda, B.S., Chaudhary, J.: Dominating induced matching in some subclasses of
bipartite graphs. In: Pal, S., Vijayakumar, A. (eds.) CALDAM 2019. LNCS, vol.
11394, pp. 138–149. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-
11509-8_12

36. Panda, B.S., Pandey, A., Chaudhary, J., Dane, P., Kashyap, M.: Maximum weight
induced matching in some subclasses of bipartite graphs. J. Comb. Optim. 40(3),
713–732 (2020). https://doi.org/10.1007/s10878-020-00611-2

37. Pandey, A., Panda, B.: Domination in some subclasses of bipartite graphs. Discrete
Appl. Math. 252, 51–66 (2019)

38. Rao, M.: Clique-width of graphs defined by one-vertex extensions. Discrete Math.
308, 6157–6165 (2008)

39. Robertson, N., Seymour, P.D.: Graph minors X. Obstructions to tree-
decomposition. J. Comb. Theory Ser. B 52, 153–190 (1991)

40. Sæther, S.H., Vatshelle, M.: Hardness of computing width parameters based on
branch decompositions over the vertex set. Theoret. Comput. Sci. 615, 120–125
(2016)

https://doi.org/10.1007/978-3-030-30786-8_17
https://doi.org/10.1007/978-3-642-22616-8_33
https://doi.org/10.1007/978-3-642-22616-8_33
https://doi.org/10.1007/978-3-319-07956-1_22
https://doi.org/10.1007/s10878-014-9729-x
https://doi.org/10.1007/s10878-014-9729-x
https://doi.org/10.1007/978-3-642-38756-2_16
https://doi.org/10.1007/978-3-030-11509-8_12
https://doi.org/10.1007/978-3-030-11509-8_12
https://doi.org/10.1007/s10878-020-00611-2

214 F. Bonomo-Braberman et al.

41. Song, Yu., Liu, T., Xu, K.: Independent domination on tree convex bipartite
graphs. In: Snoeyink, J., Lu, P., Su, K., Wang, L. (eds.) AAIM/FAW -2012. LNCS,
vol. 7285, pp. 129–138. Springer, Heidelberg (2012). https://doi.org/10.1007/978-
3-642-29700-7_12

42. Vatshelle, M.: New Width Parameters of Graphs. Ph.D. thesis, University of Bergen
(2012)

43. Wang, C., Chen, H., Lei, Z., Tang, Z., Liu, T., Xu, K.: Tree convex bipartite graphs:
NP-complete domination, hamiltonicity and treewidth. In: Chen, J., Hopcroft, J.E.,
Wang, J. (eds.) FAW 2014. LNCS, vol. 8497, pp. 252–263. Springer, Cham (2014).
https://doi.org/10.1007/978-3-319-08016-1_23

44. Wang, C., Liu, T., Jiang, W., Xu, K.: Feedback vertex sets on tree convex bipartite
graphs. In: Lin, G. (ed.) COCOA 2012. LNCS, vol. 7402, pp. 95–102. Springer,
Heidelberg (2012). https://doi.org/10.1007/978-3-642-31770-5_9

https://doi.org/10.1007/978-3-642-29700-7_12
https://doi.org/10.1007/978-3-642-29700-7_12
https://doi.org/10.1007/978-3-319-08016-1_23
https://doi.org/10.1007/978-3-642-31770-5_9

Improved Bounds on the Spanning Ratio
of the Theta-5-Graph

Prosenjit Bose, Darryl Hill(B), and Aurélien Ooms

School of Computer Science, Carleton University, Ottawa, Canada
jit@scs.carleton.ca

Abstract. We show an upper bound of
sin(3π

10)
sin(2π

5)−sin(3π
10)

< 5.70 on the

spanning ratio of Θ5-graphs, improving on the previous best known upper
bound of 9.96 [Bose, Morin, van Renssen, and Verdonschot. The Theta-
5-graph is a spanner. Computational Geometry, 2015.]

Keywords: Theta graphs · Spanning ratio · Stretch factor ·
Geometric spanners.

1 Introduction

A geometric graph G is a graph whose vertex set is a set of points P in the
plane, and where the weight of an edge uv is equal to the Euclidean distance |uv|
between u and v. Informally, a Θk-graph is a geometric graph built by dividing
the area around each point of v ∈ P into k equal angled cones, connecting v
to the closest neighbor in each cone (we shall define closest later). Such graphs
arise naturally in settings like wireless networks, where signals to anyone but
your nearest neighbor are likely to be drowned out by interference. Moreover,
the fact that signal strength fades quadratically with distance, and thus that
power requirements are proportional to the square of the distance the signal has
to travel, makes many small hops economically superior to one large hop, even
if the sum of the distances is larger. The spanning ratio (sometimes called the
stretch factor) of a geometric graph G is the maximum over all pairs u, v ∈ P
of the ratio between the length of the shortest path from u to v in G and
the Euclidean distance from u to v. Using simple geometric observations and
techniques, we give a new analysis of the spanning ratio of Θ5-graphs, bringing
down the best known upper bound from 9.96 [5] to 5.70.

Theorem 1. Given a set P of points in the plane, the Θ5-graph of P is a 5.70-
spanner.

Θk-graphs were introduced simultaneously by Keil and Gutwin [8,9], and
Clarkson [7]. Both papers gave a spanning ratio of 1/(cos θ − sin θ), where

Research supported in part by NSERC, VILLUM Foundation grant 16582, and FRIA
Grant 5203818F (FNRS).

c© Springer Nature Switzerland AG 2021
A. Lubiw et al. (Eds.): WADS 2021, LNCS 12808, pp. 215–228, 2021.
https://doi.org/10.1007/978-3-030-83508-8_16

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-83508-8_16&domain=pdf
https://doi.org/10.1007/978-3-030-83508-8_16

216 P. Bose et al.

(a) Measure of the distance to point a. (b) The neighbors of a in the Θ5-graph.

Fig. 1. The area around a point a is divided into cones with angle 2π/5.

θ = 2π/k is the angle defined by the cones. Observe that this gives a con-
stant spanning ratio for k ≥ 9. When this ratio t is constant, we call the graph
a t-spanner. Ruppert and Seidel [11] improved this to 1/(1 − 2 sin(θ/2)), which
applies to Θk-graphs with k ≥ 7. Chew [6] gave a tight bound of 2 for k = 6.
Bose et al. [4] give the current best bounds on the spanning ratio of a large range
of values of k. For k = 5, Bose et al. [5] showed an upper bound of 9.96, and a
lower bound of 3.78. For k = 4, Bose, De Carufel, Hill, and Smid [3] showed a
spanning ratio of 17, while Barba et al. [2] gave a lower bound of 7 on the span-
ning ratio. For k = 3, although Aichholzer et al. [1] showed Θ3 to be connected,
El Molla [10] showed that there is no constant t for which Θ3 is a t-spanner.

In this paper we study the spanning ratio of Θ5. We consider two arbitrary
vertices, a and b, and show that there must exist a short path between them
using induction on the rank of the Euclidean distance |ab| among all distances
between pairs of points in P . Our main result states that for all a, b ∈ P the
shortest path P(a, b) has length |P(a, b)| ≤ K · |ab|, where K = 5.70.

We organize the rest of the paper as follows. In Sect. 2 we introduce concepts
and notation, and give some assumptions about the positions of a and b that do
not reduce the generality of our arguments. In Sect. 3 we solve all but a handful
of cases using general arguments that simplify the analysis. The remaining cases
are solved using ad-hoc methods, showing a spanning ratio of K = 6.16. In
Sect. 4 we observe that only a single case requires K ≥ 6.16. We analyze this
case in detail to show that |P(a, b)| ≤ K · |ab| for all K ≥ 5.70. Due to space
constraints, some proofs have been omitted. All omitted proofs are available in
the full version of the paper.

2 Preliminaries

Let k ≥ 3 be an integer. Let P be set of points in the plane in general position,
that is, all distances (as defined below) between pairs of points are unique and no

Improved Spanning Ratio for Theta-5 Graph 217

two points have the same x-coordinate or y-coordinate. Construct the Θk-graph
of P as follows. The vertex set is P . For each i with 0 ≤ i < k, let Ri be the
ray emanating from the origin that makes an angle of 2πi/k with the negative
y-axis.1 All cone indices are manipulated mod k, i.e., Rk = R0. For each vertex
v we add at most k outgoing edges as follows: For each i with 0 ≤ i < k, let
Rv

i be the ray emanating from v parallel to Ri. Let Cv
i be the cone consisting

of all points in the plane that are strictly between the rays Rv
i and Rv

i+1 or on
Rv

i+1. If Cv
i contains at least one point of P \{v}, then let wi be the closest such

point to v, where we define the closest point to be the point whose perpendicular
projection onto the bisector of Cv

i minimizes the Euclidean distance to v. We add
the directed edge vwi to G. While the use of directed edges better illustrates this
construction, in what follows we regard all edges of a Θ5-graph as undirected.
See Fig. 1 for an example of cones and construction.

(a) Assume b is in Ca
2 and a is in Cb

4. (b) The angle α.

Fig. 2. Vertices a and b and the canonical triangles Tab and Tba.

For the following description, refer to Fig. 2. Consider two vertices a and b
of P . Given the Θ5-graph of P , we define the canonical triangle Tab to be the
triangle bounded by the sides of the cone of a that contains b and the line through
b perpendicular to the bisector of that cone. Note that to any pair of vertices a
and b corresponds two canonical triangles, namely Tab and Tba. Without loss of
generality assume that b is in Ca

2 . Let � be the leftmost vertex of the triangle Tab

and let r be the rightmost vertex of the triangle Tab. Let m be the midpoint of
�r. Note that a must be in Cb

4 or Cb
0; since the cases are symmetric we consider

the case where a is in Cb
4. Thus b is to the right of m. Let rm be the intersection

of �r and the bisector of ∠ram2, and let �m be the intersection of �r and the
bisector of ∠ma�. Let �′ and r′ be the left and right endpoints of Tba respectively

1 Angle values are given counter-clockwise unless otherwise stated.
2 In what follows we use �abc to denote the triangle defined by the points a, b, and

c (given counter-clockwise). We use ∠abc to denote the amplitude of the angle at b
in that triangle.

218 P. Bose et al.

(as seen from b facing a). Let m′ be the midpoint of �′r′, and let �′
m and r′

m be
the intersections of �′r′ and the bisector of ∠�′bm′ and ∠m′br′ respectively. See
Fig. 2a. Let α = ∠bam and let α′ = ∠abm′. Note that α + α′ = π/5 since α
and 2π

5 − α′ are alternate interior angles. Thus either α ≤ π/10 or α′ ≤ π/10.
Without loss of generality, we assume α ≤ π/10. Let c be the closest neighbor to
a in Ca

2 , and let d be the closest neighbor to b in Cb
4. See Fig. 2b. For simplicity,

we write “Θ5” to mean “the Θ5-graph of P”.
We proceed by induction to bound the spanning ratio of Θ5. We show that,

for any pair of points a, b ∈ P , the length of a shortest path |P(a, b)| in Θ5 is
at most K times the Euclidean distance between its endpoints. The induction
is on the rank of the Euclidean distance |ab| among all distances between pairs
of points in P . The exact bound on K is made explicit in the proof. Lemma1 is
sufficient for the base case to be reached by induction. The proof is left to the
full version of the paper.

Lemma 1. Let (a0, b0) be the pair of points in P that minimizes |ab| over all
points a and b in P . The Θ5-graph of P contains the edge a0b0.

If ab ∈ Θ5, then |P(a, b)| ≤ K|ab| holds for all K ≥ 1. Otherwise we
assume the following induction hypothesis: for every pair of points a′, b′ ∈ P
where |a′b′| < |ab|, the shortest path P(a′, b′) from a′ to b′ has length at most
|P(a′, b′)| ≤ K · |a′b′|, for some K ≥ 1. Our goal is to find the minimum value of
K for which our inductive argument holds.

Recall that c is the closest point to a in Ca
2 and d is the closest point to b in

Cb
4. We restrict our analysis to the following three paths:

(1) ac + P(c, b),
(2) bd + P(d, a), and
(3) ac + P(c, d) + db.

Depending on the particular arrangement of a, b, c, and d, we examine a subset of
these and find a minimum value for K that satisfies at least one of the following
inequalities:

(A) |ac| + K · |cb| ≤ K · |ab|,
(B) |bd| + K · |da| ≤ K · |ab|, and
(C) |ac| + K · |cd| + |db| ≤ K · |ab|.

Observe that our inductive argument follows if any of these cases holds. For
instance, if we prove (A) holds for some value K, it implies that |cb| < |ab|
(since all distances are positive), and thus |P(c, b)| ≤ K · |cb| by the induction
hypothesis. Similar conclusions follow for statements (B) and (C). Thus we can
combine (1)–(3) with (A)–(C) as follows.

(a) |P(a, b)| ≤ |ac| + |P(c, b)| ≤ |ac| + K · |cb| ≤ K · |ab|.
(b) |P(a, b)| ≤ |bd| + |P(d, a)| ≤ |bd| + K · |da| ≤ K · |ab|.
(c) |P(a, b)| ≤ |ac| + |P(c, d)| + |db| ≤ |ac| + K · |cd| + |db| ≤ K · |ab|.

Improved Spanning Ratio for Theta-5 Graph 219

For any given arrangement of vertices we prove that at least one of (A), (B),
or (C) holds true for some value K, and find the smallest value for which this
is true. Our proof relies mainly on case analysis, but some of these cases have
similar structure. We exploit this structure in Sect. 3 by designing two reusable
lemmas. These lemmas, along with additional arguments, are then applied to
different arrangements of a, b, c, and d. For all but one case we show that at
least one of (a), (b), or (c) holds true for K ≥ 5.70. The last case requires
K ≥ 6.16. We improve this further to K ≥ 5.70, but due to the complexity of
this last case, we dedicate Sect. 4 to its analysis.

3 Analysis

We first introduce two triangles T2 and T3 for which inequalities of the form
of (A) and (B) hold for reasonable values of K (see Fig. 3). Note the trian-
gles are numbered to correspond to the lemmas they appear in. We state these
inequalities as lemmas whose repeated use simplifies the proof of our main result.
The proofs are available in the full paper.

Lemma 2. (Figure 3a) Let T2 be a triangle with vertices (s, v, u) and corre-
sponding interior angles (π

5 , π
2 , 3π

10). Let t be a point on uv and let w be a point
inside �stu. Then |sw| + K|wt| ≤ K|st| for all K ≥ 4.53.

(a) T2 has angles (π
5
, π
2
, 3π
10
). (b) T3 has angles (3π

10
, 3π
10

, 2π
5
).

Fig. 3. Triangles T2 and T3.

Lemma 3. (Figure 3b) Let T3 be a triangle with vertices (s, v, u) and corre-
sponding interior angles (3π

10 , 3π
10 , 2π

5). Let t be a point on uv such that ∠vst ≤
π/10 and let w be a point inside �stu. Then |sw| + K|wt| ≤ K|st| for all
K ≥ 5.70.

220 P. Bose et al.

As in the definition of Tab and Tba, let c be the point closest to a in Tab and
let d be the point closest to b in Tba. We proceed by case analysis depending on
the location of the points c and d.

If c is to the right of ab or if d is to the right of ab, we can apply Lemma 2
to show the existence of a short path from a to b. When both c and d are left of
ab, we use a more complicated argument requiring a new definition:

Definition 1. (Figure 4) Given any pair of points (a, b) in P , let r′ and r′
m be

as in the definition of Tba. We define Pab to be the regular pentagon with vertices
(p0, p1, p2 = r′, p3 = r′

m, p4) where p4 is above the line going through r′ and r′
m

(this uniquely defines the remaining points p0 and p1).

(a) Pab when α = 0. (b) Pab when α = π/10.

Fig. 4. The regular pentagon Pab.

Observe that Pab is fixed with respect to Tba. This construction puts p4 inside
Tab and puts p0 and p1 on a horizontal line with b, with p0 lying on the boundary
of Tab. Due to space constraints, a formal proof can be found in the full paper.

Note 1. Given Definition 1 we have that p4 ∈ Tab, p0 ∈ �b, and p1 lies on the
line through � and b.

Fig. 5. Transformation 1.

Given this definition, we consider the fol-
lowing cases: When c is not in Pab we prove
|ac| + |P(c, b)| ≤ 5.70|ab|. When d is not in
Pab we prove |bd| + |P(d, a)| ≤ 5.70|ab|. When
both c and d are in Pab we analyze the length
of the path ac+P(c, d)+db. Lemma 12 gives us
a bound of 6.16|ab| with a simple proof. Using
a more technical analysis, we obtain a bound of
5.70|ab|. This is proven in Lemma16 in Sect. 4.

Some of the proofs use the simplifying
assumption that α = π/10. This is achieved

through the following transformation: given a, b, c, d ∈ P with Tab and Tba

as defined earlier, we define:

Improved Spanning Ratio for Theta-5 Graph 221

Transformation 1. Fix b, c, d, and Tba, and translate a along r′�′.

See Fig. 5. Observe that this transformation changes |ac| and |ab|, but not
|bd|, |cd|, or |cb|. The transformation also changes |ad|, but we do not use it in
any case that depends on this value. In the full paper we prove the following
lemma allowing the application of Transformation 1 without loss of generality in
several cases.

Lemma 4. Under Transformation 1, the values of |bd|, |cd|, and |cb| are
unchanged, and Ψ = |ac| − K|ab| is maximized when a = �′

m for all K ≥ 3.24.

Note that applying Transformation 1 with a = �′
m is equivalent to assuming

α = π/10.
All these proofs can be combined in an analysis comprising eight cases

depending on the location of c and d with respect to Tab, Tba, and Pab, as
illustrated in Algorithm1:

Algorithm 1: Applying the Lemmas

1. If c is right of ab, Lemma 5.
2. If d is right of ab, Lemma 6.
3. Else both c and d are left of ab. We have the following cases:

(a) If c is in Tba, Lemma 7.
(b) Else c is NOT in Tba and:

i. If c is NOT in Pab, Lemma 8.
ii. Else c is in Pab and:

– If d is right of am, Lemma 9.
– If d is left of am and above c, Lemma 10
– If d is below c (i.e. d �∈ Tab such that bd and ac cross)

• If d is NOT in Pab, Lemma 11.
• If d is in Pab, Lemma 12 with K ≥ 6.16 or Lemma 16 with

K ≥ 5.70.

One can check that all locations of c and d are covered. This proves our main
theorem:

Theorem 1. Given a set P of points in the plane, the Θ5-graph of P is a 5.70-
spanner.

We use the remainder of the paper to prove each lemma.

Lemma 5. If c is right of ab, then |P(a, b)| ≤ K|ab| for K ≥ 4.53.

Proof. (Figure 6) Let (s, t, w, u, v) = (a, b, c, r,m), thus these points correspond
to triangle T2 of Lemma 2. Thus |ac| + K|cb| ≤ K|ab| for all K ≥ 4.53. The
induction hypothesis and Lemma2 imply that there is a path from a to b with
length at most

|P(a, b)| ≤ |ac| + |P(c, b)| ≤ |ac| + K|cb| ≤ K|ab|.
��

222 P. Bose et al.

Fig. 6. Points (a, r, m) correspond to
T2 (in blue) with t = b and w = c.
(Color figure online)

Fig. 7. Points (b, m′, �′) correspond to
T2 (in blue) with t = a and w = d.
(Color figure online)

Lemma 6. If d is right of ab, then |P(a, b)| ≤ K|ab| for K ≥ 4.53.

Proof. (Figure 7) Let (s, t, w, u, v) = (b, a, d,m′, �′), thus these points correspond
to triangle T2 from Lemma 2. Thus |bd| + K|da| ≤ K|ab| for K ≥ 4.53 by
Lemma 2. The induction hypothesis and Lemma2 imply that there is a path
from a to b with length at most

|P(a, b)| ≤ |bd| + |P(d, a)| ≤ |bd| + K|da| ≤ K|ab|.

��
Lemma 7. If c is left of ab and in Tab∩Tba, then |P(a, b)| ≤ K|ab| for K ≥ 5.70.

Proof. (Figure 8) Let p be the intersection of br′ and a�, and let q be the inter-
section of the lines through r′b and arm. Observe that 0 ≤ ∠rmab ≤ π/10,
thus ∠rmab has the same range as ∠vst from T3 in Lemma 3. If we let points
(s, t, w, u, v) = (a, b, c, p, q), then these points correspond to the triangle T3, and
thus |ac| + K|cb| ≤ K|ab| for K ≥ 5.70 by Lemma 3. Our induction hypothesis
and Lemma 3 imply that there is a path from a to b with length

|P(a, b)| ≤ |ac| + |P(c, b)| ≤ |ac| + K|cb| ≤ K|ab|.

��
Lemma 8. If c ∈ Tab \ (Tba ∪ Pab), then |P(a, b)| ≤ K|ab| for all K ≥ 4.53.

Proof. (Figure 4b) Let Φ = |ac| + K|cb| − K|ab|. We apply Transformation 1.
Since c �∈ Tba it must be left of b�′

m, thus c remains left of ab. As a moves left, so
does the left side of Tab, which means that c remains inside Tab. Thus Lemma
4 implies that Φ is maximized at α = π/10, thus we assume this is the case.

Improved Spanning Ratio for Theta-5 Graph 223

Fig. 8. Points (a, q, p) correspond to
the triangle T3 with angles (3π

10
, 2π

5
, 3π
10
)

as denoted by the blue triangle. Let
t = b and w = c, and θ = π

10
−α, which

falls in the range of 0 ≤ ∠vsu ≤ π/10.
(Color figure online)

Fig. 9. We use the fact that p4 lies in
Tab and apply T3.

Observe that ∠ba�m = π/5, and ∠�mba = 2π/5 < π/2. Let q be the intersection
of the line through b orthogonal to ab and the line through a and �m. If we let
(s, t, w, u, v) = (a, b, c, q, b) then these points correspond to T2. Then Lemma 2
tells us that |ac| + K|cb| ≤ K|ab| and thus Φ = |ac| + K|cb| − K|ab| ≤ 0 for all
K ≥ 4.53. ��

Fig. 10. The point c is in Pab \Tba, and
d is right of am.

Fig. 11. The segments ac and bd cross
and c and d are in Pab.

Lemma 9. If d is left of ab and right of am, then |P(a, b)| ≤ K|ab| for K ≥
3.24.

Proof. (Figure 10) We show Φ = |bd| + K|da| − K|ab| ≤ 0, which implies
|P(a, b)| ≤ |bd| + |P(d, a)| ≤ K|ab| by the triangle inequality and the induc-
tion hypothesis.

224 P. Bose et al.

Let d′ be the horizontal projection of d onto ab. Let Φ1 = |bd| − K|bd′| and
Φ2 = K|da|−K|d′a|, and note that Φ = Φ1+Φ2 since d′ ∈ ab. Thus it is sufficient
to show that Φ1 ≤ 0 and Φ2 ≤ 0.

Observe that ∠d′da > π/2, since d is right of am, thus |d′a| > |da|, and
Φ2 ≤ 0 for all K ≥ 1. For Φ1 ≤ 0 we need K ≥ |bd|

|bd′| . Observe that dy(b, d′) ≤
|bd′| and ∠d′db ≥ π/10 because d ∈ Tba. Thus K ≥ 1

sin(π/10) ≥ |bd|
dy(b,d′) , and

K ≥ 1
sin(π/10) = 3.23 . . . is sufficient. ��

(a) We have db K bd′ 0. (b) We have ac + K cd K ad′ 0.

Fig. 12. The point c is in Pab \ Tba, and d is left of am but above c.

Lemma 10. If c is in Pab \Tba, and d is left of am but above c, then |P(a, b)| ≤
K|ab| for all K ≥ 4.53.

Proof. (Figure 12) We show Φ = |ac| + K|cd| + |db| − K|ab| ≤ 0, which implies
|P(a, b)| ≤ |ac| + |P(c, d)| + |db| ≤ K|ab| by the triangle inequality and the
induction hypothesis. We split Φ into two parts, and show that each part is less
than 0. Let d′ be the horizontal projection of d onto ab. Let Φ1 = |bd| − K|bd′|,
and let Φ2 = |ac| + K|cd| − K|ad′|. Observe that Φ = Φ1 + Φ2 since d′ ∈ ab.

For Φ1 ≤ 0, observe that dy(b, d) = dy(b, d′) ≤ |bd′|. Thus let Φ′
1 = |bd| − K ·

dy(b, d) ≥ Φ1. Let θ = ∠d′db, and observe that Φ′
1 = |bd|(1 − K sin θ). Note that

θ ≥ π/10 since d ∈ Tba, and thus K ≥ 3.24 is sufficient.
For Φ2 ≤ 0, let d′′ be the horizontal projection of d onto am. Since ∠ad′′d′ =

π/2, |ad′′| ≤ |ad′|. Since c �∈ Tba, ∠cdd′′ ≥ 9π/10, thus |cd′′| > |cd|. Let Φ′
2 =

|ac| + K|cd′′| − K|ad′′| ≥ Φ2. Let q be the horizontal projection of d′′ onto a�.
Let the points (s, t, w, u, v) = (a, d′′, c, q, d′′) and thus these points correspond
to T2. Thus |ac| + K|cd′′| ≤ K|ad′′| for all K ≥ 4.53 by Lemma 2. ��
Lemma 11. If bd and ac cross with d left of ab and not in Pab, then |P(a, b)| ≤
K|ab| for all K ≥ 5.70.

Proof. (Figure 9) Since ac and bd cross, d must be outside of Tab (otherwise ad
would be and edge of Θ5, but not ac). We want to show that d is below br′

m.

Improved Spanning Ratio for Theta-5 Graph 225

Assuming this is the case, then 0 ≤ ∠ab�′ ≤ π/10, and thus ∠ab�′ is in the range
of 0 ≤ ∠vsu ≤ π/10. Let points (s, t, w, u, v) = (b, a, d, r′

m, �′), then these points
correspond to triangle T3 of Lemma 3. Thus |bd| + K|da| ≤ K|ab| for K ≥ 5.70.
Our induction hypothesis and Lemma3 imply that there is a path from b to a
with length at most

|P(a, b)| ≤ |bd| + |P(d, a)| ≤ |bd| + K|da| ≤ K|ab|.

We are left with showing that d is below br′
m. Recall that Pab is fixed with

respect to Tba. Since d is outside of Tab and Pab, if p4p0 is inside Tab, d must be
below br′

m. Since the slope of p0p4 is less than the slope of �a, it is sufficient to
show that p4 is inside Tab which follows by Note 1. ��
Lemma 12. If ac and bd cross and both c and d are in Pab, then |P(a, b)| ≤
K|ab| for K ≥ 6.16.

Proof. (Figure 11) We show Φ = |ac| + K|cd| + |db| − K|ab| ≤ 0, which implies
|P(a, b)| ≤ |ac|+ |P(c, d)|+ |db| ≤ K|ab| by the triangle inequality and the induc-
tion hypothesis. Under Transformation 1, Lemma 4 implies that Φ is maximized
when α = π/10, so we assume this is the case. Since c, d, and Pab are fixed, c
and d are still inside Pab after Transformation 1. Given that c and d are in Pab,
the furthest apart c and d can be is if they are both on a diagonal of Pab. The
length of one side of Pab is at most sin(π/10)

sin(3π/10) |ab|. That means a diagonal of Pab,

and thus |cd|, has length at most 2 sin(3π/10) sin(π/10)
sin(3π/10) |ab| = 2 sin(π/10)|ab|. At

their longest, |ac| and |bd| each have length sin(2π/5)
sin(3π/10) |ab| by the law of sines. We

want
Φ = |ac| + K|cd| + |db| − K|ab| ≤ 0.

Solving for K gives

K ≥ |ac| + |db|
|ab| − |cd| ≥ 2 · sin(2π/5)

sin(3π/10) · (1 − 2 · sin(π/10))
= 6.15 . . .

��

4 Proving a Spanning Ratio of 5.70

In this section we present a lemma with a stronger bound for the case handled
by Lemma 12. Proving this lemma requires a careful analysis of the locations
of c and d and the tradeoffs between the values of |ac| + |db| and K|cd|. Let
Φ = |ac|+K|cd|+|db|−K|ab|. For the rest of this section, assume we have applied
Transformation 1, and thus α = π/10 and Φ is maximized. Since Pab, c and d are
fixed, both c and d are still in Pab. Let c′ be the intersection of the line through
a and c and the segment p0p1, and let d′ be the intersection of the line through b
and d and the segment p3p4. See Fig. 13. Let Φ′ = |ac′| + K|c′d′| + |d′b| − K|ab|,
and let Φ′′ = |ap1| + K|p1p3| + |p3b| − K|ab|.

226 P. Bose et al.

Fig. 13. Points c′ and d′ on Pab.

We split the analysis into three steps that
amount to proving the following lemmas:

Lemma 13. For all K ≥ 5.70, Φ ≤ Φ′.

Lemma 14. For all K ≥ 5.70, Φ′ ≤ Φ′′.

Lemma 15. For all K ≥ 5.70, Φ′′ ≤ 0.

The following lemma follows from these lem-
mas, the triangle inequality, and the induction
hypothesis. It supersedes Lemma 12:

Lemma 16. If ac and bd cross and both c and d
are in Pab, then |P(a, b)| ≤ K|ab| for K ≥ 5.70.

Substituting Lemma 16 for Lemma 12 in the proof of Theorem 1 brings the span-
ning ratio of the Θ5-graph down to 5.70. We are left with proving Lemmas 13, 14,
and 15. The proof of Lemma 14 is left to the full paper. The proofs of Lemmas 13
and 15 are presented below.

(a) Proof that c′d cd . (b) Maximum of � ed′c′.

Fig. 14. Finding the longest distance from a to b when c and d are in Pab,

4.1 Proof of Lemma 13

Lemma 13 states that |ac| + |bd| + K|cd| − K|ab| ≤ |ac′| + |bd′| + K|c′d′| − K|ab|
for K ≥ 5.70. See Fig. 14a. Let e be the intersection of ac and bd, and let e′ be
the intersection of br′ and a�. Observe that ∠�e′r′ = 2π/5, and thus we can see
that ∠dec ≥ 2π/5. This implies that ∠dec cannot be the smallest angle in �dec,
since that would require ∠dec ≤ π/3. Thus at least one of ∠dce and ∠edc is the
smallest angle in �dec. Since we have applied Transformation 1, and can thus
assume that α = π/10, the cases are symmetric. We can therefore, without loss
of generality, assume that ∠dce is the smallest angle in �dec.

Improved Spanning Ratio for Theta-5 Graph 227

Lemma 13. For all K ≥ 5.70, Φ ≤ Φ′.

Proof (Proof of Lemma 13). Since c lies on ac′ and d lies on bd′, we have |ac| ≤
|ac′| and |bd| ≤ |bd′|, and it is sufficient to show that |cd| ≤ |c′d′|. We first show
that |cd| ≤ |c′d|. Since ∠dce is the smallest angle in �dec, ∠dce < π/3. That
implies that ∠c′cd > π/2, which implies that c′d is the longest side of triangle
�cc′d, and thus |cd| ≤ |c′d|. See Fig. 14a.

We now show that |c′d′| ≥ |c′d|. If ∠c′dd′ ≥ π/2, then c′d′ is the longest side
of �c′dd′, and |c′d′| ≥ |c′d| and we are done. Otherwise assume ∠c′dd′ < π/2.

The law of sines tells us that |c′d′|
sin∠c′dd′ = |c′d|

sin∠dd′c′ . Since sin θ is an increasing
function for 0 ≤ θ < π/2, showing that ∠c′dd′ ≥ ∠dd′c′ is sufficient to show
|c′d′| ≥ |c′d|, as it would imply both angles are < π/2. Observe that ∠c′dd′ ≥
∠c′ed′ and ∠ed′c′ = ∠dd′c′, thus it is sufficient to prove that ∠c′ed′ ≥ ∠ed′c′.

Observe that ∠ced = ∠c′ed′ ≥ 2π/5. We now find the maximum of ∠dd′c′ =
∠ed′c′ ≤ 2π/5. Observe that if c′ moves left, ∠ed′c′ increases, thus assume c′

is at p1. Let O(bp3c′) be the circle through b, p3, and c′ with center o. Observe
that o lies on br′. Observe that ∠r′bd′ = π/10, thus ∠r′op3 = π/5. Segment or′

makes an angle of π/10 with the horizontal line through o. Thus od′ makes an
angle of 3π/10 with the horizontal line through o, and thus the line tangent to
O(bp3c′) at p3 is the line supporting �′r′, since �′r′ makes an angle of 3π/10 with
the vertical line through �′. See Fig. 14b. That implies that [p2, p3) lies outside
of O(bp3c′), which means for every point d′, ∠ed′c′ ≤ ∠ep3c

′ = 2π/5, and thus
∠c′dd′ ≥ ∠dd′c′ as required. ��

Fig. 15. An example of Φ′′.

4.2 Proof of Lemma 15

Lemma 15. For all K ≥ 5.70, Φ′′ ≤ 0.

Proof (Proof of Lemma 15). (Figure 15) We apply Transformation 1 with α = π
10

and assume that |ab| = 1. Then using the law of sines we get |bp3| = 1, |ap1| =
sin(2π/5)
sin(3π/10) , and |p1p3| = 2 sin(3π/10) sin(π/10)

sin(3π/10) = 2 sin(π/10). We want

Φ′′ = |ap1| + K|p1p3| + |p3b| − K|ab| ≤ 0.

228 P. Bose et al.

Solving for K gives

K ≥ |ap1| + |p3b|
|ab| − |p1p3| =

sin(2π/5)
sin(3π/10) + 1

1 − 2 sin(π/10)
= 5.69 . . .

��

References

1. Aichholzer, O., et al.: Theta-3 is connected. Comput. Geom. 47(9), 910–917 (2014)
2. Barba, L., Bose, P., De Carufel, J.L., van Renssen, A., Verdonschot, S.: On the

stretch factor of the Theta-4 graph. In: Dehne, F., Solis-Oba, R., Sack, J.R. (eds.)
WADS 2013. LNCS, vol. 8037, pp. 109–120. Springer, Heidelberg (2013). https://
doi.org/10.1007/978-3-642-40104-6 10

3. Bose, P., De Carufel, J.L., Hill, D., Smid, M.: On the spanning and routing ratio
of Theta-four. In: Proceedings of the Thirtieth Annual ACM-SIAM Symposium on
Discrete Algorithms (SODA), pp. 2361–2370 (2019)

4. Bose, P., De Carufel, J.L., Morin, P., van Renssen, A., Verdonschot, S.: Towards
tight bounds on Theta-graphs: more is not always better. Theoret. Comput. Sci.
616, 70–93 (2016)

5. Bose, P., Morin, P., van Renssen, A., Verdonschot, S.: The Theta-5-graph is a
spanner. Comput. Geom. 48(2), 108–119 (2015)

6. Chew, L.P.: There are planar graphs almost as good as the complete graph. J.
Comput. Syst. Sci. 39(2), 205–219 (1989)

7. Clarkson, K.: Approximation algorithms for shortest path motion planning. In:
Proceedings of the Nineteenth Annual ACM Symposium on Theory of Computing
(STOC), pp. 56–65 (1987)

8. Keil, J.M.: Approximating the complete Euclidean graph. In: Karlsson, R., Lingas,
A. (eds.) SWAT 1988. LNCS, vol. 318, pp. 208–213. Springer, Heidelberg (1988).
https://doi.org/10.1007/3-540-19487-8 23

9. Keil, J.M., Gutwin, C.A.: Classes of graphs which approximate the complete
Euclidean graph. Discret. Comput. Geom. 7(1), 13–28 (1992)

10. El Molla, N.M.: Yao spanners for wireless ad-hoc networks. Ph.D. thesis, Villanova
University (2009)

11. Ruppert, J., Seidel, R.: Approximating the d-dimensional complete Euclidean
graph. In: Proceedings of the 3rd Canadian Conference on Computational Geom-
etry (CCCG) (1991)

https://doi.org/10.1007/978-3-642-40104-6_10
https://doi.org/10.1007/978-3-642-40104-6_10
https://doi.org/10.1007/3-540-19487-8_23

Computing Weighted Subset Transversals
in H-Free Graphs

Nick Brettell1 , Matthew Johnson2 , and Daniël Paulusma2(B)

1 School of Mathematics and Statistics, Victoria University of Wellington,
Wellington, New Zealand
nick.brettell@vuw.ac.nz

2 Department of Computer Science, Durham University, Durham, UK
{matthew.johnson2,daniel.paulusma}@durham.ac.uk

Abstract. For the Odd Cycle Transversal problem, the task is to
find a small set S of vertices in a graph that intersects every cycle of odd
length. The Subset Odd Cycle Transversal requires S to intersect
only those odd cycles that include a vertex of a distinguished vertex
subset T . If we are given weights for the vertices, we ask instead that S
has small weight: this is the problem Weighted Subset Odd Cycle

Transversal. We prove an almost-complete complexity dichotomy for
Weighted Subset Odd Cycle Transversal for graphs that do not
contain a graph H as an induced subgraph. Our general approach can
also be used for Weighted Subset Feedback Vertex Set, which
enables us to generalize a recent result of Papadopoulos and Tzimas.

1 Introduction

For a transversal problem, one seeks to find a small set of vertices within a given
graph that intersects every subgraph of a specified kind. Two problems of this
type are Feedback Vertex Set and Odd Cycle Transversal, where the
objective is to find a small set S of vertices that intersects, respectively, every
cycle and every cycle with an odd number of vertices. Equivalently, when S is
deleted from the graph, what remains is a forest or a bipartite graph, respectively.

For a subset transversal problem, we are also given a vertex subset T and
we must find a small set of vertices that intersects every subgraph of a specified
kind that also contains a vertex of T . An (odd) T -cycle is a cycle of the graph
(with an odd number of vertices) that intersects T . A set ST ⊆ V is a T -feedback
vertex set or an odd T -cycle transversal of a graph G = (V,E) if ST has at least
one vertex of, respectively, every T -cycle or every odd T -cycle; see also Fig. 1. A
(non-negative) weighting of G is a function w : V → R

+. For v ∈ V , w(v) is the
weight of v, and for S ⊆ V , the weight w(S) of S is the sum of the weights of
the vertices in S. In a weighted subset transversal problem the task is to find a
transversal whose weight is less than a prescribed bound. We study:

The research in this paper received support from the Leverhulme Trust (RPG-2016-
258).
c© Springer Nature Switzerland AG 2021
A. Lubiw et al. (Eds.): WADS 2021, LNCS 12808, pp. 229–242, 2021.
https://doi.org/10.1007/978-3-030-83508-8_17

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-83508-8_17&domain=pdf
http://orcid.org/0000-0002-1136-418X
http://orcid.org/0000-0002-7295-2663
http://orcid.org/0000-0001-5945-9287
https://doi.org/10.1007/978-3-030-83508-8_17

230 N. Brettell et al.

Weighted Subset Feedback Vertex Set
Instance: a graph G, a subset T ⊆ V (G), a non-negative vertex weight-

ing w of G and an integer k ≥ 1.
Question: does G have a T -feedback vertex set ST with w(ST) ≤ k?

Weighted Subset Odd Cycle Transversal
Instance: a graph G, a subset T ⊆ V (G), a non-negative vertex weight-

ing w of G and an integer k ≥ 1.
Question: does G have an odd T -cycle transversal ST with w(ST) ≤ k?

Both problems are NP-complete even when the weighting function is 1 and T =
V . We continue a systematic study of transversal problems on hereditary graph
classes, focusing on the weighted subset variants. Hereditary graph classes can
be characterized by a set of forbidden induced subgraphs. We begin with the
case where this set has size 1: the class of graphs that, for some graph H, do not
contain H as an induced subgraph; such a graph is said to be H-free.

Past Results. We first note some NP-completeness results for the special case
where w ≡ 1 and T = V , which corresponds to the original problems Feedback
Vertex Set and Odd Cycle Transversal. These results immediately imply
NP-completeness for the weighted subset problems. By Poljak’s construction [14],
for every integer g ≥ 3, Feedback Vertex Set is NP-complete for graphs of
finite girth at least g (the girth of a graph is the length of its shortest cycle).
There is an analogous result for Odd Cycle Transversal [4]. It has also been
shown that Feedback Vertex Set [10] and Odd Cycle Transversal [4]
are NP-complete for line graphs and, therefore, also for claw-free graphs. Thus
the two problems are NP-complete for the class of H-free graphs whenever H
contains a cycle or claw. Of course, a graph with no cycle is a forest, and a forest
with no claw has no vertex of degree at least 3. Hence, we need now only focus
on the case where H is a linear forest, that is, a collection of disjoint paths.

There is no linear forest H for which Feedback Vertex Set on H-free
graphs is known to be NP-complete, but for Odd Cycle Transversal we can
take H = P2+P5 or H = P6, as the latter problem is NP-complete even for (P2+
P5, P6)-free graphs [5]. It is known that Subset Feedback Vertex Set [6] and
Subset Odd Cycle Transversal [3], which are the special cases with w ≡ 1,

Fig. 1. Two examples (from [3]) of the Petersen graph with the set T indicated by
square vertices. The set ST of black vertices forms both an odd T -cycle transversal and
a T -feedback vertex set. On the left, ST ∩ T �= ∅. On the right, ST ⊆ T .

Computing Weighted Subset Transversals in H-Free Graphs 231

are NP-complete for 2P2-free graphs; in fact, these results were proved for split
graphs which form a proper subclass of 2P2-free graphs. For the weighted subset
problems, there is just one additional case of NP-completeness currently known,
from the interesting recent work of Papadopoulos and Tzimas [13] as part of the
following dichotomy.

Theorem 1 ([13]). Weighted Subset Feedback Vertex Set on sP1-free
graphs is polynomial-time solvable if s ≤ 4 and NP-complete if s ≥ 5.

The unweighted version of Subset Feedback Vertex Set can be solved in
polynomial time for sP1-free graphs for every s ≥ 1 [13]. In contrast, for many
transversal problems, the complexities on the weighted and unweighted versions
for H-free graphs align; see, for example Vertex Cover [7], Connected Ver-
tex Cover [8] and (Independent) Dominating Set [9].

The other known polynomial-time algorithm for Weighted Subset Feed-
back Vertex Set on H-free graphs is for the case where H = P4. This can be
proven in two ways: Weighted Subset Feedback Vertex Set is polynomial-
time solvable for permutation graphs [12] and also for graphs for which we can
find a decomposition of constant mim-width [2]; both classes contain the class of
P4-free graphs. To the best of our knowledge, algorithms for Weighted Subset
Odd Cycle Transversal on H-free graphs have not previously been studied.

We now mention the polynomial-time results on H-free graphs for the
unweighted subset variants of the problems (which do not imply anything for
the weighted subset versions). Both Subset Feedback Vertex Set and Sub-
set Odd Cycle Transversal are polynomial-time solvable on H-free graphs
if H = P4 or H = sP1 + P3 [3,12]. Additionally, Feedback Vertex Set is
polynomial-time solvable on P5-free graphs [1] and sP3-free graphs for every inte-
ger s ≥ 1 [11], and both Feedback Vertex Set and Odd Cycle Transver-
sal are polynomial-time solvable on sP2-free graphs for every s ≥ 1 [4].

Our Results. Our main result is the following almost-complete dichotomy. We
write H ⊆i G, or G ⊇i H to say that H is an induced subgraph of G.

Theorem 2. Let H be a graph with H /∈ {2P1 + P3, P1 + P4, 2P1 + P4}.
Then Weighted Subset Odd Cycle Transversal on H-free graphs is
polynomial-time solvable if H ⊆i 3P1 + P2, P1 + P3, or P4, and is NP-complete
otherwise.

As a consequence, we obtain a dichotomy analogous to Theorem 1.

Corollary 1. The Weighted Subset Odd Cycle Transversal problem on
sP1-free graphs is polynomial-time solvable if s ≤ 4 and is NP-complete if s ≥ 5.

For the hardness part of Theorem 2 it suffices to show hardness for H = 5P1;
this follows from the same reduction used by Papadopoulos and Tzimas [13] to
prove Theorem 1. The three tractable cases, where H ∈ {P4, P1 +P3, 3P1 +P2},
are all new. Out of these cases, H = 3P1 + P2 is the most involved. For this
case we use a different technique to that used in [13]. Although we also reduce

232 N. Brettell et al.

Table 1. The complexity of Feedback Vertex Set (FVS), Odd Cycle Transver-

sal (OCT), and their subset (S) and weighted subset (WS) variants, when restricted
to H-free graphs for linear forests H. All problems are NP-complete for H-free graphs
when H is not a linear forest. The four blue cases (two for WSFVS, two for WSOCT)
are the algorithmic contributions of this paper; see also Theorems 2 and 3.

polynomial-time unresolved NP-complete

FVS H ⊆i P5 or
sP3 for s ≥ 1

H ⊇i P1 + P4 none

OCT H = P4 or
H ⊆i sP1 + P3 or

sP2 for s ≥ 1

H = sP1 + P5 for s ≥ 0 or
H = sP1 + tP2 + uP3 + vP4

for s, t, u ≥ 0, v ≥ 1
with min{s, t, u} ≥ 1 if v = 1, or
H = sP1 + tP2 + uP3 for s, t ≥ 0,
u ≥ 1 with u ≥ 2 if t = 0

H ⊇i P6 or P2+P5

SFVS,
SOCT

H = P4 or
H ⊆i sP1+P3 for s ≥ 1

H = sP1 + P4 for s ≥ 1 H ⊇i 2P2

WSFVS,
WSOCT

H ⊆i P4, P1 + P3, or
3P1 + P2

H ∈ {2P1 +P3, P1 +P4, 2P1 +P4} H ⊇i 5P1 or 2P2

to the problem of finding a minimum weight vertex cut that separates two given
terminals, our technique relies less on explicit distance-based arguments, and
we devise a method for distinguishing cycles according to parity. Our technique
also enables us to extend the result of [13] on Weighted Subset Feedback
Vertex Set from 4P1-free graphs to (3P1+P2)-free graphs, leading to the same
almost-complete dichotomy for Weighted Subset Feedback Vertex Set.

Theorem 3. Let H be a graph with H /∈ {2P1 + P3, P1 + P4, 2P1 + P4}. Then
Weighted Subset Feedback Vertex Set on H-free graphs is polynomial-
time solvable if H ⊆i 3P1 + P2, P1 + P3, or P4, and is NP-complete otherwise.

We refer to Table 1 for an overview of the current knowledge of the problems,
including the results of this paper.

2 Preliminaries

Let G = (V,E) be a graph. If S ⊆ V , then G[S] denotes the subgraph of G
induced by S, and G−S is the graph G[V \S]. The path on r vertices is denoted
Pr. the union operation + creates the disjoint union G1 +G2 having vertex set
V (G1)∪V (G2) and edge set E(G1)∪E(G2). By sG, we denote the disjoint union
of s copies of G. Thus sP1 denotes the graph whose vertices form an independent
set of size s. A (connected) component of G is a maximal connected subgraph of
G. The neighbourhood of a vertex u ∈ V is the set NG(u) = {v | uv ∈ E}. For
U ⊆ V , we let NG(U) =

⋃
u∈U N(u)\U . Let S and T be two disjoint vertex sets

of a graph G. Then S is complete to T if every vertex of S is adjacent to every
vertex of T , and S is anti-complete to T if there are no edges between S and T .

Computing Weighted Subset Transversals in H-Free Graphs 233

3 General Framework of the Polynomial Algorithms

We first explain our general approach with respect to odd cycle transversals.
Afterwards we modify our terminology for feedback vertex sets, but we note that
our approach can be easily extended to other kinds of transversals as well. So,
consider an instance (G,T,w) of Weighted Subset Odd Cycle Transver-
sal. A subgraph of G with no odd T -cycles is T -bipartite. Note that a subset
ST ⊆ V is an odd T -cycle transversal if and only if G[V \ ST] is T -bipartite. A
solution for (G,T,w) is an odd T -cycle transversal ST . From now on, whenever
ST is defined, we let BT = V (G)\ST denote the vertex set of the corresponding
T -bipartite graph. If u ∈ BT belongs to at least one odd cycle of G[BT], then
u is an odd vertex of BT . Otherwise, when u ∈ BT is not in any odd cycle of
G[BT], we say that u is an even vertex of BT . Note that by definition every
vertex in T ∩ BT is even. We let O(BT) and R(BT) denote the sets of odd and
even vertices of BT (so BT = O(BT) ∪ R(BT)). A solution ST is neutral if BT

consists of only even vertices; in this case ST is an odd cycle transversal of G.
We say that ST is T -full if BT contains no vertex of T . If ST is neither neutral
nor T -full, then ST is a mixed solution. We can now outline our approach to
finding minimum weight odd T -cycle transversals:
1. Compute a neutral solution of minimum weight.
2. Compute a T -full solution of minimum weight.
3. Compute a mixed solution of minimum weight.
4. From the three computed solutions, take one of overall minimum weight.

As mentioned, a neutral solution is a minimum-weight odd cycle transversal.
Hence, in Step 1, we will use existing polynomial-time algorithms from the lit-
erature for computing such an odd cycle transversal (these algorithms must be
for the weighted variant). Step 2 is trivial: we can just set ST := T (as w is
non-negative). Hence, most of our attention will go to Step 3. For Step 3, we
analyse the structure of the graphs G[R(BT)] and G[O(BT)] for a mixed solution
ST and how these graphs relate to each other.

For Weighted Subset Feedback Vertex Set we follow exactly the same
approach, but we use slightly different terminology. A subgraph of a graph G =
(V,E) is a T -forest if it has no T -cycles. Note that a subset ST ⊆ V is a T -
feedback vertex set if and only if G[V \ST] is a T -forest. We write FT = V \ST

in this case. If u ∈ FT belongs to at least one cycle of G[FT], then u is a cycle
vertex of FT . Otherwise, if u ∈ FT is not in any cycle of G[FT], we say that u is
a forest vertex of FT . By definition every vertex in T ∩ FT is a forest vertex.

We obtain our results for Weighted Subset Feedback Vertex Set by
a simplification of our algorithms for Weighted Odd Cycle Transversal.
Hence, to explain our approach fully, we will now give a polynomial-time algo-
rithm for Weighted Odd Cycle Transversal for (3P1 + P2)-free graphs.

4 Applying Our Framework on (3P1 + P2)-Free Graphs

We let G = (V,E) be a (3P1 + P2)-free graph with a vertex weighting w, and
let T ⊆ V . For Step 1, we need the polynomial-time algorithm of [4] for Odd

234 N. Brettell et al.

Cycle Transversal on sP2-free graphs (s ≥ 1), and thus on (3P1 + P2)-free
graphs (take s = 4). The algorithm in [4] was for the unweighted case, but it
can be easily adapted for the weighted case.1

Lemma 1. For every integer s ≥ 1, Weighted Odd Cycle Transversal is
polynomial-time solvable for sP2-free graphs.

As Step 2 is trivial, we focus on Step 3. We will reduce to a classical problem,
well known to be polynomial-time solvable by standard network flow techniques.

Weighted Vertex Cut
Instance: a graph G = (V,E), two distinct non-adjacent terminals t1

and t2, and a non-negative vertex weighting w.
Task: determine a set S ⊆ V \ {t1, t2} of minimum weight such that

t1 and t2 are in different connected components of G − S.

For a mixed solution ST , we let O = O(BT) and R = R(BT); recall that O �= ∅
and R ∩ T �= ∅. For our reduction to Weighted Vertex Cut, we need some
structural lemmas. We first bound the number of components of G[O].

Lemma 2. Let G = (V,E) be a (3P1+P2)-free graph, and let T ⊆ V . For every
mixed solution ST , the graph G[O] has at most two connected components.

We now prove that |R| ≤ 8. If G[O] is disconnected, then even |R| ≤ 2, as shown
in Lemma 3. Otherwise we use Lemma 4 and the fact that G[R] is bipartite.

Lemma 3. Let G = (V,E) be a (3P1+P2)-free graph, and let T ⊆ V . For every
mixed solution ST , if G[O] is disconnected, then R is a clique with |R| ≤ 2.

Lemma 4. Let G = (V,E) be a (3P1+P2)-free graph and let T ⊆ V . For every
mixed solution ST , every independent set in G[R] has size at most 4.

We say that a vertex in O is a connector if it has a neighbour in R.

Lemma 5. Let G = (V,E) be a (3P1+P2)-free graph, and let T ⊆ V . For every
mixed solution ST , if G[O] has two connected components D1 and D2, then D1

and D2 each have at most one connector.

Proof. By Lemma3, R is a clique of size at most 2. For contradiction, suppose
that, say, D1 has two distinct connectors v1 and v2. Then v1 and v2 each have
at most one neighbour in R, else the vertices of R would be in an odd cycle in
G[BT], as R is a clique. Let u1 be the neighbour of v1 in R, and let u2 be the
neighbour of v2 in R; note that u1 = u2 is possible.

An edge on a path P from v1 to v2 in D1 does not belong to an odd cycle in
G[D1]; else there would be a path P ′ from v1 to v2 in G[O] with a different parity

1 Proofs of Lemmas 1–4 are omitted for space reasons. A full version of this paper can
be found at https://arxiv.org/abs/2007.14514.

https://arxiv.org/abs/2007.14514

Computing Weighted Subset Transversals in H-Free Graphs 235

than P and one of the cycles u1v1Pv2u2u1 or u1v1P
′v2u2u1 is odd, implying that

u1 and u2 would not be even.
By definition, v1 and v2 belong to at least one odd cycle, which we denote by

C1 and C2, respectively. Then V (C1)∩ V (C2) = ∅ and there is no edge between
a vertex of C1 and a vertex of C2 except from possibly the edge v1v2; else there
would be a path from v1 to v2 in G[O] with an edge that belongs to an odd
cycle (C1 or C2), a contradiction with what we found above. Note also that u1

has no neighbours in V (C1) other than v1; otherwise G[BT] would have an odd
cycle containing u1. Moreover, u1 has no neighbours in V (C2) either, except v2
if u1 = u2; otherwise G[BT] would contain an odd cycle containing u1 and u2.

We now let w1 and x1 be two adjacent vertices of C1 that are not adja-
cent to u1. Let w2 be a vertex of C2 not adjacent to u1. Then, we found that
{u1, w2, w1, x1} induces a 2P1 + P2 (see Fig. 2).

We continue by considering D2, the other connected component of G[O]. By
definition, D2 has an odd cycle C ′. As |R| ≤ 2 and each vertex of R can have
at most one neighbour on an odd cycle in G[BT], we find that C ′ contains a
vertex v′ not adjacent to any vertex of R, so v′ is not adjacent to u1. As v′ and
the vertices of {w2, w1, x1} belong to different connected components of G[O],
we find that v′ is not adjacent to any vertex of {w2, w1, x1} either. However, now
{u1, v

′, w2, w1, x1} induces a 3P1 + P2 (see also Fig. 2), a contradiction. �

R

O

D1 D2

u1 u2

C2C1 C′v1 v2

w1
x1 w2 v′

Fig. 2. An illustration for the proof of Lemma5: the white vertices induce a 3P1 +P2.

We need one more structural lemma about connectors, in the case where G[O]
is connected. Let R consist of two adjacent vertices u1 and u2. Let O (with
O ∩ T = ∅) be the disjoint union of two complete graphs K and L, each on an
odd number of vertices that is at least 3, plus a single additional edge, such that:

1. u1 is adjacent to exactly one vertex v1 in K and to no vertex of L;
2. u2 is adjacent to exactly one vertex v2 in L and to no vertex of K; and
3. v1 and v2 are adjacent.

Note that G[BT] is indeed T -bipartite. We call the corresponding mixed solution
ST a 2-clique solution (see Fig. 3).

236 N. Brettell et al.

Lemma 6. Let G = (V,E) be a (3P1+P2)-free graph and let T ⊆ V . For every
mixed solution ST that is not a 2-clique solution, if G[O] is connected, then O has
no two connectors with a neighbour in the same connected component of G[R].

R

O

u1 u2

v1 v2

K L

Fig. 3. The structure of BT corresponding to a 2-clique solution ST .

Proof. For some p ≥ 1, let F1, . . . , Fp be the set of components of G[R]. For
contradiction, assume O has two distinct connectors v1 and v2, each with a
neighbour in the same Fi, say, F1. Let u1, u2 ∈ V (F1) be these two neighbours,
where u1 = u2 is possible. Let Q be a path from u1 to u2 in F1 (see Fig. 4). We
make an important claim: All paths from v1 to v2 in G[O] have the same parity.
The reason is that if there exist paths P and P ′ from v1 to v2 in G[O] that have
different parity, then either the cycle u1v1Pv2u2Qu1 or the cycle u1v1P

′v2u2Qu1

is odd. This would mean that u1 and u2 are not even.
By definition, v1 and v2 each belong to at least one odd cycle, which we denote

by C1 and C2, respectively. We choose C1 and C2 such that they have minimum
length. We note that V (C1) ∩ V (C2) = ∅ and that there is no edge between a
vertex of C1 and a vertex of C2 except possibly the edge v1v2; otherwise there
would be paths from v1 to v2 in G[O] that have different parity, a contradiction
with the claim above.

We also note that v1 is the only neighbour of u1 on C1; otherwise u1 would
belong to an odd cycle of G[BT]. Similarly, v2 is the only neighbour of u2 on
C2. Moreover, u1 has no neighbour on C2 except v2 if u1 = u2, and u2 has
no neighbour on C1 except v1 if u1 = u2. This can be seen as follows. For a
contradiction, first suppose that, say, u1 has a neighbour w on C2 and w �= v2.
As C2 is an odd cycle, there exist two vertex-disjoint paths P and P ′ on C2 from
w to v2 of different parity. Using the edges u1w and u2v2 and the path Q from
u1 to u2, this means that u1 and u2 are on odd cycle of G[BT]. However, this is
not possible as u1 and u2 are even. Hence, u1 has no neighbour on V (C2)\{v2}.
By the same reasoning, u2 has no neighbour on V (C1) \ {v1}. Now suppose that
u1 is adjacent to v2 and that u1 �= u2. Then u1 is not adjacent to u2, otherwise
the vertices u1, u2 and v2 would form a triangle, and consequently, u1 and u2

would not be even. Recall that V (C1) ∩ V (C2) = ∅ and that there is no edge
between a vertex of C1 and a vertex of C2. Hence, we can now take u1, u2, a
vertex of V (C1) \ {v1}, and two adjacent vertices of V (C2) \ {v2} (which exist
as C2 is a cycle) to find an induced 3P1 + P2, a contradiction.

Computing Weighted Subset Transversals in H-Free Graphs 237

We now claim that C1 and C2 each have exactly three vertices. For contrac-
tion, assume that at least one of them, C1 has length at least 5 and that in C1,
we have that x and y are the two neighbours of v1. As C1 has minimum length,
x and y are not adjacent. Let t1 and t2 be adjacent vertices of C2 distinct from
v2. Then {u1, x, y, t1, t2} induces a 3P1 + P2 in G, a contradiction. Hence, C1

and C2 are triangles, say with vertices v1, w1, x1 and v2, w2, x2, respectively.
Now suppose G[O] has a path from v1 to v2 on at least three vertices. Let s

be the vertex adjacent to v1 on this path. Then s /∈ {w1, x1, w2, x2} and s is not
adjacent to any vertex of {w1, x1, w2, x2} either; otherwise G[O] contains two
paths from v1 to v2 that are of different parity. As u1 and s are not adjacent
(else u1 belongs to a triangle), we find that {s, u1, w2, w1, x1} induces a 3P1+P2,
a contradiction (see also Fig. 4). We conclude that as G[O] is connected, v1 and
v2 must be adjacent.

F1

O

u1 u2

v1 v2

Q

w1 x1 w2 x2

s

Fig. 4. The white vertices induce a 3P1 + P2.

So far, we found that O contains two vertex-disjoint triangles on vertex sets
{v1, w1, x1} and {v2, w2, x2}, respectively, with v1v2 as the only edge between
them. As v1 is adjacent to v2, we find that u1 �= u2; otherwise {u1, v1, v2} would
induce a triangle, which is not possible as u1 ∈ R. Recall that u1 is not adjacent
to any vertex of V (C1) ∪ V (C2) except v1, and similarly, u2 is not adjacent to
any vertex of V (C1) ∪ V (C2) except v2. Then u1 must be adjacent to u2, as
otherwise {u1, u2, w1, w2, x2} would induce a 3P1 + P2.

Let z ∈ O \ (V (C1) ∪ V (C2)). Suppose u1 is adjacent to z. First assume z is
adjacent to w1 or x1, say w1. Then u1zw1x1v1u1 is an odd cycle. Hence, this is
not possible. Now assume z is adjacent to w2 or x2, say w2. Then u1zw2v2u2u1 is
an odd cycle. This is not possible either. Hence, z is not adjacent to any vertex
of {w1, x1, w2, x2}. Moreover, z is not adjacent to u2, as otherwise {u1, u2, z}
induces a triangle in G[BT]. However, {u2, w2, z, w1, x1} now induces a 3P1+P2.
Hence, u1 is not adjacent to z. In other words, v1 is the only neighbour of u1 on
O. By the same arguments, v2 is the only neighbour of u2 on O.

Let K be a maximal clique of O that contains C1 and let L be a maximal
clique of O that contains C2. Note that K and L are vertex-disjoint, as for

238 N. Brettell et al.

example, w1 ∈ K and w2 ∈ L are not adjacent. We claim that O = K ∪ L. For
contradiction, assume that r is a vertex of O that does not belong to K or L.
As u1 and u2 are adjacent vertices that have no neighbours in O \ {v1, v2}, the
(3P1 + P2)-freeness of G implies that G[O \ {v1, v2}] is 3P1-free. As K \ {v1}
and L \ {v2} induce the disjoint union of two complete graphs on at least two
vertices, this means that r is adjacent to every vertex of K \ {v1} or to every
vertex of L \ {v2}, say r is adjacent to every vertex of K \ {v1}. Then r has
no neighbour r′ in L \ {v2}, as otherwise the cycle v1u1u2v2r

′rw1v1 is an odd
cycle in G[BT] that contains u1 (and u2). Moreover, as K is maximal and r is
adjacent to every vertex of K \ {v1}, we find that r and v1 are not adjacent.
Recall also that u2 has v2 as its only neighbour in O, hence u2 is not adjacent to
r. This means that {r, v1, u2, w2, x2} induces a 3P1 + P2, which is not possible.
We conclude that O = K ∪ L; consequently, both K and L have odd size.

We now consider the graph F1 in more detail. Suppose F1 contains another
vertex u3 /∈ {u1, u2}. As F1 is connected and bipartite (as V (F1) ⊆ R), we may
assume without loss of generality that u3 is adjacent to u1 but not to u2. If
u3 has a neighbour K, then G[BT] contains an odd cycle that uses u1, u3 and
one vertex of K (if the neighbour of u3 in K is v1) or three vertices of K (if
the neighbour of u3 in K is not v1). Hence, u3 has no neighbour in K. This
means that {u2, u3, w2, w1, x1} induces a 3P1 + P2, so u3 cannot exist. Hence,
F1 consists only of the two adjacent vertices u1 and u2.

Now suppose that p ≥ 2, that is, F2 is nonempty. Let u′ ∈ V (F2). As u′ ∈ R,
we find that u′ is adjacent to at most one vertex of C1 and to at most one vertex
of C2. Hence, we may without loss of generality assume that u′ is not adjacent
to w1 and w2. Then {u′, w1, w2, u1, u2} induce a 3P1 + P2. We conclude that
R = {u1, u2}. However, now ST is a 2-clique solution of G, a contradiction. �
An algorithmic lemma, for finding a 2-clique solution of minimum weight:

Lemma 7. Let G = (V,E) be a (3P1+P2)-free graph with a vertex weighting w,
and let T ⊆ V . It is possible to find in polynomial time a 2-clique solution for
(G,w, T) that has minimum weight.

Proof. As the cliques K and L in BT have size at least 3 for a 2-clique solu-
tion ST , there are distinct vertices x1, y1 in K \ {v1} and distinct vertices x2, y2
in L \ {v2}. The ordered 8-tuple (u1, u2, v1, v2, x1, y1, x2, y2) is a skeleton of the
2-clique solution. We call the labelled subgraph of BT that these vertices induce
a skeleton graph.

In order to find a 2-clique solution of minimum weight in polynomial time,
we consider all O(n8) possible ordered 8-tuples (u1, u2, v1, v2, x1, y1, x2, y2) of
vertices of G and further investigate those that induce a skeleton graph. In this
case, we note that if these vertices form the skeleton of a 2-clique solution ST ,
then R(BT) = {u1, u2} and O(BT) is a subset of V ′ = {v1, x1, y1}∪{v2, x2, y2}∪
(N(v1)∩N(x1)∩N(y1))∪(N(v2)∩N(x2)∩N(y2)). We further refine the definition
of V ′ by deleting any vertex that cannot, by definition, belong to O(BT); that
is, we remove every vertex that belongs to T ∪ (N({u1, u2}) \ {v1, v2}) or is a
neighbour of both a vertex in {v1, x1, y1} and a vertex in {v2, x2, y2}. We write

Computing Weighted Subset Transversals in H-Free Graphs 239

G′ = G[V ′]. Note that u1 and u2 are not in G′ (as they are not adjacent to any
vertex in {x1, x2, y1, y2}), whereas v1, v2, x1, x2, y1, y2 all are in G′.

We now show that the sets K ′ = {v1, x1, y1} ∪ (N({v1, x1, y1}) ∩ V ′) and
L′ = {v2, x2, y2} ∪ (N({v2, x2, y2}) ∩ V ′) partition V ′, and moreover, that K ′

and L′ are cliques. By definition, every vertex of V ′ either belongs to K ′ or to
L′. By construction, K ′ ∩ L′ = ∅ since every vertex in K ′ \ {v1} is a neighbour
of v1 and every vertex in L′ \ {v2} is a neighbour of v2 and no vertex in V ′ is
adjacent to both v1 and v2 which are themselves distinct. For a contradiction,
suppose K ′ is not a clique. Then K ′ contains two non-adjacent vertices t and t′.
As K ′ \ {v1, x1, y1} is complete to the clique {v1, x1, y1}, we find that t and t′

both belong to K ′\{v1, x1, y1}. By construction of G′, we find that {t, t′} is anti-
complete to {u1, u2, x2}. By the definition of a skeleton, {u1, u2} is anti-complete
to {x2}. Then {u1, u2, t, t

′, x2} induces a 3P1 +P2 in G, a contradiction. By the
same arguments, L′ is a clique.

In G′ we first delete the edge v1v2. Second, for i ∈ {1, 2} we replace the
vertices vi, xi, yi by a new vertex v∗

i that is adjacent precisely to every vertex
that is a neighbour of at least one vertex of {vi, xi, yi} in G′. This transforms
the graph G′ into the graph G∗ = (V ∗, E∗). Note that in G∗ there is no edge
between v∗

1 and v∗
2 . We give each vertex z ∈ V ∗ \ {v∗

1 , v
∗
2} weight w∗(z) = w(z),

and for i ∈ {1, 2}, we set w∗(v∗
i) = w(vi) + w(xi) + w(yi). See Fig. 5.

The algorithm will now solve Weighted Vertex Cut on (G∗, w∗) with
terminals v∗

1 and v∗
2 ; recall that this can be done in polynomial time by standard

network flow techniques. Let S∗ be the output. Then G∗ − S∗ has two distinct
connected components on vertex sets K∗ and L∗, respectively, with v∗

1 ∈ K∗ and
v∗
2 ∈ L∗. We set K = (K∗ \{v∗

1})∪{v1, x1, y1} and L = (L∗ \{v∗
2})∪{v2, x2, y2}

and note that G′−S∗ contains G[K] and G[L] as distinct connected components.

G′
v1 v2

x1 y1 x2 y2

K′ L′

G∗

v∗
1 v∗

2

Fig. 5. The graph G′ and G∗ in the proof of Lemma 7.

As K is a subset of the clique K ′ and L is a subset of the clique L′ and V ′ =
K ′ ∪L′, we find that G[K] and G[L] are the only two connected components of
G′−S′, and moreover that K and L are cliques. As no vertex of (K∪L)\{v1, v2}
is adjacent to u1 or u2, this means that S = V \ ({u1, u2} ∪K ∪L) is a 2-clique
solution for G. Moreover, as S∗ is an optimal solution of Weighted Vertex
Cut on instance (G∗, w∗) with terminals v∗

1 and v∗
2 , we find that S has minimum

weight over all 2-clique solutions with skeleton (u1, u2, v1, v2, x1, y1, x2, y2).

240 N. Brettell et al.

From all the O(n8) 2-clique solutions computed in this way, we pick one with
minimum weight; we found this 2-clique solution in polynomial time. �
The Algorithm. We are now ready to prove the main result of the section.

Theorem 4. Weighted Subset Odd Cycle Transversal is polynomial-
time solvable for (3P1 + P2)-free graphs.

Proof. Let G be a (3P1 + P2)-free graph with a vertex weighting w, and let
T ⊆ V (G). We describe a polynomial-time algorithm for the optimization version
of the problem on input (G,T,w) using the approach of Sect. 3. So, in Step 1,
we compute a neutral solution of minimum weight, i.e., a minimum weight odd
cycle transversal, using polynomial time due to Lemma 1 (take s = 4). We then
compute, in Step 2, a T -full solution by setting ST = T . It remains to compute
a mixed solution ST of minimum weight (Step 3) and compare its weight with
the two solutions found above (Step 4). By Lemma 2 we can distinguish between
two cases: G[O] is connected or G[O] consists of two connected components.

Case 1. G[O] is connected.
We first compute in polynomial time a 2-clique solution of minimum weight by
using Lemma 7. In the remainder of Case 1, we will compute a mixed solution
ST of minimum weight with connected G[O] that is not a 2-clique solution. By
Lemma 4 and the fact that G[R] is bipartite by definition, we find that |R| ≤ 8.
We consider all O(n8) possibilities for R. We discard a choice for R if G[R] is not
bipartite. If G[R] is bipartite, we compute a solution ST of minimum weight such
that BT contains R. Let F1, . . . , Fp be the components of G[R]. By definition,
p ≥ 1. By Lemma4 p ≤ 4. By Lemma6, O has at most p ≤ 4 connectors.

We now consider all O(n4) possible choices for a set D of at most four
connectors. For each set D, we first check that G[D ∪ R] is T -bipartite and
that there are no two vertices in D with a neighbour in the same Fi; if one of
these conditions is not satisfied, we discard our choice of D. If both conditions
are satisfied we put the vertices of D in O, together with any vertex that is not in
T and that is not adjacent to any vertex of R. Then, as G[D ∪R] is T -bipartite
and no two vertices in D are adjacent to the same component Fi, the graph
G[R∪O] is T -bipartite. We remember the weight of ST = V \ (R∪O). In doing
the above, we may have computed a set O that is disconnected or that contains
even vertices. So we might compute some solutions more than once. However, we
can compute each solution in polynomial time, and the total number of solutions
we compute in Case 1 is O(n8) · O(n4) = O(n12), which is polynomial as well.
Out of all the 2-clique solutions and other mixed solutions we found, we pick a
solution ST = VT \ (R ∪ O) with minimum weight as the output for Case 1.

Case 1. G[O] consists of two connected components D1 and D2.
By Lemma 3, R is a clique of size at most 2. We consider all possible O(n2)
options for R. Each time R is a clique, we proceed as follows. By Lemma 5,
both D1 and D2 have at most one connector. We consider all O(n2) ways of
choosing at most one connector from each of them. If we choose two, they must
be non-adjacent. We discard the choice if the subgraph of G induced by R and

Computing Weighted Subset Transversals in H-Free Graphs 241

the chosen connector(s) is not T -bipartite. Otherwise we continue. If we chose at
most one connector v, we let O consist of v and all vertices that do not belong
to T and that do not have a neighbour in R. Then G[R ∪ O] is T -bipartite
and we store ST = V \ (R ∪ O). Note that O might not induce two connected
components consisting of odd vertices, so we may duplicate some work. However,
R∪O induces a T -bipartite graph and we found O in polynomial time, and this
is what is relevant (together with the fact that we only use polynomial time).

When the algorithm chooses two (non-adjacent) connectors v and v′ we do
as follows. We remove any vertex from T and any neighbour of R other than v
and v′. Let (G′, w′) be the resulting weighted graph (w′ is the restriction of w to
V (G′)). We solve Weighted Vertex Cut in polynomial time on G′, w′ with
v and v′ as terminals. Let S be the output. We let O = V (G′) − S. Then G[O]
has two connected components (as G[R∪{v, v′}] is T -bipartite, this implies that
G[R ∪ O] is T -bipartite) but G[O] might contain even vertices. However, what
is relevant is that G[R ∪ O] is T -bipartite, and that we found O in polynomial
time. We remember the solution ST = V \ (R ∪ O). In the end we remember
from all the solutions we computed one with minimum weight as the output for
Case 2. The number of solutions is O(n2) · O(n2) = O(n4) and we found each
solution in polynomial time so processing Case 2 takes polynomial time.

Correctness of our algorithm follows from the correctness of Cases 1 and
2, which describe all possible mixed solutions due to Lemma 2. As processing
Cases 1 and 2 takes polynomial time, we compute a mixed solution of mini-
mum weight in polynomial time. Computing a non-mixed solution of minimum
weight takes polynomial time as deduced already. Hence, the running time is
polynomial. �

The Proof of Theorems 2 and Theorem 3
We omit the proofs that Weighted Subset Odd Cycle Transversal is
polynomial-time solvable for P4-free graphs and (P1+P3)-free graphs. The reduc-
tion in [13] for Weighted Subset Feedback Vertex Set for 5P1-free graphs
yields NP-completeness for 5P1-free graphs. Theorem 2 follows from Theorem 4,
the above results and the result of [4] that even Odd Cycle Transversal is
NP-complete on H-free graphs if H has a cycle or a claw.

We omit the proofs that Weighted Feedback Vertex Set is polynomial-
time solvable for sP2-free graphs for every s ≥ 1, (3P1+P2)-free graphs and (P1+
P3)-free graphs. The problem is polynomial-time solvable for P4-free graphs [2].
Theorem 3 now follows from the above results and the results that Feedback
Vertex Set is NP-complete on H-free graphs if H has a cycle [14] or a claw [10].

5 Conclusions

We determined the complexity of Weighted Subset Odd Cycle Transver-
sal and Weighted Subset Feedback Vertex Set on H-free graphs except
when H ∈ {2P1+P3, P1+P4, 2P1+P4}. We believe that the case H = 2P1+P3

is polynomial-time solvable for both problems using our methodology and our

242 N. Brettell et al.

algorithms for H = P1 + P3 as a subroutine. The other two cases are open even
for Odd Cycle Transversal and Feedback Vertex Set. For these cases we
first need to be able to determine the complexity of finding a maximum induced
disjoint union of stars in a (P1 + P4)-free graph. We refer to Table 1 for other
unresolved cases in our framework and note again that our results demonstrate
that the classifications of Weighed Subset Odd Cycle Transversal and
Subset Odd Cycle Transversal do not coincide for H-free graphs.

References

1. Abrishami, T., Chudnovsky, M., Pilipczuk, M., Rzążewski, P., Seymour, P.:
Induced subgraphs of bounded treewidth and the container method. In: Proceed-
ings of the SODA, pp. 1948–1964 (2021)

2. Bergougnoux, B., Papadopoulos, C., Telle, J.A.: Node multiway cut and subset
feedback vertex set on graphs of bounded mim-width. In: Adler, I., Müller, H. (eds.)
WG 2020. LNCS, vol. 12301, pp. 388–400. Springer, Heidelberg (2020). https://
doi.org/10.1007/978-3-030-60440-0_31

3. Brettell, N., Johnson, M., Paesani, G., Paulusma, D.: Computing subset transver-
sals in H-free graphs. In: Adler, I., Müller, H. (eds.) WG 2020. LNCS, vol.
12301, pp. 187–199. Springer, Heidelberg (2020). https://doi.org/10.1007/978-3-
030-60440-0_15

4. Chiarelli, N., Hartinger, T.R., Johnson, M., Milanič, M., Paulusma, D.: Minimum
connected transversals in graphs: New hardness results and tractable cases using
the price of connectivity. Theoret. Comput. Sci. 705, 75–83 (2018)

5. Dabrowski, K.K., Feghali, C., Johnson, M., Paesani, G., Paulusma, D., Rzążewski,
P.: On cycle transversals and their connected variants in the absence of a small
linear forest. Algorithmica 82, 2841–2866 (2020)

6. Fomin, F.V., Heggernes, P., Kratsch, D., Papadopoulos, C., Villanger, Y.: Enu-
merating minimal subset feedback vertex sets. Algorithmica 69, 216–231 (2014)

7. Grzesik, A., Klimošová, T., Pilipczuk, M., Pilipczuk, M.: Polynomial-time algo-
rithm for maximum weight independent set on P6-free graphs. In: Proceedings of
the SODA, pp. 1257–1271 (2019)

8. Johnson, M., Paesani, G., Paulusma, D.: Connected Vertex Cover for (sP1 + P5)-
free graphs. Algorithmica 82, 20–40 (2020)

9. Lozin, V., Malyshev, D., Mosca, R., Zamaraev, V.: Independent domination versus
weighted independent domination. Inf. Process. Lett. 156, 105914 (2020)

10. Munaro, A.: On line graphs of subcubic triangle-free graphs. Discret. Math. 340,
1210–1226 (2017)

11. Paesani, G., Paulusma, D., Rzążewski, P.: Feedback vertex set and even cycle
transversal for H-free graphs: finding large block graphs. CoRR abs/2105.02736
(2021)

12. Papadopoulos, C., Tzimas, S.: Polynomial-time algorithms for the subset feed-
back vertex set problem on interval graphs and permutation graphs. Discret. Appl.
Math. 258, 204–221 (2019)

13. Papadopoulos, C., Tzimas, S.: Subset feedback vertex set on graphs of bounded
independent set size. Theoret. Comput. Sci. 814, 177–188 (2020)

14. Poljak, S.: A note on stable sets and colorings of graphs. Comment. Math. Univ.
Carol. 15, 307–309 (1974)

https://doi.org/10.1007/978-3-030-60440-0_31
https://doi.org/10.1007/978-3-030-60440-0_31
https://doi.org/10.1007/978-3-030-60440-0_15
https://doi.org/10.1007/978-3-030-60440-0_15

Computing the Fréchet Distance Between
Uncertain Curves in One Dimension

Kevin Buchin1 , Maarten Löffler2, Tim Ophelders1,2, Aleksandr Popov1(B) ,
Jérôme Urhausen2, and Kevin Verbeek1

1 Department of Mathematics and Computer Science, TU Eindhoven,
Eindhoven, The Netherlands

{k.a.buchin,a.popov,k.a.b.verbeek}@tue.nl
2 Department of Information and Computing Sciences, Utrecht University,

Utrecht, The Netherlands
{m.loffler,t.a.e.ophelders,j.e.urhausen}@uu.nl

Abstract. We consider the problem of computing the Fréchet distance
between two curves for which the exact locations of the vertices are
unknown. Each vertex may be placed in a given uncertainty region for
that vertex, and the objective is to place vertices so as to minimise the
Fréchet distance. This problem was recently shown to be NP-hard in 2D,
and it is unclear how to compute an optimal vertex placement at all.

We give a polynomial-time algorithm for 1D curves with intervals as
uncertainty regions. In contrast, we show that the problem is NP-hard
in 1D in the case that vertices are placed to maximise the Fréchet distance.

We also study the weak Fréchet distance between uncertain curves.
While finding the optimal placement of vertices seems more difficult than
for the regular Fréchet distance—and indeed we can easily prove that the
problem is NP-hard in 2D—the optimal placement of vertices in 1D can
be computed in polynomial time. Finally, we investigate the discrete
weak Fréchet distance, for which, somewhat surprisingly, the problem is
NP-hard already in 1D.

Keywords: Curves · Uncertainty · Fréchet distance · 1D · Hardness ·
Weak Fréchet distance

1 Introduction

The Fréchet distance is a popular distance measure for curves. Its computational
complexity has drawn considerable attention in computational geometry [2,5,7,
8,11,18,22]. The Fréchet distance between two (polygonal) curves is often illus-
trated using a person and a dog: imagine a person is walking along one curve, hav-
ing the dog, which walks on the other curve, on a leash. The person and the dog
may change their speed independently but may not walk backwards. The Fréchet
distance corresponds to the minimum leash length needed with which the person
and the dog can walk from start to end on their respective curve.

c© Springer Nature Switzerland AG 2021
A. Lubiw et al. (Eds.): WADS 2021, LNCS 12808, pp. 243–257, 2021.
https://doi.org/10.1007/978-3-030-83508-8_18

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-83508-8_18&domain=pdf
http://orcid.org/0000-0002-3022-7877
http://orcid.org/0000-0002-0158-1746
https://doi.org/10.1007/978-3-030-83508-8_18

244 K. Buchin et al.

The Fréchet distance and its variants have found many applications, for
instance, in the context of protein alignment [23], handwriting recognition [30],
map matching [6] and construction [3,9], and trajectory similarity and cluster-
ing [12,21]. In most applications, we obtain the curves by a sequence of mea-
surements, and these are inherently imprecise. However, it is often reasonable to
assume that the true location is within a certain radius of the measurement, or
that it stays within an uncertainty region. Think of the person and the dog, except
now each is given a sequence of regions they have to visit. More specifically, they
need to visit one location per region and move on a straight line between loca-
tions without going backwards. Then minimising the leash length corresponds to
the following problem. Each curve is given by a sequence of uncertainty regions;
minimise the Fréchet distance over all possible choices of locations in the regions.
This is the lower bound problem for the Fréchet distance on uncertain curves.

Similar problems involving uncertainty have drawn more and more attention
in the past few years in computational geometry. Most results are on uncertain
point sets, where we often aim to minimise or maximise some quantity stemming
from the point set, but also perform visibility queries in polygons or find Delau-
nay triangulations [1,14,19,24–29]. More recently there have also been several
results on curves with uncertainty [4,13,17,20].

The earliest results for a variant of the problem we consider do not concern the
Fréchet distance as such, but its variant the discrete Fréchet distance, where we
restrict our attention to the vertices of the curves. Ahn et al. [4] show a polynomial-
time algorithm that decides whether the lower bound discrete Fréchet distance is
below a certain threshold, for two curves with uncertainty regions modelled as
circles in constant dimension. The lower bound Fréchet distance with uncertainty
regions modelled as point sets admits a simple dynamic program [13]. However, as
has recently been shown, the decision problem for the continuous Fréchet distance
is NP-hard already in two dimensions with vertical line segments as uncertainty
regions and one precise and one uncertain curve [13]; it is not clear how to com-
pute the lower bound at all with any uncertainty model that is not discrete. With
the 2D problem being NP-hard, we turn our attention to one-dimensional curves.
We present an efficient algorithm for computing the lower bound Fréchet distance
with imprecision modelled as intervals. In the full version [15], we generalise this
to a framework applicable in higher dimensions and restricted settings; it may not
give polynomial-time solutions in many settings.

Next to the discrete Fréchet distance, the most common variant of the Fréchet
distance is the weak Fréchet distance [5]. In the person–dog analogy, this variant
allows backtracking on the paths. The weak Fréchet distance (for certain curves)
has interesting properties in 1D [10,16,22]: it can be computed in linear time
in 1D, while in 2D it cannot be computed significantly faster than quadratic
time under the strong exponential-time hypothesis. To our knowledge, the weak
Fréchet distance has not been studied in the uncertain setting before. We give a
polynomial-time algorithm that solves the lower bound problem in 1D. In con-
trast to that, we show that the problem is NP-hard in 2D, and that discrete weak
Fréchet distance is NP-hard already in 1D. Table 1 summarises these results.

Computing the Fréchet Distance Between Uncertain Curves in 1D 245

Table 1. Complexity results for the lower bound problems for uncertain curves.

Fréchet distance Weak Fréchet distance

Discrete Continuous Discrete Continuous

1D Polynomial [4] Polynomial NP-hard Polynomial

2D Polynomial [4] NP-hard [13] NP-hard NP-hard

The table provides an interesting insight. First of all, it appears that for
continuous distances the dimension matters, whereas for the discrete ones the
results are the same both in 1D and 2D. Moreover, it may be surprising that
discretising the problem has a different effect: for the Fréchet distance it makes
it easier, while for the weak Fréchet distance the problem becomes harder. We
discuss the polynomial-time algorithm for the Fréchet distance in 1D in Sect. 3.
We give the algorithm for the weak Fréchet distance in 1D in Sect. 5.1 and show
NP-hardness for the weak (discrete) Fréchet distance in Sect. 5.2.

Finally, we also turn our attention to the problem of maximising the Fréchet
distance, or finding the upper bound. It has been shown that the problem is NP-
hard in 2D for several uncertainty models, including discrete point sets, both for
the discrete and continuous Fréchet distance [13]. We strengthen that result by
presenting a similar construction that already shows NP-hardness in 1D. The
proof is discussed in Sect. 4.

2 Preliminaries

Denote [n] ≡ {1, 2, . . . , n}. Consider a sequence of points π = 〈p1, p2, . . . , pn〉.
We also use π to denote a polygonal curve, defined by the sequence by linearly
interpolating between the points and seen as a continuous function: π(i + α) =
(1 − α)pi + αpi+1 for i ∈ [n − 1] and α ∈ [0, 1]. The length of such a curve is
the number of its vertices, |π| = n. Denote the concatenation of two sequences
π and σ by π � σ. Denote a subcurve from vertex i to j of π as π[i : j] =
pi � pi+1 � . . . � pj . Occasionally we use the notation 〈π(i) | i ∈ I〉n

i=1 to denote
a curve built on a subsequence of vertices of π, where vertices are only taken if
they are in set I. For example, setting I = {1, 3, 4}, n = 5, π = 〈p1, p2, . . . , p5〉
means 〈π(i) | i ∈ I〉n

i=1 = 〈p1, p3, p4〉.
Denote the Fréchet distance between two polygonal curves π and σ by

dF(π, σ), the discrete Fréchet distance by ddF(π, σ), and the weak Fréchet
distance by dwF(π, σ). Recall the definition of Fréchet distance for polygonal
curves of lengths m and n. It is based on parametrisations (non-decreasing
surjections) α and β with α : [0, 1] → [1,m], β : [0, 1] → [1, n]. Parametri-
sations establish a matching. Denote the cost of a matching μ = (α, β) as
costμ(π, σ) = maxt∈[0,1]‖π ◦ α(t) − σ ◦ β(t)‖. Then we can define Fréchet dis-
tance between polygonal curves π and σ as the infimum of costμ(π, σ) over all
matchings μ. The discrete and weak Fréchet distance are defined similarly, using
discrete and weak matchings, respectively. The discrete matching is restricted to

246 K. Buchin et al.

vertices, and the weak matching is a pair of continuous surjections, i.e. a path
(α, β) : [0, 1]2 → [1,m] × [1, n], with α(0) = 1, α(1) = m and β(0) = 1, β(1) = n.

An uncertain point in one dimension is a set of real numbers u ⊆ R. The
intuition is that only one point from this set represents the true location of
the point; however, we do not know which one. A realisation p of such a point
is one of the points from u. In this paper, we consider two special cases of
uncertain points. An indecisive point is a finite set of numbers u = {x1, . . . , x�}.
An imprecise point is a closed interval u = [x1, x2]. Note that a precise point is
a special case of both indecisive and imprecise points.

Define an uncertain curve as a sequence of uncertain points U = 〈u1, . . . , un〉.
A realisation π � U of an uncertain curve is a polygonal curve π = 〈p1, . . . , pn〉,
where each pi is a realisation of the uncertain point ui. For uncertain curves U
and V, define the lower bound and upper bound Fréchet distance. The discrete
and weak Fréchet distance are defined similarly.

dmin
F (U ,V) = min

π�U,σ�V
dF(π, σ) , dmax

F (U ,V) = max
π�U,σ�V

dF(π, σ) .

3 Lower Bound Fréchet Distance in One Dimension

Problem 1. Given two uncertain curves U = 〈u1, . . . , um〉 and V = 〈v1, . . . , vn〉
in R for some m,n ∈ N

+ with uncertainty regions modelled as intervals and a
threshold δ > 0, decide if dmin

F (U ,V) ≤ δ.

We propose an efficient algorithm that solves this problem. As has been shown
previously [13], the problem is NP-hard in 2D for vertical line segments as uncer-
tainty regions, but admits a simple dynamic program for indecisive points in 2D.
In the full version [15], we generalise this approach to higher dimensions and
other uncertainty regions; however, the instantiations of that approach may not
result in polynomial-time algorithms in many settings.

Consider the space R × R of the coordinates of the two curves in 1D; we
want to keep track of pairs of points in uncertainty regions of the curves that
are reachable, and use dynamic programming to go through the curves.

Formal Definition. Denote R≤0 = {x ∈ R | x ≤ 0} and R
≥0 = {x ∈ R | x ≥ 0}.

We are interested in what is feasible within the interval free space, which in this
space turns out to be a band around the line y = x of width 2δ in L1-distance
called Fδ. For notational convenience, define the following regions (see Fig. 1):

Fδ = {(x, y) ∈ R
2 | |x−y| ≤ δ} , Ii = (ui ×R)∩Fδ , Jj = (R×vj)∩Fδ .

We use dynamic programming, similarly to the standard free-space diagram for
the Fréchet distance; however, we propagate reachable subsets of uncertainty
regions on the two curves. The propagation in the interval-free-space diagram
consists of starting anywhere within the current region and going in restricted
directions, since we need to distinguish between going in the positive and the

Computing the Fréchet Distance Between Uncertain Curves in 1D 247

y = x+ 1

y = x− 1

−2 −1 1 2

−1

1

y = x+ 1

y = x− 1

−2 −1 1 2

−1

1

Fig. 1. On the left, the filled region is Ii = (ui × R) ∩ Fδ for ui = [0, 1]. On the right,
the filled region is Jj = (R × vj) ∩ Fδ for vj = [0.5, 1.5]. In both cases δ = 1.

negative x-direction along both curves. We introduce the notation for restricting
the directions in the form of quadrants, half-planes, and slabs:

QLD = R
≤0 ×R

≤0, QLU = R
≤0 ×R

≥0, QRD = R
≥0 ×R

≤0, QRU = R
≥0 ×R

≥0,

HL = R
≤0 × R, HR = R

≥0 × R, HD = R × R
≤0, HU = R × R

≥0.

SL = R
≤0×{0}, SR = R

≥0×{0}, SD = {0}×R
≤0, SU = {0}×R

≥0.

We introduce notation for propagating from a region by taking the appropriate
Minkowski sum, denoted with ⊕. For a, b ∈ {L,R,U,D} and a region X,

Xa = X ⊕ Ha , Xab = X ⊕ Qab , Xa0 = X ⊕ Sa .

Now we can discuss the propagation. We start with the base case, where we
compute the feasible combinations for the boundaries of the cells of a regular
free-space diagram corresponding to the first vertex on one of the curves. For
the sake of better intuition we do not use (0, 0) as the base case here. So, we
fix our position to the first vertex on U and see how far we can go along V;
and the other way around. As we are bound to the same vertex on U , as we
go along V, we keep restricting the feasible realisations of u1. Thus, we cut off
unreachable parts of the interval as we propagate along the other curve. We do
not care about the direction we were going in after we cross a vertex on the
curve where we move. So, if we stay at u1 and we cross over vj , then we are
free to go both in the negative and the positive direction of the x-axis to reach
a realisation of vj+1. We get the following expressions, where Ui,j denotes the
propagation upwards from the pair of vertices ui and vj and propagation down,
left, and right is defined similarly:

U1,1 = (I1 ∩ J1)U0 ∩ Fδ , D1,1 = (I1 ∩ J1)D0 ∩ Fδ ,

R1,1 = (I1 ∩ J1)R0 ∩ Fδ , L1,1 = (I1 ∩ J1)L0 ∩ Fδ ,

U1,j+1 = ((U1,j ∪ D1,j)∩Jj+1)U0∩Fδ , D1,j+1 = ((U1,j∪D1,j)∩Jj+1)D0∩Fδ ,

Ri+1,1 = ((Ri,1 ∪Li,1)∩ Ii+1)R0 ∩ Fδ , Li+1,1 = ((Ri,1 ∪Li,1)∩ Ii+1)L0 ∩ Fδ .

248 K. Buchin et al.

y = x+ 1

y = x− 1

−2 −1 1 2

−1

1

Fig. 2. An interval-free-space diagram for ui = [0, 1], vj = [−1.5, −0.2], and
vj+1 = [1.5, 2] with δ = 1. Note that the feasible realisations for ui are [0.5, 0.8].

Once the boundary regions are computed, we can proceed with propagation:

Ui+1,j = (UU
i,j ∪ RRU

i,j ∪ LLU
i,j) ∩ Ii+1 , Di+1,j = (DD

i,j ∪ RRD
i,j ∪ LLD

i,j) ∩ Ii+1 ,

Ri,j+1 = (RR
i,j ∪ URU

i,j ∪ DRD
i,j) ∩ Jj+1 , Li,j+1 = (LL

i,j ∪ ULU
i,j ∪ DLD

i,j) ∩ Jj+1 .

To solve the decision problem, check if the last vertex combination is feasible:

((Rm−1,n ∪ Lm−1,n) ∩ Im) ∪ ((Um,n−1 ∪ Dm,n−1) ∩ Jn) �= ∅ .

Intuition. If the consecutive regions are always disjoint, we do not need to
consider the possible directions: we always know (in 1D) where the next region
is, and thus what direction we take. However, if the regions may overlap, it may
be that for different realisations of a curve a segment goes in the positive or in the
negative direction. The propagation we compute is based on the parameter space
where we look at whether we have reached a certain vertex on each curve yet,
inspired by the traditional free-space diagram. It may be that we pass by several
vertices on, say, V while moving along a single segment on U . The direction
we choose on U needs to be kept consistent as we compute the next regions,
otherwise we might include realisations that are invalid as feasible solutions.
Therefore, we need to keep track of the chosen direction, reflected by the separate
sets U , D and R, L. Otherwise, these regions in 1D are simply the feasible pairs
of realisations of the last vertices on the prefixes of the curves.

It is helpful to think of the approach in terms of interval-free-space diagrams.
Consider a combination of specific vertices on the two curves, say, ui and vj , and
suppose that we want to stay at ui but move to vj+1. Which realisations of ui,
vj , and vj+1 can we pick that allow this move to stay within the 2δ-band?

Suppose the x-coordinate of the diagram corresponds to the x-coordinate of
U . Then we may pick a realisation for ui anywhere in the vertical slab corre-
sponding to the uncertainty interval for ui, namely, in the slab ui ×R. The fixed
realisation for ui would then yield a vertical line. Now suppose the y-coordinate
of the diagram corresponds to the x-coordinate of V. For vj , picking a realisa-
tion corresponds to picking a horizontal line from the slab R × vj ; for vj+1, it

Computing the Fréchet Distance Between Uncertain Curves in 1D 249

corresponds to picking a horizontal line from R× vj+1. Picking a realisation for
the pair (ui, vj) thus corresponds to a point in ui × vj .

We may only maintain the matching as long the distance between the
matched points is at most δ. For a fixed point on U , this corresponds to a
2δ window for the coordinates along V. So, the allowed matchings are contained
within the band defined by y = x ± δ, and when we pick the realisations for
(ui, vj), we only pick points from ui × vj for which |y − x| ≤ δ holds.

As we consider the propagation to vj+1, note that we may not move within
ui, so the allowed realisations for the pair (ui, vj+1) are limited. In particular, we
can find that region by taking the subset of ui × vj+1 for which |y −x| ≤ δ holds
and restricting the x-coordinate further to be feasible for the pair (ui, vj). See
Fig. 2 for an illustration of this. In this figure, we know that vj+1 lies above vj ;
if we did not know that, we would have to attempt propagation both upwards
and downwards. For the second curve, the same holds.

We analyse the complexity of the propagated regions in the full version [15].
We conclude that their complexity is constant.

Theorem 1. We can solve the decision problem for lower bound Fréchet dis-
tance on imprecise curves of lengths m and n in 1D in time Θ(mn).

4 Upper Bound Fréchet Distance

We now turn our attention to the upper bound Fréchet distance. The problem
is known to be NP-hard in 2D in all variants we consider [13]; we show that this
remains true even in 1D. Define the following problems.

Problem 2. Upper Bound (Discrete) Fréchet: Given two uncertain trajectories U
and V in 1D and a threshold δ > 0, check if dmax

F (U ,V) ≤ δ (dmax
dF (U ,V) ≤ δ).

We show NP-hardness by a reduction from CNF-SAT. The construction we use is
similar to that used in 2D; however, in 2D the desired alignment of subcurves is
achieved by having one of the curves be close enough to (0, 0) at all times. Here
making a curve close to 0 will not work, so we need to add extra gadgets instead
that can ‘eat up’ the alignment of the subcurves that we do not care about. The
proof can be found in the full version [15].

Theorem 2. The problem Upper Bound (Discrete) Fréchet is NP-hard for the
indecisive and for the imprecise model.

5 Weak Fréchet Distance

In this section, we investigate the weak Fréchet distance for uncertain curves.
In general, since weak matchings can revisit parts of the curve, the dynamic
program for the regular Fréchet distance cannot easily be adapted, as it relies
on the fact that only the realisation of the last few vertices is tracked. When
computing the weak Fréchet distance for uncertain curves, one cannot simply

250 K. Buchin et al.

forget the realisations of previous vertices, as the matching might revisit them.
Surprisingly, we can show that for the continuous weak Fréchet distance between
uncertain one-dimensional curves, we can still obtain a polynomial-time dynamic
program, as shown in Sect. 5.1. One may expect that the discrete weak Fréchet
distance for uncertain curves in 1D is also solvable in polynomial time; however,
in Sect. 5.2 we show that this problem is NP-hard. We also show that computing
the continuous weak Fréchet distance is NP-hard for uncertain curves in 2D.

5.1 Algorithm for Continuous Setting

We first introduce some definitions. Consider polygonal one-dimensional curves
π : [1,m] → R and σ : [1, n] → R with vertices at the integer parameters. Let π−1

denote the reversal of a polygonal curve π. Denote by π|[a,b] the restriction of
π to the domain [a, b]. For integer values of a and b, note that π|[a,b] ≡ π[a : b].
Finally, define the image of a curve as the set of points in R that belong to the
curve, Im(π) ≡ {π(x) | x ∈ [1,m]} for π : [1,m] → R. For any polygonal curve π,
define the growing curve −→π of π as the sequence of local minima and maxima of
the sequence 〈π(i) | π(i) /∈ Im(π|[1,i))〉m

i=1. Thus, the vertices of a growing curve
alternate between local minima and maxima, the subsequence of local maxima
is strictly increasing, and the subsequence of local minima is strictly decreasing.

It has been shown that for precise one-dimensional curves, the weak Fréchet
distance can be computed in linear time [16]. For uncertain curves, it is
unclear how to use that linear-time algorithm; however, we can apply some
of the underlying ideas. A relaxed matching between π and σ is defined by
parametrisations α : [0, 1] → [1,m] and β : [0, 1] → [1, n] with α(0) = 1,
α(1) = x ∈ [m − 1,m] and β(0) = 1, β(1) = y ∈ [n − 1, n]. Observe
that the final points of parametrisations have to be on the last segments of
the curves, but not necessarily at the endpoints of those segments. Moreover,
define a relaxed matching (α, β) to be cell-monotone if for all t ≤ t′, we have
min(�α(t)�,m − 1) ≤ α(t′) and min(�β(t)�, n − 1) ≤ β(t′). In other words, once
we pass by a vertex to the next segment on a curve, we do not allow going
back to the previous segment; backtracking within a segment is allowed. Let
rm(π, σ) be the minimum matching cost over all cell-monotone relaxed match-
ings: rm(π, σ) = infcell-monotone relaxed matching μ costμ(π, σ). It has been shown
that dwF(π, σ) = max

(
rm(−→π ,−→σ), rm(−→

π−1,
−→
σ−1)

)
for precise curves [16]. Let

rm(π, σ)[i, j] ≡ rm(π[1 : i], σ[1 : j]). Then the value of rm(π, σ) can be computed
in quadratic time as rm(π, σ)[m,n] using the following dynamic program:

rm(π, σ)[0, ·] = rm(π, σ)[·, 0] = ∞ ,

rm(π, σ)[1, 1] = |π(1) − σ(1)| , and for i > 0 or j > 0,

rm(π, σ)[i + 1, j + 1] = min

{
max

(
rm(π, σ)[i, j + 1], d

(
π(i), Im(σ[j : j + 1])

))
,

max
(
rm(π, σ)[i + 1, j], d

(
σ(j), Im(π[i : i + 1])

))
.

Computing the Fréchet Distance Between Uncertain Curves in 1D 251

If π is a growing curve, we have Im(π[i, i+1]) = Im(π[1 : i+1]), so the following
dynamic program is equivalent if π and σ are growing curves:

r(π, σ)[0, ·] = r(π, σ)[·, 0] = ∞ ,

r(π, σ)[1, 1] = |π(1) − σ(1)| , and for i > 0 or j > 0,

r(π, σ)[i + 1, j + 1] = min

{
max

(
r(π, σ)[i, j + 1], d

(
π(i), Im(σ[1 : j + 1])

))
,

max
(
r(π, σ)[i + 1, j], d

(
σ(j), Im(π[1 : i + 1])

))
.

Let r(π, σ) := r(π, σ)[m,n] when executing the dynamic program above for
curves π : [1,m] → R and σ : [1, n] → R. We have rm(−→π ,−→σ) = r(−→π ,−→σ). More-
over, observe that the final result of computing r is the same whether we apply
it to the original or the growing curves. In other words, r(π, σ) = r(−→π ,−→σ), so

dwF(π, σ) = max
(
rm(−→π ,−→σ), rm(−→

π−1,
−→
σ−1)

)
= max

(
r(−→π ,−→σ), r(−→

π−1,
−→
σ−1)

)

= max
(
r(π, σ), r(π−1, σ−1)

)
.

With regard to computing the minimum weak Fréchet distance over realisa-
tions of uncertain curves, this roughly means that we only need to keep track
of the image of the prefix (and he suffix) of π and σ. To formalise this, we
split up the computation over the prefix and the suffix. Let imin, imax ∈ [m],
jmin, jmax ∈ [n], [xmin, xmax] ⊆ R, and [ymin, ymax] ⊆ R. Abbreviate the
pairs I := (imin, imax), J := (jmin, jmax) and the intervals X := [xmin, xmax],
Y := [ymin, ymax], and call a realisation π of an uncertain curve I-respecting if
π(imin) is a global minimum of π and π(imax) is a global maximum of π. Moreover,
say that π is (I,X)-respecting if additionally π(imin) = xmin and π(imax) = xmax.
Let π′ � UI and π′′ � UX

I denote some I- and (I,X)-respecting realisations of
an uncertain curve U , respectively. Consider the minimum weak Fréchet distance
between (I,X)- and (J, Y)-respecting realisations π � UX

I and σ � VY
J :

dmin
wF (UX

I ,VY
J) ≡ min

π�UX
I ,σ�VY

J

dwF(π, σ) = min
π�UX

I ,σ�VY
J

max
(
r(π, σ), r(π−1, σ−1)

)
.

Lemma 1. Among (I,X) - and (J, Y)-respecting realisations, the prefix and the
suffix are independent:

dmin
wF (UX

I ,VY
J) = max

{
minπ�UX

I ,σ�VY
J

r(π, σ) ,

minπ′�UX
I ,σ′�VY

J
r(π′−1, σ′−1) .

The missing details are in the full version [15]. The remainder of this section is
guided by the following observations based on Lemma 1.

1. If we can compute minπ�UX
I ,σ�VY

J
r(π, σ), we can compute dmin

wF (UX
I ,VY

J).
2. To compute dmin

wF (UI ,VJ), we must find an optimal pair of images X and Y
for π and σ.

3. We can find dmin
wF (U ,V) by computing dmin

wF (UI ,VJ) for all O(m2n2) values
for (I, J).

252 K. Buchin et al.

Instead of computing minπ�UX
I ,σ�VY

J
r(π, σ) for a specific value of (X,Y), we

compute the function (X,Y) �→ minπ�UX
I ,σ�VY

J
r(π, σ) using a dynamic program

that effectively simulates the dynamic program r(π, σ) for all I- and J-respecting
realisations simultaneously. So let

RI,J [i, j](x, y,X, Y) := inf
π�UI ,Im(π[1:i])=X,π(i)=x
σ�VJ ,Im(σ[1:j])=Y,σ(j)=y

r(π, σ)[i, j], then

RI,J [m,n](x, y,X, Y) = inf
π�UX

I ,π(m)=x

σ�VY
J ,σ(n)=y

r(π, σ).

We derive

RI,J [0, ·](x, y,X, Y) = RI,J [·, 0](x, y,X, Y) = ∞,

RI,J [1, 1](x, y,X, Y) = inf
π�UI ,{x}=X,π(1)=x
σ�VJ ,{y}=Y,σ(1)=y

|π(1) − σ(1)|, and for (i, j) �= (1, 1)

RI,J [i, j](x, y,X, Y)

= inf
π�UI ,Im(π[1:i])=X,π(i)=x
σ�VJ ,Im(σ[1:j])=Y,σ(j)=y

min

{
max{r(π, σ)[i − 1, j], d(π(i − 1), Y)},

max{r(π, σ)[i, j − 1], d(σ(j − 1),X)}

= min

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

infπ�UI ,Im(π[1:i])=X,π(i)=x
σ�VJ ,Im(σ[1:j])=Y,σ(j)=y

π(i−1)=x′

max{r(π, σ)[i − 1, j], d(x′, Y)},

infπ�UI ,Im(π[1:i])=X,π(i)=x
σ�VJ ,Im(σ[1:j])=Y,σ(j)=y

σ(j−1)=y′

max{r(π, σ)[i, j − 1], d(y′,X)}

= min

⎧
⎪⎨

⎪⎩

inf π�UI ,Im(π[1:i])=X,π(i)=x
Im(π[1:i−1])=X′,π(i−1)=x′

max{RI,J [i−1, j](x′, y,X ′, Y), d(x′, Y)},

inf σ�VJ ,Im(σ[1:j])=Y,σ(j)=y
Im(σ[1:j−1])=Y ′,σ(j−1)=y′

max{RI,J [i, j−1](x, y′,X, Y ′), d(y′,X)},

where the conditions on x′, y′, X ′, and Y ′ can be checked purely in terms of
UI and VJ , so the recurrence does not depend on any particular π or σ. This
yields a dynamic program that constructs the function RI,J [i, j] based on the
functions RI,J [i − 1, j] and RI,J [i, j − 1].

Theorem 3. The continuous weak Fréchet distance between uncertain one-
dimensional curves can be computed in polynomial time.

Proof. We use the recurrence above, with parameters I, J , i, j, x, y, X, and Y .
The first four are easy to handle, since i ∈ [m], j ∈ [n], I ∈ [m]2, and J ∈ [n]2.
The other parameters are continuous. X can be represented by xmin and xmax, Y
by ymin and ymax. To prove that we can solve the recurrence in polynomial time,
it is sufficient to prove that we can restrict the computation to a polynomial
number of different xmin, xmax, ymin, ymax, x and y.

We assume that each of the ui and vj is given as a set of intervals. This
includes the cases of uncertain curves with imprecise vertices (where each of

Computing the Fréchet Distance Between Uncertain Curves in 1D 253

these is just one interval) and with indecisive vertices (where each interval is
just a point; but in this case we get by definition only a polynomial number of
different values for the parameters).

Consider the realisations π = 〈p1, . . . , pm〉 and σ = 〈q1, . . . , qn〉 of the curves
that attain the lower bound weak Fréchet distance dmin

wF (U ,V) =: δ. In these
realisations, we need to have a sequence of vertices r1 ≤ r2 ≤ · · · ≤ r� with the
rk alternately from the set of pi and the set of qj such that r1 is at a right interval
endpoint, r� is at a left interval endpoint, and rk+1−rk = δ. Since 1 ≤ � ≤ m+n,
this implies that there are only O(N2 · (m+n)) candidates for δ, where N is the
total number of interval endpoints. We can compute these candidates in time
O(N2 · (m + n)).

Now assume that we have chosen π and σ such that none of the pi or qj can be
increased (i.e. moved to the right) without increasing the weak Fréchet distance.
Then for every pi (and likewise qj) there is a sequence r1 ≤ r2 ≤ · · · ≤ r� = pi,
where r1 is the endpoint of an interval and rk+1 − rk = δ. There are O(N)
possibilities for r1, O(m+n) possibilities for �, and O(N2 · (m+n)) possibilities
for δ, thus the total number of positions to consider for pi is polynomial. ��

5.2 Hardness of Discrete Setting

In this section, we prove that minimising the discrete weak Fréchet distance is
NP-hard, already in one-dimensional space. We show this both when for indeci-
sive and imprecise points. In the constructions in this section, the lower bound
Fréchet distance is never smaller than 1. The goal is to determine whether it is
equal to 1 or greater than 1.

Indecisive Points. We reduce from 3-SAT. Consider an instance with n vari-
ables and m clauses. We assign each variable a unique height: variable xi gets
assigned height 10i + 5. We use slightly higher heights (10i + 6 and 10i + 7)
to interact with the positive state of a variable, and slightly lower heights to
interact with the negative state. We construct two uncertain curves, one which
represents the variables and one which represents the clauses. The first curve, U ,
consists of n + 2 vertices. The first and last vertex are certain points, both at
height 0. The remaining vertices are uncertain points, with two possible heights
each:

U = 〈0, {14, 16}, {24, 26}, . . . , {10n + 4, 10n + 6}, 0〉 .

The second curve, V, consists of nm+n+m+2 vertices. For a clause cj = �a∨�b∨
�c, let Cj be the set {10a + 3/7, 10b + 3/7, 10c + 3/7}, where for each literal we
choose +7 if �i = xi or +3 if �i = ¬xi. Let S be the set S = {15, 25, . . . , 10n+5}
of ‘neutral’ variable heights. Then V is the curve that starts and ends at 0, has
a vertex for each Cj , and has sufficiently many copies of S between them:

V = 〈0, S, . . . , S, C1, S, . . . , S, C2, S, . . . , S, , Cm, 0〉 .

Consider the free-space diagram, with a ‘spot’ (i, j) corresponding to a pair
of vertices ui and vj . The discrete weak Fréchet distance is equal to 1 if and only

254 K. Buchin et al.

0 1
7
,
2
3
,
3
7

14, 16
0

0 1
5
,
2
5
,
3
5
,
4
5
,
5
5

1
3
,
3
3
,
4
7

2
7
,
4
7
,
5
3

1
5
,
2
5
,
3
5
,
4
5
,
5
5

1
5
,
2
5
,
3
5
,
4
5
,
5
5

1
5
,
2
5
,
3
5
,
4
5
,
5
5

1
5
,
2
5
,
3
5
,
4
5
,
5
5

1
5
,
2
5
,
3
5
,
4
5
,
5
5

1
5
,
2
5
,
3
5
,
4
5
,
5
5

1
5
,
2
5
,
3
5
,
4
5
,
5
5

1
5
,
2
5
,
3
5
,
4
5
,
5
5

1
5
,
2
5
,
3
5
,
4
5
,
5
5

1
5
,
2
5
,
3
5
,
4
5
,
5
5

1
5
,
2
5
,
3
5
,
4
5
,
5
5

1
5
,
2
5
,
3
5
,
4
5
,
5
5

1
5
,
2
5
,
3
5
,
4
5
,
5
5

1
5
,
2
5
,
3
5
,
4
5
,
5
5

1
5
,
2
5
,
3
5
,
4
5
,
5
5

1
5
,
2
5
,
3
5
,
4
5
,
5
5

1
5
,
2
5
,
3
5
,
4
5
,
5
5

1
5
,
2
5
,
3
5
,
4
5
,
5
5

1
5
,
2
5
,
3
5
,
4
5
,
5
5

0

24, 26
34, 36
44, 46
54, 56

x1 ∨ ¬x2 ∨ x3 ¬x1 ∨ ¬x3 ∨ x4 x2 ∨ x4 ∨ ¬x5

Fig. 3. An example with five variables and three clauses. White dots are always acces-
sible, no matter the state of the variables (however, note that only one white dot per
column can be used). Red/blue dots are accessible only if the corresponding variable
is set to False / True. Spots without a dot are never accessible. (Color figure online)

if there is an assignment to each uncertain vertex such that the there is a path
from the bottom left to the top right of the diagram that uses only accessible
spots, where a spot is accessible if the assigned heights of the corresponding row
and column are within 1. Figure 3 shows an example.

We can only cross a column corresponding to clause cj if at least one of
the corresponding literals is set to true. The remaining columns can always be
crossed at any row. The repetition is necessary: although all spots are in principle
reachable, only one spot in each column can be reachable at a time. If we have
at least n columns between each pair of clauses, this will always be possible.

Theorem 4. Given two uncertain curves U and V, each given by a sequence of
values and sets of values in R, the problem of choosing a realisation of U and V
minimising the weak discrete Fréchet distance between U and V is NP-hard.

Imprecise Points and Higher Dimensions. The construction above relies on
the ability to select arbitrary sets of values as uncertainty regions. We strengthen
the proof in two ways: we restrict the uncertainty regions to intervals and we use
uncertainty in only one curve. We then extend this result to continuous weak
Fréchet distance in 2D. These results are discussed further in the full version [15].

Theorem 5. Given an uncertain curve U , given by a sequence of values and
intervals in R, and a certain curve V, given by a sequence of values in R, the
problem of choosing a realisation of U minimising the weak discrete Fréchet
distance between U and V is NP-hard.

Corollary 1. Given an uncertain curve U , given by a sequence of points and
regions in R

2, and a certain curve V, given by a sequence of points in R
2, the

problem of choosing a realisation of U minimising the weak Fréchet distance
between U and V is NP-hard.

Computing the Fréchet Distance Between Uncertain Curves in 1D 255

Acknowledgements. Research on the topic of this paper was initiated at the 5th
Workshop on Applied Geometric Algorithms (AGA 2020) in Langbroek, Netherlands.
Maarten Löffler is partially supported by the Dutch Research Council (NWO) under
project no. 614.001.504 and no. 628.011.005. Aleksandr Popov is supported by the
Dutch Research Council (NWO) under project no. 612.001.801. Jérôme Urhausen is
supported by the Dutch Research Council (NWO) under project no. 612.001.651.

References

1. Abellanas, M., et al.: Smallest color-spanning objects. In: auf der Heide, F.M. (ed.)
Algorithms – ESA 2001. LNCS, vol. 2161, pp. 278–289. Springer, Berlin (2001).
https://doi.org/10.1007/3-540-44676-1 23

2. Agarwal, P.K., Avraham, R.B., Kaplan, H., Sharir, M.: Computing the discrete
Fréchet distance in subquadratic time. SIAM J. Comput. 43(2), 429–449 (2014).
https://doi.org/10.1137/130920526

3. Ahmed, M., Wenk, C.: Constructing street networks from GPS trajectories. In:
Epstein, L., Ferragina, P. (eds.) Algorithms – ESA 2012. LNCS, vol. 7501, pp.
60–71. Springer, Berlin (2012). https://doi.org/10.1007/978-3-642-33090-2 7

4. Ahn, H.K., Knauer, C., Scherfenberg, M., Schlipf, L., Vigneron, A.: Computing
the discrete Fréchet distance with imprecise input. Int. J. Comput. Geom. Appl.
22(1), 27–44 (2012). https://doi.org/10.1142/S0218195912600023

5. Alt, H., Godau, M.: Computing the Fréchet distance between two polygonal
curves. Int. J. Comput. Geom. Appl. 5(1), 75–91 (1995). https://doi.org/10.1142/
S0218195995000064

6. Brakatsoulas, S., Pfoser, D., Salas, R., Wenk, C.: On map-matching vehicle track-
ing data. In: Proceedings of the 31st International Conference on Very Large Data
Bases, pp. 853–864. ACM, New York (2005). https://doi.org/10.5555/1083592.
1083691

7. Bringmann, K.: Why walking the dog takes time: Fréchet distance has no strongly
subquadratic algorithms unless SETH fails. In: Proceedings of the 55th Annual
IEEE Symposium on Foundations of Computer Science (FOCS 2014), pp. 661–
670. IEEE, Piscataway, NJ, USA (2014). https://doi.org/10.1109/FOCS.2014.76

8. Bringmann, K., Mulzer, W.: Approximability of the discrete Fréchet distance. J.
Comput. Geom. 7(2), 46–76 (2016). https://doi.org/10.20382/jocg.v7i2a4

9. Buchin, K., et al.: Clustering trajectories for map construction. In: Proceedings of
the 25th International Conference on Advances in Geographic Information Systems
(SIGSPATIAL ’17), pp. 14:1–14:10. ACM, New York (2017). https://doi.org/10.
1145/3139958.3139964

10. Buchin, K., Buchin, M., Knauer, C., Rote, G., Wenk, C.: How difficult
is it to walk the dog? (2007). https://page.mi.fu-berlin.de/rote/Papers/pdf/
How+difficult+is+it+to+walk+the+dog.pdf, presented at EuroCG 2007, Graz,
Austria

11. Buchin, K., Buchin, M., Meulemans, W., Mulzer, W.: Four Soviets walk the dog:
improved bounds for computing the Fréchet distance. Discret. Comput. Geom.
58(1), 180–216 (2017). https://doi.org/10.1007/s00454-017-9878-7

12. Buchin, K., Driemel, A., van de L’Isle, N., Nusser, A.: Klcluster: center-based
clustering of trajectories. In: Proceedings of the 27th International Conference on
Advances in Geographic Information Systems (SIGSPATIAL ’19), pp. 496–499.
ACM, New York (2019). https://doi.org/10.1145/3347146.3359111

https://doi.org/10.1007/3-540-44676-1_23
https://doi.org/10.1137/130920526
https://doi.org/10.1007/978-3-642-33090-2_7
https://doi.org/10.1142/S0218195912600023
https://doi.org/10.1142/S0218195995000064
https://doi.org/10.1142/S0218195995000064
https://doi.org/10.5555/1083592.1083691
https://doi.org/10.5555/1083592.1083691
https://doi.org/10.1109/FOCS.2014.76
https://doi.org/10.20382/jocg.v7i2a4
https://doi.org/10.1145/3139958.3139964
https://doi.org/10.1145/3139958.3139964
https://page.mi.fu-berlin.de/rote/Papers/pdf/How+difficult+is+it+to+walk+the+dog.pdf
https://page.mi.fu-berlin.de/rote/Papers/pdf/How+difficult+is+it+to+walk+the+dog.pdf
https://doi.org/10.1007/s00454-017-9878-7
https://doi.org/10.1145/3347146.3359111

256 K. Buchin et al.

13. Buchin, K., Fan, C., Löffler, M., Popov, A., Raichel, B., Roeloffzen, M.: Fréchet
distance for uncertain curves. In: 47th International Colloquium on Automata,
Languages, and Programming. LIPIcs, vol. 168, pp. 20:1–20:20. Schloss Dagstuhl
– Leibniz-Zentrum für Informatik, Dagstuhl, Germany (2020). https://doi.org/10.
4230/LIPIcs.ICALP.2020.20

14. Buchin, K., Löffler, M., Morin, P., Mulzer, W.: Preprocessing imprecise points
for Delaunay triangulation: simplified and extended. Algorithmica 61(3), 674–693
(2011). https://doi.org/10.1007/s00453-010-9430-0

15. Buchin, K., Löffler, M., Ophelders, T., Popov, A., Urhausen, J., Verbeek, K.: Com-
puting the Fréchet distance between uncertain curves in one dimension. arXiv
preprint (2021). https://arxiv.org/abs/2105.09922

16. Buchin, K., Ophelders, T., Speckmann, B.: SETH says: weak Fréchet distance
is faster, but only if it is continuous and in one dimension. In: Proceedings of
the 30th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA 2019),
pp. 2887–2901. SIAM, Philadelphia, PA, USA (2019). https://doi.org/10.5555/
3310435.3310614

17. Buchin, M., Sijben, S.: Discrete Fréchet distance for uncertain points
(2016). http://www.eurocg2016.usi.ch/sites/default/files/paper 72.pdf, presented
at EuroCG 2016, Lugano, Switzerland

18. Driemel, A., Har-Peled, S., Wenk, C.: Approximating the Fréchet distance for
realistic curves in near linear time. Discret. Comput. Geom. 48(1), 94–127 (2012).
https://doi.org/10.1007/s00454-012-9402-z

19. Fan, C., Luo, J., Zhu, B.: Tight approximation bounds for connectivity with a
color-spanning set. In: Cai, L., Cheng, S.W., Lam, T.W. (eds.) Algorithms and
Computation (ISAAC 2013). LNCS, vol. 8283, pp. 590–600. Springer, Berlin (2013).
https://doi.org/10.1007/978-3-642-45030-3 55

20. Fan, C., Zhu, B.: Complexity and algorithms for the discrete Fréchet distance
upper bound with imprecise input. arXiv preprint (2018). https://arxiv.org/abs/
1509.02576v2

21. Gudmundsson, J., Wolle, T.: Football analysis using spatio-temporal tools.
Comput. Environ. Urban Syst. 47, 16–27 (2014). https://doi.org/10.1016/j.
compenvurbsys.2013.09.004

22. Har-Peled, S., Raichel, B.: The Fréchet distance revisited and extended. ACM
Trans. Algorithms 10(1), 3:1–3:22 (2014). https://doi.org/10.1145/2532646

23. Jiang, M., Xu, Y., Zhu, B.: Protein structure: structure alignment with discrete
Fréchet distance. J. Bioinform. Comput. Biol. 6(1), 51–64 (2008). https://doi.org/
10.1142/s0219720008003278

24. Knauer, C., Löffler, M., Scherfenberg, M., Wolle, T.: The directed Hausdorff
distance between imprecise point sets. Theor. Comput. Sci. 412(32), 4173–4186
(2011). https://doi.org/10.1016/j.tcs.2011.01.039

25. van Kreveld, M., Löffler, M., Mitchell, J.S.B.: Preprocessing imprecise points and
splitting triangulations. SIAM J. Comput. 39(7), 2990–3000 (2010). https://doi.
org/10.1137/090753620

26. Löffler, M.: Data imprecision in computational geometry. Ph.D. thesis. Universiteit
Utrecht (2009). https://dspace.library.uu.nl/bitstream/handle/1874/36022/loffler.
pdf

27. Löffler, M., van Kreveld, M.: Largest and smallest tours and convex hulls for impre-
cise points. In: Arge, L., Freivalds, R. (eds.) Algorithm Theory. LNCS, vol. 4059,
pp. 375–387. Springer, Berlin (2006). https://doi.org/10.1007/11785293 35

https://doi.org/10.4230/LIPIcs.ICALP.2020.20
https://doi.org/10.4230/LIPIcs.ICALP.2020.20
https://doi.org/10.1007/s00453-010-9430-0
https://arxiv.org/abs/2105.09922
https://doi.org/10.5555/3310435.3310614
https://doi.org/10.5555/3310435.3310614
http://www.eurocg2016.usi.ch/sites/default/files/paper_72.pdf
https://doi.org/10.1007/s00454-012-9402-z
https://doi.org/10.1007/978-3-642-45030-3_55
https://arxiv.org/abs/1509.02576v2
https://arxiv.org/abs/1509.02576v2
https://doi.org/10.1016/j.compenvurbsys.2013.09.004
https://doi.org/10.1016/j.compenvurbsys.2013.09.004
https://doi.org/10.1145/2532646
https://doi.org/10.1142/s0219720008003278
https://doi.org/10.1142/s0219720008003278
https://doi.org/10.1016/j.tcs.2011.01.039
https://doi.org/10.1137/090753620
https://doi.org/10.1137/090753620
https://dspace.library.uu.nl/bitstream/handle/1874/36022/loffler.pdf
https://dspace.library.uu.nl/bitstream/handle/1874/36022/loffler.pdf
https://doi.org/10.1007/11785293_35

Computing the Fréchet Distance Between Uncertain Curves in 1D 257

28. Löffler, M., Mulzer, W.: Unions of onions: preprocessing imprecise points for fast
onion decomposition. J. Comput. Geom. 5(1), 1–13 (2014). https://doi.org/10.
20382/jocg.v5i1a1

29. Löffler, M., Snoeyink, J.S.: Delaunay triangulations of imprecise points in linear
time after preprocessing. Comput. Geom. Theory Appl. 43(3), 234–242 (2010).
https://doi.org/10.1016/j.comgeo.2008.12.007

30. Zheng, J., Gao, X., Zhan, E., Huang, Z.: Algorithm of on-line handwriting signature
verification based on discrete Fréchet distance. In: Kang, L., Cai, Z., Yan, X., Liu,
Y. (eds.) International Symposium on Intelligence Computation and Applications.
LNCS, vol. 5370, pp. 461–469. Springer, Berlin (2008). https://doi.org/10.1007/
978-3-540-92137-0 5

https://doi.org/10.20382/jocg.v5i1a1
https://doi.org/10.20382/jocg.v5i1a1
https://doi.org/10.1016/j.comgeo.2008.12.007
https://doi.org/10.1007/978-3-540-92137-0_5
https://doi.org/10.1007/978-3-540-92137-0_5

Finding a Largest-Area Triangle
in a Terrain in Near-Linear Time

Sergio Cabello1 , Arun Kumar Das2(B), Sandip Das2,
and Joydeep Mukherjee3

1 Faculty of Mathematics and Physics, Institute of Mathematics,
Physics and Mechanics, University of Ljubljana, Ljubljana, Slovenia

2 Advanced Computing and Microelectronics Unit, Indian Statistical Institute,
Kolkata, India

3 Department of Computer Science, Ramakrishna Mission Vivekananda Educational
and Research Institute, Howrah, India

Abstract. A terrain is an x-monotone polygon whose lower boundary
is a single line segment. We present an algorithm to find in a terrain
a triangle of largest area in O(n logn) time, where n is the number of
vertices defining the terrain. The best previous algorithm for this problem
has a running time of O(n2).

Keywords: Terrain · Inclusion problem · Geometric optimisation ·
Hereditary segment tree

1 Introduction

An inclusion problem asks to find a geometric object inside a given polygon that
is optimal with respect to a certain parameter of interest. This parameter can be
the area, the perimeter or any other measure of the inner object that plays a role
in the application at hand. Several variants of the inclusion problem come up
depending on the parameter to optimize, the constraints imposed in the sought
object, as well as the assumptions we can make about the containing polygon. For
example, computing a largest-area or largest-perimeter convex polygon inside
a given polygon is quite well studied [5,12,14]. A significant amount of work
has also been done on computing largest-area triangle inside a given polygon
[3,6,10,17]. In the last few years, there have been new efficient algorithms for
the problems of finding a largest-area triangle [15,16], a largest-area or a largest-
perimeter rectangle [4], and a largest-area quadrilateral [18] inside a given convex
polygon. In this paper, we propose a deterministic O(n log n)-time algorithm to
find a largest-area triangle inside a given terrain, which improves the best known
running time of O(n2), presented in [9]. These problems find applications in stock
cutting [7], robot motion planning [19], occlusion culling [14] and many other
domains of facility location and operational research.

S. Cabello—Supported by the Slovenian Research Agency (P1-0297, J1-9109, J1-1693,
J1-2452).

c© Springer Nature Switzerland AG 2021
A. Lubiw et al. (Eds.): WADS 2021, LNCS 12808, pp. 258–270, 2021.
https://doi.org/10.1007/978-3-030-83508-8_19

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-83508-8_19&domain=pdf
http://orcid.org/0000-0002-3183-4126
https://doi.org/10.1007/978-3-030-83508-8_19

Largest Triangle in Terrain 259

base

upper boundary

(x1, y1)

(x0, y0))(x1, y0(x0, y0)

shear
transformation

Fig. 1. Two terrains. The right one is obtained from the left one by a shear transfor-
mation to make the base horizontal

A polygon P is x-monotone if it has no vertical edge and each vertical line
intersects P in an interval, which may be empty. An x-monotone polygon has
a unique vertex with locally minimum x-coordinate, that is, a vertex whose
two adjacent vertices have larger x-coordinate; see for example [2, Lemma 3.4].
Similarly, it has a unique vertex with locally maximum x-coordinate. If we split
the boundary of an x-monotone polygon at the unique vertices with maximum
and minimum x-coordinate, we get the upper boundary and the lower boundary
of the polygon. Each vertical line intersects each of those boundaries at most
once.

A terrain is an x-monotone polygon whose lower boundary is a single line
segment, called the base of the terrain. The upper boundary of the terrain is con-
necting the endpoints of the base and lies above the base: each vertical ray from
the base upwards intersects the upper boundary at exactly one point. Figure 1
shows two examples.

In this work, we focus on the problem of finding inside a terrain a triangle of
largest area. We will show that when the terrain has n vertices, such a largest-
area triangle can be computed in O(n log n) time. This is an improvement over
the algorithm of Das et al. [9], which has a running time of O(n2). It should be
noted that we compute a single triangle with largest area, even if there are more
optimal solutions.

To obtain our new algorithm we build on the approach and geometric insights
of [9]. More precisely, in that work, there is a single type of optimal solution that
takes O(n2) time, while all the other cases can be handled in O(n log n) time. We
show that the remaining case also can be solved in O(n log n) time combining
shortest path trees in polygons [13], hereditary segment trees [8], search for row
maxima in monotone matrices [1], and additional geometric insights.

Our new time bound, O(n log n), is a significant improvement over the best
previous result. Nevertheless, the problem could be solvable in linear time. Note
that the problem cannot be solved in sublinear time because we need to scan all
the vertices of the polygon: any vertex of the terrain that is not scanned could
be arbitrarily high and be the top vertex of a triangle with arbitrarily large area.
We leave closing this gap between O(n log n) and Ω(n) as an interesting open
problem for future research.

260 S. Cabello et al.

2 Preliminaries

Without loss of generality, we will assume that the base of the terrain is hori-
zontal ; the general case reduces to this one. Indeed, if the endpoints of the base
are (x0, y0) and (x1, y1), where it must be x0 �= x1, then the shear mapping
(x, y) �→

(
x, y − (x − x0) y1−y0

x1−x0

)
transforms the base to the horizontal segment

connecting (x0, y0) to (x1, y0). Since the mapping also transforms each vertical
segment to a vertical segment, the terrain gets mapped to a terrain with a hor-
izontal base; see Fig. 1. Since the area of any measurable region of the plane
is not changed with this affine transformation, because the determinant of the
Jacobian matrix is 1, it suffices to find the triangle of largest area in the resulting
polygon.

For simplicity, we will assume that no three vertices in the terrain are
collinear. This property is invariant under shear transformations. The assump-
tion can be lifted using simulation of simplicity [11]. More precisely, we can
assume that each vertex vi = (xi, yi) is replaced by a vertex v′

i = (xi, yi + εi)
for a sufficiently small ε > 0. These transformations break all collinearities if ε
is sufficiently small. The replacement is not actually performed, but simulated.
More precisely, whenever the vertices vi, vj and vk are collinear, to decide their
relative position after the replacements we have to check which one would be
the sign of the determinant

∣
∣
∣
∣
∣
∣

1 xi yi + εi

1 xj yj + εj

1 xk yk + εk

∣
∣
∣
∣
∣
∣

=

∣
∣
∣
∣
∣
∣

1 xi yi

1 xj yj

1 xk yk

∣
∣
∣
∣
∣
∣
+

∣
∣
∣
∣
∣
∣

1 xi εi

1 xj εj

1 xk εk

∣
∣
∣
∣
∣
∣

=

∣
∣
∣
∣
∣
∣

1 xi εi

1 xj εj

1 xk εk

∣
∣
∣
∣
∣
∣
.

For example, if i < j and i < k, then εi � εj and εi � εk, which means that, if ε is

positive and sufficiently small, the determinant has the sign of
∣
∣
∣
∣
1 xj

1 xk

∣
∣
∣
∣ = xk −xj .

The other cases are similar.
A vertex of a terrain is convex if the internal angle between the edges incident

to this vertex is less than 180◦. If the angle is greater than 180◦, then the vertex
is reflex. Angles of 180◦ do not occur because of our assumption of no 3 collinear
points. The endpoints of the base of the terrain are called base vertices. The one
with smallest x-coordinate is the left base vertex and is denoted by B�; the one
with largest x-coordinate is the right base vertex and is denoted by Br. The base
vertices are convex.

3 Previous Geometric Observations

In this section, we state several observations and properties given in [9], without
repeating their proofs here. The first one talks about the structure of an optimal
solution.

A triangle contained in the terrain with an edge on the base of the terrain
is a grounded triangle. For a grounded triangle, the vertex not contained in the
base of the terrain is the apex, and the edges incident to the apex are the left

Largest Triangle in Terrain 261

side and the right side; the right side is incident to the vertex of the base with
larger x-coordinate.

Lemma 1 (Lemmas 1 and 2, Corollary 1 in [9]). In each terrain there is
a largest area triangle T satisfying all of the following properties:

(a) the triangle T is grounded;
(b) the apex of T lies on the boundary of the terrain or each of the left and right

sides of T contains two vertices of the terrain.

Note that property (b) splits into two cases. An option is that the apex of
the grounded triangle is on the boundary of the terrain. The other option is that
each of the edges incident to the apex contains two vertices of the terrain. The
first case is already solved in O(n log n) time.

Lemma 2 (Implicit in [9]; see the paragraph before Theorem 1). Given
a terrain with n vertices, we can find in O(n log n) time the grounded triangle
with largest area that has its apex on the boundary of the terrain.

The key insight to obtain Lemma 2 is to decompose the upper boundary of
the terrain into O(n) pieces with the following property: for any two points p, p′

in the same piece, the largest grounded triangles with apex at p and with apex
at p′ have the same vertices of the terrain on the left and right sides. We refer
to [9] for further details.

It remains the case when the apex is not contained on the boundary of the
terrain. This means that each side of the optimal triangle contains two vertices
of the terrain. There are two options: either both vertices contained in a side are
reflex vertices, or one vertex is reflex and the other is a vertex of the base.

Recall that B� is the left endpoint of the base of the terrain. Consider the
visibility graph of the vertices of the terrain and let T� be the shortest path tree
from the vertex B� in the visibility graph. We regard T� as a geometric object,
that is, a set of segments connecting vertices of the terrain. We orient the edges
in T� away from the root, consistent with the direction that the shortest path
from B� would follow them; see Fig. 2.

Consider an (oriented) edge p → q of T�; the point p is closer to B� than q
is; it may be that p = B�. When q is a reflex vertex, the forward prolongation of
p → q is the segment obtained by extending the directed segment p → q until it
reaches the boundary of the terrain. (The interior of the segment pq is not part
of the prolongation.) Each point on the forward prolongation is further from B�

than q is. The backward prolongation of p → q is the extension of p → q from p
in the direction q → p until it reaches the boundary of the terrain. (A forward
prolongation would be empty, is q is a convex vertex. The backward prolongation
is empty if p = B�.)

Let L be the set of non-zero-length forward prolongations of segments p → q
of T� with q a reflex vertex. See Fig. 2. A similar construction is done to obtain a
shortest-path tree Tr from the right endpoint Br of the base of the terrain, the
prolongations of its edges, and the set R of forward prolongations for the edges
of Tr.

262 S. Cabello et al.

Fig. 2. The tree T� with blue dashed arcs. The set L, of forward prolongations of the
edges of E(T�), is in solid, thick red. In dashed-dotted purple is the set of backward
prolongations for the edges defining L. (Color figure online)

Using that the terrain is an x-monotone polygon and the lower boundary is
a single segment, one obtains the following properties.

Lemma 3 (Lemmas 3, 4 and 5 in [9]). The backward prolongation of each
edge of E(T�) ∪ E(Tr) has an endpoint on the base of the terrain; it may be an
endpoint of the base. The segments in E(T�) have positive slope and the segments
in E(Tr) have negative slope.

If the apex of the grounded triangle with largest area is not on the boundary
of the terrain, then there is an edge s� of L and an edge sr of R such that: the left
side of the triangle is collinear with s�, the right side of the triangle is collinear
with sr, and the apex of the triangle is the intersection s� ∩ sr.

4 New Algorithm

We are now going to describe the new algorithm. In fact, we describe the missing
piece in the previous approach of [9]. Because of Lemma 1, it suffices to search
the grounded triangle of largest area. We have two cases to consider: the apex
may be on the boundary of the terrain or not. The first case can be handled
using Lemma 2. To approach the second case, we use Lemma 3: in such a case
the apex of the triangle belongs to A = {� ∩ r | � ∈ L, r ∈ R}. We refer to A as
the set of candidate apices.

We start providing a simple property for L and R.

Lemma 4. The edges of L are pairwise interior-disjoint and can be computed
in O(n) time. The same holds for R.

Proof. Consider the forward prolongation qt ∈ L of the oriented edge p → q
of T�. The shortest path from B� to any point on qt consists of the shortest

Largest Triangle in Terrain 263

1 2 3 4 5 6 7 8 9 10 11

Iv

Jv
�1

�2

�3

r3

r2

r1

Fig. 3. Atomic intervals.

path from B� to q followed by a portion of qt. It follows that the edges of L are
contained in shortest paths from B� and thus they are pairwise disjoint. (They
cannot overlap because of our assumption on general position.)

Guibas et al. [13] show how to compute in O(n) time the shortest path tree T�

from B� and the forward extensions L. This is the extended algorithm discussed
after their Theorem 2.1, where they decompose the polygon into regions such
that the shortest path to any point in the region goes through the same vertices
of the polygon. 	

We use Lemma 4 to compute L and R in linear time. Note that L ∪ R has
O(n) segments.

We use a hereditary segment tree, introduced by Chazelle et al. [8], as follows.
We decompose the x-axis into intervals using the x-coordinates of the endpoints
of the segments in L∪R. We disregard the two unbounded intervals: the leftmost
and the rightmost. The resulting intervals are called the atomic intervals. See
Fig. 3 for an example where the atomic intervals are marked as 1, 2, . . . , 11. We
make a height-balanced binary tree T such that the i-th leaf represents the i-th
atomic interval from left to right; see Fig. 4. For each node v of the tree T , we
define the interval Iv as the union of all the intervals stored in the leaves of T
below v. Alternatively, for each internal node v, the interval Iv is the union of
the intervals represented by its two children. In the two-dimensional setting, v
represents the vertical strip bounded by the vertical lines passing through the
end points of Iv. Let us denote this strip by Jv. In Fig. 3, Jv is shaded in grey
for the highlighted node in Fig. 4.

Consider a node v of T and denote by w its parent. We maintain in v four
lists of segments: Lv, Rv, Lh

v and Rh
v . The list Lv contains all the segments � ∈ L

such that the x-projection of � contains Iv but does not contain Iw. Similarly, Rv

contains the segments r ∈ R whose projection onto the x-axis contains Iv but

264 S. Cabello et al.

1 2 3 4 5 6 7 8 9 10 11
Rv = r3 Rv = r1 Rv = r1 Rv = r2

Lv = �1 Lv = �3

Lh
v = �3

Rh
v = r1

Lv = �2; Lh
v = �1

Rh
v = r3

Lh
v = �1, �2, �3

Rh
v = r1, r2, r3

Lh
v = �1, �2, �3

Rv = r3; Rh
v = r1, r2

Lh
v = �3

Rh
v = r2

Lv = �2; Lh
v = �1

Rv = r2; Rh
v = r1

Lv = �3; Lh
v = �1, �2

Rh
v = r3

Lv = �1
Rh

v = r1

Fig. 4. Example of hereditary segment tree for Fig. 3. All the lists that are not indicated
are empty.

does not contain Iw. We call Lv and Rv the standard lists. The list Lh
v contains

the members of Lu for all proper descendants u of v in T , that is, all descendants
of v excluding v itself. Similarly, Rh

v contains the members of Ru for all proper
descendants u of v in T . We call Lh

v and Rh
v the hereditary lists. We put only

one copy of a segment in a hereditary list of a node, even if it is stored in more
than one of its descendants. See Fig. 4 for an example. All the members of the
standard lists of each node are stored inside the relevant node. The members of
L are colored as red and the members of R are colored as blue.

Chazelle et al. [8] noted that
∑

v

(
|Lv| + |Rv| + |Lh

v | + |Rh
v |

)
= O(n log n). (1)

Indeed, each single segment s of L∪R appears in O(log n) standard lists, namely
in at most two nodes at each level. Moreover, the nodes that contain s in their
standard lists have O(log n) ancestors in total, namely the search nodes on the
search path to the extreme atomic intervals contained in projection of s. It
follows that s appears in O(log n) hereditary lists.

For each node v of T we define the intersections

Av = {� ∩ r | � ∈ Lv, r ∈ Rv, x(� ∩ r) ∈ Iv}∪
{� ∩ r | � ∈ Lh

v , r ∈ Rv, x(� ∩ r) ∈ Iv}∪
{� ∩ r | � ∈ Lv, r ∈ Rh

v , x(� ∩ r) ∈ Iv}.

The set Av is the set of candidate apices defined by the node v.

Largest Triangle in Terrain 265

Lemma 5. The set of candidate apices, A, is the (disjoint) union of the sets
Av, where v iterates over the nodes of T .

Proof. Consider a pair of intersecting segments � ∈ L and r ∈ R, and let u be the
leaf of T such that the x-coordinate of � ∩ r is contained in Iu. We walk from u
upwards along the tree until the first node v with the property that � ∈ Lv ∪ Lh

v

and r ∈ Rv ∪ Rh
v is reached. It cannot be that � ∈ Lh

v and r ∈ Rh
v because

otherwise both � and r would be in the lists of the descendant of v towards the
leaf u. Moreover, the intersection point � ∩ r has its x-coordinate in Iv because
x(� ∩ r) ∈ Iu ⊆ Iv. It follows that � ∩ r ∈ Av. 	

We have to find the best apex in A. Since A =
⋃

v Av because of Lemma 5,
it suffices to find the best apex in Av for each v. For this we consider each v
separately and look at the interaction between the lists Lv and Rv, the lists Lh

v

and Rv, and the lists Rh
v and Lv.

4.1 Interaction Between Two Standard Lists

Consider a fixed node v and its standard lists Lv and Rv. The x-projection of
each segment in Lv ∪ Rv is a superset of the interval Iv, and thus no endpoint
of such a segment lies in the interior Jv.

Since the segments in Lv are pairwise interior-disjoint (Lemma 4) and they
cross the vertical strip Jv from left to right, we can sort them with respect to
their y-order within the vertical strip Jv. We sort them in decreasing y-order.
Henceforth, we regard Lv as a sorted list. Thus, Lv contains �1, . . . , �|Lv| and,
whenever 1 ≤ i < j ≤ |Lv|, the segment �i is above �j . We do the same for
Rv, also by decreasing y-coordinate. Thus, Rv is a sorted list r1, . . . , r|Rv| and,
whenever 1 ≤ i < j ≤ |Rv|, the segment ri is above rj .

Because of Lemma 3, each segment s of L ∪ R can be prolonged inside the
terrain until it hits the base of the terrain. Indeed, such a prolongation con-
tains an edge of E(T�) ∪ E(Tr) by definition. Let b(s) be the point where the
prolongation of s intersects the base of the terrain.

Lemma 6. If 1 ≤ i < j ≤ |Lv|, then b(�i) lies to the right of b(�j). If 1 ≤ i <
j ≤ |Rv|, then b(ri) lies to the left of b(rj).

Proof. Let si be the longest segment that contains �i and is contained in the
terrain; let sj be the longest segment that contains �j that is contained in the
terrain. Thus b(�i) is an endpoint of si and b(�j) is an endpoint of sj . Assume, for
the sake of reaching a contradiction, that b(�i) lies to the left of b(�j). This means
si and sj are disjoint, and thus si is completely above sj for any x-coordinate
that they share. Then sj cannot go through any vertex of the terrain to the left
of Jv, as such a vertex would be below si, which is contained in the terrain.
By construction of the hereditary segment tree Iv is a proper subset of the x-
projections of �j and none of the end points of �j belongs to interior of Jv. This
means the left end point of the �j should be to the left of Jv. Hence we arrive
at the contradiction.

The argument for segments of R is similar. 	

266 S. Cabello et al.

Once Lv and Rv are sorted, we can detect in O(|Lv| + |Rv|) time which
segments of Lv do not cross any segment of Rv inside Jv. Indeed, we can merge
the lists to obtain the order π� of Lv ∪ Rv along the left boundary of Jv and the
order πr along the right boundary of Jv. Then we note that �i does not intersect
any segment of Rv inside Jv if and only if the ranking of �i is the same in π�

and in πr. We remove from Lv the segments that do not cross any segment of
Rv inside Jv. To avoid introducing additional notation, we keep denoting to the
resulting list as Lv.

Within the same running time O(|Lv| + |Rv|) time we can find for each
�i ∈ Lv an index ψ(i) such that �i and rψ(i) intersect inside Jv. Indeed, if �i

crosses some segment of Rv inside Jv, then it must cross one of the segments of
Rv that is closest to �i in the order π� (the predecessor or the successor from
Rv). These two candidates for all �i can be computed with a scan of the order
π�.

Consider the |Lv| × |Rv| matrix M = (M [i, j])i,j defined as follows. If �i and
rj intersect in Jv, then M [i, j] is the area of the grounded triangle with apex
�i ∩ rj and sides containing �i and rj . If �i and rj do not intersect in Jv, and
j < ψ(i), then M [i, j] = jε for and infinitesimal ε > 0. In the remaining case,
when �i and rj do not intersect in Jv but ψ(i) < j, then M [i, j] = −jε for the
same infinitesimal ε > 0. Thus, a generic row of M , when we walk it from left to
right, has small positive increasing values until it reaches values defined by the
area of triangles, and then it starts taking small negative values that decrease.
The matrix M is not constructed explicitly, but we work with it implicitly. Given
a pair of indices (i, j), we can compute M [i, j] in constant time.

Note that within each row of M the non-infinitesimal elements are contigu-
ous. Indeed, Whether a segment of Lv and a segment of Rv intersect in Jv

depends only on the orders π� and πr along the boundaries of Jv, which is the
same as the order along the lists Lv and Rv. It also follows that the entries of
M defined as areas of triangles form a staircase such that in lower rows it moves
towards the right.

The following property shows that M is totally monotone. In fact, the lemma
restates the definition of totally monotone matrix.

Lemma 7. Consider indices i, i′, j, j′ such that 1 ≤ i < i′ ≤ |Lv| and 1 ≤ j <
j′ ≤ |Rv|. If M [i′, j] > M [i′, j′], then M [i, j] > M [i, j′].

Proof. The cases when si′ and �j do not intersect or si and �j′ do not intersect
are treated by a case analysis. For example, si′ and �j do not intersect, then
M [i′, j] > M [i′, j′] can only occur when ψ(i′) < j < j′. In such a case �i

cannot intersect rj neither rj′ and we must have also ψ(i) < j < j′. Thus
M [i, j] = −jε > −j′ε = M [i, j′].

The argument when si and �j′ do not intersect is similar, but using the
contrapositive. If M [i, j] ≤ M [i, j′], then both j, j′ must be to the left of ψ(i)
and si dos not intersect rj nor rj′ . In such a case �i′ cannot cross sj nor sj′ .

It remains the interesting case, when �′i and rj intersect and also �i and rj′

intersect. Using that �i is above �i′ , that rj is above rj′ , that �i′ intersects rj ,

Largest Triangle in Terrain 267

and that �i intersects rj′ , we conclude that �i also intersects rj and that �i′ also
intersects rj′ . For this we just have to observe the relative order of the endpoints
of the segments restricted to the boundaries of Jv.

A2

A3

A5

A6
A4

Jv

b(�i′) b(�i) b(rj)

p� pr

ai,j′

ai,j

ai′,j

b(rj′)

ai′,j′

rj′

rj

�i′

�i

A1

Fig. 5. Scenario in the proof of Lemma 7.

Next we use elementary geometry, as follows. See Fig. 5. Because of Lemma 6,
the extensions of �i and �i′ inside the terrain intersect in a point to the left of
Jv, which we denote by p�. Similarly, the extensions of rj and rj′ intersect in a
point pr to the right of Jv.

For each (α, β) ∈ {i, i′} × {j, j′}, let aα,β be the intersection point of �α and
rϕ(β). Thus, we have defined four points, namely ai,j , ai,j′ , ai′,j , ai′,j′ . We have
argued before that these four points indeed exist, and they lie in Jv. We also
define the triangle Tα,β as the grounded triangle with sides containing �α and
rϕ(β) (and thus apex aα,β).

We define the following areas

A1 = area
(
(b(�i′), b(�i), p�,)

)
, A2 = area

(
(p�, ai′,j′ , ai,j′)

)

A3 = area
(�(ai,j′ , ai′,j′ , ai′,j , ai,j)

)
, A4 = area

(�(b(�i), b(rj), pr, ai′,j′ , p�)
)

A5 = area
(
(ai′,j′ , pr, ai′,j)

)
, A6 = area

(
(b(rj), b(rj′), pr)

)
.

The condition M [i′, j] > M [i′, j′] translates into

A1 + A4 + A5 = M [i′, j] > M [i′, j′] = A1 + A4 + A6,

268 S. Cabello et al.

which implies that A5 > A6. We then have

M [i, j] = A2 + A3 + A4 + A5 > A2 + A3 + A4 + A6 > M [i, j′]

as we wanted to show. 	

For each index i with 1 ≤ i ≤ |Lv|, let ϕ(i) be the smallest index
of columns where the maximum in the ith arrow of M is attained. Thus,
Mi,ϕ(i) = max{Mi,j | 1 ≤ j ≤ |Rv|}. Since M is totally monotone, we can
compute the values ϕ(i) for all 1 ≤ i ≤ |Lv| using the SWAMK algorithm of
Aggarwal et al. [1]. This step takes O(|Lv| + |Rv|) time.

We return the maximum among the values M [i, ϕ(i)]. In total we have spent
O(|Lv| + |Rv|) time, assuming that Lv and Rv were in sorted form.

4.2 Interaction Between a Standard List and a Hereditary List

Consider now a fixed node v, its standard list Lv and its hereditary list Rh
v . The

x-projection of each segment in Lv is a superset of the interval Iv, and thus no
endpoint of such a segment lies in the interior of Jv. However, the x-projection
of a segment in Rh

v has non empty intersection with the interval Iv, but it is not
a superset of Iv. This implies that each segment of Rh

v has at least one of its end
points in the interior of Jv.

Observation 1. No endpoint of any segment rj ∈ Rh
v can be present inside the

strip Jv and below any segment of Lv.

Proof. The vertical upwards ray from the endpoint is outside the terrain, because
the endpoint is on the boundary of the terrain, while the segments of Lv are
contained in the terrain. 	

We only consider those segments of Rh
v which have their right endpoint on

the exterior or on the right boundary of Jv and this right endpoint lies below
the right endpoint of the topmost member of Lv in Jv. These are the members
who participate in forming a feasible grounded triangle by interacting with the
members of Lv.

Observation 2. Let p be the point where the top most member of Lv intersects
the right boundary of Jv. If r′

i ∈ Rh
v intersects the right boundary of Jv below p

then r′
i must have its left end point above the top most member of Lv.

Proof. If any of such left end point q is present below any segment of Lv then
the perpendicular through that point on the terrain base intersects the members
of Lv, who are lying above q, outside the terrain. This is a contradiction as lies
on the boundary of the terrain. 	

Like before, we assume that the members of Lv are sorted by decreasing y-
order. We also assume that the relevant elements of Rh

v are sorted by y-coordinate
along their intersection with the right boundary of Jv.

Largest Triangle in Terrain 269

Using Observations 1 and 2 and an argument similar to Lemma7 we can
establish that these sorted members satisfy a totally monotone property. Indeed,
the segments of Rh

v do not cross the whole Jv but they cannot finish with an
endpoint in Jv below an element of Lv. This suffices to argue that the crossings
used in the proof of Lemma7 exist. Thus finding a largest area grounded trian-
gle formed by the members of the sorted lists Lv and Rh

v needs O(|Lv| + |Rh
v |)

amount of time. We can also handle the interaction between Rv and Lh
v in a sim-

ilar fashion. This finishes the description of the interaction between a standard
and a hereditary list in a node v.

4.3 Putting Things Together

Because of Lemma 5, by handling the interactions between the standard lists at
each node v of T and between the standard list and each of the hereditary lists,
we find an optimal triangle whose apex lies in A.

To get the lists sorted at each node, we can use the same technique that
Chazelle et al. [8] used to improve their running time. We define a partial order
in the segments of L: a segment � is a predecessor of �′ if they share some
x-coordinate and � is above �′ at the common x-coordinate, or if they do not
share any x-coordinate and � is to the left of �′. One can see that this definition
is transitive and can be extended to a total order. This partial order can be
computed with a sweep line algorithm and extended to a total order using a
topological sort. Once this total order is computed at the root, it can be passed
to its descendants in time proportional to the lists. (We compute this for L and
for R separately.)

Theorem 1. A largest area triangle inside a terrain with n vertices can be found
in O(n log n) time.

Proof. The computation of the total order extending the above-below relation
takes O(n log n) for L and for R. After this, we can pass the sorted lists to each
child in time proportional to the size of the lists. Thus, we spend additional
O(|Lv| + |Rv| + |Lh

v | + Rh
v |) time per node v of the hereditary tree to get the

sorted lists.
Once the lists at each node v of the hereditary tree are sorted, we spend

O(|Lv| + |Rv| + |Lh
v | + Rh

v |) time to handle the apices of Av, as explained above.
Using (1), the total time over all nodes together is O(n log n). 	

References

1. Aggarwal, A., Klawe, M., Moran, S., Shor, P., Wilber, R.: Geometric applications
of a matrix-searching algorithm. Algorithmica 2, 195–208 (1987)

2. de Berg, M., Cheong, O., van Kreveld, M.J., Overmars, M.H.: Computational
Geometry: Algorithms and Applications, 3rd edn. Springer, Heidelberg (2008)

3. Boyce, J.E., Dobkin, D.P., Drysdale, III, R.L., Guibas, L.J.: Finding extremal
polygons. In: STOC, pp. 282–289. ACM (1982)

270 S. Cabello et al.

4. Cabello, S., Cheong, O., Knauer, C., Schlipf, L.: Finding largest rectangles in
convex polygons. Comput. Geom. Theory Appl. 51(C), 67–74 (2016)

5. Cabello, S., Cibulka, J., Kynčl, J., Saumell, M., Valtr, P.: Peeling potatoes near-
optimally in near-linear time. SIAM J. Comput. 46(5), 1574–1602 (2017)

6. Chandran, S., Mount, D.: A parallel algorithm for enclosed and enclosing triangles.
Int. J. Comput. Geometry Appl. 2, 191–214 (1992)

7. Chang, J.S., Yap, C.K.: A polynomial solution for the potato-peeling problem.
Discrete Comput. Geometry 1(2), 155–182 (1986)

8. Chazelle, B., Edelsbrunner, H., Guibas, L., Sharir, M.: Algorithms for bichromatic
line-segment problems polyhedral terrains. Algorithmica 11, 116–132 (1994)

9. Das, A.K., Das, S., Mukherjee, J.: Largest triangle inside a terrain. Theoret. Com-
put. Sci. 858, 90–99 (2021)

10. Dobkin, D.P., Snyder, L.: On a general method for maximizing and minimizing
among certain geometric problems. In: SFCS, pp. 9–17 (1979)

11. Edelsbrunner, H., Mücke, E.P.: Simulation of simplicity: a technique to cope with
degenerate cases in geometric algorithms. ACM Trans. Graph. 9(1), 66–104 (1990)

12. Goodman, J.E.: On the largest convex polygon contained in a non-convex n-gon,
or how to peel a potato. Geom. Dedicata. 11(1), 99–106 (1981)

13. Guibas, L.J., Hershberger, J., Leven, D., Sharir, M., Tarjan, R.E.: Linear-time
algorithms for visibility and shortest path problems inside triangulated simple
polygons. Algorithmica 2, 209–233 (1987)

14. Hall-Holt, O., Katz, M.J., Kumar, P., Mitchell, J.S.B., Sityon, A.: Finding large
sticks and potatoes in polygons. In: SODA, pp. 474–483 (2006)

15. van der Hoog, I., Keikha, V., Löffler, M., Mohades, A., Urhausen, J.: Maximum-
area triangle in a convex polygon, revisited. Inf. Process. Lett. 161, 105943 (2020)

16. Kallus, Y.: A linear-time algorithm for the maximum-area inscribed triangle in a
convex polygon (2017, preprint). https://arxiv.org/abs/1706.03049

17. Melissaratos, E., Souvaine, D.: Shortest paths help solve geometric optimization
problems in planar regions. SIAM J. Comput. 21(4), 601–638 (1992)

18. Rote, G.: The largest contained quadrilateral and the smallest enclosing parallel-
ogram of a convex polygon (2019, preprint). https://arxiv.org/abs/1905.11203

19. Toth, C.D., O’Rourke, J., Goodman, J.E.: Handbook of Discrete and Computa-
tional Geometry. CRC Press, Boca Raton (2017)

https://arxiv.org/abs/1706.03049
https://arxiv.org/abs/1905.11203

Planar Drawings with Few Slopes of
Halin Graphs and Nested Pseudotrees

Steven Chaplick1, Giordano Da Lozzo2(B), Emilio Di Giacomo3,
Giuseppe Liotta3, and Fabrizio Montecchiani3

1 Maastricht University, Maastricht, The Netherlands
2 Roma Tre University, Rome, Italy
giordano.dalozzo@uniroma3.it

3 University of Perugia, Perugia, Italy

Abstract. The planar slope number psn(G) of a planar graph G is the
minimum number of edge slopes in a planar straight-line drawing of G. It
is known that psn(G) ∈ O(cΔ) for every planar graph G of degree Δ. This
upper bound has been improved to O(Δ5) if G has treewidth three, and
to O(Δ) if G has treewidth two. In this paper we prove psn(G) ∈ Θ(Δ)
when G is a Halin graph, and thus has treewidth three. Furthermore, we
present the first polynomial upper bound on the planar slope number for
a family of graphs having treewidth four. Namely we show that O(Δ2)
slopes suffice for nested pseudotrees.

1 Introduction

Minimizing the number of slopes used by the edge segments of a straight-line
graph drawing is a well-studied problem, which has received notable attention
since its introduction by Wade and Chu [22]. A break-through result by Keszegh,
Pach and Pálvölgyi [18] states that every planar graph of maximum degree Δ
admits a planar straight-line drawing using at most 2O(Δ) slopes. That is, the
planar slope number of planar graphs is bounded by a function of Δ, which
answers a question of Dujmović et al. [14]. In contrast, the slope number of non-
planar graphs has been shown to be unbounded (with respect to Δ) even for
Δ = 5 [3,21]. Besides the above mentioned upper bound, Keszegh et al. [18] also
prove a lower bound of 3Δ−6, leaving as an open problem to reduce the large gap
between upper and lower bounds on the planar slope number of planar graphs.

The open problem by Keszegh et al. motivated a great research effort to
establish improvements for subclasses of planar graphs. Jeĺınek et al. [17] study
planar partial 3-trees and show that their planar slope number is at most O(Δ5).
Di Giacomo et al. [12] study a subclass of planar partial 3-trees (those admitting
an outer 1-planar drawing) and present an O(Δ2) upper bound for the planar

This work began at the Graph and Network Visualization Workshop 2019. Research by
GDL was partially supported by MIUR Project “AHeAD” under PRIN 20174LF3T8,
by H2020-MSCA-RISE project 734922 – “CONNECT”, and by Roma Tre University
Azione 4 Project “GeoView”.

c© Springer Nature Switzerland AG 2021
A. Lubiw et al. (Eds.): WADS 2021, LNCS 12808, pp. 271–285, 2021.
https://doi.org/10.1007/978-3-030-83508-8_20

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-83508-8_20&domain=pdf
https://doi.org/10.1007/978-3-030-83508-8_20

272 S. Chaplick et al.

slope number of these graphs. Lenhart et al. [20] prove that the planar slope
number of a partial 2-tree is at most 2Δ (and some partial 2-trees require at
least Δ slopes). Knauer et al. [19] focus on outerplanar graphs (a subclass of
partial 2-trees) and establish a tight bound of Δ − 1 for the (outer)planar slope
number of this graph class. Finally, Di Giacomo et al. [13] prove that the planar
slope number of planar graphs of maximum degree three is four.

Fig. 1. A nested pseudotree: the edges
of its pseudotree are bold and the cycle
of its pseudotree is red. The vertices
along and inside the blue cycle induce
a cycle-pseudotree, defined in Sect. 4.

An algorithmic strategy to tackle the
study of the planar slope number prob-
lem can be based on a peeling-into-levels
approach. This approach has been suc-
cessfully used to address the planar slope
number problem for planar 3-trees [17], as
well as to solve several other algorithmic
problems on (near) planar graphs, includ-
ing determining their pagenumber [4,5,
15,23], computing their girth [6], and
constructing radial drawings [11]. In the
peeling-into-levels approach the vertices
of a plane graph are partitioned into lev-
els, based on their distance from the outer
face. The vertices in each level induce an
outerplane graph and two consecutive lev-
els form a 2-outerplane graph. One key ingredient is an algorithm that deals with
a 2-outerplane graph with possible constraints on one of the two levels. Another
ingredient is an algorithm to extend a partial solution by introducing the vertices
of new levels, while taking into account the constraints defined in the already-
considered levels.

In an attempt to exploit the peeling-into-levels approach to prove a polyno-
mial upper bound on the planar slope number of general planar graphs, one must
be able to show a polynomial bound on the planar slope number of 2-outerplanar
graphs. In this paper we take a first step in this direction by focusing on a
meaningful subfamily of 2-outerplanar graphs, namely the nested pseudotrees.
A nested pseudotree is a graph with a planar embedding such that when remov-
ing the vertices of the external face one is left with a pseudotree, that is, a
connected graph with at most one cycle. See Fig. 1 for an example. The family
of nested pseudotrees generalizes the well studied 2-outerplanar simply nested
graphs and properly includes the Halin graphs [16], the cycle-trees [9], and the
cycle-cycles [9]. Simply nested graphs were first introduced by Cimikowski [8],
who proved that the inner-triangulated ones are Hamiltonian, and have been
extensively studied in various contexts, such as universal point sets [1,2], square-
contact representations [9], and clustered planarity [10]. Generally, nested pseu-
dotrees have treewidth four and, as such, the best prior upper bound on their
planar slope number is the one by Keszegh et al., which is exponential in Δ. Halin
graphs and cycle-trees have instead treewidth three, and therefore the previously
known upper bound for these graphs is O(Δ5), as shown by Jeĺınek et al. [17].

Planar Drawings with Few Slopes of Halin Graphs and Nested Pseudotrees 273

We prove significantly better upper bounds for all the above mentioned graph
classes. Our main results are the following.

Theorem 1. Every degree-Δ Halin graph has planar slope number O(Δ).

Theorem 2. Every degree-Δ nested pseudotree has planar slope number O(Δ2).

The proofs of Theorems 1 and 2 are constructive and are based on a unified
approach. The problem is easily reduced to the study of 2-connected instances.
We then use inductive techniques to further reduce the problem to the study of
triconnected instances, which are eventually treated by means of a suitable data
structure called SPQ-tree [9]. Statements marked with (�) are proven in [7].

2 Preliminaries

Notation. Let G be a graph. The degree degG(v) of a vertex v of G is the
number of neighbors of v in G. The degree Δ(G) of G is maxv∈G degG(v). When
clear from the context, we omit the specification of G in the above notation and
say that G is a degree-Δ graph. Let a, b, and c be points in R

2; we denote by
ab the straight-line segment whose endpoints are a and b, and by �(abc) the
triangle whose corners are a, b, and c.

Nested Pseudotrees. A planar drawing of a graph is outerplanar if all the
vertices are incident to the outer face, and 2-outerplanar if removing the ver-
tices of the outer face yields an outerplanar graph. A graph is 2-outerplanar
(outerplanar) if it admits a 2-outerplanar drawing (outerplanar drawing). In
a 2-outerplanar drawing, vertices incident to the outer face are called external,
and all other vertices are internal. A 2-outerplane graph is a 2-outerplanar graph
with a planar embedding inherited from a 2-outerplanar drawing. A 2-outerplane
graph is simply nested if its external vertices induce a chordless cycle and its
internal vertices induce either a chordless cycle or a tree. As in [9], we refer to
a 2-outerplanar simply nested graph whose internal vertices induce a chordless
cycle or a tree as a cycle-cycle or a cycle-tree, respectively. A Halin graph is a
3-connected topological graph G such that, by removing the edges incident to
the outer face, one gets a tree whose internal vertices have degree at least 3
and whose leaves are incident to the outerface of G. Observe that, Halin graphs
are a subfamily of the cycle-trees. A pseudotree is a connected graph containing
at most one cycle. A nested pseudotree is a topological graph such that remov-
ing the vertices on the outer face yields a non-empty pseudotree. Note that the
external vertices of a nested pseudotree need not induce a chordless cycle.

Theorem 3 (�). Nested pseudotrees have treewidth at most 4, which is tight.

Planar Slope Number. The slope of a line � is the smallest angle α ∈ [0, π)
such that � can be made horizontal by a clockwise rotation by α. The slope of
a segment is the slope of the line containing it. Let G be a planar graph and

274 S. Chaplick et al.

let Γ be a planar straight-line drawing of G. The planar slope number psn(Γ)
of Γ is the number of distinct slopes used by the edges of G in Γ . The planar
slope number psn(G) of G is the minimum psn(Γ) over all planar straight-line
drawings Γ of G. If G has degree Δ, then clearly psn(G) ≥ �Δ/2�.

Geometric Definitions. Consider a planar straight-line drawing Γ of a path
π = (u1, . . . , uk) directed from u1 to uk, and let x(u) and y(u) denote the x- and
y-coordinate of a vertex u in Γ , respectively. We say that π is ↗-monotone, if
y(ui+1) ≥ y(ui) and x(ui+1) > x(ui), for i = 1, . . . , k − 1. Similarly, we say that
it is ↖-monotone, if y(ui+1) ≥ y(ui) and x(ui+1) < x(ui), for i = 1, . . . , k − 1.

Let Γ be a planar straight-line drawing of a graph G and let e be an edge
of G. We say that an isosceles triangle T is nice for e if its base coincides with
the drawing of e in Γ and T does not intersect any edge of Γ , except e.

Theorem 4 ([20]). Let 0 < β < π
2 . Let �(abc) be any isosceles triangle whose

base bc is horizontal, whose apex a lies above bc, and such that the interior angles
at b and c are equal to β. There exists a set L(β,Δ) of O(Δ) slopes such that
any degree-Δ partial 2-tree G admits a planar straight-line drawing inside �(abc)
using the slopes in L(β,Δ) in which any given edge (u, v) of G is drawn such
that c ≡ v and b ≡ u.

3 Cycle-Trees and Proof of Theorem 1

In this section, we consider cycle-trees and prove that their planar slope number
is O(Δ2) in general and O(Δ) for Halin graphs. A degree-2 vertex v of a cycle-
tree G whose neighbors are x and y is contractible if (x, y) is not an edge of G,
and if deleting v and adding the edge (x, y) yields a cycle-tree; this operations is
the contraction of v. A cycle-tree G is irreducible if it contains no contractible
vertex. We prove the following.

Lemma 1 (�). For every degree-Δ cycle-tree G and irreducible cycle-tree G′

obtained from G by any sequence of contractions, psn(G) ≤ psn(G′).

By Lemma 1, without loss of generality, the considered cycle-trees will have no
contractible vertices. Furthermore, if the outer face of an irreducible 2-connected
cycle-tree G of degree Δ has size k ≥ 3, then the number of edges of G is O(k Δ),
which implies that psn(G) ∈ O(Δ) if k is constant. This observation allows us
to assume k > 3 for 2-connected instances, which will simplify the description.

3.1 3-Connected Instances

A path-tree is a plane graph G that can be augmented to a cycle-tree G′ by
adding an edge e = (u, v) to its outer face. Suppose that, in a clockwise walk
along the outer face of G′, edge e is traversed from u to v; then u is the leftmost
path-vertex and v is the rightmost path-vertex of G. All vertices in the outer face

Planar Drawings with Few Slopes of Halin Graphs and Nested Pseudotrees 275

�μ

ρμ

rμ

ρν

�μ=�ν rμ=rν

Gν

ρμ

rμ=rνk

ρμ=ρνi

�μ=�ν1

Gν1 GνkGνi Gνi+1

rνi=�νi+1

Fig. 2. Path-trees associated with a Q-node (left), an S-node (middle), and a P-node
(right). Dashed edges may or may not exist. Shaded triangles represent smaller path-
trees Gνi rooted at ρi, with leftmost path-vertex �νi and rightmost path-vertex rνi .

of G′ are path-vertices, while the other vertices are tree-vertices. Let f be the
internal face of G′ that contains edge e. The path induced by the path-vertices of
G is the path of G. Analogously, the tree induced by the tree-vertices of G is the
tree of G. The path-tree G can be rooted at any tree-vertex ρ on the boundary
of f ; then vertex ρ becomes the root of G. If G is rooted at ρ, then the tree of
G is also rooted at ρ. A rooted path-tree with root ρ, leftmost path-vertex �,
and rightmost path-vertex r is almost-3-connected if it becomes 3-connected by
adding the edges (ρ, �), (ρ, r), and (�, r), if missing.

SPQ-Decomposition of Path-Trees. Let G be an almost-3-connected path-
tree rooted at ρ, with leftmost path-vertex � and rightmost path-vertex r. The
SPQ-decomposition of G [9] constructs a tree T , called the SPQ-tree of G, whose
nodes are of three different kinds: S-, P-, and Q-nodes. Each node μ of T is
associated with an almost-3-connected rooted path-tree Gμ, called the pertinent
graph of μ. To avoid special cases, we extend the definition of path-trees so to
include graphs whose path is a single edge (�, r) and whose tree consists of a
single vertex ρ, possibly not adjacent to � or r. As a consequence, we also extend
the definition of almost-3-connected path-trees to graphs such that adding (ρ, �),
(ρ, r), and (�, r), if missing, yields a 3-cycle.

Q-node: The pertinent graph Gμ of a Q-node μ is an almost-3-connected
rooted path-tree consisting of three vertices: one tree-vertex ρμ and two path-
vertices �μ and rμ. Vertices ρμ, �μ, and rμ are the root, the leftmost path-vertex,
and the rightmost path-vertex of Gμ, respectively. Gμ always has edge (�μ, rμ),
while (ρμ, �μ) and (ρμ, rμ) may not exist; see Fig. 2(left).

S-node: The pertinent graph Gμ of an S-node μ is an almost-3-connected
rooted path-tree consisting of a root ρμ adjacent to the root ρν of one almost-3-
connected rooted path-tree Gν , and possibly to the leftmost path-vertex �ν and
to the rightmost path-vertex rν of Gν . The node ν whose pertinent graph is Gν

is the unique child of μ in T . The leftmost and the rightmost path-vertices of
Gμ are �ν and rν , respectively; see Fig. 2(middle).

P-node: The pertinent graph Gμ of a P-node μ is an almost-3-connected rooted
path-tree obtained from almost-3-connected rooted path-trees Gν1 , . . . , Gνk

,
with k > 1, as follows. First, the roots of Gν1 , . . . , Gνk

are identified into the

276 S. Chaplick et al.

�μ

P ρμ

S Q S S

μ

ν1 ν2 ν3

ν4

Gν1

Gν4

P

S Q S

μ

ν1 ν2 ν3

ν4S

S

Gμ

Gν2

Gν3

P

Q S Q

rμ

Fig. 3. Two alternative partial SPQ-trees of the almost-3-connected path-tree in the
center: the child of node ν4 is an S-node on the left and a P-node on the right.

root ρμ of Gμ. Second, the leftmost path-vertex of Gνi
is identified with the

rightmost path-vertex of Gνi−1 , for i = 2, . . . , k. The nodes ν1, . . . , νk whose per-
tinent graphs are Gν1 , . . . , Gνk

, respectively, are the children of μ in T , and the
left-to-right order in which they appear in T is ν1, . . . , νk. The leftmost and the
rightmost path-vertices of Gμ are �ν1 and rνk

, respectively; see Fig. 2(right).
The SPQ-tree T of G is such that: (i) Q-nodes are leaves of T . (ii) If the

pertinent graph of an S-node μ contains neither (ρμ, �μ) nor (ρμ, rμ), then the
parent of μ is a P-node. (iii) Every P-node has at most 2Δ+1 children. Figure 3
provides two alternative SPQ-trees of the same graph.

For simplicity, we assume that the pertinent graphs of the children of a P-
node μ are induced subgraphs of Gμ. This implies that if Gμ contains an edge
(ρμ, v), where v is a path-vertex, then such an edge belongs to every child of μ
whose pertinent graph contains v.

Property 1. Any SPQ-tree T can be modified so that each child of every P-node
is either an S- or a Q-node.

Let μ be a node of T . The left path of μ is the path directed from �μ to ρμ,
consisting of edges belonging to the outer face of Gμ, and not containing rμ.
The definition of the right path of μ is symmetric. Observe that, if μ is a Q-node
whose pertinent graph Gμ does not contain the edge (ρμ, �μ), then the left path
of μ is the empty path. Similarly, the right path of μ is the empty path if Gμ

does not contain the edge (ρμ, rμ).

Lemma 2 ([9]). Every almost-3-connected rooted path-tree admits an SPQ-tree.

The cornerstone of our contribution is a construction for almost-3-connected
rooted path-trees using O(Δ2) slopes. We start by defining the slope set.

Slope Set. Let G be an almost-3-connected path-tree and let T be an SPQ-
tree of G. For any node μ of T and for any path-vertex v in Gμ we let δμ(v) =
degGµ

(v) and we let δ∗ be the maximum δμ(v) over all nodes μ and path-vertices

Planar Drawings with Few Slopes of Halin Graphs and Nested Pseudotrees 277

v. Consider the equilateral triangle �(abc) with vertices a, b, and c in counter-
clockwise order; refer to Fig. 4(a). Assume that the side bc is horizontal, and that
a lies above bc. Let b = u0, u1, . . . , u2Δ+1 = c be the 2Δ + 2 equispaced points
along bc. We define the following slope sets:

Black Slope: The slope 0, i.e., the slope of an horizontal line.

Orange Slopes: The i-th orange slope Oi is the slope of aui, with 1 ≤ i ≤ 2Δ.

Blue Slopes: The i-th blue slope Bi is the slope of avi, where vi is the vertex of the
equilateral triangle inside �(abc) with vertices vi, ui, and ui+1, with 0 ≤ i ≤ 2Δ.

Magenta Slopes: We have two sets of magenta slopes:

� Left-magenta slopes: The i-th l-magenta slope M l
i is iπ

3δ∗ , with 1 ≤ i ≤ δ∗ − 1.
For convenience, we let M l

δ∗ = B0 and consider B0 to be also left-magenta.
� Right-magenta slopes: The i-th r-magenta slope Mr

i is π − M l
i , with 1 ≤ i ≤

δ∗ − 1. Again, we let Mr
δ∗ = B2Δ and consider B2Δ to be also right-magenta.

b=u0

a

c=u2Δ+1u1 u2Δ

B0 B2Δ

v0 v1 v2ΔO1 O2Δ
Ml

δ∗−1

Ml
1

Mr
δ∗−1

Mr
1

Ml
δ∗

≡ ≡
Mr

δ∗

v2

u2 u3

v3

(a)

a′

Mr
j−1

p∗

Ml
i−1

Mr
j

Rc
i,j

Ml
i

b′ c′

(b)

Ml
i

q

Rl
i,h

Ml
i−1

p∗

p′ p′′

Oh

B2Δ≡
Mr

δ∗

(c)

q

Mr
j

Oh

Mr
j−1

p∗

Rr
h,j

p′ p′′

B0

Ml
δ∗

≡

(d)

Fig. 4. (a) Black, orange, blue, left- and right-magenta slopes; (b) c-red slope Rc
i,j ; (c)

l-red slope Rl
i,h; and (d) r-red slope Rr

h,j . (Color figure online)

278 S. Chaplick et al.

Red Slopes: Let M l
i be a left-magenta slope, with 2 ≤ i ≤ δ∗, and let Mr

j be a
right-magenta slope, with 2 ≤ j ≤ δ∗. Also, let 1 ≤ h ≤ 2Δ. We have:

� Central-red slopes: Let �(a′b′c′) be a triangle such that the slope of b′c′ is
the black slope, the slope of c′a′ is Mr

j , and the slope of a′b′ is M l
i . Let p∗ be

the intersection point between the line with slope M l
i−1 passing through b′

and the line with slope M l
j−1 passing through c′. The c-red slope Rc

i,j is the
slope of the segment a′p∗; see Fig. 4(b).

� Left-red slopes: Let q be a point above the x-axis. Let p′ be the intersection
point between the line with slope M l

i passing through q and the x-axis. Also,
let p′′ be the intersection point between the line with slope Oh passing through
q and the x-axis. Further, let p∗ be the intersection point between the line
with slope M l

i−1 passing through p′ and the line with slope B2Δ passing
through p′′. The l-red slope Rl

i,h is the slope of the segment qp∗; see Fig. 4(c).
� Right-red slopes: Let q be a point above the x-axis. Let p′ be the intersec-

tion point between the line with slope Oh passing through q and the x-axis.
Also, let p′′ be the intersection point between the line with slope Mr

j passing
through q and the x-axis. Further, let p∗ be the intersection point between the
line with slope B0 passing through p′ and the line with slope Mr

j−1 passing
through p′′. The r-red slope Rr

h,j is the slope of the segment qp∗; see Fig. 4(d).

Let S be the union of these slope sets together with the black slope. Note
that,

|S| = 1+2Δ+2Δ+1+2(δ∗−1)+(δ∗−1)2+4Δ(δ∗−1)
= δ∗2+4Δδ∗+1≤5Δ2−1 (1)

Construction. In what follows we assume that G is rooted at ρ, with leftmost
path-vertex � and rightmost path-vertex r and that T satisfies Property 1. We
say that a triangle �(aμbμcμ) is good for a node μ of T , if it satisfies the following
properties. First, the side bμcμ has the black slope. Second, the slopes sl and sr

of the sides aμbμ and aμcμ, respectively, are such that:

G.1 If sl = Oi and sr = Oj are orange, then j = i + 1.
G.2 If μ is an S- or a Q-node, then sl is either (i) orange or (ii) a left-magenta

slope such that sl ≥ M l
δµ(�µ)

;
G.3 If μ is an S- or a Q-node, then sr is either (i) orange or (ii) a right-magenta

slope such that sr ≤ Mr
δµ(rµ)

;
G.4 If μ is an S-node whose pertinent graph contains neither the edge (ρμ, �μ)

nor the edge (ρμ, rμ), then at least one among sl and sr is an orange slope;
G.5 If μ is a P-node, sl is a left-magenta slope such that sl ≥ M l

δµ(�µ)
and sr is

a right-magenta slope such that sr ≤ Mr
δµ(rµ)

.

Let μ be a node of T and let �(aμbμcμ) be a good triangle for μ. Let sl

and sr be the slopes of aμbμ and aμcμ, respectively. We will recursively construct
a planar straight-line drawing Γμ of Gμ with the following geometric properties:

Planar Drawings with Few Slopes of Halin Graphs and Nested Pseudotrees 279

aν

s′
l=Ml

δ∗

Mr
j

sl=Oh

aν

Mr
j−1

(ρμ, r) /∈ Gμ

Case 2.1

(ρμ, r) ∈ Gμ

Case 2.2

Rr
h,j

aμ≡ρμ

cμ≡rbμ≡�

(a) sr is right-magenta

B0

Ml
δ∗

≡
B2Δ≡
Mr

δ∗

aν

s�=Oh sr=Oh+1

Bh

aμ≡ρμ

bμ≡� cμ≡r

(b) sr is orange

cμ≡rbμ≡�

aμ≡ρμ

Mr
j−1

aν

Ml
i−1

sr=Mr
j

Rc
i,j

sl=Ml
i

aν
aν

(ρμ, �) /∈ Gμ

∧
(ρμ, r) ∈ Gμ

(ρμ, �) ∈ Gμ

∧
(ρμ, r) ∈ Gμ

(ρμ, �) ∈ Gμ

∧
(ρμ, r) /∈ Gμ C

as
e
1.
1

C
as
e
1.
2

C
as
e
1.
3

(c)

bμ≡o0

aμ

Mr
jMl

i

o1 o2Δ−1o2 o3 cμ≡o2Δ

Γν1 Γν2 Γνk

O1 O2Δ−1

(d)

Fig. 5. (a)-(c) Construction of a good triangle for the child of an S-node: (a)-(b) sl is
orange; (c) sl and sr are magenta. (d) Construction of good triangles for the children of
a P-node with k = 3 children. The triangle of each child has a distinct opacity. (Color
figure online)

P.1 Γμ uses the slopes in S.
P.2 The convex hull of Γμ is the given triangle �(aμbμcμ), and the vertices ρμ,

�μ, and rμ are mapped to the points aμ, bμ, and cμ, respectively.
P.3 If sl (resp. sr) is left-magenta (resp. right-magenta), then the left path

(resp. right path) is ↗-monotone (resp. ↖-monotone); if sl (resp. sr) is
orange, then the left path (resp. right path) is ↗-monotone (resp. ↖-
monotone) except, possibly, for the edge incident to ρμ.

We remark Property P.3 is not needed to compute a drawing of a cycle-tree,
but it will turn out to be fundamental to handle nested pseudotrees.

We describe how to construct Γμ in a given good triangle �(aμbμcμ) for μ,
based on the type of μ. The proof that the construction satisfies Properties P.1,
P.2, and P.3 can be found in [7]. When μ is the root of T , the algorithm yields
a planar straight-line drawing Γ of G using the slopes in S.

280 S. Chaplick et al.

Q-nodes. If μ is a Q-node, we obtain Γμ by placing ρμ, �μ, and rμ at the
points aμ, bμ, and cμ, respectively.

S-nodes. If μ is an S-node, then the construction of Γμ depends on the degree
of ρμ in Gμ. Let ν be the unique child of μ. For convenience, we let � = �μ = �ν

and r = rμ = rν . We first recursively build a drawing Γν of Gν in a trian-
gle �(aνbνcν) that is good for ν, where aν is appropriately placed in the interior
of �(aμbμcμ) while bν = bμ and cν = cμ. Then, Γμ is obtained from Γν by
simply placing ρμ at aμ, and by drawing the edges incident to ρμ as straight-line
segments.

Note that, ρμ is adjacent to the root ρν of Gν , and to either �, or r, or both. In
order to define the point aν , we now choose the slopes s′

l and s′
r of the segments

aνbν and aνcν , respectively, as follows. We start with s′
l. Since μ is an S-node,

sl is either orange or a left-magenta slope M l
i . If sl is orange, then s′

l = M l
δ∗ .

See Fig. 5(a) and Fig. 5(b). If sl = M l
i and (ρμ, �) belongs to Gμ, we have that

s′
l = M l

i−1. Notice that, by Property G.2 i ≥ δμ(�), and since � is incident at least
to (ρμ, �) and to an edge of the path of G, we have i ≥ 2. If sl = M l

i and (ρμ, �)
does not belong to Gμ, we have that s′

l = sl = M l
i . See Fig. 5(c). The choice of

s′
r is symmetric, based on the existence of (ρμ, r). Notice that, by Property G.4,

if both sl and sr are magenta, then one between (ρμ, �) and (ρμ, r) exists.

P-nodes. If μ is a P-node, then let ν1, ν2, . . . , νk, with 2 ≤ k ≤ 2Δ + 1 be the
children of μ. Recall that, by Property 1, no νi is a P-node. Refer to Fig. 5(d).
Let oi be the intersection point between bμcμ and the line passing through aμ

with slope Oi, for i = 1, . . . , 2Δ − 1. For convenience, we let o0 = bμ and
o2Δ = cμ. We recursively build a drawing Γνi

of Gνi
, with i = 1, . . . , k − 1, in

the triangle �(aμoi−1oi), which is good for νi, and a drawing Γνk
of Gνk

in the
triangle �(aμok−1o2Δ), which is good for νk. Γμ is the union of the Γνi

’s.

Lemma 3. For any almost-3-connected path-tree G and any triangle �(abc)
that is good for the root of an SPQ-tree of G, the graph G admits a planar
straight-line drawing inside �(abc) that satisfies Properties P.1, P.2, and P.3.

b≡� c≡r

a≡ρ

q≡v

Γ−
Γ

M l
δ∗−1 M

r
δ∗−1

Fig. 6. How to draw a 3-
connected cycle-tree.

3-Connected Cycle-Trees. Let G be a degree-
Δ 3-connected cycle-tree. We show how to
exploit Lemma 3 to draw G using O(|S|) =
O(Δ2) slopes. Similarly to path-trees, we call
cycle-vertices the vertices on the outer bound-
ary of G and tree-vertices the remaining vertices
of G. Let �, v, and r be three cycle-vertices that
appear in this clockwise order along the outer
face of G; refer to Fig. 6. Remove v and its inci-
dent edges from G. Denote by G− the resulting
topological graph. Let π be the graph formed by
the edges that belong to the outer face of G−

and do not belong to the outer face of G.

Planar Drawings with Few Slopes of Halin Graphs and Nested Pseudotrees 281

Since G is 3-connected, we have that G− is at least 2-connected and that
π is a path connecting � and r that contains at least one tree-vertex different
from v. Let ρ be any such vertex encountered when traversing π from � to r.
Moreover, the only degree-2 vertices of G−, if any, belong to π. Let G∗ be the
graph obtained from G− by replacing each degree-2 vertex of π different from
�, ρ, and r, if any, with an edge connecting its endpoints. We have that G∗ is
an almost-3-connected path-tree rooted at ρ, with leftmost path-vertex � and
rightmost path-vertex r.

Lemma 4. Every degree-Δ 3-connected cycle-tree G has psn(G) ∈ O(|S|).

Proof. If the outer boundary of G has 3 vertices, the total number of edges of G
is O(Δ) and hence psn(G) ∈ O(Δ) ⊆ O(|S|). So assume that the outer boundary
of G has more than 3 vertices.

Let T be the SPQ-tree of G∗ and let �(abc) be an equilateral triangle. Note
that an equilateral triangle is good for the root of T , regardless of its type.
Let Γ ∗ be the planar straight-line drawing of G∗ inside �(abc), obtained by
applying Lemma 3. We prove that there exists a planar straight-line drawing
Γ of G such that psn(Γ) ≤ psn(Γ ∗) + Δ, which implies the statement because
psn(Γ ∗) ∈ O(|S|) = O(Δ2) by Lemma 3. Note that, the slopes s� and sr of ab and
ac are the largest l-magenta slope M l

δ∗ and the smallest r-magenta slope Mr
δ∗ ,

respectively. Moreover, since the drawing Γ ∗ inside �(abc) has been obtained
by applying Lemma3, we have that Γ ∗ satisfies Property P.3. We construct a
planar straight-line drawing Γ of G as follows; refer to Fig. 6. First, we obtain a
planar straight-line drawing Γ− of G− from Γ ∗, by subdividing the edges that
stemmed from the contraction operations (which yielded G∗ from G−). Clearly,
psn(Γ−) = psn(Γ ∗). Γ− exhibits the following useful property: By Property P.3
of Γ ∗, we have that the subpath of π from � to ρ is ↗-monotone and that the
subpath of π from r to ρ is ↖-monotone. Second, we select a point q vertically
above ρ such that all the straight-line segments connecting q to each of the
vertices of π do not cross Γ−. The existence of such a point is guaranteed by the
above property. Finally, we obtain Γ from Γ− by placing v at point q, and by
drawing its incident edges as straight-line segments. Since v has at most degree
Δ, we have that psn(Γ) ≤ psn(Γ−) + Δ.

Proof of Theorem 1. Halin graphs are 3-connected cycle-trees with δ∗=3
because each path-vertex has two incident edges that are incident to the outer
face and it is a leaf when these two edges are removed. From Sect. 1 we have
|S| = 12Δ + 10. Thus Lemma 4 implies Theorem 1. ��

3.2 2-Connected and 1-Connected Instances

We can extend the result of Lemma 4 to 2- and 1-connected cycle-trees. To this
aim we define the concept of (w, z)-flag and of c-flag of G.

Let c be a cut-vertex of G. By removing c from G, we obtain k ≥ 2 connected
subgraphs H1,H2, . . . , Hk. The subgraph Ci of G induced by V (Hi) ∪ {c} is a

282 S. Chaplick et al.

component of G with respect to c (1 ≤ i ≤ k). One of such components, say C1,
contains all the cycle-vertices of G. The union of all components different from
C1 is called the c-flag of G. We say that a cut-vertex c′ is dominated by c if c′

belongs to the c-flag of G. A cut-vertex is dominant when it is not dominated
by another cut-vertex. Let {w, z} be a 2-cut of G, where w is a tree-vertex and
z is a cycle-vertex. By removing w and z from G, we obtain k ≥ 2 connected
subgraphs H1,H2, . . . ,Hk. The subgraph Ci of G induced by V (Hi)∪{w, z} is a
component of G with respect to {w, z} (1 ≤ i ≤ k). One of such components, say
C1, contains all the cycle-vertices of G. The union of all components different
from C1 is called the (w, z)-flag of G. We say that a 2-cut {w′, z}, with w′ �= w,
is dominated by {w, z} if w′ belongs to the (w, z)-flag of G. A 2-cut {w, z} is
dominant when no other 2-cut dominates it.

Let G1 be the graph obtained from G by removing, for each dominant cut-
vertex c, all vertices of the c-flag of G except c. We call G1 the 1-frame graph
of G. Let G2 be the graph obtained from G1 by removing, for each dominant
2-cut {w, z}, all vertices of the (w, z)-flag of G1 except w and z, and by adding
the edge (w, z), called the virtual edge of {w, z}, if it does not already exist in
G. We call G2 the 2-frame graph of G.

We draw the 2-frame by means of Lemma 4 and then we add back the (w, z)-
flags and the c-flag. Notice that, removing the vertex z from a (w, z)-flag yields
a tree, and therefore each (w, z)-flag is a partial 2-tree. It follows that the (w, z)-
flags and the c-flags (which are trees) can be drawn by exploiting Theorem4 (see
[7] for details).

Theorem 5. Every degree-Δ cycle-tree has planar slope number O(Δ2).

4 Nested Pseudotrees

To prove Theorem 2, we first consider nested-pseudotrees whose external bound-
ary is a chordless cycle. We call such graphs cycle-pseudotrees (see Fig. 1). The
omitted details of this section can be found in [7].

Cycle-Pseudotrees. Let H be a degree-Δ cycle-pseudotree with pseudotree P
and let e = (u, v) be a given edge of the cycle of P , which we call the reference
edge. Let G be the graph obtained by removing e from H. Clearly, G is a cycle-
tree, and u and v are tree-vertices of G. Let G1 be the 1-frame of G and let G2

be the 2-frame of G1. A vertex x belongs to the c-flag of G (for some cut-vertex
c) if x is a tree-vertex of the flag different from c; analogously x belongs to the
(w, z)-flag of G (for some 2-cut {w, z}), if x is a tree-vertex of the flag and x �= w.

We distinguish cases based on the endpoints of e. For each case, we will show
how to obtain a planar straight-line drawing Γ of H using O(Δ2) slopes. All the
flags considered below arise from dominant cut-vertices and dominant 2-cuts.

Case A. There exists a cut-vertex c of G such that u belongs to the c-flag.
We distinguish four subcases: A.1 v belongs to the c-flag, A.2 v belongs to the
c′-flag of some cut-vertex c′ �= c of G, A.3 v belongs to the (w, z)-flag of a 2-cut
{w, z} of G1, or A.4 v belongs to G2.

Planar Drawings with Few Slopes of Halin Graphs and Nested Pseudotrees 283

If Case A does not apply, then we may assume that neither u nor v belong
to a c-flag of any cut-vertex c of G. In particular, both u and v belong to G1.

Case B. There exists a 2-cut {w, z} of G1 such that u belongs to the (w, z)-flag.
We distinguish three subcases: B.1 v belongs to the (w, z)-flag, B.2 v belongs
to the (w′, z′)-flag of some 2-cut {w′, z′} �= {w, z} of G1, B.3 v belongs to G2.

Case C. If Case A and Case B do not apply, then both u and v belong to G2.
We obtain Γ recursively. Each of the cases yields either a smaller instance to

which a different case applies or it is a base case (i.e., A.1, B.1, and C) in which
we use Theorem 5 to obtain a planar straight-line drawing using O(Δ2) slopes.
Crucially in all cases the depth of the recursion is constant and each recursive
call increases the number of slopes by O(Δ). This leads to the following.

Theorem 6. Every degree-Δ cycle-pseudotree has planar slope number O(Δ2).

Proof of Theorem 2. A nested pseudotree G is a cycle-pseudotree together
with a (possibly empty) set of partial two-trees hanging from 2-cuts formed by
edges of the chordless cycle C containing the psuedotree or from cut-vertices of
C. We first draw the cycle-psudeotree via Theorem 6 and then attach the hanging
partial 2-trees as drawn with Theorem 4. This results in the use of O(Δ2) slopes.

5 Conclusions and Open Problems

In this paper we proved a quadratic upper bound on the planar slope number
of nested pseudotrees. In the special case of Halin graphs we have an asymptot-
ically tight O(Δ) bound. Our proofs are constructive and yield polynomial-time
algorithms. Still the coordinates of the vertices may use a super-linear number of
bits. It remains open whether the same upper bounds on the slope number can
be achieved if the vertices must lie on an integer grid of polynomial size. Also it
would be interesting to establish whether the upper bound of Theorem2 is tight
and whether it also applies to nested pseudoforests. Finally, is there a subexpo-
nential upper bound on the planar slope number of 2-outerplanar graphs? This
question is interesting even for 2-connected graphs.

References

1. Angelini, P., et al.: Small universal point sets for k-outerplanar graphs. Discrete
Comput. Geometry 60(2), 430–470 (2018). https://doi.org/10.1007/s00454-018-
0009-x

2. Angelini, P., Di Battista, G., Kaufmann, M., Mchedlidze, T., Roselli, V., Squar-
cella, C.: Small point sets for simply-nested planar graphs. In: van Kreveld, M.,
Speckmann, B. (eds.) GD 2011. LNCS, vol. 7034, pp. 75–85. Springer, Heidelberg
(2011). https://doi.org/10.1007/978-3-642-25878-7 8

3. Barát, J., Matousek, J., Wood, D.R.: Bounded-degree graphs have arbitrarily large
geometric thickness. Electr. J. Comb. 13(1), 1–14 (2006)

https://doi.org/10.1007/s00454-018-0009-x
https://doi.org/10.1007/s00454-018-0009-x
https://doi.org/10.1007/978-3-642-25878-7_8

284 S. Chaplick et al.

4. Bekos, M.A., Bruckdorfer, T., Kaufmann, M., Raftopoulou, C.N.: The book thick-
ness of 1-planar graphs is constant. Algorithmica 79(2), 444–465 (2016). https://
doi.org/10.1007/s00453-016-0203-2

5. Bekos, M.A., Da Lozzo, G., Griesbach, S., Gronemann, M., Montecchiani, F.,
Raftopoulou, C.N.: Book embeddings of nonplanar graphs with small faces in few
pages. In: Cabello, S., Chen, D.Z. (eds.) 36th International Symposium on Compu-
tational Geometry, SoCG 2020. LIPIcs, vol. 164, pp. 16:1–16:17. Schloss Dagstuhl
- Leibniz-Zentrum für Informatik (2020). https://doi.org/10.4230/LIPIcs.SoCG.
2020.16

6. Chang, H., Lu, H.: Computing the girth of a planar graph in linear time. SIAM J.
Comput. 42(3), 1077–1094 (2013). https://doi.org/10.1137/110832033

7. Chaplick, S., Da Lozzo, G., Di Giacomo, E., Liotta, G., Montecchiani, F.: Pla-
nar drawings with few slopes of halin graphs and nested pseudotrees. CoRR
abs/2105.08124 (2021). https://arxiv.org/abs/2105.08124

8. Cimikowski, R.J.: Finding hamiltonian cycles in certain planar graphs. Inf. Process.
Lett. 35(5), 249–254 (1990). https://doi.org/10.1016/0020-0190(90)90053-Z

9. Da Lozzo, G., Devanny, W.E., Eppstein, D., Johnson, T.: Square-contact represen-
tations of partial 2-trees and triconnected simply-nested graphs. In: Okamoto, Y.,
Tokuyama, T. (eds.) ISAAC 2017. LIPIcs, vol. 92, pp. 24:1–24:14. Schloss Dagstuhl
- Leibniz-Zentrum für Informatik (2017). https://doi.org/10.4230/LIPIcs.ISAAC.
2017.24

10. Da Lozzo, G., Eppstein, D., Goodrich, M.T., Gupta, S.: Subexponential-time and
FPT algorithms for embedded flat clustered planarity. In: Brandstädt, A., Köhler,
E., Meer, K. (eds.) WG 2018. LNCS, vol. 11159, pp. 111–124. Springer, Cham
(2018). https://doi.org/10.1007/978-3-030-00256-5 10

11. Di Giacomo, E., Didimo, W., Liotta, G., Meijer, H.: Computing radial drawings on
the minimum number of circles. J. Graph Algorithms Appl. 9(3), 365–389 (2005).
https://doi.org/10.7155/jgaa.00114

12. Di Giacomo, E., Liotta, G., Montecchiani, F.: Drawing outer 1-planar graphs with
few slopes. J. Graph Algorithms Appl. 19(2), 707–741 (2015)

13. Di Giacomo, E., Liotta, G., Montecchiani, F.: Drawing subcubic planar graphs
with four slopes and optimal angular resolution. Theor. Comput. Sci. 714, 51–73
(2018). https://doi.org/10.1016/j.tcs.2017.12.004

14. Dujmović, V., Eppstein, D., Suderman, M., Wood, D.R.: Drawings of planar graphs
with few slopes and segments. Comput. Geom. 38(3), 194–212 (2007). https://doi.
org/10.1016/j.comgeo.2006.09.002

15. Dujmovic, V., Frati, F.: Stack and queue layouts via layered separators. J. Graph
Algorithms Appl. 22(1), 89–99 (2018). https://doi.org/10.7155/jgaa.00454

16. Halin, R.: Studies on minimally n-connected graphs. In: Combinatorial Mathemat-
ics and its Applications (Proc. Conf., Oxford, 1969), pp. 129–136. Academic Press,
London (1971)

17. Jeĺınek, V., Jeĺınková, E., Kratochv́ıl, J., Lidický, B., Tesar, M., Vyskocil, T.: The
planar slope number of planar partial 3-trees of bounded degree. Graphs Comb.
29(4), 981–1005 (2013)

18. Keszegh, B., Pach, J., Pálvölgyi, D.: Drawing planar graphs of bounded degree
with few slopes. SIAM J. Discrete Math. 27(2), 1171–1183 (2013)

19. Knauer, K.B., Micek, P., Walczak, B.: Outerplanar graph drawings with few slopes.
Comput. Geom. 47(5), 614–624 (2014)

20. Lenhart, W., Liotta, G., Mondal, D., Nishat, R.I.: Planar and plane slope number
of partial 2-trees. In: Wismath, S., Wolff, A. (eds.) GD 2013. LNCS, vol. 8242, pp.
412–423. Springer, Cham (2013). https://doi.org/10.1007/978-3-319-03841-4 36

https://doi.org/10.1007/s00453-016-0203-2
https://doi.org/10.1007/s00453-016-0203-2
https://doi.org/10.4230/LIPIcs.SoCG.2020.16
https://doi.org/10.4230/LIPIcs.SoCG.2020.16
https://doi.org/10.1137/110832033
https://arxiv.org/abs/2105.08124
https://doi.org/10.1016/0020-0190(90)90053-Z
https://doi.org/10.4230/LIPIcs.ISAAC.2017.24
https://doi.org/10.4230/LIPIcs.ISAAC.2017.24
https://doi.org/10.1007/978-3-030-00256-5_10
https://doi.org/10.7155/jgaa.00114
https://doi.org/10.1016/j.tcs.2017.12.004
https://doi.org/10.1016/j.comgeo.2006.09.002
https://doi.org/10.1016/j.comgeo.2006.09.002
https://doi.org/10.7155/jgaa.00454
https://doi.org/10.1007/978-3-319-03841-4_36

Planar Drawings with Few Slopes of Halin Graphs and Nested Pseudotrees 285

21. Pach, J., Pálvölgyi, D.: Bounded-degree graphs can have arbitrarily large slope
numbers. Electr. J. Comb. 13(1) (2006)

22. Wade, G.A., Chu, J.H.: Drawability of complete graphs using a minimal slope set.
Comput. J. 37(2), 139–142 (1994)

23. Yannakakis, M.: Embedding planar graphs in four pages. J. Comput. Syst. Sci.
38(1), 36–67 (1989). https://doi.org/10.1016/0022-0000(89)90032-9

https://doi.org/10.1016/0022-0000(89)90032-9

An APTAS for Bin Packing
with Clique-Graph Conflicts

Ilan Doron-Arad, Ariel Kulik, and Hadas Shachnai(B)

Computer Science Department, Technion, 3200003 Haifa, Israel
{idoron-arad,kulik,hadas}@cs.technion.ac.il

Abstract. We study the following variant of the classic bin packing
problem. Given a set of items of various sizes, partitioned into groups,
find a packing of the items in a minimum number of identical (unit-size)
bins, such that no two items of the same group are assigned to the same
bin. This problem, known as bin packing with clique-graph conflicts, has
natural applications in storing file replicas, security in cloud computing
and signal distribution.

Our main result is an asymptotic polynomial time approximation
scheme (APTAS) for the problem, improving upon the best known ratio
of 2. As a key tool, we apply a novel Shift & Swap technique which gener-
alizes the classic linear shifting technique to scenarios allowing conflicts
between items. The major challenge of packing small items using only a
small number of extra bins is tackled through an intricate combination
of enumeration and a greedy-based approach that utilizes the rounded
solution of a linear program.

1 Introduction

In the classic bin packing (BP) problem, we seek a packing of items of vari-
ous sizes into a minimum number of unit-size bins. This fundamental problem
arises in a wide variety of contexts and has been studied extensively since the
early 1970’s. In some common scenarios, the input is partitioned into disjoint
groups, such that items in the same group are conflicting and therefore cannot
be packed together. For example, television and radio stations often assign a set
of programs to their channels. Each program falls into a genre such as comedy,
documentary or sports on TV, or various musical genres on radio. To maintain a
diverse daily schedule of programs, the station would like to avoid broadcasting
two programs of the same genre in one channel. Thus, we have a set of items
(programs) partitioned into groups (genres) that need to be packed into a set of
bins (channels), such that items belonging to the same group cannot be packed
together.

We consider this natural variant of the classic bin packing problem that
we call group bin packing (GBP). Formally, the input is a set of N items I =
{1, . . . , N} with corresponding sizes s1, ..., sN ∈ (0, 1], partitioned into n disjoint
groups G1, ..., Gn, i.e., I = G1 ∪ G2 ∪ . . . ∪ Gn. The items need to be packed in

c© Springer Nature Switzerland AG 2021
A. Lubiw et al. (Eds.): WADS 2021, LNCS 12808, pp. 286–299, 2021.
https://doi.org/10.1007/978-3-030-83508-8_21

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-83508-8_21&domain=pdf
https://doi.org/10.1007/978-3-030-83508-8_21

An APTAS for Bin Packing with Clique-Graph Conflicts 287

unit-size bins. A packing is feasible if the total size of items in each bin does not
exceed the bin capacity, and no two items from the same group are packed in
the same bin. We seek a feasible packing of all items in a minimum number of
unit-size bins. We give in [6] some natural applications of GBP.

Group bin packing can be viewed as a special case of bin packing with conflicts
(BPC), in which the input is a set of items I, each having size in (0, 1], along
with a conflict graph G = (V,E). An item i ∈ I is represented by a vertex i ∈ V ,
and there is an edge (i, j) ∈ E if items i and j cannot be packed in the same
bin. The goal is to pack the items in a minimum number of unit-size bins such
that items assigned to each bin form an independent set in G.

Indeed, GBP is the special case where the conflict graph is a union of cliques.
Thus, GBP is also known as bin packing with clique-graph conflicts (see Sect. 1.2).

1.1 Contribution and Techniques

Our main result (in Sect. 3) is an APTAS for the group bin packing problem,
improving upon the best known ratio of 2 [1].1

Existing algorithms for BPC often rely on initial coloring of the instance. This
enables to apply in later steps known techniques for bin packing, considering
each color class (i.e., a subset of non-conflicting items) separately. In contrast,
our approach uses a refined packing of the original instance while eliminating
conflicts, thus generalizing techniques for classic BP.

Our first technical contribution is an enhancement of the linear shifting tech-
nique of [8]. This enables our scheme to enumerate in polynomial time over pack-
ings of relatively large items, while guaranteeing that these packings respect the
group constraints. Our Shift & Swap technique considers the set of large items
that are associated with different groups (satisfying certain properties) as a clas-
sic BP instance, i.e., the group constraints are initially relaxed. Then the scheme
applies to these items the linear shifting technique of [8]. In the process, items
of the same group may be packed in the same bin. Our Swapping algorithm
resolves all conflicts, with no increase in the total number of bins used (see
Sects. 3.1 and 3.2).

A common approach used for deriving APTASs for BP is to pack in a bounded
number of extra bins a set of discarded small items of total size O(ε)OPT , where
OPT = OPT (I) is the minimum number of bins required for packing the given
instance I, and ε ∈ (0, 1) is the accuracy parameter of the scheme. As shown
in [6], this approach may fail for GBP, e.g., when the discarded items belong to
the same group. Our second contribution is an algorithm that overcomes this
hurdle. The crux is to find a set of small items of total size O(ε)OPT containing
O(ε)OPT items from each group. This would enable to pack these items in a
small number of extra bins. Furthermore, the remaining small items should be

1 We note that 2 is the best known absolute as well as asymptotic approximation ratio
for the problem (see Sect. 1.2). We give formal definitions of absolute/asymptotic
ratios in Sect. 2.

288 I. Doron-Arad et al.

feasibly assigned to partially packed OPT bins. Our algorithm identifies such sets
of small items through an intricate combination of enumeration and a greedy-
based approach that utilizes the rounded solution of a linear program.

1.2 Related Work

The classic bin packing problem is known to be NP-hard. Furthermore, it can-
not be approximated within a ratio better than 3

2 , unless P = NP. This ratio
is achieved by the simple First-Fit Decreasing algorithm [21]. The paper [8]
presents an APTAS for bin packing, which uses at most (1+ε)OPT +1 bins, for
any fixed ε ∈ (0, 1/2). The paper [16] gives an approximation algorithm that uses
at most OPT +O(log2(OPT)) bins. The additive factor was improved in [20] to
O(log OPT · log log OPT). For comprehensive surveys of known results for BP
see, e.g., [3,4].

The problem of bin packing with conflicts (BPC) was introduced in [15]. As
BPC includes as a special case the classic graph coloring problem, it cannot be
approximated within factor N1−ε for an input of N items, for all ε > 0, unless
P = NP [22]. Thus, most of the research work focused on obtaining approxi-
mation algorithms for BPC on classes of conflict graphs that can be optimally
colored in polynomial time. Epstein and Levin [7] presented sophisticated algo-
rithms for two such classes, namely, a 5

2 -approximation for BPC with a perfect
conflict graph,2 and 7

4 -approximation for a bipartite conflict graph.
The hardness of approximation of GBP (with respect to absolute approxi-

mation ratio) follows from the hardness of BP, which is the special case of GBP
where the conflict graph is an independent set. A 2.7-approximation algorithm
for general instances follows from a result of [15]. Oh and Son [19] showed that
a simple algorithm based on First-Fit outputs a packing of any GBP instance I
in 1.7OPT +2.19vmax bins, where vmax = max1≤j≤n |Gj |. The paper [18] shows
that some special cases of the problem are solvable in polynomial time. The best
known ratio for GBP is 2 due to [1].

Jansen [12] presented an asymptotic fully polynomial time approximation
scheme (AFPTAS) for BPC on d-inductive conflict graphs,3 where d ≥ 1 is
some constant. The scheme of [12] uses for packing a given instance I at most
(1 + ε)OPT + O(d/ε2) bins. This implies that GBP admits an AFPTAS on
instances where the maximum clique size is some constant d. Thus, the exis-
tence of an asymptotic approximation scheme for general instances remained
open.

Das and Wiese [5] introduced the problem of makespan minimization with
bag constraints. In this generalization of the classic makespan minimization prob-
lem, each job belongs to a bag. The goal is to schedule the jobs on a set of m
identical machines, for some m ≥ 1, such that no two jobs in the same bag are
assigned to the same machine, and the makespan is minimized. For the classic

2 For the subclass of interval graphs the paper [7] gives a 7
3
-approximation algorithm.

3 A graph G is d-inductive if the vertices of G can be numbered such that each vertex
is connected by an edge to at most d lower numbered vertices.

An APTAS for Bin Packing with Clique-Graph Conflicts 289

problem of makespan minimization with no bag constraints, there are known
PTAS [11,17] as well as EPTAS [2,10,13,14]. Das and Wiese [5] developed a
PTAS for the problem with bag constraints. Later, Grage et al. [9] obtained an
EPTAS.

Due to space constraints, some of our results and formal proofs are given in
the full version of the paper [6].

2 Preliminaries: Scheduling with Bag Constraints

Our scheme is inspired by the elaborate framework of Das and Wiese [5] for
makespan minimization with bag constraints. For completeness, we give below
an overview of the scheme of [5]. Given a set of jobs I partitioned into bags
and m identical machines, let p� > 0 be the processing time of job � ∈ I. The
instance is scaled such that the optimal makespan is 1. The jobs and bags are
then classified using the next lemma.

Lemma 2.1. For any instance I and ε ∈ (0, 1), there is an integer k ∈
{1, ..., � 1

ε2 �} such that
∑

�∈I: p�∈[εk+1,εk) p� ≤ ε2m.

A job � is small if p� < εk+1, medium if p� ∈ [εk+1, εk) and large if p� ≥ εk,
where k is the value found in Lemma 2.1. A bag is large if the number of large
and medium jobs it contains is at least εm, and small otherwise.

The scheme of [5] initially enumerates over slot patterns for packing large and
medium jobs from large bags optimally in polynomial time. The enumeration
is enhanced by using dynamic programming and a flow network to schedule
also the large jobs from small bags. The medium jobs in each small bag are
scheduled across the m machines almost evenly, causing only small increase to
the makespan. The small jobs are partitioned among machine groups with the
same processing time and containing jobs from the same subset of large bags.
Then, a greedy approach is used with respect to the bags to schedule the jobs
within each machine group, such that the overall makespan is at most 1 + O(ε).

Our scheme classifies the items and groups similar to the classification of jobs
and bags in [5]. We then apply enumeration over patterns to pack the large and
medium items. Thus, Lemmas 3.2, 3.6 and 3.8 in this paper are adaptations of
results obtained in [5]. However, the remaining components of our scheme are
different. One crucial difference is our use of a Shift & Swap technique to round
the sizes of large and medium items. Indeed, rounding the item sizes using the
approach of [5] may cause overflow in the bins, requiring a large number of extra
bins to accommodate the excess items. Furthermore, packing the small items
using O(ε)OPT extra bins requires new ideas (see Sect. 3).

We use standard definitions of approximation ratio and asymptotic approx-
imation ratio. Given a minimization problem Π, let A be a polynomial-time
algorithm for Π. For an instance I of Π, denote by OPT (I) and A(I) the values
of an optimal solution and the solution returned by A for I, respectively. We say
that A is a ρ-approximation algorithm for Π, for some ρ ≥ 1, if A(I) ≤ ρ·OPT (I)
for any instance I of Π. A is an asymptotic ρ-approximation for Π if there is a

290 I. Doron-Arad et al.

constant c ∈ R such that A(I) ≤ ρ · OPT (I) + c for any instance I of Π. An
APTAS for Π is a family of algorithms (Aε)ε>0 such that Aε is a polynomial-
time asymptotic (1 + ε)-approximation for each ε > 0. When clear from the
context, we use OPT = OPT (I).

3 An APTAS for GBP

In this section we present an APTAS for GBP. Let OPT be the optimal number
of bins for an instance I. Our scheme uses as a subroutine a BalancedColoring
algorithm proposed in [1] for the group packing problem (see the details in [6]).
Let S(I) be the total size of items in I, i.e., S(I) =

∑
�∈[N] s�. Recall that vmax

is the maximum cardinality of any group. The next lemma follows from a result
of [1].

Lemma 3.1. Let I be an instance of GBP. Then BalancedColoring packs I in
at most max{2S(I), S(I) + vmax} bins.

By the above, given an instance I of GBP, we can guess OPT in polynomial
time, by iterating over all integer values in [1,max{2S(I), S(I)+vmax] and taking
the minimal number of bins for which a feasible solution exists.

Similar to Lemma 2.1, we can find a value of k, 1 ≤ k ≤ � 1
ε2 �, satisfying∑

�∈I: s�∈[εk+1,εk) s� ≤ ε2 · OPT . Now, we classify item � as small if s� < εk+1,
medium if s� ∈ [εk+1, εk) and large otherwise. A group is large if the number
of large and medium items of that group is at least εk+2 · OPT , and small
otherwise. Given an instance I of GBP and a constant ε ∈ (0, 1), we also assume
that OPT > 3

εk+2 (otherwise, the conflict graph is d-inductive, where d is a
constant, and the problem admits an AFPTAS [12]).

Lemma 3.2. There are at most 1
ε2k+3 large groups.

3.1 Rounding of Large and Medium Items

We start by reducing the number of distinct sizes for the large and medium
items. Recall that in the linear shifting technique we are given a BP instance
of N items and a parameter Q ∈ (0, N]. The items are sorted in non-increasing
order by sizes and then partitioned into classes. Each class (except maybe the
last one) contains max{Q, 1} items. The items in class 1 (i.e., largest items) are
discarded (the discarded items are handled in a later stage of the algorithm).
The sizes of items in each class are then rounded up to the maximum size of an
item in this class. For more details see, e.g., [8].

We apply linear shifting to the large and medium items in each large group
with parameter Q = �ε2k+4 · OPT 	. Let I, I ′ be the instance before and after
the shifting over large groups, respectively.

Lemma 3.3. OPT (I ′) ≤ OPT (I).

An APTAS for Bin Packing with Clique-Graph Conflicts 291

Lemma 3.4. Given a feasible packing of I ′ in OPT bins, we can find a feasible
packing of I in (1 + O(ε))OPT bins.

Next, we round the sizes of large items in small groups. As the number of
these groups may be large, we use the following Shift & Swap technique. We
merge all of the large items in small groups into a single group, to which we
apply linear shifting with parameter Q = �2ε · OPT 	. In addition to items in
class 1, which are discarded due to linear shifting, we also discard the items in
the last size class; these items are packed in a new set of bins (see the proof of
Lemma 3.15 in [6]).

Lemma 3.5. After rounding, there are at most O(1) distinct sizes of large and
medium items from large groups, and large items from small groups.

Relaxing the feasibility requirement for the packing of rounded large items
from small groups, the statements of Lemma 3.3 and Lemma 3.4 hold for these
items as well. To obtain a feasible packing of these items, we apply a Swapping
subroutine which resolves the possible conflicts caused while packing the items.

Our scheme packs in each step a subset of items, using OPT bins, while dis-
carding some items. The discarded items are packed later in a set of O(ε)·OPT+1
extra bins. In Sect. 3.2 we pack the large and medium items using enumeration
over patterns followed by our Swapping algorithm to resolve conflicts. Section 3.3
presents an algorithm for packing the small items by combining recursive enu-
meration (for relatively “large” items) with a greedy-based algorithm that uti-
lizes the rounded solution of a linear program (for relatively “small” items). In
Sect. 3.4 we show that the components of our scheme combine together to an
APTAS for GBP.

3.2 Large and Medium Items

The large items and medium items from large groups are packed in the bins
using slot patterns. Let Gi1 , . . . , GiL

be the large groups, and let ‘u’ be a label
representing all the small groups. Given the modified instance I ′, a slot is a pair
(s�, j), where s� is the rounded size of a large or medium item � ∈ I ′ and j ∈
{i1, . . . , iL} ∪ {u}. A pattern is a multiset {t1, . . . , tβ} for some 1 ≤ β ≤ � 1

εk+1 	,
where ti is a slot for each i ∈ [β].4

Lemma 3.6. By using enumeration over patterns, we find a pattern for each
bin for the large and medium items, such that these patterns correspond to an
optimal solution. The running time is O(NO(1)).

Given slot patterns corresponding to an optimal solution, large and medium
items from large groups can be packed optimally, since they are identified both
by a label and a size. On the other hand, large items from small groups are

4 Recall that the number of medium/large items that fit in a single bin is at most
� 1

εk+1 �.

292 I. Doron-Arad et al.

identified solely by their sizes. A greedy packing of these items, relating only
to their corresponding patterns, may result in conflicts (i.e., two large items of
the same small group are packed in the same bin). Therefore, we incorporate a
process of swapping items of the same (rounded) size between their hosting bins,
until there are no conflicts.

Given an item � that conflicts with another item in bin b, for an item y in
bin c such that s� = sy, swap(�, y) is bad if it causes a conflict (either because
y conflicts with an item in bin b, � conflicts with an item in bin c, or c = b);
otherwise, swap(�, y) is good. We now describe our algorithm for packing the
large items from small groups.

Let ζ be the given slot patterns for OPT bins. Initially, the items are packed
by these patterns, where items from small groups are packed ignoring the group
constraints. This can be done simply by placing an arbitrary item of size s from
some small group in each slot (s, u). If ζ corresponds to an optimal solution,
we meet the capacity constraint of each bin. However, this may result with
conflicting items in some bins. Suppose there is a conflict in bin b. Then for one
of the conflicting items, �, we find a good swap(�, y) with item y in a different
bin, such that sy = s�. We repeat this process until there are no conflicts. We
give the pseudocode of Swapping in Algorithm 1.

Algorithm 1. Swapping(ζ,G1, . . . , Gn)
1: Pack the large and medium items from large groups in slots corresponding to their

sizes and by labels.
2: Pack large items from small groups in slots corresponding to their sizes.
3: while there is an item � involved in a conflict do
4: Find a good swap(�, y) and resolve the conflict.

Theorem 3.7. Given a packing of large and medium items by slot patterns cor-
responding to an optimal solution, Algorithm 1 resolves all conflicts in polynomial
time.

We use the Swapping algorithm for each possible guess of patterns to obtain
a feasible packing of the large items and medium items from large groups in
OPT bins.

Now, we discard the medium items from small groups and pack them later in
a new set of bins with other discarded items. This requires only a small number
of extra bins (see the proof of Lemma 3.15 in [6]).

3.3 Small Items

Up to this point, all large items and the medium items from large groups are
feasibly packed in OPT bins. We proceed to pack the small items. Let I0, B be
the set of unpacked items and the set of OPT partially packed bins, respectively.

An APTAS for Bin Packing with Clique-Graph Conflicts 293

The packing of the small items is done in four phases: an optimal phase, an
eviction phase, a partition phase and a greedy phase.

The optimal phase is an iterative process consisting of a constant number of
iterations. In each iteration, a subset of bins is packed with a subset of items
whose (rounded) sizes are large relative to the free space in each of these bins. As
these items belong to a small collection of groups among G1, . . . , Gn, they can
be selected using enumeration. Thus, we obtain a packing of these items which
corresponds to an optimal solution. For packing the remaining items, we want
each item to be small relative to the free space in its assigned bin. To this end,
in the eviction phase we discard from some bins items of non-negligible size (a
single item from each bin). Then, in the partition phase, the unpacked items are
partitioned into a constant number of sets satisfying certain properties, which
guarantee that these items can be feasibly packed in the available free space in
the bins. Finally, in the greedy phase, the items in each set are packed in their
allotted subset of bins greedily, achieving a feasible packing of all items, except
for a small number of items from each group, of small total size. The pseudocode
of our algorithm for packing the small items is given in Algorithm 4.

The Optimal Phase: For any b ∈ B, denote by f0
b the free capacity in bin b,

i.e., f0
b = 1 − ∑

�∈b s�. We say that item � is b-negligible if s� ≤ ε2f0
b , and � is

b-non-negligible otherwise. We start by classifying the bins into two disjoint sets.
Let E0 = {b ∈ B| 0 < f0

b < ε} and D0 = B \ E0.
We now partition B into types. Each type contains bins having the same

total size of packed large/medium items; also, the items packed in each bin
type belong to the same set of large groups, and the same number of slots is
allocated in these bins to items from small groups. Formally, for each pattern p
we denote by tp the subset of bins packed with p.5 Let T denote the set of bin
types. Then |T | = |P |, where P is the set of all patterns. The cardinality of type
t ∈ T is the number of bins of this type. We use for the optimal phase algorithm
RecursiveEnum (see the pseudocode in Algorithm 2).

Lemma 3.8. There are O(1) types before Step 1 of Algorithm 2.

Once we have the classification of bins, each type t of cardinality smaller than
1/ε4 is padded with empty bins so that |t| ≥ 1/ε4. An item � is t-negligible if � is
b-negligible for all bins b of type t (all bins in the same type have the same free
capacity), and t-non-negligible otherwise. Denote by I ′

t the large/medium items
that are packed in the bins of type t, and let It(g) be the set of small items that
are packed in t in some solution g (in addition to I ′

t). For any 1 ≤ i ≤ n, a group
Gi is t(g)-significant if It(g) contains at least ε4|t| t-non-negligible items from
Gi, and Gi is t(g)-insignificant otherwise.

RecursiveEnum proceeds in iterations. In the first iteration, it guesses for each
type t ⊆ E0 a subset of the items It(gopt) ⊆ I0, where gopt corresponds to an
optimal solution for completing the packing of t. Specifically, RecursiveEnum
initially guesses L(t, gopt) groups that are t(gopt)-significant: Gi1 , . . . , GiL(t,gopt)

.

5 For the definition of patterns see Sect. 3.2.

294 I. Doron-Arad et al.

For each Gij
, j ∈ {1, . . . , L(t, gopt)}, the algorithm guesses which items of Gij

are added to It(gopt). Since the number of guesses might be exponential, we
apply to Gij

linear shifting as follows. Guess � 1
ε3 � representatives in Gij

, of sizes
s�1 ≤ s�2 ≤ . . . s��1/ε3� . The kth representative is the largest item in size class
k, 1 ≤ k ≤ � 1

ε3 � for the linear shifting of Gij
in type t. Using the parameter

Qt
ij

= ε3|t|, the item sizes in class k are rounded up to s�k
, for 1 ≤ k ≤ � 1

ε3 �.
Given a correct guess of the representatives, the actual items in size class k
are selected at the end of algorithm RecursiveEnum (in Step 16). Denote the
chosen items from Gij

to bins of type t by Gt
ij

.
We now extend the definition of patterns for each type t. A slot is a pair

(s�, j), where s� is the (rounded) size of a t-non-negligible item � ∈ It(gopt), and
there is a label for each t(gopt)-significant group Gij

, j ∈ {1, . . . , L(t, gopt)}.6 A
t-pattern is a multiset {q1, . . . , qβt

} containing at most � 1
ε2 	 elements, where qi

is a slot for each i ∈ {1, . . . , βt}. Now, for each type t ∈ T we use enumeration
over patterns for assigning Gt

i1
, . . . , Gt

iL(t,gopt)
to bins in t. This completes the

first iteration, and the algorithm proceeds recursively.
We now update D0, E0 for the next iteration by removing from E0 bins b that

have a considerably large free capacity with respect to f0
b . For each b ∈ B, let f1

b

be the capacity available in b after iteration 1. Then E1 = {b ∈ E0| 0 < f1
b < εf0

b }
and D1 = B \ E1.

Now, each type t ∈ T is partitioned into sub-types that differ by the packing
of It(gopt) in the first iteration. The set of types T is updated to contain these
sub-types. At this point, a recursive call to RecursiveEnum computes for each
bin type t ⊆ E1 a guessing and a packing of its t-non-negligible items.7 We
repeat this recursive process α = 1

ε + 5 = O(1) times.
Let Gt

i be the subset of items (of rounded sizes) assigned from Gi to bins of
type t at the end of RecursiveEnum, for 1 ≤ i ≤ n and t ∈ T . Recall that the
algorithm did not select specific items in Gt

i; that is, we only have their rounded
sizes and the number of items in each size class. The algorithm proceeds to pack
items from Gi in all types t for which Gi was t(gopt)-significant in some iteration.
Let TGi

be the set of these types. The algorithm considers first the type t ∈ TGi

for which the class C of largest size items contains the item of maximal size,
where the maximum is taken over all types t ∈ TGi

. The algorithm packs in bins
of type t the Qt

i largest remaining items in Gi in the slots allocated to items in
C; it then proceeds similarly to the remaining size classes in types t ∈ TGi

and
the remaining items in Gt

i.

Lemma 3.9. The following hold for RecursiveEnum: (i) the running time is
polynomial; (ii) the increase in the number of bins in Step 7 is at most εOPT ;
(iii) In Step 11 we discard at most εOPT items from each group of total size at
most εOPT . (iv) One of the guesses in Steps 8, 11 corresponds to an optimal
solution.

6 Note that we do not need a label for the t(gopt)-insignificant groups, because their
items are packed separately.

7 An item is b-non-negligible w.r.t f1
b in this iteration, or w.r.t fh

b in iteration h+1, h ∈
{0, . . . , α − 1}.

An APTAS for Bin Packing with Clique-Graph Conflicts 295

Algorithm 2. RecursiveEnum(I0, B)
1: Let f0

b be the remaining free capacity in bin b ∈ B.
2: Let E0 = {b ∈ B|0 < f0

b < ε} and D0 = B \ E0.
3: Denote by T the collection of bin types.
4: for h = 0, . . . , α do
5: for all types t ⊆ Eh do
6: if |t| < 1

ε4
then

7: increase the cardinality of t to 1
ε4

.

8: Guess t(gopt)-significant groups: Gi1 , . . . , GiL(t,gopt)

9: for j = 1, . . . , L(t, gopt) do
10: Guess the number of items from Gij to be added to bins of type t.
11: Guess a representative for each size class of t-non-negligible items of Gij

for linear shifting.

12: Guess |t| t-patterns for bins in t using the sizes after linear shifting of
Gi1 , . . . , GiL(t,gopt)

.

13: Replace type t in T by all of the sub-types of t.

14: Let fh+1
b be the remaining free capacity in bin b ∈ B.

15: Let Eh+1 = {b ∈ Eh|0 < fh+1
b < εfh

b } and Dh+1 = B \ Eh+1.

16: Complete the packing of all size classes by assigning items greedily.

The Eviction Phase: One of the guesses in the optimal phase corresponds to
an optimal solution. For simplicity, henceforth assume that we have this guess.
Recall that Eα is the set of all bins b for which 0 < fα

b < εfα−1
b . In Step 3 of

PackSmallItems (Algorithm 4) we evict an item from each b ∈ Eα such that the
available capacity of b increases to at least fα

b

ε . This is done greedily: consider
the bins in Eα one by one in arbitrary order. From each bin discard a small
item � ∈ Gi, for some Gi, 1 ≤ i ≤ n, such that the following hold: (i) s� ≥ fα

b

ε ,
and (ii) less than εOPT items were discarded from Gi in this phase. Since α
is large enough, this phase can be completed successfully, as shown below. Let
T = {t1, . . . , tμ, t′} be the types after the optimal phase, where t′ is a new type
such that |t′| = εOPT . Bins of type t′ are empty, i.e., each bin b of type t′

has free space 1. Denote by f(t) the free space in each bin b of type t after the
eviction phase, and let IL be the large items from small groups (already packed
in the bins).

Lemma 3.10. After Step 4 of PackSmallItems there exists a partition of Iα

into types It1 , . . . , Itμ
, It′ , for which the following hold. For each t ∈ T , (i) |Gt

j | =
|Gj ∩ It| ≤ |t|− |(I ′

t \ IL)∩Gj |, for all 1 ≤ j ≤ n. (ii) for any � ∈ It : s� ≤ εf(t),
and (iii) S(It) ≤ f(t)|t|.

We explain the conditions of the lemma below.

The Partition Phase: Let T be the set of types after Step 4 of Algorithm 4,
and Iα the remaining unpacked items.8 We seek a partition of Iα into subsets

8 Recall that we consider only items that were not discarded in previous steps, as
discarded items are packed in a separate set of bins.

296 I. Doron-Arad et al.

associated with bin types such that the items assigned to each type t are rela-
tively tiny; also, the total size and the cardinality of the set of items assigned to
t allow to feasibly pack these items in bins of this type. This is done by proving
that a polytope representing the conditions in Lemma 3.10 has vertices at points
which are integral up to a constant number of coordinates. Each such coordinate,
x�,t, corresponds to a fractional selection of some item � ∈ Iα to type t ∈ T . We
use Gj to denote the subset of remaining items in Gj , 1 ≤ j ≤ n.

Formally, we define a polytope P as the set of all points x ∈ [0, 1]Iα×T which
satisfy the following constraints.

∀� ∈ Iα, t ∈ T s.t. s� > εf(t) : x�,t = 0

∀t ∈ T :
∑

�∈Iα

x�,ts� ≤ f(t)|t|

∀� ∈ Iα :
∑

t∈T

x�,t = 1

∀1 ≤ j ≤ n, t ∈ T :
∑

�∈Gj

x�,t ≤ |t| − |(I ′
t \ IL) ∩ Gj |

The first constraint refers to condition (ii) in Lemma 3.10, which implies
that items assigned to type t need to be tiny w.r.t the free space in the bins
of this type. The second constraint reflects condition (iii) in the lemma, which
guarantees that the items in It can be feasibly packed in the bins of type t. The
third constraint ensures that overall each item � ∈ Iα is (fractionally) assigned
exactly once.

The last constraint reflects condition (i) in Lemma 3.10. Overall, we want to
have at most |t| items of Gj assigned to bins of type t. Recall that these bins may
already contain large/medium items from Gj packed in previous steps. While
large/medium items from large groups are packed optimally, the packing of large
items from small groups, i.e., IL, is not necessarily optimal. In particular, the
items in IL packed by our scheme in bins of type t may not appear in these bins
in the optimal solution gopt to which our packing corresponds. Thus, we exclude
these items and only require that the number of items assigned from Gj to bins
of type t is bounded by |t| − |(I ′

t \ IL) ∩ Gj |.
Theorem 3.11. Let x ∈ P be a vertex of P . Then,

|{� ∈ Iα | ∃t ∈ T : x�,t ∈ (0, 1)}| = O(1).

By Theorem 3.11, we can find a feasible partition (with respect to the con-
straints of the polytope) by finding a vertex of the polytope, and then discarding
the O(1) fractional items. These items can be packed in O(1) extra bins. By
Lemma 3.10 we have that P �= ∅; thus, a vertex of P exists and the partition
can be found in polynomial time.

An APTAS for Bin Packing with Clique-Graph Conflicts 297

The Greedy Phase: In this phase we pack the remaining items using algorithm
GreedyPack (see the pseudocode in Algorithm 3). Let Gt

1, . . . , G
t
n be the items

in It from each group, and let S(It) be the total size of these items, i.e., S(It) =∑n
j=1

∑
�∈Gt

j
s�.

Algorithm 3. GreedyPack(It = {Gt
i1

, . . . , Gt
iH

}, t = {b1, . . . , b|t|}
1: for j = 1, . . . , H do
2: Sort Gt

ij
in a non-increasing order by sizes.

3: Let yij be the largest remaining item in Gt
ij

, j = 1, . . . , H.
4: for each bin b ∈ t do
5: Add to bin b the items yi1 , . . . , yiH .
6: while total size of items packed in bin b > 1 do
7: Select a group Gt

ij
∈ {Gt

i1 , . . . , Gt
iH

} such that yij is not last in Gt
ij

.
8: if cannot complete last step then
9: return failure

10: Return yij to Gt
ij

.

11: Let y′
ij

be the next largest item in Gt
ij

.

12: Add y′
ij

to bin b.

13: for j = 1, . . . , H do
14: if Gt

ij
has a large item in bin b then

15: discard the small item.

We now describe the packing of the remaining items in It in bins of type
t. First, we add 2ε|t| extra bins to t. The extra bins are empty and thus have
capacity 1; however, we assume that they have capacity f(t) ≤ 1. This increases
the overall number of bins in the solution by 2εOPT . Consider the items in each
group in non-increasing order by sizes. For each bin b ∈ t in an arbitrary order,
GreedyPack assigns to b the largest remaining item in each group Gt

1, . . . , G
t
n.

If an overflow occurs, replace an item from some group Gt
j by the next item in

Gt
j . This is repeated until there is no overflow in b. W.l.o.g., we may assume

that |Gj | = OPT for all 1 ≤ j ≤ n; thus, b contains one item from each group
(otherwise, we can add to Gj dummy items of size 0, with no increase to the
number of bins in an optimal solution).

Recall that the large items from small groups are packed using the Swapping
algorithm, that yields a feasible packing. Yet, it does not guarantee that the
small items can be added without causing conflicts. Hence, GreedyPack may
output a packing in which a small and large item from the same small group are
packed in the same bin. Such conflicts are resolved by discarding the small item
in each.

Lemma 3.12. The total size of items discarded in GreedyPack in Step 15 due
to conflicts is at most εOPT , and at most εk+2 · OPT items are discarded from
each group.

298 I. Doron-Arad et al.

Proof. The number of items discarded from each group is at most εk+2 · OPT ,
since all groups are small. Assume that the total size of these items is strictly
larger than εOPT . Since each discarded item is coupled with a large conflicting
item from the same group, whose size is at least 1/ε times larger (recall that the
medium items are discarded), this implies that the total size of large conflicting
items is greater than OPT . Contradiction. ��

Algorithm 4. PackSmallItems(I0, B)
1: for each guess of RecursiveEnum(I0, B) do
2: for b ∈ Eα do
3: evict from b the largest item � satisfying: � is small, and less than εOPT

items where evicted from Gi, where � ∈ Gi.

4: Add to T a new type t′ consisting of εOPT empty bins.
5: Compute a feasible partition of Iα into the types in T .
6: for t ∈ T do
7: Add 2ε|t| extra bins to t.
8: Assign It to bins of type t using GreedyPack(It, t).

Lemma 3.13. For any t ∈ T , given a parameter 0 < δ < 1
2 and a set of items

It such that (i) |Gt
j | ≤ |t| − |(I ′

t \ IL) ∩ Gj |; (ii) for all � ∈ It : s� ≤ δf(t), and
(iii) S(It) ≤ (1 − δ)f(t)|t|, GreedyPack finds a feasible packing of It in bins of
type t.

Lemma 3.14. Algorithm 4 assigns in Step 8 to OPT bins all items except for
O(ε)OPT items from each group, of total size O(ε)OPT .

3.4 Putting It All Together

It remains to show that the items discarded throughout the execution of the
scheme can be packed in a small number of extra bins.

Lemma 3.15. The medium items from small groups and all discarded items can
be packed in O(ε) · OPT extra bins.

We summarize in the next result.

Theorem 3.16. There is an APTAS for the group bin packing problem.

References

1. Adany, R., et al.: All-or-nothing generalized assignment with application to
scheduling advertising campaigns. ACM Trans. Algorithms (TALG) 12(3), 1–25
(2016)

An APTAS for Bin Packing with Clique-Graph Conflicts 299

2. Alon, N., Azar, Y., Woeginger, G.J., Yadid, T.: Approximation schemes for schedul-
ing on parallel machines. J. Sched. 1(1), 55–66 (1998)

3. Christensen, H.I., Khan, A., Pokutta, S., Tetali, P.: Approximation and online
algorithms for multidimensional bin packing: a survey. Comput. Sci. Rev. 24, 63–
79 (2017)

4. Coffman, E.G., Csirik, J., Galambos, G., Martello, S., Vigo, D.: Bin packing
approximation algorithms: survey and classification. In: Handbook of Combina-
torial Optimization, pp. 455–531 (2013)

5. Das, S., Wiese, A.: On minimizing the makespan when some jobs cannot be
assigned on the same machine. In: 25th Annual European Symposium on Algo-
rithms, ESA, pp. 31:1–31:14 (2017)

6. Doron-Arad, I., Kulik, A., Shachnai, H.: An APTAS for bin packing with clique-
graph conflicts. arXiv preprint arXiv:2011.04273 (2020)

7. Epstein, L., Levin, A.: On bin packing with conflicts. SIAM J. Optim. 19(3), 1270–
1298 (2008)

8. Fernandez de la Vega, W., Lueker, G.S.: Bin packing can be solved within 1 + ε
in linear time. Combinatorica 1, 349–355 (1981)

9. Grage, K., Jansen, K., Klein, K.M.: An EPTAS for machine scheduling with bag-
constraints. In: The 31st ACM Symposium on Parallelism in Algorithms and Archi-
tectures, pp. 135–144 (2019)

10. Hochbaum, D.S. (ed.): Approximation Algorithms for NP-Hard Problems. PWS
Publishing Co., USA (1996)

11. Hochbaum, D.S., Shmoys, D.B.: Using dual approximation algorithms for schedul-
ing problems theoretical and practical results. J. ACM 34(1), 144–162 (1987)

12. Jansen, K.: An approximation scheme for bin packing with conflicts. J. Comb.
Optim. 3(4), 363–377 (1999)

13. Jansen, K.: An EPTAS for scheduling jobs on uniform processors: using an MILP
relaxation with a constant number of integral variables. SIAM J. Discret. Math.
24(2), 457–485 (2010)

14. Jansen, K., Klein, K., Verschae, J.: Closing the gap for makespan scheduling via
sparsification techniques. In: 43rd International Colloquium on Automata, Lan-
guages, and Programming (ICALP), pp. 72:1–72:13 (2016)

15. Jansen, K., Öhring, S.R.: Approximation algorithms for time constrained schedul-
ing. Inf. Comput. 132(2), 85–108 (1997)

16. Karmarkar, N., Karp, R.M.: An efficient approximation scheme for the one-
dimensional bin-packing problem. In: 23rd Annual Symposium on Foundations
of Computer Science, pp. 312–320. IEEE (1982)

17. Leung, J.Y.: Bin packing with restricted piece sizes. Inf. Process. Lett. 31(3), 145–
149 (1989)

18. McCloskey, B., Shankar, A.: Approaches to bin packing with clique-graph conflicts.
Computer Science Division, University of California (2005)

19. Oh, Y., Son, S.: On a constrained bin-packing problem. Technical report CS-95-14
(1995)

20. Rothvoß, T.: Approximating bin packing within O(log OPT * log log OPT) bins.
In: 54th Annual IEEE Symposium on Foundations of Computer Science, pp. 20–29.
IEEE Computer Society (2013)

21. Simchi-Levi, D.: New worst-case results for the bin-packing problem. Naval Res.
Logist. (NRL) 41(4), 579–585 (1994)

22. Zuckerman, D.: Linear degree extractors and the inapproximability of max clique
and chromatic number. Theory Comput. 3(1), 103–128 (2007)

http://arxiv.org/abs/2011.04273

Fast Deterministic Algorithms
for Computing All Eccentricities
in (Hyperbolic) Helly Graphs

Feodor F. Dragan1(B), Guillaume Ducoffe2, and Heather M. Guarnera3

1 Computer Science Department, Kent State University, Kent, USA
dragan@cs.kent.edu

2 National Institute for Research and Development in Informatics
and University of Bucharest, Bucureşti, Romania

guillaume.ducoffe@ici.ro
3 Department of Mathematical and Computational Sciences,

The College of Wooster, Wooster, USA
hguarnera@wooster.edu

Abstract. A graph is Helly if every family of pairwise intersecting balls
has a nonempty common intersection. The class of Helly graphs is the
discrete analogue of the class of hyperconvex metric spaces. It is also
known that every graph isometrically embeds into a Helly graph, making
the latter an important class of graphs in Metric Graph Theory. We
study diameter, radius and all eccentricity computations within the Helly
graphs. Under plausible complexity assumptions, neither the diameter
nor the radius can be computed in truly subquadratic time on general
graphs. In contrast to these negative results, it was recently shown that
the radius and the diameter of an n-vertex m-edge Helly graph G can be
computed with high probability in Õ(m

√
n) time (i.e., subquadratic in

n+m). In this paper, we improve that result by presenting a deterministic
O(m

√
n) time algorithm which computes not only the radius and the

diameter but also all vertex eccentricities in a Helly graph. Furthermore,
we give a parameterized linear-time algorithm for this problem on Helly
graphs, with the parameter being the Gromov hyperbolicity δ. More
specifically, we show that the radius and a central vertex of an m-edge
δ-hyperbolic Helly graph G can be computed in O(δm) time and that
all vertex eccentricities in G can be computed in O(δ2m) time. To show
this more general result, we heavily use our new structural properties
obtained for Helly graphs.

1 Introduction

Given an undirected unweighted graph G = (V,E), the distance dG(u, v) between
two vertices u and v is the minimum number of edges on any path connecting u

This work was supported by project PN 19 37 04 01 “New solutions for complex
problems in current ICT research fields based on modelling and optimization”, funded
by the Romanian Core Program of the Ministry of Research and Innovation (MCI),
2019–2022.

c© Springer Nature Switzerland AG 2021
A. Lubiw et al. (Eds.): WADS 2021, LNCS 12808, pp. 300–314, 2021.
https://doi.org/10.1007/978-3-030-83508-8_22

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-83508-8_22&domain=pdf
https://doi.org/10.1007/978-3-030-83508-8_22

Fast Deterministic Algorithms for Computing All Eccentricities 301

and v in G. The eccentricity eG(u) of a vertex u is the maximum distance from
u to any other vertex. The radius and the diameter of G, denoted by rad(G) and
diam(G), are the smallest and the largest eccentricities of vertices in G, respec-
tively. A vertex with eccentricity equal to rad(G) is called a central vertex of G.
We are interested in the fundamental problems of finding a central vertex and
of computing the diameter and the radius of a graph. The problem of finding
a central vertex of a graph is one of the most famous facility location problems
in Operation Research and in Location Science. The diameter and radius of a
graph play an important role in the design and analysis of networks in a vari-
ety of networking environments like social networks, communication networks,
electric power grids, and transportation networks. A naive algorithm which runs
a BFS from each vertex to compute its eccentricity and then (in order to com-
pute the radius, the diameter and a central vertex) picks the smallest and the
largest eccentricities and a vertex with smallest eccentricity has running time
O(nm) on an n-vertex m-edge graph. Interestingly, this naive algorithm is con-
ditionally optimal for general graphs as well as for some restricted families of
graphs [1,6,18,54] since, under plausible complexity assumptions, neither the
diameter nor the radius can be computed in truly subquadratic time (i.e., in
O(namb), for some positive a, b such that a + b < 2) on those graphs. Already
for split graphs (a subclass of chordal graphs), computing the diameter is roughly
equivalent to Disjoint Sets, a.k.a., the monochromatic Orthogonal Vec-
tor problem [15]. Under the Strong Exponential-Time Hypothesis (SETH), we
cannot solve Disjoint Sets in truly subquadratic time, and so neither we can
compute the diameter of split graphs in truly subquadratic time [6].

In a quest to break this quadratic barrier (in the size n + m of the input),
there has been a long line of work presenting more efficient algorithms for com-
puting the diameter and/or the radius on some special graph classes, by exploit-
ing their geometric and tree-like representations and/or some forbidden pat-
tern (e.g., excluding a minor, or a family of induced subgraphs). For example,
although the diameter of a split graph can unlikely be computed in subquadratic
time, there is an elegant linear-time algorithm for computing the radius and a
central vertex of a chordal graph [16]. Efficient algorithms for computing the
diameter and/or the radius or finding a central vertex are also known for inter-
val graphs [34,53], AT-free graphs [37], directed path graphs [19], distance-
hereditary graphs [21,26,29,33], strongly chordal graphs [23], dually chordal
graphs [7,25], chordal bipartite graphs [40], outerplanar graphs [43], planar
graphs [11,45], graphs with bounded clique-width [21,39], graphs with bounded
tree-width [1,9,42] and, more generally, H-minor free graphs and graphs of
bounded (distance) VC-dimension [42].

We here study the Helly graphs as a broad generalization of dually chordal
graphs which in turn contain all interval graphs, directed path graphs and
strongly chordal graphs. Recall that a graph is Helly if every family of pairwise
intersecting balls has a non-empty common intersection. This latter property
on the balls will be simply referred to as the Helly property in what follows.
Helly graphs have unbounded tree-width and unbounded clique-width, they do

302 F. F. Dragan et al.

not exclude any fixed minor and they cannot be characterized via some forbid-
den structures. They are sometimes called absolute retracts or disk-Helly graphs
by opposition to other Helly-type properties on graphs [22]. The Helly graphs
are well studied in Metric Graph Theory. E.g., see the survey [3] and the papers
cited therein. This is partly because every graph is an isometric subgraph of some
Helly graph, thereby making of the latter the discrete equivalent of hyperconvex
metric spaces [36,47]. A minimal by inclusion Helly graph H which contains
a given graph G as an isometric subgraph is unique and called the injective
hull [47] or the tight span [36] of G. Polynomial-time recognition algorithms
for the Helly graphs were presented in [4,23,51]. Several structural properties
of these graphs were also identified (see [3] and the references cited therein).
The dually chordal graphs are exactly the Helly graphs in which the intersection
graph of balls is chordal, and they were studied independently from the general
Helly graphs [7,8,25,35]. As we already mentioned it [7,25,35], the diameter,
the radius and a central vertex of a dually chordal graph can be found in linear
time, that is optimal. However, it was open until recently whether there are truly
subquadratic-time algorithms for these problems on general Helly graphs. First
such algorithms were recently presented in [41] for computing both the radius
and the diameter and in [38] for finding a central vertex. Those algorithms are
randomized and run, with high probability, in Õ(m

√
n) time on a given n-vertex

m-edge Helly graph (i.e., subquadratic in n + m). They make use of the Helly
property and of the unimodality of the eccentricity function in Helly graphs [24]:
every vertex of locally minimum eccentricity is a central vertex. In [41], a linear-
time algorithm for computing all eccentricities in C4-free Helly graphs was also
presented. The C4-free Helly graphs are exactly the Helly graphs whose balls are
convex. They properly include strongly chordal graphs as well as bridged Helly
graphs and hereditary Helly graphs [41].

Our Contribution. We improve those results from [41] and [38] by presenting
a deterministic O(m

√
n) time algorithm which computes not only the radius and

the diameter but also all vertex eccentricities in an n-vertex m-edge Helly graph.
Being able to efficiently compute all vertex eccentricities is of great importance.
For example, in the analysis of social networks (e.g., citation networks or rec-
ommendation networks), biological systems (e.g., protein interaction networks),
computer networks (e.g., the Internet or peer-to-peer networks), transportation
networks (e.g., public transportation or road networks), etc., the eccentricity
eG(v) of a vertex v is used to measure its importance in the network: the eccen-
tricity centrality index of v [50] is defined as 1

eG(v) .
We complete this above result with a parameterized linear-time algorithm

for computing all vertex eccentricities in Helly graphs, with the parameter being
the Gromov hyperbolicity δ, as defined by the following four point condition.
The hyperbolicity of a graph G [46] is the smallest half-integer δ ≥ 0 such
that, for any four vertices u, v, w, x, the two largest of the three distance sums
d(u, v) + d(w, x), d(u,w) + d(v, x), d(u, x) + d(v, w) differ by at most 2δ. In
this case we say that G is δ-hyperbolic. As the tree-width of a graph measures
its combinatorial tree-likeness, so does the hyperbolicity of a graph measure its

Fast Deterministic Algorithms for Computing All Eccentricities 303

metric tree-likeness. In other words, the smaller the hyperbolicity δ of G is, the
closer G is to a tree metrically. The hyperbolicity of an n-vertex graph can be
computed in polynomial-time (e.g., in O(n3.69) time [44]), however it is unlikely
that it can be done in subquadratic time [6,20,44]. A 2-approximation of hyper-
bolicity can be computed in O(n2.69) time [44] and an 8-approximation can be
computed in O(n2) time [12] (assuming that the input is the distance matrix
of the graph). Graph hyperbolicity has attracted attention recently due to the
empirical evidence that it takes small values in many real-world networks, such
as biological networks, social networks, Internet application networks, and col-
laboration networks, to name a few (see, e.g., [2,5,48,52]). Furthermore, many
special graph classes (e.g., interval graphs, chordal graphs, dually chordal graphs,
AT-free graphs, weakly chordal graphs and many others) have constant hyper-
bolicity [2,10,17,28,32,49,55]. In fact, the dually chordal graphs and the C4-free
Helly graphs are known to be proper subclasses of the 1-hyperbolic Helly graphs
(this follows from results in [8,28]). Notice also that any graph is δ-hyperbolic
for some δ ≤ diam(G)/2.

We show that the radius and a central vertex of an m-edge Helly graph
G with hyperbolicity δ can be computed in O(δm) time and that all vertex
eccentricities in G can be computed in O(δ2m log δ) time, even if δ is not known
to us. If either δ or a constant approximation of it is known, then the running
time of our algorithm can be lowered to O(δ2m). Thus, for Helly graphs with
constant hyperbolicity, all vertex eccentricities can be computed in linear time.
As a byproduct, we get a linear time algorithm for computing all eccentricities
in C4-free Helly graphs as well as in dually chordal graphs, generalizing known
results from [7,25,41]. Previously, for dually chordal graphs, it was only known
that a central vertex can be found in linear time [7,25]. Notice that the diameter
problem can unlikely be solved in truly subquadratic time in general 1-hyperbolic
graphs and that the radius problem can unlikely be solved in truly subquadratic
time in general 2-hyperbolic graphs [18]. For general δ-hyperbolic graphs, there
are only additive O(δ)-approximations of the diameter and the radius, that can
be computed in linear time [17,30,31].

To show our more general results, additionally to the unimodality of the
eccentricity function in Helly graphs, we rely on new structural properties
obtained for this class. It turns out that the hyperbolicity of a Helly graph
G is governed by the size of a largest isometric rectilinear grid in G. As a con-
sequence, the hyperbolicity of an n-vertex Helly graph is at most

√
n + 1 and

the diameter of the center of G is at most 2
√

n + 3. These properties, along
with others, play a crucial role in efficient computations of all eccentricities in
Helly graphs. We also give new characterizations of the Helly graphs. Among
others, we show that the Helly property for balls of equal radii implies the Helly
property for balls with variable radii. It would be interesting to know whether a
similar result holds for all (discrete) metric spaces. We are not aware of such a
general result.

Notations. Recall that dG(u, v) denotes the distance between vertices u and v in
G = (V,E). Let n = |V | be the number of vertices and m = |E| be the number of

304 F. F. Dragan et al.

edges in G. The ball of radius r and center v is defined as {u ∈ V : dG(u, v) ≤ r},
and denoted by Nr

G[v]. Sometimes, Nr
G[v] is called the r-neighborhood of v. In

particular, NG[v] := N1
G[v] and NG(v) := NG[v] \ {v} denote the closed and

open neighbourhoods of a vertex v, respectively. More generally, for any vertex-
subset S and a vertex u, we define dG(u, S) := minv∈S dG(u, v), Nr

G[S] :=⋃
v∈S Nr

G[v], NG[S] := N1
G[S] and NG(S) := NG[S] \ S. The metric pro-

jection of a vertex u on S, denoted by PrG(u, S), is defined as {v ∈ S :
dG(u, v) = dG(u, S)}. The metric interval IG(u, v) between u and v is {w ∈
V : dG(u,w) + dG(w, v) = dG(u, v)}. For any k ≤ dG(u, v), we can also define
the slice L(u, k, v) := {w ∈ IG(u, v) : dG(u,w) = k}. Recall that the eccentricity
of a vertex u is defined as maxv∈V dG(u, v) and denoted by eG(u). Note that we
will omit the subscript if the graph G is clear from the context. The radius and
the diameter of a graph G are denoted by rad(G) and diam(G), respectively. A
vertex c is called central in G if eG(c) = rad(G). The set of all central vertices
of G is denoted by C(G) := {v ∈ V : eG(v) = rad(G)} and called the center
of G. The eccentricity function eG(v) of a graph G is said to be unimodal, if
for every non-central vertex v of G there is a neighbor u ∈ NG(v) such that
eG(u) < eG(v) (that is, every local minimum of the eccentricity function is a
global minimum). Recall also that a vertex set S ⊆ V is called convex in G if,
for every vertices x, y ∈ S, all shortest paths connecting them are contained in S
(i.e., IG(x, y) ⊆ S). For β ≥ 0, we say that S is β-pseudoconvex [30] if, for every
vertices x, y ∈ S, any vertex z ∈ IG(x, y)\S satisfies min{dG(z, x), dG(z, y)} ≤ β.
A subgraph H of G is called isometric (or distance-preserving) if, for every ver-
tices x, y of H, dG(x, y) = dH(x, y).

2 Helly Graphs and Their Hyperbolicity

Here we demonstrate that for Helly graphs, having a constant hyperbolicity is
equivalent to the following properties: having β-pseudoconvexity of balls with a
constant β, or having the diameter of the center bounded by a constant for all
subsets of vertices, or not having a large (γ × γ) rectilinear grid as an isometric
subgraph. These results generalize some known results from [13,14,17,28,30].

First we give new characterizations of Helly graphs through a formula for the
eccentricity function and relations between diameter and radius for all subsets
of vertices. For this we need to generalize our basic notations. Define for any
set M ⊆ V and any vertex v ∈ V the eccentricity of v in G with respect to
M as eM (v) = maxu∈M dG(u, v). Let diamM (G) = maxv∈M eM (v), radM (G) =
minv∈V eM (v), CM (G) = {v ∈ V : eM (v) = radM (G)}. When M = V , these
agree with earlier definitions.

Theorem 1. For a graph G the following statements are equivalent:

(1) G is Helly;
(2) the eccentricity function eM (·) is unimodal for every set M ⊆ V ;
(3) eM (v) = dG(v, CM (G)) + radM (G) holds for every set M ⊆ V and every

vertex v ∈ V ;

Fast Deterministic Algorithms for Computing All Eccentricities 305

(4) 2radM (G) − 1 ≤ diamM (G) ≤ 2radM (G) holds for every set M ⊆ V ;
(5) radM (G) = �diamM (G)+1

2 � holds for every set M ⊆ V .

Proof of this theorem and of all other statements of this section can be found
in full version of this paper [27]. The equivalence between (1) and (5) can be
rephrased as follows.

Corollary 1. For every graph G = (V,E), the family of all balls {Nr
G[v] : v ∈

V, r ∈ N} of G has the Helly property if and only if the family of k-neighborhoods
{Nk

G[v] : v ∈ V } of G has the Helly property for every natural number k.

That is, the Helly property for balls of equal radii implies the Helly property
for balls with variable radii. It would be interesting to know whether a similar
result holds for all (discrete) metric spaces. We are not aware of such a general
result and did not find its analog in the literature.

We will also need the following lemma from [23].

Lemma 1 [23]. For every Helly graph G = (V,E) and every set M ⊆ V , the
graph induced by the center CM (G) is Helly and it is an isometric (and hence
connected) subgraph of G.

Given this lemma, it will be convenient to denote by CM (G) not only
the set of central vertices but also the subgraph of G induced by this set.
Then, diam(CM (G)) denotes the diameter of this graph (diam(CM (G)) =
diamCM (G)(G) by this isometricity).

Let δ(G) be the smallest half-integer δ ≥ 0 such that G is δ-hyperbolic. Let
γ(G) be the largest integer γ ≥ 0 such that G has a (γ ×γ) rectilinear grid as an
isometric subgraph. Let β(G) be the smallest integer β ≥ 0 such that all balls in
G are β-pseudoconvex. Finally, let κ(G) be the smallest integer κ ≥ 0 such that
diam(CM (G)) ≤ κ for every set M ⊆ V .

Theorem 2. For every Helly graph G, a constant bound on one parameter from
{δ(G), γ(G), β(G), κ(G)} implies a constant bound on all others.

The following corollaries of Theorem 2 will play an important role in efficient
computations of all eccentricities of a Helly graph. Corollary 2 gives a sublin-
ear bound on the hyperbolicity of an n-vertex Helly graph. Corollary 3 gives a
sublinear bound on the diameter of the center of an n-vertex Helly graph.

Corollary 2. The hyperbolicity of an n-vertex Helly graph G is at most
√

n+1.

Corollary 3. For any Helly graph G, diam(C(G)) ≤ 2δ(G) + 1 ≤ 2
√

n + 3.

3 All Eccentricities in Helly Graphs

It is known that the radius (see [41]) and a central vertex (see [38]) of an n-vertex
m-edge Helly graph can be computed in Õ(m

√
n)-time with high probability.

In this section, we improve those results by presenting a deterministic O(m
√

n)

306 F. F. Dragan et al.

time algorithm which computes not only the radius and a central vertex but
also all vertex eccentricities in a Helly graph. To show this more general result,
we heavily make use of our new structural results from Sect. 2. In particular,
the fact that both the hyperbolicity of a Helly graph G and the diameter of its
center C(G) are upper bounded by O(

√
n) will be very handy. The following

results from [38,41] and [17,30,31] will be also very useful.

Lemma 2 [41]. Let G be an m-edge Helly graph and k be a natural number.
One can compute the set of all vertices of G of eccentricity at most k, and their
respective eccentricities, in O(km) time.

Lemma 3 [38]. Let G be an m-edge Helly graph and v be an arbitrary vertex.
There is an O(m)-time algorithm which either certifies that v is a central vertex
of G or finds a neighbor u of v such that e(u) < e(v).

Lemma 4 [17,30,31]. Let G be an arbitrary m-edge graph and δ be its hyper-
bolicity. There is an O(δm)-time algorithm which finds in G a vertex c with
eccentricity at most rad(G)+2δ. The algorithm does not need to know the value
of δ in order to work correctly.

First, by combining Lemmas 3 and 4, we show that a central vertex of a Helly
graph G can be computed in O(δm) time, where δ is the hyperbolicity of G.

Lemma 5. If G is an m-edge Helly graph, then one can compute a central vertex
and the radius of G in O(δm) time, where δ is the hyperbolicity of G.

Proof. We use Lemma 4 in order to find, in O(δm) time, a vertex c of G with
eccentricity e(c) ≤ rad(G) + 2δ. Then we apply Lemma 3 at most 2δ times in
order to descend from c to a central vertex c∗. It takes O(δm) time. 	

Combining this with Corollary 2, we get.

Corollary 4. For any n-vertex m-edge Helly graph G, a central vertex and the
radius of G can be computed in O(m

√
n) time.

We are now ready to prove our main result of this section.

Theorem 3. All vertex eccentricities in an n-vertex m-edge Helly graph G can
be computed in total O(m

√
n) time.

Proof. Our goal is to compute e(v) for every v ∈ V . For that, we first find a
central vertex c and compute the radius rad(G) of G, which takes O(m

√
n) time

by Corollary 4. If rad(G) ≤ 5
√

n + 6 (the choice of this number will be clear
later), then diam(G) ≤ 2rad(G) ≤ 10

√
n + 12 and we are done by Lemma 2

(applied for k = 10
√

n+12); it takes in this case total time O(m
√

n) to compute
all eccentricities in G. Thus, from now on, we assume rad(G) > 5

√
n + 6. By

Theorem 1(3), for every v ∈ V , e(v) = d(v, C(G))+rad(G) holds. Thus, in order
to compute all the eccentricities, it is sufficient to compute C(G). For a central
vertex c ∈ C(G) found earlier, let S = N

2
√

n+3
G [c]. By Corollary 3, C(G) ⊆ S.

Fast Deterministic Algorithms for Computing All Eccentricities 307

In what follows, let r = rad(G). Consider the BFS layers Li(S) = {v ∈ V :
d(v, S) = i}. Note that if i ≤ r − 4

√
n − 6 ≤ r − diamS(G), then all the vertices

of Li(S) are at distance at most r from all the vertices in S. As a result, in order
to compute C(G), it is sufficient to consider the layers Li(S), for i > r−4

√
n−6.

Set A =
⋃

i>r−4
√

n−6

Li(S). Since for every v /∈ S, d(v, c) = d(v, S)+2
√

n+3 ≤ r,

we deduce that there are at most (r − 2
√

n − 3) − (r − 4
√

n − 6) = 2
√

n + 3
nonempty layers in A.

We will need to consider the “critical band” of all the layers Li(S), for 1 ≤
i ≤ r − 4

√
n − 6 (all the layers between S and A). We claim that there are at

least
√

n layers in this band. Indeed, under the above assumption, r > 5
√

n + 6.
Then, the number of layers is exactly e(c) − 2

√
n − 3 > 3

√
n + 3, minus at most

2
√

n + 3 layers most distant from c (layers in A). Overall, there are at least
√

n
layers in the critical band, as claimed. Then, one layer in the critical band, call
it L, contains at most n/

√
n =

√
n vertices.

Claim 1. For every a ∈ A, there exists a “distant gate” a∗ ∈ Pr(a, L) with the
following property: Nr[a] ∩ S = Nr−d(a,L)[a∗] ∩ S.

In order to prove the claim, set p = d(a, L) and q = d(a, c) ≤ r. Let us consider a
family of balls F = {Np[a], Nq−p[c]}∪{Nr−p[s] : s ∈ Nr[a]∩(S\c)}. We stress
that Np[a]∩Nq−p[c] = Pr(a, L). Then, in order to prove the existence of a distant
gate, it suffices to prove that the balls in F intersect; indeed, if it is the case then
we may choose for a∗ any vertex in the common intersection of the balls in F .
Clearly, Np[a]∩Nq−p[c] = ∅ and, in the same way, Np[a]∩Nr−p[s] = ∅ for each
s ∈ Nr[a]∩(S\c). Furthermore, since L is in the critical band, d(c, L) > 2

√
n+3,

and therefore we have for each s, s′ ∈ S:

2(r − p) ≥ 2(q − p) = 2d(c, L) > diamS(G) ≥ d(s, s′).

In the same way (q − p) + (r − p) ≥ 2(q − p) > diamS(G) ≥ d(s, c). The latter
proves that the balls in F intersect. This concludes the proof of Claim 1.

We finally explain how to compute these distant gates, and how to use this
information in order to compute S ∩ C(G). Specifically:

– We make a BFS from every u ∈ L. it takes O(m|L|) = O(m
√

n) time. Doing
so, we can compute ∀a ∈ A, Pr(a, L), in total O(|A||L|) = O(n

√
n) time.

– Since A contains at most O(
√

n) nonempty layers, then the number of pair-
wise distinct distances d(a, L), for a ∈ A, is also in O(

√
n). Call the set

of all these distances IA. Then, ∀u ∈ L, and ∀i ∈ IA, we also compute
p(u, i) = |Nr−i

G [u] ∩ S|. For that, we consider the vertices u ∈ L sequentially.
Recall that we computed a BFS tree rooted at u. In particular, we can order
the vertices of S by increasing distance to u. It takes O(n) time. Similarly,
we can order IA in O(

√
n log n) = o(n) time. In order to compute all the

values p(u, i), it suffices to scan in parallel these two ordered lists. The run-
ning time is O(n) for every fixed u ∈ L, and so the total running time is
O(n|L|) = O(n

√
n).

308 F. F. Dragan et al.

– Now, in order to compute a distant gate a∗, for a ∈ A, we proceed as follows.
Let i = d(a, L). We scan Pr(a, L) and we store a vertex a∗ maximizing
p(a∗, i). It takes O(|A||L|) = O(n

√
n) time. On the way, ∀u ∈ L, let q(u) be

the maximum i such that a∗ ≡ u is the distant gate of some vertex a ∈ A,
such that d(a, L) = i (possibly, q(u) = 0 if u was not chosen as the distant
gate of any vertex).

– Let s ∈ S be arbitrary. For having s ∈ S ∩C(G), it is necessary and sufficient
to have s ∈ Nr[a] ∩ S,∀a ∈ A. Equivalently, ∀u ∈ L, one must have d(s, u) ≤
r − q(u). This can be checked in time O(|L|) per vertex in S, and so, in total
O(n

√
n) time.

	

4 Eccentricities in Helly Graphs with Small Hyperbolicity

In the previous section we showed that a central vertex of a Helly graph G
can be computed in O(δm) time, where δ is the hyperbolicity of G. This nice
result, combined with the property that all Helly graphs have hyperbolicity
O(

√
n) (Corollary 2), was key to the design of our O(m

√
n)-time algorithm

for computing all vertex eccentricities. Next, we deepen the connection between
hyperbolicity and fast eccentricity computation within Helly graphs.

As we have mentioned earlier, many graph classes (e.g., interval graphs,
chordal graphs, dually chordal graphs, AT-free graphs, weakly chordal graphs
and many others) have constant hyperbolicity. In particular, the dually chordal
graphs and the C4-free Helly graphs (superclasses of the interval graphs and
of the strongly chordal graphs) are proper subclasses of the 1-hyperbolic Helly
graphs. This raises the question whether all vertex eccentricities can be com-
puted in linear time in a Helly graph G if its hyperbolicity δ is a constant.

We prove in what follows that it is indeed the case, which is the main result
of this section. The following result could also be considered as a parameterized
algorithm on Helly graphs with δ as the parameter.

Theorem 4. If G is an m-edge Helly graph of hyperbolicity δ, then the eccen-
tricity of all vertices of G can be computed in O(δ2m log δ) time. The algorithm
does not need to know the value of δ in order to work correctly. If δ (or a constant
approximation of it) is known, then the running time is O(δ2m).

As a byproduct, we get a linear time algorithm for computing all vertex
eccentricities in C4-free Helly graphs as well as in dually chordal graphs, gener-
alizing known results from [7,25,41]. We recall that for dually chordal graphs,
until this paper it was only known that a central vertex of such a graph can be
found in linear time [7,25].

The remainder of this section is devoted to proving Theorem 4. For that, the
following result is proved in Subsect. 4.1:

Lemma 6. Let G be an m-edge Helly graph, c be a central vertex of G and
k be a natural number. There is an O(k2m)-time algorithm which computes
C(G) ∩ Nk[c].

Fast Deterministic Algorithms for Computing All Eccentricities 309

Proof (Proof of Theorem 4 assuming Lemma 6). Since, by Theorem 1(3), e(v) =
d(v, C(G)) + rad(G) holds for every v ∈ V , as before, in order to compute all
the eccentricities, it is sufficient to compute C(G). We first find a central vertex
c and compute the radius rad(G) of G. This takes O(δm) time by Lemma 5.

By Corollary 3, we know that diam(C(G)) ≤ 2δ + 1. Therefore, C(G) ⊆
N2δ+1[c]. If δ is known to us, we fix k := 2δ + 1 (if only a constant approxi-
mation δ′ ≥ δ of δ is known, we set k = 2δ′ + 1). Then, we are done applying
Lemma 6. Otherwise, we work sequentially with k = 2, 3, 4, 5, 8, 9, . . . , 2p, 2p +
1, 2p+1, 2p+1+1,. . . , and we stop after finding the smallest integer (power of 2) k
such that C(G)∩Nk[c] = C(G)∩Nk+1[c]. Indeed, by the isometricity (and hence
connectedness) of C(G) in G (see Lemma 1), the set C(G) ∩ Nk[c] will contain
all central vertices of G, i.e., C(G) ∩ Nk[c] = C(G). The latter will happen for
some k < 2(2δ + 1) after at most O(log δ) probes. Overall, since we need to
apply Lemma 6 at most O(log δ) times, for some values k < 2(2δ + 1), the total
running time is O(δ2m log δ). If δ (or a constant approximation of it is known),
then we call Lemma 6 only once, and therefore the running time goes down to
O(δ2m). 	

4.1 Proof of Lemma 6

In what follows, G is a Helly graph, k is an integer and r = rad(G). Let
Sk = Nk[c]. If r ≤ 2k, we can compute all central vertices in O(km) time
(see Lemma 2). Thus from now on, r > 2k. As diamSk

(G) ≤ 2k, to find all
central vertices in Sk (i.e., the set C(G) ∩ Sk), we will need to consider only the
vertices at distance > r − 2k from Sk.

Let i < 2k be fixed (we need to consider all possible i between k and 2k − 1
sequentially). Let Ak,i = Lr−i(Sk) (where we recall that Lr−i(Sk) = {v ∈ V :
d(v, Sk) = r − i}). We want to compute Sk,i := {s ∈ Sk : Ak,i ⊆ Nr[s]}. Indeed,
C(G)∩Sk =

⋂2k−1
i=k Sk,i. The computation of Sk,i (for k, i fixed) works by phases.

We describe below the two main phases of the process.

First Phase of the Algorithm. To give the intuition of our approach, we will need
the following simple claim. For a vertex v ∈ V and an integer j, let L(v, j, Sk) :=
{u ∈ V : d(v, Sk) = d(v, u) + d(u, Sk) and d(v, u) = j}.

Claim 2. Let B ⊆ Ak,i be such that
⋂{L(b, j, Sk) : b ∈ B} = ∅, for some

0 ≤ j < r − i. Then, for every s ∈ Sk, maxb∈B d(s, b) ≤ r if and only if
d(s,

⋂{L(b, j, Sk) : b ∈ B}) ≤ r − j.

Proof. If d(s,
⋂{L(b, j, Sk) : b ∈ B}) ≤ r − j, then maxb∈B d(s, b) ≤ r. Con-

versely, let us assume maxb∈B d(s, b) ≤ r. Set F = {Nr−j
G [s], Nr+k−(i+j)

G [c]} ∪
{N j

G[b] : b ∈ B}. We prove that the balls in F intersect. For each b, b′ ∈ B,
N j

G[b]∩N j
G[b′] ⊇ ⋂{L(b, j, Sk) : b ∈ B} = ∅. Since we assume maxb∈B d(s, b) ≤ r,

N j
G[b] ∩ Nr−j

G [s] = ∅. Furthermore, as for each b ∈ B we have d(b, c) =
d(b, Sk) + k = r − i + k, we obtain Nr−i+k−j

G [c] ∩ N j
G[b] = L(b, j, Sk) = ∅.

Finally, since we have j < r − i, (r − i + k − j) + (r − j) > k + i ≥ k ≥ d(s, c).

310 F. F. Dragan et al.

Therefore, N
r+k−(i+j)
G [c] ∩ Nr−j

G [s] = ∅. It follows from the above that the
balls in F pairwise intersect. By the Helly property, there exists a vertex
y in the common intersection of all the balls in F . As for each b ∈ B,
y ∈ Nr−i+k−j

G [c]∩N j
G[b] = L(b, j, Sk), we deduce that y ∈ ⋂{L(b, j, Sk) : b ∈ B}.

Finally, we have d(s,
⋂{L(b, j, Sk) : b ∈ B}) ≤ d(s, y) ≤ r − j. 	

We are now ready to present the first phase of our algorithm (for k, i fixed). It
is divided into r− i steps: from j = 0 to j = r− i−1. At step j, for 0 ≤ j < r− i,
the intermediate output is a collection of disjoint subsets V 1

j , V 2
j , ..., V

pj

j of the
layer Lr−i−j(Sk). These disjoint subsets are in one-to-one correspondence with
some partition B1, B2, ..., Bpj

of Ak,i. Specifically, the algorithm ensures that:
∀1 ≤ t ≤ pj , V t

j =
⋂{L(b, j, Sk) : b ∈ Bt} = ∅. Doing so, by the above Claim 2,

for any s ∈ Sk we have maxz∈Ak,i
d(s, z) ≤ r ⇐⇒ max1≤t≤pj

d(s, V t
j) ≤ r − j.

Initially, for j = 0, every set Bt is a singleton. Furthermore, Bt = V t
0 .

Then, we show how to partition Lr−i−(j+1)(Sk) from V 1
j , V 2

j , ..., V
pj

j in total
O(

∑
x∈Lr−i−j(Sk)

|NG(x)|) time. Note that in doing so we get a total running time
in O(m) for that phase. For that, let us define W t

j = N(V t
j) ∩ Lr−i−(j+1)(Sk).

Since the subsets V t
j are pairwise disjoint, the construction of the W t

j ’s takes
total O(

∑
x∈Lr−i−j(Sk)

|NG(x)|) time. Furthermore:

Claim 3. W t
j =

⋂{L(b, j + 1, Sk) : b ∈ Bt}.
Proof. We only need to prove that we have

⋂{L(b, j+1, Sk) : b ∈ Bt} ⊆ W t
j (the

other inclusion being trivial by construction). For that, let x ∈ ⋂{L(b, j+1, Sk) :
b ∈ Bt} be arbitrary. Recall that we have, for each b ∈ Bt, d(b, c) = k+d(b, Sk) =
r − i + k. In particular, x ∈ L(b, j + 1, Sk) = L(b, j + 1, c). It implies that the
balls in {NG[x], Nr−i+k−j

G [c]} ∪ {N j
G[b] : b ∈ Bt} pairwise intersect. By the

Helly property, x has a neighbour in Nr−i+k−j
G [c] ∩ (⋂{N j [b] : b ∈ Bt}

)
=⋂{L(b, j, Sk) : b ∈ Bt} = V t

j . Since x ∈ Lr−i−(j+1)(Sk), we get that x ∈ W t
j . 	

Finally, in order to compute the new sets V t′
j+1, we proceed as follows. Let

W = {W t
j : 1 ≤ t ≤ pj}. While W = ∅, we select some vertex x ∈ Lr−i−(j+1)(Sk)

maximizing #{t : x ∈ W t
j }. Then, we create a new set

⋂
t:x∈W t

j
W t

j , and we
remove {W t

j : x ∈ W t
j } from W. Note that, by the above Claim 3,

⋂
t:x∈W t

j
W t

j =
⋂

t:x∈W t
j

⋂{L(b, j + 1, Sk) : b ∈ Bt} =
⋂{L(b, j + 1, Sk) : b ∈ ⋃

t:x∈W t
j
Bt}.

Furthermore, by maximality of vertex x,
⋂

t:x∈W t
j
W t

j is disjoint from the subsets
in {W t

j : x /∈ W t
j }. The latter ensures that all the new sets we create are

pairwise disjoint. In order to implement this above process efficiently, we store
each x ∈ Lr−i−(j+1)(Sk) in a list indexed by #{t : x ∈ W t

j }. Then, we traverse
these lists by decreasing index. We keep, for each x ∈ Lr−i−(j+1)(Sk), a pointer
to its current position in order to dynamically change its list throughout the
process. See also the proof of Lemma 2 in [41]. The running time is proportional
to

∑{|W t
j | : 1 ≤ t ≤ pj} = O(

∑
x∈Lr−i−j(Sk)

|NG(x)|).
Second Phase of the Algorithm. Let C1, C2, ..., Cp denote
the sets V 1

r−i−1, ..., V
pr−i−1
r−i−1 (i.e., those obtained at the end of the first phase

Fast Deterministic Algorithms for Computing All Eccentricities 311

of our algorithm). Note that C1, C2, ..., Cp are subsets of L1(Sk) (= NG(Sk)).
At this point, it is not possible anymore to follow the shortest-paths between
Ak,i and Sk. Then, let X = Ak,i ∪ {c}. Set α(c) = k + i + 2 and α(a) = r for
each a ∈ Ak,i. We define the set Y = {y : ∀x ∈ X, d(y, x) ≤ α(x)}. Observe
that Sk,i = Y ∩ Sk (recall that Sk,i was defined as {s ∈ Sk : Ak,i ⊆ Nr[s]}).
Therefore, in order to compute Sk,i, it suffices to compute Y .

For that, we proceed in i + 2 steps. At step �, for 0 ≤ � ≤ i + 1, we main-
tain a family of nonempty pairwise disjoint sets Z1

� , Z2
� , ..., Zq�

� and a covering
X1

� ,X2
� , . . . , Xq�

� of X such that the following is true: for every 1 ≤ t ≤ q�,
Zt

� =
⋂

x∈Xt
�
N

α(x)−(i+1)+�
G [x]. Doing so, after i + 2 steps, the set Y is nonempty

if and only if qi+1 = 1 (the above partition is reduced to one group). Further-
more, if it is the case, Y = Z1

i+1.
Initially, for � = 0, we start from Z1

0 = C1, ..., Z
p
0 = Cp, and then the cor-

responding covering is ∀1 ≤ t ≤ p, Xt
1 = Bt ∪ {c} (with B1, B2, ..., Bp being

the partition of Ak,i after the first phase of our algorithm). – Note that this is
only a covering, and not a partition, because the vertex c is contained in all the
groups. – For going from � to � + 1, we proceed as we did during the first phase.
Specifically, for every t, let U t

� = NG[Zt
�]. Since the sets Zt

� are pairwise disjoint,
the computation of all the intermediate sets U t

� takes total O(m) time.

Claim 4. U t
� =

⋂
x∈Xt

�
N

α(x)−(i+1)+(�+1)
G [x].

The proof is similar to that of Claim 3. Finally, in order to compute the
new sets Zt′

�+1, let U = {U t
� : 1 ≤ t ≤ q�}. While U = ∅, we select some

vertex u ∈ V maximizing #{t : u ∈ U t
�}. Then, we create a new set

⋂
t:u∈Ut

�
U t

� ,
and we remove {U t

� : u ∈ U t
�} from U . The running time is proportional to∑{|U t

� | : 1 ≤ t ≤ q�} = O(m).

Complexity Analysis. Overall, the first phase runs in O(m) time, and the second
phase runs in O(im) = O(km) time. Since it applies for k, i fixed, the total
running time of the algorithm of Lemma 6 (for k fixed) is in O(k2m). 	

References

1. Abboud, A., Vassilevska Williams, V., Wang, J.: Approximation and fixed param-
eter subquadratic algorithms for radius and diameter in sparse graphs. In: SODA,
pp. 377–391. SIAM (2016)

2. Abu-Ata, M., Dragan, F.F.: Metric tree-like structures in real-world networks: an
empirical study. Networks 67(1), 49–68 (2016)

3. Bandelt, H.-J., Chepoi, V.: Metric graph theory and geometry: a survey. Contemp.
Math. 453, 49–86 (2008)

4. Bandelt, H.-J., Pesch, E.: Dismantling absolute retracts of reflexive graphs. Eur.
J. Comb. 10(3), 211–220 (1989)

5. Borassi, M., Coudert, D., Crescenzi, P., Marino, A.: On computing the hyperbol-
icity of real-world graphs. In: Bansal, N., Finocchi, I. (eds.) ESA 2015. LNCS,
vol. 9294, pp. 215–226. Springer, Heidelberg (2015). https://doi.org/10.1007/978-
3-662-48350-3 19

https://doi.org/10.1007/978-3-662-48350-3_19
https://doi.org/10.1007/978-3-662-48350-3_19

312 F. F. Dragan et al.

6. Borassi, M., Crescenzi, P., Habib, M.: Into the square: on the complexity of some
quadratic-time solvable problems. Electron. Notes TCS 322, 51–67 (2016)

7. Brandstädt, A., Chepoi, V., Dragan, F.F.: The algorithmic use of hypertree struc-
ture and maximum neighbourhood orderings. DAM 82(1–3), 43–77 (1998)

8. Brandstädt, A., Dragan, F.F., Chepoi, V., Voloshin, V.: Dually chordal graphs.
SIDMA 11(3), 437–455 (1998)

9. Bringmann, K., Husfeldt, T., Magnusson, M.: Multivariate analysis of orthogonal
range searching and graph distances parameterized by treewidth. In: IPEC (2018)

10. Brinkmann, G., Koolen, J., Moulton, V.: On the hyperbolicity of chordal graphs.
Ann. Comb. 5(1), 61–69 (2001)

11. Cabello, S.: Subquadratic algorithms for the diameter and the sum of pairwise
distances in planar graphs. ACM TALG 15(2), 21 (2018)

12. Chalopin, J., Chepoi, V., Dragan, F.F., Ducoffe, G., Mohammed, A., Vaxès, Y.:
Fast approximation and exact computation of negative curvature parameters of
graphs. In: SoCG 2018, pp. 22:1–22:15 (2018)

13. Chalopin, J., Chepoi, V., Genevois, A., Hirai, H., Osajda, D.: Helly groups (2020)
14. Chalopin, J., Chepoi, V., Hirai, H., Osajda, D.: Weakly modular graphs and non-

positive curvature. Mem. Amer. Math. Soc. 159 (2020)
15. Chepoi, V., Dragan, F.F.: Disjoint sets problem (1992)
16. Chepoi, V., Dragan, F.: A linear-time algorithm for finding a central vertex of a

chordal graph. In: van Leeuwen, J. (ed.) ESA 1994. LNCS, vol. 855, pp. 159–170.
Springer, Heidelberg (1994). https://doi.org/10.1007/BFb0049406

17. Chepoi, V., Dragan, F.F., Estellon, B., Habib, M., Vaxès, Y.: Diameters, centers,
and approximating trees of δ-hyperbolic geodesic spaces and graphs. In: SoCG
2008, pp. 59–68. ACM (2008)

18. Chepoi, V., Dragan, F.F.F., Habib, M., Vaxès, Y., Alrasheed, H.: Fast approxi-
mation of eccentricities and distances in hyperbolic graphs. J. Graph Algorithms
Appl. 23(2), 393–433 (2019)

19. Corneil, D., Dragan, F.F., Habib, M., Paul, C.: Diameter determination on
restricted graph families. DAM 113(2–3), 143–166 (2001)

20. Coudert, D., Ducoffe, G.: Recognition of c4-free and 1/2-hyperbolic graphs. SIDMA
28(3), 1601–1617 (2014)

21. Coudert, D., Ducoffe, G., Popa, A.: Fully polynomial FPT algorithms for some
classes of bounded clique-width graphs. ACM TALG 15(3) (2019)

22. Dourado, M., Protti, F., Szwarcfiter, J.: Complexity aspects of the Helly property:
graphs and hypergraphs. EJC 1000, 17-12 (2009)

23. Dragan, F.F.: Centers of Graphs and the Helly Property. Ph.D. thesis, Moldava
State University, Chişinău (1989). (in Russian)

24. Dragan, F.F.: Conditions for coincidence of local and global minima for eccentricity
function on graphs and the Helly property. Stud. Appl. Math. Inf. Sci. 49–56 (1990).
(in Russian)

25. Dragan, F.F.: HT-graphs: centers, connected r-domination and Steiner trees. Com-
put. Sci. J. Moldova (Kishinev) 1(2), 64–83 (1993)

26. Dragan, F.F.: Dominating cliques in distance-hereditary graphs. In: Schmidt, E.M.,
Skyum, S. (eds.) SWAT 1994. LNCS, vol. 824, pp. 370–381. Springer, Heidelberg
(1994). https://doi.org/10.1007/3-540-58218-5 34

27. Dragan, F.F., Ducoffe, G., Guarnera, H.M.: Fast deterministic algorithms for com-
puting all eccentricities in (hyperbolic) Helly graphs. CoRR, arXiv:2102.08349
(2021)

28. Dragan, F.F., Guarnera, H.M.: Obstructions to a small hyperbolicity in Helly
graphs. Discret. Math. 342(2), 326–338 (2019)

https://doi.org/10.1007/BFb0049406
https://doi.org/10.1007/3-540-58218-5_34
http://arxiv.org/abs/2102.08349

Fast Deterministic Algorithms for Computing All Eccentricities 313

29. Dragan, F.F., Guarnera, H.M.: Eccentricity function in distance-hereditary graphs.
Theor. Comput. Sci. 833, 26–40 (2020)

30. Dragan, F.F., Guarnera, H.M.: Eccentricity terrain of δ-hyperbolic graphs. J. Com-
put. Syst. Sci. 112, 50–65 (2020)

31. Dragan, F.F., Habib, M., Viennot, L.: Revisiting radius, diameter, and all eccen-
tricity computation in graphs through certificates. CoRR, arXiv:1803.04660 (2018)

32. Dragan, F.F., Mohammed, A.: Slimness of graphs. DMTCS 21(3) (2019)
33. Dragan, F.F., Nicolai, F.: LexBFS-orderings of distance-hereditary graphs with

application to the diametral pair problem. DAM 98(3), 191–207 (2000)
34. Dragan, F.F., Nicolai, F., Brandstädt, A.: LexBFS-orderings and powers of graphs.

In: d’Amore, F., Franciosa, P.G., Marchetti-Spaccamela, A. (eds.) WG 1996. LNCS,
vol. 1197, pp. 166–180. Springer, Heidelberg (1997). https://doi.org/10.1007/3-
540-62559-3 15

35. Dragan, F.F., Prisakaru, K., Chepoi, V.: The location problem on graphs and the
Helly problem. Diskret. Mat. 4(4), 67–73 (1992)

36. Dress, A.: Trees, tight extensions of metric spaces, and the cohomological dimension
of certain groups: a note on combinatorial properties of metric spaces. Adv. Math.
53(3), 321–402 (1984)

37. Ducoffe, G.: Around the diameter of AT-free graphs. CoRR, arXiv:2010.15814
(2020)

38. Ducoffe, G.: Distance problems within Helly graphs and k-Helly graphs. CoRR,
arXiv:2011.00001 (2020)

39. Ducoffe, G.: Optimal diameter computation within bounded clique-width graphs.
CoRR, arXiv:2011.08448 (2020)

40. Ducoffe, G.: Beyond Helly graphs: the diameter problem on absolute retracts.
CoRR, arXiv:2101.03574 (2021)

41. Ducoffe, G., Dragan, F.F.: A story of diameter, radius, and (almost) Helly property.
Networks, to appear

42. Ducoffe, G., Habib, M., Viennot, L.: Diameter computation on H-minor free graphs
and graphs of bounded (distance) VC-dimension. In: SODA, pp. 1905–1922. SIAM
(2020)

43. Farley, A., Proskurowski, A.: Computation of the center and diameter of outerpla-
nar graphs. DAM 2(3), 185–191 (1980)

44. Fournier, H., Ismail, A., Vigneron, A.: Computing the Gromov hyperbolicity of a
discrete metric space. IPL 115(6–8), 576–579 (2015)

45. Gawrychowski, P., Kaplan, H., Mozes, S., Sharir, M., Weimann, O.: Voronoi dia-
grams on planar graphs, and computing the diameter in deterministic Õ(n5/3)
time. In: SODA, pp. 495–514. SIAM (2018)

46. Gromov, M.: Hyperbolic groups. In: Gersten, S.M. (ed.) Essays in Group Theory.
MSRI, vol. 8, pp. 75–263. Springer, New York (1987). https://doi.org/10.1007/
978-1-4613-9586-7 3

47. Isbell, J.: Six theorems about injective metric spaces. Commentarii Mathematici
Helvetici 39(1), 65–76 (1964)

48. Kennedy, W.S., Saniee, I., Narayan, O.: On the hyperbolicity of large-scale net-
works and its estimation. In: BigData 2016, pp. 3344–3351. IEEE (2016)

49. Koolen, J.H., Moulton, V.: Hyperbolic bridged graphs. Eur. J. Comb. 23(6), 683–
699 (2002)

50. Koschützki, D., Lehmann, K.A., Peeters, L., Richter, S., Tenfelde-Podehl, D., Zlo-
towski, O.: Centrality indices. In: Brandes, U., Erlebach, T. (eds.) Network Anal-
ysis. LNCS, vol. 3418, pp. 16–61. Springer, Heidelberg (2005). https://doi.org/10.
1007/978-3-540-31955-9 3

http://arxiv.org/abs/1803.04660
https://doi.org/10.1007/3-540-62559-3_15
https://doi.org/10.1007/3-540-62559-3_15
http://arxiv.org/abs/2010.15814
http://arxiv.org/abs/2011.00001
http://arxiv.org/abs/2011.08448
http://arxiv.org/abs/2101.03574
https://doi.org/10.1007/978-1-4613-9586-7_3
https://doi.org/10.1007/978-1-4613-9586-7_3
https://doi.org/10.1007/978-3-540-31955-9_3
https://doi.org/10.1007/978-3-540-31955-9_3

314 F. F. Dragan et al.

51. Lin, M., Szwarcfiter, J.: Faster recognition of clique-Helly and hereditary clique-
Helly graphs. Inf. Process. Lett. 103(1), 40–43 (2007)

52. Narayan, O., Saniee, I.: Large-scale curvature of networks. Phys. Rev. E, 84(6),
066108 (2011)

53. Olariu, S.: A simple linear-time algorithm for computing the center of an interval
graph. Int. J. Comput. Math. 34(3–4), 121–128 (1990)

54. Roditty, L., Vassilevska Williams, V.: Fast approximation algorithms for the diam-
eter and radius of sparse graphs. In: STOC, pp. 515–524. ACM (2013)

55. Wu, Y., Zhang, C.: Hyperbolicity and chordality of a graph. Electr. J. Comb. 18(1),
Paper #P43 (2011)

ANN for Time Series Under the Fréchet
Distance

Anne Driemel and Ioannis Psarros(B)

Hausdorff Center for Mathematics, University of Bonn, Bonn, Germany
driemel@cs.uni-bonn.de, ipsarros@uni-bonn.de

Abstract. We study approximate-near-neighbor data structures for
time series under the continuous Fréchet distance. For an attainable
approximation factor c > 1 and a query radius r, an approximate-near-
neighbor data structure can be used to preprocess n curves in R (aka time
series), each of complexity m, to answer queries with a curve of complex-
ity k by either returning a curve that lies within Fréchet distance cr,
or answering that there exists no curve in the input within distance r.
In both cases, the answer is correct. Our first data structure achieves a

(5+ ε) approximation factor, uses space in n ·O (
ε−1

)k
+O(nm) and has

query time in O (k). Our second data structure achieves a (2+ ε) approx-

imation factor, uses space in n · O (
m
kε

)k
+O(nm) and has query time in

O (
k · 2k

)
. Our third positive result is a probabilistic data structure based

on locality-sensitive hashing, which achieves space in O(n log n+nm) and
query time in O(k log n), and which answers queries with an approxima-
tion factor in O(k). All of our data structures make use of the concept
of signatures, which were originally introduced for the problem of clus-
tering time series under the Fréchet distance. In addition, we show lower
bounds for this problem. Consider any data structure which achieves an
approximation factor less than 2 and which supports curves of arc length
up to L and answers the query using only a constant number of probes.
We show that under reasonable assumptions on the word size any such
data structure needs space in LΩ(k).

Keywords: Data structures · Approximate nearest neighbor · Fréchet
distance

1 Introduction

For a long time, Indyk’s result on approximate nearest neighbor algorithms for
the discrete Fréchet distance of 2002 [20] was the only result known for proximity
searching under the Fréchet distance. However, recently there has been a raised

A full version of this paper can be found on arXiv [9]. We thank Karl Bringmann and
André Nusser for useful discussions on the topic of this paper. Special thanks go to the
anonymous reviewer who pointed out an error in an earlier version of the manuscript,
and to Andrea Cremer for careful reading.

c© Springer Nature Switzerland AG 2021
A. Lubiw et al. (Eds.): WADS 2021, LNCS 12808, pp. 315–328, 2021.
https://doi.org/10.1007/978-3-030-83508-8_23

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-83508-8_23&domain=pdf
http://orcid.org/0000-0002-1943-2589
http://orcid.org/0000-0002-5079-5003
https://doi.org/10.1007/978-3-030-83508-8_23

316 A. Driemel and I. Psarros

interest in this area and several new results have been published [1–3,6,8,10,11,
13,15,16,24,25]. An intuitive definition of the Fréchet distance uses the metaphor
of a person walking a dog. Imagine the dog walker being restricted to follow the
path defined by the first curve while the dog is restricted to the second curve.
In this analogy, the Fréchet distance is the shortest length of a dog leash that
makes a dog walk feasible. Despite the many results in this area and despite the
popularity of the Fréchet distance it is still an open problem how to build efficient
data structures for it. Known results either suffer from a large approximation
factor or high complexity bounds with dependency on the arclength of the curve,
or only support a very restricted set of queries. Before we discuss previous work
in more detail, we give a formal definition of the problem we study.

Definition 1 (Fréchet distance). Given two curves π, τ : [0, 1] �→ R, their
Fréchet distance is:

dF (π, τ) = min
f :[0,1] �→[0,1]
g:[0,1] �→[0,1]

max
α∈[0,1]

‖π(f(α)) − τ(g(α))‖2,

where f and g range over all continuous, non-decreasing functions with f(0) =
g(0) = 0, and f(1) = g(1) = 1.

Definition 2 (c-ANN problem). The input consists of n curves Π in R
d.

Given a distance threshold r > 0, an approximation factor c > 1, preprocess Π
into a data structure such that for any query τ , the data structure reports as
follows:

– if ∃π ∈ Π s.t. dF (π, τ) ≤ r, then it returns π′ ∈ Π s.t. dF (π′, τ) ≤ cr,
– if ∀π ∈ Π, dF (π, τ) ≥ cr then it returns “no”,
– otherwise, it either returns a curve π ∈ Π s.t. dF (π, τ) ≤ cr, or “no”.

1.1 Previous Work

Most previous results on data structures for ANN search of curves, concern
the discrete Fréchet distance. This is a simplification of the distance measure
that only takes into account the vertices of the curves. The first non-trivial
ANN-data structure for the discrete Fréchet distance from 2002 by Indyk [20]
achieved approximation factor O((log m + log log n)t−1), where m is the maxi-
mum length of a sequence, and t > 1 is a trade-off parameter. More recently,
in 2017, Driemel and Silvestri [10] showed that locality-sensitive hashing can be
applied and obtained a data structure of near-linear size which achieves approxi-
mation factor O(k), where k is the length of the query sequence. They show how
to improve the approximation factor to O(d3/2) at the expense of additional
space usage (now exponential in k), and a follow-up result by Emiris and Psar-
ros [11] achieves a (1 + ε) approximation, at the expense of further increasing
space usage. Recently, Filtser et al. [13] showed how to build a (1+ε)-approximate
data structure using space in n · O(1/ε)kd and with query time in O(kd).

ANN for Time Series Under the Fréchet Distance 317

These results are relevant in our setting, since the continuous Fréchet distance
can naively be approximated using the discrete Fréchet distance. However, to
the best of our knowledge, all known such methods introduce a dependency on
the arclength of the curves (resp. the maximum length of an edge), either in
the complexity bounds or in the approximation factor. It is not at all obvious
how to avoid this when approximating the continuous with the discrete Fréchet
distance.

For the continuous Fréchet distance, a recent result by Mirzanezhad [24] can
be described as follows. The main ingredient of this data structure is the dis-
cretization of the space of query curves with a grid, achieving an approximation
factor of 1 + ε. Alas, the space required for each input curve is high, namely
roughly Ddk, where D is the diameter of the set of vertices of the input, d is the
dimension of the input space and k is the complexity of the query.

Interestingly, there are some data structures for the related problem of range
searching, which are especially tailored to the case of the continuous Fréchet
distance and which do not have a dependency on the arclength.

The subset of input curves, that lie within the search radius of the query
curve is called the range of the query. A range query should return all input
curves inside the range, or a statistic thereof. Driemel and Afshani [1] consider
the exact range searching problem for polygonal curves under the Fréchet dis-
tance. For n curves of complexity m in R

2, their data structure uses space in
O

(
n(log log n)O(m2)

)
and the query time costs O

(√
n logO(m2) n

)
, assuming

that the complexity of the query curves is at most logO(1) n. They also show
lower bounds in the pointer model of computation that match the number of
log factors used in the upper bounds asymptotically. The new lower bounds that
we show in this paper also hold for the case of range searching (more specifi-
cally, range emptiness queries), but we assume a different computational model,
namely the cell-probe model. While the lower bound of Afshani and Driemel
only holds in the case of exact range reporting and uses curves in the plane, our
new lower bound also holds in the case of approximation and is meaningful from
d ≥ 1.

1.2 Known Techniques

Our techniques are based on a number of different techniques that were pre-
viously used only for the discrete Fréchet distance. In this section we give an
overview of these techniques and highlight the main challenges that distinguish
the discrete Fréchet distance from the continuous Fréchet distance.

The locality-sensitive hashing scheme proposed by Driemel and Silvestri [10]
achieves linear space and query time in O(k), with an approximation factor of
O(k) for the discrete Fréchet distance. The data structure is based on snapping
vertices to a randomly shifted grid and then removing consecutive duplicates in
the sequence of grid points produced by snapping. Any two near curves produce
the same sequence of grid points with constant probability while any two curves,
which are sufficiently far away from each other, produce two non-equal sequences

318 A. Driemel and I. Psarros

of grid points with certainty. The main argument used in the analysis of this
scheme involves the optimal discrete matching of the vertices of the two curves.
This analysis is not directly applicable to the continuous Fréchet distance as the
optimal matching is not always realized at the vertices of the curves.

There are several ANN data structures with fast query time and small approx-
imation factor which store a set of representative query candidates together with
precomputed answers for these queries so that a query can be answered approxi-
mately with a lookup table. One example of this is the (1+ε)-ANN data structure
for the �p norms [17], which employs a grid and stores all those grid points which
are near to some data point, and a pointer to the data point that they repre-
sent. The side-length of the grid controls the approximation factor and using
hashing for storing precomputed solutions leads to an efficient query time. A
similar approach was used by Filtser et al. [13] for the (1 + ε)-ANN problem
under the discrete Fréchet distance. The algorithm discretizes the query space
with a canonical grid and stores representative point sequences on this grid.

There are several challenges when trying to apply the same approach to the
ANN problem under the continuous Fréchet distance. Computing good represen-
tatives in this case is more intricate: two curves may be near but some of their
vertices may be far from any other vertex on the other curve. Hence, picking
representative curves which are defined by vertices in the proximity of the ver-
tices of the data curve is not sufficient. In case the input consists of curves with
bounded arclength only, one can enumerate all curves which are defined by grid
points and lie within a given Fréchet distance. However, this results in a large
dependency on the arclength. One of the main questions that we attempt to
answer in our paper is whether efficient ANN data structures for the continuous
Fréchet distance are possible without such dependency on the arclength.

1.3 Preliminaries

For any x ∈ R, |x| denotes the absolute value of x. For any positive integer n,
[n] denotes the set {1, . . . , n}. Throughout this paper, a curve is a continuous
function [0, 1] �→ R and we may refer to such a curve as a time series. We
can define a curve π as π := 〈x1, . . . , xm〉, which means that π is obtained by
linearly interpolating x1, . . . , xm. The vertices of π : [0, 1] �→ R are those points
which are local extrema in π. For any curve π, V(π) denotes the sequence of
vertices of π. The number of vertices |V(π)| is called the complexity of π and
it is also denoted by |π|. For any two points x, y, xy denotes the directed line
segment connecting x with y in the direction from x to y. The segment defined
by two consecutive vertices is called an edge. For any two 0 ≤ pa < pb ≤ 1
and any curve π, we denote by π[pa, pb] the subcurve of π starting at π(pa)
and ending at π(pb). For any two curves π1, π2, with vertices x1, . . . , xk and
xk, . . . , xm respectively, π1 ⊕ π2 denotes the curve 〈x1, . . . , xk, . . . xm〉, that is
the concatenation of π1 and π2. We define the arclength λ(π) of a curve π as
the total sum of lengths of the edges of π. We refer to a pair of continuous, non-
decreasing functions f : [0, 1] �→ [0, 1], g : [0, 1] �→ [0, 1] such that f(0) = g(0),
f(1) = g(1), as a matching. If a matching φ = (f, g) of two curves π, τ satisfies

ANN for Time Series Under the Fréchet Distance 319

maxα∈[0,1] ‖π(f(α))− τ(g(α))‖ ≤ δ, then we say that φ is a δ-matching of π and
τ . Given two curves π : [0, 1] → R, τ : [0, 1] → R. The δ-free space is the subset
of the parametric space [0, 1]2 defined as {(x, y) ∈ [0, 1]2 | |π(x) − τ(y)| ≤ δ}.

Our data structures make use of a dictionary data structure. A dictionary
stores a set of (key, value) pairs and when presented with a key, returns the
associated value. Assume we have to store n (key,value) pairs, where the keys
come from a universe Uk. Perfect hashing provides us with a dictionary using
O(n) space and O(k) query time which can be constructed in O(n) expected
time [14]. During look-up, we compute the hash function in O(k) time, we access
the corresponding bucket in the hashtable in O(1) time and check if the key
stored there is equal to the query in O(k) time.

All of our data structures can operate in the word-RAM model. For the
sake of simplicity, we state our results in the real-RAM model, assuming the
availability of a floor function operation in constant time. Our lower bounds are
for the cell-probe model. The cell-probe model of computation counts the number
of memory accesses (cell probes) to the data structure which are performed by
a query. Given a universe of data and a universe of queries, a cell-probe data
structure with performance parameters s, t, w, is a structure which consists
of s memory cells, each able to store w bits, and any query can be answered
by accessing t memory cells. Our lower bound concerns approximate distance
oracles. A Fréchet distance oracle is a data structure which, given one input
curve π, a distance threshold r, and an approximation factor c > 0, reports for
any query curve τ as follows:(i) if dF (π, τ) ≤ r then the answer is “yes”, (ii) if
dF (π, τ) > cr then the answer is “no”, (iii) otherwise the answer can be either
“yes” or “no”.

1.4 Our Contributions

We study the c-ANN problem for time series under the continuous Fréchet dis-
tance. Our first result is a data structure that achieves approximation factor
5 + ε for any ε > 0. The data structure is described in Sect. 2 and leads to the
following theorem.

Theorem 1. Let ε ∈ (0, 1]. There is a data structure for the (5 + ε)-ANN prob-
lem, which stores n time series of complexity m and supports query time series
of complexity k, uses space in n·O (

1
ε

)k +O(nm), needs O (nm)·O (
1
ε

)k expected
preprocessing time and answers a query in O(k) time.

To achieve this result, we generate a discrete approximation of the set of all
possible non-empty queries. To this end, we employ the concept of signatures,
previously introduced in [7]. The signature of a time series provides us with a
selection of the local extrema of the function graph, which we use to approximate
the set of queries.

We extend these ideas to improve the approximation factor to (2 + ε), albeit
with an increase in space and query time. In particular, we generate all curves
with vertices that lie in the vicinity of the vertices of the input curves. We com-
bine this with a careful analysis of the involved matchings and a more elaborate

320 A. Driemel and I. Psarros

query algorithm. The resulting data structure can be found in Sect. 3 and leads
to the following theorem.

Theorem 2. Let ε ∈ (0, 1]. There is a data structure for the (2 + ε)-ANN prob-
lem, which stores n time series of complexity m and supports query time series
of complexity k, uses space in n · O (

m
kε

)k, needs O(nm) · O (
m
kε

)k expected pre-
processing time and answers a query in O(k · 2k) time.

Our third result is a data structure that uses space in O(n log n+nm) and has
query time in O(k log n). This improvement in the space complexity comes with
a sacrifice in the approximation factor achieved by the data structure, which is
now in O(k).

Theorem 3. There is a data structure for the (24k + 1)-ANN problem, which
stores n time series of complexity m and supports queries with time series of
complexity k, uses space in O(n log n + nm), needs O(nm log n) expected pre-
processing time and answers a query in O(k log n) time. For a fixed query, the
preprocessing succeeds with probability at least 1 − 1/poly(n).

To achieve this result, we combine the notion of signatures with the ideas
of the locality-sensitive scheme that was previously used [10] for the discrete
Fréchet distance. In the discrete case, it is sufficient to snap the vertices of the
curves to a grid of well-chosen resolution and to remove repetitions of grid points
along the curve to obtain a hash index with good probability. In the continuous
case, we first compute a signature, which filters the salient points of the curve,
and only then apply the grid snapping to this signature to obtain the hash index.
The resulting data structure is surprisingly simple. The description of the data
structure can be found in Sect. 4.

Finally, we give a lower bound in the cell-probe model of computation, which
seems to indicate that for data structures that achieve approximation factor
better than 2 and that use a constant number of probes per query, a dependency
on the arc-length of the curve is necessary.

Theorem 4. Consider any Fréchet distance oracle with approximation factor
2 − γ, for any γ ∈ (0, 1], distance threshold r = 1, in the cell-probe model, which
supports time series as follows: it stores any polygonal curve in R of arclength
at most L, for L ≥ 6, it supports queries of arclength up to L and complexity k,
where k ≤ L/6, and it achieves performance parameters t, w, s. There exist

w0 = Ω

(
L1−ε

t

)
, s0 = 2Ω(k log(L/k)

t)

such that if w < w0 then s ≥ s0, for any constant ε > 0.

To achieve this result we observe that a technique first introduced by Mil-
tersen [23] can be applied here. Miltersen shows that lower bounds for commu-
nication problems can be translated into lower bounds for cell-probe data struc-
tures. In particular, we use a reduction from the lopsided disjointness problem
(see Sect. 5). The proof of the theorem can be found in the full version [9].

ANN for Time Series Under the Fréchet Distance 321

In addition, we extend these lower bound results to the case of the discrete
Fréchet distance (in the full version [9]). Here, our reduction is more intricate.
We adapt a reduction by Bringmann and Mulzer [5], which was used for showing
lower bounds for computing the Fréchet distance. Our results show that an
exponential dependence on k for the space is necessary when the number of
probes is constant (such as in [13]).

1.5 Signatures

A crucial ingredient to our algorithms is the notion of signatures which was first
introduced in [7]. We define signatures as follows.

Definition 3 (δ-signatures). A curve σ : [0, 1] �→ R is a δ-signature of
τ : [0, 1] �→ R if it is a curve defined by a series of values 0 = t1 < · · · < t� = 1
as the linear interpolation of τ(ti) in the order of the index i, and satisfies the
following properties. For 1 ≤ i ≤ � − 1 the following conditions hold:

i) (non-degeneracy) if i ∈ [2, � − 1] then τ(ti) /∈ τ(ti−1), τ(ti+1),
ii) (direction-preserving) if τ(ti) < τ(ti+1) for t < t′ ∈ [ti, ti+1]: τ(t)−τ(t′) ≤ 2δ

and if τ(ti) > τ(ti+1) for t < t′ ∈ [ti, ti+1]: τ(t′) − τ(t) ≤ 2δ,
iii) (minimum edge length) if i ∈ [2, � − 2] then |τ(ti+1) − τ(ti)| > 2δ, and if

i ∈ {1, � − 1} then |τ(ti+1) − τ(ti)| > δ,
iv) (range) for t ∈ [ti, ti+1] : if i ∈ [2, �−2] then τ(t) ∈ τ(ti)τ(ti+1), and if i = 1

and � > 2 then τ(t) ∈ τ(ti)τ(ti+1) ∪ (τ(ti) − δ)(τ(ti) + δ), and if i = � − 1
and � > 2 then τ(t) ∈ τ(ti−1)τ(ti) ∪ (τ(ti) − δ)(τ(ti) + δ), and if i = 1 and
� = 2 then τ(t) ∈ τ(t1)τ(t2) ∪ (τ(t1) − δ)(τ(t1) + δ) ∪ (τ(t2) − δ)(τ(t2) + δ).

For any δ > 0 and any curve π : [0, 1] �→ R of complexity m, a δ-signature of
π can be computed in O(m) time [7]. We now state some basic results about
signatures.

Lemma 1 (Lemma 3.1 [7]). It holds for any δ-signature σ of τ : dF (σ, τ) ≤ δ.

Lemma 2 (Lemma 3.2 [7]). Let σ with vertices v1, . . . , v�, be a δ-signature of
π with vertices u1, . . . , um. Let ri = [vi − δ, vi + δ], for 1 ≤ i ≤ �, be ranges
centered at the vertices of σ ordered along σ. It holds for any time series τ if
dF (π, τ) ≤ δ, then τ has a vertex in each range ri, and such that these vertices
appear on τ in the order of i.

2 A Constant-Factor Approximation for Time Series

In this section, we describe the data structure for Theorem 1. The data structure
achieves approximation factor (5 + ε). The full proof as well as pseudocode of
the algorithms can be found in the full version of our paper [9].

322 A. Driemel and I. Psarros

The Data Structure. The input consists of a set Π of n curves in R, and the
approximation error ε > 0. To simplify our exposition, we assume that the
distance threshold r is equal to 1 (otherwise, we scale the input uniformly).
To solve the problem for a different value of r, the input set can be uniformly
scaled. Let Gw := {i · w | i ∈ Z} be the regular grid with side-length w := ε/2.
Let H be a dictionary, which is initially empty. For each input curve π ∈ Π,
we compute its 1-signature σπ, with vertices V(σπ) = v1, . . . , v�, and for each
vi ∈ V(σπ) we define the range ri := [vi − 2 − w, vi + 2 + w]. We enumerate all
curves with at most k vertices, chosen from the sets r1 ∩ Gw, r2 ∩ Gw, . . ., and
satisfying the order of i, and we store them in a set C′. Next, we compute the
set C(π) := {σ ∈ C′ | dF (σ, π) ≤ 3}. We store C(π) in H as follows: for each
σ ∈ C(π), we use as key the sequence of its vertices V(σ): if V(σ) is not already
stored in H, then we insert the pair (V(σ),π) into H.

The total space required is O (n · maxπ∈Π |C(π)|).
Our intuition is the following. We would like the set C(π) to contain all

those curves that correspond to 2-signatures of query curves that have π as an
approximate near neighbor in the set Π. So when presented with a query we can
simply compute its 2-signature and do a lookup in H. However, the set of all
possible 2-signatures with non-empty query is infinite. Therefore, we snap the
vertices to a grid to obtain a discrete set of bounded size.

The Query Algorithm. When presented with a query curve τ , we first compute
a 2-signature στ , and then we compute a key by snapping the vertices to the
same grid Gw. Snapping to Gw is implemented as follows: if V(στ) = v1, . . . , v�

then σ′
τ := 〈gw(v1), . . . , gw(v�)〉, where for any x ∈ R, gw(x) is the nearest point

of x in Gw. We perform a lookup in H with the key V(σ′
τ) and return the result:

if V(σ′
τ) is stored in H then we return the associated curve, otherwise we return

“no”.

Lemma 3. Let τ be a query curve of complexity k. If the query algorithm returns
an input curve π′ ∈ Π, then dF (π′, τ) ≤ 5 + ε. If the query algorithm returns
“no”, then there is no π ∈ Π such that dF (π, τ) ≤ 1.

Proof. Let π be any input curve in Π and let σπ be the 1-signature of π. Let
τ be a query curve, let στ be its 2-signature and let σ′

τ be as defined in the
query algorithm. First suppose that dF (π, τ) ≤ 1. By the triangle inequality and
Lemma 1, dF (π, στ) ≤ 3 + w. Let u1, . . . , u�′ be the vertices of στ and define
for each i ∈ [�′], r′

i := [ui − 2, ui + 2]. By Lemma 2, σπ has a vertex in each
range r′

i and these vertices appear on σπ in the order of i. This guarantees that
the vertices of σ′

τ lie in the ranges r1, . . . , r� and it will be considered during
preprocessing. Hence, σ′

τ will be generated when preprocessing π. This implies
that V(σ′

τ) is stored in H. It is possible that σ′
τ was also generated and stored

for a different input curve, say π′ �= π with dF (π′, σ′
τ) ≤ 3. We claim that

dF (π′, τ) ≤ 5 + 2w. Indeed, we have by the triangle inequality

dF (π′, τ) ≤ dF (π′, σ′
τ) + dF (σ′

τ , στ) + dF (στ , τ) ≤ 5 + 2w.

ANN for Time Series Under the Fréchet Distance 323

This proves that any curve returned by the query algorithm has Fréchet distance
at most 5 + 2w = 5 + ε to the query curve, and if the query algorithm returns
“no”, then there is no input curve within Fréchet distance 1 to the query curve.

��
By Lemma 3 the data structure returns a correct result. To show Theorem 1,

it remains to analyze the complexity. We sketch the analysis of the candidate
set which is generated during preprocessing. Indeed, we will show now that
|C′| ≤ O (

1
ε

)k. Notice that if there exists a curve with k vertices which is within
distance 1 from π then � ≤ k, by Lemma 2. Recall that the curves in |C′| have
vertices in the ranges ri ∩ Gw and the vertices respect the order of i. If we fix
the choices of t1, . . . , t�, where each ti denotes the number of vertices in ri ∩ Gw,
we can produce at most

∏�
i=1 |ri ∩ Gw|ti distinct sequences of vertices of length∑�

i=1 ti and hence at most
∏�

i=1 |ri ∩ Gw|ti curves of length at most
∑�

i=1 ti.
Hence,

|C′| ≤
∑

t1+...+t�=k
∀i: ti≥0

t1≥1,t�≥1

�∏
i=1

(
4
ε

+ 2
)ti

≤
∑

t1+...+t�=k
∀i: ti≥0

(
4
ε

+ 2
)k

≤
(

k + � − 1
k

)
·
(

4
ε

+ 2
)k

≤ (2e)k ·
(

4
ε

+ 2
)k

= O
(

1
ε

)k

.

3 Improving the Approximation Factor to (2 + ε)

In this section, we describe the data structure for Theorem 2. The full proof
of this theorem as well as pseudocode can be found in the full version of our
paper [9]. We build upon the ideas developed in Sect. 2. The key to circumventing
the larger approximation factor resulting from the use of the triangle inequality
seems to be a careful construction of matchings. For this we define the notion of
a δ-tight matching for two curves. Figure 1 illustrates the approach.

Definition 4. (δ-tight matching). Given two curves π and τ , consider a
monotone path λ through the parametric space of π and τ consisting of two types
of segments:

(i) a segment contained in the 0-free space (corresponding to identical subcurves
of π and τ),

(ii) a horizontal line segment contained in the δ-free space (corresponding to a
point on π and a subcurve on τ).

If λ exists, we say λ is a tight matching of width δ from π to τ .

Lemma 4. Let X = ab ⊂ R be a line segment and let τ and π be curves with
[a, b] ⊆ [τ(0), τ(1)] and [a, b] ⊆ [π(0), π(1)]. If dF (X, τ) = δ1 and dF (X,π) = δ2,
then dF (τ, π) ≤ max(δ1, δ2).

324 A. Driemel and I. Psarros

yi

yi+1

p p′ t t′

p p′

t
t′

Fig. 1. Example of the path constructed in the proof of Lemma 4. The left figure shows
a tight matching from X to π. The middle figure shows a tight matching from X to τ .
Diagonal edges of the 0-free space of these can be transferred to the diagram on the
right, which is the free space diagram of π and τ . The final path results from connecting
these diagonal segments using horizontal and vertical line segments.

Theorem 5. Let τ be a curve with vertices τ(t1), . . . , τ(tm), and let στ be a δ-
signature of τ with vertices τ(ts1), . . . , τ(ts�

). Let τ ′ be a curve obtained by delet-
ing any subset of vertices of τ which are not in στ , i.e. τ ′ = 〈τ(t′1), . . . , τ(t′k)〉,
where {ts1 , . . . ts�

} ⊆ {t′1, . . . , t
′
k} ⊆ {t1, . . . , tm}. Then dF (τ, τ ′) ≤ δ.

The Data Structure. The input consists of a set Π of n curves in R, and the
approximation error ε > 0. As before, we assume that the distance threshold
is r := 1 (otherwise we can uniformly scale the input). To discretize the query
space, we use the regular grid Gw := {i · w | i ∈ Z}, where w := ε/2. Let H be
a dictionary which is initially empty. For each input curve π ∈ Π, with vertices
V(π) = v1, . . . , vm, we set ri = [vi − 4 − w, vi + 4 + w], for i ∈ [m], and we
compute a set C′ := C′(π) which contains all curves with at most k vertices such
that each vertex belongs to some ri ∩ Gw and the vertices are ordered in the
order of i. More formally,

C′ = {〈u1, . . . , u�〉 | � ≤ k,∃i1, . . . , i� s.t. i1 ≤ · · · ≤ i� and ∀j ∈ [�] uj ∈ rij
∩Gw}.

Next, we filter C′ to obtain the set C(π) := {σ ∈ C′ | dF (σ, π) ≤ 1 + w}.
We store C(π) in H as follows: for each σ ∈ C(π), we use as key the sequence

of its vertices V(σ): if V(σ) is not already stored in H, then we insert the pair
(V(σ),π) into H. The total space required is O (n · maxπ∈Π |C(π)|).

The Query Algorithm. For a query curve τ , the algorithm query(τ) first com-
putes the 1-signature of τ , namely σ, and then enumerates all possible curves
τkey which are produced from τ by deleting vertices that are not in σ. For each
possible τkey, we compute τ̃key := 〈gw(v1), . . . , gw(v�)〉, where for any x ∈ R,
gw(x) is the nearest point of x in Gw. For each τ̃key we perform a lookup in H,
with key V(τ̃key): if V(τ̃key) is stored in H then we return the associated curve.
If there is no τ̃key such that V(τ̃key) is stored in H then the algorithm returns
“no”.

ANN for Time Series Under the Fréchet Distance 325

4 An O(k)-ANN Data Structure with Near-Linear Space

In this section we give the data structure for Theorem 3. The full proof can be
found in the full version of our paper [9]. The data structure has approximation
factor of order O(k), but it uses space in O(n log n + nm) and query time in
O(k log n). Our main ingredient is a properly-tuned randomly shifted grid: Let
w > 0 be a fixed parameter and z chosen uniformly at random from the set
[0, w]. The function gw,z(x) =

⌊
w−1(x − z)

⌋
induces a random partition of the

line.

The Data Structure. The input consists of a set Π of n curves in R. As before, we
assume that the distance threshold is r := 1. Let w = 48k. We build s = O(log n)
dictionaries H1, . . . ,Hs which are initially empty. For each i ∈ [s], we sample zi

uniformly and independently at random from [0, w]. For each input curve π ∈ Π,
we compute its 1-signature σπ, with vertices V(σπ) = v1, . . . , v�, and for each
i ∈ [s] we compute the curve σ′

π|i = 〈gw,zi
(v1), . . . , gw,zi

(v�)〉. For each π ∈ Π,
such that |V (σπ)| ≤ k, we use as key in Hi the sequence of vertices V(σ′

π|i): if
V(σ′

π|i) is not already stored in Hi, then we insert the pair (V(σ′
π|i), π).

The Query Algorithm. When presented with a query curve τ , with vertices
u1, . . . , uk, we compute for each i ∈ [s], the curve τ ′

i = 〈gw,zi
(u1), . . . , gw,zi

(uk)〉.
Then, for each i ∈ [s], we perform a lookup in Hi with the key V(τi

′) and return
the result: if ∃i ∈ [s] such that V(τi

′) is stored in Hi then we return the curve
associated with it. Otherwise we return “no”. (Recall that V(τi

′) only retains
the maxima and minima of the sequence gw,zi

(u1), . . . , gw,zi
(uk).)

5 A Lower Bound in the Cell-Probe Model

Our lower bound of Theorem 4 works by reducing the lopsided set disjointness
problem to the problem of approximating the Fréchet distance of two curves in
R. (A similar reduction appears in [22], which however works for curves in R

2.)
The full proof is diverted to the full version [9].

First consider an instance of the set disjointness problem: Alice has a set
A = {α1, . . . , αk} ⊂ [U] and Bob has a set B = {β1, . . . , βm} ⊂ [U], where U is
the size of the universe. We now describe our main gadgets which will be used to
define one curve of complexity O(k) for A and one curve of complexity O(U −m)
for B. For each i ∈ [U]:
– If i ∈ A then x2i−1 := 4i + 4, x2i := 4i,
– If i /∈ A then x2i−1 := 4i, x2i := 4i,
– If i ∈ B then y2i−1 := 4i, y2i := 4i,
– If i /∈ B then y2i−1 := 4i + 3, y2i := 4i + 1,

We now define x̃ := 〈0, x1, . . . , x2U , 4U + 5〉 and ỹ := 〈0, y1, . . . , y2U , 4U + 5〉.
Notice that the number of vertices of x̃ is 2k + 2, and the number of vertices of
ỹ is 2(U − m) + 2, because we only take into account vertices which are local
extremes. The arclength of any of x̃, ỹ is at most 12U + 2.

Theorem 6. If A ∩ B = ∅ then dF (x̃, ỹ) ≤ 1. If A ∩ B �= ∅ then dF (x̃, ỹ) ≥ 2.

326 A. Driemel and I. Psarros

6 Conclusions

We have described and analyzed a simple (5+ ε) -ANN data structure. Focusing
on improving the approximation factor, while compromising other performance
parameters, we presented a (2+ ε)-ANN data structure for time series under the
continuous Fréchet distance. In doing so, we have presented the new technique
of constructing so-called tight matchings, which may be of independent interest.
In addition, we have also presented a O(k)-ANN randomized data structure for
time series under the Fréchet distance, with near-linear space usage and query
time in O(k log n). We also showed lower bounds in the cell-probe model, which
indicate that an approximation better than 2 cannot be achieved, unless we allow
space usage depending on the arclength of the time series or allow superconstant
number of probes. Our bounds are not tight. In particular, they leave open the
possibility of a data structure with approximation factor (2+ε), with space usage
in n · O(ε−1)k, and which answers any query using only a constant number of
probes.1 Moreover, it is possible that even an approximation factor of (1+ε) can
be achieved with space and query time similar to Theorem 1.

Apart from these improvements, several open questions remain, we discuss
two main research directions:

1. Are there data structures with similar guarantees for the ANN problem under
the continuous Fréchet distance for curves in the plane (or higher dimensions)?
Our approach uses signatures, which are tailored to the 1-dimensional setting.
A related concept for curves in higher dimensions is the curve simplification.
It is an open problem if it is possible to apply simplifications in place of
signatures to obtain similar results.

2. The lower bounds presented in this paper are only meaningful when the num-
ber of probes is constant. Can we find lower bounds for the setting that query
time is polynomial in k and m, and logarithmic in n?

One of the aspects that make our results and these open questions interesting
is that known generic approaches designed for general classes of metric spaces
cannot be applied. There exist several data structures which operate on general
metric spaces with bounded doubling dimension (see e.g. [4,18,21]). However, the
doubling dimension of the metric space defined over the space of time series with
the continuous Fréchet distance is unbounded [7]. Another aspect that makes our
problem difficult, is that the Fréchet distance does not exhibit a norm structure.
In this sense it is very similar to the well-known Hausdorff distance for sets,
which is equally challenging from the point of view of data structures (see also
the discussion in [12,19]). We hope that answering the above research questions
will lead to new techniques for handling such distance measures.

1 In fact, an earlier version of this manuscript claimed such a result, but it contained
a flaw.

ANN for Time Series Under the Fréchet Distance 327

References

1. Afshani, P., Driemel, A.: On the complexity of range searching among curves. In:
Proceedings of the 28th Annual ACM-SIAM Symposium on Discrete Algorithms,
SODA 2018, pp. 898–917 (2018). https://doi.org/10.1137/1.9781611975031.58

2. Aronov, B., Filtser, O., Horton, M., Katz, M.J., Sheikhan, K.: Efficient nearest-
neighbor query and clustering of planar curves. In: Friggstad, Z., Sack, J.-R.,
Salavatipour, M.R. (eds.) WADS 2019. LNCS, vol. 11646, pp. 28–42. Springer,
Cham (2019). https://doi.org/10.1007/978-3-030-24766-9 3

3. de Berg, M., Gudmundsson, J., Mehrabi, A.D.: A dynamic data structure for
approximate proximity queries in trajectory data. In: Proceedings of the 25th ACM
SIGSPATIAL International Conference on Advances in Geographic Information
Systems, SIGSPATIAL 2017 (2017). https://doi.org/10.1145/3139958.3140023

4. Beygelzimer, A., Kakade, S.M., Langford, J.: Cover trees for nearest neighbor. In:
Proceedings of the 23rd International Conference (ICML) on Machine Learning,
pp. 97–104 (2006). https://doi.org/10.1145/1143844.1143857

5. Bringmann, K., Mulzer, W.: Approximability of the discrete Fréchet distance.
JoCG 7(2), 46–76 (2016). https://doi.org/10.20382/jocg.v7i2a4

6. De Berg, M., Cook, A.F., Gudmundsson, J.: Fast Fréchet queries. Comput. Geom.
46(6), 747–755 (2013)

7. Driemel, A., Krivosija, A., Sohler, C.: Clustering time series under the Fréchet
distance. In: Proceedings of the 27th Annual ACM-SIAM Symposium on Discrete
Algorithms, SODA, pp. 766–785 (2016). https://doi.org/10.1137/1.9781611974331.
ch55

8. Driemel, A., Phillips, J.M., Psarros, I.: The VC dimension of metric balls under
Fréchet and Hausdorff distances. In: Proceedings of the 35th International Sympo-
sium on Computational Geometry, pp. 28:2–28:16 (2019)

9. Driemel, A., Psarros, I.: (2+ε)-ANN for time series under the Fréchet distance.
CoRR abs/2008.09406 (2020). https://arxiv.org/abs/2008.09406

10. Driemel, A., Silvestri, F.: Locally-sensitive hashing of curves. In: Proceedings of
33rd International Symposium on Computational Geometry, pp. 37:1–37:16 (2017)

11. Emiris, I.Z., Psarros, I.: Products of Euclidean metrics and applications to proxim-
ity questions among curves. In: Proceedings of 34th International Symposium on
Computational Geometry (SoCG), LIPIcs, vol. 99, pp. 37:1–37:13 (2018)

12. Farach-Colton, M., Indyk, P.: Approximate nearest neighbor algorithms for Haus-
dorff metrics via embeddings. In: 40th Annual Symposium on Foundations of Com-
puter Science, FOCS 1999, New York, NY, USA, 17–18 October 1999, pp. 171–180
(1999). https://doi.org/10.1109/SFFCS.1999.814589

13. Filtser, A., Filtser, O., Katz, M.J.: Approximate nearest neighbor for curves - sim-
ple, efficient, and deterministic. In: 47th International Colloquium on Automata,
Languages, and Programming, ICALP 2020, pp. 48:1–48:19 (2020). https://doi.
org/10.4230/LIPIcs.ICALP.2020.48

14. Fredman, M.L., Komlós, J., Szemerédi, E.: Storing a sparse table with O(1) worst
case access time. J. ACM 31(3), 538–544 (1984)

15. Gudmundsson, J., Horton, M., Pfeifer, J., Seybold, M.P.: A practical index struc-
ture supporting Fréchet proximity queries among trajectories (2020)

16. Gudmundsson, J., Smid, M.: Fast algorithms for approximate Fréchet matching
queries in geometric trees. Comput. Geom. 48(6), 479–494 (2015). https://doi.
org/10.1016/j.comgeo.2015.02.003

https://doi.org/10.1137/1.9781611975031.58
https://doi.org/10.1007/978-3-030-24766-9_3
https://doi.org/10.1145/3139958.3140023
https://doi.org/10.1145/1143844.1143857
https://doi.org/10.20382/jocg.v7i2a4
https://doi.org/10.1137/1.9781611974331.ch55
https://doi.org/10.1137/1.9781611974331.ch55
https://arxiv.org/abs/2008.09406
https://doi.org/10.1109/SFFCS.1999.814589
https://doi.org/10.4230/LIPIcs.ICALP.2020.48
https://doi.org/10.4230/LIPIcs.ICALP.2020.48
https://doi.org/10.1016/j.comgeo.2015.02.003
https://doi.org/10.1016/j.comgeo.2015.02.003

328 A. Driemel and I. Psarros

17. Har-Peled, S., Indyk, P., Motwani, R.: Approximate nearest neighbor: towards
removing the curse of dimensionality. Theory Comput. 8(1), 321–350 (2012).
https://doi.org/10.4086/toc.2012.v008a014

18. Har-Peled, S., Mendel, M.: Fast construction of nets in low-dimensional metrics
and their applications. SIAM J. Comput. 35(5), 1148–1184 (2006). https://doi.
org/10.1137/S0097539704446281

19. Indyk, P.: On approximate nearest neighbors in non-Euclidean spaces. In: 39th
Annual Symposium on Foundations of Computer Science, FOCS 1998, pp. 148–
155 (1998). https://doi.org/10.1109/SFCS.1998.743438

20. Indyk, P.: Approximate nearest neighbor algorithms for Fréchet distance via prod-
uct metrics. In: Symposium on Computational Geometry, pp. 102–106 (2002)

21. Krauthgamer, R., Lee, J.R.: Navigating nets: simple algorithms for proximity
search. In: Proceedings of the Fifteenth Annual ACM-SIAM Symposium on Dis-
crete Algorithms, SODA 2004, pp. 798–807 (2004). http://dl.acm.org/citation.cfm?
id=982792.982913

22. Meintrup, S., Munteanu, A., Rohde, D.: Random projections and sampling algo-
rithms for clustering of high-dimensional polygonal curves. NeurIPS 2019, 12807–
12817 (2019)

23. Miltersen, P.B.: Lower bounds for union-split-find related problems on random
access machines. In: Proceedings of the Twenty-sixth Annual ACM Symposium on
Theory of Computing, STOC 1994, pp. 625–634. ACM (1994). https://doi.org/10.
1145/195058.195415

24. Mirzanezhad, M.: On the approximate nearest neighbor queries among curves
under the Fréchet distance. CoRR abs/2004.08444 (2020). https://arxiv.org/abs/
2004.08444

25. Werner, M., Oliver, D.: ACM SIGSPATIAL GIS Cup 2017: range queries under
Fréchet distance. SIGSPATIAL Spec. 10(1), 24–27 (2018). https://doi.org/10.
1145/3231541.3231549

https://doi.org/10.4086/toc.2012.v008a014
https://doi.org/10.1137/S0097539704446281
https://doi.org/10.1137/S0097539704446281
https://doi.org/10.1109/SFCS.1998.743438
http://dl.acm.org/citation.cfm?id=982792.982913
http://dl.acm.org/citation.cfm?id=982792.982913
https://doi.org/10.1145/195058.195415
https://doi.org/10.1145/195058.195415
https://arxiv.org/abs/2004.08444
https://arxiv.org/abs/2004.08444
https://doi.org/10.1145/3231541.3231549
https://doi.org/10.1145/3231541.3231549

Strictly In-Place Algorithms for
Permuting and Inverting Permutations

Bart�lomiej Dudek, Pawe�l Gawrychowski(B), and Karol Pokorski

Institute of Computer Science, University of Wroc�law, Wroc�law, Poland
{bartlomiej.dudek,gawry,pokorski}@cs.uni.wroc.pl

Abstract. We revisit the problem of permuting an array of length n
according to a given permutation in place, that is, using only a small
number of bits of extra storage. Fich, Munro and Poblete [FOCS 1990,
SICOMP 1995] obtained an elegant O(n log n)-time algorithm using only
O(log2 n) bits of extra space for this basic problem by designing a proce-
dure that scans the permutation and outputs exactly one element from
each of its cycles. However, in the strict sense in place should be under-
stood as using only an asymptotically optimal O(log n) bits of extra
space, or storing a constant number of indices. The problem of per-
muting in this version is, in fact, a well-known interview question, with
the expected solution being a quadratic-time algorithm. Surprisingly, no
faster algorithm seems to be known in the literature.

Our first contribution is a strictly in-place generalisation of the
method of Fich et al. that works in Oε(n

1+ε) time, for any ε > 0. Then,
we build on this generalisation to obtain a strictly in-place algorithm for
inverting a given permutation on n elements working in the same com-
plexity. This is a significant improvement on a recent result of Guśpiel
[arXiv 2019], who designed an O(n1.5)-time algorithm.

1 Introduction

Permutations are often used as building blocks in combinatorial algorithms oper-
ating on more complex objects. This brings the need for being able to efficiently
operate on permutations. One of the most fundamental operations is rearranging
an array A[1..n] according to a permutation π. This can be used, for example, to
transpose a rectangular array [24, Ex. 1.3.3-12]. Denoting by ai the value stored
in A[i], the goal is to make every A[i] = aπ−1(i). This is trivial if we can allocate
a temporary array B[1..n] and, after setting B[π(i)] ← A[i] for every i, copy
B[1..n] to A[1..n]. Alternatively, one can iterate over the cycles of π and rear-
range the values on each cycle. Then there is no need for allocating a temporary
array as long as we can recognise the elements of π in already processed cycles.
This is easy if we can overwrite π, say by setting π(i) ← i after having processed
π(i). However, we might want to use the same π later, and thus cannot overwrite
its elements. In such a case, assuming that every π(i) can store at least one extra
bit, we could mark the processed elements by temporarily setting π(i) ← −π(i),
and after having rearranged the array restoring the original π. Even though
c© Springer Nature Switzerland AG 2021
A. Lubiw et al. (Eds.): WADS 2021, LNCS 12808, pp. 329–342, 2021.
https://doi.org/10.1007/978-3-030-83508-8_24

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-83508-8_24&domain=pdf
https://doi.org/10.1007/978-3-030-83508-8_24

330 B. Dudek et al.

this reduces the extra space to just one bit per element, this might be still too
much, and π(i) might be not stored explicitly but computed on-the-fly, as in
the example of transposing a rectangular array. This motivates the challenge of
designing an efficient algorithm that only assumes access to π through an oracle
and uses a small number of bits of extra storage. This is in fact a known inter-
view puzzle [1, Sec. 6.9]. The expected solution is a quadratic-time algorithm
that identifies the cycles of π by iterating over i = 1, 2, . . . , n and checking if i
is the smallest on its cycle in π. Having identified such i, we permute the values
A[i], A[π(i)], A[π2(i)], This uses only a constant number of auxiliary variables,
or O(log n) bits of additional space, which is asymptotically optimal as we need
to be able to specify an index consisting of �log n� bits. However, its worst-case
running time is quadratic. Designing a faster solution is nontrivial, but Fich,
Munro and Poblete obtained an elegant O(n log n)-time algorithm using only
O(log2 n) bits of extra space [13]. Their approach is also based on identifying
the cycles of π. This is implemented by scanning the elements i = 1, 2, . . . , n
while testing if the current i is the leader on its cycle, designating exactly one
element on every cycle to be its leader. We call this a cycle leaders procedure.
Due to the unidirectional nature of the input, the test must be implemented by
considering the elements i, π(i), π2(i), . . . until we can conclude if i is the leader
of its cycle. The main contribution of Fich et al. is an appropriate definition of
a leader that allows to implement such a test while storing only O(log n) indices
and making the total number of accesses to π only O(n log n). They also show an
algorithm running in O(n2/b) time and b + O(log n) bits of space for arbitrary
b ≤ n.

A procedure that transforms the input using only a small number of bits of
extra storage is usually referred to as an in-place algorithm. The allowed extra
space depends on the problem, but in the most strict form, this is O(log n) bits
where n is the size of the input. We call such a procedure strictly in-place. This is
related to the well-studied complexity class L capturing decision problems solv-
able by a deterministic Turing machine with O(log n) bits of additional writable
space with read-only access to the input. There is a large body of work con-
cerned with time-space tradeoffs assuming read-only random access to the input.
Example problems include: sorting and selection [2,4–7,17,25–27,29], construct-
ing the convex hull [8], multiple pattern matching [14] or constructing the sparse
suffix array [3,18]. This raises the question: is there a deterministic subquadratic
strictly in-place algorithm for permuting an array? We provide an affirmative
answer to this question by designing, for every ε > 0, a strictly in-place algorithm
for this problem that works in Oε(n1+ε) time.1

Previous and Related Work. Fich et al. [13] designed a cycle leaders algorithm
that works in O(n log n) time and uses O(log2 n) bits of extra space. Given oracle
access to both π and π−1, they also show a simpler algorithm that needs only
O(log n) bits of extra space and the same time. Both algorithms have interesting
connections to leader election in, respectively, unidirectional [9,28] and bidirec-

1 We write Oε(f(n)) to emphasise that the hidden constant depends on ε.

Strictly In-Place Algorithms for Permuting and Inverting Permutations 331

tional [16,21] rings. While in certain scenarios, such as π being specified with an
explicit formula, one can assume access to both π and π−1, in the general case
this is known to significantly increase the necessary space [19]. For a random
input, traversing the cycle from i until we encounter a smaller element takes
in total O(n log n) average time and uses only O(log n) bits of space [23]. Using
hashing, one can also design an algorithm using expected O(n log n) time and
O(log n) bits of space without any assumption on π (interestingly, a different
application of randomisation is known to help in leader election in anonymous
unidirectional rings [22]). Better cycle leaders algorithms are known for some
specific permutations, such as the perfect shuffle [12].

An interesting related question is that of inverting a given permutation π
on n elements. For example, it allows us to work with both the suffix array
and the inverse suffix array without explicitly storing both of them [15]. The
goal of this problem is to replace π with its inverse π−1 efficiently while using
a small amount of extra space. El-Zein, Munro and Robertson [11] solve this in
O(n log n) time using only O(log2 n) bits of extra space. The high-level idea of
their procedure is to identify cycle leaders and invert every cycle of π at its leader
i. The difficulty in such an approach is that the leader i′ of the inverted cycle
might be encountered again, forcing the cycle to be restored to its original state.
El-Zein et al. deal with this hurdle by temporarily lifting the restriction that π is
a permutation. Very recently, Guśpiel [20] designed a strictly in-place algorithm
for this problem that works in O(n1.5) time. We stress that his approach does
not provide a subquadratic strictly in-place solution for identifying cycle leaders
nor permuting an array. See Table 1 with the summary of previous work.

Table 1. Comparison of different algorithms for in-place permuting and inverting a
permutation. (f(n), g(n)) denotes that the algorithm runs in O(f(n)) time and uses
O(g(n)) bits of space.

Permuting Inverting

Trivial (n, n)

(n2, log n)

With hashing2 (n log n, log n) -

Fich et al. [13] (n2/b, b + log n) -

(n log n, log2 n) -

El-Zein et al. [11] - (n log n, log2 n)

Guśpiel [20] - (n1.5, log n)

This work3 (n1+ε, log n)

Our Contribution. Building on the approach of Fich et al. we design, for every
ε > 0, a cycle leaders algorithm that works in Oε(n1+ε) time and uses Oε(log n)
2 This approach runs in expected O(n log n) time.
3 The constant in time and space complexity depends on ε.

332 B. Dudek et al.

bits of extra space. This implies a strictly in-place algorithm for permuting an
array in Oε(n1+ε) time. In other words, we show that by increasing the number
of auxiliary variables to a larger constant we can make the exponent in the
running time arbitrarily close to 1. Then, we apply our improved cycle leaders
algorithm to obtain a solution for inverting a given permutation in the same
time and space. This significantly improves on the recent result of Guśpiel [20].

Techniques and Roadmap. The main high-level idea in Fich et al. is to work
with local minima, defined as the elements i ∈ E1 = [n] of π1 = π such that
i < π−1(i)∧i < π(i). This is applied iteratively by defining a new permutation π2

on the set E2 of local minima, and repeating the same construction on π2. After
at most t ≤ �log n	 iterations, there is only the smallest element m remaining
and the leader is chosen as the unique i on the cycle such that πt ◦ . . . ◦ π1(i) =
m. Checking if i is a leader is done by introducing the so-called elbows. For
completeness, we provide a description of the algorithm in the full version of
the paper [10]. Compared to the original version, we introduce new notation
and change some implementation details to make the subsequent modifications
easier to state. The crucial point is that the extra space used by the algorithm is
bounded by a constant number of words per iteration in the above definition. The
natural approach for decreasing the space to O(log n) is to modify the definition
of the local minimum to decrease the number of iterations to a constant. To this
end, we work with b-local minima defined as elements less than all of their b
successors and predecessors, for b = �nε� where ε is a sufficiently small constant.
This decreases the number of iterations to log n/ log b = 1/ε = Oε(1). There is,
however, a nontrivial technical difficulty when trying to work with this idea. In
the original version, one can check πr(x) ∈ Er should be “promoted” to Er+1 by
explicitly maintaining x, πr(x) and πr(πr(x)) and simply comparing πr(x) with
x and πr(πr(x)). For larger values of b, this translates into explicitly maintaining
x, πr(x), πr(πr(x)), . . . , π2b

r (x) to check if πb
r(x) ∈ Er+1, which of course takes too

much space. We overcome this difficulty by designing and analysing a recursive
pointer. This gives us our cycle leaders algorithm described in Sect. 3.

In a way similar to El-Zein et al. [11], we use our cycle leaders algorithm to
design a solution to the permutation inversion problem. The high-level idea is to
identify the leader i of a cycle, and then invert the cycle by traversing it from i.
We need to somehow guarantee that the cycle is not inverted again, but do not
have enough extra space to store i. El-Zein et al. mark the already inverted cycles
that otherwise would be again inverted in the future by converting them to paths,
that is, changing some π(x) to undefined. This is then gradually repaired to a
cycle, which requires a nontrivial interleave of four different scans. Our starting
point is a simplification of their algorithm described in the full version of the
paper [10] based on encoding slightly more (but still very little) information
about the cycle. In Sect. 4 we further extend this method to work with b-local
minima. Due to space constraints, some details and proofs are deferred to the
full version of the paper [10].

Strictly In-Place Algorithms for Permuting and Inverting Permutations 333

Algorithm 1. A general framework of left-to-right algorithms.
1: for i = 1..n do Process(i)

Algorithm 2. A naive cycle leaders algorithm.
1: function Process(i)
2: if i = MinR(i, i) then Report that i is a leader.

2 Preliminaries

[n] denotes the set of integers {1, 2, . . . , n} and for a function f and a nonnegative
integer k we define fk(x) to be x when k = 0 and f(fk−1(x)) otherwise. If
f is a permutation then f−1 denotes its inverse and we define f−k(x) to be
f−k(x) = f−1(f−k+1(x)) for k > 0. Throughout the paper log denotes log2.

In the cycle leaders problem, we assume that the permutation π on [n] is
given through an oracle that returns any π(i) in constant time. The goal is to
identify exactly one element on each cycle of π as a leader. All of our algorithms
follow the same left-to-right scheme: we consider the elements i = 1, 2, . . . , n in
this order and test if the current i is the leader of its cycle by considering the
elements i, π(i), π2(i), . . . until we can determine if i is a leader.

Whenever we refer to a range x . . . y, we mean x, π(x), π(π(x)), . . . , y. We will
also consider ranges x . . . y longer than a full cycle, but in such cases there will be
always an middle point z (clear from the context) such that x . . . y consists of two
ranges x . . . z and z . . . y, each shorter than a full cycle. For example, in the range
π−k(x) . . . πk(x) there are elements from π−k(x) . . . x and from x . . . πk(x). We
use �(i, i′) to denote min{k > 0 : πk(i) = i′}. MinR(a, b) naively finds the mini-
mum between a and b on the same cycle of π, that is, min{a, π(a), π2(a), . . . , b}. If
a = b, we assume it computes the minimum of the full cycle of a. We also create a
ternary MinR as follows: MinR(x, y, z) = min(MinR(x, y),MinR(y, z)). Using
this notation, the naive cycle leaders algorithm is presented in Algorithm 2.

When inverting π, we assume constant-time random access to the input. Due
to the final goal being replacing every π(i) with π−1(i), we allow temporarily
overwriting π(i) with any value from [n] as long as after the algorithm terminates
the input is overwritten as required. Additional space used by our algorithms
consists of a number of auxiliary variables called words, each capable of storing
a single integer from [n]. We assume that basic operations on such variables take
constant time. We assume that the value of n is known to the algorithm.

3 Leader Election in Smaller Space

We extend the algorithm of Fich et al. [13] to obtain, for any ε > 0, a solution to
the cycle leaders problem in Oε(n1+ε) time using Oε(log n) bits of extra space.

Let E1 = [n] and π1 = π. We denote by b = �nε� the size of the neighborhood
considered while determining local minima and declare an element of a permu-
tation to be a b-local minimum if it is strictly smaller than all of its b successors

334 B. Dudek et al.

and predecessors. Then, Er is the set of all b-local minima encountered following
πr−1 in Er−1, that is Er = {i ∈ Er−1 : i < πk

r−1(i) for all k ∈ {−b, . . . , b} \ {0}}.
We say that an element is on level r if it belongs to Er. We define πr : Er → Er

as follows: πr(e) is the first element in π after e that belongs to Er, formally:
πr(e) = πk

r−1(e) where πk
r−1(e) ∈ Er and ∀0<k′<kπk′

r−1 ∈ Er. For b = 1 this is
exactly the definition used by Fich et al. [13].

Definition 1. A path of π is a partial function obtained from a cycle C of π
by replacing π(x) with ⊥, for any x ∈ C.

⊥ should be understood as an undefined element. For a path, πr is undefined
for the last element from Er, and similarly π−1

r is undefined for the first element
from Er. When deciding if an element is a b-local minimum on a path, we
disregard comparisons with such undefined elements. Furthermore, we assume
that πr(⊥) =⊥ and π−1

r (⊥) =⊥ for every r.
For each level r, only at most 1

b+1 of its elements can belong to the level r+1.
For a cycle or a path C, let t be the largest number such that |Et ∩ C| > b. We
set t = 0 for |C| ≤ b and observe that t < 1

ε for every C. We note that if C is
a cycle then Et+2 ∩ C = ∅, but when C is a path |Et+2 ∩ C| = 1. Because all
algorithms presented in this paper follow the framework given in Algorithm 1
and during the execution of Process(i), we only consider the elements that can
be reached from i, we restrict our considerations to just one cycle or path and
we are going to omit the “∩C” part everywhere later.

Definition 2. A b-staircase of size r from i is a sequence of elements (i =
i1, i2, . . . , ir+1 = m = jr+1, jr, jr−1, . . . , j1 = i′) such that ik, jk ∈ Ek, for k ∈
[r + 1] and ik+1 = πb

k(ik), jk = πb
k(jk+1) for k ∈ [r]. Elements i, m and i′

are called the start, the middle and the end of the b-staircase, respectively. The
part of the b-staircase from the start to the middle is called its left part and the
part from the middle to the end is called its right part.

Definition 3. An almost b-staircase of size r from i is a sequence of elements
(i = i1, i2, . . . , ir+1 = m = jr+1, jr, jr−1, . . . , j1 = i′), such that ik, jk ∈ Ek, for
k ∈ [r] and ik+1 = πb

k(ik) and jk = πb
k(jk+1) for k ∈ [r].

The difference between the two above definitions is that for b-staircase we require
m ∈ Er+1, but for almost almost b-staircase it suffices that m ∈ Er.

Definition 4. A b-staircase or an almost b-staircase of size r is called proper
if |Er| > b.

Definition 5. A b-staircase of size r from i is called the best b-staircase from i
if there is no proper almost b-staircase of size r + 1 from i (possibly there is no
best b-staircase from i).

Definition 6. An element i is the leader of its cycle if the best b-staircase from
i exists and its middle m is the minimum on the cycle.

Lemma 1. There is exactly one leader on any cycle of a permutation.

Strictly In-Place Algorithms for Permuting and Inverting Permutations 335

m−b m−b+1 m−b+2

. . .
m−1 m m1

. . .
mb−2 xx′ mb−1 mb

πr πr πr πr πr πr

Fig. 1. Filled nodes represent elements mk = πk
r (m) for k ∈ {−b, . . . , b} and each

segment represents the range around mk. All the elements in the ranges (different than
m) are larger than m by induction hypothesis.

Proof. Let m be the minimum on the cycle and t be the largest size of a proper
almost b-staircase on the cycle. Consider the almost b-staircase B of size t from
i = π−b

1 (. . . (π−b
t−1(π

−b
t (m))) . . .). By the choice of t, there is no proper almost

b-staircase of size t + 1 from i. As m is the minimum on the cycle and |Et| > b,
B is in fact a b-staircase. Thus, B is the best b-staircase from i and i is the
leader. Furthermore, as m and t are both uniquely defined, there are no other
leaders on the cycle. ��

A b-staircase may be longer than a full cycle if it visits some elements twice
(before and after reaching its middle) but all elements occur at most once in each
part. We allow computing MinR(x, y) for x =⊥ or y =⊥. In such a case, the
minimum is computed from the beginning or to the end of the path, respectively.

Lemma 2. Consider m ∈ Er on a cycle or a path where |Er| > b. Then m is
a b-local minimum on level r in π if and only if m = MinR(π−b

r (m),m, πb
r(m)).

Proof. (⇐) Trivial. (⇒) Proof by induction on r. The case r = 1 is immediate.
For r > 1, assume that m is a b-local minimum on level r. We consider

the elements in π−b
r (m) . . . πb

r(m), appropriately truncated if we are on a path.
Among these elements, only mk = πk

r (m) =⊥ for k ∈ {−b, . . . , b} are b-local
minima on level r − 1. All of them are also larger than m (if k = 0). By the
induction hypothesis, for all k ∈ {−b, . . . , b} (such that mk =⊥) any element
between π−b

r−1(mk) and πb
r−1(mk) on the cycle/path is larger than or equal to

mk and hence also larger than m. We call the above ranges the ranges around
mk and they are represented as segments in Fig. 1.

Consider an element x in π−b
r (m) . . . πb

r(m) which is not in the range around
mk for any k. In Fig. 1, this corresponds to x in a gap between the ranges. Clearly,
x ∈ Er, so there is an � < r such that x ∈ E� \E�+1. Hence x is larger than some
x′ ∈ E�′ \E�′+1 between π−b

� (x) and πb
�(x) for � < �′ ≤ r. If there is k such that x′

is in the range around mk, then x′ > mk > m and the lemma follows. Otherwise,
observe that x′ belongs to the same gap as x, so we can apply the same reasoning
for x′ instead of x. Because the considered values are always decreasing and each
gap contains only finite number of elements, finally we obtain a value in one of
the ranges around mk and conclude that x is larger than one of the mk and also
than m. Hence, m is the smallest element in π−b

r (m) . . . πb
r(m). ��

The lemma enables us to check if an element m is a b-local minimum on level
r without knowing which of the elements in π−b

r (m) . . . πb
r(m) belong to the level

r.

336 B. Dudek et al.

x.e x.z.e z.e z.z.e

πr−1 πr−1 πr−1

πr−2 πr−2 πr−2
πr(x.e)

Ptr

x.e x.z.e z.e z.z.e

πr−1 πr−1 πr−1

πr−2 πr−2 πr−2
π−1
r (x.e)

Ptr′

Fig. 2. A sketch of Ptr structure for b = 3. On the bottom there is Ptr′, the result
of executing the Advance method on Ptr.The gray dots are not part of pointer, they
only show the alignment between Ptr and Ptr′.

Fich et al. designed procedure Next(r) which computes, for an element on
Er, its successor on πr. We start with extending their idea to work with larger
values of the parameter b. For b = �nε�, the number of elements to compare
with is no longer constant. We define a recursive pointer Ptr with the following
fields:

– r – the level of the pointer,
– e – an element of Er pointed at by the pointer,
– x – Ptr of level r − 1 pointing to e (or NULL if r = 1),
– y and z – Ptrs of level r − 1 both pointing to πb

r−1(e) (or NULL if r = 1).

Ptr has the Advance method which moves the pointer from e to πr(e) and
updates x, y and z accordingly. See Fig. 2. Intuitively, Ptr points to a single
element e, but it also contains a number (exponential in its level r) of different
pointers pointing to different elements. While updating Ptr we will ensure that
the above properties of all the other pointers are also satisfied.

Before and after calling Advance, y is equal to z, but during the execution
they are different. In fact, it is enough to only store e, x and z in every Ptr and
keep a local y reused between every call to Advance method.

We now analyse Ptr :: Advance implemented in Algorithm 3 for a pointer of
level r. At the end of the function, e is updated to point to the element x.e ∈ Er.
As we have to also deal with paths, we add the check for ⊥ in line 3. For r ≥ 2,
z is moved forward b times along πr−1, so after line 6, y and z point to πb

r−1(x.e)
and π2b

r−1(x.e), respectively. In line 7 we compare y.e with all elements between
π−b

r−1(y.e) and πb
r−1(y.e) and all three pointers are simultaneously advanced to

the next elements along πr−1 until y points to a b-local minimum on level r. By
Lemma 2 this is equivalent to checking if y.e is a b-local minimum on level r − 1
as long as |Er−1| > b.

In Algorithm 4 we implement BestbStaircase(i) that constructs the best
b-staircase from i returning Ptr structure pointing to the middle of the staircase.
Before running the main loop, the algorithm checks if |E1| > b, to make sure it
is allowed to execute Advance method on p. We start with a b-staircase of size
0. Each iteration of the main loop starts with p of level r representing the right
part of the b-staircase of size r − 1 from i. The invariant |Er| > b is preserved in
the main loop. During each iteration, p is subject to change and the updated p

Strictly In-Place Algorithms for Permuting and Inverting Permutations 337

Algorithm 3. Implementation of the Advance method in the Ptr structure.
It moves the Ptr object onto the next element on the same level.
1: function Ptr :: Advance
2: if this.r = 1 then
3: if π(this.e) =⊥ then abort

4: this.e ← π(this.e)
5: return
6: for j = 1..b do this.z.Advance()

7: while this.y �= MinR(this.x.e, this.y.e, this.z.e) do
8: this.x.Advance()
9: this.y.Advance()

10: this.z.Advance()

11: this.x ← this.y
12: this.e ← this.x.e
13: this.y ← this.z

may not represent a (proper) b-staircase, so at the beginning of the iteration, it
is stored in g. Then, Advance method is called 2b times on p and enumerates
the elements from the set S = {πk

r (e) : k ∈ {1, . . . , 2b}}. The pointer mp is stored
after the b-th Advance so it points to πb

r(e), that is the middle of the almost
staircase of size r. If mp.e is not the smallest in S, then the best b-staircase
from i does not exist and we terminate in line 16. However, if any of πk

r (e) for
k ∈ {1, . . . , b} is equal to e, then |S| ≤ b, so there is no proper almost staircase
of size r from i (both left and right part would self-overlap) and we return g as
the best staircase. The same happens for paths in case any Advance call aborts.
Only when |Er| > b and the new middle me is less than all b pairwise-distinct
left and b pairwise-distinct right neighbours on Er, the algorithm extends the
b-staircase to size r and proceeds to the next iteration with p of level r + 1.

We are ready to provide an algorithm for the cycle leaders problem. We
proceed as in Algorithm 1, but we alter the Process function to work with
the new definition of leader, see Algorithm 5. BestbStaircase(i) returns Ptr
representing the right part of the best b-staircase from i. Its middle can be read
from the field e of the returned Ptr.

Theorem 1. For every ε > 0, there exists an algorithm for reporting leaders of
a permutation π on n elements in Oε(n1+ε) time using Oε(log n) additional bits
of space.

Proof. We analyse Algorithm 1 with the implementation of Process provided
in Algorithm 5. Each Ptr of level r has three Ptrs on level r − 1, so there are∑t

k=0 3k = O(3t) pointers in total. As t ≤ 1
ε , our algorithm uses O(3

1
ε · log n) =

Oε(log n) extra bits of space.
The total time for reporting leaders is dominated by the time spent in Ptr ::

Advance. We sum up (for all created pointers) just the time inside Advance
call of each Ptr without the recursive calls. The time for recursive calls will be
accounted to the descendant pointers. Inside Advance, the time is dominated

338 B. Dudek et al.

Algorithm 4. Constructs the best b-staircase from i (if any).
1: function BestbStaircase(i)
2: p ← Ptr(e ← i, r ← 1, x ← NULL, y ← NULL, z ← NULL)
3: x ← i
4: for j = 1..b do
5: x ← π(x)
6: if x ∈ {⊥, i} then return p

7: while true do
8: g ← p
9: me ← p.e

10: for j = 1..2b do
11: try p.Advance() catch /abort/ return g
12: if j ≤ b and p.e = g.e then return g

13: if j = b then mp ← p

14: if p.e < me then me ← p.e

15: if mp.e = me then p ← Ptr(e ← mp.e, r ← p.r + 1, x ← mp, y ← p, z ← p)
16: else return NULL

Algorithm 5 Modified function for checking if i is the leader of its cycle.
1: function Process(i)
2: p ← BestbStaircase(i)
3: if p �= NULL and MinR(i, i) = p.e then Report that i is the leader

by MinR executions. As each advanced position is covered by at most 2b + 1
MinRs, if a pointer p proceeds k steps along π (starting with p.x.e = s and
ending with p.z.e = πk(s)) during Advance, the total time spent on executions
of MinR for the call is O(kb).

Now we count the total length of traversals for all created pointers. This,
multiplied by O(b), is the final complexity of the algorithm. Recall that for
every element, we check if it is possible to create the best b-staircase from it by
constructing proper almost b-staircases and validating if these are b-staircases.
Thus, if it is possible to construct a b-staircase of size r and not r+1 from i, every
pointer traverses (in the worst possible case) all elements of the almost b-staircase
of size r + 1 from i. We charge the traversed range to the pair (r,m), where
m ∈ Er+1 \ Er+2 is the middle of the b-staircase of size r from i. Observe that
i is between π−1

r+1(m) and m and the execution of BestbStaircase(i) finishes
before reaching π2b+1

r+1 (m), see Fig. 3. Thus, for each r, every element belongs to
O(b) ranges charged to the elements from Er+1 \ Er+2. The total length of all
such ranges is therefore O(nb). Recall that there are O(3r) = O(3t) = Oε(1)
pointers on each level r, so summing over all r ≤ t we obtain that the running
time of Algorithm 5 is O(1ε · 3t · nb2) = Oε(n1+2ε). By adjusting ε, the running
time becomes Oε(n1+ε). ��

Strictly In-Place Algorithms for Permuting and Inverting Permutations 339

π−1
r+1(m)

i m m2 π2b+1
r+1 (m)

πr+1πr+1πr+1πr+1πr+1
πr+1 πr+1 πr+1

Fig. 3. The maximum potential traversal range for a middle m of a b-staircase (b = 3)
of size r. The b-staircase of size r with the middle element m is drawn with a bold line
and the almost b-staircase of size r +1 with new middle m2 is drawn with a solid line.

4 Inverting Permutations in Smaller Space

In this section, we extend the results of Sect. 3 to obtain an O(n1+ε)-time algo-
rithm for inverting permutations using Oε(log n) bits by extending the algorithm
given by El-Zein et al. [11]. We follow the same natural idea of inverting each
cycle upon reaching its leader. However, there are some additional technical
complications. Due to space constraints, we defer some of the details to the
full version of the paper [10], where we also describe a simpler version of the
algorithm of El-Zein et al. [11].

We proceed from left to right as described in Sect. 3. After having detected
that i is a leader, we invert its cycle. However, this might result in creating
a cycle with leader i′ > i that would be inverted again in the future. This
problematic situation can be detected during the scan, as after inverting a cycle,
the middle of the best b-staircase remains the same and the only best b-staircase
on the inverted cycle is exactly the reverse of the previous best b-staircase. Thus,
we can compute the end i′ of the largest b-staircase constructed from i with
GetEnd method of Ptr returning the end of the staircase in the following way:
p.GetEnd() = p.z.GetEnd() if p.z = NULL and p.GetEnd() = p.e otherwise.

Definition 7. A cycle C of π is hard if for the best b-staircase (i, . . . , m, . . . , i′)
we have i′ > i. Otherwise, C is easy.

To deal with hard cycles, we need the notion of cutting before y, where y =
π(x). This operation is implemented by setting π(x) ←⊥, where ⊥ is called a
null, to transform a cycle into a path P with y as its first element and x as
the last element. For a hard cycle, we will cut the inverted cycle before the new
leader. As in [11], in the description of our algorithm we will use multiple types
of nulls to encode some additional information, and then simulate these types
using the following lemma.

Lemma 3 ([11]). For any k ∈ [n], it is possible to simulate an extension of the
range of stored values of π from [n] to [n]∪{⊥1, . . . ,⊥k} with each value from [n]
occurring at most c times in π using O(ck log n) bits with O(c)-time overhead.

During the execution of the algorithm, π consists of cycles and components,
where a component is either a path or a proper sigma.

Definition 8. Sigma is a function π : C → C, such that there is at least one
element y ∈ C with {πk(y) : k ∈ {0, 1, 2, . . . }} = C. We call sigma proper if it
is not a cycle.

340 B. Dudek et al.

Depending on the number of times k an element that looks like a possible
leader was found for a cycle, we can be in one of the following states:

– not inverted cycle (for k = 0),
– inverted path (for k = 1 and only if the cycle was hard),
– inverted sigma (for easy cycles if k = 1 and for hard cycles if k ≥ 2).

We use the name component for both paths and proper sigmas. For a path we
call the element without the predecessor the start of the path and the element
pointing to null the end of the path. Similarly, in a proper sigma we call element
y1 without predecessor the start of the sigma and among the two elements x1, x2

such that π(x1) = π(x2) = y2 satisfying �(y1, x1) < �(y1, x2), x2 is called the end
and y2 the intersection of the sigma. A part of sigma before the intersection
(from y1 to x1) is called the tail and the rest (a cycle with y2 and x2) is the loop
of sigma. Fixing a component consists in changing the successor of its end to its
start as to create a cycle.

Definition 9. The leader of a component is the element that would be the leader
in its fixed component.

Definition 10. The rank of element i on a path or on a tail of a sigma in π
is the size of the best b-staircase from i. If there is no best b-staircase from i then
its rank is undefined.

Definition 11. An element i is outstanding if has the largest rank among the
elements on its component.

During the algorithm, we maintain the following invariants: (1) the start of a
component is its leader (and is outstanding), (2) the intersection of a sigma is the
only element from which there is a best staircase on the loop of the sigma (and
is already processed). We want to proceed differently depending on whether i is
on a cycle, a path or the tail of a sigma. Distinguishing between the three cases
would be too time consuming, but turns out to not be necessary as in every case
we first compute BestbStaircase(i) and terminate if the computation failed or
aborted. If the computation succeeds then in fact we have enough time to also
locate the element a which is either predecessor of i (for i on the cycle) or the
end of the component (for i on a path or the tail of a proper sigma).

When the leader i of a cycle is found for the first time, the algorithm finds
the end i′ of the corresponding b-staircase and inverts the cycle, so i′ becomes
the leader of the inverted cycle. If i′ > i, then the cycle is hard, and we change
it into a path by cutting before i′. The rank of i′ on the path is stored in the
type of the null.

The path remains in this state at least until we consider one of its outstanding
elements. If the algorithm finds an outstanding element i, it creates a temporary,
larger sigma, by pointing the end of the sigma to i, then checks if there is the
best b-staircase from i on the loop of sigma. If so, the change is in effect or is
reverted otherwise. Because of this check, we have no other elements than i with
the best staircase on the loop of sigma.

Strictly In-Place Algorithms for Permuting and Inverting Permutations 341

The crux of the time analysis is there are only O(b) outstanding elements on
every path, so every sigma will be enlarged only at most that many times. By
appropriately adjusting the parameters we arrive at out final theorem.

Theorem 2. For every ε > 0, there exists an algorithm for inverting a per-
mutation π on n elements in Oε(n1+ε) time using Oε(log n) additional bits of
space.

Acknowledgments. B. Dudek was supported by the National Science Centre, Poland,
under grant number 2017/27/N/ST6/02719.

References

1. Aziz, A., Lee, T.H., Prakash, A.: Elements of Programming Interviews in Java:
The Insiders’ Guide. CreateSpace Independent Publishing Platform, USA (2015)

2. Beame, P.: A general sequential time-space tradeoff for finding unique elements.
SIAM J. Comput. 20(2), 270–277 (1991)

3. Birenzwige, O., Golan, S., Porat, E.: Locally consistent parsing for text indexing
in small space. In: 31st SODA, pp. 607–626. SIAM (2020)

4. Borodin, A., Cook, S.A.: A time-space tradeoff for sorting on a general sequential
model of computation. SIAM J. Comput. 11(2), 287–297 (1982)

5. Borodin, A., Fischer, M.J., Kirkpatrick, D.G., Lynch, N.A., Tompa, M.: A time-
space tradeoff for sorting on non-oblivious machines. J. Comput. Syst. Sci. 22(3),
351–364 (1981)

6. Chan, T.M.: Comparison-based time-space lower bounds for selection. ACM Trans.
Algorithms 6(2), 1–16 (2010)

7. Chan, T.M., Munro, J.I., Raman, V.: Finding median in read-only memory on
integer input. Theor. Comput. Sci. 583, 51–56 (2015)

8. Darwish, O., Elmasry, A.: Optimal time-space tradeoff for the 2d convex-hull prob-
lem. In: Schulz, A.S., Wagner, D. (eds.) ESA 2014. LNCS, vol. 8737, pp. 284–295.
Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-662-44777-2 24

9. Dolev, D., Klawe, M.M., Rodeh, M.: An O(n log n) unidirectional distributed algo-
rithm for extrema finding in a circle. J. Algorithms 3(3), 245–260 (1982)

10. Dudek, B., Gawrychowski, P., Pokorski, K.: Strictly in-place algorithms for per-
muting and inverting permutations. CoRR abs/2101.03978 (2021)

11. El-Zein, H., Munro, J.I., Robertson, M.: Raising permutations to powers in place.
In: 27th ISAAC. LIPIcs, vol. 64, pp. 1–12. Schloss Dagstuhl - Leibniz-Zentrum fuer
Informatik (2016)

12. Ellis, J.A., Krahn, T., Fan, H.: Computing the cycles in the perfect shuffle permu-
tation. Inf. Process. Lett. 75(5), 217–224 (2000)

13. Fich, F.E., Munro, J.I., Poblete, P.V.: Permuting in place. SIAM J. Comput. 24(2),
266–278 (1995)

14. Fischer, J., Gagie, T., Gawrychowski, P., Kociumaka, T.: Approximating LZ77
via small-space multiple-pattern matching. In: Bansal, N., Finocchi, I. (eds.) ESA
2015. LNCS, vol. 9294, pp. 533–544. Springer, Heidelberg (2015). https://doi.org/
10.1007/978-3-662-48350-3 45

15. Fischer, J., I, T., Köppl, D., Sadakane, K.: Lempel-ziv factorization powered by
space efficient suffix trees. Algorithmica 80(7), 2048–2081 (2018)

https://doi.org/10.1007/978-3-662-44777-2_24
https://doi.org/10.1007/978-3-662-48350-3_45
https://doi.org/10.1007/978-3-662-48350-3_45

342 B. Dudek et al.

16. Franklin, W.R.: On an improved algorithm for decentralized extrema finding in
circular configurations of processors. Commun. ACM 25(5), 336–337 (1982)

17. Frederickson, G.N.: Upper bounds for time-space trade-offs in sorting and selection.
J. Comput. Syst. Sci. 34(1), 19–26 (1987)

18. Gawrychowski, P., Kociumaka, T.: Sparse suffix tree construction in optimal time
and space. In: 28th SODA, pp. 425–439. SIAM (2017)

19. Golynski, A.: Cell probe lower bounds for succinct data structures. In: 20th SODA,
pp. 625–634. SIAM (2009)

20. Guśpiel, G.: An in-place, subquadratic algorithm for permutation inversion. CoRR
abs/1901.01926 (2019)

21. Hirschberg, D.S., Sinclair, J.B.: Decentralized extrema-finding in circular configu-
rations of processors. Commun. ACM 23(11), 627–628 (1980)

22. Itai, A., Rodeh, M.: Symmetry breaking in distributed networks. Inf. Comput.
88(1), 60–87 (1990)

23. Knuth, D.E.: Mathematical analysis of algorithms. In: IFIP Congress (1), pp. 19–27
(1971)

24. Knuth, D.E.: The art of computer programming, Volume I: Fundamental Algo-
rithms, 3rd edn. Addison-Wesley (1997)

25. Munro, J.I., Paterson, M.: Selection and sorting with limited storage. Theor. Com-
put. Sci. 12, 315–323 (1980)

26. Munro, J.I., Raman, V.: Selection from read-only memory and sorting with mini-
mum data movement. Theor. Comput. Sci. 165(2), 311–323 (1996)

27. Pagter, J., Rauhe, T.: Optimal time-space trade-offs for sorting. In: 39th FOCS,
pp. 264–268. IEEE Computer Society (1998)

28. Peterson, G.L.: An O(n log n) unidirectional algorithm for the circular extrema
problem. ACM Trans. Program. Lang. Syst. 4(4), 758–762 (1982)

29. Raman, V., Ramnath, S.: Improved upper bounds for time-space trade-offs for
selection. Nord. J. Comput. 6(2), 162–180 (1999)

A Stronger Lower Bound on Parametric
Minimum Spanning Trees

David Eppstein(B)

Computer Science Department, University of California, Irvine, Irvine, USA
eppstein@uci.edu

Abstract. We prove that, for an undirected graph with n vertices and m
edges, each labeled with a linear function of a parameter λ, the number
of different minimum spanning trees obtained as the parameter varies
can be Ω(m log n).

1 Introduction

In the parametric minimum spanning tree problem [16], the input is a graph G
whose edges are labeled with linear functions of a parameter λ. For any value of
λ, one can obtain a spanning tree Tλ as the minimum spanning tree of the weight
functions, evaluated at λ. Varying λ continuously from −∞ to ∞ produces in
this way a discrete sequence of trees, each of which is minimum within some
range of values of λ. How many different spanning trees can belong to this
sequence, for a worst case graph, and how can we construct them all efficiently?
Known bounds are that the number of trees in a graph with n vertices and m
edges can be Ω

(
mα(n)

)
(where α is the inverse Ackermann function) [9] and is

always O(mn1/3) [7]; both bounds date from the 1990s and, although far apart,
have not been improved since. The sequence of trees can be constructed in time
O(mn log n) [13] or in time O(n2/3 logO(1) n) per tree [1]; faster algorithms are
also known for planar graphs [12] or for related optimization problems that
construct only a single tree in the parametric sequence [6,19]. In this paper we
improve the 25-year-old lower bound on the number of parametric minimum
spanning trees from Ω

(
mα(n)

)
to Ω(m log n).

A broad class of applications of this problem involves bicriterion optimization,
where each edge of a graph has two real weights of different types (say, invest-
ment cost and eventual profit) and one wishes to find a tree optimizing a nonlin-
ear combination of the sums of these two weights (such as the ratio of total profit
to total investment cost, the return on the investment). Each spanning tree of G
may be represented by a planar point whose Cartesian coordinates are the sums
of its two kinds of weights, giving an exponentially large cloud of points, one per
tree. The convex hull of this point cloud has as its vertices the parametric min-
imum spanning trees (and maximum spanning trees) for linear weight functions
obtained from the pair of weight values on each edge by using these values as coef-
ficients. (Essentially, this construction of weight functions from pairs of weights is

c© Springer Nature Switzerland AG 2021
A. Lubiw et al. (Eds.): WADS 2021, LNCS 12808, pp. 343–356, 2021.
https://doi.org/10.1007/978-3-030-83508-8_25

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-83508-8_25&domain=pdf
https://doi.org/10.1007/978-3-030-83508-8_25

344 D. Eppstein

a form of projective duality transforming points into lines, and the equivalence
between the convex hull of the points representing trees into the lower envelope of
lines representing their total weight is a standard reflection of that projective dual-
ity.) Any bicriterion optimization problem that can be expressed as maximizing
a quasiconvex function (or minimizing a quasiconcave function) of the two kinds
of total weight automatically has its optimum at a convex hull vertex, and can
be solved by constructing the sequence of parametric minimum spanning trees
and evaluating the combination of weights for each one [18]. Other combinato-
rial optimization problems that have been considered from the same parametric
and bicriterion point of view include shortest paths [3–5,11], optimal subtrees of
rooted trees [2], minimum-weight bases of matroids [9], minimum-weight closures
of directed graphs [10], and the knapsack problem [8,15,17].

The main idea behind our new lower bound is a recursive construction of a
family of graphs (more specifically, 2-trees), formed by repeated replacement of
edges by triangles (Fig. 1). We also determine the parametric weight functions
of these graphs by a separate recursive construction (Fig. 3). However, this only
produces an Ω(n log n) lower bound, because for a graph constructed in this
way with n vertices, the number of edges is 2n − 3, only a constant factor larger
than the number of vertices. To obtain our claimed Ω(m log n) lower bound we
use an additional packing argument, in which we find a dense graph containing
many copies of our sparse lower bound construction, each contributing its own
subsequence of parametric minimum spanning trees to the total.

2 Background and Preliminaries

The minimum spanning tree of a connected undirected graph with real-valued
edge weights is a tree formed as a subgraph of the given graph, having the mini-
mum possible total edge weight. As outlined by Tarjan [22], standard methods for
constructing minimum spanning trees are based on two rules, stated most simply
for the case when all edge weights are distinct. The cut rule concerns cuts in the
graph, partitions of the vertices into two subsets; an edge spans a cut when its
two endpoints are in different subsets. The cut rule states that (for distinct edge
weights) the minimum-weight edge spanning any given cut in a graph belongs to
its unique minimum spanning tree. The cycle rule, on the other hand, states that
(again for distinct edge weights) the maximum-weight edge in any cycle of the
graph does not belong to its unique spanning tree. One consequence of these rules
is that the minimum spanning tree depends only on the sorted ordering of the edge
weights, rather than on more detailed properties of their numeric values.

An input to the parametric minimum spanning tree problem consists of an
undirected connected graph whose edges are labeled with linear functions of a
parameter λ rather than with real numbers. For any value of λ, plugging λ into
these functions produces a system of real weights for the edges, and therefore
a minimum spanning tree Tλ. Different values of λ may produce different trees,
and the task is either to obtain a complete description of which tree is minimum
for each possible value of λ or, in some versions of the problem, to find a value
λ and its tree optimizing another objective function.

A Stronger Lower Bound on Parametric Minimum Spanning Trees 345

If we plot the graphs of the linear functions of a parametric minimum span-
ning tree instance, as lines in the (λ,weight) plane, then the geometric properties
of this arrangement of lines are closely related to the combinatorial properties
of the parametric minimum spanning tree problem. If no two edges have the
same weight function, then all edge weights will be distinct except at a finite set
of values of λ, the λ-coordinates of points where two lines in the arrangement
cross. As λ varies continuously, the sorted ordering of the weights will remain
unchanged except when λ passes through one of these crossing points, where
the set of lines involved in any crossing will reverse their weight order. It follows
from these considerations that the sequence of parametric minimum spanning
trees is finite, and that these trees change only at certain breakpoints which are
necessarily the λ-coordinates of crossings of lines. In particular, m lines have
O(m2) crossings and there can be only O(m2) distinct trees in the sequence of
parametric minimum spanning trees. However, a stronger bound, O(mn1/3), is
known [7].

The worst-case instances of the parametric minimum spanning tree prob-
lem, the ones with the most trees for their numbers of edges and vertices, have
distinct edge weight functions whose arrangement of lines has only simple cross-
ings, crossings of exactly two lines. For, in any other instance, perturbing the
edge weight functions by a small amount will preserve the ordering of weights
away from the crossings of its lines, and therefore will preserve its sequence of
trees away from these crossings, while only possibly increasing the number of
breakpoints near perturbed crossings of multiple lines, which become multiple
simple crossings. For an instance in which the lines have only simple crossings,
the only possible change to the minimum spanning tree at a breakpoint is a
swap, a change to the tree in which one edge (corresponding to one of the two
crossing lines at a simple crossing) is removed, and the other edge (corresponding
to the other of the two crossing lines) is added in its place. For details on this
correspondence between the geometry of line arrangements and the sequence of
parametric minimum spanning trees, and generalizations of this correspondence
to other matroids than the matroid of spanning trees, see our previous paper on
this topic [9].

3 Replacing Edges by Triangles

A 2-tree is a graph obtained from the two-vertex one-edge graph K2 by repeat-
edly adding new degree-two vertices, adjacent to pairs of adjacent earlier ver-
tices. Equivalently, they are obtained by repeatedly replacing edges by triangles.
These graphs are planar and include the maximal outerplanar graphs [20]; their
subgraphs are the partial 2-trees, graphs of treewidth ≤ 2 [23]. The graphs we
use in our lower bound are a special case of this construction where we apply
this edge replacement process simultaneously to all edges in a smaller graph of
the same type. We define the first graph T0 in our sequence of graphs to be
the graph K2, and then for all i > 0 we define Ti to be the graph obtained by
replacing all edges of Ti−1 by triangles. It seems natural to call these complete

346 D. Eppstein

Fig. 1. Recursively constructing a family of 2-trees Ti (here, i = 0, 1, 2, 3 in left-to-right
order) by repeatedly replacing every edge of Ti−1 by a triangle.

2-trees, by analogy to complete trees (whose leaves are repeatedly replaced by
stars for a given number of levels) but we have been unable to find this usage in
the literature. The graphs Ti for i ≤ 3 are depicted in Fig. 1.

Lemma 1. Ti has 3i edges and (3i + 3)/2 vertices.

Proof. The bound on the number of edges follows from the fact that each
replacement of edges by triangles triples the number of edges. The bound on
the number of vertices follows easily by induction on i, using the observa-
tions that each edge of Ti−1 leads to a newly added vertex in Ti and that
(3i−1 + 3)/2 + 3i−1 = (3i + 3)/2. ��
What happens when we replace an edge by a triangle in a parametric spanning
tree problem? For a non-parametric minimum spanning tree, the answer is given
by the following lemma.

Lemma 2. Let graph G contain edge pq, and replace this edge by a triangle
pqr to form a larger graph G+. Suppose that the edges in G+ have distinct
edge weights, and use these weights to assign weights to the edges in G, with
the following exception: in G, give edge pq the weight of the bottleneck edge in
triangle pqr (the maximum-weight edge on path from p to q in the minimum
spanning tree of the graph of the triangle) instead of the weight of pq. Then, the
minimum spanning tree of G+ has the same set of edge weights as the minimum
spanning tree of G, together with the minimum weight of a non-bottleneck edge
in triangle pqr.

Proof. If pq is the heaviest edge in pqr then the path from p to q in the minimum
spanning tree of pqr passes through r, the bottleneck edge is the heavier of the
two edges on this path, and the minimum non-bottleneck edge is the lighter of
its two edges. Otherwise, pq is the bottleneck edge and again the minimum non-
bottleneck edge is the lighter of the two remaining edges incident to r. Applying
the cut rule to the cut separating r from the rest of the graph shows that the
minimum non-bottleneck edge is an edge of the minimum spanning tree of G+.
Since we did not include its edge weight in the weights for G, its weight is not
included in the set of edge weights of the minimum spanning tree for G.

A Stronger Lower Bound on Parametric Minimum Spanning Trees 347

f3 = 3

f1 = λ Ð 1 f2 = 4 Ð λ

f2 = 4 – λ

f3 = 3
p q

r

path prq has
bottleneck f2

path prq has
bottleneck f1

path pq has
bottleneck f3

min(max(f1, f2), f3) = bottleneck
of MST path from p to q

f1 = λ Ð 1

Fig. 2. A parametric spanning tree problem on a single triangle pqr, and the graph of
the bottleneck edge weight on the path from p to q in the parametric spanning tree,
as a function of the parameter λ. (Color figure online)

Contracting this minimum non-bottleneck edge in G+ produces a multigraph
with two copies of edge pq, the lighter of which is the bottleneck edge. Therefore,
if we keep only the lighter of the two edges, we obtain the weighting on G as a
contraction of a minimum spanning tree edge in G+. This contraction preserves
the set of remaining minimum spanning tree weights, as the lemma states. ��

It follows that in the parametric case, replacing an edge pq by a triangle
pqr, with linear parametric weights on each triangle edge, causes that edge to
behave as if it has a nonlinear piecewise linear weight function attached to it,
the function mapping the parameter λ to the bottleneck weight from p to q
in triangle pqr. Figure 2 shows an example of three parametric weights on a
triangle pqr and this bottleneck weight function, with the weights chosen so
that the function has three breakpoints. Clearly, we can perturb these three
weight functions within small neighborhoods of their coefficients, and obtain a
qualitatively similar bottleneck weight function.

4 Weighted 2-Trees

We now describe how to assign parametric weights to the edges of Ti to obtain
our Ω(n log n) lower bound. As a base case, we may use any linear function as
the weight of the single edge of T0; it can have only one spanning tree, regardless
of this choice. For Ti, with i > 0, we perform the following steps to assign its
weights:

– Construct the weight functions for the edges of Ti−1, recursively.
– Apply a linear transformation to the parameter of these weight functions

(the same transformation for each edge) so that, in the arrangement of lines
representing the graphs of these weight functions, all crossings occur in the
interval [0, 1] of λ-coordinates. Additionally, scale these weight functions by a
sufficiently small factor ε so that, within this interval, they are close enough
to the λ-axis, for a meaning of “close enough” to be specified below.

– Construct Ti by replacing each edge pq in Ti−1 by a triangle pqr, with a new
vertex for each triangle. Color the three edges of each triangle red, blue, and

348 D. Eppstein

recursive

construction

recursive

construction

recursive
construction

Fig. 3. Recursive construction for the parametric weight functions of the graphs Ti,
shown here as an arrangement of lines in a plane whose horizontal coordinate is the
parameter λ and whose vertical coordinate is the edge weight at that parameter value.
The reversed text in the central recursive construction indicates that the construction
is reversed left-to-right relative to the other two copies.

green, as in Fig. 2(left), with pq colored green and the other two edges colored
red and blue (choosing arbitrarily which one to color red and which one to
color blue).

– Give each edge of Ti a transformed copy of the weight function of the corre-
sponding edge of Ti−1, transformed as follows:

• For a green edge pq, corresponding to an edge of Ti−1 with weight function
f(λ), give pq the weight function f(λ−4.5)+3. This transformation shifts
the part of the weight function where the crossings with other green edges
occur to be close to the right green segment of Fig. 2(right).

• For a red edge pr, corresponding to an edge pq of Ti−1 with weight func-
tion f(λ), give pr the weight function f(3.75−λ)+λ−1. This transforma-
tion shifts the part of the weight function where the crossings with other
red edges occur to be close to the red segment of Fig. 2(right), and (by
negating λ in the argument to f) reverses the ordering of the crossings
within that region.

• For a blue edge qr, corresponding to an edge pq of Ti−1 with weight
function f(λ), give qr the weight function f(λ−1.25)+4−λ. This trans-
formation shifts the part of the weight function where the crossings with
other red edges occur to be close to the blue segment of Fig. 2(right).

– Perturb all of the weight functions, if necessary, so that all crossings of two
weight functions have different λ-coordinates, without changing the left-to-
right ordering of the crossings between any one weight function and the rest
of them.

This construction is depicted schematically, in the (λ,weight) plane, in Fig. 3.
We are now ready to define what it means for the weight scaling factor ε to be

A Stronger Lower Bound on Parametric Minimum Spanning Trees 349

small enough, so that the scaled weight functions are “close enough” to the λ
axis: as shown in the figure, the left-to-right ordering of the crossings of the lines
graphing the weight functions should be:

1. All crossings of blue with green lines
2. All crossings of two blue lines, in one copy of the recursive construction
3. All crossings of blue with red lines
4. All crossings of two red lines, in a second (reversed) copy of the recursive

construction
5. All crossings of red with green lines
6. All crossings of two green lines, in the third copy of the recursive construction

Our construction automatically places all monochromatic crossings into disjoint
unit-length intervals with these orderings. The bichromatic crossings of Fig. 2
are separated from these unit-length intervals by a horizontal distance of at
least 0.25, and sufficiently small values of ε will cause the bichromatic crossings
of Ti to be close to the positions of the crossings with the same color in Fig. 2.
Therefore, by choosing ε small enough, we can ensure that the crossing ordering
described above is obtained. Figure 4 depicts this construction for T2.

We observe that, within each of the unit-length intervals containing a copy
of the recursive construction, the bottleneck edges for each triangle pqr in the
construction of Ti are exactly the ones of the color for that copy of the recursive
construction, and that within these intervals, the minimum non-bottleneck edge
in each triangle does not change. Therefore, by Lemma2, the changes in the
sequence of parametric minimum spanning trees within these intervals exactly
correspond to the changes in the trees of Ti−1 from the recursive construction.

Lemma 3. For weights constructed as above, the number of distinct parametric
minimum spanning trees for Ti is at least as large as

N(i) =
i3i

2
+

3i + 3
4

.

Proof. We prove by induction on i that the number of trees is at least as large
as the solution to the recurrence

N(i) = 3N(i − 1) +
3i − 3

2
.

To prove this, it is easier to count the number of breakpoints, values of λ at which
the tree structure changes; the number of trees is the number of breakpoints plus
one. In each copy of the recursive construction, this number of breakpoints is
exactly N(i−1)−1, so the total number of breakpoints appearing in these three
copies is 3N(i − 1) − 3.

Additional breakpoints happen within the ranges of values for λ at which (in
the (λ,weight) plane) pairs of lines of two different colors cross. Because of the
reversal of the red copy of the recursive construction, the minimum spanning trees
immediately to the left and right of these regions of bichromatic crossings corre-
spond to the same trees in Ti−1: the bottleneck edges that are included in these

350 D. Eppstein

p q

ry z

x

pq
pr

qr

qx
rz

py
px
ry

qz

Fig. 4. T2 (upper right) as parametrically weighted in our construction, with the graphs
of each weight function shown as lines in the (λ, w) plane (upper right), and the result-
ing sequence of 12 parametric minimum spanning trees (bottom). The marked yellow
crossings of pairs of lines correspond to breakpoints in the sequence of trees. (Color
figure online)

minimum spanning trees come from the same triangles, but with different colors.
In the regions where the green lines cross lines of other colors, the minimum non-
bottleneck edge in each triangle does not change, so each green bottleneck edge in
the minimum spanning tree must be exchanged for a red or blue one. Each change
to a tree within this crossing region removes a single edge from the minimum span-
ning tree and replaces it with another single edge, the two edges whose two lines
cross at the λ-coordinate of that change. Therefore, no matter what sequence of
changes is performed, to exchange all green bottleneck edges for all red or blue
ones requires a number of crossings equal to the number of edges in the minimum
spanning tree of Ti−1, which is (3i−1 + 1)/2 by Lemma 1. We get this number of
breakpoints at the region where the green and blue lines cross, and the same num-
ber at the region where the red and green lines cross.

The analysis of the number of breakpoints at the region where the blue
and red lines cross is similar, but slightly different. Immediately to the left and
right of this region, the bottleneck edge in each triangle and the minimum non-
bottleneck edge in the triangle are red and blue, but in a different order to the
left and to the right. Therefore, in triangles where the bottleneck edge is part
of the minimum spanning tree (as is always the minimum non-bottleneck edge),
nothing changes. However, in triangles where the bottleneck edge is not part of
the minimum spanning tree, there is a change, to the minimum non-bottleneck
edge, from before this crossing region to after it. These triangles correspond

A Stronger Lower Bound on Parametric Minimum Spanning Trees 351

to edges of Ti−1 which do not belong to the minimum spanning tree (for the
parameter values in this range), of which there are (3i−1 − 1)/2 by Lemma 1.
By the same argument as before, the crossing region must contain at least this
many breakpoints.

Adding together the 3N(i − 1) − 3 breakpoints from the recursive copies,
the (3i−1 + 1)/2 breakpoints for the green–red and green–blue crossing regions,
the (3i−1 − 1)/2 breakpoints for the red–blue crossing region, and +1 to convert
numbers of breakpoints to numbers of distinct trees, and simplifying, gives the
right hand side of the recurrence. A straightforward induction shows that the
solution to the recurrence is the formula given in the statement of the lemma. ��
For i = 0, 1, 2, . . . the number of trees given by this formula is

1, 3, 12, 48, 183, 669, 2370, 8202, 27885, 93495 . . .

For instance, T1 has three trees with the weighting given in Fig. 2: the bottleneck
function shown in the figure has four linear pieces, but the red and blue pieces
both correspond to the same tree, with a different edge on the path pqr as the
bottleneck edge. Figure 4 shows the 12 trees for T2.

5 Packing into Dense Graphs

The lower bound obtained from Lemma3 applies only to sparse graphs, where the
numbers of vertices and edges are within constant factors of each other. However,
we want a bound that applies more generally, for graphs with significantly more
edges than vertices. The other direction, for graphs with significantly fewer edges
than vertices, is less interesting. To achieve many fewer edges than vertices, it is
necessary to allow disconnected graphs, and consider minimum spanning forests
instead of minimum spanning trees; but with these modifications one can obtain
a lower bound simply by adding isolated vertices to the construction of Lemma3.

To achieve many more edges than vertices, we use the following construction
for packing many instances of a sparse lower bound graph into a single denser
graph. It does not require any detailed knowledge of the structure of the sparse
graph.

Lemma 4. Let G be a parametrically weighted graph with N vertices and M
edges, whose sequence of parametric minimum spanning trees has length T , and
let k be a positive integer satisfying k ≤ M . Then there is a parametrically
weighted graph H with N + 3M vertices and (2k + 2)M edges whose sequence of
parametric minimum spanning trees has length at least 2kT .

Proof. We construct H from G in the following steps, illustrated in Fig. 5.

– Number the edges of G as e0, e2, . . . eM−1 arbitrarily.
– Subdivide each edge ei of G, connecting two vertices u and v, into a four-edge

path u–ai–bi–ci–v. (It is arbitrary which vertex of this path we call ai and
which we call ci.)

352 D. Eppstein

e1

a1

b1

c1

a2

b2

c2

a3

b3

c3

a4

b4

c4

e2 e3 e4

Fig. 5. The construction of Lemma 4, applied to a graph G with four vertices and four
edges (left), with the parameter k = 3. The central graph is a subdivision of each edge
of this graph into a four-edge path, with vertices labeled as shown, and the graph on
the right is the final construction H, with the colors and textures of edges indicating
the partition of its edges into four subgraphs H0 (thin black edges), H1 (thick yellow
edges), H2 (dotted blue edges), and H3 (dashed red edges). (Color figure online)

– Add additional edges from bi to aj and cj , for each i and each j = i + 1, i +
2, . . . i + k − 1 mod M .

Given this construction, we define subgraphs Hj as follows:

– H0 consists of all edges connecting vertices of G to new vertices ai or ci.
– Hj consists of all edges from bi to ai+j−1 or ci+j−1, for all i, with indexes

taken modulo m.

Then, for i = 1, 2, . . . k, the graph H0 ∪ Hi is isomorphic to a subdivision of
G, with H0 ∪ H1 being the subdivision we used to construct H and the others
obtained in the same way but with permuted connections.

As in Lemma 3, we flatten the arrangement of lines for the weighting of G so
that its crossings all lie within a small neighborhood of the unit interval of the
λ-axis, without changing its sequence of parametric minimum spanning trees.
We then apply linear transformations to the system of weights for the edges in
each copy Hj with j > 0, as detailed below, while using small-enough weights
for all edges in H0 so that these edges belong to all minimum spanning trees
for parameters in the range covered by the transformed unit intervals shown
in Fig. 6. More specifically, for each j > 0 we use one transformed copy of
the weights in G for the a–b edges in Hj , and a second transformed copy for
the b–c edges, arranged so that the transformed unit intervals containing the
crossings within each copy project to disjoint intervals of the λ-axis, and so that
all crossings of the a–b edges appear above all lines for the b–c edges and vice
versa. Therefore, in the graph H0 ∪ Hj , the parametric trees in the parameter
range where the a–b edges cross each other consist of all b–c edges (because those
have smaller weight than the a–b edges in each path) together with a subset of
the a–b edges corresponding to a spanning tree of G. Because we copied and
transformed the weights of G for the a–b edges in this parameter range, we obtain

A Stronger Lower Bound on Parametric Minimum Spanning Trees 353

H0

H1 (a–b)

H1 (b–c) H3 (a–b)

H3 (b–c)

H2 (a–b) H2 (b–c)

Fig. 6. An arrangement of lines for the weight functions of Lemma 4 with k = 3. The
small rectangles indicate transformed neighborhoods of the unit λ-interval, containing
all crossings of the bundle of lines associated with each subgraph.

T distinct trees of this type. To arrange the a–b and b–c parameter weights for
Hi in this fashion, we transform them so that the a–b weights lie near the line
w = 3 − λ, with crossings in the range λ ∈ [1, 2], and so that the b–c weights
lie near the line w = λ − 3, with crossings in the range λ ∈ [4, 5]. Then, we
transform and flatten these combined weights of Hi, so that they again lie near
the λ-axis with all crossings of edges of either type in the range [0, 1].

We arrange the sets of lines associated with H1, H2, etc., so that the lines
from each Hj pass above the crossings for each other H ′

j , j �= j′, and so that
the range of parameters within which Hj has the lowest lines contains the two
subranges where its a–b lines cross and where its b–c lines cross, again as shown in
the figure. We may do this by finding a convex-downward polygonal chain with k
sides (for instance the upper part of a regular 2k-gon), in which all sides project
to a range of λ-coordinates of more than unit length, and by transforming the
weights of each Hi so that the unit interval of the λ-axis, near which all crossings
of these weights occur, is transformed to the interior of one of the sides of this
polygonal chain. Figure 6 shows the weights for three subgraphs H1, H2, and
H3, transformed in this way so that they are near the upper three sides of a
hexagon. The weights for H0 can be chosen to be near a horizontal line, below
all crossings of the other weight functions, as also shown in the figure.

Therefore, within these subranges, the parametric minimum spanning trees
for all of H will be the same as the trees for H0∪Hj , because H0∪Hj spans H and
has lower edge weights than any of the remaining edges. With this arrangement,
we get 2kT distinct parametric minimum spanning trees, 2T for each Hj with
j > 0, as well as additional trees that are not counted in the lemma. ��
With this, we are ready to prove our main result:

Theorem 1. There exists a constant C such that the following is true. Let n
and m be integers with n > 0 and 2n − 3 ≤ m ≤ (

m
2

)
. Then there exists a

354 D. Eppstein

parametrically weighted graph with n vertices and m edges, with at least Cm log n
parametric minimum spanning trees.

Proof. Let G = Ti, N = (3i + 3)/2, and M = 3i, with i chosen as large as
possible so that N + 3M ≤ n and 4M ≤ m, and choose k as large as possible so
that (2k+2)M ≤ m; then N = Θ(n) and M = Θ(m/n). Apply Lemma 3 to give
weights to G so that it has Ω(n log n) parametric minimum spanning trees, and
apply Lemma 4 to construct a parametrically weighted graph H with N + 3M
vertices and (2k+2)M edges that has Ω(m log n) parametric minimum spanning
trees. If necessary, add leaf vertices to H to increase its number of vertices to
n, and then add high-weight edges to increase its number of edges to m without
affecting this sequence of parametric spanning trees. ��

6 Conclusions

We have shown that the number of parametric minimum spanning trees can be
Ω(m log n) in the worst case, improving a 25-year-old Ω

(
mα(n)

)
lower bound.

Because of the structure of the graphs used in our lower bound construction,
the new lower bound applies as well to the special cases of planar graphs and
of bounded-treewidth graphs, both of which can have Ω(n log n) parametric
minimum spanning trees. However, our new lower bound is still far from the
O(mn1/3) upper bound, so there is plenty of room for additional improvement.

Another related question concerns the parametric bottleneck shortest path
problem, a parametric version of the problem of finding a path between two
specified vertices that minimizes the maximum edge weight on the path. In the
non-parametric version of the problem, a minimum spanning tree path is an
optimal path, although faster algorithms are possible and the problem is also of
interest in the case of directed graphs [14]. The same problem is also known in the
equivalent maximin form as the widest path problem, where an optimal solution
can be found as a maximum spanning tree path [21]. The parametric versions
of these problems differ somewhat: a breakpoint in the piecewise linear para-
metric minimum spanning tree function (the function mapping the parameter
value λ to the weight of its minimum spanning tree) might not be a breakpoint
in the bottleneck shortest path problem (the maximum weight of an edge on
the bottleneck shortest path problem) or vice versa. However, the bottleneck
breakpoints that look locally like the minimum of two linear functions do cor-
respond to breakpoints of the minimum spanning tree problem. For this reason,
any asymptotic lower bound on the parametric bottleneck shortest path prob-
lem would also be a lower bound for parametric minimum spanning trees, and
any asymptotic upper bound on the parametric minimum spanning tree problem
(including the known O(mn1/3) bound) is also an upper bound on parametric
bottleneck shortest paths. In fact, our previous Ω

(
mα(n)

)
lower bound also

applies to parametric bottleneck shortest paths, but our new Ω(m log n) bound
does not. Can we strengthen the Ω

(
mα(n)

)
bound for this problem?

A Stronger Lower Bound on Parametric Minimum Spanning Trees 355

References

1. Agarwal, P.K., Eppstein, D., Guibas, L.J., Henzinger, M.R.: Parametric and kinetic
minimum spanning trees. In: Proceedings of the 39th IEEE Symposium on Foun-
dations of Computer Science (FOCS 1998), pp. 596–605 (1998). https://doi.org/
10.1109/SFCS.1998.743510

2. Carlson, J., Eppstein, D.: The weighted maximum-mean subtree and other bicri-
terion subtree problems. In: Arge, L., Freivalds, R. (eds.) SWAT 2006. LNCS,
vol. 4059, pp. 400–410. Springer, Heidelberg (2006). https://doi.org/10.1007/
11785293 37

3. Carstensen, P.J.: Parametric cost shortest path problems. Unpublished Bellcore
memo (1984)

4. Castelli, L., Labbé, M., Violin, A.: Network pricing problem with unit toll. Net-
works 69(1), 83–93 (2017). https://doi.org/10.1002/net.21701

5. Chakraborty, S., Fischer, E., Lachish, O., Yuster, R.: Two-phase algorithms for
the parametric shortest path problem. In: Marion, J.-Y., Schwentick, T. (eds.)
Proceedings of the 27th International Symposium on Theoretical Aspects of Com-
puter Science (STACS 2010), Volume 5 of LIPIcs, pp. 167–178. Schloss Dagstuhl
- Leibniz-Zentrum für Informatik (2010). https://doi.org/10.4230/LIPIcs.STACS.
2010.2452

6. Chan, T.M.: Finding the shortest bottleneck edge in a parametric minimum span-
ning tree. In: Proceedings of the 16th ACM-SIAM Symposium on Discrete Algo-
rithms (SODA 2005), pp. 917–918. SIAM (2005). https://dl.acm.org/citation.cfm?
id=1070432.1070561

7. Dey, T.K.: Improved bounds for planar k-sets and related problems. Discrete Com-
put. Geom. 19(3), 373–382 (1998). https://doi.org/10.1007/PL00009354

8. Eben-Chaime, M.: Parametric solution for linear bicriteria knapsack models.
Manag. Sci. 42(11), 1565–1575 (1996). https://doi.org/10.1287/mnsc.42.11.1565

9. Eppstein, D.: Geometric lower bounds for parametric matroid optimization. Dis-
crete Comput. Geom. 20(4), 463–476 (1998). https://doi.org/10.1007/PL00009396

10. Eppstein, D.: The parametric closure problem. ACM Trans. Algorithms 14(1),
A2:1–A2:22 (2018). https://doi.org/10.1145/3147212

11. Erickson, J.: Maximum flows and parametric shortest paths in planar graphs. In:
Charikar, M. (ed.) Proceedings of the 21st ACM-SIAM Symposium on Discrete
Algorithms (SODA 2010), pp. 794–804. SIAM (2010). https://doi.org/10.1137/1.
9781611973075.65

12. Fernández-Baca, D., Slutzki, G.: Linear-time algorithms for parametric minimum
spanning tree problems on planar graphs. Theor. Comput. Sci. 181(1), 57–74
(1997). https://doi.org/10.1016/S0304-3975(96)00262-9

13. Fernández-Baca, D., Slutzki, G., Eppstein, D.: Using sparsification for parametric
minimum spanning tree problems. Nordic J. Comput. 3(4), 352–366 (1996)

14. Gabow, H.N., Tarjan, R.E.: Algorithms for two bottleneck optimization problems.
J. Algorithms 9(3), 411–417 (1988). https://doi.org/10.1016/0196-6774(88)90031-
4

15. Giudici, A., Halffmann, P., Ruzika, S., Thielen, C.: Approximation schemes for the
parametric knapsack problem. Inf. Process. Lett. 120, 11–15 (2017). https://doi.
org/10.1016/j.ipl.2016.12.003

16. Gusfield, D.: Bounds for the parametric minimum spanning tree problem. In:
Proceedings of the West Coast Conference on Combinatorics, Graph Theory and
Computing (Humboldt State University, Arcata, California, 1979), Volume 26 of
Congress Number, Winnipeg, Manitoba, pp. 173–181. Utilitas Math (1980)

https://doi.org/10.1109/SFCS.1998.743510
https://doi.org/10.1109/SFCS.1998.743510
https://doi.org/10.1007/11785293_37
https://doi.org/10.1007/11785293_37
https://doi.org/10.1002/net.21701
https://doi.org/10.4230/LIPIcs.STACS.2010.2452
https://doi.org/10.4230/LIPIcs.STACS.2010.2452
https://dl.acm.org/citation.cfm?id=1070432.1070561
https://dl.acm.org/citation.cfm?id=1070432.1070561
https://doi.org/10.1007/PL00009354
https://doi.org/10.1287/mnsc.42.11.1565
https://doi.org/10.1007/PL00009396
https://doi.org/10.1145/3147212
https://doi.org/10.1137/1.9781611973075.65
https://doi.org/10.1137/1.9781611973075.65
https://doi.org/10.1016/S0304-3975(96)00262-9
https://doi.org/10.1016/0196-6774(88)90031-4
https://doi.org/10.1016/0196-6774(88)90031-4
https://doi.org/10.1016/j.ipl.2016.12.003
https://doi.org/10.1016/j.ipl.2016.12.003

356 D. Eppstein

17. Holzhauser, M., Krumke, S.O.: An FPTAS for the parametric knapsack problem.
Inf. Process. Lett. 126, 43–47 (2017). https://doi.org/10.1016/j.ipl.2017.06.006

18. Katoh, N.: Bicriteria network optimization problems. IEICE Trans. Fundam. Elec-
tron. Commun. Comput. Sci. E75, A:321–A:329 (1992)

19. Katoh, N., Tokuyama, T.: Notes on computing peaks in k-levels and parametric
spanning trees. In: Souvaine, D.L. (ed.) Proceedings of the 17th Symposium on
Computational Geometry (SoCG 2001), pp. 241–248. ACM (2001). https://doi.
org/10.1145/378583.378675

20. Mitchell, S.L.: Linear algorithms to recognize outerplanar and maximal outerplanar
graphs. Inf. Process. Lett. 9(5), 229–232 (1979). https://doi.org/10.1016/0020-
0190(79)90075-9

21. Pollack, M.: The maximum capacity route through a network. Oper. Res. 8, 733–
736 (1960). https://doi.org/10.1287/opre.8.5.733

22. Tarjan, R.E.: Data Structures and Network Algorithms, Volume 44 of CBMS-NSF
Regional Conference Series in Applied Mathematics. Society for Industrial and
Applied Mathematics (1983). https://doi.org/10.1137/1.9781611970265

23. Wald, J.A., Colbourn, C.J.: Steiner trees, partial 2-trees, and minimum IFI net-
works. Networks 13(2), 159–167 (1983). https://doi.org/10.1002/net.3230130202

https://doi.org/10.1016/j.ipl.2017.06.006
https://doi.org/10.1145/378583.378675
https://doi.org/10.1145/378583.378675
https://doi.org/10.1016/0020-0190(79)90075-9
https://doi.org/10.1016/0020-0190(79)90075-9
https://doi.org/10.1287/opre.8.5.733
https://doi.org/10.1137/1.9781611970265
https://doi.org/10.1002/net.3230130202

Online Bin Packing of Squares and Cubes

Leah Epstein1(B) and Loay Mualem2

1 Department of Mathematics, University of Haifa, Haifa, Israel
2 Department of Computer science, University of Haifa, Haifa, Israel

Abstract. In the d-dimensional online bin packing problem, hyper-
cubes of positive sizes no larger than 1 are presented one by one to be
assigned to positions in d-dimensional unit cube bins. In this work, we
provide improved upper bounds on the asymptotic competitive ratio for
square and cube bin packing problems, where our bounds do not exceed
2.0885 and 2.5735 for square and cube packing, respectively. To achieve
these results, we adapt and improve a previously designed harmonic-
type algorithm, and apply a different method for defining weight func-
tions. We detect deficiencies in the state-of-the-art results by providing
counter-examples to the current best algorithms and the analysis, where
the claimed bounds were 2.1187 for square packing and 2.6161 for cube
packing.

1 Introduction

Bin Packing (BP) has been the cornerstone of approximation algorithms and has
been extensively studied since the early 1970’s. This problem and its variants
are important problems with numerous classic applications, such as machine
scheduling, cutting stock problems, and storage allocation. Recent applications
include also cloud storage.

Bin packing was first introduced and investigated by Ullman in 1951 [38]
(see also [2,4,5,10,19,27–30,36,39]). In the classic or standard one-dimensional
bin packing problem, we are given a list L = {i1, i2, . . . , in} of items, and item
sizes S = {s1, s2, . . . , sn}, where sj ∈ (0, 1] is the size of ij for any 1 ≤ j ≤ n.
The goal is to pack these items into the minimum number of bins for this input.
More precisely, for a subset of items B, we let |B| =

∑
ij∈B sj , and the goal is to

partition L into a set of subsets B = {b1, b2, b3, . . . , b�}, where 1 ≤ � ≤ n, such
that |bk| ≤ 1 holds for k = 1, . . . , �, where � is minimized.

A bin packing algorithm is called online if it is given the items from L one
at a time, and it must assign each item into a bin immediately upon arrival. A
newly arriving item is packed according to the packing and sizes of items that
have already been presented before its arrival. There is no information about
subsequent items, and removing an already packed item from its position is not
allowed. As opposed to online algorithms, offline algorithms for bin packing have
complete knowledge about the list of items. An offline algorithm simply maps
L into a set of bins (in a valid way), and the ordering of the items in L plays

c© Springer Nature Switzerland AG 2021
A. Lubiw et al. (Eds.): WADS 2021, LNCS 12808, pp. 357–370, 2021.
https://doi.org/10.1007/978-3-030-83508-8_26

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-83508-8_26&domain=pdf
https://doi.org/10.1007/978-3-030-83508-8_26

358 L. Epstein and L. Mualem

no role. The offline problem is known to be NP-hard [23]; thus, research for this
variant has concentrated on the study and development of fast algorithms that
can produce near-optimal solutions for the problem in polynomial time. That is,
extensive research has gone into developing approximation algorithms for this
problem. These algorithms have proven performance for any possible input, and
process the input items in polynomial time. See [19,30,35] for such work.

Online algorithms are analyzed via the (absolute or asymptotic) competitive
ratio. This is the worst-case cost ratio between outputs of an online algorithm
and those of an optimal offline algorithm (for the same inputs). There is vast
research on online variants as well [2,4,5,10,27–29,36,39].

We define the competitive ratio more precisely. Given an input list L, let
ALG(L) be the cost (number of bins used) obtained by applying algorithm ALG
on the input L. Let OPT be an optimal offline algorithm, that uses the minimum
number of bins for packing the items, and let OPT (L) denote the number of bins
that OPT uses for a given input L. The algorithm is absolutely r-competitive
if for any input ALG(L) ≤ r · OPT (L) and asymptotically r-competitive if
there exists a constant C such that for any input ALG(L) ≤ r · OPT (L) + C.
The asymptotic competitive ratio for ALG is the infimum r such that ALG is
asymptotically r-competitive. Since the last measure is the common one for bin
packing, we only discuss this measure in this text, and sometimes omit the words
asymptotic and asymptotically. For offline problems, the approximation ratio is
defined analogously.

In this work, we deal with online bin packing of cubes, and we improve the
asymptotic competitive ratio for the d-dimensional bin packing problem of cubes
for d = 2 and d = 3. In the d = 2, cubes are in fact squares. The case d = 1
is sometimes seen as the classic variant of bin packing. We define the more
general case of box packing as follows. The input consists of a list L of items,
where each item is a d -dimensional box, and in each dimension, the side length
of an item does not exceed 1. The output is a packing of all input items of L
into d-dimensional hyper-cube bins. The goal is to minimize the number of used
bins. A packing is an assignment of positions in bins to all items such that the
following two requirements hold. No two items in a bin overlap with each other
(except for their boundaries), and the sides of item are parallel to sides of bins.
Note that we do not exclude the option of rotation, also called non-oriented box
packing, though we deal here with the asymptotic competitive ratio for squares
and cubes, where rotation is meaningless.

Previous Results. Recall that bin packing is an NP-hard problem, and a large
part of the research in this field of study focused on finding (asymptotic) approx-
imation bounds. The offline problem has asymptotic approximation schemes
(where an approximation scheme is a family of asymptotic approximation algo-
rithms with approximation ratio 1 + ε for any ε > 0) [19,30].

The online bin packing problem was first introduced by Ullman [38]. John-
son [28] showed that a greedy algorithm called Next Fit (NF) has an asymptotic
(and an absolute) competitive ratio of 2. It was also shown by Johnson et al. [29]
that another greedy algorithm called First Fit has an asymptotic competitive

Online Bin Packing of Squares and Cubes 359

ratio of 17
10 [29]. Lee and Lee [32] presented the Harmonic algorithm. This algo-

rithm uses bounded space (a constant number of bins can receive items at each
time), and it achieves an asymptotic competitive ratio of approximately 1.69103
for large values of its parameter. They also developed the Refined Harmonic algo-
rithm, which has an asymptotic competitive ratio that does not exceed 1.63597.
Shortly afterwards, Ramanan et al. [34] introduced Modified Harmonic and Mod-
ified Harmonic 2, and showed that these algorithms have asymptotic competitive
ratios not exceeding approximately 1.61562 and 1.61217, respectively. The upper
bound was improved further later [27,36]. The best upper bound on the asymp-
totic competitive ratio known so far is 1.57829 by Balogh et al. [2].

As for lower bounds, Yao showed that no online algorithm has an competi-
tive ratio smaller than 1.5 [41]. Later, Brown [8] and Liang [31] improved this
lower bound to 1.53635, and Van Vliet [39] improved this lower bound known
to 1.54014. Balogh et al. [5] improved this lower bound to 1.54037. The tightest
lower bound known so far is 1.54278 By Balogh et al. [4].

Here, we study the d-dimensional bin packing of cubes for d = 2, 3, and
improve the existing bounds for this problem. In what follows, we discuss previ-
ous work for that variant. The hyper-cube online packing problem was studied
by Coppersmith and Raghavan [11] who showed upper bounds of 2.6875 and
6.25 on the asymptotic competitive ratios for online square packing and online
cube packing, respectively. Seiden and van Stee [37] improved the upper bound
for square packing to 395/162 ≈ 2.438272, Miyazawa and Wakabayashi [33]
improved the upper bound for cube packing to 3.954, where the algorithm was
based on that of [11]. Epstein and van Stee proved an upper bound of 2.24437 for
square packing and an upper bound of 2.9421 for online cube packing [17]. These
algorithms are similar to the one-dimensional modifications of harmonic algo-
rithms. Han et al. [26] gave upper bounds of 2.1187 and 2.6161 for the asymptotic
competitive ratios for square packing and cube packing, respectively. We note
that these last bounds are not valid for the algorithms as they were defined and
their analysis, as we show in this work, by providing counter-examples to the
action of the algorithm for d = 2, and by explaining why the analysis does not
hold in general. There is also an earlier version of that work [25] but there are
flaws in that analysis as well. As for lower bounds on the competitive ratio, there
has been some work on that direction as well [3,7,17,37,40], and the current best
lower bound is approximately 1.75154 [3].

The offline variant of the square and cube bin packing also have asymptotic
approximation schemes [6]. In addition, there is work for more general variants of
online rectangle and box bin packing with or without rotation, and vector pack-
ing. See [1,7,9,11–15,18,20–22,24,40,40]. Naturally, the bounds for the more
general case are larger.

Our Contribution. For decades, bounds for asymptotic competitive ratios of
bin packing problems have been extensively studied. In this work, we present
improved results for d-dimensional bin packing problem. We provide a new
harmonic-type algorithm for d-dimensional bin packing problem. The key com-
ponents of our algorithm are classification of the items, and an extension of the

360 L. Epstein and L. Mualem

framework suggested by [32] with respect to the one-dimensional bin packing
problem, similar to [36]. Our algorithm is specified by a general structure that
is based on that of [26] and a new set of parameters. However, for the analysis,
we do not use the analysis as in [26,36], but we define a new weighting tech-
nique for the d-dimensional bin packing problem. A related method was used in
the past for standard bin packing [2], that is, for the one-dimensional case, but
no such method was defined for variants in multiple dimensions. Here we show
that it allows one to improve the bounds for another bin packing problem. To
emphasize the effectiveness of our new suggested algorithm, we established an
improved asymptotic competitive ratio for the cases d = 2, 3. We obtain tighter
upper bounds for the asymptotic competitive ratio for the online square and
cube packing. Specifically, the algorithms have asymptotic competitive ratios of
at most 2.0885 and 2.5735, respectively. This is to be compared to the currently
known bounds of 2.1187 for square packing and 2.6161 for cube packing by [26]
(which are unfortunately incorrect, but it might be possible to prove slightly
inferior bounds for these algorithms using our method of analysis).

Additionally, we present a counter example for the previous upper bound
claimed by [26] for d = 2, showing that it is higher than 2.12. We also explain
why their analysis is incorrect and cannot yield a bound below 2.24 for square
packing (though we believe that an upper bound of approximately 2.14 can be
shown for their algorithm for d = 2 using our method of analysis). Our analysis is
based on introducing weight functions and bounding the asymptotic competitive
ratio by showing that the total weight of bins of the algorithm is equal to the
total weight (up to an additive constant) while bounding the total weight of any
bin of an optimal offline solution from above [32,36]. For obtaining the upper
bounds on weights, we use computer-assisted proofs.

In the full version of this work [16], we present our algorithm for the online
d-dimensional bin packing problem of squares and cubes, which is based on
previously known algorithms. In Sect. 3, we present our weighting functions
and present their analysis for our algorithm and for optimal solutions. Another
section that appears only in the full version of the paper contains the specific
parameters for our algorithms, which lead to the improved bounds. In the full
version of the paper, we also show the counter example for the algorithm of [26],
and omitted explanations and proofs can also be found in the full version.

2 Algorithm Extended Harmonic (EH)

Now, we define our algorithm Extended Harmonic (EH) for hyper-cube packing.
For any M ≥ 110, Let N be fixed positive integer and let ti ∈ [0, 1] for every
i ∈ {1, . . . , N + 1} such that ti ≥ ti+1, t1 = 1, tN+1 = 1/M . Let the interval Ii

be (ti+1, ti] for every i ∈ {1, . . . , N}. An item t is categorized as type i if its size
is in Ii, i.e., s(t) ∈ (ti+1, ti]. The algorithm is split into two main components,
where we categorize all items into small and large, small items are packed by
AssignSmall [18] (see the full version of this work [16]), and large items are
packed by EH which we defined in this section.

Online Bin Packing of Squares and Cubes 361

For every i ∈ {1, . . . , N}, each item of type i, is either colored red or blue.
We then define two sets of counters {ej}N

j=1 and {nj}N
j=1 such that each counter

is initialized with zero, ei denotes the number of red colored items of type i while
ni denotes the number of items of type i. In addition, for every i ∈ {1, . . . , N},
we define αi to be an approximate fraction of the red items of type i with
respect to ni, that is 0 ≤ αi ≤ 1 for all i. The invariant ei ≈ αi · ni will be
maintained throughout the whole process of the algorithm (in the sense that
|ei − αi · ni| = O(1)). In addition to using ej , nj , and αj for j = 1, 2, . . . , N ,
there are auxiliary values calculated based on item types. The maximum number
items of type i that can be packed in one bin will be based on a parameter βi for
every i ∈ {1, . . . , N}. This parameter will be used for blue items, since for them
the maximum number will be packed (except for at most one bin for every type).
The amount of unused (free) space in bins filled with βd

i items from interval Ii

will be based on a value denoted by δi (this definition of δi will be slightly
modified later). This value is defined according to the maximum size of any item
of type i, which is ti. This algorithm exploits this free space to pack red items of
other types. Thus, δi = 1 − βi · ti. Note that this is the space in one dimension,
while, for example, for d = 2 the space is an L-shaped area whose width is δi. We
sometimes decide not to use the entire space of δi for red items. For simplicity
of the algorithm and its analysis, we define the set D = {Δ0 = 0,Δ1, . . . , Δk}
to describe the set of spaces into which red items can be placed, such that
Δk < 1/2, Δi ≤ Δi+1, and Δ1 > 0 for every i. The set may contain all values
of the form δi or just some of them. Let φ : {1, . . . , N} → {0, . . . , k} denote a
mapping function from item types to their corresponding index Δj , and for any
i ∈ {1, . . . , N} denote by Δφ(i), the amount of space used to hold red items in
a bin which holds blue items of type i. We require that the function φ satisfies
Δφ(i) ≤ δi. If φ(i) = 0 holds, then no red items are accepted in bins filled with
βi items. For example, if Δ1 = 0.28, Δ2 = 0.3, Δ3 = 0.32 and δi = 0.31, we can
choose φ(i) = 2. We could also choose φ(i) = 1, but usually largest j is chosen
such that Δj ≤ δi, in order to save space. To ensure that for every red item
there may potentially exist a bin to pack it, we require that αi = 0 for every
i ∈ {1, . . . , N} such that ti > Δk.

We follow some of the literature of this type of algorithms, and use γi to
denote the maximum number of red items of type i (for every i ∈ {1 . . . , N})
that can be packed in the bin, where γi = 0 if ti > Δk and γi = max{1, {Δ1/ti}}
otherwise. This value is the number of items that can fit in one dimension. For
example, if ti = 1

30 and Δ1 = 0.21, then γi = 6, but in the case ti = 0.22, and if
Δk = 0.3, we will have γi = 1, which means that there will be just one red item
of type i next to blue items in each dimension.

To generalize the usage of γi to d-dimensional bin packing, we define θi which
denotes the maximum number of red items of type i (for every i ∈ {1, . . . , N})
that can be packed in a single d-dimensional bin as follows: θi = βd

i − (βi − γi)d.
For example, if d = 2, βi = 5 and γi = 2, we get θi = 16. Thus, a cube with
βi items of type i packed in each dimension is created, and a smaller cube with
βi − γi items in each dimension is removed to make space for other items. The

362 L. Epstein and L. Mualem

definition θi = 0 for ti > Δk means that there is no place at any bin for red
items of type i since the blue items are too large. As mentioned in the preceding
paragraph, we require that αi = 0 in these cases, i.e., all the items from interval
Ii are colored blue and there are no red items from interval Ii. It is possible that
other values of αi will also be equal to zero.

For simplicity, we redefine the values δi to be exactly the Δφ(i) values (by
possibly reducing some of these values). Thus, a red item of type j can be packed
with blue items of type i if and only if tj ≤ δi. The main ingredients for our
algorithm are as follows. A pair of integers N and k, such that N denotes number
of intervals, and k denotes the number of different sizes of spaces for red items.
Rational numbers t1 = 1 > t2 > · · · > tN > tN+1 = 0, which denote the intervals
boundaries, i.e., the ith interval is (ti+1, ti]. Rational numbers α1, . . . , αN ,∈
[0, 1], where for every i ∈ {1, . . . , N}, αi denotes the fraction of red items from
the whole set of items in the ith interval. Parameters 0 < Δ1 < Δ2 < · · · <
Δk < 1/2, which denote set of spaces into which red items can be placed. A
function φ : {1, . . . , N} → {0. . . . , k}, which denotes a mapping function from
item types to their corresponding indexes of spaces for red items. It always holds
that Δφ(i) ≥ 1 − βi · ti. For simplicity we denote Δφ(i) by δi. An item x of size
s(x) has a type τ(x) where τ(x) = j ⇔ s(x) ∈ Ij . A table describing bin
types can be found in the full version of the paper [16]. Note that not all bin
types have the required number of items. Bins that have a smaller number of
items (less than βd

i for blue items of type i, or less than θj for red items of type
j) is called indeterminate.

An Overview of the Code of Algorithm Extended Harmonic. In what
follows, we give an overview of this algorithm, which is our main algorithm. The
algorithm is defined for any dimension d ≥ 2, and we will use this algorithm
for the cases d = 2, 3. We present the pseudo-code for our algorithm in the full
version of the paper [16]. The algorithm colors each incoming item as blue or
red. The coloring is based on the number of items of the same type that already
arrived, such that the percentage of red items will be correct. Specifically, for
every type i, ni will be the total number of items of this type at each time,
and ei will be the number of items of type i whose color is red. Recall that the
algorithm maintains the property ei = αi · ni approximately (since the numbers
of items ei and ni are integers, while αi · ni is not necessarily an integer). This
is done by testing the ratio between ei and the new value of ni after an item of
type i arrives.

Types of bins are marked by pairs of indexes of types, where the first one is
the type of blue items for this bin, and the second one is the type of red items.
A type that was not decided yet appears as a question mark. Thus, a bin of
type (?, j) is a bin that already has at least one red item of type j and no blue
items. For an item of type i whose color is red, the algorithm checks whether
there exists an already existing bin that can be used to accommodate the new
item. This has to be a bin that requires at least one additional item of type i
that is red. This may be a bin of type (?, i) or (j, i) for some type j �= i, where
its pre-determined number of items of type i was not packed yet. We see such

Online Bin Packing of Squares and Cubes 363

a bin as open. If there is no such bin, it will check whether there is a bin with
blue items but no red items, where red items of type i can be accepted, and if
indeed this is possible, such a bin is selected. If there is no open bin to pack the
new item (as a red item), then the algorithm opens a new bin of type (?, i) and
packs the new item into it. Thus, the algorithm will pack the new item in the
first open bin from the following ordered list of bins. First, a bin of type (?, i)
or (j, i) with less than θi red items in the bin. Then, a bin of type (j, ?) such
that δj ≥ γi · ti, and finally a bin of (?, i) (a new bin). The crucial part of this
ordering that the algorithm avoids making new decisions as much as possible.
The new item is packed into an open bin for red items of type i if this is possible.
If not, the algorithm still tries to use an existing bin, in order to avoid a situation
where there are bins of types (?, i) and (j, ?) which could be combined. Only if
there is no other option, a new bin is introduced. In this case one can deduce
that the current status of the output is such that all spaces that could receive
red items of i are already exhausted. Note that this can still change throughout
the execution of the algorithm and we analyze only the final output.

For a new item of type i whose color is blue, the case where this type cannot
receive red items in its bins is easy. The item is either packed into a bin that
does not have its full number of items, or if there is no such bin (which can
also be called open), a new bin is opened. Such bins are denoted by type (i). If
this type can receive red items into the packing of its blue items, the algorithm
checks whether there exists a bin that already received at least one blue item
of type i, but it did not receive its full number of blue items, where this can be
a bin of type (i, ?) or (i, j) for some j �= i. If there is no such bin, once again
the algorithm prefers an existing bin with red items, and only if no such bin can
accept blue items of type i, a new bin of type (i, ?) is opened. Thus, the algorithm
will pack the new item into the first open bin from the following ordered list of
bins. First, a bin of type (i, ?) or (i, j) with less than βi blue items in the bin.
Then, a bin of type (?, j) such that δj ≥ γj · tj , and finally, a bin of type (i, ?)
(a new bin). Note that the algorithmic approach is almost identical to those of
[26,36]. The algorithm runs one copy of AssignSmall and packs every new small
items with this algorithm.

3 Weighting Functions and Results

In what follows, we describe the weighting technique and present the specific
weight functions which we use in our algorithm. As it was done in the past
[2,32,36], we split the different inputs into cases, based on a classification of
the output. We will define one weight function for every case, and the different
weight functions are independent in the sense that every case will be analyzed
separately. Obviously, all weight functions are based on the parameters of the
algorithm, and those are common to all cases.

We assume here that L consists of large items (only). Small items are packed
separately, and the weight function used for them is not different from those
used in the past. Specifically, the weight of a small item is (M+1)d

(Md−1)
times its

364 L. Epstein and L. Mualem

area or volume. In this section we only find the relation between the cost of
the algorithm for large items and the total weight. Obviously, when we consider
optimal solutions, and we find the relation of weights to their costs, we will
consider small items as well, adding the weights of small items as well.

In the past [26,36], two weight functions were designed for the cases in the
analysis with bin types that all of them have both red items and blue items. In
the analysis, the two functions were compared in the sense that the better one
was finally used. The intuition for the two functions was that either the cost of
these bins is calculated as a part of the weights of the items that are blue, or it
is taken into account in the weights of the items that are red. Informally, while
these bins had both blue and red items, in this kind of analysis, the cost of the
bins is either paid for by blue items or by red items. The core of the technique
which we use for our weight functions is the partitioning the cost of bins of type
(i, j) between red and blue items. This can be done in the cases described above,
when there are no bins of types (i, ?) and (?, j). For applying the method used
here for the design of weight functions, we use a parameter w (0 ≤ w ≤ 1), where
w is the share of the blue items in bins where the cost is split, and 1 − w is the
share of red items. The value w is not necessarily the same for all the cases, and
it is typically different (any value can be used for any case and will lead to a
correct proof, be we use values that allow us to prove upper bounds that are as
tight as possible). The approach of previous work with two weight functions can
be seen as the special case where the choice of w had to be out of {0, 1}, while
we allow w to be a rational number in [0, 1] and usually it is not an integer.

First, we define weighting functions for items such that the number of bins
used by our algorithm is bounded by the total weight of the input sequence.
Every weight function will be used for one case, where cases are defined later.
For a weight function U , for any set X of items, we let U(X) =

∑
p∈X U(p).

The following lemma is similar to Lemma 2.2 of [36].

Lemma 1. The number of all indeterminate bins is O(1), where the constant
is independent of the input size.

Given the last lemma, we assume that no such bins exist in the output. Let Bi

and Ri be the number of bins containing blue items and red items, respectively,
for type i (bins with both blue and red items are counted in two such values). Let
λi be the number of items of type i in L. The algorithm keeps the proportion of
red items out of all items for a given type almost exactly, up to a constant number
of items for every type. The next lemma was proved for the one-dimensional case
[36], and it holds for multiple dimensions since it deals with numbers of items,
and not with sizes or possible ways to pack items. Since there are no red items
for types 1, 2, . . . , 17, we let Ri = 0 for these types.

The next lemma is also similar to Lemma 2.2 of [36] (see also [26]).

Lemma 2. Bi = 1−αi

βd
i

· λi + O(1), and Ri = αi

θi
· λi + O(1).

Let Y denote number of bins of type (i, j) for all values of i and j, i.e., the
number of bins which have both red and blue items. The next property holds
due to the double counting of such bins.

Online Bin Packing of Squares and Cubes 365

Lemma 3. A(L) ≤ ∑
i Bi +

∑
i Ri − Y.

Let q be the maximum index i ≤ 17 such that there is at least one bin at
termination that satisfies the following condition: the bin is of the type (i, ?) if
i /∈ {2, 3, . . . , 8} and the bin is of the type (i, ?) or (20 + i, ?) for 2 ≤ i ≤ 8. If
there is no such i, we let q = 1. The motivation is to find whether there are bins
with only blue items that are ready to receive red items. If there are such bins,
we are interested in the largest value δg such that there is a bin of type (g, ?).
Let e be the maximum index j ≥ 18 such that there is at least one bin of the
type (?, j) at termination, and if there is no such j, we let e = 0. There will
be no red items for type 18, and therefore in the case where e > 0, where have
e ≥ 19.

Lemma 4. If 2 ≤ q ≤ 9, it holds that e ≤ 37 − q. If 10 ≤ q ≤ 16, it holds that
e ≤ 35 − q.

The next lemma holds by definition.

Lemma 5. Assume that q ∈ {2, 3, . . . , 16}. For any i ∈ {q + 1, . . . , 17}, there
are no bins of type (i, ?), and for any j ≥ e + 1 there are no bins of type (?, j).

Definition 1. Let 0 ≤ w ≤ 1 be a parameter used for the analysis, as explained
above. Let q ∈ {2, . . . , 16}, e ∈ {19, . . . , 151}. Define the weight of an item p of
size x to be

Ve,q(p) =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

1, if x ∈ Ii, for i = 1, . . . , q

w, if x ∈ Ii, for i = q + 1, . . . , 17
αi

θi
+ 1−αi

βd
i

, if x ∈ Ii, for i = 18, . . . , e

(1−w)·αi

θi
+ 1−αi

βd
i

, if x ∈ Ii, for i = e + 1, . . . , 151.

Lemma 6. Let q ∈ {2, . . . , 16}, e ∈ {19, . . . , 151}, and let Ve,q(p) be as in Def-
inition 1 such that e satisfies Lemma 4 as its maximum value (e = 37 − q if
q ≤ 9, and e = 35 − q otherwise). Then, A(L) ≤ ∑

p∈Ii
Ve,q(p) + O(1).

Next, we define weighting functions for large items such that

A(L) ≤ max
1≤i≤17

Wi(L) + O(1).

We split our proof into 17 cases such that in each case we will use different
weighting functions. Among 15 of these cases, i.e., cases 2, 3, . . . , 16, we will
define the weighting function using Definition 1 with respect to e, q.

Handling Case 1: This is the case where q = 1. In this case it holds that all
bins with blue items of sizes above 1

3 that can be combined with red items were
indeed combined with them.

366 L. Epstein and L. Mualem

In what follows, we define the weight of an item p of size x in this case.

W1(p) =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

1−αi

βd
i

, if x ∈ Ii, for i = 1, 18

0, if x ∈ Ii, for i = 2, . . . , 17
αi

θi
, if x ∈ Ii, for i = 22, . . . , 28

αi

θi
+ 1−αi

βd
i

, if x ∈ Ii, for i = 19, . . . , 21, 29, . . . , 151.

The definition of this case implies that bin types (2, ?), . . . , (17, ?) and bin
types (22, ?), . . . , (28, ?) do not exist. Hence, Y ≥ ∑17

i=1 Bi +
∑28

i=22 Bi. We use
the property αi = 0 for 1 ≤ i ≤ 18, and get

A(L) ≤
N∑

i=1

Bi +
N∑

i=1

Ri − Y =
151∑

i=1

Bi +
151∑

i=1

Ri −
17∑

i=2

Bi −
28∑

i=22

Bi

=
∑

i=1,18,19,20,21,29,...,151

(Bi + Ri) +
∑

i=2,...,17,22...,28

Ri

=
∑

i=1,18,19,20,21,29,...,151

(
1 − αi

βd
i

· λi +
αi

θi
· λi)

+
∑

i=2,...,17,22...,28

αi

θi
· λi + O(1) =

∑

p∈Ii

W1(p) + O(1).

Handling Cases 2, 3, . . . , 16: a table in the full version of this work [16], contains
the cases which rely on using both e and q. The definitions are based on our
discussion above. Since te = 1 − tq+1 always holds, substituting the values e, q
and ve,q, into Lemma 6, yields that A(L) ≤ ∑

p∈Ii
Ve,q(p) + O(1).

Note that in these weight functions we did not take into account the fact
that the definition of q considers also items of sizes in (13 , 1

2] as blue items that
can receive red items in their bins. The relevant cases are easy in the sense that
the asymptotic competitive ratios for them are small even without reducing
these weights (cases 2, . . . , 7), and reducing these weights will not change the
competitive ratio of the algorithm.

Handling Case 17: In this case q = 17. Any red item could have been combined
into a blue bin of the form (17, ?), and thus, there are no (?, j) bins at all. In
what follows, we define the weight of an item p of type i ≤ 151 in this case.

W17(p) =
1 − αi

βd
i

.

Since the number of bins type (?, j) is zero for any j, all the red items are
packed in bins which include blue items. i.e., the only type of bins that may exist
are (i, j), (i), (i, ?), which means that there are blue items packed into every bin.
Hence, we get that Y =

∑
i Ri. Which yields

Online Bin Packing of Squares and Cubes 367

A(L) ≤
∑

i

Bi +
∑

i

Ri − Y =
∑

i

Bi +
∑

i

Ri −
∑

i

Ri

=
∑

i∈1,...,151

Bi =
∑

p∈Ii

W17(p) + O(1),

where first inequality holds by Lemma 3, and the last equality holds by definition
of W17, Bi and Lemma 2. by the analysis above we get that

Lemma 7. A(L) ≤ max1≤i≤17 Wi(L) + O(1).

3.1 Upper Bounds on the Asymptotic Competitive Ratio

In this section, we provide the αi parameters for square and cube packing, respec-
tively. We also provide upper bounds on the asymptotic competitive ratio for
each case in Table 1.

For each j ∈ {1, 2, . . . , 17}, we use the following integer program for obtaining
an upper bound on the asymptotic competitive ratio,

maximize fj(X) =
151∑

i=1

wi · xi +
112d

111d − 1

(

1 −
151∑

i=1

xi · tdi+1

)

subject to
151∑

i=1

xi · tdi+1 ≤ 1 (1)

151∑

i=1

	(ti+1 · (u + 1))
d · xi ≤ ud ∀u ∈ {1, . . . , 220} (2)

xi ≥ 0 and xi ∈ Z ∀i ∈ {1, . . . , 151}
Here X is a feasible set of items which fit into a single bin (of an optimal

solution), xi is the number of items type i in X, and wi is the weight of an item
of type i, defined in the previous part of the section by the function Wi. The
value 1 − ∑111

i=1 xi · tdi+1 is an upper bound on the total volume (or area) of all

the small items in X, and 112d

111d−1
·
(

1−∑111
i=1 xi · tdi+1

)

is an upper bound of the

total weight of all the small items in X.
The second type of constraints is based on a simple property that for an

integer u ≥ 1, no bin can contain more than ud items of size above 1
u+1 (see

for example Claim 2.1 of [14]). For every item type, the constraint takes into
account the number of independent items of size above 1

u+1 it can be split into.
An item of type i has a side above 1

t+1 , so every side can be split into 	 ti+1
1/(u+1)

parts. For example, an item of side above 1
2 can be split into three items of sides

above 1
6 in every dimension.

In order to obtain a slightly better result, we added two constraints of a
different form to the integer program for the case d = 2, as follows.

368 L. Epstein and L. Mualem

The first constraint is:

16∑

i=1

21 · xi +
28∑

i=17

11 · xi +
38∑

i=29

xi ≤ 57. (3)

The second constraint is:

16∑

i=1

80 · xi +
28∑

i=17

30 · xi +
37∑

i=29

10 · xi + x38 ≤ 190. (4)

Lemma 8. Conditions (3) and (4) hold for every valid bin of an optimal solu-
tion (for d = 2).

The next theorem states our main result.

Theorem 1. The asymptotic performance ratio of Algorithm EH for square
packing is at most 2.0885, while for cube packing is at most 2.5735.

Proof. We set the parameters αi according to the corresponding table (for square
packing and for cube packing). For each case we applied a simple integer program
solver in order to find the worst case bound. We obtain the results for square
and cube packing, as described in Table 1. Hence, we get that A(L) ≤ 2.5735 ·
OPT (L)+O(1) for cube packing, and A(L) ≤ 2.0885 ·OPT (L)+O(1) for square
packing. �

Table 1. Square and cube packing: upper bounds on the total weights for each case.

Square packing Cube packing

Case 1 2.088447879968511 2.5731896581108735

Case 2 1.9438375658626355 2.45464218336544

Case 3 2.0109397168059324 2.475823071455533

Case 4 1.9607242494316246 2.455719344199358

Case 5 1.9942453743436321 2.5115525001235937

Case 6 1.9875046382360564 2.5339175799806912

Case 7 1.9554146240072456 2.5016302664189443

Case 8 1.9441281429162531 2.493821911539605

Case 9 2.0884478982863968 2.5734762658161277

Case 10 2.0884277288254993 2.5593413871191126

Case 11 2.088445077308426 2.5567398601707696

Case 12 2.0876840226666538 2.557631911023032

Case 13 2.0847781920964583 2.5498950440578287

Case 14 2.07732977965866 2.5226265870712448

Case 15 2.0656430335436333 2.527717407098689

Case 16 2.0437751234561317 2.5385458044738085

Case 17 2.088086287477056 2.5718658072279847

Online Bin Packing of Squares and Cubes 369

References

1. Azar, Y., Cohen, I.R., Kamara, S., Shepherd, F.B.: Tight bounds for online vector
bin packing. In: Proceedings of the 45th ACM Symposium on Theory of Computing
(STOC 2013), pp. 961–970 (2013)

2. Balogh, J., Békési, J., Dósa, G., Epstein, L., Levin, A.: A new and improved algo-
rithm for online bin packing. In: Proceedings of the 26th European Symposium on
Algorithms (ESA 2018), pp. 5:1–5:14 (2018)

3. Balogh, J., Békési, J., Dósa, G., Epstein, L., Levin, A.: Lower bounds for several
online variants of bin packing. Theory Comput. Syst. 63(8), 1757–1780 (2019).
https://doi.org/10.1007/s00224-019-09915-1

4. Balogh, J., Békési, J., Dósa, G., Epstein, L., Levin, A.: A new lower bound for
classic online bin packing. CoRR, abs/1807.05554 (2018). Also in Proceedings of
the WAOA 2019

5. Balogh, J., Békési, J., Galambos, G.: New lower bounds for certain classes of bin
packing algorithms. Theory Comput. Sys. 440–441, 1–13 (2012)

6. Bansal, N., Correa, J.R., Kenyon, C., Sviridenko, M.: Bin packing in multiple
dimensions: inapproximability results and approximation schemes. Math. Oper.
Res. 31(1), 31–49 (2006)

7. Blitz, D., Heydrich, S., van Stee, R., van Vliet, A., Woeginger, G.J.: Improved
lower bounds for online hypercube and rectangle packing. CoRR, abs/1607.01229v2
(2016)

8. Brown, D.J.: A lower bound for on-line one-dimensional bin packing algorithms.
Coordinated Science Laboratory report no. R-864 (UILU-ENG 78–2257) (1979)

9. Christensen, H.I., Khan, A., Pokutta, S., Tetali, P.: Multidimensional bin packing
and other related problems: a survey. Comput. Sci. Rev. 24, 63–79 (2017)

10. Coffman Jr., E.G., Garey, M., Johnson, D.S.: Approximation algorithms for bin
packing: a survey. In: Hochbaum, D. (ed.) Approximation Algorithms for NP-Hard
Problems, pp. 46–93. PWS Publishing Co., Boston (1996)

11. Coppersmith, D., Raghavan, P.: Multidimensional online bin packing: algorithms
and worst case analysis. Oper. Res. Lett. 8, 17–20 (1989)

12. Csirik, J., Frenk, J.B.G., Labbe, M.: Two-dimensional rectangle packing: on-line
methods and results. Discrete Appl. Math. 45(3), 197–204 (1993)

13. Csirik, J., van Vliet, A.: An on-line algorithm for multidimensional bin packing.
Oper. Res. Lett. 13(3), 149–158 (1993)

14. Epstein, L.: Two-dimensional online bin packing with rotation. Theor. Comput.
Sci. 411(31–33), 2899–2911 (2010)

15. Epstein, L.: A lower bound for online rectangle packing. J. Comb. Optim. 38(3),
846–866 (2019). https://doi.org/10.1007/s10878-019-00423-z

16. Epstein, L., Mualem, L.: Online bin packing of squares and cubes. CoRR,
abs/2105.08763 (2021)

17. Epstein, L., van Stee, R.: Online square and cube packing. Acta Informatica 41(9),
595–606 (2005). https://doi.org/10.1007/s00236-005-0169-z

18. Epstein, L., van Stee, R.: Optimal online algorithms for multidimensional packing
problems. SIAM J. Comput. 35(2), 431–448 (2005)

19. Fernandez de la Vega, W., Lueker, G.S.: Bin packing can be solved within 1 +
ε in linear time. Combinatorica 1(4), 349–355 (1981). https://doi.org/10.1007/
BF02579456

20. Fujita, S., Hada, T.: Two-dimensional on-line bin packing problem with rotatable
items. Theor. Comput. Sci. 289(2), 939–952 (2002)

https://doi.org/10.1007/s00224-019-09915-1
https://doi.org/10.1007/s10878-019-00423-z
https://doi.org/10.1007/s00236-005-0169-z
https://doi.org/10.1007/BF02579456
https://doi.org/10.1007/BF02579456

370 L. Epstein and L. Mualem

21. Galambos, G.: A 1.6 lower-bound for the two-dimensional on-line rectangle bin-
packing. Acta Cybernet. 10(1–2), 21–24 (1991)

22. Galambos, G., van Vliet, A.: Lower bounds for 1-, 2- and 3-dimensional on-line bin
packing algorithms. Computing 52(3), 281–297 (1994). https://doi.org/10.1007/
BF02246509

23. Garey, M.R., Johnson, D.S.: Computers and Intractability: A Guide to the Theory
of of NP-Completeness. Freeman and Company, San Francisco (1979)

24. Han, X., Chin, F.Y., Ting, H.-F., Zhang, G., Zhang, Y.: A new upper bound 2.5545
on 2D online bin packing. ACM Trans. Algorithms 7(4) (2011). Article 50

25. Han, X., Ye, D., Zhou, Y.: Improved online hypercube packing. CoRR,
abs/cs/0607045 (2016). Also in Proceedings of the WAOA 2006

26. Han, X., Ye, D., Zhou, Y.: A note on online hypercube packing. CEJOR 18(2),
221–239 (2010). https://doi.org/10.1007/s10100-009-0109-z

27. Heydrich, S., van Stee, R.: Beating the harmonic lower bound for online bin pack-
ing. In: Proceedings of the 43rd International Colloquium on Automata, Lan-
guages, and Programming (ICALP 2016), pp. 41:1–41:14 (2016)

28. Johnson, D.S.: Fast algorithms for bin packing. J. Comput. Syst. Sci. 8(3), 272–314
(1974)

29. Johnson, D.S., Demers, A., Ullman, J., Garey, M., Graham, R.: Worst-case perfor-
mance bounds for simple one-dimensional packing algorithms. SIAM J. Comput.
3(4), 299–325 (1974)

30. Karmarkar, N., Karp, R.M.: An efficient approximation scheme for the one-
dimensional bin-packing problem. In: Proceedings of the 23rd Annual Symposium
on Foundations of Computer Science (FOCS 1982), pp. 312–320 (1982)

31. Liang, F.M.: A lower bound for on-line bin packing. Inf. Process. Lett. 10(2), 76–79
(1980)

32. Lee, C.C., Lee, D.T.: A simple online bin packing algorithm. J. ACM 32(3), 562–
572 (1985)

33. Miyazawa, F.K., Wakabayashi, Y.: Cube packing. Theor. Comput. Sci. 297(1–3),
355–366 (2003)

34. Ramanan, P., Brown, D.J., Lee, C.C., Lee, D.T.: On-line bin packing in linear
time. J. Algorithms 10(3), 305–326 (1989)

35. Rothvoss, T.: Better bin packing approximations via discrepancy theory. SIAM J.
Comput. 45(3), 930–946 (2016)

36. Seiden, S.S.: On the online bin packing problem. J. ACM 49(5), 640–671 (2002)
37. Seiden, S.S., van Stee, R.: New bounds for multidimensional packing. Algorithmica

36(3), 261–293 (2003). https://doi.org/10.1007/s00453-003-1016-7
38. Ullman, J.D.: The performance of a memory allocation algorithm. Technical report

100, Princeton University, Princeton, NJ (1971)
39. van Vliet, A.: An improved lower bound for online bin packing algorithms. Inf.

Process. Lett. 43(5), 227–284 (1992)
40. van Vliet, A.: Lower and upper bounds for online bin packing and scheduling

heuristics. Ph.D. thesis, Erasmus University, Rotterdam, The Netherlands (1995)
41. Yao, A.C.C.: New algorithms for bin packing. J. ACM 27(2), 207–227 (1980)

https://doi.org/10.1007/BF02246509
https://doi.org/10.1007/BF02246509
https://doi.org/10.1007/s10100-009-0109-z
https://doi.org/10.1007/s00453-003-1016-7

Exploration of k-Edge-Deficient
Temporal Graphs

Thomas Erlebach and Jakob T. Spooner(B)

School of Informatics, University of Leicester, Leicester, England
{te17,jts21}@le.ac.uk

Abstract. An always-connected temporal graph G = 〈G1, ..., GL〉 with
underlying graph G = (V, E) is a sequence of graphs Gt ⊆ G such
that V (Gt) = V and Gt is connected for all t. This paper considers the
property of k-edge-deficiency for temporal graphs; such graphs satisfy
Gt = (V, E − Xt) for all t, where Xt ⊆ E and |Xt| ≤ k. We study the
Temporal Exploration problem (compute a temporal walk that visits
all vertices v ∈ V at least once and finishes as early as possible) restricted
to always-connected, k-edge-deficient temporal graphs and give construc-
tive proofs that show that k-edge-deficient and 1-edge-deficient temporal
graphs can be explored in O(kn log n) and O(n) timesteps, respectively.
We also give a lower-bound construction of an infinite family of always-
connected k-edge-deficient temporal graphs for which any exploration
schedule requires at least Ω(n log k) timesteps.

Keywords: Graph algorithms · Temporal graphs · Graph exploration

1 Introduction

Given a simple, connected, undirected graph G and a start vertex s ∈ V (G), the
task of exploring G, i.e., computing a sequence of consecutively crossed edges
e ∈ E(G) that begins at s and visits every vertex v ∈ V (G) at least once,
is both natural and well-understood. A closely related problem was initially
considered by Shannon [19], who designed a mechanical maze-solving machine
which implemented a depth first search-type technique in order to locate, within
a given maze, a prespecified goal. This ‘searching’ problem is indeed related to
graph exploration: if our task is to simply complete an exploration of G, then
a solution can be straightforwardly found by performing a DFS starting from
s and stopping once all vertices have been visited at least once – clearly this
requires Θ(n) edge-traversals in total.

The graph exploration problem in the context of temporal graphs (i.e., graphs
whose edge set can change over time) has also received significant attention in
recent years. This problem, known as Temporal Exploration (TEXP), but
restricted to k-edge-deficient temporal graphs (which we define formally later)
is the focus of this paper. Given a temporal graph G, the problem asks that
we compute a temporal walk, starting at some prespecified vertex s ∈ V (G),
c© Springer Nature Switzerland AG 2021
A. Lubiw et al. (Eds.): WADS 2021, LNCS 12808, pp. 371–384, 2021.
https://doi.org/10.1007/978-3-030-83508-8_27

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-83508-8_27&domain=pdf
http://orcid.org/0000-0002-4470-5868
http://orcid.org/0000-0003-3816-6308
https://doi.org/10.1007/978-3-030-83508-8_27

372 T. Erlebach and J. T. Spooner

that makes at most a single edge-traversal in each timestep, and that visits
all vertices at least once by the earliest time possible. We formally define the
problem and temporal graph model in Sect. 2, but refer the interested reader to
[5,16] for more on temporal graphs in general, or [6,17] for more on TEXP. In
the most general setting, TEXP makes no assumptions about the input temporal
graph, aside from the assumption that the input temporal graph is connected
in each timestep (i.e., always-connected), which ensures exploration is always
possible. This allows an arbitrary number of edges from the underlying graph to
be missing in each timestep, and thus the graphs in different timesteps can differ
substantially, which leads to pessimistic bounds on the worst-case exploration
time. It is therefore interesting to study the question whether better exploration
times can be guaranteed if the number of missing edges in each time step is
small. To study this question, we also consider always-connected temporal graphs
but, in contrast to previous work, we consider k-edge-deficient temporal graphs,
whose structure in each step is ‘close’ to that of its underlying graph, in the sense
that at most k edges are missing. Such graphs were defined by Gotoh et al., in
[11], where they were considered in a distributed setting. We assume that the
temporal structure of an input temporal graph is known in full to an algorithm
prior to it computing a solution, as opposed to a setting in which the structure
of the graph in each step is revealed online and over time.

Contribution. We introduce the temporal graph property of k-edge-deficiency,
and consider Temporal Exploration on always-connected temporal graphs
that are k-edge-deficient for some k ∈ N. We define the property formally in
Sect. 2, but essentially these are temporal graphs G with underlying graph G,
such that, during each timestep t of G’s lifetime, there are at most k edges
e ∈ E in the underlying graph that are untraversable in (or ‘missing’ from) G.
Let n = |V (G)|. In Sect. 3 we prove for arbitrary k ∈ N that k-edge-deficient
always-connected temporal graphs can be explored in O(kn log n) timesteps. In
Sect. 4 we additionally show that 1-edge-deficient graphs can always be explored
in O(n) timesteps, giving a recursive exploration algorithm that exploits a num-
ber of existing structural/algorithmic results originating from traditional graph
theory. Finally, in Sect. 5, we sketch a modification of an existing Ω(n log n) lower
bound on the number of timesteps required to explore always-connected tempo-
ral graphs with planar underlying graph of maximum degree ≤ 4, presented in
[6], that allows us to obtain an Ω(n log k) bound on the worst-case time required
to explore arbitrary always-connected k-edge-deficient temporal graphs.

Related Work. Brodén et al. [3] consider the Temporal Travelling Sales-
person Problem on a complete graph with n vertices, with edge costs that
can differ between 1 and 2 in each timestep. They show that when an edge’s
cost changes at most k times over the input graph’s lifetime, the problem is NP-
complete, but provide a (2 − 2

3k)-approximation; for the same problem, Michail
and Spirakis [17] prove APX-hardness and provide a (1.7 + ε)-approximation.
Bui-Xuan et al. [4] propose multiple objectives for optimisation when comput-
ing temporal walks/paths: e.g., fastest (fewest steps used) and foremost (arriv-
ing at the destination at the earliest time possible). The decision version of the

Exploration of k-Edge-Deficient Temporal Graphs 373

Temporal Exploration problem, which asks whether or not a given temporal
graph admits a temporal walk that visits all vertices at least once, is also con-
sidered in [17]. They show that the problem is NP-complete when no restrictions
are placed on the input; they also propose considering the problem under the
always-connected assumption, which ensures that exploration is possible pro-
vided the lifetime of the input graph is sufficiently long [17]. Erlebach et al. [6]
further consider the optimisation variant of the Temporal Exploration prob-
lem under the always-connected assumption. They prove an Ω(n2) lower bound
on the time needed to explore general always-connected temporal graphs, and
provide a proof that temporal graphs within this class can be explored in n2

steps. They also prove a number of bounds on the number of timesteps required
to explore various restricted temporal graph classes. Bodlaender and van der
Zanden [2] examine TEXP when restricted to graphs of pathwidth at most 2
in each timestep, showing the problem to be NP-complete even under these lim-
iting restrictions. In [14] and [13], Ilcinkas et al. respectively consider TEXP
restricted to temporal graphs with underlying cycle or cactus graphs. Akrida et
al. [1] consider Return-To-Base TEXP in which a candidate solution must
return to the vertex from which it initially departed. In [7], Erlebach et al. prove
an O(dn1.75) bound on the number of time steps required to explore any tem-
poral graph with degree bounded by d in each step, a considerable improvement
over the previously best known O(n2 log d

log n) bound [8]. In [9], a non-strict variant
of TEXP is studied – here, a computed walk may make an unlimited num-
ber of edge-traversals in each given timestep. Notions of strict/non-strict paths
which respectively allow for a single edge/unlimited number of edge(s) to be
crossed in any timestep have been considered before, notably by Kempe et al. in
[15] and Zschoche et al. in [20]. In this paper, we only consider strict temporal
walks. Gotoh et al. in [12] consider TEXP on temporal graphs with underlying
cycle under the so-called (H,S)-view, in which only the availability of edges at
most H hops away for at most the next S timesteps is known to an algorithm.
Casteigts et al. examined the fixed-parameter tractability of the problem of find-
ing temporal paths between a source and destination that wait no longer than
Δ consecutive timesteps at any vertex they visit. Temporal graph exploration
has also been studied in a distributed setting: in [11], Gotoh et al. consider a
variant in which a collection of cooperating mobile agents construct a map of
a temporal graph. In the same paper, they defined the class of k-edge-deficient
graphs (under a different name), proving bounds on the number of cooperating
agents required to ensure that exploration is possible under a variety of different
distributed settings.

2 Preliminaries

We denote by [n] the set {1, ..., n}. Let G = (V,E) and G′ be simple, undirected
graphs. We write G′ ⊆ G if G′ is a (not necessarily induced) subgraph of G. |V |
is the order of G; |E| is G’s size. If X ⊆ V is a subset of G’s vertex set, we
denote by G − X the subgraph of G induced by V (G) − X.

374 T. Erlebach and J. T. Spooner

Definition 2.1 (Temporal graph). A temporal graph G = 〈G1, G2, ..., GL〉
with underlying graph G = (V,E), order n = |V | and lifetime L is an ordered
sequence of subgraphs Gt = (V,Et) of G, indexed by the timesteps t ∈ [L]. In
particular, we have that V (Gt) = V = V (G) and Et ⊆ E for all t ∈ [L].

Let G = 〈G1, G2, ..., GL〉 be an arbitrary temporal graph. An edge e ∈ E that
satisfies e ∈ Et is present during timestep t. If e ∈ E satisfies e /∈ Et, we say
that e is missing in timestep t. A temporal graph G = 〈G1, G2, ..., GL〉 is said to
be always-connected if it is such that Gt is connected for all t ∈ [L].

Definition 2.2 (Temporal walk). A temporal walk W in a temporal graph G
is an alternating sequence of vertices and edge-time pairs,

W = v1, (e1, t1), v2, ..., vk−1, (ek−1, tk−1), vk.

Each edge-time pair (ej , tj) denotes the traversal of edge ej = {vj , vj+1} at
timestep tj, which implies that ej ∈ Etj . We require that t0 < t1 < ... < tk−1,
i.e., that the timesteps at which the consecutive edges of W are traversed are
strictly increasing. We say that the walk starts at vertex v0, and for all i ∈ [k],
we say that W visits vi ∈ V (G).

W is an exploration schedule of G with start vertex s ∈ V (G) if W is a temporal
walk in G that starts at s and visits all vertices v ∈ V (G). Let W be an explo-
ration schedule in a temporal graph G with underlying graph G. We denote by
a(W) the timestep at which W first visits the n-th unique vertex v ∈ V (G); this
is the arrival time of W. If W satisfies a(W) ≤ a(W ′) for any other exploration
schedule W ′ with the same start vertex in G, then we say that W is foremost.

Definition 2.3 (Temporal Exploration). An instance of the Temporal
Exploration (TEXP) problem is given as a pair (G, s), where G =
〈G1, G2, ..., GL〉 is an arbitrary temporal graph on n vertices with lifetime L ≥
|V (G)|2 = n2, and s ∈ V (G) is a start vertex. The problem asks that we compute
an exploration schedule W such that W is foremost and starts at vertex s. It
is assumed that Gt (t ∈ [L]) is known to an algorithm prior to it computing a
solution.

It was proven in [6] that arbitrary always-connected temporal graphs admit at
least one exploration schedule W such that α(W) ≤ n2. Hence having L ≥
|V (G)|2 ensures that an exploration schedule exists.

Definition 2.4 (k-edge-deficient). Let G = 〈G1, ..., GL〉 be a temporal graph
with underlying graph G = (V,E) and order n = |V |. Then G is k-edge-deficient
(for k ∈ N) if, for all t ∈ [L], we have Gt = (V,E − Xt) for some Xt ⊆ E with
|Xt| ≤ k.

When constructing a walk in a k-edge-deficient temporal graph G, we may speak
of an agent following a walk W in the underlying graph G. By this, we mean
that the agent traverses in G the edges in the same order as they are traversed by

Exploration of k-Edge-Deficient Temporal Graphs 375

W , and does this whenever it is possible to do so, i.e., whenever the next edge e
traversed by W is present in the current timestep t. If that edge is not present, the
agent is blocked on e in step t. For always-connected k-edge-deficient temporal
graphs we require that Gt = (V,E −Xt) is connected for all t ∈ [L]. We consider
only always-connected, k-edge-deficient temporal graphs with finite lifetime L ≥
n2 – as such, any temporal graph we refer to (unless stated otherwise) is assumed
to hold these properties. The following lemma from [6] will be useful.

Lemma 2.5 (Reachability lemma; Erlebach et al. [6]). Let G be an arbi-
trary always-connected temporal graph with vertex set V and lifetime L. Then
an agent situated at any vertex u ∈ V at any time t ≤ L−n can reach any other
vertex v ∈ V in at most |V | − 1 = n − 1 steps, i.e., by time step t + n − 1.

3 O(kn logn)-Time Exploration of k-Edge-Deficient
Temporal Graphs

We present an algorithm that proceeds in rounds. In each round, it considers a
forest consisting of k+1 edge-disjoint subtrees of a spanning tree of the underly-
ing graph and ensures that all edges of one of these trees can be traversed in the
round. The following lemma allows us to split a tree T into a pair of edge-disjoint
subtrees (whose union covers E(T)) in a balanced way:

Lemma 3.1. Let T be a tree with m ≥ 2 edges. Then one can compute two
edge-disjoint subtrees T ′ and T ′′ such that |E(T ′)|, |E(T ′′)| ∈ [m/3, 2m/3], and
such that E(T ′) ∪ E(T ′′) = E(T).

Say that a set S of edge-disjoint subtrees T ′ ⊆ F is a subtree-cover of a
forest F if, for every e ∈ E(F) we have e ∈ E(T ′) for some T ′ ∈ S. Call such
a subtree-cover S balanced if it satisfies the additional property that the tree of
largest size in S contains at most three times the number of edges contained by
the smallest. By applying Lemma 3.1 to the largest tree in a balanced sub-tree
cover, we can show the following lemma:

Lemma 3.2. Let S be a balanced subtree-cover of some forest F such that |S| =
x and |E(F)| ≥ x + 1 hold. Then one can obtain a balanced subtree cover S′ of
F such that |S′| = x + 1.

Theorem 3.3. Let G = 〈G1, ..., GL〉 be an always-connected, k-edge-deficient
temporal graph (for some k ∈ N) with underlying graph G, and let |V (G)| = n.
Then, for any start vertex s, there is an exploration schedule W of G with a(W) =
O(kn log n). Moreover, such a schedule can be computed in polynomial time.

Proof. For k ≥ n−1 the result clearly holds as every always-connected temporal
graph can be explored in ≤ n(n − 1) time steps (by repeated application of
Lemma 2.5 [6]), so we assume k < n − 1 for the rest of the proof.

Compute an arbitrary spanning tree T of G, and let m = |E(T)| – assume
w.l.o.g. that m > k + 1, otherwise G can be explored in O(kn) steps via O(k)

376 T. Erlebach and J. T. Spooner

applications of Lemma 2.5. Let S = {T} and note that S is a balanced subtree-
cover of T . Now apply Lemma 3.2 to S k times to obtain a balanced subtree-cover
S∗ of size k + 1 (possible since k ≤ n − 2). Let F denote a forest containing all
subtrees induced by edges of T that may not yet have been traversed, initially
F = T .

We now specify our algorithm in terms of an agent that explores the graph
in consecutive rounds. We denote by t the first step of a given round, and by v
the vertex at which the agent is positioned at the beginning of timestep t. Let
m′ =

∑
Ti∈S∗ |E(Ti)|. At the beginning of the first round t = 1, v = s, F = {T},

S∗ is a balanced subtree-cover of F (with size k + 1), and m′ = m. While F
contains more than k + 1 edges, execute a round as follows: Consider the graph
from step t+n onward, and place a single virtual agent at an arbitrary vertex vi

in each of the k+1 subtrees Ti ∈ S∗. For each i ∈ [k+1], compute an Euler tour
of Ti starting from vertex vi, then let the agents follow the Euler tours of their
respective trees for the following 6m′ steps. Since there are k + 1 virtual agents
following tours in edge-disjoint subtrees, and since G is k-edge-deficient, it follows
that there are no edges missing from at least one subtree T ′ ∈ S∗ in every step.
Let Ti∗ be the subtree that had no edges missing during the largest number of
steps in the considered 6m′-step period. Then Ti∗ had no edge missing for ≥ 6m′

k+1

steps. Since |S∗| = k +1, the smallest tree in S∗ cannot contain > m′
k+1 edges, so

because S∗ is balanced the largest tree in S∗ contains ≤ 3m′
k+1 edges. Therefore,

the ≥ 6m′
k+1 steps in which the virtual agent positioned in Ti∗ is able to traverse

an edge are enough for that agent to complete their Euler tour of Ti∗ and arrive
back at vi∗ . Using the steps in the interval [t, t + n − 1], move the real agent,
using Lemma 2.5, from v to the vertex vi∗ at which the virtual agent began their
tour of Ti∗ . Let W ∗ be the tour followed by the virtual agent positioned in Ti∗ ;
from step t + n to step t′ = t + n + 6m′ − 1, let the real agent complete W ∗.
Once completed, check if > k + 1 edges remain untraversed; if so, consider the
set S′ = S∗ −{Ti∗} and note that |S′| = k. Observe that S′ is balanced since S∗

was balanced and removing a tree cannot violate this property. Since we have
S′ = S∗ − {Ti∗}, and since S∗ covered T , we have that S′ covers the forest F ′

obtained from F by removing the edges of Ti∗ . Apply Lemma 3.2 to S′ to obtain
a balanced subtree-cover S′′ of F ′ such that |S′′| = k + 1 – note that doing so
is valid since |E(F ′)| > k + 1 = |S′| + 1, as is required by Lemma 3.2. Now, set
S∗ = S′′, F = F ′, v = vi∗ and t = t′ + 1 and start the next round as above.
Once a round is completed and at most k + 1 edges remain, stop and use O(n)
steps to explore up to 2k + 2 remaining unexplored vertices one by one using
Lemma 2.5.

Note that every vertex v in V (T) = V (G) either (1) belongs to an edge of
T that was traversed by the algorithm, or (2) was visited via an application of
Lemma 2.5. Hence, the computed walk is an exploration schedule and it remains
only to bound its arrival time. In each round, a subtree containing at least a

1
3(k+1) fraction of the edges of F is traversed in its entirety. To see this, observe

that |S∗| = k + 1, so the largest tree in S∗ must contain ≥ m′
k+1 edges; because

Exploration of k-Edge-Deficient Temporal Graphs 377

S∗ is balanced, it follows that all trees in S∗ have size ≥ m′
3(k+1) . Hence, after x

rounds, the total number of edges in T that have not yet been removed from F
is ≤ m(1 − 1

3(k+1))
x. Thus, after x = 3(k + 1) ln(m

k+1) = O(k log m) = O(k log n)

(recall that m = |E(T)| = n−1) rounds there are ≤ m(1− 1
3(k+1))

3(k+1) ln(m
k+1) ≤

k+1 unexplored edges remaining in F . As each round takes n+6m′ ≤ n+6m =
O(n) steps, the total number of steps after O(k log n) rounds is O(kn log m) =
O(kn log n). A further at most (2k+2)n steps are needed to explore up to 2k+2
remaining unvisited vertices. Hence, the entire exploration takes O(kn log n) +
(2k + 2)n = O(kn log n), as required.

Finally, it is easy to see that the algorithm for determining the exploration
schedule can be implemented to run in polynomial time. 	

4 Linear-Time Exploration of 1-Edge-Deficient Temporal
Graphs

A graph G = (V,E) is k-vertex-connected (or simply k-connected) if, for any
subset X ⊆ V (G) such that |X| < k, the subgraph of G induced by V − X is
connected. Let G = (V,E) be a connected graph. An edge e ∈ E is a bridge if
G′ = (V,E − {e}) is disconnected. A graph G = (V,E) is 2-edge-connected if
it is connected and does not contain a bridge. A 2-edge-connected component
(abbreviated 2-ecc) of a graph G is a vertex-maximal induced subgraph C ⊆ G
such that C is 2-edge-connected. Note that a 2-ecc can also be a single vertex.
We say that a spanning subgraph G′′ of G preserves 2-edge-connectivity if it
contains all bridges of G and, for every 2-ecc C of G, the subgraph of G′′ induced
by V (C) is 2-edge-connected. In order to show that every connected graph G
has a spanning subgraph that preserves 2-edge-connectivity and has only a linear
number of edges, we make use of the following result by Nagamochi and Ibaraki.

Theorem 4.1 (Nagamochi and Ibaraki, [18]). Every k-connected graph G =
(V,E) admits a k-connected spanning subgraph G′ = (V ′, E′) such that |E′| ≤
k|V |. Moreover, G′ can be computed in O(|E|)-time.

By applying Theorem 4.1 to each biconnected component of a given connected
graph G, we can show the following:

Lemma 4.2. Let G be an arbitrary connected graph and let C be the set of all
2-eccs of G. Then, G admits a spanning subgraph G∗ such that (1) the vertices
of each 2-ecc C ∈ C form a 2-ecc C∗ in G∗ with |E(C∗)| ≤ 5|V (C∗)|; (2)
|E(G∗)| ≤ 5|V (G)|; and (3) V (G∗) = V (G).

If G is a 1-edge-deficient, always-connected temporal graph with underlying
graph G and G∗ is a spanning subgraph of G that preserves 2-edge-connectivity,
then the temporal graph G∗ with underlying graph G∗ that is obtained from
G by removing all edges that are not in G∗ is also always-connected and 1-
edge-deficient. This also implies that every cycle C of G∗ induces a connected
subgraph in every timestep of G∗.

378 T. Erlebach and J. T. Spooner

A circuit C in a graph G is a closed walk in G that does not repeat edges. In
1-deficient temporal graphs, a circuit behaves like an always-connected temporal
graph with underlying cycle, as at most one edge of the circuit can be missing
in each step. Thus, we get the following theorem, which was shown in [6] for
always-connected cycles.

Theorem 4.3. (Erlebach, Hoffmann and Kammer, [6]). For every 1-edge
deficient temporal graph G with underlying circuit C, there exists a start vertex
from which the graph can be explored in at most |E(C)| − 1 steps.

The following theorem by Fan allows us to reduce the exploration of a 2-ecc to
the exploration of at most three circuits.

Theorem 4.4. (Fan, [10]). The edges of any 2-edge-connected graph G =
(V,E) can be covered by at most 3 circuits. Moreover, such a cover can be com-
puted in O(|E| · |V |)-time.

The edges which belong to no 2-ecc of an arbitrary connected graph G are
precisely the bridges of G. Hence, one can represent the structure of G as a
tree T , called the 2-ecc tree of G, by identifying each 2-ecc with a vertex, and
joining two vertices by an edge in T if and only if their corresponding 2-eccs are
connected by a bridge in G. In the proof of Theorem 4.6, we will therefore re-use
standard terminology for trees: We choose a 2-ecc C as the root component. If
C ′ and C ′′ are 2-eccs such that C ′ lies on the path from C to C ′′ in T , then
C ′′ is a descendant of C ′. If C ′ and C ′′ correspond to neighbouring nodes in T
and C ′′ is a descendant of C ′, then C ′′ is a child of C ′ and C ′ is the parent of
C ′′. The subtree rooted at a 2-ecc C ′ consists of all 2-eccs that are descendants
of C ′, and the subgraph of G consisting of all those 2-eccs and the bridge edges
between them is said to correspond to that child subtree. For any child C ′ of
the root C of the 2-ecc tree, we call the subgraph of G that corresponds to the
subtree rooted at C ′ a child subgraph.

Lemma 4.5. Let G be an arbitrary connected graph on n vertices. Then, there
is a 2-ecc C∗ of G such that rooting the 2-ecc tree of G at C∗ ensures that the
child subgraphs (i.e., the subgraphs of G corresponding to the subtrees rooted at
children of C∗) each contain at most n/2 vertices.

Proof. Consider the tree T obtained by identifying each 2-edge-connected com-
ponent C of G with a vertex vC . Root T at an arbitrary node vC′ , then process
the vertices in a bottom up manner, labelling a vertex vC with the integer
xC = |{u ∈ V (G) : u ∈ V (C ′) for a descendant C ′ of C in T}|. Select a vertex
vC∗ such that xC∗ ≥ n/2 and such that vC∗ has largest depth in T amongst all
such vertices. If vC∗ is already the root of T , we are done. Otherwise, let vC′

be the parent of vC∗ and reroot T at vC∗ to form a 2-ecc tree T ∗, in which vC′

is a child of vC∗ . We have that for every child vC �= vC′ of vC∗ in T ∗ we have
xC < n/2, because otherwise the algorithm would have picked vC rather than
vC∗ . Furthermore, we have xC∗ ≥ n/2, and so the total number of vertices in all
components C ′′ such that vC′′ is a descendant of vC′ in T ∗ must be ≤ n/2. 	

Exploration of k-Edge-Deficient Temporal Graphs 379

Theorem 4.6. Let G = 〈G1, ..., GL〉 be an always-connected, 1-edge-deficient
temporal graph with arbitrary underlying graph G, and let |V (G)| = n. Then, for
any start vertex s, there is an exploration schedule W of G with a(W) = O(n).
Moreover, such a schedule can be computed in polynomial time.

Proof. Apply Lemma 4.2 to G in order to obtain a spanning subgraph G∗ ⊆ G
(with |E(G∗)| ≤ 5n) such that each 2-ecc C of G forms a 2-ecc C∗ in G∗ with
|E(C∗)| ≤ 5|V (C∗)|. Apply Lemma 4.5 to G∗ to obtain a 2-ecc tree T of G∗ with
a root component C1 such that the child subgraphs Gi ⊆ G∗ satisfy |V (Gi)| ≤
n/2. Let k denote the number of 2-eccs in G∗. Let T (n, k) denote the maximum
number of timesteps required to explore an arbitrary 1-edge-deficient, always-
connected temporal graph on n vertices whose underlying graph has k 2-eccs,
at most 5n edges, and is such that every 2-ecc C∗ satisfies |E(C∗)| ≤ 5|V (C∗)|,
starting from an arbitrary vertex s in the graph at timestep 1. We now specify
our exploration algorithm and prove by induction on k that T (n, k) ≤ 164n.

Base Case (Arbitrary n, k = 1): G∗ consists of a single 2-ecc C1; without loss
of generality assume that |V (C1)| ≥ 3. Apply Theorem 4.4 to C1, obtaining a
circuit cover {X1, ...,Xc} of C1 containing c circuits, where 1 ≤ c ≤ 3. Consider
now the following 3 time intervals, noting that |E(Xi)| ≤ |E(C1)| ≤ 5n for all
i ∈ [3]: I1 = [n + 1, 6n], I2 = [7n + 1, 12n] and I3 = [13n + 1, 18n]. During the
steps of Ii apply Theorem 4.3 to Xi to determine a vertex vi ∈ Xi such that
an exploration schedule of Xi using at most |E(Xi)| − 1 ≤ 5n − 1 timesteps
begins at vi at the first step of Ii. Beginning at the start vertex s ∈ V (G) in
timestep 1, employ Lemma 2.5 to move in at most n steps to vertex v1, wait until
the first step of interval I1, then follow the walk obtained by the application of
Theorem 4.3 during interval I1. If c > 1, repeat these steps for all remaining
circuits Xi in the computed circuit cover of C1. Once Theorem 4.3 has been
applied to Xc, notice that, for all i ∈ [c], all vertices of Xi have been visited.
Since {X1, ...,Xc} covers all edges of C1 (and also all edges of G∗ since G∗

consists only of C1), it follows that all vertices of G∗ have been visited at least
once. The number of timesteps taken to achieve this is at most c(n+5n) ≤ 18n.

Inductive step (Arbitrary n, k > 1): Assume that T (n, j) ≤ 164n for all
j < k and consider the root component C1 of G∗. We now distinguish two cases:

Case 1: |C1| ≥ 2. Apply Theorem 4.4 to C1 and obtain a circuit cover
X∗ = {X1, ...,Xc} of C1 containing c circuits, where 1 ≤ c ≤ 3. Let V ′ =
{v ∈ V (C1) : v ∈ e for some bridge e}. Construct a function α : V ′ → X∗

by arbitrarily mapping each vertex v ∈ V ′ to some circuit Xi ∈ X∗ such that
v ∈ Xi. Recall that we root the 2-ecc tree T of G∗ at C1. For each child Ci of
C1 in T , we denote by Gi the child subgraph of G∗ corresponding to the subtree
of T rooted at Ci. Let Br = {e ∈ E(G∗) : e is a bridge and e ∩ V ′ �= ∅} and,
for any v ∈ V ′, let β(v) = {Gi : {v, u} ∈ Br for some u ∈ Gi}. For i ∈ [3], let
Fi =

⋃
{v∈V ′:α(v)=Xi} β(v).

Let GXi
⊆ G∗ be the subgraph of G∗ induced by V (Xi ∪ Fi) (i ∈ [c]). For

each i ∈ [c], we construct a closed walk in GXi
that will be followed (in opposite

directions) by two virtual agents. Both agents start at some arbitrary vertex

380 T. Erlebach and J. T. Spooner

si ∈ V (Xi) and follow the walk in opposite directions whenever possible, i.e.,
whenever they are not blocked on the next edge they need to cross. Starting at
some timestep ti, let the agents do the following: Move along the edges of Xi,
one in the clockwise direction (agent CW) and the other in the counter-clockwise
direction (agent CCW). Whenever either agent reaches for the first time a vertex
v ∈ V ′ such that α(v) = Xi the agent descends into each Gj ∈ β(v) via the
bridge connecting it and vertex v ∈ Xi, and explores Gj via a depth-first search.
The only exception is the vertex si: If si ∈ V ′ and α(si) = Xi, then agent
CW descends into each Gj ∈ β(si) immediately at the start of the walk (before
traversing any edge of Xi), while agent CCW does so only when it returns to
si after having traversed all edges of Xi. Agent CW processes the subgraphs
in β(v) in increasing order of their indices, whilst agent CCW processes them
in decreasing order of their indices. Once an agent has explored all subgraphs
Gj ∈ β(v), then that agent attempts to cross the next edge in Xi. Both agents
continue this until the first timestep in which both agents are blocked on the
same edge e. If every edge of G∗ were to be present in every timestep, it would
take each agent at most Exp(Xi) = |E(Xi)| +

∑
Gj∈Fi

2|V (Gj)| steps to carry
out their respective walks in GXi

: 1 step to traverse each of the edges of Xi,
2V (Gj)| − 2 steps spent exploring Gj via a DFS, and 2 steps spent traversing
the bridge edges connecting Xi and each Gj ∈ Fi. Since G∗ is 1-edge-deficient, it
is possible for the agents to both be blocked on the same edge during the same
timestep. We distinguish three subcases as follows. Recall that ti denotes the
timestep in which the exploration of GXi

begins. We use t′i to denote an upper
bound on the timestep by which the exploration of GXi

(possibly except one
subgraph, see below for details) is completed by at least one of the two agents.

Case 1.1: If the agents are never blocked on the same edge e during any step
t in [ti, t′i] for t′i = ti + 2Exp(Xi), then, in each timestep t ∈ [ti, t′i], at least one
of the two agents is able to cross the next edge of their respective walk. In this
case, we have that by the end of timestep t′i, the agent that was blocked on an
edge in the least number of timesteps t ∈ [ti, t′i] will have not been blocked in
≥ Exp(Xi) timesteps and, as such, will have completed their exploration of GXi

.
It remains to consider the situation that the agents are blocked on the same

edge of G∗ during some timestep in [ti, t′i], where t′i = ti + 3Exp(Xi) in Case 1.2
and t′i = ti + 4Exp(Xi) in Case 1.3. Consider the timestep t in which the agents
are first both blocked on the same edge e.

Case 1.2: e ∈ Xi. Check whether or not e is present during any step t′ ∈
[t + 1, t + |E(Xi)|]. If yes, wait until that step, then let both agents cross e.
If not, let both agents apply Lemma 2.5 in X1, using at most |E(X1)| − 1
timesteps to move to the opposite endpoint of e, then continue attempting to
traverse the next edge of their walk whenever possible. Notice that, during any
step t′ ∈ [ti, t − 1], at least one of the two agents was able to cross the next
edge in their respective walk, since t is the first timestep in which both agents
are blocked on the same edge. When the agents are blocked on e during step
t, they either wait at their current vertex for at most |E(Xi)| − 1 steps until e
is present again, or spend ≤ |E(Xi)| − 1 steps reaching the opposite endpoint

Exploration of k-Edge-Deficient Temporal Graphs 381

of e by applying Lemma 2.5 in Xi. In either case, it takes at most |E(Xi)| − 1
steps for them to reach the opposite endpoint of e. At this point, observe that
the vertices x ∈ V (Xi) and the Gj ∈ Fi that remain to be explored/processed
by agent CW are exactly those that have already been explored/processed by
agent CCW (and vice versa). Hence, it follows that the two agents will not be
blocked on the same edge again for the remainder of their walks. In all remaining
steps, since the sets of vertices unexplored by the walks of the two agents are
disjoint, we again have that at least one of the two agents will be able to cross the
next edge of their respective walk in all steps t′ ∈ [t + |E(Xi)|, t′i]. Concluding,
during the entire time interval [ti, t′i], there are ≤ |E(Xi)| steps in which neither
of the agents can cross the next edge of their respective walk, and by step
t′i ≤ ti + 2Exp(Xi) + |E(Xi)| ≤ ti + 3Exp(Xi), it is ensured that the agent
who was blocked during the least number of steps since the start of step ti has
completed their exploration of GXi

in at most 3Exp(Xi) steps.

Case 1.3: e ∈ Gj for some Gj ∈ Fi. Let b = {v, u}, where {v, u} ∈ Br, v ∈ Xi

satisfies α(v) = Xi, and u ∈ V (Gj). Consider the timestep t ∈ [ti, t′i], during
which the two agents are first blocked on e. Let t∗1, t

∗
2 ∈ [ti, t′i] denote respectively

the timesteps at which the first agent (say agent A1) and second agent (agent
A2) traverse the edge b from v toward u – clearly we have t∗1 ≤ t∗2 < t, since
e ∈ E(Gj) and any vertex in V (Gj) can only be reached from Xi by traversing
b. We now retrospectively alter the walks of both agents: First, change the walk
of A1 so that, during the interval [t∗1, t

∗
2 − 1], A1 waits at vertex v. Now, change

the walks of both A1 and A2 during the steps [t∗2, t
′
i], so that they both do not

process subgraph Gj , but continue their exploration of Xi and all Gj′ ∈ Fi

such that Gj′ �= Gj . We claim that t∗2 ≤ ti + 2Exp(Xi). To see this, observe
that t ≤ ti + 2Exp(Xi) since, if t > ti + 2Exp(Xi), the two agents will not
have been blocked on the same edge during any of the steps [ti, ti + 2Exp(Xi)],
and so the agent who was blocked on an edge in the least amount of steps
during this interval would have traversed an edge of their walk in ≥ Exp(Xi)
timesteps – enough to have finished the entire exploration of GXi

. Hence we have
t∗2 ≤ t < ti + 2Exp(Xi), as required. Both agents can then continue following
their respective walks during the interval [t∗2, t

′
i] without the possibility of being

blocked on the same edge again; by our earlier reasoning this requires of the
agent that is blocked during the least number of steps in this period another
≤ 2Exp(Xi) steps. Concluding, one of the two agents will have visited all vertices
in GXi

\ V (Gj) by the end of step t∗2 + 2Exp(Xi) ≤ ti + 4Exp(Xi).
In all three subcases, one of the two agents has explored all vertices of GXi

,
except possibly those of a single subgraph Gj of GXi

, in at most 4Exp(Xi)
timesteps, and we will let the real agent follow that agent’s walk.

After processing all c circuits Xi in this way, there will be at most c subgraphs
that have not yet been explored. We next reduce those unexplored subgraphs to
at most one: While there are two or more unexplored subgraphs, we repeatedly
(1) choose a circuit X in C1 that contains two vertices of V ′ that have a bridge
to an unexplored subgraph (note that a circuit X such that |E(X)| ≤ 2V (C1)|

382 T. Erlebach and J. T. Spooner

must exist), and then (2) process X and the two unexplored subgraphs in the
same way as we processed Xi for 1 ≤ i ≤ c above.

After this, there will be at most a single subgraph Gj corresponding to a
child subtree rooted at a child of C1 in the 2-ecc tree that is not yet explored.
That subgraph has at most n/2 vertices (by choice of C1) and has at most k − 1
2-eccs (because it does not contain the 2-ecc C1). We now apply the inductive
hypothesis to explore Gj recursively in at most 164 · n/2 = 82n steps.

To bound the overall number of timesteps, we assume that c = 3, that 3 sub-
graphs remain unexplored after processing GXi

for i ∈ [3], that two iterations of
the procedure for reducing the number of unexplored subgraphs are needed, and
that a recursive call needs to be made to explore the final unexplored subgraph.
We omit the details, but one can straightforwardly show (via a case analysis)
that this is the worst case for the total number of steps needed to complete the
exploration.

The whole exploration then consists of the following parts: At most n steps
to move from s to a vertex v1 in X1; at most 4Exp(X1) steps to explore GX1

apart from at most one child subgraph Gj . Another at most n+4Exp(X2) steps
to do the same for GX2 (where the first n steps allow the agent to move from
the vertex where the exploration of GX1 ends to a vertex in X2), and another at
most n + 4Exp(X3) steps to do the same for GX3 . Then, at most twice: n steps
to move to a vertex in a circuit X (recall that |E(X)| ≤ 2|V (C0)|) and 4Exp(X)
steps to explore it and at least one of the two subgraphs attached to it. Finally,
≤ n steps are needed to move to a vertex in the last unexplored subgraph Gj ,
and another ≤ 82n steps are required to explore that subgraph recursively.

As Exp(Xi) = |E(Xi)| +
∑

Gj∈Fi
2|V (Gj)|, we have

∑3
i=1 Exp(Xi) ≤

3|E(C1)|+
∑3

i=1

∑
Gj∈Fi

2V (Gj)| ≤ 15V (C1)|+2
∑3

i=1

∑
Gj∈Fi

|V (Gj)| ≤ 15n.
Furthermore, for any circuit X in C1 with two subgraphs G1 and G2 attached
via bridges, we have Exp(X) ≤ 2|V (C1)| + 2|V (G1)| + 2|V (G2)| ≤ 2n. Thus, the
total exploration time is at most 6n+4 · 15n+8 · 2n+82n = 82n+82n = 164n.

Case 2: |C1| = 1. In this case we apply a similar technique to that used in
Case 1, but this case is simpler as the root component consists of a single vertex
and all child subgraphs are attached to that same vertex via bridges.

Finally, we remark that all steps in the construction of the exploration sched-
ule can be implemented in polynomial time. 	

5 Lower Bound

To complement the upper bounds from Sects. 3 and 4, we also present a lower
bound on the worst-case exploration time of k-edge-deficient temporal graphs.

Theorem 5.1. For arbitrarily large n and every k with 2 ≤ k ≤ n
2 −1, there is a

k-edge-deficient temporal graph with n vertices for which an optimal exploration
takes Ω(n log k) steps.

Exploration of k-Edge-Deficient Temporal Graphs 383

The theorem can be shown by adapting the construction of a lower bound of
Ω(n log n) on the exploration time of temporal graphs with underlying planar
graphs of maximum degree 4 from [6, Theorem 2]. That construction has a time-
varying part (in which n/2 edges are missing in each step) and a fixed part (a
static path of n/2 edges). By reducing the size of the time-varying part and
increasing the size of the static part, we obtain Theorem 5.1

6 Conclusion

We have shown that always-connected k-edge-deficient temporal graphs admit
an exploration schedule W with arrival time O(kn log n); if k = 1, the arrival
time improves to O(n). The provided proofs are both constructive, yielding
polynomial-time algorithms for computing such exploration schedules. As n − 1
steps are necessary to explore any graph, our results also yield O(k log n) and
O(1)-approximation algorithms for TEXP for the k ∈ N and k = 1 cases, respec-
tively, as well as an O(log n)-approximation if k = O(1). Furthermore, we gave
an infinite family of k-edge-deficient temporal graphs that require Ω(n log k)
timesteps to be explored. It would be interesting to close the gap between the
lower and upper bounds. In particular, an interesting question is whether always-
connected k-edge-deficient graphs for k = O(1) can be explored in O(n) steps.

References

1. Akrida, E.C., Mertzios, G.B., Spirakis, P.G.: The temporal explorer who returns
to the base. In: Heggernes, P. (ed.) CIAC 2019. LNCS, vol. 11485, pp. 13–24.
Springer, Cham (2019). https://doi.org/10.1007/978-3-030-17402-6 2

2. Bodlaender, H.L., van der Zanden, T.C.: On exploring always-connected temporal
graphs of small pathwidth. Inf. Process. Lett. 142, 68–71 (2019). https://doi.org/
10.1016/j.ipl.2018.10.016

3. Brodén, B., Hammar, M., Nilsson, B.J.: Online and offline algorithms for the time-
dependent TSP with time zones. Algorithmica 39(4), 299–319 (2004). https://doi.
org/10.1007/s00453-004-1088-z

4. Bui-Xuan, B., Ferreira, A., Jarry, A.: Computing shortest, fastest, and foremost
journeys in dynamic networks. Int. J. Found. Comput. Sci. 14(2), 267–285 (2003).
https://doi.org/10.1142/S0129054103001728

5. Casteigts, A., Flocchini, P., Quattrociocchi, W., Santoro, N.: Time-varying graphs
and dynamic networks. Int. J. Parallel Emergent Distrib. Syst. 27(5), 387–408
(2012). https://doi.org/10.1080/17445760.2012.668546

6. Erlebach, T., Hoffmann, M., Kammer, F.: On temporal graph exploration. J. Com-
put. Syst. Sci. 119, 1–18 (2021). https://doi.org/10.1016/j.jcss.2021.01.005

7. Erlebach, T., Kammer, F., Luo, K., Sajenko, A., Spooner, J.T.: Two moves per time
step make a difference. In: Baier, C., Chatzigiannakis, I., Flocchini, P., Leonardi, S.
(eds.) 46th International Colloquium on Automata, Languages, and Programming
(ICALP 2019). Leibniz International Proceedings in Informatics (LIPIcs), vol. 132,
pp. 141:1–141:14. Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik, Dagstuhl
(2019). https://doi.org/10.4230/LIPIcs.ICALP.2019.141

https://doi.org/10.1007/978-3-030-17402-6_2
https://doi.org/10.1016/j.ipl.2018.10.016
https://doi.org/10.1016/j.ipl.2018.10.016
https://doi.org/10.1007/s00453-004-1088-z
https://doi.org/10.1007/s00453-004-1088-z
https://doi.org/10.1142/S0129054103001728
https://doi.org/10.1080/17445760.2012.668546
https://doi.org/10.1016/j.jcss.2021.01.005
https://doi.org/10.4230/LIPIcs.ICALP.2019.141

384 T. Erlebach and J. T. Spooner

8. Erlebach, T., Spooner, J.T.: Faster exploration of degree-bounded temporal graphs.
In: Potapov, I., Spirakis, P., Worrell, J. (eds.) 43rd International Symposium
on Mathematical Foundations of Computer Science (MFCS 2018). Leibniz Inter-
national Proceedings in Informatics (LIPIcs), vol. 117, pp. 36:1–36:13. Schloss
Dagstuhl-Leibniz-Zentrum fuer Informatik, Dagstuhl (2018). https://doi.org/10.
4230/LIPIcs.MFCS.2018.36

9. Erlebach, T., Spooner, J.T.: Non-strict temporal exploration. In: Richa, A.W.,
Scheideler, C. (eds.) SIROCCO 2020. LNCS, vol. 12156, pp. 129–145. Springer,
Cham (2020). https://doi.org/10.1007/978-3-030-54921-3 8

10. Fan, G.: Covering graphs by cycles. SIAM J. Discrete Math. 5(4), 491–496 (1992).
https://doi.org/10.1137/0405039

11. Gotoh, T., Flocchini, P., Masuzawa, T., Santoro, N.: Tight bounds on distributed
exploration of temporal graphs. In: Felber, P., Friedman, R., Gilbert, S., Miller,
A. (eds.) 23rd International Conference on Principles of Distributed Systems
(OPODIS 2019). Leibniz International Proceedings in Informatics (LIPIcs), vol.
153, pp. 22:1–22:16. Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik, Dagstuhl
(2020). https://doi.org/10.4230/LIPIcs.OPODIS.2019.22

12. Gotoh, T., Sudo, Y., Ooshita, F., Masuzawa, T.: Dynamic ring exploration with
(H, S) view. Algorithms 13(6) (2020). https://doi.org/10.3390/a13060141

13. Ilcinkas, D., Klasing, R., Wade, A.M.: Exploration of constantly connected dynamic
graphs based on cactuses. In: Halldórsson, M.M. (ed.) SIROCCO 2014. LNCS,
vol. 8576, pp. 250–262. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-
09620-9 20

14. Ilcinkas, D., Wade, A.M.: Exploration of the T -interval-connected dynamic graphs:
the case of the ring. In: Moscibroda, T., Rescigno, A.A. (eds.) SIROCCO 2013.
LNCS, vol. 8179, pp. 13–23. Springer, Cham (2013). https://doi.org/10.1007/978-
3-319-03578-9 2

15. Kempe, D., Kleinberg, J.M., Kumar, A.: Connectivity and inference problems for
temporal networks. J. Comput. Syst. Sci. 64(4), 820–842 (2002). https://doi.org/
10.1006/jcss.2002.1829

16. Michail, O.: An introduction to temporal graphs: an algorithmic perspective. In:
Zaroliagis, C., Pantziou, G., Kontogiannis, S. (eds.) Algorithms, Probability, Net-
works, and Games. LNCS, vol. 9295, pp. 308–343. Springer, Cham (2015). https://
doi.org/10.1007/978-3-319-24024-4 18

17. Michail, O., Spirakis, P.G.: Traveling salesman problems in temporal graphs.
Theor. Comput. Sci. 634, 1–23 (2016). https://doi.org/10.1016/j.tcs.2016.04.006

18. Nagamochi, H., Ibaraki, T.: A linear-time algorithm for finding a sparse k-
connected spanning subgraph of a k-connected graph. Algorithmica 7(5 & 6),
583–596 (1992). https://doi.org/10.1007/BF01758778

19. Shannon, C.E.: Presentation of a maze-solving machine. In: Sloane, N.J.A., Wyner,
A.D. (eds.) Claude Elwood Shannon - Collected Papers, pp. 681–687. IEEE Press
(1993)

20. Zschoche, P., Fluschnik, T., Molter, H., Niedermeier, R.: The complexity of finding
small separators in temporal graphs. J. Comput. Syst. Sci. 107, 72–92 (2020).
https://doi.org/10.1016/j.jcss.2019.07.006

https://doi.org/10.4230/LIPIcs.MFCS.2018.36
https://doi.org/10.4230/LIPIcs.MFCS.2018.36
https://doi.org/10.1007/978-3-030-54921-3_8
https://doi.org/10.1137/0405039
https://doi.org/10.4230/LIPIcs.OPODIS.2019.22
https://doi.org/10.3390/a13060141
https://doi.org/10.1007/978-3-319-09620-9_20
https://doi.org/10.1007/978-3-319-09620-9_20
https://doi.org/10.1007/978-3-319-03578-9_2
https://doi.org/10.1007/978-3-319-03578-9_2
https://doi.org/10.1006/jcss.2002.1829
https://doi.org/10.1006/jcss.2002.1829
https://doi.org/10.1007/978-3-319-24024-4_18
https://doi.org/10.1007/978-3-319-24024-4_18
https://doi.org/10.1016/j.tcs.2016.04.006
https://doi.org/10.1007/BF01758778
https://doi.org/10.1016/j.jcss.2019.07.006

Parameterized Complexity of Categorical
Clustering with Size Constraints

Fedor V. Fomin, Petr A. Golovach(B), and Nidhi Purohit

Department of Informatics, University of Bergen, Bergen, Norway
{Fedor.Fomin,Petr.Golovach,Nidhi.Purohit}@uib.no

Abstract. In the Categorical Clustering problem, we are given a
set of vectors (matrix) A = {a1, . . . , an} over Σm, where Σ is a finite
alphabet, and integers k and B. The task is to partition A into k clusters
such that the median objective of the clustering in the Hamming norm
is at most B. That is, we seek a partition {I1, . . . , Ik} of {1, . . . , n} and
vectors c1, . . . , ck ∈ Σm such that

∑k
i=1

∑
j∈Ii

dH(ci,aj) ≤ B, where
dH(a,b) is the Hamming distance between vectors a and b. Fomin,
Golovach, and Panolan [ICALP 2018] proved that the problem is fixed-
parameter tractable (for binary case Σ = {0, 1}) by giving an algorithm
that solves the problem in time 2O(B logB) · (mn)O(1). We extend this
algorithmic result to a popular capacitated clustering model, where in
addition the sizes of the clusters should satisfy certain constraints. More
precisely, in Capacitated Clustering, in addition, we are given two
non-negative integers p and q, and seek a clustering with p ≤ |Ii| ≤ q
for all i ∈ {1, . . . , k}. Our main theorem is that Capacitated Cluster-
ing is solvable in time 2O(B logB)|Σ|B · (mn)O(1). The theorem not only
extends the previous algorithmic results to a significantly more general
model, it also implies algorithms for several other variants of Categor-
ical Clustering with constraints on cluster sizes.

Keywords: Categorical clustering · Capacitated clustering ·
Parameterized complexity

1 Introduction

While many problems in machine learning concerns numerical data, there is
a large class of problems about learning from categorical data. The term cat-
egorical data refers to the type of data whose values are discrete and belong
to a specific finite set of categories. It could be text, some numeric values, or
even unstructured data like images. The most popular clustering objectives for
numerical data are k-means and k-median, that are based on distances in the �1

The research leading to these results have been supported by the Research Council of
Norway via the project “MULTIVAL” (grant no. 263317) and the European Research
Council (ERC) via grant LOPPRE, reference 819416.

c© Springer Nature Switzerland AG 2021
A. Lubiw et al. (Eds.): WADS 2021, LNCS 12808, pp. 385–398, 2021.
https://doi.org/10.1007/978-3-030-83508-8_28

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-83508-8_28&domain=pdf
https://doi.org/10.1007/978-3-030-83508-8_28

386 F. V. Fomin et al.

and �2-norm. For categorical data, other meters, like Hamming distance, could
be much more useful.

We study the parameterized complexity of clustering problems with con-
straints on the sizes of the clusters. The need for clustering with constraints
comes from various application. The survey of Banerjee and Ghosh [5] contains
a number of examples of clustering with balancing constraints in Direct Market-
ing [35], Category Management [29], Clustering of Documents [3,25], and Energy
Aware Sensor Networks [21,22] among others. However, introducing constraints
on the sizes of clustering usual makes clustering tasks much more computation-
ally challenging.

In this paper we focus on categorical data clustering, where data features
admit a fixed number of possible values. We work with vectors from Σm, where Σ
is a finite alphabet. The most commonly used similarity measure for categorical
data is the Hamming distance. For two vectors a,b ∈ Σm or, equivalently, for
two strings of length m over Σ, we use dH(a,b), to denote the Hamming distance
between a and b, that is, the number of indices i ∈ {1, . . . , m} where the i-th
elements of a and b differ. The task of the vanilla Categorical Clustering
problem is, given an m × n matrix A with columns (a1, . . . ,an) over a finite
alphabet Σ, a positive integer k, and a nonnegative integer B, decide whether
there is a partition {I1, . . . , Ik} of {1, . . . , n} and vectors c1, . . . , ck ∈ Σm such
that

∑k
i=1

∑
j∈Ii

dH(ci,aj) ≤ B. The sets I1, . . . , Ik are called clusters and the
vectors c1, . . . , ck are medians (or centers)1. We consider the generalization of
the problem, where the size of each cluster should be within a given interval:

Input: An m × n matrix A with columns (a1, . . . ,an) over a finite
alphabet Σ, a positive integer k, a nonnegative integer B,
and positive integers p and q such that p ≤ q.

Task: Decide whether there is a partition {I1, . . . , Ik} of
{1, . . . , n}, where p ≤ |Ii| ≤ q, and vectors c1, . . . , ck ∈ Σm

such that
∑k

i=1

∑
j∈Ii

dH(ci,aj) ≤ B.

Capacitated Clustering

Parameterized algorithms for the vanilla variant of Capacitated Cluster-
ing (without constraints on the sizes of clusters) were given by Fomin, Golovach
and Panolan in [17]. One of the main results of their paper is the theorem pro-
viding an algorithm of running time 2O(B log B) · (nm)O(1) for vanilla clustering
over binary field. In other words, the problem is fixed-parameter tractable (FPT)
parameterized by B. The main question that we address in this paper is whether
clustering constraints impact the problem’s parameterized complexity.

Our Results. Our main result is that Capacitated Clustering is FPT when
parameterized by the budget B and the alphabet size. More precisely, we show

Theorem 1. Capacitated Clustering can be solved in 2O(B log B) · |Σ|B ·
(mn)O(1) time.
1 Some authors call c1, . . . , ck means in the case of Hamming distances.

Parameterized Complexity of Categorical Clustering with Size Constraints 387

Fomin, Golovach and Panolan [17, Theorem 1] proved that Categorical
Clustering for binary matrices is FPT when parameterized by the budget B.
Theorem 1 generalizes this result. Interestingly, for approximation algorithms,
introducing clustering constraints makes the problem much more computation-
ally challenging. However, from parameterized complexity perspective, adding
constraints does not change the complexity of the problem.

We also observe that Capacitated Clustering is NP-complete even for
binary matrices, k = 2 and p = q = n

k . Theorem 1 can be used to estab-
lish fixed-parameter tractability of several other variants of constrained clus-
tering discussed in the literature. In some applications, it is natural to require
that the sizes of clusters should be approximately equal, see e.g. [33]. We con-
sider variants of Categorical Clustering, where the input contains addi-
tional parameters besides a matrix A = (a1, . . . , an) and integers k and B, and
the task is to find clusters I1, . . . , Ik and medians c1, . . . , ck ∈ Σm such that∑k

i=1

∑
j∈Ii

dH(ci,aj) ≤ B and the sizes of the clusters satisfy special balance
properties.

– In Balanced Clustering, we are additionally given a nonnegative integer
δ and it should hold that ||Ii| − |Ij || ≤ δ for all i, j ∈ {1, . . . , k}, that is, the
sizes of clusters can differ by at most δ.

– In Factor-Balanced Clustering, we are given a real α ≥ 1 and it is
required that |Ii| ≤ α|Ij | for all i, j ∈ {1, . . . , k}, that is, the ratio of the
clusters sizes is upper bounded by α.

By making use of Theorem 1, we prove that Balanced Clustering and
Factor-Balanced Clustering are solvable in time 2O(B log B)|Σ|B ·(mn)O(1).

We conclude by discussing kernelization for these problems. In particular,
we show that Balanced Clustering admits a polynomial kernel under the
combined parameterization by k, B and δ. We also observe that neither of con-
sidered problems has a polynomial kernel when parameterized by B only, unless
coNP ⊆ NP/poly, even for the binary case.

High-Level Overview of the Proof of Theorem 1. The algorithm for the
vanilla problem of Fomin et al. [17], as well as the algorithm of Fomin, Golovach
and Simonov for clustering in �p-norm [19], use the result of Marx [27] about
enumeration of subhypergraphs with certain properties of a given hypergraph
of a special type. Basically, these algorithms can be seen as an intricate reduc-
tion of a clustering instance to a hypergraph of special type and then calling
the result of Marx as a black box. In the context of the categorical clustering
problems, a similar reduction implies that all potential medians can be listed in
2O(B log B)|Σ|B · (mn)O(1) time.

However, this strategy does not work to prove Theorem 1. Here the difficulties
are due to the constraints on sizes of clusters. The algorithm for Categorical
Clustering in [17] uses an observation that identical columns ai and aj of
A can be clustered together. That is, i, j ∈ Ih for a cluster Ih of an optimal
solution. Hence, a solution can be seen as a partition of the family of initial
clusters, i.e., inclusion maximal sets of indices J ⊆ {1, . . . , n} such that the

388 F. V. Fomin et al.

columns ai for i ∈ J are the same. Since the number of initial clusters that are
part of composite clusters of a solution, that is, clusters including at least two
initial clusters, is at most 2B in any yes-instance, the color coding technique
of Alon, Yuster and Zwick [2] allows to highlight initial clusters that may be
included in a single composite cluster of a solution. This way, the initial problem
is reduced to selecting a single composite cluster of minimum cost that contains
a given number of initial clusters. To solve this problem, the result of Marx [27]
about enumeration of subhypergraphs becomes handy.

This scheme does not work for Capacitated Clustering, because it may
happen that splitting of an initial cluster between clusters of a solution is
inevitable due to size constraints. This makes it impossible to select composite
clusters independently from each other and destroys the approach from [17,19].

The main insight that allows to overcome the above issues is the very specific
structure of possible splitting of initial clusters. For a clustering I = {I1, . . . , Ik}
and the partition J of the column indices into initial clusters, we look at the
structure of the intersection graph G(I,J) defined by the two partitions of
{1, . . . , n}. The crucial fact we prove here is that there is an optimal solution
such that this intersection graph is a forest. It can be seen that G(I,J) has at
most 3B vertices in connected components with at least three vertices for such
a solution. This allows to guess the structure of G(I,J), that is, guess a forest
F isomorphic to G(I,J), by using the brute force. Then for a given F , we find
a solution I with G(I,J) isomorphic to F by combining dynamic programming
with color coding and enumeration of subhypergraphs of Marx.

Due to space constraints, the proofs are either omitted or sketched in this
extended abstract. The details are available in the full version [18].

Related Work. Clustering is one of the most common procedures in unsuper-
vised machine learning. Capacitated Clustering is the variant of the popular
k-median clustering with the Hamming norm. In many applications of cluster-
ing, constraints come naturally. For example, the lower bound on the size of
a cluster ensures certain anonymity of data and is often required for data pri-
vacy [32]. There is a rich literature on approximation algorithms for various
versions of capacitated clustering [1,6–10,12,14,24,26,33]. However, to the best
of our knowledge, no parameterized algorithms for categorical clustering with
constraints on the sizes of clusters, were known prior to our work.

Several approximations and parameterized algorithms are known for the
vanilla case of Categorical Clustering without constraints can be found
in the literature. For binary field, Categorical Clustering was introduced
by Kleinberg, Papadimitriou, and Raghavan [23] as one of the examples of seg-
mentation problems. The problem appears under different names in the litera-
ture [11,28]. Feige proved in [15] that the problem is NP-complete for every k ≥ 2.
We use several ideas from Feige’s construction for our lower bounds. Ostrovsky
and Rabani [30] gave a randomized PTAS for binary Categorical Cluster-
ing which was recently improved to EPTAS in [16] and [4]. Fomin, Golovach and
Simonov in [19] studied k-clustering with various distance norms in Categori-
cal Clustering. One of their results is that clustering with Hamming-distance

Parameterized Complexity of Categorical Clustering with Size Constraints 389

(�0-distance) (but unbounded size of the alphabet Σ) is W[1]-hard parameterized
by m + B. The following paper about binary variant of Categorical Clus-
tering is highly relevant to this paper. Fomin, Golovach and Panolan [17] gave
two parameterized algorithms for binary case of Categorical Clustering

with running time 2O(B log B) · (nm)O(1) and 2O(
√

kB log (k+B) log k) · (nm)O(1).

2 Preliminaries

In this section we introduce the terminology used throughout the paper and
obtain some auxiliary results.

We refer to the book of Cygan et al. [13] for the detailed introduction to
Parameterized Complexity. The input of a parameterized problem contains an
integer value k that is referred as a parameter. A parameterized problem is fixed-
parameter tractable (FPT) if there is an algorithm solving it in f(k) · |I|O(1) time,
where I is an input, k is a parameter, and f(·) is a computable function; the
parameterized complexity class FPT is composed by fixed-parameter tractable
problems.

All matrices and vectors considered in this paper are assumed to be over a
finite alphabet Σ and we say that a matrix (vector) is binary if Σ = {0, 1}.
Therefore, to simplify notation, we omit Σ in the notation whenever it does not
create confusion. We use m and n to denote the number of rows and columns,
respectively, of input matrices if it does not create confusion. We write A =
(a1, . . . ,an) to denote that A is a matrix with n columns a1, . . . ,an. For a
partition I = {I1, . . . , Ik} of {1, . . . , n}, we say that {I1, . . . , Ik} is a k-clustering
for A. For an inclusion maximal J ⊆ {1, . . . , n} such that the columns ai are
identical for all i ∈ J , we say that J is an initial cluster. We say that a cluster Ii

of I is simple if Ii ⊆ J for some initial cluster J and Ii is composite, otherwise,
that is, if Ii contains some h, j ∈ {1, . . . , n} such that ah and aj are distinct.
For a vector a ∈ Σm, we use a[i] to denote the i-th element of the vector for
i ∈ {1, . . . , m}. Thus, for two vectors a,b ∈ Σm, dH(a,b) = |{i ∈ {1, . . . , m} |
a[i] �= b[i]}|. Let aij for i ∈ {1, . . . , m} and j ∈ {1, . . . , n} be the elements of
A. For I ⊆ {1, . . . ,m} and J ⊆ {1, . . . , n}, we denote by A[I, J] the |I| × |J |-
submatrix of A with the elements aij where i ∈ I and j ∈ J .

Formally, for Categorical Clustering and its variants, a solution is
formed by clusters I1, . . . , Ik together with the corresponding medians c1, . . . , ck.
However, given clusters I1, . . . , Ik, optimal medians c1, . . . , ck can be computed
by the easy majority rule. Let A = (a1, . . . ,an) and let {I1, . . . , Ik} be an k-
clustering. For every i ∈ {1, . . . , k}, we compute ci ∈ Σm as follows. For each
j ∈ {1, . . . , m}, we consider the multiset Rij = {ah[j] | h ∈ Ii} of elements of
Σ. For each s ∈ Rij , we compute the number of its occurrences in the multi-
set and find an element s∗ that occurs most often (ties are broken arbitrarily).
Then we set ci[j] = s∗. It is straightforward to verify that for every c ∈ Σm,∑

h∈Ii
dH(ci,ah) ≤ ∑

h∈Ii
dH(c,ah). Therefore, the choice of ci is optimal. This

gives the following observation.

390 F. V. Fomin et al.

Observation 1. Given a matrix A = (a1, . . . ,an) and a k-clustering
{I1, . . . , Ik}, a family of vectors c1, . . . , ck ∈ Σm such that

∑k
i=1

∑
j∈Ii

dH(ci,aj) is minimum can be computed in polynomial time by the majority rule.

For a k-clustering {I1, . . . , Ik}, we define the cost cost(I1, . . . , Ik) as the mini-
mum value of

∑k
i=1

∑
j∈Ii

dH(ci,aj) over all k-tuples of vectors c1, . . . , ck ∈ Σm.
By Observation 1, we have that cost(I1, . . . , Ik) can be computed in polynomial
time. Then the task of Categorical Clustering and its variants is reduced
to finding a k-clustering of cost at most B (with the respective constraints of
the cluster sizes). Thus, we may refer to a k-clustering as a solution without
specifying medians.

Observe that given vectors c1, . . . , ck, we can find an k-clustering {I1, . . . , Ik}
that minimizes

∑k
i=1

∑
j∈Ii

dH(ci,aj) by the greedy procedure: for each i ∈
{1, . . . , n}, we find j ∈ {1, . . . , k} such that dH(cj ,ai) is minimum (ties are
broken arbitrarily) and place i in the cluster Ij . However, the constructed k-
clustering does not respect the size constraints of our problems. Still, given
vectors c1, . . . , ck, we can decide in polynomial time whether an instance of
Capacitated Clustering has a solution with the medians c1, . . . , ck using a
reduction to the classical Minimum Weight Perfect Matching problem.

Lemma 1 (∗2). Let c1, . . . , ck ∈ Σm. For an instance of Capacitated Clus-
tering, it can be decided in polynomial time whether the instance has a solution
with the family of medians {c1, . . . , ck}.

By Lemma 1, we have that solving our problems can be reduced to finding
a family of medians {c1, . . . , ck} (notice that some medians may be the same).

Since we are interested in the parameterized complexity of clustering prob-
lems, in the last part of this section, we argue that Capacitated Clustering
is NP-hard for very restricted instances. In [15], Feige proved that the problem is
NP-complete for k = 2 and binary matrices, that is, for the case Σ = {0, 1}. This
result immediately implies that Capacitated Clustering is also NP-complete
for k = 2 and binary matrices. However, we would like to underline that Capac-
itated Clustering is NP-hard even if p = q. For this, we use some details of
the hardness proof of Feige [15].

Theorem 2 (∗). For every fixed integer constant c ≥ 0, Capacitated Clus-
tering is NP-complete for k = 2, binary matrices and q − p ≤ c.

3 FPT Algorithm for Parameterization by B

In this section, we show that Capacitated Clustering is FPT when param-
eterized by B and |Σ|. Our main result is Theorem 1 that we restate here.

Theorem 1. Capacitated Clustering can be solved in 2O(B log B) · |Σ|B ·
(mn)O(1) time.

2 The proofs labeled (∗) are omitted in this extended abstract.

Parameterized Complexity of Categorical Clustering with Size Constraints 391

Note that this result is tight in the sense that it is unlikely that the depen-
dence on the alphabet size could be made polynomial. It was shown in [19],
that Categorical Clustering is W[1]-hard when parameterized by k and
the number of rows m of the input matrix if Σ = Z, i.e., for an infinite alphabet.
However, it is straightforward to see that this result holds for Σ = {0, . . . , n−1},
because our measure is the Hamming distance. This immediately leads to the
following proposition.

Proposition 1. Capacitated Clustering is W[1]-hard when parameterized
by B and m.

Now we sketch the proof of Theorem 1.

Sketch of the Proof of Theorem 1

The proof is constructive and we sketch the algorithm and its analysis.
Let (A, Σ, k,B, p, q) be an instance of Capacitated Clustering with
A = (a1, . . . ,an). First, we compute the partition J = {J1, . . . , Js} of {1, . . . , n}
into initial clusters.

It can be shown that if (A, Σ, k,B, p, q) is a yes-instance, then there is a
solution I = {I1, . . . , Ik} such that the intersection graph G(I,J) of the initial
clusters and the clusters of the solution is a forest. We call such a solution (or
k-clustering) acyclic. Thus to solve the problem, it is sufficient to check whether
the instance has an acyclic solution.

We observe that any k-clustering for A of cost at most B has at most B
composite clusters. For each t from 0 to min{k,B}, we want to verify whether
there is a solution I = {I1, . . . , Ik} with exactly t composite clusters. If we find
such a solution, then we return that A is a yes-instance and stop. Otherwise,
if we have no solution for every value of t, we report that (A, Σ, k,B, p, q) is a
no-instance. In what follows, we sketch how to verify the existence of a solution
with t composite clusters for a fixed nonnegative t ≤ min{k,B}.

We consider the special case t = 0 separately. If t = 0, then a solution I has
no composite cluster, that is, the clusters of the solution form partitions of the
initial clusters, and we can solve the problem directly.

From now, we assume that t ≥ 1. Note that we also can assume that B ≥ 1,
because for B = 0, no cluster of a solution can be composite.

Observe there can be at most 2B initial clusters with nonempty intersections
with the composite clusters of a solution I. Since G(I,J) is a forest, it is easy
to observe that at least t + 1 initial clusters have nonempty intersections with
the composite clusters. We consider � = t + 1, . . . , 2B, and for each �, we check
whether there is a solution I = {I1, . . . , Ik} such that exactly � initial clusters
have nonempty intersections with the composite clusters of I. If we find such
a solution, then we return the yes-answer and stop. Otherwise, if we have no
solution for all the values of �, we report that (A, Σ, k,B, p, q) is a no-instance.
From now, we assume that positive t + 1 ≤ � ≤ 2B is given.

We use the deep result of Marx [27] to construct the set M = M(A, B)
of potential medians (see [19] for a similar construction). This set has size

392 F. V. Fomin et al.

2O(B log B)|Σ|B ·(mn)O(1) and can be computed in 2O(B log B)|Σ|B ·(mn)O(1) time.
For a k-clustering I = {I1, . . . , Ik}, we define the minimum cost (with respect to
M), as min{∑k

i=1

∑
j∈Ii

dH(ci,aj) | c1, . . . , ck ∈ M}. If (A, Σ, k,B, p, q) is a
yes-instance, then it has a solution such that the medians are in M. Throughout
this section, whenever we say that I is a clustering of minimum cost, we mean
that the cost is minimum with respect to M.

We use the color coding technique of Alon, Yuster and Zwick [2] (see [13,
Chapter 5] for the detailed introduction). For simplicity, we sketch a Monte
Carlo algorithm with false negatives. This algorithm can be derandomized by
standard tools [2] (see also [13, Chapter 5]). The main idea is to highlight the
initial clusters with nonempty intersections with clusters of a potential solution.
We color the initial clusters by � colors uniformly at random. We say that a
k-clustering I = {I1, . . . , Ik} of cost at most B is a colorful solution if the initial
clusters with nonempty intersections with the clusters of I have distinct colors.
The algorithm exploits the property that with probability at least e−2B , a yes-
instance admits a colorful solution.

Our next task is to explain how to verify that there is a colorful solution for
a given random coloring ψ : J → {1, . . . , �}.

Recall that we are looking for an acyclic solution I = {I1, . . . , Ik}, that is,
G(I,J) is required to be a forest. Let I be such a k-clustering. Let I ′ ⊆ I be
the set of composite clusters and let J ′ ⊆ J be the set of initial clusters having
nonempty intersections with the composite clusters. The main idea behind our
algorithm for finding a colorful solution is to guess the structure of the forest
G(I ′,J ′) = G(I,J)[I ′ ∪J ′] and then do dynamic programming over it. Now we
sketch the main ideas behind a simplified version of our dynamic programming
algorithm. A more accurate version with all the details is given in the full version
of the paper. Recall that |I ′| = t and |J ′| = � by our assumptions. Note also
that the leaves of G(I ′,J ′) are initial clusters and every connected component
of this forest contains at least three vertices.

We consider all forests F on t + � vertices such that (i) each connected
component of F has at least three vertices, and (ii) F admits a bipartition
(U,W) of its vertex set with |U | = t and |W | = � such that the leaves of F
are in W , and we consider all possible bijective mappings α : W → {1, . . . , �}.
Since t ≤ B and � ≤ 2B, the number of possible forests F is 2O(B) [31] and
they can be listed in 2O(B) time (see, e.g., [34]). Note that since the leaves of F
required to be in W , the bipartition (U,W) is unique. Clearly, the total number
of mappings α is �! = 2O(B log B).

For a given forest F and mapping α, we say that an acyclic k-clustering
{I1, . . . , Ik} for A is feasible if the following holds:

(i) p ≤ |Ii| ≤ q for i ∈ {1, . . . , k},
(ii) the set I ′ ⊆ I of composite clusters has size t and the set J ′ ⊆ J of initial

clusters having nonempty intersections with the composite clusters has size
�,

(iii) the initial clusters in J ′ are colored by distinct colors by ψ, and

Parameterized Complexity of Categorical Clustering with Size Constraints 393

(iv) G(I ′,J ′) is isomorphic to F with an isomorphism ϕ that bijectively maps
I ′ to U and J ′ to W in such a way that ψ(J) = α(ϕ(J)) for J ∈ J ′.

The problem of finding a colorful solution boils down to checking whether there
are F and α such that there is a feasible k-clustering of cost at most B. We do
the check by considering all the forests F and bijections α. If we find that there
is a feasible k-clustering of cost at most k for one of the choices, we stop and
return the yes-answer. Otherwise, we conclude that there is no colorful solution.

I with the median s

F2

w

F1

← J (c) for c = α(w)

u

F

z

J ∈ J (α(w))w

J ′ ⊆ J

|J ′| = j

u

j

(a) (b)

Fig. 1. An example of F (a) and the dynamic programming scheme (b); the vertices
of U are shown in white and the vertices of W are black.

Assume that a forest F with the bipartition (U,W) and a bijective mapping
α : W → {1, . . . , �} are given (see Fig. 1(a) for an example). The mapping α
assigns to each vertex w ∈ W the color α(w). For a color c ∈ {1, . . . , �}, denote
by J (c) the set of initial clusters of color c. With every vertex w ∈ W , we
associate the set of initial clusters J (c) for c = α(w). To construct a feasible
k-clustering, we have to select a cluster J ∈ J (c) and then split it between
the composite clusters corresponding to the neighbors of w in F . Notice that
some parts of J may form simple clusters of a solution, and the initial clusters
from J (c)\{J} are used to form simple clusters. For every vertex u ∈ U , we are
constructing a composite cluster from the parts of initial clusters selected for its
neighbors. Note that the median of this composite cluster is selected from M.

Denote by F1, . . . , Ff the connected components of F . Notice that the clus-
tering for each component can be done independently, because the colors of
initial clusters associated with the vertices of distinct components are disjoint.
For every i ∈ {1, . . . , f} and a positive h ≤ k, we define ωi(h) to be the minimum
cost of a feasible h-clusterings for the matrix Ai formed by the columns of A
with the indices from the initial clusters of colors α(W ∩V (Fi)). It is easy to see
that A has a feasible k-clustering of cost at most B if and only if there are posi-
tive integers h1, . . . , hf such that h1+· · ·+hf = k and ω1(h1)+· · ·+ωf (hf) ≤ B.
The existence of such integers h1, . . . , hf can be checked in polynomial time by
a straightforward dynamic programming algorithm.

By these arguments, we have to compute the tables of values of ωi(h). For this,
we use the fact that F1, . . . , Ff are trees and this allows us to use dynamic program-
ming over these trees. We explain the algorithm under the simplifying assumption
that F itself is a tree (see Fig. 1 (b)) and h = k. Since the computations for distinct

394 F. V. Fomin et al.

components are independent, this assumption can be made without loss of gener-
ality. We select a vertex z ∈ U as a root of F . This selection defines a parent-child
relation on the set of vertices. For a vertex x ∈ V (F), we denote by Fx the sub-
tree of F induced by the descendants of x (including the vertex itself). For every
x ∈ V (T), we compute the tables of auxiliary values depending on whether x ∈ U
or x ∈ W . To define these values, denote by C(X) ⊆ {1, . . . , n} the set of indices
in the initial clusters with their colors in X ⊆ {1, . . . , �}.

Let w ∈ W and c = α(w). For every nonnegative integer h ≤ k, every
J ∈ J (c), and every nonnegative integer j ≤ |J |, we define ω

(1)
w (h, J, j) as

the minimum cost of an h-clustering for the matrix Aw that is feasible with
respect to Fw with the property that the cluster J is selected for w, where
Aw = A[{1, . . . ,m}, C(α(W ∩ V (Fw))\J ′] for an arbitrary J ′ ⊆ J of size j. In
words, the definition means that we cluster columns of A with their indices from
the initial clusters with the colors corresponding to the vertices of W ∩Fw except
j columns with the indices in J ′ ⊆ J of size j that are expected to be included
in the composite cluster corresponding to the parent of w. Notice that for a leaf,
we can have h = 0 if a unique initial cluster J of color c has size j. It is assumed
that ω

(1)
w (h, J, j) = +∞ if there is no h-clustering satisfying the constraints.

Let now u ∈ U . For every positive integer h ≤ k, every nonnegative integer
j ≤ q, and every s ∈ M, we define ω

(2)
u (h, j, s) as the minimum cost of an

h-clustering for the matrix Au = A[{1, . . . , m}, C(α(W ∩ V (Fu))] that has a
selected cluster I corresponding to u that has s as its median, and the clustering
satisfies the requirements of a feasible clustering with respect to Fu, except the
size conditions for I that are changed to q − j ≤ |I| ≤ p − j. The idea behind
this definition is that we do clustering for Au expecting to complement the
special cluster I with the fixed median s by j elements of the initial cluster
corresponding to the parent of u (unless u is the root and j = 0 in this case). As
above, ω

(2)
u (h, j, s) = +∞ if there is no clustering with the required properties.

We compute the tables of values of the functions ω
(1)
w (·, ·, ·) and ω

(2)
u (·, ·, ·)

bottom-up starting from the leaves. Observe that a feasible k-clustering for A
of cost at most B exists if and only if mins∈M ω

(2)
z (k, 0, s) ≤ B. Hence, by

computing the table for the root, we solve the problem.
If w ∈ W is a leaf, then the table of values of ω

(1)
w (·, ·, ·) can be computed

in polynomial time directly. Let w be a internal vertex of F and assume that
the tables of values of ω

(2)
u (·, ·, ·) are constructed for all children u of w. Then

the computation of ω
(1)
w (h, J, j) is based on the following observation. Assume

that u is a child of w and we expect that (i) j′ elements of J should be included
in the composite cluster I corresponding to u and (ii) Au gives exactly h′ clus-
ters. Then the contribution of j′ elements of J and Au to the total cost is
min{ω

(2)
u (h′, j′, s)+ j′dH(s,ai) | s ∈ M} for an arbitrary i ∈ J . This means that

the contribution depends only on j′ and h′. This implies that ω
(1)
w (h, J, j) can

be computed in 2O(B log B)|Σ|B · (mn)O(1) time by the dynamic programming
algorithm over the children of w.

Parameterized Complexity of Categorical Clustering with Size Constraints 395

Let u ∈ U and assume that the tables of values of ω
(1)
w (·, ·, ·) are constructed

for all children w ∈ W of u. To compute ω
(2)
u (h, j, s), we make the following

observation for a child w of u. If (i) exactly j′ elements of an initial cluster J
corresponding to w are included in the composite cluster I corresponding to u,
and (ii) Aw gives exactly h′ clusters, then the contribution of j′ elements of J

and Aw to the total cost is min{ω
(1)
w (h′, J, j′) + j′dH(s,ai) | J ∈ J (c), i ∈ J}.

Thus, the contribution depends only on j′ and h′. Then again, we can do dynamic
programming over the children of u and compute ω

(2)
u (h, j, s) in polynomial time.

Summarizing, we conclude that the tables of values of ω
(1)
w (·, ·, ·) and

ω
(2)
u (·, ·, ·) can be computed in 2O(B log B)|Σ|B · (mn)O(1) time. Therefore, we

can decide whether there is a feasible k-clustering for A of cost at most B in
this time.

Combining this with the previous arguments about dealing with the case
when F is disconnected, we conclude that it can be decided in 2O(B log B)|Σ|B ·
(mn)O(1) time whether there is a feasible k-clustering for A of cost at most
B for every given F and α. Therefore, given a coloring ψ : J → {1, . . . , �}, it
can be decided in 2O(B log B)|Σ|B · (mn)O(1) time whether (A, Σ, k,B, p, q) has
an acyclic colorful solution with t composite clusters such that exactly � initial
clusters have nonempty intersections with the composite clusters of the solution.

Recall that with probability at least e−2B , a yes-instance admits a colorful
solution. This implies that if we try e2B random colorings, then the probability
that we fail to find a colorful solution for a yes-instance for each of the colorings
is at most e−1 < 1. This leads to the randomized algorithm with running time
e2B ·2O(B log B)|Σ|B ·(mn)O(1), that is, 2O(B log B)|Σ|B ·(mn)O(1). This concludes
the sketch of the proof.

4 Clustering with Size Constraints

In this section, we discuss other variants of Categorical Clustering
with cluster size constraints: Balanced Clustering and Factor-Balanced
Clustering. We also discuss the special case of Capacitated Clustering
for p = q = n/k and refer to this problem as Equal Clustering.

Recall that by Theorem 2, Capacitated Clustering is NP-complete for
k = 2 and p = q = n/2, that is, Equal Clustering is NP-complete for
k = 2. Using the same arguments as in the proof of Theorem 2, we can show the
following more general claim.

Theorem 3. For every fixed α ≥ 1 (δ ≥ 0, respectively), Factor-Balanced
Clustering (Balanced Clustering, respectively) is NP-complete for k = 2
and binary matrices.

From the positive side, we observe that Balanced Clustering and
Factor-Balanced Clustering admit Turing reductions to Capacitated
Clustering, that is, Capacitated Clustering is the most general among
the considered problems. For this, we make the following straightforward obser-
vation.

396 F. V. Fomin et al.

Observation 2. An instance (A, Σ, k,B, δ) of Balanced Clustering (an
instance (A, Σ, k,B, α) of Factor-Balanced Clustering, respectively) is a
yes-instance if and only if there is a nonnegative integer p such that n

k − δ ≤
p ≤ n

k (n
αk ≤ p ≤ n

k , respectively) and for q = p + δ (q = αp, respectively),
(A, Σ, k,B, p, q) is a yes-instance of Capacitated Clustering.

This allows us to obtain the following corollary of Theorem 1.

Corollary 1. Balanced Clustering and Factor-Balanced Clustering
are solvable in time 2O(B log B)|Σ|B · (mn)O(1).

5 Conclusion

We proved that Capacitated Clustering can be solved in 2O(B log B)|Σ|B ·
(mn)O(1) time. This also implies that the same holds for Balanced Cluster-
ing and Factor-Balanced Clustering. The natural question is whether it
is possible to improve the dependence on B? We do not know the answer to this
question even for the special case of Equal Clustering.

Another important direction of research in the investigation of kernelization
for clustering problems with size constraints (we refer to the recent book Fomin
et al. on kernelization [20] for basic definitions). In [17, Theorem 3], Fomin,
Golovach and Panolan proved that Categorical Clustering does not admit
a polynomial kernel when parmeterized by B, unless NP ⊆ coNP/poly. This
immediately implies the following proposition.

Proposition 2. Capacitated Clustering (Balanced Clustering and
Factor-Balanced Clustering, respectively) has no polynomial kernel when
paramterized by B, unless NP ⊆ coNP/poly, even if Σ = {0, 1}.

Also by Theorems 2 and 3 the problems are already NP-hard for k. Thus, for
kernelization, we have to consider more restrictive parameterizations. Up to now,
we have only partial results. In particular, we can show Balanced Clustering
admits a polynomial kernel when parameterzied by B, k and δ.

Theorem 4 (∗). Balanced Clustering admits a kernel, where the output
matrix has O(B(B + k)) rows and O(k(B + δk)) columns, and is a matrix over
an alphabet of size at most B + k.

Theorem 4 leads to the question whether Factor-Balanced Clustering
admits a polynomial kernel when parameterized by k and B with the assumption
that α is a fixed constant. A more general question is whether there are poly-
nomial kernel for Capacitated Clustering, Balanced Clustering and
Factor-Balanced Clustering parameterized by k and B. Notice that Cat-
egorical Clustering has a polynomial kernel for this parmeterization [17,
Theorem 2]. Another direction of research is to investigate kernels of other types.
Are there polynomial Turing kernels and do these problem admit polynomial
lossy kernels, that is, approximative kernels? (We refer to the book [20] for the
definition of the notions.)

Parameterized Complexity of Categorical Clustering with Size Constraints 397

References

1. Aggarwal, G., et al.: Achieving anonymity via clustering. ACM Trans. Algorithms
6(3), 1–19 (2010)

2. Alon, N., Yuster, R., Zwick, U.: Color-coding. J. ACM 42(4), 844–856 (1995).
https://doi.org/10.1145/210332.210337

3. Baeza-Yates, R., Ribeiro-Neto, B.: Modern Information Retrieval, vol. 463. ACM
Press, New York (1999)

4. Ban, F., Bhattiprolu, V., Bringmann, K., Kolev, P., Lee, E., Woodruff, D.P.: A
PTAS for �p-low rank approximation. In: 30th Annual ACM-SIAM Symposium on
Discrete Algorithms, SODA 2019, pp. 747–766. SIAM (2019). https://doi.org/10.
1137/1.9781611975482.47

5. Banerjee, A., Ghosh, J.: Clustering with balancing constraints. In: Constrained
Clustering: Advances in Algorithms, Theory, and Applications, pp. 171–200. CRC
Press (2008)

6. Byrka, J., Fleszar, K., Rybicki, B., Spoerhase, J.: Bi-factor approximation algo-
rithms for hard capacitated k-median problems. In: 26th Annual ACM-SIAM Sym-
posium on Discrete Algorithms, SODA 2015, pp. 722–736. SIAM (2015)

7. Byrka, J., Rybicki, B., Uniyal, S.: An approximation algorithm for uniform capaci-
tated k -median problem with 1+ε capacity violation. In: Louveaux, Q., Skutella, M.
(eds.) IPCO 2016. LNCS, vol. 9682, pp. 262–274. Springer, Cham (2016). https://
doi.org/10.1007/978-3-319-33461-5 22

8. Charikar, M., Guha, S., Tardos, É., Shmoys, D.B.: A constant-factor approximation
algorithm for the k-median problem. J. Comput. Syst. Sci. 65(1), 129–149 (2002)

9. Chen, D.Z., Li, J., Liang, H., Wang, H.: Matroid and knapsack center problems.
Algorithmica 75(1), 27–52 (2016). https://doi.org/10.1007/s00453-015-0010-1

10. Chuzhoy, J., Rabani, Y.: Approximating k-median with non-uniform capacities.
In: 16th Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2005, pp.
952–958. SIAM (2005)

11. Cilibrasi, R., van Iersel, L., Kelk, S., Tromp, J.: The complexity of the single
individual SNP haplotyping problem. Algorithmica 49(1), 13–36 (2007). https://
doi.org/10.1007/s00453-007-0029-z

12. Cohen-Addad, V., Li, J.: On the fixed-parameter tractability of capacitated clus-
tering. In: 46th International Colloquium on Automata, Languages, and Program-
ming, ICALP 2019. LIPIcs, vol. 132, pp. 41:1–41:14. Schloss Dagstuhl - Leibniz-
Zentrum für Informatik (2019)

13. Cygan, M., et al.: Parameterized Algorithms. Springer, Heidelberg (2015). https://
doi.org/10.1007/978-3-319-21275-3

14. Demirci, H.G., Li, S.: Constant approximation for capacitated k-median with (1+
ε)-capacity violation. In: 43rd International Colloquium on Automata, Languages,
and Programming, ICALP 2016. LIPIcs, vol. 55, pp. 73:1–73:14. Schloss Dagstuhl
- Leibniz-Zentrum für Informatik (2016)

15. Feige, U.: NP-hardness of hypercube 2-segmentation. CoRR abs/1411.0821 (2014).
http://arxiv.org/abs/1411.0821

16. Fomin, F.V., Golovach, P.A., Lokshtanov, D., Panolan, F., Saurabh, S.: Approxi-
mation schemes for low-rank binary matrix approximation problems. ACM Trans.
Algorithms 16(1), 12:1–12:39 (2020). https://doi.org/10.1145/3365653

17. Fomin, F.V., Golovach, P.A., Panolan, F.: Parameterized low-rank binary matrix
approximation. Data Min. Knowl. Discov. 34(2), 478–532 (2020). https://doi.org/
10.1007/s10618-019-00669-5

https://doi.org/10.1145/210332.210337
https://doi.org/10.1137/1.9781611975482.47
https://doi.org/10.1137/1.9781611975482.47
https://doi.org/10.1007/978-3-319-33461-5_22
https://doi.org/10.1007/978-3-319-33461-5_22
https://doi.org/10.1007/s00453-015-0010-1
https://doi.org/10.1007/s00453-007-0029-z
https://doi.org/10.1007/s00453-007-0029-z
https://doi.org/10.1007/978-3-319-21275-3
https://doi.org/10.1007/978-3-319-21275-3
http://arxiv.org/abs/1411.0821
https://doi.org/10.1145/3365653
https://doi.org/10.1007/s10618-019-00669-5
https://doi.org/10.1007/s10618-019-00669-5

398 F. V. Fomin et al.

18. Fomin, F.V., Golovach, P.A., Purohit, N.: Parameterized complexity of categorical
clustering with size constraints. CoRR 2104.07974 (2021). https://arxiv.org/abs/
2104.07974

19. Fomin, F.V., Golovach, P.A., Simonov, K.: Parameterized k-clustering: tractability
island. J. Comput. Syst. Sci. 117, 50–74 (2021). https://doi.org/10.1016/j.jcss.
2020.10.005

20. Fomin, F.V., Lokshtanov, D., Saurabh, S., Zehavi, M.: Kernelization: Theory of
Parameterized Preprocessing. Cambridge University Press, Cambridge (2019)

21. Ghiasi, S., Srivastava, A., Yang, X., Sarrafzadeh, M.: Optimal energy aware clus-
tering in sensor networks. Sensors 2(7), 258–269 (2002)

22. Gupta, G., Younis, M.: Load-balanced clustering of wireless sensor networks. In:
IEEE International Conference on Communications (ICC), vol. 3, pp. 1848–1852.
IEEE (2003)

23. Kleinberg, J., Papadimitriou, C., Raghavan, P.: Segmentation problems. J. ACM
51(2), 263–280 (2004). https://doi.org/10.1145/972639.972644

24. Li, S.: On uniform capacitated k-median beyond the natural LP relaxation. ACM
Trans. Algorithms 13(2), 22:1–22:18 (2017)

25. Lynch, P.J., Horton, S., Horton, S.: Web Style Guide: Basic Design Principles for
Creating Web Sites. Universities Press (1999)

26. Malinen, M.I., Fränti, P.: Balanced K -means for clustering. In: Fränti, P., Brown,
G., Loog, M., Escolano, F., Pelillo, M. (eds.) S+SSPR 2014. LNCS, vol. 8621, pp.
32–41. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-662-44415-3 4

27. Marx, D.: Closest substring problems with small distances. SIAM J. Comput.
38(4), 1382–1410 (2008). https://doi.org/10.1137/060673898

28. Miettinen, P., Mielikäinen, T., Gionis, A., Das, G., Mannila, H.: The discrete basis
problem. IEEE Trans. Knowl. Data Eng. 20(10), 1348–1362 (2008). https://doi.
org/10.1109/TKDE.2008.53

29. Nielsen, A.: Category management: positioning your organization to win, Chicago
(1992)

30. Ostrovsky, R., Rabani, Y.: Polynomial-time approximation schemes for geometric
min-sum median clustering. J. ACM 49(2), 139–156 (2002). https://doi.org/10.
1145/506147.506149

31. Otter, R.: The number of trees. Ann. Math. 49(3), 583–599 (1948). https://doi.
org/10.2307/1969046

32. Rösner, C., Schmidt, M.: Privacy preserving clustering with constraints. In: 45th
International Colloquium on Automata, Languages, and Programming (ICALP
2018). LIPIcs, vol. 107, pp. 96:1–96:14. Schloss Dagstuhl-Leibniz-Zentrum fuer
Informatik (2018)

33. Vallejo-Huanga, D., Morillo, P., Ferri, C.: Semi-supervised clustering algorithms for
grouping scientific articles. In: International Conference on Computational Science
(ICCS) (2017). Procedia Comput. Sci. 108, 325–334. https://doi.org/10.1016/j.
procs.2017.05.206

34. Wright, R.A., Richmond, L.B., Odlyzko, A.M., McKay, B.D.: Constant time gen-
eration of free trees. SIAM J. Comput. 15(2), 540–548 (1986). https://doi.org/10.
1137/0215039

35. Yang, Y., Padmanabhan, B.: Segmenting customer transactions using a pattern-
based clustering approach. In: Proceedings of the 3rd IEEE International Con-
ference on Data Mining (ICDM), pp. 411–418. IEEE Computer Society (2003).
https://ieeexplore.ieee.org/xpl/conhome/8854/proceeding

https://arxiv.org/abs/2104.07974
https://arxiv.org/abs/2104.07974
https://doi.org/10.1016/j.jcss.2020.10.005
https://doi.org/10.1016/j.jcss.2020.10.005
https://doi.org/10.1145/972639.972644
https://doi.org/10.1007/978-3-662-44415-3_4
https://doi.org/10.1137/060673898
https://doi.org/10.1109/TKDE.2008.53
https://doi.org/10.1109/TKDE.2008.53
https://doi.org/10.1145/506147.506149
https://doi.org/10.1145/506147.506149
https://doi.org/10.2307/1969046
https://doi.org/10.2307/1969046
https://doi.org/10.1016/j.procs.2017.05.206
https://doi.org/10.1016/j.procs.2017.05.206
https://doi.org/10.1137/0215039
https://doi.org/10.1137/0215039
https://ieeexplore.ieee.org/xpl/conhome/8854/proceeding

Graph Pricing with Limited Supply

Zachary Friggstad(B) and Maryam Mahboub

Department of Computing Science, University of Alberta, Edmonton, Canada
{zacharyf,mahboub}@ualberta.ca

Abstract. We study approximation algorithms for graph pricing with
vertex capacities yet without the traditional envy-free constraint. Specif-
ically, we have a set of items V and a set of customers X where each
customer i ∈ X has a budget bi and is interested in a bundle of items
Si ⊆ V with |Si| ≤ 2. However, there is a limited supply of each item:
we only have μv copies of item v to sell for each v ∈ V . We should assign
a price p(v) to each v ∈ V and choose a subset Y ⊆ X of customers
so that each i ∈ Y can afford their bundle (p(Si) ≤ bi) and at most μv

chosen customers have item v in their bundle for each item v ∈ V . Each
customer i ∈ Y pays p(Si) for the bundle they purchased: our goal is
to do this in a way that maximizes revenue. Such pricing problems have
been studied from the perspective of envy-freeness where we also must
ensure that p(Si) ≥ bi for each i /∈ Y . However, the version where we
simply allocate items to customers after setting prices and do not worry
about the envy-free condition has received less attention.

Our main result is an 8-approximation for the capacitated case via
local search and a 7.8096-approximation in simple graphs with uniform
vertex capacities. The latter is obtained by combing a more involved
analysis of a multi-swap local search algorithm for constant capacities
and an LP-rounding algorithm for larger capacities. If all capacities are
bounded by a constant C, we further show a multi-swap local search
algorithm yields a

(
4 · 2C−1

C
+ ε

)
-approximation. We show the analysis

of the locality gaps of our algorithms is tight, at one point using an inter-
esting construction based on regular, high-girth graphs. We also give a
(4 + ε)-approximation in simple graphs through LP rounding when all
capacities are very large as a function of ε.

Keywords: Graph pricing · Capacitated pricing · Approximation
algorithms · Local search · Linear programming

1 Introduction

Choosing prices to sell items in order to maximize revenue is a complicated task
even in environments where one can be certain of customer behaviour. Indeed,

This research was undertaken, in part, thanks to funding from the Canada Research
Chairs program and an NSERC Discovery Grant.

c© Springer Nature Switzerland AG 2021
A. Lubiw et al. (Eds.): WADS 2021, LNCS 12808, pp. 399–413, 2021.
https://doi.org/10.1007/978-3-030-83508-8_29

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-83508-8_29&domain=pdf
https://doi.org/10.1007/978-3-030-83508-8_29

400 Z. Friggstad and M. Mahboub

many so-called pricing problems have been studied in combinatorial optimiza-
tion. One popular setting is this: a collection of items V is available to be sold
where we have μv ∈ Z≥0 ∪ {∞} copies of item v ∈ V . Additionally, we are given
a collection of customers X where each i ∈ X has some budget bi ≥ 0. In the
single-minded setting, each customer i ∈ X is interested in a bundle Si ⊆ V . We
must assign prices p : V → R≥0 to the items and sell them to some customers
Y ⊆ X while respecting two constraints:

– Affordability: p(Si) :=
∑

v∈Si
p(v) ≤ bi for i ∈ Y , and

– Supply/Capacity Constraints: |{i ∈ Y : v ∈ Si}| ≤ μv for v ∈ V .

That is, each customer that purchases their bundle can afford it and no item is
oversold. Such a solution (p, Y) is said to be feasible, and the goal is to find a
feasible (p, Y) maximizing revenue, i.e.

∑
i∈Y p(Si).

Much attention has been given to the envy-free setting, where a feasible
solution must additionally satisfy the property p(Si) ≥ bi for i /∈ Y or to the
unlimited supply setting where μv = ∞ for each v ∈ V . Observe that in
the unlimited supply setting, any pricing yields an envy-free solution by simply
choosing the customers that can afford the price. However, the problem still
remains APX-hard in this relaxed setting and, further, is hard to approximate
within a factor better than 4 unless the Unique Games conjecture fails to hold,
see the related works section.

The single-minded, envy-free pricing (SMEFP) problem with limited supply
was studied by Cheung and Swamy [5]. Somewhat informally, they show the
following. If there is an LP-based α-approximation to the problem of choosing the
best customers Y when given prices p (without regard to the envy-free condition),
then there is an O(α · log C)-approximation to SMEFP where C = maxv∈V μv.
In the special case where |Si| is bounded by a constant for each i ∈ X, this yields
a logarithmic approximation for SMEFP.

We study single-minded pricing problems yet without the envy-free con-
straint. This is a natural variant of pricing problems where customer satisfaction
is less of a concern than overall revenue generation. To the best of our knowl-
edge, it seems that pricing problems without the envy-free condition like this
have received virtually no attention so far except in simpler cases of unlimited
supply where envy-freeness is a superfluous constraint, i.e. any solution can be
trivially be made envy-free without losing revenue.

More specifically we mainly consider the case when |Si| = 2 for each customer
i. That is, the set of customers can be thought of as edges E in a graph G = (V,E)
with vertex capacities and, perhaps, parallel edges. We show that without the
envy-free condition, the problem admits a constant-factor approximation. In
fact, this is relatively easy to obtain via randomized rounding (with alterations)
of an LP relaxation. Our focus is on obtaining smaller constants by considering
a more intricate local search approximation algorithm.

Graph Pricing with Limited Supply 401

1.1 Our Results

We use shorthand notation like e = uv ∈ E when we want to consider an edge
e ∈ E in some graph G = (V,E) and also want name the endpoints u, v of e.
This allows us to name distinct customers (i.e. e) who are interested in the same
bundle of items (i.e. {u, v}). We focus on the following problem.

Definition 1. Let G = (V,E) be a graph with vertex capacities μv ∈ Z≥0 ∪
{∞} where each e = uv ∈ E has a budget be ≥ 0 and is interested in the
bundle of vertices {u, v}. In Capacitated Graph Pricing, we want to find a
pricing p : V → R≥0 and F ⊆ E with (p, F) feasible while maximizing revenue∑

e=uv∈F p(u) + p(v).

All of our algorithmic results extend in a simple way to the case where each
customer is interested in a bundle of size at most 2, but it is slightly simpler
to describe the algorithms and their analysis for the case where each customer
wants precisely two different items. Unless otherwise stated, all graphs may have
parallel edges. We use the term simple graph to indicate it does not have parallel
edges.

To obtain approximations for Capacitated Graph Pricing, we use a
reduction from Balcan and Blum [2] to reduce the problem to bipartite graphs
where all items on one side will be priced 0. Specifically, we consider the following
problem.

Definition 2. In L-Sided Pricing, we are given a Capacitated Graph
Pricing instance in a bipartite graph (L∪R,E). A feasible solution (p, F) must
also have p(v) = 0 for v ∈ R.

Though they only focused on uncapacitated pricing problems, the reduction
in [2] extends to Capacitated Graph Pricing without modification. We also
remark that the reduction would not be valid if one were looking for envy-free
solutions for Capacitated Graph Pricing. The proof of the following appears
in Appendix A for completeness.

Lemma 1 (Modified version of Balcan and Blum [2]). A 4α-
approximation Capacitated Graph Pricing exists if there is an α-
approximation for L-Sided Pricing.

Approximation Algorithms
We develop approximation algorithms for L-Sided Pricing in order to approx-
imate Capacitated Graph Pricing. It is possible to get a 4-approximation
for L-Sided Pricing through straightforward rounding of a natural linear pro-
gramming relaxation (briefly summarized at then end of Sect. 4), thus leading
to a 16-approximation for Capacitated Graph Pricing overall. We consider
an alternative approach to get a better approximation guarantee.

Theorem 1. L-Sided Pricing has a polynomial-time 2-approximation.

402 Z. Friggstad and M. Mahboub

This is fairly simple to obtain using a local search procedure that iteratively tries
to change the price of one item at a time until we cannot get a more profitable
allocation by doing so. We think it nicely highlights a direction for designing
approximations for pricing+packing problems. We also consider a multi-swap
variant of this algorithm that tries to change the prices of O(1) items at a time.

Theorem 2. For any constants C ≥ 2, ε > 0, there is a poly-time
(
2C−1

C + ε
)
-

approximation for L-Sided Pricing if μv ≤ C for all v ∈ L.

Note, Theorem 2 does not require bounds on capacities for nodes in R. Observe if
C = 1 then both Capacitated Graph Pricing and L-Sided Pricing reduce
to maximum-weight matching; we can easily set prices to match the full budget
of all edges in any matching.

On the other hand, intuitively it should be easier to get approximations for
large capacities as L-Sided Pricing with unbounded capacities can be solve in
polynomial time [2]. We confirm this in simple graphs using LP rounding.

Theorem 3. For ε > 0, the integrality gap of LP relaxation (LP-Pricing) is
1 − 2ε in simple graphs when μv ≥ 3 ln(1/ε)/ε2 + 1 for all v ∈ R.

The LP relaxation referenced in the theorem statement is a bit long and can be
found in Sect. 4.

The assumption of simplicity is required for us to apply Chernoff bounds to
ensure certain random events are independent. By combining Theorems 2 and
3 along with additional scrutiny in the dependence of μ on ε, we obtain slightly
improved bounds in simple graphs with uniform capacities (i.e. the capacities
need not be large or small, just as long as they are uniform).

Theorem 4. Instances of L-Sided Pricing in simple graphs where all ver-
tices in L ∪ R have the same capacity μ admit a randomized, polynomial-
time 1.952381-approximation, yielding a 7.8096-approximation for Capaci-
tated Graph Pricing.

A Structural Result
To prove Theorem 2, we develop a result about covering directed graphs by
directed balls in a uniform way. This may be of independent interest in other
settings, so we state it here in the introduction.

Let H = (L,F) be a directed graph. For any u ∈ L and r ≥ 0 consider the
“directed ball” B+(u, r) = {v ∈ L : dH(u, v) ≤ r} of nodes reachable from u
in at most r steps. Similarly, let ∂B+(u, r) = {v ∈ L : d(u, v) = r} be nodes
v such that the shortest u − v path in H has length exactly r (the boundary of
B+(u, r)). We prove the following covering result for directed graphs.

Theorem 5. Let H = (L,F) be a directed graph where the indegree of each
node is at most C and let d ∈ Z≥0. There is a “weighting” of directed balls
τ : L × {0, 1, . . . , d} → Z≥0 with the following properties. For any v ∈ V ,

∑

u∈L,0≤r≤d:v∈B+(u,r)

τ(u, r) =
Cd+1 − 1

C − 1
and

∑

u∈L,0≤r≤d:v∈∂B+(u,r)

τ(u, r) = Cd.

Graph Pricing with Limited Supply 403

Furthermore, τ(u, r) ≤ Cd−r for each u ∈ V and 0 ≤ r ≤ d.

That is, each v ∈ L lies in these balls with weight precisely Cd+1−1
C−1 and appears

on the boundary of the balls with weight precisely Cd. The bound on τ(u, r) at
the end of the statement is required to ensure the local search algorithm used
to prove Theorem 2 runs in polynomial time.

Lower Bounds
As shown in [2], L-Sided Pricing with unbounded capacities can be solved in
polynomial time with a simple greedy algorithm. We show L-Sided Pricing
remains APX-hard even in graphs with small capacities, so we cannot expect
to get a matching 4-approximation for Capacitated Graph Pricing using a
reduction to L-Sided Pricing.

Theorem 6. L-Sided Pricing is APX-hard, even if all capacities are at most
4 and all customers have a budget of 1 or 2.

We also show the analysis of both local search algorithms are tight. Here, we
say the locality gap of an instance is the maximum ratio of the optimum solution
value and the value of a locally-optimum solution. The locality gap of a local
search algorithm is the supremum of the locality gaps over all instances of the
problem.

Theorem 7. For any ε > 0, the locality gap of the single-swap algorithm (Algo-
rithm 1) is at least 2 − ε even in instances where all capacities are 1.

Theorem 8. For any C ≥ 2, ρ ≥ 1, ε > 0, the locality gap of the ρ-swap algo-
rithm (Algorithm 3) on L-Sided Pricing instances having maximum capacity
at most C is at least

(
2C−1

C − ε
)
.

The first construction is quite simple, but the second construction for the multi-
swap analysis is much more involved. As a starting point for the construction, we
require simple graphs of constant degree but arbitrarily large girth. Such graphs
were shown to exist by Sachs [14].

1.2 Related Work

The basic model of pricing problems of this sort were introduced by Guruswami
et al. [10]. Among other results, they given an O(log n + log m)-approximation
for the case of single-minded pricing without item capacities if we have n items
and m customers. Here, the bundle Si for each customer i may be any subset
of items (not just size 2). This was later improved by Briest and Krysta to an
O(log D +log k)-approximation where each set has size at most k and each item
appears in at most D sets [3]. These logarithmic guarantees are essentially tight:
Chalermsook et al. show for any constant ε > 0 there is no O(log1−ε(m + n))-
approximation unless NP ⊆ DTIME(npolylog(n)) [4].

In the case with no capacities, Balcan and Blum give an O(k)-approximation
for the case where all customers are interested in a set of size at most k, which

404 Z. Friggstad and M. Mahboub

specializes to a 4-approximation in the case k = 2 [2]. Amazingly, this may also
be tight: building on work by Khadekar et al. [11], Lee showed that there is no
(4 − ε)-approximation when k = 2 for any constant ε > 0 unless the Unique
Games conjecture fails [12].

Cheung and Swamy studied the envy-free variant of capacitated pricing
problems [5]. As mentioned earlier, they show that LP-based approximations
that choose the maximum-profit set of customers for given prices translate to
approximation algorithms for envy-free pricing with capacities while losing an
O(log μmax)-factor. In particular, for envy-free Capacitated Graph Pricing
they present an O(log μmax)-approximation.

Other variants of envy-free pricing problems have been studied, we do not
attempt to comprehensively survey all such models and just sample a few to
discuss. For example, it could be that each customer is interested in acquiring
just a single item from their subset (rather than all items). This was also studied
in [10] and follow-up work (e.g. [6]). Other directions have considered more
restricted subsets of items in single-minded pricing, for example the customers
may be interested in the edges of a subpath of a large path (the highway
problem) or subpaths of a tree (the tollbooth problem). See [9] and [8] for
definitions and state-of-the-art approximations for these problems.

1.3 Organization

We present our algorithmic contributions in the body of this paper: Sect. 2 intro-
duces notation and discusses the reduction from Capacitated Graph Pricing
to L-Sided Pricing. Section 3 gives the local search algorithms to prove The-
orems 1 and 2 and, in doing so, also proves the structural result in Theorem
5. The randomized LP rounding algorithm which proves Theorem 3 and, ulti-
mately, the proof of Theorem 4 is sketched in Sect. 4. Due to space constraints,
the full proofs of Theorem 3 and 4 and all of our lower bound results are deferred
to the full version of this paper.

2 Preliminaries

We consider graphs that may have parallel edges unless we explicitly specify
otherwise. We do not consider loops. It is easy to extend our algorithms to cases
where some customers may only be interested a singleton bundle while ensuring
the same approximation guarantees that we present here, this is discussed in the
full version of our paper.

For a set of nodes S in a graph G = (V,E), we let N(S) denote all nodes not
in S that are neighbours of some node in S. For u ∈ V we let δG(u) be all edges
having u as an endpoint. Often the subscript G is omitted when it is clear from
the context. For a subset of edges B, we let δB(u) = δ(u) ∩ B when the graph
G is clear from the context.

Again, we sometimes refer to an edge e by uv where u, v are the endpoints of
e. For brevity, we may use notation like e = uv ∈ E when we want to consider

Graph Pricing with Limited Supply 405

an edge e ∈ E but also want to name the endpoints u, v of e as well. The reason
for using this notation rather than simply saying uv ∈ E is that our local search
algorithms do work for graphs with parallel edges (i.e. customers interested in
identical bundles), so e would be one particular customer and u, v would name
the items that e is interested in.

Given a function f : T → R on some finite set T , for any S ⊆ T we let
f(S) denote

∑
x∈S f(x) (in particular, f(∅) = 0). Similarly, if p : V → R≥0 is a

pricing of the vertices of a graph G = (V,E), for an edge e = uv ∈ E we let p(e)
denote p(u) + p(v). For two pricings p, p′ : V → R≥0 of the nodes of a graph, we
let HW(p, p′) = |{v ∈ V : p(v) �= p′(v)}|.

Finally, consider an instance G = (L ∪ R,E) of L-Sided Pricing where
edges have budgets be and vertices have capacities μv. For any pricing p of L, let
val(p) = maxF⊆E and (p,F) feasible

∑
e∈F p(e) be the maximum profit of a feasible

solution with prices p. Note that val(p) can be computed in polynomial time as
it is merely asking for a maximum-weight μ-matching solution using only edges
e = uv with p(e) ≤ be with the weight of such an edge being p(e).

3 Local-Search Algorithms

We consider local-search algorithms for L-Sided Pricing. Recall we are given
a bipartite graph G = (L ∪ R,E) where each v ∈ L ∪ R has a capacity μv ≥ 0,
each e ∈ E has a budget be, and we are restricted to setting p(v) = 0 for each
v ∈ R. It is clear that there is an optimal solution p such that for each u ∈ L we
have p(u) = be for some e ∈ δ(u). Otherwise we could increase p(u) to the next
budget of an edge touching u (or decrease, if p(u) exceeds all budgets of edges
touching u) while not decreasing the value of the solution. Thus, for u ∈ L we
define Pu = {be : e ∈ δ(u)}, the different budgets of customers interested in u.

We run a local-search approximation based on this observation. Here, a vector
p over L is a pricing if p(u) ∈ Pu for each u ∈ L. The local-search algorithm
iteratively tries to improve a pricing by changing the price of only one vertex until
no such improvement is possible. The full algorithm is presented in Algorithm
1. Because a price p(u) is chosen from Pu for each u ∈ L, it is clear that an
iteration can be executed in polynomial time.

Algorithm 1. Single-Swap Algorithm for L-Sided Pricing.
let p be any pricing
while val(p′) > val(p) for some pricing p′ with HW(p, p′) = 1 do

p ← arg max{val(p′) : p′ a pricing with HW(p, p′) = 1}
return p

Call a pricing p locally optimal if it cannot be improved by changing the price
for any u ∈ L, note Algorithm 1 returns a locally-optimal pricing. As is common
in local search, we analyze the quality of a locally-optimal solution. In the next
subsection we show val(p) ≥ val(p∗)/2 for any locally-optimal pricing p where
p∗ is an optimal pricing for the L-Sided Pricing instance.

406 Z. Friggstad and M. Mahboub

The main concern is then the efficiency of the algorithm. Clearly each iter-
ation can be executed in polynomial time but the number of iterations is not
apparently bounded. In fact, with some approximation algorithms based on local
search it is PLS-complete to find a locally-optimal solution [1]. To cope with
this problem, we use a more recent observation from [7] that essentially shows
after a polynomial number of iterations of Algorithm 1, the resulting pricing
p, while not necessarily locally-optimal, still has value at least val(p∗)/2. The
straightforward details of this adaptation are deferred to the full version of this
paper. This completes the proof of Theorem 1.

3.1 Single-Swap Analysis

We fix p∗ to be some particular optimal pricing.

Lemma 2. For any locally-optimal pricing p, val(p) ≥ val(p∗)/2.

Proof. Let B ⊆ E be the edges that are bought in the local optimum solution,
and B∗ ⊆ E the edges that are bought in the global optimum solution. Thus,
val(p) =

∑
u∈L p(u) · |δB(u)| and p(e) ≤ be for each e ∈ δB(u).

For each u ∈ L, consider the local search step that changes the price of u
from p(u) to p∗(u). That is, consider pu where pu(u) = p∗(u) and pu(u′) = p(u′)
for u′ ∈ L − {u}. We refer to this swap as the p → pu swap. For brevity, let
Δu := val(pu) − val(p) and note Δu ≤ 0 because p is a local optimum. We
provide a lower bound on Δu in a way that relates part of the global optimum
with part of the local optimum.

First, construct a subset B′ ⊆ B∗ and an injective mapping σ : B′ → B
iteratively as follows in Algorithm 2. Intuitively, it greedily pairs some edges in
B∗ with edges in B sharing the same endpoint in R until no more pairs can
be made. After this pairing, for each v ∈ R we either have δB∗(v) ⊆ B′ or
δB(v) ⊆ σ(B′) (or both).

Algorithm 2. Constructing B′ and σ.
B′ := ∅
for each e∗ = uv ∈ B∗ where v ∈ R do

if there is some e ∈ δB(v) such that no e′ ∈ B′ has σ(e′) = e then
set B′ := B′ ∪ {e∗} and σ(e∗) := e

Now we bound Δu. One possible matching with the modified prices pu is
Bu := B ∪ δB∗(u) − δB(u) − {σ(e) : e ∈ δB′(u)}. A simple inspection of the
definition of B′ and σ shows this is feasible. That is, it alters B by swapping
δB(u) for δB∗(u) and removes edges paired, via σ, with δB∗(u) to make room
across nodes in R for these new edges. It could be that some edges in δB∗(u)
are not paired by σ but this indicates their right-endpoints already have enough
room to accommodate these edges without removing other edges from B. So,
Bu respects the vertex capacities.

Graph Pricing with Limited Supply 407

Now, Δu represents the cost change when using the maximum value matching
with the new profits. This can be bounded as follows, based on the fact that Bu

is a feasible solution under prices pu:

0 ≥ Δu ≥ p∗(u) · |δB∗(u)| − p(u) · |δB(u)| −
∑

e′∈δB′ (u)

p(σ(e′)).

Summing over all u ∈ L and noting each e ∈ B has its corresponding term
appearing in the last sum for at most one u ∈ L because σ′ is one-to-one shows
0 ≥ val(p∗) − 2 · val(p).

3.2 An Improved Multi-swap Algorithm for Bounded Capacities

Here we consider the restriction of L-Sided Pricing to instances where μu ≤ C
for each u ∈ L for some fixed constant C ≥ 2. We do not require capacities of
v ∈ R to be bounded.

Let d ≥ 1 be a fixed integer: larger d will result in better approximation
guarantees with a slower, but still polynomial-time, algorithm. The multi-swap
algorithm we consider is given in Algorithm 3. Let ρ = 1 + C + C2 + . . . + Cd =
Cd+1−1

C−1 . An iteration runs in polynomial time because ρ is a constant.

Algorithm 3. Multi-Swap Algorithm For L-Sided Pricing.
let p be any pricing
while val(p′) > val(p) for some pricing p′ with HW(p, p′) ≤ ρ do

p ← arg max{val(p′) : p′ a pricing with HW(p, p′) ≤ ρ}
return p

As before, call a pricing p locally optimal if val(p′) ≤ val(p) for any pricing
p′ with HW(p, p′) ≤ ρ. Recall Pu for u ∈ L is the set of distinct budgets of the
edges incident to u and that, in L-Sided Pricing, we can assume any pricing
p has p(u) ∈ Pu for all u ∈ L. So, as C and d are constants, a single iteration
can be executed in polynomial time by trying all subsets S ⊆ L of bounded size
and, for each of those, trying all

∏
u∈S(|Pu| − 1) ≤ |E|O(1) ways to change the

prices of all u ∈ S. We prove the following.

Lemma 3. Let p be a locally-optimal solution and p∗ a global optimum solution.
Then val(p) ≥ C−C−d

2C−1−C−d · val(p∗).

We use the same trick as in the single-swap case to ensure polynomial running
time: after a polynomial number of iterations of the algorithm we have val(p)
being at least that of the guarantee from Lemma 3. Again, this detail will appear
in the full version of this paper. Theorem 2 follows by choosing large enough d.

We will soon prove Theorem 5 stated in Sect. 1.1. For now, we show how to
complete the local search analysis using this result.

Proof (Proof of Lemma 3). Let p∗ denote an optimal pricing, B ⊆ E the edges
bought in the local optimum p, and B∗ ⊆ E the edges bought under p∗. Let

408 Z. Friggstad and M. Mahboub

σ : B′ → B be a pairing constructed in the same way as in the single swap
analysis (using Algorithm 2) where B′ ⊆ B∗.

To describe the swaps used in the analysis, first consider the following aux-
iliary directed graph H = (L,F) whose nodes are the same as the left side of
this L-Sided Pricing instance and whose edges are given as follows. For any
e∗ = uv ∈ B′, let w ∈ L be the left-endpoint of σ(e∗). Add a directed edge from
u to w in F .

Observe that both the indegree and outdegree of a vertex in H is at most
C by this construction, so Theorem 5 applies. Let τ : L × {0, 1, . . . , d} be the
given weighting of directed balls in H. These weights will be used to combine
inequalities generated by the test swaps below.

Test Swaps
For any u ∈ L and any 0 ≤ i ≤ d, consider the prices pu,i defined by

pu,i(v) =
{

p∗(v) if dH(u, v) ≤ i
p(v) otherwise

Note HW(p, pu,i) = |B+(u, i)| ≤ C0 + C1 + . . . + Ci ≤ ρ because the out-
degree of each vertex is at most C, so p → pu,i is a valid test swap. Let
Δu,i = val(pu,i) − val(p) and note Δu,i ≤ 0 by local optimality. We bound
the difference by explicitly describing a feasible set of edges Bu,i, namely:

Bu,i = B ∪ δB∗(B+(u, i)) − δB(B+(u, i)) − σ(δB′(∂B+(u, i))).

That is, add all edges from B∗ touching a vertex in the directed ball B+(u, i)
and remove all edge from B that either touch B+(u, i) or are paired (via σ) with
an edge in B′ that touches ∂B+(u, i). It is again easy to check that (pu,i, Bu,i) is
a feasible solution: across u ∈ L we simply exchanged edges in B touching U for
edges in B∗ touching u and we ensured any new e∗ ∈ B′ has σ(e∗) removed to
make room for e∗ across its right-endpoint. Observe for any e∗ ∈ δB′(B+(u, i−1))
that σ(e∗) is already removed when δB(B+(u, i)) is removed from B, which is
why the last part of the definition of Bu,i only uses the boundary ∂B+(u, i)
instead of all of B+(u, i) to remove the remaining edges of B that are paired
with δB′(B+(u, i)).

Weighting the inequalities by τ(u, i),

0 ≥ τ(u, i) · Δu,i ≥ τ(u, i) ·
(

∑

e∈Bu,i

pu,i(e) −
∑

e∈B

p(e)

)

= τ(u, i) ·
∑

e∈B∗∩Bu,i

p∗(e) − τ(u, i) ·
∑

e∈B−Bu,i

p(e). (1)

To finish, consider the contribution of each edge in B∗ and B to this bound if
we sum over all u ∈ L, 0 ≤ i ≤ d. Observe an edge e = vw ∈ B∗ is “swapped in”
in this analysis for the swap p → pu,i if and only if v ∈ B+(u, i). So by Theorem
5, the total contribution of p∗(e) to

∑
u,i τ(u, i) · Δu,i is precisely Cd+1−1

C−1 .

Graph Pricing with Limited Supply 409

On the other hand, an edge e = vw ∈ B is “swapped out” in this analysis
for the swap p → pu,i if and only if v ∈ B+(u, i) or σ−1(e) ∈ ∂B+(u, i) (if e is
indeed paired by σ). Again by Theorem 5, the total τ -weight of the first event is
exactly Cd+1−1

C−1 and, if σ−1(e) is defined, the total τ -weight of the second event
is exactly Cd. Thus,

0 ≥
∑

u∈L0≤i≤d

τ(u, i) · Δ(u, i) ≥ Cd+1 − 1
C − 1

· val(p∗) −
(

Cd+1 − 1
C − 1

+ Cd

)

· val(p),

which proves Theorem 3.

3.3 Proof of Theorem 5

Inductively define τ(u, i) for u ∈ L and 0 ≤ i ≤ d as follows:

τ(u, i) =

⎧
⎪⎨

⎪⎩

1 if i = d,

Cd−i −
d∑

j=i+1

∑

v∈L:dH(v,u)=j−i

τ(v, j) otherwise, i.e. i < d.

The inspiration behind this construction is that in general we would have
dH(u, v) = i for only at most Ci nodes u. So we consider smaller directed balls
to make up this deficiency. If we think that the distance i requirement for each
v ∈ V is exactly Ci, then for each u ∈ L the ball B+(u, j) contributes to the
distance d − j + dH(u, v) requirement for each v ∈ B+(u, j).

The recurrence above ensures the total contribution to the distance i require-
ment for each v by all directed balls is exactly Ci. We formalize this idea and
show the τ values are nonnegative in Lemma 4 below.

Lemma 4. For each u ∈ L, 0 ≤ i ≤ d we have
d∑

j=i

∑

v∈L:dH(v,u)=j−i

τ(v, j) = Cd−i

and 0 ≤ τ(u, i) ≤ Cd−i.

Proof. The equality is by construction and the observation that dH(v, u) = 0 if
and only if v = u. The inequalities are proven inductively with the base case
i = d being given. Now suppose for i < d we know 0 ≤ τ(u, j) ≤ Cd−j for any
i < j ≤ d and any u ∈ L. By the recurrence for τ(u, i) and because τ(v, j) ≥ 0
for any i < j ≤ d and v ∈ V , we see τ(u, i) ≤ Cd−i.

Next, we prove τ(u, i) ≥ 0 for each u ∈ L. For any i < j ≤ d and any v ∈ L
with dH(v, u) = j − i, there is some w ∈ L such that dH(v, w) = i − j − 1 and
dH(w, u) = 1. That is, consider a shortest v − u path P in H, as i < j, we have
v �= u so the second-last node on this path is a node w whose distance to u is 1
(it could be w = v, if j − i = 1).

410 Z. Friggstad and M. Mahboub

From this and using the equality from the first part of the theorem statement,
we bound the double sum in the recurrence defining τ(u, i) by

d∑

j=i+1

∑

v∈L:dH(v,u)=j−i

τ(v, j) ≤
∑

w:dH(w,u)=1

d∑

j=i+1

∑

v∈L:dH(v,w)=j−(i+1)

τ(v, j)

=
∑

w:dH(w,u)=1

Cd−(i+1) ≤ Cd−i.

The last bound follows as each v ∈ L has indegree at most C in H. Thus, from
the recurrence again, we see τ(u, i) ≥ 0.

Lemma 4 finishes the proof of Theorem 5 as follows. The first bullet point in
Theorem 5 follows by summing over all 0 ≤ i ≤ d. The second point follows by
fixing i = 0.

4 LP-Based Approximations

So far, our focus has been on approximations based on local search. Here, we
consider linear programming relaxations for L-Sided Pricing. Recall for each
u ∈ L that Pu = {be : e ∈ δ(u)} is a set of possible prices for vertex u and that
there is an optimal solution that selects p(u) from Pu for each u ∈ L.

For u ∈ L and p ∈ Pu, we let yu,p be a variable indicating we select price p for
u. Similarly, for each e = uv ∈ E and p ∈ Pu we let xe,p be a variable indicating
edge e is selected and vertex u is assigned price p (so e buys their bundle at price
p). The following relaxation provides an upper bound on the optimal solution to
the given instance of the L-Sided Pricing.

maximize :
∑

e=uv

∑

p∈Pu

p · xe,p (LP-Pricing)

subject to :
∑

p∈Pu

yu,p = 1 ∀ u ∈ L

∑

e∈δ(u)

xe,p ≤ yu,p · μu ∀ u ∈ L, p ∈ Pu (2)

∑

e=uv∈δ(v)

∑

p∈Pu

xe,p ≤ μv ∀ v ∈ R

xe,p ≤ yu,p ∀ u ∈ L, e ∈ δ(u), p ∈ Pu

xe,p = 0 ∀ e = uv, p ∈ Pu s.t. p > be

x, y ≥ 0

A solution to L-Sided Pricing naturally corresponds to an integer solution,
so the optimum LP value provides an upper bound on the optimum solution
value.

Graph Pricing with Limited Supply 411

Theorem 3 is proven through a simple rounding procedure. Independently for
each u ∈ L, a single price p′(u) for u is chosen at random from the distribution
that places probability yu,p on each p ∈ Pu. As noted earlier, we can then
compute an optimal set of customers by solving the corresponding maximum-
profit μ-matching problem.

For the sake of space, we simply sketch the analysis. To bound the profit
of the μ-matching, we construct a fractional μ-matching for these prices by
assigning a fractional weight of x′

e of an customer e ∈ δ(u) with p′(u) ≤ be to
(1 − ε) · xe,p′(u)

yu,p′(u)
. Constraint (2) ensures this fractional μ-matching x′ does not

violate the capacity of any u ∈ L. For v ∈ R, simplicity of the graph allows us
to use Chernoff bounds. That is, the capacity constraint for v is violated by x′

with low probability: at most exp(−μ(v) · ε2/3). Since μ(v) is sufficiently large,
this is at most ε. If this rare event does occur, namely v’s capacity constraint
is violated, we simply reset x′

e to 0 for each e ∈ δ(v). The expected profit of
the final fractional μ-matching is then at least 1 − 2 · ε times the optimum value
of (LP-Pricing). By integrality of the μ-matching polytope, the expected profit
from the final selection of customers obtained by solving the μ-matching problem
is also at least this quantity.

Finally, to get the 4-approximation based on rounding this LP in the case
where graphs are not simple, we use the same rounding algorithm and initially
construct x′

e := 1
2 · xe,p′(u)

yu,p′(u)
for e ∈ δ(u). By Markov’s inequality, the probability

any v ∈ R has its capacity constraint violated by x′ is at most 1
2 , in which

case we reset x′
e := 0 for each e ∈ δ(v). The expected profit of this fractional

μ-matching is at least 1
4 of the optimum value of (LP-Pricing). Of course, this

is inferior to our local search procedure but it does demonstrate the integrality
gap remains bounded by a constant even if the graph is not simple.

4.1 Proof Sketch for Theorem 4

Here we combine the results from Theorem 2 and 3 to provide an improve-
ment over the 2-approximation for the instances with uniform capacities. We
begin with a more refined analysis of the randomized rounding procedure. We
used simpler Chernoff bounds in the proof of Theorem 3 in order to present
the dependence on ε in a simpler way. But since we are interested in optimal
constants at this point, we analyze a tighter Chernoff bound. Our analysis may
still not be optimal for our approach, it could be that one can get even better
constants using more refined scrutiny of the randomized rounding algorithm for
small C. Though, the constants we chose are optimal for our analysis technique.

Lemma 5. The randomized rounding procedure produces a solution for L-Sided
Pricing with expected profit at least 0.516 · OPTLP in simple graphs where
μv ≥ 22 for all v ∈ R.

Proof (Proof of Theorem 4). If C ≤ 21, use the multiswap local search algorithm
to get a solution with profit ≥ (

21
41 − ε

) · OPT for L-Sided Pricing. If C ≥ 22,
use the randomized rounding procedure to get a solution whose cost is at least

412 Z. Friggstad and M. Mahboub

0.516 · OPT . For small enough ε, 0.516 > 21
41 − ε, so in either case we get profit

at least
(
21
41 − ε

) · OPT . In terms of approximation guarantees, this yields an
approximation guarantee of at most 1.952381 (again, for small enough ε). Using
Lemma 1, we get a 7.8096-approximation for Capacitated Graph Pricing.

A Reduction to L-Pricing

Proof (Proof of Lemma 1). Let G = (V,E) be an instance of Capacitated
Graph Pricing with capacities μ and budgets b. Randomly form L by including
each vertex independently with probability 1/2 and set R = V − L. Discard all
edges with both endpoints in the same set of the partition. Consider an optimum
pricing p∗ for G and corresponding set of customers F ∗ ⊆ E. Let F ′ be the
restriction of F ∗ to edges e with endpoints in each of L and R and consider
prices p′ where p′(u) = p∗(u) for u ∈ L and p′(v) = 0 for v ∈ R. One can easily
check E

[∑
e∈F ′ p′(e)

]
= 1

4 · ∑
e∈F ∗ p∗(e).

This can be efficiently derandomized because we only require pairwise indepen-
dence of the events u ∈ L for various u ∈ V , see [13] for details behind this
technique.

References

1. Alekseeva, E., Kochetov, Y., Alexsandr, P.: Complexity of local search for the
p-median problem. Eur. J. Oper. Res. 191(3), 736–752 (2008)

2. Balcan, M.F., Blum, A.: Approximation algorithms and online mechanisms for
item pricing. Theory Comput. 3(9), 179–195 (2007)

3. Briest, P., Krysta, P.: Single-minded unlimited supply setting pricing on sparse
instances. In: Proceedings of SODA, pp. 1093–1102 (2006)

4. Chalermsook, P., Chuzhoy, J., Kannan, S., Khanna, S.: Improved hardness results
for profit maximization pricing problems with unlimited supply. In: Gupta, A.,
Jansen, K., Rolim, J., Servedio, R. (eds.) APPROX/RANDOM -2012. LNCS, vol.
7408, pp. 73–84. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-
32512-0 7

5. Cheung, M., Swamy, C.: Approximation algorithms for single-minded envy-free
profit-maximization problems with limited supply. In: Proceedings of FOCS, pp.
35–44 (2008)

6. Elbassioni, K., Fouz, M., Swamy, C.: Approximation algorithms for non-single-
minded profit-maximization problems with limited supply. In: Saberi, A. (ed.)
WINE 2010. LNCS, vol. 6484, pp. 462–472. Springer, Heidelberg (2010). https://
doi.org/10.1007/978-3-642-17572-5 39

7. Friggstad, Z., Khodamoradi, K., Salavatipour, M.R.: Exact algorithms and lower
bounds for stable instances of euclidean k-means. In: Proceedings of SODA, pp.
2958–2972 (2019)

8. Gamzu, I., Segev, D.: A sublogarithmic approximation for highway and tollbooth
pricing. In: Abramsky, S., Gavoille, C., Kirchner, C., Meyer auf der Heide, F., Spi-
rakis, P.G. (eds.) ICALP 2010. LNCS, vol. 6198, pp. 582–593. Springer, Heidelberg
(2010). https://doi.org/10.1007/978-3-642-14165-2 49

https://doi.org/10.1007/978-3-642-32512-0_7
https://doi.org/10.1007/978-3-642-32512-0_7
https://doi.org/10.1007/978-3-642-17572-5_39
https://doi.org/10.1007/978-3-642-17572-5_39
https://doi.org/10.1007/978-3-642-14165-2_49

Graph Pricing with Limited Supply 413

9. Grandoni, F., Rothvoß, T.: Pricing on paths: a PTAS for the highway problem. In:
Proceedings of SODA, pp. 675–684 (2011)

10. Guruswami, V., Hartline, J.D., Karlin, A.R., Kempe, D., Kenyon, C., McSherry, F.:
On profit-maximizing envy-free pricing. In: Proceedings of the Sixteenth Annual
ACM-SIAM Symposium on Discrete Algorithms, SODA 2005, Vancouver, BC,
Canada, 23–25 January 2005, pp. 1164–1173 (2005)

11. Khandekar, R., Kimbrel, T., Makarychev, K., Sviridenko, M.: On hardness of pric-
ing items for single-minded bidders. In: Dinur, I., Jansen, K., Naor, J., Rolim, J.
(eds.) APPROX/RANDOM -2009. LNCS, vol. 5687, pp. 202–216. Springer, Hei-
delberg (2009). https://doi.org/10.1007/978-3-642-03685-9 16

12. Lee, E.: Hardness of graph pricing through generalized Max-Dicut. In: Proceedings
of the Forty-seventh Annual ACM Symposium on Theory of Computing, pp. 391–
399 (2015)

13. Motwani, R., Raghavan, P.: Randomized Algorithms. Cambridge University Press,
Cambridge (1995)

14. Sachs, H.: Regular graphs with given girth and restricted circuits. J. Lond. Math.
Soc. 1(1), 423–429 (1963)

https://doi.org/10.1007/978-3-642-03685-9_16

Fair Correlation Clustering with Global
and Local Guarantees

Zachary Friggstad and Ramin Mousavi(B)

Department of Computing Science, University of Alberta, Edmonton, AB, Canada
{zacharyf,mousavih}@ualberta.ca

Abstract. Correlation Clustering is a model that aims to group
items according to similarity and dissimilarity measures. In general, for
a given set of items V we are given weights wu,v between items u, v ∈ V
indicating how similar they are: these weights can be negative, which
indicates dissimilarity between the items. The objective is to partition
the items V into groups to minimize the total weight of pairs u, v with
wu,v < 0 that are put in the same group plus the total weight of pairs
u, v with wu,v > 0 that are put in different groups (i.e. violated edges). In
general, Correlation Clustering is at least as hard to approximate
as the Multicut problem but the important unweighted complete case
where wu,v ∈ {−1, +1} for every distinct u, v ∈ V admits constant-factor
approximations.

More recently, attention has been drawn to fair clustering where items
come with labels and clusters are further required to maintain propor-
tional representation of the labels. Specifically, we consider the case of
Fair Correlation Clustering where each item in V is either red
or blue and each cluster should receive an equal number of red and
blue points. In this setting, Ahmadi et al. (2020) show that an α-
approximation for standard correlation clustering without the fairness
constraint yields an O(α)-approximation for Fair Correlation Clus-
tering.

Our main results are twofold. First, we give an improved constant-
factor approximation for Fair Correlation Clustering in unweighted
settings. In this case, Ahmadi et al. give a 10.18-approximation. Our
algorithm gives an improved 6.18-approximation. Further, we describe
an alternative approach that seems to yield a 5.5-approximation: the
analysis involves a computer-assisted verification of a bound. Second,
we give the first constant-factor approximation where the objective is to
minimize the maximum number of violated edges incident to any single
vertex: Fair Correlation Clustering with local guarantees.

We also consider extensions to instances where each cluster should
have a b-to-1 proportion of the two labels and give an O(b2)-
approximation for Fair Correlation Clustering with local guaran-
tees.

Z. Friggstad—Research supported by an NSERC Discovery Grant and Discovery Accel-
erator Supplement Award.

c© Springer Nature Switzerland AG 2021
A. Lubiw et al. (Eds.): WADS 2021, LNCS 12808, pp. 414–427, 2021.
https://doi.org/10.1007/978-3-030-83508-8_30

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-83508-8_30&domain=pdf
https://doi.org/10.1007/978-3-030-83508-8_30

Fair Correlation Clustering with Global and Local Guarantees 415

Keywords: Correlation clustering · Fair clustering · Local objective ·
Global objective

1 Introduction

In Correlation Clustering on unweighted complete graphs, we are given a
graph G = (V,E), and a partitioning of edges E = E− � E+. The goal is to
find a partitioning C ⊆ 2V (clustering) of V such that the total number of
disagreement (unhappy) edges is minimized. That is, for a clustering C of V ,
we say e = (u, v) ∈ E+ is unhappy if u and v belong to different parts of C.
Similarly, e = (u, v) ∈ E− is unhappy if u and v belong to the same part of C.
This definition generalizes to uniformly-weighted Correlation Clustering.
Given a value c, each edge e = (u, v) ∈ E has two weights w+

u,v ≥ 0 and w−
u,v ≥ 0

such that w+
u,v+w−

u,v = c. If u and v are in the same cluster, then the unhappiness
of e is w−

u,v and if u and v lie in different clusters then the unhappiness of e is
w+

u,v. The objective is to minimize the total unhappiness of edges.
From theory side, correlation clustering is related to some fundamental prob-

lems in combinatorial optimization like Minimum s − t Cut, Multiway Cut,
and Multicut problems [9]. And from the practical side, it has applications in
areas like image segmenting, databases, and statistics [14,20], and [15].

Following a series of work [4,6,10], Chawla et al. [11] designed an approx-
imation algorithm with guarantee 2.06 for the uniformly-weighted instances of
Correlation Clustering on complete graphs. One can consider a further
generalization of Correlation Clustering where the two weights of an edge
are arbitrary. Charikar et al. [10] give an O(log n)-approximation for this gen-
eralization, but also show it is (asymptotically) at least as hard to approximate
as the Minimum Multicut problem, so any improvement would be a break-
through.

Recently, the notion of fair clustering has been considered. Specifically, each
vertex/data point in V also comes with a label σ(v) from some given set of labels
L. The goal is to find a clustering such that the proportion of each label type in
each cluster equals (or is close to) the proportion of that label type in the entire
input. That is, for each � ∈ L if 1

b�
· |V | many vertices in V have label � then each

cluster C should also have (exactly or approximately) 1
b�

· |C| vertices with label
�. For example, such a model can be used to ensure proportional representation
of demographics in each cluster.

This concept of fair clustering was first introduced by Chierichetti et al. [13].
Since this initial work, researchers have designed approximation algorithms for
fair variants of fundamental problems like k-Median, k-Means, and k-Center
[5,7,8,12,17]. Fair clustering has even been considered in k-Means clustering in
the streaming model [19].

Ahmadi et al. [1] studied Fair Correlation Clustering, which is the
fair version of Correlation Clustering where exactly half of the vertices are
labelled blue and half are labelled red. So the objective is to find a partitioning of
the vertices such that the number of blue vertices and the number of red vertices

416 Z. Friggstad and R. Mousavi

are the same in each cluster. Their result for Fair Correlation Clustering
is that an α-approximation for Correlation Clustering can be used as a
black-box to obtain a (3α+4)-approximation algorithm for Fair Correlation
Clustering. Putting α = 2.06, their algorithm is a 10.18-approximation algo-
rithm. They also show that Fair Correlation Clustering is NP-complete.

More generally, Ahmadi et al. [1] also consider the case where we have k colors
c1, . . . , ck and we are additionally given ratios 1

b2
, . . . , 1

bk
. A feasible solution is a

partitioning such that in each cluster the ratio of the number of c1 color vertices
to the number of ci color vertices is 1

bi
for all 2 ≤ i ≤ k. Note, the case discussed

above is k = 2 (two colors) and b2 = 1 (1-to-1 ratio in each cluster). They give
an O(maxk

i=1{bi} ·k2). Recently, [3] considered a wide range of fairness concepts
for correlation clustering and, similar to [1], they also use black-box reductions
from fair version to the classical version of Correlation Clustering.

A different objective for Correlation Clustering was proposed first by
Puleo and Milenkovic [18], where they consider partitioning V in a way that
minimizes the maximum number of unhappy edges incident to a vertex: i.e. to
minimize maxv∈V |{e ∈ δ(v) : e unhappy with C}|. This problem in literature
sometimes is referred to as Min-Max Correlation Clustering or Corre-
lation Clustering with Local Guarantees as we are more concerned
with minimizing the maximum dissatisfaction incident to any single vertex. Like
Correlation Clustering, this problem also generalizes natural graph cut
problems, e.g., min-max s − t cut, min-max multiway cut, and min-max mul-
ticut, please see [9] for more details and definitions of these problems. This
variant of Correlation Clustering has received considerable attention as
well: following a series of work [2,9,18], the state of the art for this problem is a
5-approximation algorithm given by Kalhan, Makarychev, and Zhou [16].

We also consider Local Fair Correlation Clustering, the fair variant
of Correlation Clustering with local guarantees. Here, we are given a com-
plete unweighted graph G = (V,E) where each edge has label either + or −.
In addition, every vertex is assigned one of the k colors c1, . . . , ck and we are
additionally given ratios 1

b2
, . . . , 1

bk
. A feasible partitioning is a partitioning such

that in each cluster the ratio of c1 color vertices to ci color vertices is 1
bi

for
all 2 ≤ i ≤ k. Again, the objective is to find a clustering that minimizes the
Correlation Clustering with Local Guarantees objective.

1.1 Our Results

Unless stated otherwise, in each of our results exactly half of the vertices are blue
and half of the vertices are red, and the goal is to find a clustering solution where
each cluster has an equal number of red and blue vertices. Our first result is an
improved approximation for Fair Correlation Clustering in unweighted
complete graphs.

Theorem 1. There is a 6.18-approximation algorithm for Fair Correlation
Clustering on unweighted complete graphs.

Fair Correlation Clustering with Global and Local Guarantees 417

This is an improvement over the guarantee of 10.18 by Ahmadi et al. [1]. Until
our paper, the approximation algorithms for Fair Correlation Clustering
are obtained by using previous approximations for Correlation Clustering
as a black-box [1,3]. For our improvements, we leverage the fact that previous
approximations rely on linear programming (LP) relaxations.

We start by considering a weighted bipartite matching instance between the
red and blue vertices where the weights of the edges (u, v) are meant to reflect
that some unhappy edges will be unavoidable if we choose to match u with v,
so there will be an optimum matching that is comparable to OPT , the optimal
Fair Correlation Clustering solution cost. We then contract all edges in
a minimum-cost matching and obtain an instance of uniformly-weighted Cor-
relation Clustering with c = 4. Next, we show that an optimal LP solution
x∗ to the Correlation Clustering instance that underlies the given Fair
Correlation Clustering instance (i.e. if we ignore the fair requirement) can
be converted to an LP solution x for this new uniformly-weighted Correlation
Clustering instance whose cost can be charged to the cost of x∗ and the cost
of the matching, i.e. O(OPT). Then we use the LP rounding algorithm in [11]
to get a Correlation Clustering solution in this contracted graph, which is
then a Fair Correlation Clustering solution in the original graph.

We show that it is possible to improve the approximation factor in Theo-
rem 1 to 5.5. For the analysis, we delve into the LP-rounding algorithm from
[4] for Correlation Clustering. We point out that the analysis of 2.5-
approximation factor for Correlation Clustering on complete graphs has
a lemma, in particular Lemma 18 in [4], that its verification requires a tedious
calculations that is left out of the paper. This lemma will translate to our set-
ting but its proof requires even more case analysis and each case involves a more
complicated constrained optimization problem, see Sect. 2.3 for more details on
this conjecture.

Conjecture 1. There is a 5.5-approximation algorithm for Fair Correlation
Clustering on unweighted complete graphs.

Our second class of results pertain to Local Fair Correlation Cluster-
ing.

Theorem 2. There is a 80-approximation algorithm for Local Fair Corre-
lation Clustering on unweighted complete graphs.

While this constant is a bit high, to the best of our knowledge no prior results
were known for this problem. Our algorithm here behaves in a way that is similar
to our algorithm for Theorem 1. Namely, we first construct a matching between
the red and blue points where the weight of an edge (u, v) reflects the number
of edges in G incident to u or v that will inevitably become unhappy if u and v
are grouped together. We also show how an LP solution for the unfair version
maps to an LP solution for the resulting instance in the contracted graph and
use the LP-based rounding algorithm in [16] to get our final solution. However,
placing a bound on the resulting LP solution encounters new challenges in this

418 Z. Friggstad and R. Mousavi

min-max setting. Namely, it could be that after contracting matched vertices u
and v to a single node, the resulting LP solution has the contracted node {u, v}
being incident to a much larger amount of unhappy edges than either u or v saw
in the original LP solution. We articulate how this could be the case, and show
that there must then be another vertex w in G that was nearly as unhappy as
the contracted node {u, v} so the unhappiness of {u, v} can still be bounded by
O(OPT).

Finally, we provide a generalization of our result for Local Fair Correla-
tion Clustering to instances with more colors and non-uniform requirements
on the ratios of colors.

Theorem 3. Consider an instance of Local Fair Correlation Cluster-

ing where there are k colors and the ratios are 1
b2

, ..., 1
bk
. Let B :=

k∑

i=2

bi. Then,

there is a (7 · B2 + 43 · B + 30) · OPT-approximation algorithm for this problem.

1.2 Organization

The proof of Theorem 1 appears in Sect. 2 followed by the proof of Theorem 2 in
Sect. 3. For the sake of space and to provide clearer exposition of our main ideas,
the proof of most of the lemmas, proof of Theorem 3, and a detailed discussion
of Conjecture 1 are deferred to the full version of the paper.

2 Fair Correlation Clustering

In this section, the Fair Correlation Clustering instances we consider are
presented as unweighted complete graph G = (V,E), a partitioning of edges
E = E− � E+, and a partitioning of vertices V = VR � VB (i.e. the red and blue
vertices). The label of an edge e ∈ E is − if e ∈ E− or + if e ∈ E+. The goal
is to find a partitioning C ⊆ 2V (clustering) of V such that each cluster has the
same number of red and blue vertices, and the total number of unhappy edges
is minimized. Given a clustering of V , we say e = (u, v) ∈ E+ is unhappy if u
and v belong to different clusters. Similarly e = (u, v) ∈ E− is unhappy if u and
v belong to the same cluster.

We have the following LPcc for classical fair correlation clustering. The vari-
able xu,v indicates whether u and v are in the same cluster or not (0 if they are
in the same cluster and 1 otherwise). The constraints ensure that x is a metric.

min
∑

(u,v)∈E+
xu,v +

∑

(u,v)∈E−
(1 − xu,v)

s.t. xu,v + xv,w ≥ xu,w ∀u, v ∈ V
xu,v = xv,u ∀u, v ∈ V
xu,u = 0 ∀u ∈ V
0 ≤ xu,v ≤ 1 ∀(u, v) ∈ E

(LPcc)

Fair Correlation Clustering with Global and Local Guarantees 419

2.1 6.18-Approximation Algorithm

Consider an instance of Fair Correlation Clustering. Let OPT denote the
optimal value of a clustering. Note that the optimal value of LPcc is at most

OPT. For three vertices u, v, and w such that u ∈ VR and v ∈ VB, we say
�

uvw
is a bad triangle with the base (u, v) if the labels of (u,w) and (v, w) are
different.

As in [1], we compute a minimum-cost matching of VR with VB in an auxiliary
bipartite graph whose edge weights approximately reflect the number of edges
that will be unhappy in any clustering that includes a matched pair in the same
cluster. In this auxiliary graph, for each pair of vertices u, v where u ∈ VR and
v ∈ VB we add an edge (u, v) and we set

wu,v =
{

(# of bad triangles with base (u, v)) if (u, v) ∈ E+

1 + (# of bad triangles with base (u, v)) if (u, v) ∈ E−

We have the following upper bound on the cost of the minimum cost perfect
matching in the auxiliary graph. For brevity, let w(M) =

∑
(u,v)∈M wu,v denote

the cost of a matching.

Lemma 1 (Lemma 1 in [1]). Let M be a minimum-cost perfect matching in
the auxiliary graph. Then w(M) ≤ 2 · OPT.

We note that our use of M differs in a key way from their algorithm. We first
compute a matching and then use this to define an auxiliary Correlation
Clustering instance obtained by contracting the endpoints of matching edges
into a single node. We then apply a Correlation Clustering approximation
on this graph, but our analysis does not use Correlation Clustering approx-
imations as a black-box: we need to expand on details that are unique to our
setting to complete the proof. By way of contrast, their algorithm uses Corre-
lation Clustering approximations as a black-box on the subgraph induced by
VR and, independently, computes the minimum-cost matching in this auxiliary
graph and places each v ∈ VB in the same cluster as its matched counterpart in
VR.

So, given a minimum-cost matching M we build an instance of uniformly-
weighted Correlation Clustering. The graph, which we call the contracted
graph, is Gcontracted = (Vsuper, Esuper). Here, Vsuper is the set of vertices obtained
by contracting the matching edges (u, v) into a single node {u, v}, we call these
super nodes. For each super node i = {u, v} and j = {u′, v′} we have an edge (i, j)
in Esuper and call these edges super edges. There are four edges in G associated
with the super edge (i, j), namely, (u, u′), (u, v′), (v, u′), and (v, v′). Let w+

i,j be
the number of + edges among these four edges, and let w−

i,j be the number of −
edges among these four edges, see Fig. 1. Note w+

i,j + w−
i,j = 4.

Let x∗ be an optimal solution to LPcc. Let i = {u, v} and j = {u′, v′} be two
super nodes in Gcontracted. We define a feasible solution x to LPwcc, the standard
LP for the weighted Correlation Clustering, on the auxiliary graph by
taking the average of the four edges associated to (i, j), more precisely, xi,j :=

420 Z. Friggstad and R. Mousavi

x∗
u,u′+x∗

u,v′+x∗
v,u′+x∗

v,v′
4 . It is easy to see that x satisfies the triangle inequalities

in Gcontracted and thus it is a feasible solution for LPwcc.

min
∑

(i,j)∈Esuper

w+
i,jxi,j + w−

i,j(1 − xi,j)

s.t. xi,j + xj,k ≥ xi,k ∀i, j, k ∈ Vsuper

xi,j = xj,i ∀i, j ∈ Vsuper

xi,i = 0 ∀i ∈ Vsuper

1 ≤ xi,j ≤ 0 ∀(i, j) ∈ Esuper

(LPwcc)

Finally, we use the LP-based Correlation Clustering approximation
from [11] on Gcontracted to get a clustering C′. The output of our algorithm is
obtained by replacing each super node in the clustering C′ by both of the original
nodes it represents. Algorithm 1 summarizes these steps.

Algorithm 1: Algorithm for Fair Correlation Clustering

1: Compute a minimum-cost perfect matching M on the auxiliary graph and
form Gcontracted as above.

2: Compute an optimal solution x∗ of LPcc and set x as above for each super
edge (i, j) of Gcontracted.

3: Run the LP-based 2.06-approximation from [11] for Correlation
Clustering on Gcontracted using LP solution x to get a clustering C′ (see
Theorem 4 below).

4: Return the clustering C = {φ(C ′) : C ′ ∈ C′} where
φ(C ′) = ∪i={u,v}∈C′{u, v}.

2.2 Analysis of 6.18-Approximation Algorithm

For a partitioning C of the vertices in a Correlation Clustering or
Fair Correlation Clustering instance, let Cost(C) denote the cost of this
partitioning (i.e. the total number, or weight, of unhappy edges). Let C be the
output of Algorithm 1 and C′ the clustering of Gcontracted from Step 3. We first
relate Cost(C) and Cost(C′).

For each super node i = {u, v}, if (u, v) ∈ E−, then (u, v) contributes 1 unit
to M . Let M− denote the sum of all such contributions for all (i, j) ∈ Esuper.
Let Mi,j be the number of bad triangles “involved” in super edge (i, j), i.e., if
w+

i,j = 1, 2, or 3 then Mi,j = 2 and Mi,j = 0 otherwise. This is because when
w+

i,j 	= 0 and w+
i,j 	= 4, then there are exactly 2 bad triangles whose base lies

in {(u, v), (u′, v′)} that contribute to wu,v or wu′,v′ . For example, in Fig. 1,
�

uu′v

and
�

u′uv′ are two bad triangles that contribute one unit to wu,v and one unit to
wu′v′ , respectively. In this way, we have w(M) = M− +

∑

(i,j)∈Esuper

Mi,j .

Lemma 2. Cost(C) = Cost(C′) + M−.

Fair Correlation Clustering with Global and Local Guarantees 421

u

v

u

v

i j

x∗
u,v x∗

u ,v

x∗
u,u +

x∗
u,v

−
x∗
v,u

−

x∗
v,v −

u

v

u

v

i j

xi,j =
x∗
u,u

+x∗
u,v

+x∗
v,u

+x∗
v,v

4

w+
i,j = 1, w−

i,j = 3

Fig. 1. In the top picture, the red edges are in the matching M . x∗ is an optimal
solution for LPcc. i and j are the super nodes obtained by contracting (u, v) and
(u′, v′) respectively. The bottom picture shows the resulting graph after contraction.
Edges (u, u′), (u, v′), (v, u′), and (v, v′) are edges in G associated to the super edge
(i, j).

We proceed to bound Cost(C′). Let value(x∗) denotes the objective value of the
LPcc under solution x∗. Note that value(x∗) ≤ OPT where OPT is the optimal
value for the Fair Correlation Clustering on G.

Lemma 3. Let Mi,j be the contribution of super edge (i, j) to the matching (so
Mi,j is either 0 or 2). Then, Cost(C′) ≤ 2.06 · (value(x∗) +

∑

(i,j)∈Esuper

Mi,j).

This is proven below. For now, we show how to complete the analysis.

Proof (of Theorem 1). By Lemmas 2 and 3, we have Cost(C) ≤ 2.06·(value(x∗)+
w(M)−M−)

+M− (recall w(M) = M− +
∑

(i,j)∈Esuper
Mi,j). Then by Lemma

1 we see Cost(C) ≤ 2.06 · (OPT + 2 · OPT) = 6.18 · OPT.
�
So it remains to prove Lemma 3. We use the following result in [11].

Theorem 4 (Theorem 1 & 20 in [11], paraphrased). Given a feasible solu-
tion x to LPwcc for a uniformly-weighted Correlation Clustering instance,
there is a polynomial-time algorithm that outputs a partitioning C′ such that
Cost(C′) ≤ 2.06 · value(x).

Remark 1. In [11], their result are stated for instances when w+
i,j +w−

i,j = 1 even
if the weights are not integers, by scaling weights this holds when w+

i,j +w−
i,j = c

for any fixed c.

The proof of Lemma 3 follows immediately from the following bound and
Theorem 4.

422 Z. Friggstad and R. Mousavi

Lemma 4. value(x) ≤ value(x∗) +
∑

(i,j)∈Esuper

Mi,j.

2.3 Towards a 5.5-Approximation Algorithm

We modify Algorithm 1 by introducing a small change in the auxiliary graph
and using a particular rounding scheme for the LP. First, we add 0.6 to wu,v

(instead of 1) for each bad triangle
�

uvz where z ∈ V . Therefore, for a super edge
(i, j) such that w+

i,j = 1, 2, or 3, we have Mi,j = 1.2 (instead of 2). Then, we can
show that a minimum-cost perfect matching in the auxiliary graph has value at
most 1.2 · OPT with the same reasoning as in Lemma 1. The other difference is
that we use the 2.5-approximation algorithm [4] in line 3 in Algorithm 1 instead
of 2.06-approximation algorithm. For the analysis, we modify the analysis of 2.5-
approximation for Correlation Clustering [4] to be suitable in our setting.
See the full version of the paper for detailed description of the algorithm and
the analysis. One of the lemmas in the analysis requires case analysis (53 cases,
one could be smart and reduce the number of cases using symmetries but still
the number of remained cases is very large) and each case requires finding the
minimum of a degree 3 multivariate polynomial (with 12 variables) subject to
linear constraints.

So we use a MATLAB program to verify the bound holds in each case (the
cases are easy to enumerate). The MATLAB program requires us to try different
starting points to find minima: we tested with a variety of starting points and
the desired bound held each time. But since we cannot exhaustively search all
the starting points, we state the 5.5-approximation algorithm as a conjecture
for now and are working towards completing a more rigorous proof for the full
version of this work.

3 Local Fair Correlation Clustering

We now consider Local Fair Correlation Clustering. The input is identi-
cal to Fair Correlation Clustering and a feasible solution is a fair par-
titioning C of V = VR � VB. But now we define Cost(C) differently, here:
Cost(C) = maxv∈V |{e ∈ δ(v) : e unhappy with C}|. That is, the unhappiness
of a vertex v is the number of unhappy edges incident to v. The cost of a solu-
tion is then the maximum unhappiness over all nodes. We use a natural LP
relaxation for this problem, in it we have variables xu,v for (u, v) ∈ E indicating
whether u and v are in the different clusters or not and variables Du for u ∈ V
counting the number of unhappy edges incident to u.

min max
u∈V

Du

s.t.
∑

v:(u,v)∈E+
xu,v +

∑

v:(u,v)∈E−
(1 − xu,v) = Du ∀u ∈ V

xu,w ≤ xu,v + xv,w ∀u, v, w ∈ V
xu,v = xv,u ∀u, v ∈ V
0 ≤ x ≤ 1

(LPlocal)

Fair Correlation Clustering with Global and Local Guarantees 423

To turn this into a proper linear program, we can have the objective function
minimize a new variable D subject to D ≥ Du for each u ∈ V . As before, we
rely on known integrality gap bounds for this LP relaxation in our algorithm.

Theorem 5 (Theorem 5.1 in [16]). Given a feasible solution x to LPlocal,
there is a rounding procedure that outputs a partitioning C′ such that Cost(C′) ≤
5 · value(x).

Denote by OPT the optimal value of the Local Fair Correlation Clus-
tering instance. Our algorithm starts by considering the same auxiliary bipar-
tite graph between VR and VB as in Sect. 2.

Lemma 5. There is a perfect matching in the auxiliary graph such that
max

(u,v)∈M
wu,v ≤ 2 · OPT.

We can guess the value of OPT and delete all the edges in the auxiliary graph
that have weight more than twice of our guess, and then find a perfect matching
M . So from now on we assume we have a matching M such that wu,v ≤ 2 ·OPT
for all (u, v) ∈ M .

Given a matching M and graph G, we build an instance of Correlation
Clustering with Local Guarantees on a complete graph called contracted
graph Gcontracted = (Vsuper, Esuper) similar to before. Here, Vsuper is the set of
vertices obtained by contracting the matching edges, we call these super nodes
and for each pair of distinct super nodes Su,v = {u, v} and Su′,v′ = {u′, v′}.
we add an edge (Su,v, Su′,v′) between them to Esuper and call these edges super
edges. However, instead of assigning weights to super edges we simply label
them with − or +. There are four edges in G associated with the super edge
(Su,v, Su′,v′), namely (u, u′), (u, v′), (v, u′), and (v, v′). The label of (Su,v, Su′,v′)
is the majority of the labels of these four edges of G, using + if there is no
majority label1. See Fig. 2 for an illustration.

Given an optimal solution x∗ to LPlocal on G, we build a solution x for
LPlocal on Gcontracted as follows: Let xSu,v,Su′,v′ be the average of the four edges

in G associated to (Su,v, Su′,v′), i.e., xSu,v,Su′,v′ :=
x∗

u,u′+x∗
u,v′+x∗

v,u′+x∗
v,v′

4 . It is
easy to see that x satisfies the triangle inequalities and thus it is feasible for
LPlocal on Gcontracted.

Our algorithm then uses Theorem 5 to round this LP solution to get a Fair
Correlation Clustering solution in Gcontracted. These super nodes in each

1 In this case it does not matter if we use + or −.

424 Z. Friggstad and R. Mousavi

u

v

u

v

Su,v Su ,v

x∗
u.v x∗

u ,v

+

−

−

−

u

v

u

v

Su,v Su ,v

xi,j =
x∗
u,u

+x∗
u,v

+x∗
v,u

+x∗
v,v

4

−

Fig. 2. In the top picture, the red edges are in the matching M . x∗ is an optimal solution
for LPlocal. Su,v and Su′,v′ are the super nodes obtained by contracting (u, v) and
(u′, v′), respectively. The bottom picture shows the resulting graph after contraction.
Edges (u, u′), (u, v′), (v, u′), and (v, v′) are edges in G associated to the super edge
(Su,v, Su′,v′). Its label is − because the majority label among the labels of the four
edges in G associated to (Su,v, Su′,v′) is −.

cluster are then expanded so that we get a clustering in the original instance G.
Algorithm 2 summarizes these steps.

Algorithm 2: Algorithm for Local Fair Correlation Clustering

1: Compute a perfect matching M that minimizes max(u,v)∈M wu,v.
2: Compute an optimal solution x∗ of LPlocal and set x as above for each

super edge (i, j) of Gcontracted.
3: Run the LP-based 5-approximation algorithm of [16] on (Gcontracted, x) to

get a clustering C′.
4: Return the clustering C = {φ(C ′) : C ′ ∈ C′} where

φ(C ′) = ∪i={u,v}∈C′{u, v}.

3.1 Analysis of Algorithm 2

We let C be the output of Algorithm 2 and C′ the clustering found in step 3. The
main step in our analysis is bounding the value of x constructed in line 2. For
this, we need to construct new arguments that are specific to our setting: edges
of Esuper are classified depending on both how they were labelled and also on
how the LP weight is distributed across their underlying edges of G.

Let u ∈ V be a vertex that is incident to a maximum number of unhappy
edges with respect to C, we need to bound the number of such unhappy edges
incident to u. Without loss of generality, say u ∈ Vred and let v ∈ VB be the
node that u is matched with in M . We group super edges that contain u, i.e.,

Fair Correlation Clustering with Global and Local Guarantees 425

(Su,v, Su′,v′) for all (u′, v′) ∈ M into four types. Below, 0 < ε ≤ 1/2 is a quantity
that we will fix later.

So, consider a super edge e′ = (Su,v, Su′,v′). We assign it a type according to
the following cases. For brevity, for an edge (u, v) ∈ E (in the underlying graph)
we let �(u, v) ∈ {−,+} denote the label of the edge.

– Type 1: �(u, u′) = �(u, v′) = �(v, u′) = �(v, v′). That is, all the four edges
associated with e′ have the same label.

– Type 2: Both properties below are satisfied.
(i) �(u, u′) = �(v, u′) and �(u, v′) = �(v, v′), yet �(u, u′) 	= �(u, v′)
(ii) (u, u′) is a + edge and either x∗

u,u′ ≥ ε or x∗
u,v′ ≤ 1 − ε or

(u, u′) is a − edge and either x∗
u,u′ ≤ 1 − ε or x∗

u,v′ ≥ ε.
– Type 3: Only property (i) of type 2 edges is satisfied.
– Type 4: All super edges that are not of types 1, 2, or 3.

In the following we bound the total number of super edges involving u of
type 2, 3, and 4 by O(1) · OPT, this will even include such edges that are happy
with C. Then, we show that the number of type 1 edges involving u that are
unhappy with C is at most O(1) · OPT. Recall Du is the fractional number of
unhappy edges incident to u with respect to solution x∗, see LPlocal.

Lemma 6. Let k2 be the number of edges of type 2. Then, k2 ≤ 1
ε · OPT.

Lemma 7. Let k3 be the number of edges of type 3. Then, we have OPT ≥
1−2·ε
4(1−ε) · k3.

If we set ε = 1
4 , then we have the following upper bound on the total number

of super edges of type 2 and 3:

Corollary 1. k2 + k3 ≤ 10 · OPT.

Lemma 8. Let k4 be the number of edges of type 4. Then, k4 ≤ 2 · OPT.

Note that the number of unhappy edges incident to u with respect to C that
comes from super edges of type 2 and 3 is exactly equal to the number of these
super edges. Because, for each such super edge, there are two associated edges in
G incident to u with opposite labels. So no matter how we cluster, exactly one
of these two edges will be unhappy. Also the number of unhappy edges incident
to u that comes from super edges of type 4 is at most twice the number of such
super edges, since for each such super edge, there are two edges incident to u in
G and we can make both of them unhappy at worst case. In summary, we have
the following fact.

Corollary 2. The number of unhappy edges incident to u with respect to C
that comes from super edges of type 2, 3, and 4 is at most k2 + k3 + 2 · k4 ≤
10 · OPT + 4 · OPT = 14 · OPT.

Define Disagreetype1(u) to be the number of unhappy edges incident to u
with respect to C that come from super edges of type 1.

426 Z. Friggstad and R. Mousavi

Lemma 9. Disagreetype1(u) ≤ 65 · OPT.

Now we can state the final result.

Proof (of Theorem 2). Combining Corollary 2 and Lemma 9 we have the total
disagreement on u with respect to C without considering edge (u, v) is at most
79 · OPT and if (u, v) is an unhappy edge then a the total disagreement is at
most 79 · OPT + 1.

Since we picked u to be a vertex with maximum unhappy edges incident
to it, this is a 80-approximation for Local Fair Correlation Clustering
assuming OPT ≥ 1 (see the remark below regarding this assumption).
�
Remark 2. We assumed OPT ≥ 1. If OPT = 0, then contract each + edge. This
rise to a natural clustering and each cluster must be fair too.

This approach generalizes to the setting with multiple colors in different
ratios. See the full version of the paper for the proof of Theorem 3.

References

1. Ahmadi, S., Galhotra, S., Saha, B., Schwartz, R.: Fair correlation clustering. arXiv
preprint arXiv:2002.03508 (2020)

2. Ahmadi, S., Khuller, S., Saha, B.: Min-Max correlation clustering via MultiCut. In:
Lodi, A., Nagarajan, V. (eds.) IPCO 2019. LNCS, vol. 11480, pp. 13–26. Springer,
Cham (2019). https://doi.org/10.1007/978-3-030-17953-3 2

3. Ahmadian, S., Epasto, A., Kumar, R., Mahdian, M.: Fair correlation clustering. In:
International Conference on Artificial Intelligence and Statistics. pp. 4195–4205.
PMLR (2020)

4. Ailon, N., Charikar, M., Newman, A.: Aggregating inconsistent information: rank-
ing and clustering. J. ACM 55(5), 1–27 (2008)

5. Backurs, A., Indyk, P., Onak, K., Schieber, B., Vakilian, A., Wagner, T.: Scalable
fair clustering. In: International Conference on Machine Learning, pp. 405–413
(2019)

6. Bansal, N., Blum, A., Chawla, S.: Correlation clustering. Mach. Learn. 56(1–3),
89–113 (2004)

7. Bera, S., Chakrabarty, D., Flores, N., Negahbani, M.: Fair algorithms for clustering.
In: Advances in Neural Information Processing Systems, pp. 4954–4965 (2019)

8. Bercea, I.O., et al.: On the cost of essentially fair clusterings. arXiv preprint
arXiv:1811.10319 (2018)

9. Charikar, M., Gupta, N., Schwartz, R.: Local guarantees in graph cuts and cluster-
ing. In: Eisenbrand, F., Koenemann, J. (eds.) IPCO 2017. LNCS, vol. 10328, pp.
136–147. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-59250-3 12

10. Charikar, M., Guruswami, V., Wirth, A.: Clustering with qualitative information.
J. Comput. Syst. Sci. 71(3), 360–383 (2005)

11. Chawla, S., Makarychev, K., Schramm, T., Yaroslavtsev, G.: Near optimal LP
rounding algorithm for correlation clustering on complete and complete k-partite
graphs. In: Proceedings of the Forty-Seventh Annual ACM Symposium on Theory
of Computing, pp. 219–228 (2015)

http://arxiv.org/abs/2002.03508
https://doi.org/10.1007/978-3-030-17953-3_2
http://arxiv.org/abs/1811.10319
https://doi.org/10.1007/978-3-319-59250-3_12

Fair Correlation Clustering with Global and Local Guarantees 427

12. Chen, X., Fain, B., Lyu, L., Munagala, K.: Proportionally fair clustering. In: Inter-
national Conference on Machine Learning, pp. 1032–1041 (2019)

13. Chierichetti, F., Kumar, R., Lattanzi, S., Vassilvitskii, S.: Fair clustering through
fairlets. In: Advances in Neural Information Processing Systems, pp. 5029–5037
(2017)

14. Dwork, C., Kumar, R., Naor, M., Sivakumar, D.: Rank aggregation methods for
the web. In: Proceedings of the 10th International Conference on World Wide Web,
pp. 613–622 (2001)

15. Fagin, R., Kumar, R., Sivakumar, D.: Efficient similarity search and classification
via rank aggregation. In: Proceedings of the 2003 ACM SIGMOD International
Conference on Management of Data, pp. 301–312 (2003)

16. Kalhan, S., Makarychev, K., Zhou, T.: Correlation clustering with local objectives.
In: Advances in Neural Information Processing Systems, pp. 9346–9355 (2019)

17. Kleindessner, M., Samadi, S., Awasthi, P., Morgenstern, J.: Guarantees for spec-
tral clustering with fairness constraints. In: International Conference on Machine
Learning, pp. 3458–3467 (2019)

18. Puleo, G., Milenkovic, O.: Correlation clustering and biclustering with locally
bounded errors. In: International Conference on Machine Learning, pp. 869–877.
PMLR (2016)

19. Schmidt, M., Schwiegelshohn, C., Sohler, C.: Fair coresets and streaming algo-
rithms for fair k -means. In: Bampis, E., Megow, N. (eds.) WAOA 2019. LNCS,
vol. 11926, pp. 232–251. Springer, Cham (2020). https://doi.org/10.1007/978-3-
030-39479-0 16

20. Wirth, A.: Correlation clustering. In: Sammut, C., Webb, G.I. (eds.) Encyclope-
dia of Machine Learning and Data Mining, pp. 280–284. Springer, Boston (2017).
https://doi.org/10.1007/978-1-4899-7687-1 176

https://doi.org/10.1007/978-3-030-39479-0_16
https://doi.org/10.1007/978-3-030-39479-0_16
https://doi.org/10.1007/978-1-4899-7687-1_176

Better Distance Labeling for Unweighted
Planar Graphs

Pawe�l Gawrychowski(B) and Przemys�law Uznański

Institute of Computer Science, University of Wroc�law, Wroc�law, Poland
gawry@cs.uni.wroc.pl

Abstract. A distance labeling scheme is an assignment of labels, that
is, binary strings, to all nodes of a graph, so that the distance between
any two nodes can be computed from their labels without any additional
information about the graph. The goal is to minimize the maximum
length of a label as a function of the number of nodes. A major open
problem in this area is to determine the complexity of distance labeling in
unweighted planar (undirected) graphs. It is known that, in such a graph
on n nodes, some labels must consist of Ω(n1/3) bits, but the best known
labeling scheme constructs labels of length O(

√
n log n) [Gavoille, Peleg,

Pérennes, and Raz, J. Algorithms, 2004]. For weighted planar graphs
with edges of length polynomial in n, we know that labels of length
Ω(

√
n log n) are necessary [Abboud and Dahlgaard, FOCS 2016]. Sur-

prisingly, we do not know if distance labeling for weighted planar graphs
with edges of length polynomial in n is harder than distance labeling
for unweighted planar graphs. We prove that this is indeed the case by
designing a distance labeling scheme for unweighted planar graphs on
n nodes with labels consisting of O(

√
n) bits with a simple and (in our

opinion) elegant method. We augment the construction with a mecha-
nism that allows us to compute the distance between two nodes in only
polylogarithmic time while increasing the length by O(

√
n log n). The

previous scheme required Ω(
√

n) time to answer a query in this model.

1 Introduction

An informative labeling scheme is an elegant formalization of the idea that iden-
tifiers of nodes in a network can be chosen to carry some additional information.
Peleg [30] defined such a scheme for a function f defined on subsets of nodes
to consist of two components: an encoder and a decoder. First, the encoder is
given a description of the whole graph G and assigns a binary string to each of
its nodes. The string assigned to a node is called its label. Second, the decoder
is given the labels assigned to a subset of nodes W and needs to calculate f(W).
This must be done without any information about the graph except for the given
labels and the fact that G belongs to a specific family G. The main goal is to
make the labels as short as possible, that is, to minimize the maximum length
of a label assigned to a node in G. A particularly clean example of a function f
that one might want to consider in this model is adjacency. Kannan et al. [22]
c© Springer Nature Switzerland AG 2021
A. Lubiw et al. (Eds.): WADS 2021, LNCS 12808, pp. 428–441, 2021.
https://doi.org/10.1007/978-3-030-83508-8_31

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-83508-8_31&domain=pdf
https://doi.org/10.1007/978-3-030-83508-8_31

Better Distance Labeling for Unweighted Planar Graphs 429

observed that an adjacency labeling scheme is related (in fact, equivalent) to a
so-called vertex-induced universal graph, a purely combinatorial object that has
been considered already in the 60s [29]. By now, we have a rich body of work
concerning not only adjacency labeling [3,4,8–10,13,31], but also flows and con-
nectivity labeling [20,23,25], Steiner tree labeling [30] and distance labeling.

Distance Labeling. A distance labeling scheme is an assignment of labels, that is,
binary strings, to all nodes of a graph G, so that the distance δG(u, v) between
any two nodes u, v can be computed from their labels. Unless specified otherwise,
we consider unweighted graphs, so δG(u, v) is the smallest number of edges on
a path between u and v. The main goal is to make the labels as short as pos-
sible, that is, to minimize the maximum length of a label. The secondary goal
is to optimize the query time, that is the time necessary to compute δG(u, v)
given the labels of u and v. Distance labeling for general unweighted undirected
graphs on n nodes was first considered by Graham and Pollak [19], who obtained
labels consisting of O(n) bits. The decoding time was subsequently improved to
O(log log n) by Gavoille et al. [16], then to O(log∗ n) by Weimann and Peleg [32],
and finally Alstrup et al. [6] obtained O(1) decoding time with labels of length
log 3
2 n+o(n).1 It is known that some labels must consist of at least n

2 bits [22,29].
Better schemes for distance labeling are known for restricted classes of graphs.

As a prime example, trees admit a distance labeling scheme with labels of
length 1

4 log2 n + o(log2 n) bits [15], and this is known to be tight up to lower-
order terms [7]. In fact, any sparse graph admits a sublinear distance labeling
scheme [5] (see also [17] for a somewhat simpler construction). However, the best
known upper bound is still rather far away from the best known lower bound of
Ω(

√
n) [16], and recently Kosowski et al. [26] showed that, for a natural class

of schemes based on storing the distances to a carefully chosen set of hubs, the
best achievable hub-label size and distance-label size in sparse graphs may be
Θ(n/2(log n)c) for some 0 < c < 1.

Planar Graphs. An important subclass of sparse graphs are planar graphs, for
which Gavoille et al. [16] constructed a scheme with labels of length O(

√
n log n).

They also proved that in any such scheme some label must consist of Ω(n1/3)
bits. In fact, their upper bound of O(

√
n log n) bits is also valid for weighted

planar graphs, under a natural assumption that the weights are bounded by a
polynomial in n. The lower bound is based on designing a family of grid-like
graphs on k × k nodes and each edge being of length O(k). The family consists
of 2Θ(k2) graphs and admits the following property: the pairwise distances of
O(k) nodes on the boundaries uniquely determine the graph. This construction
immediately implies that, for weighted planar graphs, there must be a node
with label consisting of Ω(

√
n) bits. However, for unweighted planar graphs,

this only implies a lower bound of Ω(n1/3), as one needs to replace an edge of
length � with � edges, thus increasing the size of the graph to k3. Abboud and
Dahlgaard [1] extended this construction to show that, in fact, for graphs with

1 All logarithms are in base 2.

430 P. Gawrychowski and P. Uznański

the length of each edge bounded by a polynomial in n, there must be a node
with label consisting of Ω(

√
n log n) bits. Interestingly, they were able to use

essentially the same construction to establish a strong conditional lower bound
for dynamic planar graph algorithms. Unfortunately, there has been no progress
in improving the construction for unweighted planar graphs.

Abboud et al. [2] provided a reasonable explanation for the lack of progress
on improving the unweighted grid-like construction. They showed that for any
unweighted planar graph G with k distinguished nodes, there is an encoding con-
sisting of Õ(min{k2,

√
k · n}) bits that allows calculating the distance between

any pair of distinguished nodes. This implies that the approach based on fixing a
family G of unweighted planar graphs, with each graph containing k distinguished
nodes such that their pairwise distance uniquely determine G ∈ G, cannot result
in a higher lower bound than Õ(min{k2,

√
k · n})/k = Õ(n1/3). This indicates

that we should seek a significantly different proof technique or a better upper
bound. Determining the complexity of distance labeling in unweighted planar
graphs remains to be a major open problem in this area. The current state of
our knowledge is summarized below.

Class of planar graphs Lower bound Upper bound

Lengths polynomial in n Ω(
√

n log n) O(
√

n log n)

Unweighted Ω(n1/3) O(
√

n log n)

Our Contribution. We present an improved upper bound for distance labeling
of unweighted planar graphs on n nodes. We design a distance labeling scheme
with labels consisting of O(

√
n) bits. While this might be seen as “only” a

logarithmic improvement, it provides a separation for distance labeling between
unweighted and weighted planar graphs. Furthermore, we believe that lack of any
progress on resolving the complexity of distance labeling in unweighted planar
graphs in the last 16 years makes any asymptotic decrease desirable. Our method
easily extends to undirected planar graphs with edges of length from [1,W],
allowing us to decrease the label length from O(

√
n log(nW)) to O(

√
n log W),

and (unweighted) undirected graphs with genus g, decreasing the label length
from O(

√
ng log n) to O(

√
ng log g) for graphs of genus at most g. Decoding

time in our construction for planar unweighted graphs is at least O(
√

n) (as in
the previously known scheme of Gavoille et al. [16]), but we augment it with a
mechanism that computes the distance in polylogarithmic time while increasing
the label length to O(

√
n log n).

Techniques and Roadmap. As in the previous scheme of Gavoille et al. [16], we
apply a recursive separator decomposition. This scheme is presented in detail in
Sect. 2. Our improvement is based on the following observation: if each separator
is, in fact, a cycle, then we can shave off a factor of log n by appropriately encod-
ing the stored distances. For a triangulated graph, one can indeed always find a
balanced cycle separator, but our graph does not have to be triangulated. In some

Better Distance Labeling for Unweighted Planar Graphs 431

applications, the solution to this problem is to simply triangulate with edges of suf-
ficiently large length (as to not change the distance), but we need to keep the graph
unweighted. In Sect. 3, we overcome this difficulty by designing a novel method of
replacing each face of the original graph G with an appropriately chosen gadget
to obtain a new unweighted graph G′ with every face of length at most 4. The
crucial property is that, for any two nodes that exists in both G and G′, their dis-
tance in G′ is at least the logarithm of their distance in G. So, while inserting the
gadgets may decrease the distances, we are able to lower bound this decrease. We
believe that this might be of independent interest. To facilitate efficient decoding,
in Sect. 4 we build on the distance oracle of Gawrychowski et al. [18]. This requires
some tweaks in their point location structure to make it smaller at the expense of
increasing the query time (but still keeping it polylogarithmic) and adjusting our
scheme to balance the lengths of different parts of the table.

Computational Model. When discussing the decoding time we assume the Word
RAM model with words of logarithmic length. A label of length � is packed in
��/ log n� words, and the decoder computing the distance between u and v can
access in constant time any word from their labels. Standard arithmetic and
Boolean operations on words are assumed to take constant time.

2 Previous Scheme

We briefly recap the scheme of Gavoille et al. [16]. Their construction is based
on the notion of separators, that is, sets of nodes which can be removed from
the graph so that every remaining connected component consists of at most
2
3n nodes. By the classical result of Lipton and Tarjan [27] any planar graph
on n nodes has such a separator consisting of O(

√
n) nodes. Now the whole

construction for a connected graph G proceeds as follows: find a separator S of
G, and let G1, G2, . . . be the connected components of G\S. The label of v ∈ Gi

in G, denoted �G(v), is composed of i, recursively constructed �Gi
(v), and the

distances δG(v, u) for all u ∈ S written down in the same order for every v ∈ G.
A label of v ∈ S consists of only the distances δG(v, u) for all u ∈ S.

The space complexity of the whole scheme is dominated by the space required
to store |S| distances, each consisting of log n bits, resulting in O(

√
n log n) bits

in total. The bound of O(
√

n) on the size of a separator is asymptotically tight.
However, the total length of the label of v ∈ G (in bits) depends not on the size of
the separator, but on the number of bits necessary to encode the distances from
v to the nodes of the separator. If the separator is a simple cycle (u1, u2, . . . , u|S|)
then |δG(v, ui) − δG(v, ui+1)| ≤ 1, for every i = 1, 2, . . . , |S| − 1, and con-
sequently writing down δG(v, u1) explicitly and then storing all the differences
δG(v, ui)−δG(v, ui+1) takes only O(

√
n) bits in total. It is known that if the graph

is triangulated, there always exists a simple cycle separator [28], so for such graphs
labels of length O(

√
n) are enough. We show that, in fact, for any planar graph

it is possible to select a separator so that the obtained sequence of differences is
compressible. This is done by inserting some gadgets into every face of the graph.

432 P. Gawrychowski and P. Uznański

3 Improved Scheme

We use the notion of weighted separators, as introduced in [28]. Consider a
planar graph, where every node has a non-negative weight and all these weights
sum up to 1. Then a set of nodes is a weighted separator if after removing these
nodes the total weight of every remaining connected component is at most 2

3 .
We have the following well-known theorem (the result is in fact more general
and allows assigning weights also to edges and faces, but this is not needed in
our application):

Lemma 1 ([28]). For every planar graph on n nodes having assigned non-
negative weights summing up to 1, either there exists a node that is a weighted
separator or there exists a simple cycle of length at most 2

√
2�d/2�n which is a

weighted separator, where d is the maximum face size.

Lemma 2. Any planar graph G has a separator S, such that

|S|−1∑

i=1

(1 + log δG(ui, ui+1)) = O(
√

n)

for some ordering u1, u2 . . . , u|S| of all nodes of S.

Before proving the lemma, we first describe a family of subdivided cycles. A
subdivided cycle on s ≥ 3 nodes, denoted Ds, consists of a cycle Cs = (v1, . . . , vs)
and possibly some auxiliary nodes. D3 and D4 are simply C3 and C4, respectively.
For s > 4, we add � s

2� auxiliary nodes u1, . . . , u� s
2 �, and connect every vi with

u� i
2 �. To complete the construction, we recursively build D� s

2 � and identify its
cycle with (u1, . . . , u� s

2 �). (An example of such a subdivided cycle on 10 nodes
is shown in Fig. 1.) We have the following property.

Lemma 3. For any distinct u, v ∈ Cs, δDs
(u, v) ≥ 1 + log δCs

(u, v).

Proof. We apply induction on s. It is easy to check that the lemma holds when
s ≤ 4, so we assume s ≥ 5. Let us denote δDs

(u, v) = d′ and δCs
(u, v) = d.

We proceed with another induction on d′. When d′ = 1 then u and v must be
neighbors on Cs, so d = 1 and the claim holds. When d = 1 then the claim
trivially holds for any d′ ≥ 1. Now assume d′, d ≥ 2 and consider a shortest path
connecting u and v in Ds. If it consists of only auxiliary nodes except for the
endpoints u and v, then we consider the immediate neighbors of u and v on the
path, denoted u′ and v′, respectively. Since u′ and v′ must belong to the cycle of
D� s

2 � and the distance between them in the corresponding C� s
2 � is at least �d

2�,
by the inductive assumption applied with smaller � s

2� < s (and using d ≥ 2):

d′ ≥ 2 + 1 + log�d/2� = 1 + log(4�d/2�) > 1 + log d.

Better Distance Labeling for Unweighted Planar Graphs 433

1

2 3

4

5

6
7

8

9

10

Fig. 1. A face of size 10 is transformed by replacing C10 with D10 containing 8 new
auxiliary nodes.

Otherwise, let w be an intermediate node of the path that belongs to the cycle Cs.
Let δDs

(u,w) = d′
0 and δCs

(u,w) = d0 and δDs
(w, v) = d′

1 and δCs
(w, v) = d1.

Because w is an intermediate node, we can apply the inductive assumption with
the same s but smaller d′

0, d
′
1 < d′ to obtain d′

0 ≥ 1 + log d0 and d′
1 ≥ 1 + log d1.

Then:

d′ = d′
0 + d′

1

≥ 1 + log d0 + 1 + log d1 by the inductive assumption
= 1 + log(2d0d1)
≥ 1 + log(d0 + d1) 2xy ≥ x + y for any x, y ≥ 1
≥ 1 + log d by the triangle inequality

as required.
�

Proof of Lemma 2. Let G′ be the graph constructed from G by replacing every
face (including the external face) with a subdivided cycle of appropriate size.
More precisely, let (v1, v2, . . . , vs) be a boundary walk of a face of G. Note that
nodes vi are not necessarily distinct. We create a subdivided cycle Ds and iden-
tify its cycle Cs with (v1, v2, . . . , vs). Clearly G′ is also planar and each of its
faces is either a triangle or a square. Since any subdivided cycle has at most
twice as many auxiliary nodes as cycle nodes and the lengths of all boundary
walks sum up to twice the number of edges, which is at most 3n − 6 (as G is
planar), G′ contains at most n′ = n + 4 · (3n − 6) < 13n nodes.

We assign weights to nodes of G′ so that every node also appearing in G has
weight 1 and every new node has weight 0. By Lemma 1 either there exists a
single node s that is a weighted separator or there exists a weighted simple cycle
separator S′ in G′ of size at most 2

√
52n. In the former case, s is also a weighted

separator in G and there is nothing to prove. In the latter case, let S = S′ ∩ G
be a separator in G. Because S′ is a simple cycle separator, S = (u1, u2, . . . , uc),
and ui and ui+1 are incident to the same face f of G. The boundary walk of

434 P. Gawrychowski and P. Uznański

f , consisting of si nodes, has been identified with the cycle Csi
of a copy of

the subdivided cycle Dsi
such that S′ connects ui and ui+1 either directly or

by visiting some auxiliary nodes of Dsi
, for every i = 1, 2, . . . , c (we assume

uc+1 = u1). Let vi and v′
i denote nodes of Dsi

that have been identified with ui

and ui+1, respectively. Then:
∑

i

δDsi
(vi, v

′
i) ≤ |S′| = O(

√
n).

By Lemma 3, δDsi
(vi, v

′
i) ≥ 1 + log δCsi

(vi, v
′
i), so:

∑

i

(1 + log δG(ui, ui+1)) ≤
∑

i

(1 + log δCsi
(vi, v

′
i)) = O(

√
n)

�

Theorem 1. Any planar graph on n nodes admits a distance labeling scheme
of length O(

√
n).
�

Proof. We proceed as in the previously known scheme of size O(
√

n log n), except
that in every step we apply our Lemma 2. In more detail, to construct the label of
every v ∈ G we proceed as follows. First, we find a separator S = (u1, u2 . . . , uc)
using Lemma 2. We have

∑
i(1 + log δG(ui, ui+1)) = O(

√
n), so in particular

c = O(
√

n) and
∑c−1

i=1 log δG(ui, ui+1) = O(
√

n). For every v ∈ G we encode
its distances to all nodes of the separator as follows. We use Elias γ code [14]
which gives a prefix-free encoding of a number x using 2�log x�+1 bits. We first
encode δG(v, u1) using Elias γ code. Then we encode the differences δG(v, ui) −
δG(v, ui−1), for all i = 2, . . . , c, also using Elias γ code and an extra bit to
denote the sign. Encodings are concatenated, and by the prefix-free property
given the concatenation we can recover all the distances. The total length of the
concatenation is:

O(
√

n +
c∑

i=2

log |δG(v, ui) − δG(v, ui−1)|).

Consequently, by |δG(v, ui) − δG(v, ui−1)| ≤ δG(ui−1, ui) and the properties of
our separator the encoding takes O(

√
n) bits. Second, for every node we store the

name of its connected component of G \ S in O(log n) = O(
√

n) bits. Third, we
recurse on every connected component of G\S and append the obtained labels to
the current labels. To calculate δG(u, v), we first compute d = minw∈S(δG(u,w)+
δG(w, v)), extracting δG(u,w) from the label of u and δG(w, v) = δG(v, w) from
the label of v. Then, if u and v belong to the same connected component of G\S, we
proceed recursively there and return the minimum of d and the recursively found
distance in the connected component. The correctness is clear: either a shortest
path between u and v is fully within one of the connected components, or it visits
some w ∈ S, and in such case we can recover δG(u,w) + δG(w, v) from the stored

distances. The final size of every label is O(
√

n +
√

2
3n + . . .) = O(

√
n) bits.
�

Better Distance Labeling for Unweighted Planar Graphs 435

4 Efficient Decoding

The drawback of the scheme from Theorem 1 is its high decoding time. Com-
puting δG(u, v) given �G(u) and �G(v) is done as follows. First, we iterate over
w ∈ S and consider δG(u,w)+δG(v, w) as a possible distance, extracting δG(u,w)
from �G(u) and δG(v, w) from �G(v). Then, we check if u and v belong to the
same component Gi, and if so recurse on �Gi

(u) and �Gi
(v). Even assuming that

extracting any δG(u,w) takes constant time, it is not clear how to avoid iterat-
ing over all w ∈ S, so we cannot hope for anything faster than O(

√
n). In this

section we show how to overcome this difficulty by applying the machinery of
Voronoi diagrams on planar graphs, introduced for computing the diameter of a
planar graph in subquadratic time by Cabello [11]. Our method roughly follows
the approach of Gawrychowski et al. [18] (also see [12]), but we need to make
sure that the information can be distributed among the labels, and carefully
adjust the parameters of the whole construction. We start with presenting the
necessary definitions and tools.

r-divisions. A region R of G is an edge-induced subgraph of G. An r-division of
G is a collection of regions such that each edge of G is in at least one region, there
are O(n/r) regions, each region has at most r nodes and O(

√
r) boundary nodes

that belong to more than one region. We work with a fixed planar embedding of
G, and all of its subgraphs, in particular the regions, inherit this embedding. A
hole of a region R is a face that is not a face of G. An r-division with few holes
has the additional property that each edge belonging to two regions is on a hole
in each of them, and each region has O(1) holes.

Lemma 4 ([24]). For a constant s, there is a linear-time algorithm that, for
any biconnected triangulated planar embedded graph G and any r ≥ s, outputs
an r-division of G with few holes.

The above theorem additionally guarantees that each region is connected and
its boundary nodes are exactly the nodes incident to its holes.

Voronoi Diagrams. Following the description in [18], let S be the nodes (called
sites) incident to the external face h of an internally triangulated planar graph
G. Each site u ∈ S has a weight ω(u), and the distance between a site u ∈ S
and a node v, denoted by d(u, v), is defined as ω(u) + δG(u, v). The (additively)
weighted Voronoi diagram of (S, ω) within G, denoted VD(S, ω), is a partition
of the nodes of G into pairwise disjoint sets, one set Vor(u) for every u ∈ S.
Vor(u) is called the cell of u and contains all nodes of G that are closer to u
than any other site u′ (w.l.o.g. all distances are unique). We work with a dual
representation of VD(S, ω), denoted by VD∗(S, ω), defined as follows. Let G∗ be
the dual of G, and VD0 consist of the dual of edges (u, v) of G such that u and
v belong to different cells. Then, let VD1 be obtained from VD0 by contracting
edges incident to vertices of degree 2 one-by-one as long as possible. A vertex
of VD1 is called a Voronoi vertex, and is dual to a face f such that the nodes
incident to f belong to at least three Voronoi cells. In particular, h∗ is a Voronoi

436 P. Gawrychowski and P. Uznański

vertex. Finally, VD∗(S, ω) is obtained from VD1 by replacing h∗ by multiple
copies, one for each incident edge. The complexity of VD∗(S, ω) is O(|S|) and,
assuming that every node belongs to its cell, VD∗(S, ω) is a tree. In the remaining
part of the description we will assume that this is indeed the case, the general
case can be handled as described in [18], or by (conceptually) modifying G so
that the only nodes incident to the external face are those with nonempty cells.
We will also assume that the graph is biconnected, so that the boundary walk
of the external face is simple.

Point Location. The main technical contribution of [18] is a point location struc-
ture for VD(S, ω) that, given a node v, finds its cell in O(log |S|) time, assuming
constant-time access to certain primitives. We briefly describe the required prim-
itives and then the high-level idea of this structure, but the reader is strongly
advised to consult the original description.

For any site u, let Tu be the shortest path tree rooted at u. Additionally, for
each face f other than h we add an artificial node vf whose embedding coincides
with the embedding of f∗. In Tu, vf is a leaf connected with a zero-length edge
to the node yf incident to f that is closest to u. For any node v, we need to have
access to the following information:

1. d(u, v),
2. in Tu, is v on the path from u to yf , or left/right2 of this path.

Let s1, s2, . . . , s|S| be the boundary walk of the external face containing every
site. Recall that VD∗(S, ω) is a tree with no vertices of degree 2. A centroid
decomposition of a tree T on n nodes is recursively defined as follows: we find a
centroid u ∈ T such that removing u from T and replacing it with copies, one for
each edge incident to u, results in a set of trees, each with at most (n+1)/2 edges,
and repeat the reasoning on each of these trees. The construction terminates
when the tree has no nodes of degree 3 or more (i.e. it consists of a single edge).
The point location structure consists of a centroid decomposition of VD∗(S, ω). In
the query, the decomposition is traversed starting from the root. In every step, we
consider a centroid f∗. Assuming that the graph is triangulated, there are three
nodes y0, y1, y2 incident to f , where yi ∈ Vor(sij). By accessing the information
we can detect in constant time that v ∈ Vor(sij), or descend down in the centroid
decomposition to find the cell of v. We need the following observation: consider
all nodes for which this procedure reaches a vertex at depth k with subtree of
size s in the centroid decomposition. All sites si such that v ∈ Vor(si) for a
node v can be represented as O(k) contiguous segments of total length O(s).
The depth of the centroid decomposition is of course O(log |S|).

2 Left/right is defined using a fixed planar embedding by considering how the path
from u to v emanates from the path from u to yf . The tree inherits the embedding
from the graph, and for two nodes of a tree we can check being on the path or
left/right by operating on their pre- and post-order number.

Better Distance Labeling for Unweighted Planar Graphs 437

Bitvectors. Recall that in the proof of Theorem 1 we stored the differences
δG(v, ui) − δG(v, ui−1), for i = 2, 3, . . . , c, by concatenating their Elias γ encod-
ings. Now we need to compute any prefix sum δG(v, ui) − δG(v, u1) in constant
time. The following lemma can be proved by augmenting the concatenation of
all Elias γ encodings with some extra information and using a rank/select struc-
ture [21] to access the required data in constant time.

Lemma 5. partialsums For any ε > 0 and a sequence of integers
Δ1,Δ2, . . . ,Δs, such that

∑j
i=1 Δi ∈ [−n, n] for every j, we can construct a

structure consisting of O(nε +
∑

i(1+log Δi)) bits that returns
∑j

i=1 Δi, for any
j, in constant time.

Having gathered all the technical ingredients, we are now ready to describe a
modification of the proof Theorem1 that allows us to guarantee polylogarithmic
decoding time. We first describe the high-level idea, then highlight two technical
difficulties and proceed with a detailed description.

We would like to apply reasoning from the proof of Theorem1 to find a
balanced Jordan curve separator S = (u1, u2, . . . , uc) in G with the property
that the distances in G from a node u to all nodes in S can be encoded in O(

√
n)

bits. S partitions G into the external part Gext and the internal part Gint, and
we want to augment the labels with enough information so that, given �G(v) and
�G(v′) for v ∈ Gext and v′ ∈ Gint, we can compute δG(v, v′) in polylogarithmic
time. By repeating the reasoning on Gext and Gint recursively, this allows us to
compute any δG(v, v′). The natural idea would be to define a Voronoi diagram of
Gint by setting the weight of each node in ui to be δG(v, ui), and store its point
location structure that allows us to efficiently minimize δG(v, ui) + δGext

(ui, v
′)

(which is equal to the sought δG(v, v′)). However, this takes too much space, as
the point location structure is a tree on c = Θ(

√
n) nodes, and it appears that

we need to store a constant number of integers consisting of log n bits for each
node of this tree. To overcome this, one might try to store only the top part of
the centroid decomposition corresponding to subtrees of sufficiently large size,
say log n. Then we can afford to store a description of this top part in �G(v),
and it can be used to either find the nearest site, or narrow down the set of
remaining sites to O(log n). However, this still requires some information about
v′, and in particular we need its position in every Tui

(there is no clear way of
how to restrict the number of sites ui for which such information needs to be
stored, as v′ is oblivious to v, and different nodes v might need to access different
sites when traversing their top parts of the centroid decomposition). Therefore,
we need a more complex approach that adds O(

√
n log n) bits to every label.

Before we proceed with the modified construction, we need to verify that G′

obtained from G in the proof of Lemma 2 is biconnected.

Lemma 6. If n ≥ 4 then G′ is biconnected.

Proof. It is straightforward to verify that removing an auxiliary node cannot
disconnect the graph. Consider a node u of G, and let v0, v1, . . . , vd−1 be its
neighbors arranged in a clockwise order. We claim that vi and v(i+1) mod d are

438 P. Gawrychowski and P. Uznański

still connected in G′ after removing u from G′. Consider the face containing
vi, u, v(i+1) mod d as a part of the boundary walk. If the boundary walk is of size
at least 5 then the artificial nodes guarantee the connectivity. Similarly when
the boundary walk contains just one occurrence of u. The only remaining case is
that the boundary walk is u, vi, u, v(i+1) mod d, but then there are no other edges
in G and n ≤ 3.
�

The modified construction proceeds as follows. G′ is biconnected but not
necessarily triangulated, as there might be faces of length 4. We triangulate G′

to obtain G′′, and then apply Lemma4 to obtain an r-division with r = n/ log n.
By the properties of an r-division, there are O(log n) regions. Each region R
contains O(

√
n/ log n) boundary nodes incident to O(1) holes. The boundary

walk (u1, u2, . . . , uc) of every hole h of R is a (not necessarily simple) cycle in
G′′, and by the construction of G′′ we can find a cycle (u′

1, u
′
2, . . . , u

′
c′) in G′

that contains (u1, u2, . . . , uc) as a subsequence, and c′ = O(c) = O(
√

n/ log n).
The r-division of G′′ naturally induces an r-division of G′, and we will refer to
(u′

1, u
′
2, . . . , u

′
c′) as a boundary walk of h. Note that because we have defined the

r-division applying Lemma4 to G′′, some nodes u′
i might not belong to R, and

we do not guarantee that all nodes incident to a hole are boundary.
The label of every node v of G consists of two asymmetric parts. Let h

be a hole of a region R, and (u′
1, u

′
2, . . . , u

′
c′) a boundary walk of h, where

c′ = O(
√

n/ log n). Furthermore, let (u′′
1 , u′′

2 , . . . , u′′
c′′) be a subsequence of

(u′
1, u

′
2, . . . , u

′
c′) consisting of the nodes of G. By the reasoning from the proof of

Theorem 1, we have
∑

i(1 + log δG(u′′
i , u′′

i−1)) = O(
√

n/ log n). The first part of
the label of v in G encodes δG(v, u′′

1) in O(log n) bits, and then the differences
δG(v, u′′

i) − δG(v, u′′
i−1) using Lemma 5. This takes O(log n +

√
n/ log n) bits for

every hole by setting ε < 1/2, so O(
√

n log n) in total for all R and h. If v′ is
a boundary node of R incident to a hole h then we store the identity of R and
h in the label of v′ (there could be multiple such pairs R and h, we choose any
of them), together with the position of any occurrence of v′ in (u′′

1 , u′′
2 , . . . , u′′

c′′).
This is already enough to determine δG(v, v′) in constant time for any boundary
node v′. Otherwise, v′ belongs to exactly one region R, and either v is not a
boundary node and belongs to the same region R or the shortest path from v
to v′ goes through one of the boundary nodes of R. To take the former case
into the account, we consider the connected components of the subgraph of G
consisting of the non-boundary nodes of R. Each such node stores the identity
of its component in O(log n) bits, so that we can verify if v and v′ belong to
the same connected component of R and recurse there if so (that is, the whole
construction is repeated on every connected component, and the resulting label
is a concatenation of the labels defined in the subsequent steps of the recursion).
To deal with the latter case, we need to show how to find the shortest path in G
from v to v′ that first goes from v to a boundary node u of R and then goes to
v′ without visiting any other boundary node (note that this might happen even
when v and v′ belong to the same connected component). We focus on this in
the remaining part of the description.

Better Distance Labeling for Unweighted Planar Graphs 439

Consider a region R and its hole h. We make h the external face, triangulate
the non-external faces, and make the weight of every edge that does not belong
to G infinite to obtain a weighted graph R′. Let u1, u2, . . . be the boundary
nodes of R incident to h. We construct the Voronoi diagram of the obtained
weighted graph R′ with sites u1, u2, . . ., setting the weight of every ui to be
its distance from v in G. Storing the centroid decomposition of this Voronoi
diagram would take O(

√
n/ log n) bits, which is too much. Instead, we store its

top part obtained by stopping as soon as the size of the current subtree is less

than log2 n. The size of this top part is O(
√

n/ log n/ log2 n) = O(
√

n/ log5 n)
by the following lemma.

Lemma 7. Consider the centroid decomposition of a bounded-degree tree T and
a parameter b. The decomposition contains O(|T |/b) subtrees of size less than b
obtained by choosing a centroid in a subtree of size at least b.

Proof. The decomposition can be naturally interpreted as a tree T , with every
node corresponding to a subtree obtained during the process. The leaves of T
correspond to single edges of T , and internal nodes of T correspond to larger
subtrees. The weight w(u) of u ∈ T is the number of leaves in its subtree (equal
to the size of the corresponding subtree of T), and for each child v we have
w(v) ≤ (w(u) + 1)/2. Because the degrees of T are bounded by a constant, it is
enough to count u ∈ T such that w(u) ≥ b, we call them heavy. There are clearly
at most (|T | + 1)/b heavy nodes with no heavy children, as their subtrees are
disjoint. This also bounds the number of heavy nodes with more than one heavy
child. It remains to bound the number of heavy nodes u with exactly one heavy
child v. However, such u must have some non-heavy children v1, v2, ... of total
weight at least b−1, as w(v) ≤ (w(u)+1)/2 and b ≤ w(v) so b−1 ≤ w(u)−w(v)
and w(u) − w(v) = w(v1) + w(v2) + ..., so there are no more than |T |/(b − 1)
such nodes u. Overall, this is O(|T |/b) as claimed.
�

For each leaf in the top part of the decomposition, we store O(log n) contiguous

segments of the sites that might be relevant. This takes O(
√

n/ log5 n · log2 n) =

O(
√

n/ log n) bits. For every non-leaf, we have a centroid f∗ used for decid-
ing where to descend. We store the preorder number of the artificial node
corresponding to f∗ in the respective three shortest path trees. This takes

O(
√

n/ log5 n log n) = O(
√

n/ log n) bits. Overall, this is O(
√

n log n) bits.
To use the centroid decomposition, we need to store enough information in

the label of v′ as to be able to compute any δR′(ui, v
′) in constant time. Recall

that for a non-boundary node v′ we have exactly one relevant R and a constant
number of Voronoi diagrams corresponding to the holes of R. Therefore, because
there are only O(

√
n/ log n) sites in every Voronoi diagram, we can afford to

store every δR′(ui, v
′) in binary using O(

√
n log n) bits overall. Additionally, v′

stores its pre- and postorder number in the shortest path tree rooted at every
Tui

, this also takes O(
√

n log n) bits.

440 P. Gawrychowski and P. Uznański

To compute δG(v, v′), we consider every hole h of the unique region R con-
taining v′. We first use the stored top part of the centroid decomposition, where
we navigate by using the stored pre- and postorder numbers that allow us to
check if v′ is on the path (in which case we terminate) or left/right of the path.
After reaching a leaf in the top part of the centroid decomposition, we simply
consider the remaining O(log2 n) possible sites one-by-one. This takes O(log n)
to traverse the top part, and then O(log2 n) for a leaf. Finally, if v and v′ belong
to the same connected component we recurse there. Overall, the decoding time
is O(log3 n).

Theorem 2. Any planar graph on n nodes admits a distance labeling scheme
of length O(

√
n log n) with O(log3 n) decoding time.

References

1. Abboud, A., Dahlgaard, S.: Popular conjectures as a barrier for dynamic planar
graph algorithms. In: 57th FOCS, pp. 477–486 (2016)

2. Abboud, A., Gawrychowski, P., Mozes, S., Weimann, O.: Near-optimal compression
for the planar graph metric. In: 29th SODA, pp. 530–549 (2018)

3. Alon, N., Nenadov, R.: Optimal induced universal graphs for bounded-degree
graphs. In: 28th SODA, pp. 1149–1157 (2017)

4. Alstrup, S., Dahlgaard, S., Knudsen, M.B.T.: Optimal induced universal graphs
and adjacency labeling for trees. In: 56th FOCS, pp. 1311–1326 (2015)

5. Alstrup, S., Dahlgaard, S., Knudsen, M.B.T., Porat, E.: Sublinear distance label-
ing. In: 24th ESA, pp. 5:1–5:15 (2016)

6. Alstrup, S., Gavoille, C., Halvorsen, E.B., Petersen, H.: Simpler, faster and shorter
labels for distances in graphs. In: 27th SODA, pp. 338–350 (2016)

7. Alstrup, S., Gørtz, I.L., Halvorsen, E.B., Porat, E.: Distance labeling schemes for
trees. In: 43rd ICALP, pp. 132:1–132:16 (2016)

8. Alstrup, S., Kaplan, H., Thorup, M., Zwick, U.: Adjacency labeling schemes and
induced-universal graphs. In: 47th STOC, pp. 625–634 (2015)

9. Bonamy, M., Gavoille, C., Pilipczuk, M.: Shorter labeling schemes for planar
graphs. In: 30th SODA, pp. 446–462 (2020)

10. Bonichon, N., Gavoille, C., Labourel, A.: Short labels by traversal and jumping.
Electron. Notes Discret. Math. 28, 153–160 (2007)

11. Cabello, S.: Subquadratic algorithms for the diameter and the sum of pairwise
distances in planar graphs. ACM Trans. Algorithms 15(2), 21:1-21:38 (2019)

12. Charalampopoulos, P., Gawrychowski, P., Mozes, S., Weimann, O.: Almost optimal
distance oracles for planar graphs. In: 51st STOC, pp. 138–151. ACM (2019)

13. Dujmovic, V., Esperet, L., Gavoille, C., Joret, G., Micek, P., Morin, P.: Adjacency
labelling for planar graphs (and beyond). In: 61st FOCS, pp. 577–588. IEEE (2020)

14. Elias, P.: Universal codeword sets and representations of the integers. IEEE Trans.
Inf. Theory 21(2), 194–203 (1975)

15. Freedman, O., Gawrychowski, P., Nicholson, P.K., Weimann, O.: Optimal distance
labeling schemes for trees. In: 36th PODC, pp. 185–194 (2017)

16. Gavoille, C., Peleg, D., Pérennes, S., Raz, R.: Distance labeling in graphs. J. Algo-
rithms 53(1), 85–112 (2004)

Better Distance Labeling for Unweighted Planar Graphs 441

17. Gawrychowski, P., Kosowski, A., Uznański, P.: Sublinear-space distance labeling
using hubs. In: Gavoille, C., Ilcinkas, D. (eds.) DISC 2016. LNCS, vol. 9888, pp.
230–242. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-53426-
7 17

18. Gawrychowski, P., Mozes, S., Weimann, O., Wulff-Nilsen, C.: Better tradeoffs for
exact distance oracles in planar graphs. In: 29th SODA, pp. 515–529. SIAM (2018)

19. Graham, R.L., Pollak, H.O.: On embedding graphs in squashed cubes. In: Alavi,
Y., Lick, D.R., White, A.T. (eds.) Graph Theory and Applications. LNM, vol. 303,
pp. 99–110. Springer, Heidelberg (1972). https://doi.org/10.1007/BFb0067362

20. Hsu, T.-H., Lu, H.-I.: An optimal labeling for node connectivity. In: Dong, Y.,
Du, D.-Z., Ibarra, O. (eds.) ISAAC 2009. LNCS, vol. 5878, pp. 303–310. Springer,
Heidelberg (2009). https://doi.org/10.1007/978-3-642-10631-6 32

21. Jacobson, G.: Space-efficient static trees and graphs. In: 30th FOCS, pp. 549–554.
IEEE Computer Society (1989)

22. Kannan, S., Naor, M., Rudich, S.: Implicit representation of graphs. SIAM J. Dis-
cret. Math. 5(4), 596–603 (1992)

23. Katz, M., Katz, N.A., Korman, A., Peleg, D.: Labeling schemes for flow and con-
nectivity. SIAM J. Comput. 34(1), 23–40 (2004)

24. Klein, P.N., Mozes, S., Sommer, C.: Structured recursive separator decompositions
for planar graphs in linear time. In: 45th STOC, pp. 505–514. ACM (2013)

25. Korman, A.: Labeling schemes for vertex connectivity. ACM Trans. Algorithms
6(2), 39:1-39:10 (2010)

26. Kosowski, A., Uznański, P., Viennot, L.: Hardness of exact distance queries in
sparse graphs through hub labeling. In: 38th PODC, pp. 272–279 (2019)

27. Lipton, R.J., Tarjan, R.E.: Applications of a planar separator theorem. SIAM J.
Comput. 9(3), 615–627 (1980)

28. Miller, G.L.: Finding small simple cycle separators for 2-connected planar graphs.
J. Comput. Syst. Sci. 32(3), 265–279 (1986)

29. Moon, J.W.: On Minimal n-Universal Graphs. vol. 7, pp. 32–33. Cambridge Uni-
versity Press, Cambridge (1965)

30. Peleg, D.: Informative labeling schemes for graphs. Theor. Comput. Sci. 340(3),
577–593 (2005)

31. Petersen, C., Rotbart, N., Simonsen, J.G., Wulff-Nilsen, C.: Near-optimal adja-
cency labeling scheme for power-law graphs. In: 43rd ICALP, pp. 133:1–133:15
(2016)

32. Weimann, O., Peleg, D.: A note on exact distance labeling. Inf. Process. Lett.
111(14), 671–673 (2011)

https://doi.org/10.1007/978-3-662-53426-7_17
https://doi.org/10.1007/978-3-662-53426-7_17
https://doi.org/10.1007/BFb0067362
https://doi.org/10.1007/978-3-642-10631-6_32

How to Catch Marathon Cheaters:
New Approximation Algorithms

for Tracking Paths

Michael T. Goodrich1 , Siddharth Gupta2, Hadi Khodabandeh1 ,
and Pedro Matias1(B)

1 Department of Computer Science, University of California Irvine, Irvine, USA
{goodrich,khodabah,pmatias}@uci.edu

2 Department of Computer Science, Ben-Gurion University of the Negev,
Beersheba, Israel

siddhart@post.bgu.ac.il

Abstract. Given an undirected graph, G, and vertices, s and t in G,
the tracking paths problem is that of finding the smallest subset of
vertices in G whose intersection with any s-t path results in a unique
sequence. This problem is known to be NP-complete and has applications
to animal migration tracking and detecting marathon course-cutting,
but its approximability is largely unknown. In this paper, we address
this latter issue, giving novel algorithms having approximation ratios of
(1 + ε), O(lgOPT) and O(lg n), for H-minor-free, general, and weighted
graphs, respectively. We also give a linear kernel for H-minor-free graphs.

Keywords: Graph algorithms · Approximation algorithms · Graph
minor · Fixed-parameter tractability · Kernelization · Minor-free
graphs · Road networks

1 Introduction

In most modern marathons, each runner is provided with a small RFID tag,
which is worn on the runner’s shoe or embedded in the runner’s bib. RFID
readers are placed throughout the course and are used to track the progress of
the runners [9,36]. In spite these measures, some runners try to cheat by taking
shortcuts [37]. To detect all possible course-cutting, we are interested in the
combinatorial optimization problem of placing the minimum number of RFID
readers in the environment of a marathon to determine every possible path from
the start to the finish, including paths that deviate from the official course,
just from the sequence of RFID readers that are crossed by a runner taking a
given path. In addition to detecting marathon course-cutting, solutions to this
optimization problem could also allow for a type of marathon where each runner

The full version of this paper is available in [26]. Our research was supported in part
by NSF Grant 1815073 and by the Zuckerman STEM Leadership Program.

c© Springer Nature Switzerland AG 2021
A. Lubiw et al. (Eds.): WADS 2021, LNCS 12808, pp. 442–456, 2021.
https://doi.org/10.1007/978-3-030-83508-8_32

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-83508-8_32&domain=pdf
http://orcid.org/0000-0002-8943-191X
http://orcid.org/0000-0003-3850-6739
http://orcid.org/0000-0003-0664-9145
https://doi.org/10.1007/978-3-030-83508-8_32

New Approximation Algorithms for Tracking Paths 443

could be allowed to map out their own path from the start to finish so long as
their path is at least the required length.

Formally, we model a city road network [18,20,21] through which a marathon
will be run as an undirected graph, G = (V,E), where V is the set of road
intersections and possible RFID reader locations in the city, as well as the
placements of the start and finish lines, and E is the set of road segments joining
two points in V without having any other elements of V in its interior. Given
a start-finish pair, (s, t), of vertices in G, a tracking set for (s, t) is a subset,
T , of V , such that for any s-t path1 P in G, the sequence ST (P) of vertices
in T traversed by P uniquely identifies P . In other words, T is a tracking set
if ST (P) �= ST (Q) for all distinct s-t paths P and Q. We formally define the
optimization problem, which is called the tracking paths problem, as follows:

Tracking(G, s, t):
Input: An undirected simple graph G = (V,E) and vertices s, t ∈ V .
Output: A smallest tracking set for (s, t) in G.

We denote by WeightedTracking the vertex-weighted version, whose goal
is to find a tracking set of least total weight. Further, we denote by k-Tracking
the decision version of Tracking, which asks whether there exists a tracking
set of size at most k (for any given integer k). For conciseness, we refer to the
“tracking set of G”, when s and t are clear from context.

Related Work. Tracking has been shown to be NP-Complete [3], even when
the input graph is planar [19] or has bounded degree [10]. It is fixed-parameter
tractable (FPT): when parameterized by the solution size (a.k.a., the natural
parameter), it admits a quadratic kernel in general and a linear kernel when
the graph is planar [11] (other parameterizations have been studied in [12]).
Further, it admits approximation ratios of 4 [19] for planar graphs and of 2Δ+1
[10] for degree-Δ graphs. Exact polynomial time algorithms exist for bounded
clique-width graphs [19], as well as chordal and tournament graphs [10]. For the
NP-hard variant of tracking only shortest paths between multiple start-finish
pairs, there exists a O(

√
n lg n)-approximation [5]. We refer the reader to the

full version of the paper [26] for more details on related work.

Our Contributions. Our results are summarized below:

1. Linear kernel for H-minor-free graphs. Previously, we only knew of a
linear kernel for planar graphs [11]. This result also immediately implies an
efficient O(1)-approximation.

2. (1 + ε)-approximation for H-minor-free graphs. Previous best was a
4-approximation for planar graphs [19].

3. O(lgOPT)-approximation for Tracking, where OPT denotes the car-
dinality of an optimal tracking set. This is the first algorithm for general
graphs with a non-trivial approximation ratio. Previously, we only knew of a
O(

√
n lg n)-approximation for tracking shortest paths only [5].

1 In this paper, paths do not repeat vertices. We denote a path from u to v by u-v.

444 M. T. Goodrich et al.

4. O(lg n)-approximation for WeightedTracking. This is the first approx-
imation for weighted graphs, among all variants of Tracking.

Preliminaries. We use standard terminology concerning graphs, approximation
algorithms and kernelization, which is detailed in the full version of the paper
[26]. For space considerations, content marked with a link symbol “�” is provided
in more detail and/or proved in the full version of the paper [26].

2 Structural Properties

Definition 1 (Entry-exit subgraph). Let (G, s, t) be an instance of Track-
ing. An entry-exit subgraph is a triple (G′, s′, t′), where G′ is a subgraph of
G, and (s′, t′) is the entry-exit pair corresponding to vertices in C that satisfy
the following conditions:

1. There exists a path s-s′ from s to the entry vertex s′

2. There exists a path t′-t from the exit vertex t′ to t
3. Paths s-s′ and t′-t are vertex-disjoint
4. Path s-s′ (resp. t′-t) and G′ share exactly one vertex: s′ (resp. t′).

Notice that the same subgraph G′ of G may contain multiple entry-exit pairs.

Definition 2 (Entry-exit cycle). An entry-exit cycle is an entry-exit
subgraph (C, s′, t′), where C is a cycle (see Fig. 1).

We say that a vertex v tracks (C, s′, t′) if v ∈ C \ {s′, t′}. Moreover, we say
that (C, s′, t′) is tracked if there exists a tracker in a vertex that tracks it. A
cycle C is tracked if all entry-exit cycles with entry-exit pairs in C are tracked. If
C contains either (i) 3 trackers or (ii) s or t and 1 tracker in a non-entry/non-exit
vertex, then it must be tracked. We say that these cycles are trivially tracked .

We rely on the following alternative characterization of a tracking set, due to
Banik et al. [3, Lemma 2], which establishes Tracking as a covering problem.

Lemma 1 ([3]). For a graph G = (V,E), a subset T ⊆ V is a tracking set if
and only if every simple cycle C in G is tracked with respect to T .

Reduction Rules. Let us recall some reduction rules previously used to obtain
polynomial kernels [3,11] and approximation algorithms [4,10,12,19].

Rule 1. [3] If there exists an edge or vertex that does not participate in any
s-t path, remove it from the graph.

Rule 2. [11] If the degree of s (or t) is 1 and N(s) �= {t} (N(t) �= {s}), then
remove s (t), and label the vertex adjacent to it as s (t).

Rule 3. [19] If there exist adjacent vertices a, b /∈ {s, t} such that deg(a) =
deg(b) = 2, then contract the edge ab.

New Approximation Algorithms for Tracking Paths 445

Fig. 1. Entry-exit pair illustration, with entry vertex s′ and exit vertex t′.

Definition 3. We say that an undirected graph G is reduced by Rule X if it
cannot be further by reduced Rule X. Further, we say that G is reduced if it is
reduced by Rules 1, 2 and 3.

After exhaustive application of Rules 1 and 2, the graph is either a single edge,
(s, t), or all its vertices have degree at least 2. Henceforth, we assume the latter,
since the problem becomes trivial in the former case. Rule 3, which precludes the
existence of adjacent vertices of degree 2, is used to bound the overall number of
degree-2 vertices. Let us highlight a few additional useful consequences of Rule 1.

Remark 1 ([3]). Let G be a graph reduced by Rule 1. Then, every subgraph of
G containing at least one edge has at least one entry-exit pair.

Remark 2 ([3]). Let G be a graph reduced by Rule 1. Then, any tracking set of
G is also an FVS of G.

Remark 3. Let G be a graph reduced by Rule 1. Then the block-cut tree of G
is an s-t path (see Fig. 2).

G1 Gi Gκ

s = s1

tκ = t

s2 si si+1 sκ

t1 ti−1 ti tκ−1

Fig. 2. The block-cut tree of a graph G reduced by Rule 1 (see Remark 4).

In other words, the latter remark says that the graph G that results from
exhaustively applying Rule 1 consists of a sequence of κ ≥ 1 biconnected
components attached together by cut-vertices in a way that is analogous to series
composition in series-parallel graphs. Thus, we can turn an instance (G, s, t) of
Tracking into one or more subproblems on biconnected graphs, (Gi, si, ti), one
for each biconnected component, as depicted in Fig. 2.

Remark 4. � Let G be a graph reduced by Rule 1. Then, an optimal tracking
set for (G, s, t) is the disjoint union of optimal tracking sets for all (Gi, si, ti).

Lower Bounds. We expand on a result by Choudhary and Raman [11], which
provides a lower bound on the size of a tracking set, based on the presence of a
tree-sink structure in the graph.

446 M. T. Goodrich et al.

Definition 4 ([11]). A tree-sink2 in a graph G is a pair (Tr, x), where Tr is a
subtree of G with at least two vertices and x, the sink, a vertex not in Tr that is
adjacent to all the leaves3 of Tr in G. We use G(Tr, x) to denote the subgraph
induced by (Tr, x). (Notice that this definition does not preclude the adjacency
between non-leaf vertices and x.)

Lemma 2 ([11]). Let (Tr, x) be a tree-sink in a reduced graph G, such that
|NTr(x)| = δ. Further let (s′, t′) be an entry-exit pair of G(Tr, x). Then, if
x ∈ {s′, t′}, any tracking set of G contains at least δ − 1 vertices in V (Tr).

The above lemma is a generalization of the lower bound given by the
maximum number of vertex-disjoint paths between any two vertices [3], and
it can be generalized further to obtain a more useful lower bound, established as
the maximum degree among non-cut vertices (this follows from [11, Corollary 5]):

Lemma 3 ([11]). Let G′ be a subgraph of a reduced graph G and x a vertex in
G′, such that G′ − x is connected and NG′(x) = δ. Then, any tracking set of G
contains at least δ − 2 vertices in G′ − x.

3 H-Minor-Free Graphs

A graph is H-minor-free if it does not contain a fixed graph H as a minor.
In this section, we present a linear kernel for H-minor-free graphs and use this
kernel, as well as some ideas intrinsic to its construction, to design an efficient
polynomial-time approximation scheme (EPTAS). An EPTAS is a (1 ± ε)-
approximate algorithm whose running time is O(nc) for an input of size n and
a constant c independent of ε.

Unlike the minimum FVS problem, which also consists of covering cycles,
Tracking is not minor-closed [11] (i.e., an optimal solution for a minor of G may
require more trackers than an optimal solution for G), so the powerful framework
of bidimensionality [22] cannot be used to obtain either linear kernels [30] or
PTASs for H-minor-free graphs [14]. Moreover, Tracking does not possess the
“local” properties required by Baker’s technique to develop EPTASs for planar
graphs [2], or apex-minor-free graphs [17].

Linear Kernel. The following theorem about the sparsity of H-minor-free graphs
will be helpful throughout the section.

Theorem 1 (Mader [31]). Any simple H-minor-free graph with n vertices has
at most σHn edges, where σH depends solely on |V (H)|.

We now give the following lemma concerning a relationship between the sizes
of the vertex sets in certain bipartite minor-free graphs.

2 This is illustrated in [11], or in the full version of the paper [26].
3 We consider a leaf in an unrooted tree to be any vertex of degree 1.

New Approximation Algorithms for Tracking Paths 447

Lemma 4. � Let B = (U ∪ V,E) be a simple H-minor-free bipartite graph,
such that: (i) every vertex in V has degree at least 2, and (ii) there exist at most
δ neighbors in common between any pair u1, u2 in U , i.e., |N(u1) ∩ N(u2)| ≤ δ
for all u1, u2 ∈ U . Then |V | ≤ δσH |U |.

Next, we give a lemma which will be useful throughout the paper.

Lemma 5. � Let F be an FVS of a reduced graph G. Then |V (G − F)| ≤
4|X| − 5, where X is the cut set defined by (F,G − F), consisting of edges with
endpoints in both F and G − F .

We will use Lemmas 4 and 5 above to give, in the next lemma, a linear kernel
for a biconnected reduced H-minor-free graph.

Lemma 6. Let G be a biconnected reduced H-minor-free graph with start s and
finish t. Then, G has at most (16σ2

H + 8σH + 1)OPT − 5 vertices and at most
(20σ2

H +11σH)OPT−6 edges, where OPT denotes the size of an optimal tracking
set of G.

Proof. Let T ∗ be an optimal tracking set of (G, s, t), i.e., |T ∗| = OPT . Note that
G − T ∗ is a forest, since T ∗ is an FVS of G. We assume that |T ∗| ≥ 2, since
otherwise one could check, in polynomial time, which vertex of G belongs to T ∗.
We now give some claims about the structure of G:

Claim 1: Let u1, u2 be two vertices in T ∗. There exist at most 2 trees in G−T ∗

that are adjacent4 to both u1 and u2.

Claim 2: Every tree in G − T ∗ is adjacent to at least 2 vertices in T ∗.

Claim 3: Every tree in G − T ∗ contains at most 2 vertices adjacent to the same
vertex in T ∗.

The first claim follows from Lemma 3. If there existed 3 or more trees adjacent to
both u1 and u2, then the graph G′, induced by u1, u2 and the trees, would require
at least 1 tracker in V (G′)\{u1} and 1 tracker in V (G′)\{u2}, contradicting the
feasibility of T ∗. The last claim also follows from Lemma 3 in a similar fashion.
The second claim follows from the fact that G is biconnected.

To show the bound on the size of the vertex set and the edge set of G, we
construct a new graph as follows. Let us contract each tree Tr in G − T ∗ into a
tree vertex vTr. Let F be the set of all tree vertices. Note that this operation
may create parallel edges between a vertex in T ∗ and a tree vertex, but never
between two vertices in T ∗ or F . Furthermore, we remove any edges between
vertices in T ∗. The resulting graph is bipartite, with vertex set partitioned
into T ∗ and F , and is H-minor-free (since the class of minor-free graphs is
minor-closed). By Claims 1 and 2, any 2 vertices in T ∗ have at most 2 common
neighbors, and every vertex in F is adjacent to at least 2 vertices in T ∗. Hence,
by Lemma 4,

|F | ≤ 2σH |T ∗|.
4 In this context, a tree is adjacent to v if it includes a vertex that is adjacent to v.

448 M. T. Goodrich et al.

As a consequence of Claim 3, there are at most 2 parallel edges between a vertex
in T ∗ and a vertex in F . Thus, by Theorem 1, the set of edges, X, in the bipartite
graph is at most

2 · σH(|F | + |T ∗|) ≤ (4σ2
H + 2σH)|T ∗|.

Notice that X is the cut set defined by (T ∗, G−T ∗), consisting of edges with
endpoints in both T ∗ and G − T ∗. Hence, by Lemma 5, |V (G − T ∗)| ≤ 4|X| − 5,
giving us:

|V (G)| ≤ (16σ2
H + 8σH + 1)|T ∗| − 5.

The edges of G consist of (a) edges in G − T ∗ (at most |V (G − T ∗)| − 1), (b)
the cut set X, and (c) edges with both endpoints in T ∗ (at most σH |T ∗| by
Theorem 1). Thus,

|E(G)| ≤ (4|X| − 6) + |X| + (σH |T ∗|)
≤ (20σ2

H + 11σH)|T ∗| − 6.

�
By Remark 4 and the application of the above lemma to each biconnected

component of a reduced graph, we obtain the following.

Theorem 2. k-Tracking admits a kernel for H-minor-free graphs of size
bounded by (16σ2

H + 8σH + 1)k − 5 vertices and (20σ2
H + 11σH)k − 6 edges.

Corollary 1. Tracking admits a O(1)-approximation for H-minor-free
graphs.

Even though we develop a (1 + ε)-approximation in the next section, the
latter corollary can be more useful in practice, when running time is a concern.

EPTAS. Given the unsuitability of bidimensionality and Baker’s technique
discussed earlier, we shall resort to the use of balanced separators. Our algorithm
relies on balanced separators, sets of vertices whose removal partitions the
graph into two roughly equal-sized parts. Ungar [33] first showed that every n-
vertex planar graph has a balanced separator of size O(

√
n lg3/2 n). This was later

improved by Lipton and Tarjan [28] to
√

8n, and Goodrich [25] showed how to
compute these recursively in linear time. The Lipton-Tarjan separator theorem
has been further refined (e.g., see [13,15]) and generalized to bounded-genus
graphs (e.g., see [16,24]) as well as to H-minor-free graphs (e.g., see [1,32]).

Theorem 3 (Minor-free Separator Theorem [1]). Let G be an H-minor-
free graph with n vertices, where H is a simple graph with h ≥ 1 vertices. Then
a balanced separator for G of size at most c1H

√
n can be found in O(hO(1)nO(1))

time, where c1H is a positive constant depending solely on h.

We use the Minor-free Separator Theorem recursively to decompose the graph
into a set R of edge-disjoint subgraphs, called regions. The vertices of a region
R ∈ R which belong to at least one other region are called boundary vertices
and the set of these vertices is denoted by ∂(R). The remaining vertices of R are
called interior vertices and are denote by int(R).

New Approximation Algorithms for Tracking Paths 449

Definition 5 (Relaxed r-division). A relaxed r-division of an n-vertex
graph G is a decomposition of G into Θ(n/r) regions, each of which has at
most r vertices, such that the total number boundary vertices is O(n/

√
r).

Computing a relaxed r-division is the first step in Frederickson’s algorithm
[23] for constructing an r-division in a planar graph, a decomposition which
additionally requires every region to have O(

√
r) boundary vertices (we won’t

need this property). Both decompositions can easily be generalized to any class
of graphs that is characterized by the existence of sublinear balanced separators,
which includes H-minor-free graphs.

Theorem 4 (Minor-free Separator Theorem (3) + Frederickson [23]).
There is an O(n lg n) algorithm that, given an H-minor-free graph G and a
positive integer r, computes a relaxed r-division of G.

Our strategy will be to (i) construct a relaxed r-division of a smaller graph,
K, which is itself an O(1)-approximate tracking set, (ii) solve optimally for each
region, and (iii) combine the solutions for each region into a solution for the
original graph with quality comparable to that of an optimal solution. This
approach has been used to obtain EPTASs for minimum FVS [6,39], maximum
independent set [29] and minimum vertex cover [8]. However, and in contrast
to these problems, the step of constructing a close to optimal solution from
the solutions of each region is not obvious. Indeed, the difficulty of this step
emerges from the very “nonlocal” structure of Tracking, which requires special
attention to the location of (s, t) in the graph, in addition to the nonlocal
structure of cycles. Our EPTAS is as follows:

1. Compute a linear kernel K of G by reducing it with Rules 1, 2, 3, such
that an optimal tracking set of K is Ω(|V (K)|) (see Corollary 1).

2. Compute a relaxed r-division R of K with r = (2c1Hc2H(c3H + 1)/ε)2, for
any choice of ε > 0 and constants c1H , c2H , c3H > 0 specified later.

3. For each region R in R, compute an optimal tracking set OPT (R) for
the subset of entry-cycles (with respect to (s, t)) which are completely
contained in R.

4. Output T =
⋃

R∈R (OPT (R) ∪ ∂(R) ∪ N (R)).
Here, N (R) := NΠ(R)(∂(Π(R))) defines an appropriate neighborhood of
the boundary vertices of R, where Π(R) is the subgraph of R consisting
of the union of each path in R that: (i) is not an edge, (ii) has ∂(R)
vertices as endpoints, and (iii) traverses no internal vertices that are
in OPT (R). We let ∂(Π(R)) := ∂(R) ∩ Π(R). See Fig. 3.

We will now give the details of the algorithm and its correctness. We refer
to the Reduction Rules defined in Sect. 2. As a reminder, after exhaustive
application of Rules 1 and 2, the graph is either a single edge between s and t,
or all its vertices have degree at least 2. Henceforth, we will assume the latter,
since a minimum tracking set is trivial in the former. Notice that none of the
reduction rules introduce trackers, so there is no lifting required at the end of
our algorithm, i.e., adding back any trackers introduced during the reduction.

450 M. T. Goodrich et al.

Observation 1. No entry-exit cycles are removed during Rules 1, 2 or 3, so
a tracking set of the resulting kernel K is a tracking set of the input graph G.
Therefore, any minimum tracking set of K is also a minimum tracking set of G.

Next, we explain how to compute in polynomial time optimal tracking sets
for each region in a relaxed r-division of a kernel K.

Lemma 7. � Let C(R) be the set of all entry-exit cycles in G whose vertices are
a subset of V (R), where R is a subgraph of G. Then one can compute a minimum
subset of V (R) that tracks every entry-cycle of C(R) in O(2|V (R)| · nO(1)) time.

Let us now argue that our algorithm computes a (1+ε)-approximate tracking
set. Let T =

⋃
R∈R (OPT (R) ∪ ∂(R) ∪ N (R)) be the output of the algorithm.

Lemma 8. � T is a tracking set of the input graph G.

Let us denote by OPT the size of an optimal tracking set of the input graph
G. To argue that |T | ≤ (1+ε)OPT , we will need to argue that the set of trackers
in the special neighborhoods defined by N (R), for all regions R, have small
cardinalities, i.e., roughly equal to O(εOPT). This is the key argument to our
EPTAS, which the next lemma addresses. Its proof is not immediately obvious,
since the number of neighbors of all boundary vertices could be Ω(OPT), a
consequence of the quadratic gap between |∂(R)| and |V (R)|.
Lemma 9. � |N (R)| ≤ c3H |∂(Π(R))|, where c3H ≥ 9σ2

H + 3σH .

Proof. (Sketch) The set of untracked cycles between 2 regions R and R′, which
must exist in Π(R) ∪ Π(R′), induces a forest on either region if we remove
∂(R) and ∂(R′). Using arguments similar to those in the proof of Lemma 6,
we can show that the bipartite graph with bipartition (F, ∂(Π(R))) has the
properties required by Lemma 4, but also that there exists O(1) edges between
a tree and a boundary vertex, where F is the set of trees in Π(R) − ∂(Π(R)).
As a consequence, we can get an appropriate bound on the number of edges in
this bipartite graph, from which the lemma follows. (See [26] for details.)
�

R

Fig. 3. Illustration of Π(R) and of N (R) for a region R in a relaxed r-division R.
Vertices in ∂(R) are depicted in red circles. Π(R) consists of the union of all boundary-
to-boundary paths in R (solid black), which are not edges and do not traverse OPT (R)
(green crosses). The dashed lines represent paths in R − Π(R). N (R) is depicted in
blue squares. (Color figure online)

New Approximation Algorithms for Tracking Paths 451

Before proving that the output of our algorithm is a (1 + ε)-approximate
tracking set, let us first recall a result from Frederickson [23, Lemma 1], which
concerns the sum, for each boundary vertex b of the number of regions Δ(b)
containing b in a relaxed r-division R of a planar graph. Even though this
result was given in the context of planar graphs, it can easily be generalized to
any graph whose subgraphs G′ admit balanced separators of size O(

√|V (G′)|).
We denote the set of all boundary vertices by ∂(R). Further, let B(R) =∑

b∈∂(R) (Δ(b) − 1).

Lemma 10 ([23]). Let R be a relaxed r-division of an n-vertex graph whose
subgraphs G′ admit balanced separators of size at most c

√|V (G′)|. Then B(R) ≤
c · n/

√
r, for a constant c independent of r and n.

We will use the latter lemma to bound the overall number of trackers in the
next theorem.

Theorem 5. Tracking admits an EPTAS for H-minor-free graphs.

Proof. Consider the algorithm given at the beginning of the section. As a
reminder, let T =

⋃
R∈R (OPT (R) ∪ ∂(R) ∪ N (R)) be the output of the

algorithm, for a relaxed r-division R of a kernel K of G, where OPT (R) is
the optimal tracking set computed with respect to entry-exit cycles in R. By
Lemma 8, T is a tracking set. Next, we argue about the approximation ratio. By
a union bound,

|T | ≤ |∂(R)| +
∑

R∈R
|OPT (R)| +

∑

R∈R
|N (R)|.

Let n′ = |V (K)| be the number of vertices in K. Clearly, |∂(R)| ≤ B(R).
Moreover, we have that

∑
R∈R |∂(R)| ≤ 2B(R), so by Lemma 9, we have:
∑

R∈R
|N (R)| ≤ 2c3HB(R).

Let T ∗ be an optimal tracking set of K, i.e., |T ∗| = OPT (by Observation 1).
Since T ∗ is a tracking set, but not necessarily an optimal one, for all entry-exit
cycles within any region R ∈ R, we have that |OPT (R)| ≤ |T ∗ ∩ V (R)|. Thus,

∑

R∈R
|OPT (R)| ≤ OPT + B(R).

Overall, for r = (2c1Hc2H(c3H + 1)/ε)2,

|T | ≤ OPT + 2(c3H + 1)B(R)

≤ OPT + 2c1H(c3H + 1)n′/
√

r (Lemma 10, Theorem 3)

≤ OPT + 2c1Hc2H(c3H + 1)OPT/
√

r (Theorem 2, c2H ≥ 16σ2
H + 8σH + 1)

= (1 + ε)OPT .

452 M. T. Goodrich et al.

Step 1 of the algorithm takes O(nO(1)) time, since it consists of applying
Rules 1, 2, 3. Step 2 can be done in O(n lg n) time [23]. Step 3 takes O(2r ·nO(1))
time, by Lemma 7. Finally, step 4 takes O(nO(1)) time. Overall, these amount to
O(2O(1/ε2)nO(1)).
�

4 General Graphs

In this section, we derive an O(lg n)-approximation algorithm for Weighted-
Tracking on general graphs, as well as an O(lgOPT)-approximation algorithm
for Tracking.

We reduce an instance (G, s, t, w′) of WeightedTracking, for a weight
function w′ : V (G) → Q, into an instance (U ,X , w) of SetCover, which asks
for the sub-collection of X of minimum total weight, whose union equals the
universe U . Here, (U ,X) defines a set system, i.e., a collection X of subsets of a
set U , and w is the weight function w : X → Q. It is well known that there exist
greedy polynomial-time algorithms achieving approximation ratios of (1+ lnM)
or of (1 + Δ) [35,38], where M is the size of the largest set in X and Δ is the
maximum number, over all elements u in U , of sets in X that contain u.

Let C be the set of all entry-exit cycles in our input graph G, which we assume
w.l.o.g. to be reduced by Rule 1. Further, let CF be the set of all entry-exit cycles
in G, each of which contains at most 2 vertices from the subset F ⊆ V . That is,
CF := {(C, s′, t′) ∈ C : |C ∩ F | ≤ 2}. Our algorithm is as follows.

1. Compute a 2-approximate FVS F of G (see [35,38]).
2. Use the greedy algorithm of [35,38] to compute an approximate set

covering, S ⊆ V (G), for an instance (U ,X , w) of SetCover where:
(i) the universe, U , of elements to be covered is CF

(ii) the collection of covering sets, X , is a 1-1 correspondence with V (G),
where each covering set with corresponding vertex v is the subset of
CF which are tracked by v, that is,

X = {{(C, s′, t′) ∈ CF | v tracks (C, s′, t′)}}v∈V (G).

(iii) the weight function w is the weight function w′ defined for
WeightedTracking, given the 1-1 correspondence between X and
V (G).

3. Output T = S ∪ F .

We can show that |CF | = O(nO(1)). From the observation that every tracking
set F is an FVS (see Remark 2), it follows that there are at most O(nO(1)) entry-
exit cycles not tracked by F . Thus, our claim follows (details in [26]).

Theorem 6. � WeightedTracking admits an O(lg n)-approximation.

Unweighted Graphs. We show that the dual of the above set cover formulation
has bounded VC-dimension [27,34]. This immediately improves the approxima-
tion ratio to O(lgOPT) for Tracking (unweighted version) as a consequence of

New Approximation Algorithms for Tracking Paths 453

a result by Brönnimann and Goodrich [7], which establishes an approximation-
ratio of O(d lg(dc)) for unweighted set cover instances with dual VC-dimension
d and optimal covers of size at most c.

Let (U ,X) be a set system and Y a subset of U . We say that Y is shattered
if X ∩Y = 2Y , where X ∩Y := {X ∩Y | X ∈ X}. In other words, Y is shattered
if the set of intersections of Y with each X ∈ X contains all the possible subsets
of Y . The set system (U ,X) has VC-dimension d if d is the largest integer for
which there exists a subset Y ⊆ U , of cardinality |Y | = d, that can be shattered.

The dual problem of an unweighted instance (U ,X) of SetCover is finding
a hitting set of minimum size, where a hitting set is a subset of U that has a
non-empty intersection with every set in X . In our case, it corresponds to finding
the smallest subset of entry-exit cycles that covers every vertex, where a vertex
is covered if it tracks least one entry-exit cycle in the subset. This is equivalent to
an unweighted instance of SetCover with set system (V, C∗

F), where V = V (G)
and C∗

F := {V (C) \ {s′, t′} : (C, s′, t′) ∈ CF } is the collection of sets, one for each
entry-exit cycle, of vertices which can track that entry-exit cycle.

Lemma 11. The set system (V, C∗
F) has VC-dimension at most 9.

Proof. We show that there exists no subset Y ⊆ V of size |Y | ≥ 10 that can be
shattered by C∗

F . Since every element of C∗
F contains at most 2 vertices from F

(by definition of CF), we cannot have more than 2 vertices from F in Y (since
we would then require an entry-exit cycle containing at least 3 vertices in F to
shatter Y). Thus, the lemma follows if we show that no subset Y ⊆ V \ F of
size |Y | ≥ 8 can be shattered by C∗

F . Let us assume, by contradiction, that this
is possible. Then, if Y ⊆ V \ F is to be shattered by C∗

F , there must exist 2
entry-exit cycles (C1, s

′
1, t

′
1) and (C2, s

′
2, t

′
2) in CF , such that5:

– C1 traverses all vertices of Y , say in the order y1, y2, . . . , y|Y | (for all yj ∈ Y),
– C2 traverses every other vertex of Y traversed by C1, say Y ′ =

{y2, y4, . . . , y|Y |}, but not necessarily in the same order (we assume w.l.o.g.
|Y | is even).

Consider the graph consisting of the union of the cycles C1, C2. Let us contract
every shared edge between C1, C2. Note that C1 remains a cycle that traverses
Y and C2 remains a cycle that traverses Y ′ but not any vertex of Y \ Y ′. So we
can safely assume that C1 and C2 do not share any edges. Thus, the union of
C1, C2 is a graph with |C1| + |C2| − |Y |/2 vertices and |C1| + |C2| edges. Since
both entry-exit cycles are in CF , each of C1, C2 shares at most 2 vertices with
F . Let us remove such vertices, say there’s k ≤ 4 of them. The result is a graph
with |C1| + |C2| − |Y |/2 − k vertices and, at best, |C1| + |C2| − 2k edges (the
removed vertices cannot be in Y , so they have degree 2). In order for this graph
to be acyclic (since F is an FVS by Remark 2, and our contractions preserve
cycles) we would then require |Y | < 8 (since any acyclic graph with n vertices
has at most n − 1 edges), a contradiction.
�
5 This is illustrated in the full version of the paper [26].

454 M. T. Goodrich et al.

The above lemma, combined with the result of Brönnimann and Goodrich
[7] gives us the following.

Theorem 7. Tracking admits an O(lgOPT)-approximation, where OPT is
the size of an optimal tracking set.

References

1. Alon, N., Seymour, P.D., Thomas, R.: A separator theorem for graphs with an
excluded minor and its applications. In: Ortiz, H. (ed.) STOC, pp. 293–299. ACM
(1990). https://doi.org/10.1145/100216.100254

2. Baker, B.S.: Approximation algorithms for NP-complete problems on planar
graphs. J. ACM 41(1), 153–180 (1994). https://doi.org/10.1145/174644.174650

3. Banik, A., Choudhary, P., Lokshtanov, D., Raman, V., Saurabh, S.: A polynomial
sized kernel for tracking paths problem. Algorithmica 82(1), 41–63 (2019). https://
doi.org/10.1007/s00453-019-00602-8

4. Banik, A., Katz, M.J., Packer, E., Simakov, M.: Tracking paths. In: Fotakis, D.,
Pagourtzis, A., Paschos, V.T. (eds.) CIAC 2017. LNCS, vol. 10236, pp. 67–79.
Springer, Cham (2017). https://doi.org/10.1007/978-3-319-57586-5 7

5. Bilò, D., Gualà, L., Leucci, S., Proietti, G.: Tracking routes in communication
networks. Theor. Comput. Sci. 844, 1–15 (2020). https://doi.org/10.1016/j.tcs.
2020.07.012

6. Borradaile, G., Le, H., Zheng, B.: Engineering a PTAS for minimum feedback
vertex set in planar graphs. In: Kotsireas, I., Pardalos, P., Parsopoulos, K.E.,
Souravlias, D., Tsokas, A. (eds.) SEA 2019. LNCS, vol. 11544, pp. 98–113. Springer,
Cham (2019). https://doi.org/10.1007/978-3-030-34029-2 7

7. Brönnimann, H., Goodrich, M.T.: Almost optimal set covers in finite VC-
dimension. Discret. Comput. Geom. 14(4), 463–479 (1995). https://doi.org/10.
1007/BF02570718

8. Chiba, N., Nishizeki, T., Saito, N.: Applications of the Lipton and Tarjan’s planar
separator theorem. J. Inf. Process 4(4), 203–207 (1981)

9. Chokchai, C.: Low cost and high performance UHF RFID system using Arduino
based on IoT applications for marathon competition. WPMC 2018, 15–20 (2018).
https://doi.org/10.1109/WPMC.2018.8713018

10. Choudhary, P.: Polynomial time algorithms for tracking path problems. In:
G ↪asieniec, L., Klasing, R., Radzik, T. (eds.) IWOCA 2020. LNCS, vol. 12126, pp.
166–179. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-48966-3 13

11. Choudhary, P., Raman, V.: Improved kernels for tracking path problems. CoRR
abs/2001.03161 (2020). http://arxiv.org/abs/2001.03161

12. Choudhary, P., Raman, V.: Structural parameterizations of tracking paths
problem. In: Cordasco, G., Gargano, L., Rescigno, A.A. (eds.) CEUR. CEUR
Workshop Proceedings, vol. 2756, pp. 15–27. CEUR-WS.org (2020)

13. Chung, F.R.: Separator theorems and their applications. Universität Bonn, Institut
für Ökonometrie und Operations Research (1988)

14. Demaine, E.D., Hajiaghayi, M.T.: Bidimensionality: new connections between FPT
algorithms and PTASs. In: SODA, pp. 590–601. SIAM (2005)

15. Djidjev, H., Venkatesan, S.M.: Reduced constants for simple cycle graph
separation. Acta Informatica 34(3), 231–243 (1997). https://doi.org/10.1007/
s002360050082

https://doi.org/10.1145/100216.100254
https://doi.org/10.1145/174644.174650
https://doi.org/10.1007/s00453-019-00602-8
https://doi.org/10.1007/s00453-019-00602-8
https://doi.org/10.1007/978-3-319-57586-5_7
https://doi.org/10.1016/j.tcs.2020.07.012
https://doi.org/10.1016/j.tcs.2020.07.012
https://doi.org/10.1007/978-3-030-34029-2_7
https://doi.org/10.1007/BF02570718
https://doi.org/10.1007/BF02570718
https://doi.org/10.1109/WPMC.2018.8713018
https://doi.org/10.1007/978-3-030-48966-3_13
http://arxiv.org/abs/2001.03161
https://doi.org/10.1007/s002360050082
https://doi.org/10.1007/s002360050082

New Approximation Algorithms for Tracking Paths 455

16. Djidjev, H.N.: A linear algorithm for partitioning graphs of fixed genus. Serdica.
Bulgariacae mathematicae publicationes 11(4), 369–387 (1985)

17. Eppstein, D.: Diameter and treewidth in minor-closed graph families. Algorithmica
27(3), 275–291 (2000). https://doi.org/10.1007/s004530010020

18. Eppstein, D., Goodrich, M.T.: Studying (non-planar) road networks through an
algorithmic lens. In: SIGSPATIAL. GIS, ACM (2008). https://doi.org/10.1145/
1463434.1463455

19. Eppstein, D., Goodrich, M.T., Liu, J.A., Matias, P.: Tracking paths in planar
graphs. In: Lu, P., Zhang, G. (eds.) ISAAC. LIPIcs, vol. 149, pp. 54:1–54:17.
Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2019). https://doi.org/10.
4230/LIPIcs.ISAAC.2019.54

20. Eppstein, D., Gupta, S.: Crossing patterns in nonplanar road networks. In:
SIGSPATIAL. GIS, ACM (2017). https://doi.org/10.1145/3139958.3139999

21. Eppstein, D., Khodabandeh, H.: On the edge crossings of the greedy spanner.
CoRR abs/2002.05854 (2020). https://arxiv.org/abs/2002.05854

22. Fomin, F.V., Demaine, E.D., Hajiaghayi, M.T., Thilikos, D.M.: Bidimensionality.
In: Kao, M.-Y. (ed.) Encyclopedia of Algorithms, pp. 203–207. Springer, Heidelberg
(2016). https://doi.org/10.1007/978-1-4939-2864-4 47

23. Frederickson, G.N.: Fast algorithms for shortest paths in planar graphs, with
applications. SIAM J. Comput. 16(6), 1004–1022 (1987). https://doi.org/10.1137/
0216064

24. Gilbert, J.R., Hutchinson, J.P., Tarjan, R.E.: A separator theorem for graphs of
bounded genus. J. Algorithms 5(3), 391–407 (1984). https://doi.org/10.1016/0196-
6774(84)90019-1

25. Goodrich, M.T.: Planar separators and parallel polygon triangulation. J. Comput.
Syst. Sci. 51(3), 374–389 (1995)

26. Goodrich, M.T., Gupta, S., Khodabandeh, H., Matias, P.: How to catch marathon
cheaters: new approximation algorithms for tracking paths. CoRR abs/2104.12337
(2021). https://arxiv.org/abs/2104.12337

27. Haussler, D., Welzl, E.: ε-nets and simplex range queries. Discret. Comput. Geom.
2(2), 127–151 (1987). https://doi.org/10.1007/BF02187876

28. Lipton, R.J., Tarjan, R.E.: A separator theorem for planar graphs. SIAM J. Appl.
Math. 36(2), 177–189 (1979)

29. Lipton, R.J., Tarjan, R.E.: Applications of a planar separator theorem. SIAM J.
Comput. 9(3), 615–627 (1980). https://doi.org/10.1137/0209046

30. Lokshtanov, D.: Kernelization, bidimensionality and kernels. In: Kao, M.-Y. (ed.)
Encyclopedia of Algorithms, pp. 1006–1011. Springer, Heidelberg (2016). https://
doi.org/10.1007/978-1-4939-2864-4 526

31. Mader, W.: Homomorphiesätze für graphen. Math. Ann. 178(2), 154–168 (1968)
32. Reed, B.A., Wood, D.R.: A linear-time algorithm to find a separator in a graph

excluding a minor. ACM Trans. Algorithms 5(4), 39:1–39:16 (2009). https://doi.
org/10.1145/1597036.1597043

33. Ungar, P.: A theorem on planar graphs. J. Lond. Math. Soc. 1(4), 256–262 (1951)
34. Vapnik, V.N., Chervonenkis, A.Y.: On the uniform convergence of relative

frequencies of events to their probabilities. In: Vovk, V., Papadopoulos, H.,
Gammerman, A. (eds.) Measures of Complexity, pp. 11–30. Springer, Cham (2015).
https://doi.org/10.1007/978-3-319-21852-6 3

35. Vazirani, V.V.: Approximation Algorithms. Springer, Heidelberg (2001)
36. Want, R.: An introduction to RFID technology. IEEE Pervasive Comput. 5(1),

25–33 (2006). https://doi.org/10.1109/MPRV.2006.2

https://doi.org/10.1007/s004530010020
https://doi.org/10.1145/1463434.1463455
https://doi.org/10.1145/1463434.1463455
https://doi.org/10.4230/LIPIcs.ISAAC.2019.54
https://doi.org/10.4230/LIPIcs.ISAAC.2019.54
https://doi.org/10.1145/3139958.3139999
https://arxiv.org/abs/2002.05854
https://doi.org/10.1007/978-1-4939-2864-4_47
https://doi.org/10.1137/0216064
https://doi.org/10.1137/0216064
https://doi.org/10.1016/0196-6774(84)90019-1
https://doi.org/10.1016/0196-6774(84)90019-1
https://arxiv.org/abs/2104.12337
https://doi.org/10.1007/BF02187876
https://doi.org/10.1137/0209046
https://doi.org/10.1007/978-1-4939-2864-4_526
https://doi.org/10.1007/978-1-4939-2864-4_526
https://doi.org/10.1145/1597036.1597043
https://doi.org/10.1145/1597036.1597043
https://doi.org/10.1007/978-3-319-21852-6_3
https://doi.org/10.1109/MPRV.2006.2

456 M. T. Goodrich et al.

37. Wikipedia contributors: Marathon course-cutting (2019). https://en.wikipedia.
org/wiki/Marathon course-cutting. Accessed 16 Feb 2021

38. Williamson, D.P., Shmoys, D.B.: The Design of Approximation Algorithms.
Cambridge University Press, Cambridge (2011)

39. Zheng, B.: Approximation schemes in planar graphs. Ph.D. thesis, Oregon State
University (2018). https://ir.library.oregonstate.edu/concern/graduate thesis or
dissertations/7w62ff609. Accessed 07 Jan 2021

https://en.wikipedia.org/wiki/Marathon_course-cutting
https://en.wikipedia.org/wiki/Marathon_course-cutting
https://ir.library.oregonstate.edu/concern/graduate_thesis_or_dissertations/7w62ff609
https://ir.library.oregonstate.edu/concern/graduate_thesis_or_dissertations/7w62ff609

Algorithms for Radius-Optimally
Augmenting Trees in a Metric Space

Joachim Gudmundsson and Yuan Sha(B)

The University of Sydney, Sydney, NSW 2006, Australia
joachim.gudmundsson@sydney.edu.au, ysha3185@uni.sydney.edu.au

Abstract. Let T be a tree with n vertices embedded in a metric space.
We consider the problem of adding one edge to T to minimize the radius
of the resulting graph.

For the continuous version of the problem where a center may be a
point in the interior of an edge of the graph we give a linear time algo-
rithm. In the case when the center is restricted to lie on a vertex, the
discrete version, we give an O(n logn) expected time algorithm.

Previously linear-time algorithms were known for the special case
when the input graph is a path.

1 Introduction

Given a graph and a positive integer k. The Radius-Optimally Augmenting Graph
(roag) problem asks to add k edges to graph such that the radius of the resulting
graph is minimized.

Let G = (V,E) be a graph with n vertices. A point on G can be either at a
vertex of G, or in the interior of an edge of E. The eccentricity of a point c on G
is the maximum shortest path length from c to all the vertices of G. The point
c on G with minimum eccentricity is called the center of G, and the eccentricity
of c is said to be the radius of G.

Two variants have been considered in the literature: the discrete version when
the center is restricted to lie on a vertex of G and the continuous version where
a center may be a point in the interior of an edge of G.

The discrete version of the problem cannot be approximated within a factor
of (5/3 − ε) in polynomial time, for any ε > 0, unless P = NP [10]. In the same
paper a cubic time algorithm is given for the case when G is a metric tree. For
the special case when k = 1 and the input graph is a path embedded in a metric
space, Johnson and Wang [11] gave a linear-time algorithm for the continuous
version and recently Wang and Zhao [16] gave a linear-time algorithm for the
discrete version.

In this paper we consider the case when the input graph is a tree T = (V,E)
embedded in a metric space and k = 1, that is, add one edge e ∈ V 2 \ E to T
such the radius of the resulting graph T ′ = T ∪ {e} is minimized. We refer to
this problem as the Radius-Optimally Augmenting Trees problem, or roat for
short. We prove the following two results:
c© Springer Nature Switzerland AG 2021
A. Lubiw et al. (Eds.): WADS 2021, LNCS 12808, pp. 457–470, 2021.
https://doi.org/10.1007/978-3-030-83508-8_33

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-83508-8_33&domain=pdf
https://doi.org/10.1007/978-3-030-83508-8_33

458 J. Gudmundsson and Y. Sha

– a linear-time algorithm for the continuous version, and
– an O(n log2 n) time algorithm for the discrete case, which is then improved

to O(n log n) expected time by a randomization.

The roag problem is closely related to the problem of minimising the diam-
eter of the augmented graph, which has received considerable attention in the
community [3,6–8]. The general diameter-optimally augmentation problem of
adding k edges to a graph was shown to be NP-hard [13] and even W [2]-
hard [7,8]. Due to the hardness of the problem a number of approximation
algorithms and special cases have been considered. Below we only discuss exact
algorithms for restricted graphs for k = 1 since it is more relevant to our setting.

Most of the existing research has focused on the discrete case where only ver-
tices are considered. In 2015 Große et al. [9] gave an O(n log3 n) time algorithm
for the case when the input graph is a metric path. Wang [14] later improved
the running time to O(n log n). For metric trees Bilò [2] gave an O(n log n) time
algorithm. Note that Bilò’s algorithm cannot be used to solve our ROAT prob-
lem. Section 3 Fig. 2(b) gives an example where the optimal shortcut for the
discrete ROAT problem is not the optimal shortcut for minimizing the diame-
ter of the augmented graph. For arbitrary trees the problem is harder. Oh and
Ahn [12] argued for an Ω(n2) lower bound and designed an O(n2 log3 n) time
algorithm for the problem. Very recently, Wang and Zhao [15] gave an improved
O(n2 log n) time algorithm for the problem.

Less is known for the continuous case. For paths in the Euclidean plane De
Carufel et al. showed a linear-time algorithm [4], and for trees in the Euclidan
plane an O(n log n) time algorithm was presented [5]. Oh and Ahn [12] also
considered the continuous version in their paper and gave an O(n2 log3 n) time
algorithm for arbitrary trees.

1.1 Our Approach

For both the discrete roat and continuous roat, we start by pre-computing a
longest path P in T , which can be done in linear time. For the continuous version
we then prove that there exists an optimal solution (u, v) such that both u and
v lie on P . By using this observation we are able to reduce the continuous roat
problem to the Radius-Optimally Augmenting Monotone vertex-Weighted Paths
(roamwp problem) by making a vertex-weight transformation. The continuous
roamwp problem can be solved by applying the algorithm by Johnson and Wang
for paths [11] with only one minor modification. Each step of the algorithm only
requires linear time.

For the discrete version the situation is slightly more complicated. For this
case we observe that there exists an optimal edge such that one of the endpoints
of the optimal edge must lie on the longest path and the other endpoint must
coincide with the center of the augmented graph. We develop an O(n log2 n)
time algorithm, which is then improved to O(n log n) expected time by using a
randomization.

Algorithms for Radius-Optimally Augmenting Trees in a Metric Space 459

2 Preliminaries

We will briefly define some of the notations that will be used throughout the
paper. For a graph G embedded in a metric space, let |uv| denote the distance
between two vertices u and v in V and let dG(u, v) denote the length of the
shortest path between u and v. The eccentricity of a point p on G, denoted as
eccG(p), is the length of the longest shortest path from p to all the vertices of
G. The point c in G with the smallest eccentricity is called the center of G.

Let P = 〈v1, v2, . . . , vn〉 be a path embedded in a metric space. For any two
points p and q on P , let P (p, q) denote the subpath of P between p and q. For
any two vertices vi and vj on P , let G(i, j) = P ∪ (vi, vj).

If each vertex vk, 1 � k � n, in P is assigned a weight w(k), then P is said
to be vertex weighted. The vertex-weighted distance from a point p to a vertex
vj is dP (p, vj) + w(j), i.e. the path length from p to vj plus the weight of vj .
Similarly, the vertex-weighted distance from a point p on G(i, j) to a vertex vj

in G(i, j) is dG(i,j)(p, vj) + w(j).
For a tree T , let T (p, q) denote the unique simple path between two points p

and q on T .

3 An O(n logn) Expected Time Algorithm for the
Discrete ROAT problem

As input we are given a tree T = (V,E) embedded in a metric space. We consider
the discrete version of the roat problem where the center of the augmented
graph is restricted to lie on a vertex of V . The presented algorithm will consider
two different cases: (1) the center of the augmented tree lies on a longest path
P of T (Sect. 3.1), and (2) the center of the augmented tree does not lie on P
(Sect. 3.2).

Given a vertex v in T , consider the problem of adding an edge to T such that
the augmented tree T ′ minimizes the eccentricity of v. We call this problem the
Eccentricity Augmenting Tree (eat) problem with respect to v. We start with
the following useful lemma.

Lemma 1. Given a tree T = (V,E) embedded in a metric space and a vertex s
in V , there is an optimal solution (s, q) for the eat problem with respect to s.

Proof. Assume (u, v) is added to T such that the eccentricity of s is minimized
in G = (V,E ∪ {(u, v)}). Let T ∗ be the shortest path tree of G rooted at s, as
illustrated in Fig. 1a. If (u, v) is incident to s then the lemma holds immediately.
Otherwise (u, v) is not incident to s. We will prove that (u, v) can be replaced by
either (s, u) or (s, v) such that the eccentricity of s in the resulting graph does
not increase.

If (u, v) is an edge in T ∗, there is a set U of vertices that use (u, v) on their
shortest paths to s. Without loss of generality, assume u is closer to s than v, as
in Fig. 1. The set U consists of all the vertices in the subtree T ∗(v) of T ∗ rooted
at v. By triangle inequality, we have |sv| � dT ∗(s, v). Replace (u, v) by (s, v).

460 J. Gudmundsson and Y. Sha

T ∗

(a) (b)

Fig. 1. (a) A shortest path tree T ∗ of T rooted at s. (b) Illustration for the proof of
Lemma 2.

Then every vertex in U now have a path to s no longer than its path to s in T ∗.
Vertices not in U can still use their paths to s in T ∗. So the eccentricity of s in
the graph after replacement has not increased.

If (u, v) is not an edge in T ∗ then we can replace (u, v) by either (s, u) or
(s, v). Since every vertex can still use its shortest path in T ∗, the eccentricity of
s does not increase. This completes the proof. ��

3.1 Case 1: The Center Lies on P

We start by considering the case when the center of the optimal augmented tree
lies on the longest path of T . Consider a longest path P = 〈v1, . . . , vm〉 of T ,
which can be computed in O(n) time. If we remove the edges in P we obtain a
forest with m trees. Let Ti, 1 � i � m, be the tree rooted at vi.

Next we prove that there exists an optimal edge (x, u) for the eat problem
with respect to v for which x coincides with v and u lies on P .

Lemma 2. Given a tree T embedded in a metric space and a vertex vi on the
longest path P = 〈v1, . . . , vm〉 of T , there exists an optimal solution (x, u) for
the eat problem with respect to vi such that x coincides with vi and u lies on
the subpath of P between vi and vl where l = arg max

k∈{1,m}
{dP (vi, vk)}.

Proof. Without loss of generality, assume vl = vm, hence, dP (vi, vm) �
dP (vi, v1), as shown in Fig. 1(b).

According to Lemma 1, x coincide with vi. Consider the placement of u, and
assume that it belongs to the tree Tj , 1 � j � m. If j � i then the eccentricity of
vi is not reduced by adding (vi, u) since the eccentricity is decided by dT (vi, vm).

It remains to consider the case when j > i and u does not coincide with vj .
We will show that edge (vi, vj) is at least as good as (vi, u). We may assume
that |viu| + dT (u, vj) � dP (vi, vj) since otherwise the eccentricity of vi is again
equal to dT (vi, vm) and we are done. Let T ∗ = T ∪ (vi, u). For any vertex q in
Tj we have

Algorithms for Radius-Optimally Augmenting Trees in a Metric Space 461

dT ∗(vi, q) � |viu| + dT (u, vj) + dT (vj , q)
� |viu| + dT (u, vj) + dP (vj , vm)
= dT ∗(vi, vm).

Thus the vertex farthest from vi in ∪i<j�mTj is either vm or a vertex on Tk

where i < k < j. By the triangle inequality, |viu| + dT (u, vj) � |vivj | which
implies that any edge from vi to a vertex in Tj can not be better than the edge
(vi, vj). This proves the lemma. ��

The above lemma states that if the center of the optimal augmented tree lies
on P then we only need to consider shortcuts with one endpoint at this center
and the other endpoint at a vertex of P . A possible approach is to compute an
optimal shortcut (eat) for every vertex on the longest path P . The vertex on
the longest path with smallest eccentricity in the augmented tree (for eat) is
the center, and the computed edge is the final output.

Following the observation made in Lemma2, one approach would be to scan
P from v1 until reaching the first vi for which dP (vi, vm) is less than dP (vi, v1).
At that point the algorithm reverse the direction and scan P from vm. Scanning
from both directions are symmetric so we will only discuss scanning from v1
below.

For every vertex vj along P let w(j) = maxu∈Tj
{dT (vj , u)} be the weight

of vj . The vertex-weighted distance dP (vi, vj) + w(j) is the maximum distance
from vi to any vertex in Tj . Let G(i, j) = P ∪ (vi, vj) and let

S(i, j) = max
i<l�j

{dG(i,j)(vi, vl) + w(l)}
U(i, j) = |vivj | + dP (vj , vm)

Note that S(i, j) is the maximum vertex-weighted distance from vi to any vertex
in 〈vi+1, . . . , vj〉 and U(i, j) is the vertex-weighted distance from vi to vm. From
the proof of Lemma 2, we know eccG(i,j)(vi) = max{dP (v1, vi), S(i, j), U(i, j)}
and we want to minimize max{S(i, j), U(i, j)}.

To be able to compute these vertex-weighted distances fast, we need the
following preprocessing step.

Preprocessing. In a preprocessing step, we first compute a longest path P and
the weights {w(k)} for all vertices on P from T . These steps can be done in O(n)
time.

Next we compute the prefix sum array A[1 . . . m] in O(m) time such that
A[k] =

∑
1<l�k |vl−1vl| for k ∈ [2,m] and A[1] = 0. For any 1 � i < j � m,

dP (vi, vj) = A[j]−A[i], which can be computed in constant time. Thus U(i, j) =
|vivj | + dP (vj , vm) can be computed in constant time.

Compute two vertex-weighted distance arrays B1[1 . . . m] and B2[1 . . . m],
where B1[k] = dP (v1, vk) + w(k), k ∈ [1,m] and B2[k] = dP (vm, vk) + w(k), k ∈
[1,m]. B1 and B2 are computed in O(m) time. Using the structure by Bender
and Farach-Colton [1] the two arrays can be preprocessed in linear time such

462 J. Gudmundsson and Y. Sha

that range maxima queries can be answered in constant time. That is, given two
indices i and j a range maxima query on B1, or B2, returns the maxima in the
interval B1[i, j], or B2[i, j].

Let I(i, j) be the maximum index k between i and j such that dP (vi, vk) �
|vivj | + dP (vj , vk). The index I(i, j) can be found in O(log m) time by binary
search. The maximum vertex-weighted distance from vi to a vertex vk, i <
k � I(i, j), is max{dP (vi, vk) + w(k)}, which can be found in constant time by
querying the range maxima query structure for B1 (note that max{dP (vi, vk) +
w(k)} + dP (v1, vi) = max{dP (v1, vk) + w(k)}).

Similarly, the maximum weighted distance from vi to a vertex vk, I(i, j) <
k � j, is |vivj | + max{dP (vj , vk) + w(k)} and can be found in constant time by
querying the range maxima query structure for B2. Thus S(i, j) can be computed
in O(log m) time if I(i, j) is not known, and in constant time if I(i, j) is known.
To summarize we have the following lemma.

Lemma 3. Given a tree T , one can preprocess T in O(n) time such that given a
query i, j, with 1 � i < j � m, dP (vi, vj) and U(i, j) can be returned in constant
time and S(i, j) can be returned in O(log m) time. If I(i, j) is known, S(i, j) can
be returned in constant time.

We proceed to discuss how to compute an optimal solution for the case when
the center lies on the longest path of T .

Finding an Optimal Solution for a Center on P. From the triangle inequal-
ity we know that S(i, j) is non-decreasing while U(i, j) is non-increasing as j
increases. Let f(i) be the minimum j such that S(i, j) is greater than U(i, j). If
we fix i then max{S(i, j), U(i, j)} is a unimodal function of j whose minimum
value is at either f(i) or f(i) − 1, depicted in Fig. 2(a).

Since max{S(i, j), U(i, j)} is a unimodal function, we can find its minimum in
O(log m) time using binary search. Each binary search requires the computation
of S(i, j) and U(i, j), which costs O(log m) time, by Lemma 3.

As a result from the above discussion we get that for any vertex vi on the
longest path, an optimal solution to the eat problem with respect to vi can be
found in O(log2 m) time using O(n) preprocessing. However, we can improve
this further. We will next show that we can compute the optimal solutions for
every vertex on P in linear total time by extending the approach in [11].

The linear time algorithm in [11] relies on monotonicity arguments. The next
observation summarizes the properties we need.

Observation 1. It holds that

(a) I(i, j) � I(i, j + 1), for all j ∈ [i + 1,m − 1],
(b) I(i, j) � I(i + 1, j), for all 1 � i < j � m, and
(c) f(i) � f(i + 1), for all i ∈ [1,m − 1].

Algorithms for Radius-Optimally Augmenting Trees in a Metric Space 463

(a) (b)

Fig. 2. (a) S(i, j) and U(i, j) for j ∈ [i,m]. The function max{S(i, j), U(i, j)} is shown
in red. (b) Tree edges in black. E −A−C −B−D is the longest path. The best center
point on the longest path of T is A and the best shortcut is (A,B). However, F as the
center with (F,B) as the shortcut is a better solution. (Color figure online)

Proof. We start with (a). By the triangle inequality, |vivj | � |vjvj+1| + |vivj+1|,
and as a result

dP (vi, vI(i,j)) � |vivj+1| + |vjvj+1| + dP (vI(i,j), vj)
= |vivj+1| + dP (vI(i,j), vj+1).

For (b) let k = I(i, j). dP (vi, vk) � |vivj | + dP (vj , vk). By triangle inequality,
|vivi+1| � |vivj | − |vi+1vj |. Thus

dP (vi+1, vk) = dP (vi, vk) − |vivi+1|
� dP (vj , vk) + |vi+1vj |.

To prove (c) we know from the definition of f(i), that for index k = f(i) − 1,
S(i, k) � U(i, k). For all vertices in P (i + 1, k), the weighted distances from
vi+1 either decreases by |vivi+1|, if the shortest paths from vi+1 goes along P ,
or decreases by |vivj | − |vi+1vj |, if the shortest paths from vi+1 use shortcut
(vi+1, vj).

Since |vivj | − |vi+1vj | � |vivi+1|, it holds that S(i, k) − S(i + 1, k) � |vivj | −
|vi+1vj |. From the definition we have U(i, k) − U(i + 1, k) = |vivj | − |vi+1vj |,
hence, since S(i, k) � U(i, k) we get S(i + 1, k) � U(i + 1, k). ��

Remember that our algorithm computes the optimal solution to the eat
problem for each vertex vi, 1 � i � k, where vk is the first every vertex along
P closer to vm than to v1. For i = 1, increment j, until j = f(1). Calculate
S(1, j) and U(1, j). For i � 2, by Observations 1b and 1c, we increment j from
f(i − 1), I(i, j) from I(i − 1, f(i − 1)) until j = f(i). Compute S(i, j) and
U(i, j) accordingly. This finishes the description of the algorithm. Since I(i, j)
and f(i) are always non-decreasing during the algorithm, by Observation 1a and
Lemma 3, it costs amortized O(1) time per movement of j. The running time of
the algorithm is O(m) after preprocessing. The algorithm for scanning P from
vm is symmetric, thus O(m) time after preprocessing.

464 J. Gudmundsson and Y. Sha

Theorem 1. The optimal solutions for the eat problem with respect to every
vertex on P can be computed in O(n) time.

3.2 Case 2: The Center Does Not Lie on P

It is possible that the center of the optimal solution for discrete roat is not on
the longest path P . An example of this case is shown in Fig. 2(b).

Ti

Fig. 3. Finding an optimal solution for a vertex not on P .

For a vertex u not on P , we can prove that there is an optimal edge for the
eat problem with respect to u with one endpoint at u (Lemma 1) and the other
endpoint at a vertex on P .

Lemma 4. Let u be a vertex in Ti, with 1 � i � m. There is an optimal solution
(u, v) for the eat problem with respect to u such that v is on P (vi, vl), where
l = arg max

k∈{1,m}
{dP (vi, vk)}. This optimal shortcut for u can be found in O(log2 n)

time, after linear time preprocessing.

Proof. Assume without loss of generality that dP (v1, vi) � dP (vi, vm). The case
when dP (v1, vi) > dP (vi, vm) is symmetric.

From the assumption we know that vm is a farthest vertex to u in T and
T (u, vi) ∪ P (vi, vm) is the shortest path from u to vm in T . To simplify the
description we arrange T (u, vi) ∪ P (vi, vm) from left to right, as illustrated in
Fig. 3. Let Tu, Tu1 , . . . , Tu�

, Ti, . . . , Tm be the trees formed by removing edges in
T (u, vi)∪P (vi, vm) from T . Now assume that the optimal edge for the eat prob-
lem with respect to u is the edge (u, v) where v is in a tree T ′ ∈ {Tu1 , . . . , Tm}.
Using exactly the same arguments as in the proof of Lemma 2, one can show that
the edge (u, v′) is at least as good as (u, v), where v′ is the root of the tree T ′.

Let Pu = 〈u, . . . , u�, vi, . . . , vm〉 denote the path T (u, vi) ∪ P (vi, vm) and set
w(v′) = maxq∈T ′{dT ′(v′, q)} as the weight of a vertex v′ in Pu. Define S(u, v′)
and U(u, v′) for Pu in the same way as we defined S(i, j) and U(i, j) for the
longest path. Note that vi has weight dP (v1, vi). Similar to S(i, j) and U(i, j),

Algorithms for Radius-Optimally Augmenting Trees in a Metric Space 465

S(u, v′) and U(u, v′) are monotonically non-decreasing and monotonically non-
increasing, respectively, when v′ moves to the right along the path. Note that
when v′ = vi then

S(u, v′) � |uvi| + dP (vi, v1) � |uvi| + dP (vi, vm) = U(u, v′).

From the monotonicity properties of S(u, v′) and U(u, v′), an optimal edge for
u must have one endpoint on P (vi, vm).

For the query time consider an optimal edge (u, v′) for the eat problem
with respect to u. When v′ is on P then the vertex-weighted distance from u
to a vertex to the left of vi is at most the vertex-weighted distance from u to
vi. Thus S(u, v′) is achieved at a vertex between vi and v′. To find an optimal
shortcut for u, we can treat T (u, vi) as an edge with length dT (u, vi) and store
the value of dT (u, vi), for each vi on P , during the preprocessing, which does
not increase the total linear preprocessing time. With dT (u, vi) precomputed, we
can compute S(u, v′) in O(log n) time.

Thus for any vertex u not on P , an optimal shortcut can be computed in
O(log2 n) time. ��

Combined with Theorem 1, we have

Theorem 2. The discrete roat problem can be solved in O(n log2 n) time.

However, given a threshold value x, we can decide whether there is an optimal
shortcut for the eat problem with respect to u such that the eccentricity of u
in the augmented tree is less than x in O(log n) time. By this observation, we
can randomly permute all vertices not on the longest path and process them in
sequence. For a vertex ui in the sequence, we first test whether ui’s eccentricity
after augmentation is smaller than the minimum eccentricity after augmentation
for u1, . . . , ui−1. If so, we compute this value for ui. Otherwise we just proceed
to the next vertex. The probability that ui has the minimum eccentricity after
augmentation among vertices u1, . . . , ui is 1

i . The expected number of times that
we compute an optimal shortcut for a vertex in the sequence is

∑O(n)
i=1

1
i = lnn.

Thus we can find the vertex not on P with minimum eccentricity for the eat
problem in expected O(n log n + log n · log2 n) = O(n log n) time.

Theorem 3. The discrete roat problem can be solved in expected O(n log n)
time.

4 A Linear Time Algorithm for Continuous ROAT

In this section we consider the continuous version of roat where the center of
the augmented graph is allowed to be in the interior of an edge of T . Let (u, v)
be an edge added to T and let c be the center of T ∪{(u, v)}. Let r be the radius
of T ∪ {(u, v)}. We have the following characterization of c.

Fact 1. (Observation 1 in [11])
In G(u, v) = T ∪ (u, v), there are two vertices a and b such that:

466 J. Gudmundsson and Y. Sha

1. dG(u,v)(c, a) = dG(u,v)(c, b) = r.
2. There is a shortest path from c to a, denoted by πa, and a shortest path from

c to b, denoted by πb, such that πa and πb are disjoint except at c.

As in the last section, we first compute a longest path P for the input tree
T . Let P = 〈v1, . . . , vm〉 and let F the forest formed by removing the edges in
P from T . The forest F consists of m trees T1, . . . Tm, with vi in Ti, 1 � i � m.

Fig. 4. Observation 2 states that for a shortcut (u, v) the center must lie on the parts
highlighted in blue. (Color figure online)

Observation 2. Assume u is a vertex in Ti and v is a vertex in Tj . A center c of
T ∪ {(u, v)} is a point on P ∪ T (vi, u) ∪ {(u, v)} ∪ T (vj , v).

Proof. We prove the observation by contradiction. Consider the subgraph P ∪
T (vi, u)∪{(u, v)}∪T (vj , v) of T ∪{(u, v)}, which is highlighted in blue in Fig. 4.

Assume c = p1 and p1 is a point on Tk \ {vk} where 1 � k < i, see
Fig. 4. Recall from Fact 1 that there exists two vertices a and b in T such
that dG(u,v)(c, a) = dG(u,v)(c, b) = r. Consider the two paths πa and πb,
as defined in Fact 1. Since both paths cannot all go through vk, by Prop-
erty 2. in Fact 1, a or b must lie in Tk and its path does not go through any
point in T (p1, vk). Assume without loss of generality that a lies in Tk. Then
dG(u,v)(p1, a) = dT (p1, a) < min{dT (vk, v1), dT (vk, vm)} < r, which is a contra-
diction. Symmetrically, c cannot be a point on Tk \ {vk} where j < k � m.

Next assume c = p2 and p2 is a point in Ti \ T (vi, u). As above, a must be
a vertex in Ti and πa doesn’t go through any point in T (p2, vi) while b must lie
outside Ti, otherwise property 2. in Fact 1 is violated. The path going from p2
to a has length less than dT (vi, a) � r, a contradiction. Similarly c cannot be a
point in Tj \ T (vj , v) or a point on Tk \ {vk} where i < k < j. ��

We are now ready to prove the main lemma of this section. It shows that
there is an optimal shortcut which has both endpoints on the longest path P
of T . Due to the space limitation, the proof is left to the full version of the paper.

Lemma 5. Let (u, v) be a shortcut edge where u ∈ Ti and v ∈ Tj. The radius of
T ∪ {(vi, vj)} is less than or equal to the radius of T ∪ {(u, v)}. That is, (vi, vj)
is at least as good as (u, v).

Algorithms for Radius-Optimally Augmenting Trees in a Metric Space 467

Using Observation 2 and Lemma 5, we can reduce the continuous roat
problem to the Radius-Optimally Augmenting vertex-Weighted Path in a met-
ric space (roawp for short) problem, which we will explain below. Assume
P ′ = 〈v1, . . . , vn〉 is a path embedded in a metric space where each vertex vk,
1 � k � n, has a weight w(k). Let G′(i, j) = P ′∪(vi, vj) be the augmented graph
after adding shortcut (vi, vj) to P ′. The vertex-weighted eccentricity of a point
p on G′(i, j) is the maximum vertex-weighted distance from p to any vertex in
G′(i, j). The vertex-weighted center of G′(i, j) is the point with minimum vertex-
weighted eccentricity and its vertex-weighted eccentricity is the vertex-weighted
radius of G′(i, j). roawp problem is defined as:

Definition 1. Given a vertex-weighted path P ′ = 〈v1, . . . , vn〉 embedded in a
metric space, where the weight of vertex vk, 1 � k � n, satisfies w(k) �
min{dP ′(v1, vk), dP ′(vn, vk)}, add one shortcut (vi, vj), 1 � i < j � n, to P ′

so that the vertex-weighted radius of G′(i, j) = P ′ ∪ (vi, vj) is minimized.

For the reduction we set P ′ = P with vertex weights w(k) =
maxq∈Tk

{dT (vk, q)}, 1 � k � m. That is, w(k) is the length of the longest
shortest path from vk to a point in Tk. Since P is a longest path in T ,
w(k) � min{dP (v1, vk), dP (vm, vk)}. It follows that the continuous roat prob-
lem is reduced to the roawp problem.

4.1 Simplify the ROAWP Problem

To further simplify the roawp problem, we make a vertex-weight transformation
as proposed by Bilò in [2]. Let

w∗(k) = max{w(j) − dP ′(vj , vk)|1 � j � m} (1)

be the new transformed weight of vk. Obviously w(k) � w∗(k). From Eq. (1), we
can see that w∗(1) = w∗(m) = 0.

Observation 3. For any j, k ∈ [1,m],

w∗(k) � w∗(j) + dP ′(vj , vk).

Proof. Let k′ = arg max
j

{w(j) − dP ′(vj , vk)},

w∗(k) = w(k′) − dP ′(vk, vk′)
= w(k′) − dP ′(vk, vk′) − dP ′(vk, vj) + dP ′(vk, vj)
� w(k′) − dP ′(vk′ , vj) + dP ′(vk, vj)
� w∗(j) + dP ′(vj , vk).

��

468 J. Gudmundsson and Y. Sha

The vertex-weight transformation can be done in O(m) time by scanning
P ′ from v1 to vm and then back to v1. We call a vertex-weighted path P ′ =
〈v1, . . . , vm〉 monotone vertex-weighted if Observation 3 is satisfied for any j, k ∈
[1,m]. Monotone vertex-weighted can be interpreted as follows. Assume p is any
point on P ′ and lies on an edge (vj−1, vj). The vertex-weighted distances from p
to vj , . . . , vm are non-decreasing. Similarly, the vertex-weighted distances from
p to vj−1, . . . , v1 are non-decreasing.

When the path in a roawp instance is monotone vertex-weighted, we call
this instance a roamwp (mwp for Monotone vertex-Weighted Path) instance.
We can reduce a roawp instance to a roamwp instance using the following
lemma.

Lemma 6. Let P ′ = 〈v1, . . . , vm〉 be a vertex-weighted path in a metric space
and let w(k) be its vertex-weight function. Let P ∗ be P ′ with vertex-weight func-
tion w∗(k) = max{w(j) − dP ′(vj , vk)|1 � j � m}. The vertex-weighted radius of
G∗(i, j) = P ∗∪(vi, vj) equals the vertex-weighted radius of G′(i, j) = P ′∪(vi, vj).

Proof. Let c′ be a vertex-weighted center of G′(i, j) and let r′ be its vertex-
weighted radius. Let c∗ be a vertex-weighted center of G∗(i, j) and r∗ be its
vertex-weighted radius.

We first prove r′ � r∗. When we regard c∗ as a point on G′(i, j), the vertex-
weighted distance from c∗ to a farthest vertex in G′(i, j) is at least r′. So the
vertex-weighted distance from c∗ to this farthest vertex in G∗(i, j) is at least r′,
since w(k) � w∗(k). Thus r′ � r∗.

Next we prove r∗ � r′. When we regard c′ as a point on G∗(i, j), the vertex-
weighted distance from c′ to a farthest vertex in G∗(i, j) is at least r∗. Let a′ be
this farthest vertex. Let a∗ be the vertex such that w∗(a′) = w(a∗)−dP ′(a′, a∗).
The vertex-weighted distance from c′ to a∗ in G′(i, j) is

dG′(i,j)(c′, a∗) + w(a∗) = dG′(i,j)(c′, a∗) + w∗(a′) + dP ′(a′, a∗)
� dG′(i,j)(c′, a′) + w∗(a′)
� r∗.

Thus r′ � dG′(i,j)(c′, a∗) + w(a∗) � r∗. ��

4.2 Solve ROAMWP in Linear Time

A monotone vertex-weighted path is very similar to a path with no vertex
weights. In [11], Johnson and Wang give a linear time algorithm for the continu-
ous roat problem where T is a path. Their algorithm is based on the observation
that there are only a constant number of possible configurations (positions of
c, πa and πb) for an optimal solution. For roamwp, there is the same set of
possible configurations for an optimal solution as that for continuous roat.

For each possible configuration of an optimal solution, Johnson and Wang [11]
give a linear time algorithm based on proving the monotonicity properties. For
each possible configuration of an optimal solution for a monotone node-weighted

Algorithms for Radius-Optimally Augmenting Trees in a Metric Space 469

path, we can prove the exact same monotonicity properties. The only difference
is that we use vertex-weighted path length for roamwp instead of path length.
Everything else is exactly the same. Thus we have

Lemma 7. The roamwp problem can be solved in linear time.

Reducing continuous roat problem to a roamwp problem takes linear time.
The following theorem summarizes this section.

Theorem 4. The continuous roat problem can be solved in linear time.

References

1. Bender, M.A., Farach-Colton, M.: The LCA problem revisited. In: Gonnet, G.H.,
Viola, A. (eds.) LATIN 2000. LNCS, vol. 1776, pp. 88–94. Springer, Heidelberg
(2000). https://doi.org/10.1007/10719839 9

2. Bilò, D.: Almost optimal algorithms for diameter-optimally augmenting trees. In:
Proceedings of the 29th International Symposium on Algorithms and Computation
(ISAAC), pp. 40:1–40:13 (2018)

3. Bilò, D., Gualà, L., Proietti, G.: Improved approximability and non-
approximability results for graph diameter decreasing problems. Theoret. Comput.
Sci. 417, 12–22 (2012)

4. Carufel, J.D., Grimm, C., Maheshwari, A., Smid, M.H.M.: Minimizing the continu-
ous diameter when augmenting paths and cycles with shortcuts. In: Proceedings of
the 15th Scandinavian Symposium and Workshops on Algorithm Theory (SWAT),
pp. 27:1–27:14 (2016)

5. De Carufel, J.-L., Grimm, C., Schirra, S., Smid, M.: Minimizing the continuous
diameter when augmenting a tree with a shortcut. In: WADS 2017. LNCS, vol.
10389, pp. 301–312. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-
62127-2 26

6. Demaine, E.D., Zadimoghaddam, M.: Minimizing the diameter of a network using
shortcut edges. In: Kaplan, H. (ed.) SWAT 2010. LNCS, vol. 6139, pp. 420–431.
Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-13731-0 39

7. Frati, F., Gaspers, S., Gudmundsson, J., Mathieson, L.: Augmenting graphs to
minimize the diameter. Algorithmica 72(4), 995–1010 (2015). https://doi.org/10.
1007/s00453-014-9886-4

8. Gao, Y., Hare, D.R., Nastos, J.: The parametric complexity of graph diameter
augmentation. Discret. Appl. Math. 161(10–11), 1626–1631 (2013)

9. Große, U., Gudmundsson, J., Knauer, C., Smid, M., Stehn, F.: Fast algorithms
for diameter-optimally augmenting paths. In: Halldórsson, M.M., Iwama, K.,
Kobayashi, N., Speckmann, B. (eds.) ICALP 2015. LNCS, vol. 9134, pp. 678–688.
Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-47672-7 55

10. Gudmundsson, J., Sha, Y.: Augmenting graphs to minimize the radius. Manuscript
(2021)

11. Johnson, C., Wang, H.: A linear-time algorithm for radius-optimally augmenting
paths in a metric space. In: Proceedings of the 15th International Symposium on
Algorithms and Data Structures, pp. 466–480 (2019)

12. Oh, E., Ahn, H.: A near-optimal algorithm for finding an optimal shortcut of
a tree. In: Proceedings of the 27th International Symposium on Algorithms and
Computation (ISAAC), pp. 59:1–59:12 (2016)

https://doi.org/10.1007/10719839_9
https://doi.org/10.1007/978-3-319-62127-2_26
https://doi.org/10.1007/978-3-319-62127-2_26
https://doi.org/10.1007/978-3-642-13731-0_39
https://doi.org/10.1007/s00453-014-9886-4
https://doi.org/10.1007/s00453-014-9886-4
https://doi.org/10.1007/978-3-662-47672-7_55

470 J. Gudmundsson and Y. Sha

13. Schoone, A.A., Bodlaender, H.L., van Leeuwen, J.: Diameter increase caused by
edge deletion. J. Graph Theory 11(3), 409–427 (1987)

14. Wang, H.: An improved algorithm for diameter-optimally augmenting paths in a
metric space. Comput. Geom. 75, 11–21 (2018)

15. Wang, H., Zhao, Y.: Algorithms for Diameters of Unicycle Graphs and Diameter-
optimally Augmenting Trees (2020)

16. Wang, H., Zhao, Y.: A linear-time algorithm for discrete radius optimally aug-
menting paths in a metric space (2020)

Upper and Lower Bounds for Fully
Retroactive Graph Problems

Monika Henzinger1 and Xiaowei Wu2(B)

1 Faculty of Computer Science, University of Vienna, Vienna, Austria
monika.henzinger@univie.ac.at

2 IOTSC, University of Macau, Macau, China
xiaoweiwu@um.edu.mo

Abstract. Classic dynamic data structure problems maintain a data
structure subject to a sequence S of updates and they answer queries
using the latest version of the data structure, i.e., the data structure
after processing the whole sequence. To handle operations that change
the sequence S of updates, Demaine et al. [7] introduced retroactive data
structures (RDS). A retroactive operation modifies the update sequence
S in a given position t, called time, and either creates or cancels an
update in S at time t. A fully retroactive data structure supports queries
at any time t: a query at time t is answered using only the updates of
S up to time t. While efficient RDS have been proposed for classic data
structures, e.g., stack, priority queue and binary search tree, the retroac-
tive version of graph problems are rarely studied.

In this paper we study retroactive graph problems including connec-
tivity, minimum spanning forest (MSF), maximum degree, etc. We show
that under the OMv conjecture (proposed by Henzinger et al. [15]), there
does not exist fully RDS maintaining connectivity or MSF, or incremen-
tal fully RDS maintaining the maximum degree with O(n1−ε) time per
operation, for any constant ε > 0. Furthermore, We provide RDS with
almost tight time per operation. We give fully RDS for maintaining the
maximum degree, connectivity and MSF in Õ(n) time per operation. We
also give an algorithm for the incremental (insertion-only) fully retroac-
tive connectivity with Õ(1) time per operation, showing that the lower
bound cannot be extended to this setting.

We also study a restricted version of RDS, where the only change to
S is the swap of neighboring updates and show that for this problem we
can beat the above hardness result. This also implies the first non-trivial
dynamic Reeb graph computation algorithm.

Keywords: Retroactive data structure · Dynamic connectivity

The full version of the paper can be found at https://arxiv.org/abs/1910.03332.
X. Wu—This work was done in part when the author was a postdoc at University of
Vienna.

c© Springer Nature Switzerland AG 2021
A. Lubiw et al. (Eds.): WADS 2021, LNCS 12808, pp. 471–484, 2021.
https://doi.org/10.1007/978-3-030-83508-8_34

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-83508-8_34&domain=pdf
https://arxiv.org/abs/1910.03332
https://doi.org/10.1007/978-3-030-83508-8_34

472 M. Henzinger and X. Wu

1 Introduction

A dynamic data structure problem maintains a data structure on a set of ele-
ments subject to element insertions, deletions and modifications. An efficient
dynamic algorithm updates the data structure after each element update, and
supports queries on the latest version of the data structure. That is, an update
can only append an operation to the end of the operation sequence, and a query
can only be made on the data structure with all updates applied. However, in
some applications, we are interested in modifying the update sequence in the
middle. For example, if some past update on a database is mistaken and needs
to be removed, we do not want to rollback the whole database by canceling all
updates after the mistaken one. Besides, in some scenarios we are interested in
querying the data structure when only part of the updates are applied, e.g.,
to answer questions like “which facebook user had the most friends in Jan 1st,
2015?”. This motivates retroactive data structures (RDS) that were introduced
by Demaine et al. [7]. They support (1) modifications to the historical sequence
of updates performed on the data structure, and (2) queries on the data structure
when only a prefix of the updates is applied.

Formally speaking, the data structure is defined by a sequence S of updates,
each of which is associated with a time t. A RDS supports operations that create or
cancel an update at any time t. There are |S|+1 versions of the data structure, on
any of which a query can be made. Throughout this paper, we use update to denote
a modification to the data structure, and operation to denote a retroactive action
that creates or cancels an update. Depending on the queries supported, Demaine
et al. [7] defined two classes of RDS: a partially retroactive data structure supports
queries only at the present time, i.e., on the latest version of the data structure,
while a fully retroactive data structure supports queries on any version of the data
structure. For dynamic problems in which the ordering of updates is not impor-
tant, e.g., maintaining a dictionary, standard dynamic algorithms are automati-
cally partially retroactive. However, maintaining a fully RDS can be much more
difficult, as a retroactive operation at time t can possibly change the outcome of all
queries after time t. For example, an insertion of a very small key into a min-heap
at time t can possibly change the output of every find-min query after time t. In
general, there does not exist efficient transformation from partially RDS to fully
retroactive ones. Demaine et al. [7] provided a general checkpointing method that
converts a partially RDS into a fully retroactive one, with an O(

√
T) multiplica-

tive overhead in the update and query time, where T = |S|. Indeed, the O(
√

T)
multiplicative overhead is shown to be tight for some data structures [6], under
some well-known computational hardness conjectures.

Prior Works. Demaine et al. [7] provided a partially retroactive priority queue
with O(log T) update time and O(1) query time, which implies a fully retroactive
priority queue with O(

√
T log T) update and query time. The result was later

improved by Demaine et al. [8], who proposed a fully retroactive priority queue
with amortized polylogarithmic update and query time. They introduced a hier-
archical checkpointing technique, which maintains a balanced binary tree with

Upper and Lower Bounds for Fully Retroactive Graph Problems 473

the set of updates as the leaves. Giora and Kaplan [13] considered the dynamic
vertical ray shooting problem, and proposed a data structure that supports hor-
izontal line segment insertions and deletions, and queries that report the first
segment intersecting a vertical ray from a query point in worst case O(log T)
time. Their data structure implies a fully retroactive binary search tree with
O(log T) update and query time.

While dynamic graph problems flourished in the past decades, their retroactive
versions are rarely studied. Dynamic algorithms maintaining connectivity [17,19],
minimum spanning forest (MSF) [19,20] and maximal matching [2,4,26] with
polylogarithmic update and query time are known, but their fully retroactive ver-
sions have not been studied yet. One exception is the empirical analysis of [1]
on the fully retroactive minimum spanning tree (MST) problem. For the afore-
mentioned problems, the dynamic data structures are equivalent to the partially
retroactive ones. Thus by Demaine et al.’s reduction [7], there exist fully RDS for
these problems, with Õ(

√
T) update and query time.1 Note that, in general, the

number of updates T can be much larger than the number of nodes and edges in the
graph. Roditty and Zwick [23] proposed a fully RDS that supports queries of strong
connectivity between two nodes at any version of the graph, subject to directed
edge insertions and deletions. However, the retroactive operations are restricted
to be incremental : each operation either creates an insertion of edge at the end of
the update sequence, or cancels an existing update. Their algorithm answers each
query in worst case O(1) time and handles each update in amortized O(m·α(m,n))
time, where m is the number of edges in the graph and α() is the inverse Ackermann
function [27]. Chen et al. [6] showed that there exist data structures for which a
gap of (min{n,

√
T})1−o(1) exists in the time per operation between partially and

fully RDS, under some well-known conjectures. However, these data structure are
not graph data structures, but rather unusual data structures.

Our Results. We study the fully RDS for graph problems, providing for a vari-
ety of fundamental graph problems efficient incremental fully RDS and almost
matching upper and lower bounds for their fully dynamic fully retroactive coun-
terparts. We start with some strong hardness results on the update and query
time for fully RDS on several graph problems, assuming the online boolean
matrix-vector multiplication (OMv) conjecture [15]. Our hardness results show
that for many of the problems we study in this paper, it is difficult to get RDS
with truly sublinear time per operation.

Theorem 1. Assuming the OMv conjecture, there do not exist data structures
for the following problems with O(n1−ε) update and query time subject to edge
insertions/deletions:

– fully retroactive connectivity, maximal matching, MSF, maximum density;
– incremental fully retroactive maximum degree.

Our hardness results hold even when the edges are unweighted. For main-
taining a maximal matching and spanning forest, we assume that queries are
1 Throughout this paper we use Õ() to hide the polylogarithmic factors in T and n.

474 M. Henzinger and X. Wu

on the size of the matching and the forest, respectively. In the full version [16],
we show that the same hardness result holds for fully RDS supporting queries
on the existence of perfect matching. Moreover, some of our hardness results
apply even to approximation algorithms. For the graph problems we study in
this paper (in which the ordering of updates is not important, such as connectiv-
ity, maximal matching, and MSF), the partially retroactive setting is the same as
the standard dynamic setting and can, thus, be solved in polylogarithmic time.
Hence our hardness results imply a polynomial gap in the time per operation
between the partially and fully RDS. Our hard instances consist of a sequence
of T = Θ(n2) operations and queries. Thus they also imply that under the OMv
conjecture, getting an O(T 1/2−ε) time per operation is impossible (for the afore-
mentioned problems). Under the combinatorial boolean matrix multiplication
conjecture, we show that our hardness results hold even when all operations are
given before any query is made (which we refer to as the offline version of the
problem), as long as the data structures are combinatorial.

We also provide RDS with almost tight time per operation. We first con-
sider the incremental setting, in which a retroactive operation either creates
an insertion, or cancels an existing insertion. In other words, the creation of a
deletion is not supported. We provide incremental fully RDS for maintaining
connectivity and spanning forest (SF) with polylogarithmic update and query
time. Observe that the incremental partially retroactive setting is at least as
hard as the (non-retroactive) fully dynamic setting, as the cancel operation in
the retroactive setting serves the function of deletion in the dynamic setting.
Our data structure for maintaining connectivity and spanning forest supports
only unweighted edge insertions and deletions. However, we show that it can
be extended to support weighted edge insertions and deletions, resulting in an
(1 + ε)-approximation MSF with polylogarithmic update and query time.

Theorem 2. There exist incremental fully RDS maintaining connectivity, span-
ning forest, and an (1+ ε)-approximation MSF with Õ(1) amortized update time
and Õ(1) worst case query time.

Note that while the incremental connectivity problem is equivalent to the
union-find problem in the dynamic setting, their retroactive versions are differ-
ent, at least as defined by Demaine et al. [7]. In the retroactive setting, an inser-
tion of an edge at time t that connects two different connected components in the
connectivity problem corresponds to a union operation between two equivalence
classes in the union-find problem at time t. If we insert another edge connecting
the same two components at time t′ > t, then its corresponding operation in the
union-find data structure of Demaine et al. is illegal, as two equivalence classes
can not be united twice (at time t′ and t). In other words, the set of retroactive
operations allowed for the two problems are different. Consequently, the fully
retroactive union-find data structure by Demaine et al. [7] with O(log T) time
per operation can not be used to achieve the above result.

We also present data structures maintaining MSF and the maximum degree
that supports (creation of) insertions and deletions of weighted edges. By The-
orem 1, our data structures have almost tight time per operation.

Upper and Lower Bounds for Fully Retroactive Graph Problems 475

Theorem 3. There exist fully RDS maintaining connectivity, MSF and maxi-
mum degree of an undirected graph with amortized Õ(1) update time and worst
case O(n log T) query time.

Our algorithmic results are obtained by maintaining a scapegoat tree [12] with
O(T) leaves, each of which is an interval defined by the times of two consecutive
updates.2 Each internal node stores a set of edges, and maintains a data structure
(depending on the problem) to support the queries. The tree structure allows effi-
cient retrieval of the edges that exist at time t by examining O(log T) internal
nodes. Moreover, it can be shown that each edge is stored in O(log T) internal
nodes. Consequently, for problems that admit linear time algorithms, e.g., maxi-
mal matching, each query can be answered in worst case O(m log T) time, where
m is the maximum number of edges. For maintaining connectivity, MSF and the
maximum degree, we show that the query time can be improved to O(n log T), by
maintaining a sparse data structure in each internal node of the scapegoat tree. A
similar (yet different) data structure was used by Demaine et al. [8] to maintain
the set of retroactive operations sorted by time for their fully retroactive priority
queue data structure. In their checkpoint tree, a scapegoat tree is maintained with
the set of retroactive operations being the leaves. Each internal node u maintains a
partially RDS induced by the operations (leaves) in the subtree rooted at u. Con-
sequently, if an element is stored at some node u, it is also stored at the parent
of u. In contrast, in our data structure, the set of elements stored at an internal
node is disjoint from the set of the elements stored at its children. Moreover, since
we do not maintain partially RDS in internal nodes, we do not need to maintain
explicitly the set of invalid operations, e.g., a deletion of an edge that is inserted by
an operation in another subtree. This property is crucial for efficient data struc-
tures on graph problems when edges are inserted and deleted multiple times. We
summarize our results in Table 1 as follows (where Retro. stands for Retroactive).

Table 1. Summary of results. The complexity in each cell is for the amortized time
per operation. The results in bold are almost tight.

Incremental Fully Retro. Hardness

Maximum Degree Õ(n) Õ(n) Ω(n1−o(1)) (Incremental)

Connectivity, SF Õ(1) Õ(n) Ω(n1−o(1)) (Fully Retro.)

MSF Õ(1), (1 + ε)-approx. Õ(n) Ω(n1−o(1)) (Fully Retro.)

Maximal Matching Õ(m) Õ(m) Ω(n1−o(1)) (Fully Retro.)

As we will show in Sect. 5, in the (classic) dynamic setting, there exists a sim-
ple data structure that maintains the maximum degree of an unweighted graph
in worst case O(1) time. On the other hand, it is well-known that maintaining
connectivity takes time Ω(log n) [22]. In other words, maintaining maximum

2 A similar data structure was mentioned in [7, Theorem 6]. However, they built a seg-
ment tree [3] on the leaves and some details on maintaining the tree were missing.

476 M. Henzinger and X. Wu

degree is “easier” than maintaining connectivity in the dynamic setting. How-
ever, Theorem 1 and Theorem 2 imply that in the incremental fully retroactive
setting this relationship is reversed: maintaining the maximum degree cannot
be done in truly sublinear time under the OMv conjecture, while the connectiv-
ity problem can be solved in polylogarithmic time. This interesting observation
illustrates how different RDS can be, when compared to dynamic data structures.

Our study of RDS was motivated by an application in computational topol-
ogy, specifically the problem of dynamically maintaining a Reeb graph [21]. How-
ever, for that problem a restricted version of the fully retroactive connectivity
problem has to be solved. Specifically, no updates can be inserted or deleted in
S, but the order of two neighboring updates can be reversed. We call such an
operation a swap operation. Interestingly, under this restricted setting we can
beat the lower bounds (Theorem 1) for the general retroactive setting. We give
a Õ(1) time data structure for this restricted version, leading to the first non-
trivial dynamic Reeb graph algorithm. Indeed, our approach can be extended to
a general class of problems, for which the answer only depends on the currently
existing “elements” and not on the order of the updates.

Theorem 4. Suppose for a dynamic version of a problem there exists a data
structure with Tu update time, Tq query time, and space complexity M. Then
for any integer 1 ≤ τ ≤ T and any fixed T updates S (each of which is associated
with a time), there exists a fully RDS for the problem supporting swap operations
with O(Tu) update time and O(Tq + (τ − 1) · Tu) query time. The data structure
uses O(T · M/τ) space.

Other Related Work. Persistence [10,11] is another concept of dynamic data
structures that consider updates with times. The data structures maintain (and
support queries on) several versions of the data structure simultaneously. Oper-
ations of a persistent data structure can be performed on any version of the
data structure, which produces a new version. A key difference between persis-
tent data structure and retroactive ones is that a retroactive operation at time
t changes all later versions of a RDS, while in a persistent one each version is
considered an unchangeable archive. Other efficient RDS, e.g., for dynamic point
location and nearest neighbor search, can be found on [5,9,14,21].

2 Preliminaries

In a RDS, each update and query is associated with a time t, where t is a real
number. We use now = +∞ to denote the present time. Each retroactive opera-
tion creates or cancels an update of the graph at time t, and each query at time t
reveals some property of the graph at time t. Specifically, we use Create(update, t)
to denote a retroactive operation that creates an update at time t and Cancel(t)
to denote the retroactive operation that removes the update at time t. In this
paper, updates are edge insertions Insert(e) and deletions Delete(e). Moreover, we
assume that all operations are legal. For example, Create(Delete(e), t) can only

Upper and Lower Bounds for Fully Retroactive Graph Problems 477

be issued when edge e exists at time t and is not deleted after time t; Cancel(t)
can only be issued when there is an update at time t. We assume that the initial
graph is empty, and all updates and queries take place at different times.

A fully RDS supports queries Query(parameters, t) at any time t, where the
set of parameters can be empty. A query made at time t should be answered on
the version of the graph at time t, on which only updates up to time t are applied.
For example, for the connectivity problem, Query(u, v, t) answers whether u and
v are connected by edges that exist at time t.

Throughout the whole paper, we use n to denote the number of nodes (which
is fixed). We use T to denote the current number of updates (which is dynamic),
excluding the updates that are cancelled. A RDS maintains a sequence of updates
S sorted in ascending order of time. The size of S is T , which increases by one
after each Create(update, t), and decreases by one after each Cancel(t). The set
S defines T + 1 versions of the graph, and a query can be made on any of them.
Note the difference between an operation and an update with the definition of
S: S is a set of updates that define the versions of the graph, while operations
modify S. Throughout this paper we assume that the word size of the RAM is
O(log n), and T is polynomial3 in n. Consequently, we have O(log T) = O(log n)
and we only need constant words to represent any time t. We also assume that
the weights of edges are polynomial in n.

Incremental Fully Retroactive. In the incremental case, the retroactive operation
Create(Delete(e), t) does not exist, i.e., S contains only insertions of edges (at
different times). Note that in the incremental case the Cancel(t) operation can
still be issued, which removes one update (insertion) from S.

As we will show later, for maintaining connectivity, the incremental case is
substantially easier than the general case; while for maintaining the maximum
degree, even the incremental case can be very difficult. The following definition
will be useful for our data structures.

Definition 1 (Lifespan). For each edge e inserted at time ta and whose earliest
deletion after ta is at time tb (which is now if it is not deleted), let Le = (ta, tb]
be the lifespan of e.

While an edge can be inserted and deleted multiple times, to ease our notation
we regard e as a new edge every time it is inserted. By definition, the set of edges
existing at time t is given by Et = {e : t ∈ Le},. A query made at time t should
be answered based on the graph Gt := (V,Et).

3 Lower Bounds

We present the hardness result for maintaining fully retroactive connectivity
based on the OMv conjecture in this section. That is, we prove Theorem1 for
3 Note that any data structure need to store the |S| = T updates. Thus if T is too

large then the space complexity would be already unacceptable. Alternatively we
can assume that the word size is O(log T) as the parameters in the operations might
have size Θ(log T).

478 M. Henzinger and X. Wu

the fully retroactive connectivity problem. The proofs of other hardness results
are included in the full version of the paper [16]. We first show that for almost
all graph problems, “natural” fully retroactive algorithms can not have update
and query time o(log T). Consider a simple fully RDS on a graph with n = 2
nodes. The data structure needs to support insertions and deletions of the edge
between the two nodes, and queries of whether the edge exists at time t. We show
that the problem is at least as hard as searching a key among T sorted elements.
Thus no comparison-based4 fully RDS has update and query time o(log T).

Let k1 < k2 < . . . < kT be T points in time. For each i = 1, 2, . . . , T , we insert
an edge e = (u, v) at time t = ki and delete the edge immediately. In other words,
the edge e exists only at time k1, k2, . . . , kT . Assume that you are given a query
operation with time parameter k, to check whether k is in {k1, . . . , kT }, it suffices
to query whether the edge exists at time k. Given that any comparison-based
search requires Ω(log T) time to find an element, we have an Ω(log T) lower
bound on the query time, for comparison-based fully retroactive algorithms of a
large class of dynamic graph problems (including maximum degree, connectivity,
maximal matching, etc.). The following lemma justifies the O(log T) factor that
appears in the time per operation of our data structures.

Lemma 1. Any comparison-based fully retroactive algorithm has Ω(log T) time
per operation.

OMv Conjecture. In the Online Boolean Matrix-Vector Multiplication (OMv)
problem, the algorithm is given an n × n boolean matrix M , while a sequence
of n length-n boolean vectors v1, v2, . . . , vn arrive online. The algorithm needs
to output the vector Mvi before seeing the next vector vi+1. The OMv conjec-
ture [15] states that there does not exit algorithm with O(n3−ε) running time
for this problem, for any constant ε > 0.

We give a reduction from the OMv problem to fully retroactive connectivity
as follows. The reductions to other graph problems are similar. Given an instance
of the OMv problem consisting of an n × n matrix M and an online sequence
of n-dimensional vectors {vi}i∈[n], let mi be the i-th row of matrix M . Let |x|
denote the number of non-zero entries in a vector x. We construct a graph with
n + 2 nodes a, b, u1, . . . , un. We describe and construct a sequence of retroactive
operations from the OMv instance as follows.

Recall that we assume all operations have different time. However, for con-
venience, we use the following description. By saying that we construct a set of
retroactive operations S at time t, we fix an arbitrary order of the operations in
S, and construct the operations one by one, at time t, t + ε, . . . , t + (|S| − 1)ε,
where ε is arbitrarily small.

Fix any sequence t0 < t1 < . . . < tn of n+1 points in time. We first describe
the gadgets we construct for the rows of matrix M . At time t1, we insert an
edge between uj and b for every m1j = 1. That is, we construct a retroactive

4 Given a query at time t, a comparison-based algorithm compare t with times of other
updates to identify the one with time closest to t.

Upper and Lower Bounds for Fully Retroactive Graph Problems 479

operation Create(Insert(uj , b), t1) for every j ∈ [n] with m1j = 1, resulting in
|m1| retroactive operations at time (very close to) t1. Then for i = 2, . . . , n, at
time ti, we create |mi−1| + |mi| retroactive operations at time ti as follows. We
delete all edges incident to b (by operations Create(Delete(uj , b), ti) for all j ∈ [n]
with mi−1,j = 1), and create insertions of edges (uj , b) for every j ∈ [n] with
mij = 1 (by operations Create(Insert(uj , b), ti) for all j ∈ [n] with mij = 1).
Our construction of the graph and retroactive operations guarantee that at time
t ∈ (ti, ti+1], b is connected to uj if and only if mij = 1. Next we describe the
gadgets for the vectors v1, v2, . . . , vn.

At time t0, we create an insertion of edge (a, uj) for every j ∈ [n] with
v1j = 1. Observe that Query(a, b, t) = 1 for t ∈ (ti, ti+1] if and only if there exist
some uj that is connected to both a and b at time t. By the above construction,
that implies mi · v1 = 1. Hence n connectivity queries, namely at t1, t2, . . . , tn,
between a and b suffice to compute Mv1. Given v2, we modify the edges incident
to a as follows. At time t0, we delete all edges incident to a, and insert edge
(a, uj) for every j ∈ [n] with v2j = 1 (with O(n) retroactive operations).

In other words, we change the edges between a and {uj}j∈[n] at time t0 based
on v2. Then we can compute Mv2 by another n connectivity queries as discussed
above. By repeating the above procedure for all vectors vi, we can solve the OMv
problem with O(n2) retroactive operations and queries, on a data structure with
O(n) nodes. Hence if there exists a fully RDS for the connectivity problem with
O(n1−ε) update and query time, then the OMv problem can be solved in O(n3−ε)
time, violating the OMv conjecture.

4 Incremental Fully Retroactive Connectivity and SF

In this section we propose an incremental fully RDS for connectivity and span-
ning forest with polylogarithmic update and query time. Recall that the edges are
unweighted. We first present the data structure to support connectivity queries.

Formally, an incremental fully retroactive connectivity data structure sup-
ports the following retroactive operations:

– Create(Insert(e), t): insert an edge e into the graph at time t;
– Cancel(t): cancel the insertion of edge at time t; and
– Query(u, v, t): return whether u and v are connected at time t.

Theorem 5. There exists an incremental fully retroactive connectivity data
structure with amortized O(log4 n

log log n) update time that answers each query with
worst case O(log n) time.

Proof. Recall that the set S (of updates) contains only insertions (each of them
corresponds to a unique edge), while Create() and Cancel() modify S. Thus we
can regard S as a dynamic set of edges, where each edge has weight equal to the
time it is inserted. The set S defines an edge-weighted graph H, and the graph
at time t is the subgraph induced by edges with weight at most t. It suffices to

480 M. Henzinger and X. Wu

maintain a dynamic MSF on the graph H: each Create() inserts a weighted edge
to H and each Cancel() deletes one from H.

We maintain a MSF on H using the algorithm by Holm et al. [20], and
store the resulting MSF in a link-cut tree [25]. Given the MSF, we can answer
Query(u, v, t) by looking at the edge with maximum weight t′ on the path between
u and v in the MSF, and answer “yes” iff t′ < t, which can be done in O(log n)
time. It is not difficult to show the correctness of the query. Suppose there exists
a path connecting u and v using edges of weight at most t in H, then in the
MSF, the maximum weight of an edge on the path between u and v must be at
most t. Because otherwise we can remove that edge and include an edge with
weight at most t, which violates the definition of MSF.

Obviously, every retroactive operation and query can be handled by a single
update on the MSF, which can be done in amortized O(log4 n

log log n) time. �

Next we describe the data structure and algorithm to maintain an incremen-
tal fully retroactive SF. To distinguish the SF from the MSF of H, we use MSFH

to denote the weighted spanning forest of H that we maintain. We use the same
data structure (with minor changes) to support the following queries:

– Query(t): return a SF at time t;
– Query(size, t): return the size (number of edges) of a SF at time t.

Again, we maintain MSFH on H: Query(t) can be trivially answered in O(n)
time by outputting all edges in the MSFH with weight less than t. To support
Query(size, t), we need to count the number of edges with weight less than t in
MSFH . We maintain an AVL tree that supports range query5 on the weights
of the edges of MSFH . Since every retroactive operation changes MSFH by at
most one edge, the AVL tree can be maintained in O(log n) time per operation.
We can answer Query(size, t) by querying the number of elements with value less
than t in the AVL tree. In summary, we have the following.

Theorem 6. There exists an incremental fully retroactive SF with amortized
O(log4 n

log log n) update time that supports Query(t) in worst case O(n) time and
Query(size, t) in worst case O(log n) time.

While our data structure supports only unweighted edge insertions and dele-
tions, we show that it can be extended to the weighted case to maintain an
(1 + ε)-approximate MSF. Using the techniques from Henzinger and King [18],
we maintain an (1 + ε)-approximate MSF by partitioning the edges into weight
classes. Basically, we round the edge weights up to powers of 1+ ε, and maintain
O(1ε log W) incremental fully RDS we described above, one for each weight class.
Here we assume all edge weights are in [1,W]. Each insertion of a weighted edge
translates into an insertion of an unweighted edge in the corresponding weight
class. Queries for the approximation MSF made at time t can be answered by

5 Please refer to https://www.geeksforgeeks.org/count-greater-nodes-in-avl-tree/ for
an implementation.

https://www.geeksforgeeks.org/count-greater-nodes-in-avl-tree/

Upper and Lower Bounds for Fully Retroactive Graph Problems 481

collecting O(1ε log W) spanning forests (one from each data structure), and per-
forming a static MSF algorithm, which takes time O(n

ε log W).
In order to answer the total weight of the MSF more efficiently, we modify

the data structure as follows. Each insertion of an edge of weight (1 + ε)i is
translated to an insertion of an unweighted edge in each of the weight classes
j = i, i + 1, . . . , l, where l = log1+ε W . In other words, weight class j contains
all edges of weight at most (1 + ε)j . Then the query of the total weight at time
t can be answered by O(1ε log W) queries Query(size, t) as follows. Let ai be
the size returned by Query(size, t) at weight class i, where i = 0, 1, . . . , l. Then
a0 +

∑l
i=1(ai − ai−1) · (1 + ε)i is the total weight of an (1 + ε)-approximation

MSF. Note that the query for the approximation MSF can still be answered by
collecting O(1ε log W) spanning forests and performing a static MSF algorithm in
O(n

ε log W) time. In summary, the amortized update time is O(log4 n
log log n · 1ε log W),

and the worst case query time is O(n
ε log W) for the approximation MSF,

O(log n · 1
ε log W) for its total weight.

5 Fully Retroactive Data Structures

In this section we present fully RDS for maintaining the maximum degree, con-
nectivity and MSF. Recall that for maintaining the maximum degree and MSF,
edges are weighted. Combined with the hardness results, the data structures we
propose in this section achieve almost optimal (up to a polylogarithmic factor)
time per operation. We first introduce a general framework for the fully RDS.

We present a dynamic balanced binary tree T that maintains the set of edges
subject to insertions and deletions at different times. The balanced binary tree
serves as the framework for several RDS we will introduce later. Depending on
the problem, we maintain different (non-retroactive) dynamic data structures in
the internal nodes. We implement the balanced binary tree using the scapegoat
tree [12], which rarely rebuilds part of the tree to maintain balance.6

We show that the balanced binary tree T enables us to handle each retroac-
tive operation by updating O(log T) internal nodes if no rebuild occurs. We
rebuild the tree when it is not balanced and charge the cost of rebuild to the
retroactive operations that are responsible for the imbalance, such that each
operation is charged by O(log2 T) updates of internal nodes.

Consider a sequence S of T updates and each update is associated with a
time t. We order the updates in S in ascending order of their time, and we use
t1 < t2 < . . . < tT to denote these times. For completeness, let t0 = −∞ and
tT+1 = now. The scapegoat tree T we maintain has T leaf nodes (ti, ti+1] for
i = 1, 2, . . . , T . For any node u, let T (u) denote the subtree rooted at u in T .
The scapegoat tree maintains the following invariant:

Invariant 51. For each internal node u and its sibling v, |T (u)| ≤ 2 · |T (v)|.
6 Other balanced search trees, e.g., AVL tree [24], maintain balance by rotating part of

the tree, which will be expensive when we maintain a data structure in each internal
node u depending on the set of leaves in T (u).

482 M. Henzinger and X. Wu

Whenever an internal node violates the invariant, the algorithm determines
the internal node closest to the root that violates the invariant and rebuilds its
subtree from scratch, fulfilling the invariant. The amortized cost of this rebuild
is O(log T) per operation in T .

A standard argument for balanced search tree implies that if the invariant
is maintained, then the height of the tree is upper bounded by O(log T). We
maintain the following data structures for each node u of the scapegoat tree:

– an interval Iu, which is the union of the intervals of the leaves of T (u).
– a data structure D(u) that stores the edges e such that (1) Iu ⊆ Le; and (2)

Iw � Le, where w is the parent of u in T . (Recall that Le is the lifespan of
edge e.) If u is the root of the tree then we only require that Iu ⊆ Le. For
convenience we also interpret D(u) as a set of edges. The exact choice of D(u)
depends on the graph property that is maintained.

In other words, each internal node u maintains an interval Iu the subtree T (u)
covers, and stores edge e if the interval of u is the maximal interval contained
in Le. The above data structure enables efficient retrieval of Et, i.e., the set of
edges existing at time t.

Lemma 2. Fix any time t ∈ (ti, ti+1]. Let (vl, vl−1, . . . , v0) be the path from the
leaf node vl = (ti, ti+1] to the root v0. We have Et =

⋃l
i=0 D(vi) and D(vi) ∩

D(vj) = ∅ for all i 	= j.

Proof. First, for every e ∈ Et that exists at time t, we have t ∈ Le, which
implies that vl = (ti, ti+1] ⊆ Le. Thus e must be contained in some unique
D(vi). That is, Et ⊆

⋃l
i=0 D(vi). Specifically, e is contained in D(vi) such that

Ivi
⊆ Le while Ivi−1 � Le. Therefore the sets of edges D(v0),D(v1), . . . ,D(vl)

are disjoint. On the other hand, for any e ∈ D(vi), we have Ivi
⊆ Le, which

implies t ∈ (ti, ti+1] ⊆ Le and hence e ∈ Et. �

Lemma 2 implies that with the tree T , we can retrieve the edges Et by look-
ing at O(log T) internal nodes. In particular, Query(t) can be handled by data
structures maintained by O(log T) nodes. For problems that admit linear time
algorithms, e.g., connectivity and maximal matching, Query(t) can be handled
in O(log T + |Et|) time, by maintaining the set of edges D(u) in each internal
node u. Next we show that the data structure maintains O(log T) copies of every
edge. Consequently, the total size of the sets D(u) is bounded by O(T log T).

Lemma 3. Each edge is contained in O(log T) internal nodes. Moreover, these
internal nodes can be found in O(log T) time.

Proof. Fix any edge e with Le = (ta, tb]. By definition, if D(u) contains e for
some internal node u, then Iu ⊆ Le and Iw � Le. Thus w must be an ancestor of
the leaf node (ta−1, ta] or (tb, tb+1], i.e., Iw intersects with Le but is not contained
in Le. Therefore, every internal node u that contains e must be a child of some
node on the path from (ta−1, ta] to the root, or child of some node on the path
from (tb, tb+1] to the root. Since the height of tree of O(log T) and each internal

Upper and Lower Bounds for Fully Retroactive Graph Problems 483

node has two children, there are O(log T) internal nodes containing e and they
can be found in O(log T) time. �

Next we show how to handle retroactive operations by updating the tree T .
Intuitively, since each retroactive operation changes the lifespan of a single edge,
by Lemma 3, the operation can be handled by updating O(log T) internal nodes.
However, to maintain a balanced binary tree, sometimes we need to rebuild part
of the tree, which increases the amortized update time.

Lemma 4. Let tupdate be the update time of the data structure maintained in an
internal node. Each retroactive operation can be handled in amortized O(log2 T ·
tupdate) time.

Due to space limit, we defer the proof of the above lemma to the full version
of the paper [16], where we give data structures maintaining maximum degree,
connectivity and MSF subject to retroactive operations. The data structures
follow the above framework, while for different problems the data structures
maintained by internal nodes are different.

Acknowledgment. Monika Henzinger acknowledges the Austrian Science Fund
(FWF) and netIDEE SCIENCE project P 33775-N.

Xiaowei Wu is funded by the Science and Technology Development Fund, Macau
SAR (File no. SKL-IOTSC-2021-2023), the Start-up Research Grant of University of
Macau (File no. SRG2020-00020-IOTSC).

References

1. de Andrade Júnior, J.W., Duarte Seabra, R.: Fully retroactive minimum spanning
tree problem. Comput. J. (2020)

2. Baswana, S., Gupta, M., Sen, S.: Fully dynamic maximal matching in o(log n)
update time (corrected version). SIAM J. Comput. 47(3), 617–650 (2018)

3. Bentley, J.L.: Algorithms for Klee’s rectangle problems. Technical report, Com-
puter (1977)

4. Bernstein, A., Forster, S., Henzinger, M.: A deamortization approach for dynamic
spanner and dynamic maximal matching. In: SODA, pp. 1899–1918. SIAM (2019)

5. Blelloch, G.E.: Space-efficient dynamic orthogonal point location, segment inter-
section, and range reporting. In: SODA, pp. 894–903. SIAM (2008)

6. Chen, L., Demaine, E.D., Gu, Y., Williams, V.V., Xu, Y., Yu, Y.: Nearly opti-
mal separation between partially and fully retroactive data structures. In: SWAT.
LIPIcs, vol. 101, pp. 33:1–33:12. Schloss Dagstuhl - Leibniz-Zentrum fuer Infor-
matik (2018)

7. Demaine, E.D., Iacono, J., Langerman, S.: Retroactive data structures. ACM
Trans. Algorithms 3(2), 13 (2007)

8. Demaine, E.D., Kaler, T., Liu, Q., Sidford, A., Yedidia, A.: Polylogarithmic fully
retroactive priority queues via hierarchical checkpointing. In: Dehne, F., Sack, J.-
R., Stege, U. (eds.) WADS 2015. LNCS, vol. 9214, pp. 263–275. Springer, Cham
(2015). https://doi.org/10.1007/978-3-319-21840-3 22

https://doi.org/10.1007/978-3-319-21840-3_22

484 M. Henzinger and X. Wu

9. Dickerson, M.T., Eppstein, D., Goodrich, M.T.: Cloning voronoi diagrams via
retroactive data structures. In: de Berg, M., Meyer, U. (eds.) ESA 2010. LNCS,
vol. 6346, pp. 362–373. Springer, Heidelberg (2010). https://doi.org/10.1007/978-
3-642-15775-2 31

10. Driscoll, J.R., Sarnak, N., Sleator, D.D., Tarjan, R.E.: Making data structures
persistent. J. Comput. Syst. Sci. 38(1), 86–124 (1989)

11. Fiat, A., Kaplan, H.: Making data structures confluently persistent. J. Algorithms
48(1), 16–58 (2003)

12. Galperin, I., Rivest, R.L.: Scapegoat trees. In: SODA, pp. 165–174. ACM/SIAM
(1993)

13. Giyora, Y., Kaplan, H.: Optimal dynamic vertical ray shooting in rectilinear planar
subdivisions. ACM Trans. Algorithms 5(3), 28:1–28:51 (2009)

14. Goodrich, M.T., Simons, J.A.: Fully retroactive approximate range and nearest
neighbor searching. In: Asano, T., Nakano, S., Okamoto, Y., Watanabe, O. (eds.)
ISAAC 2011. LNCS, vol. 7074, pp. 292–301. Springer, Heidelberg (2011). https://
doi.org/10.1007/978-3-642-25591-5 31

15. Henzinger, M., Krinninger, S., Nanongkai, D., Saranurak, T.: Unifying and
strengthening hardness for dynamic problems via the online matrix-vector mul-
tiplication conjecture. In: STOC, pp. 21–30. ACM (2015)

16. Henzinger, M., Wu, X.: Upper and lower bounds for fully retroactive graph prob-
lems. arXiv preprint arXiv:1910.03332 (2019)

17. Henzinger, M.R., King, V.: Randomized fully dynamic graph algorithms with poly-
logarithmic time per operation. J. ACM 46(4), 502–516 (1999)

18. Henzinger, M.R., King, V.: Maintaining minimum spanning forests in dynamic
graphs. SIAM J. Comput. 31(2), 364–374 (2001)

19. Holm, J., de Lichtenberg, K., Thorup, M.: Poly-logarithmic deterministic fully-
dynamic algorithms for connectivity, minimum spanning tree, 2-edge, and bicon-
nectivity. J. ACM 48(4), 723–760 (2001)

20. Holm, J., Rotenberg, E., Wulff-Nilsen, C.: Faster fully-dynamic minimum spanning
forest. In: Bansal, N., Finocchi, I. (eds.) ESA 2015. LNCS, vol. 9294, pp. 742–753.
Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-48350-3 62

21. Parsa, S.: Algorithms for the reeb graph and related concepts. Ph.D. thesis, Duke
University (2014)

22. Patrascu, M., Demaine, E.D.: Logarithmic lower bounds in the cell-probe model.
SIAM J. Comput. 35(4), 932–963 (2006)

23. Roditty, L., Zwick, U.: A fully dynamic reachability algorithm for directed graphs
with an almost linear update time. SIAM J. Comput. 45(3), 712–733 (2016)

24. Sedgewick, R.: Algorithms. Addison-Wesley, Boston (1983)
25. Sleator, D.D., Tarjan, R.E.: A data structure for dynamic trees. J. Comput. Syst.

Sci. 26(3), 362–391 (1983)
26. Solomon, S.: Fully dynamic maximal matching in constant update time. In: FOCS,

pp. 325–334. IEEE Computer Society (2016)
27. Tarjan, R.E.: Efficiency of a good but not linear set union algorithm. J. ACM

22(2), 215–225 (1975)

https://doi.org/10.1007/978-3-642-15775-2_31
https://doi.org/10.1007/978-3-642-15775-2_31
https://doi.org/10.1007/978-3-642-25591-5_31
https://doi.org/10.1007/978-3-642-25591-5_31
http://arxiv.org/abs/1910.03332
https://doi.org/10.1007/978-3-662-48350-3_62

Characterization of Super-Stable
Matchings

Changyong Hu(B) and Vijay K. Garg

University of Texas at Austin, Austin, TX 78705, USA
colinhu9@utexas.edu, garg@ece.utexas.edu

Abstract. An instance of the super-stable matching problem with
incomplete lists and ties is an undirected bipartite graph G = (A∪B,E),
with an adjacency list being a linearly ordered list of ties. Ties are sub-
sets of vertices equally good for a given vertex. An edge (x, y) ∈ E\M
is a blocking edge for a matching M if by getting matched to each other
neither of the vertices x and y would become worse off. Thus, there is no
disadvantage if the two vertices would like to match up. A matching M is
super-stable if there is no blocking edge with respect to M . It has previ-
ously been shown that super-stable matchings form a distributive lattice
[14,23] and the number of super-stable matchings can be exponential
in the number of vertices. We give two compact representations of size
O(m) that can be used to construct all super-stable matchings, where
m denotes the number of edges in the graph. The construction of the
second representation takes O(mn) time, where n denotes the number of
vertices in the graph, and gives an explicit rotation poset similar to the
rotation poset in the classical stable marriage problem. We also give a
polyhedral characterization of the set of all super-stable matchings and
prove that the super-stable matching polytope is integral, thus solving
an open problem stated in the book by Gusfield and Irving [4].

Keywords: Super-stable matching · Distributive lattice · Matching
polytope

1 Introduction

An instance of the super-stable matching problem with incomplete lists and ties
is an undirected bipartite graph G = (A ∪ B,E), with an adjacency list being
a linearly ordered list of ties. Ties are disjoint and may contain just one vertex.
If vertices b1 and b2 are neighbors of vertex a in the graph G, then either (1)
a strictly prefers b1 to b2, which we denote as b1 �a b2; or (2) a is indifferent
between b1 and b2, which means b1 and b2 are in a tie in a’s adjacency list, and
denote as b1 =a b2; or (3) a strictly prefers b2 to b1. We say a weakly prefers
b1 to b2 if either a strictly prefers b1 to b2 or a is indifferent between b1 and b2,
which we denote as b1 �a b2. A matching M is a set of disjoint edges in the
graph G. Let e = (u, v) be an edge contained in the matching M . Then, we say

c© Springer Nature Switzerland AG 2021
A. Lubiw et al. (Eds.): WADS 2021, LNCS 12808, pp. 485–498, 2021.
https://doi.org/10.1007/978-3-030-83508-8_35

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-83508-8_35&domain=pdf
http://orcid.org/0000-0003-4074-0313
http://orcid.org/0000-0002-5797-4389
https://doi.org/10.1007/978-3-030-83508-8_35

486 C. Hu and V. K. Garg

that vertices u and v are matched in M and write u = M(v) to denote that u
is matched to v in M . An edge (x, y) ∈ E\M is a blocking edge for a matching
M if by getting matched to each other neither of the vertices x and y would
become worse off, i.e. x is either unmatched or x weakly prefers y to M(x), and
y is either unmatched or y weakly prefers x to M(y). We abuse the notation
y �x M(x) for the case that x is unmatched in M . A matching is super-stable if
there is no blocking edge with respect to it.

Super-stable matchings were first investigated by Irving [6], who gave three
classes of stable matchings in the case of preference lists with ties, depending
on the way of defining a blocking edge for a matching M . In the weakly stable
matching problem an edge e = (x, y) is blocking if by getting matched to each
other, both x and y would become better off. In the strongly stable matching
problem, an edge e = (x, y) is blocking if one of x and y becomes better off and
the other would not be worse off.

In this paper we study the problem of characterizing the set of all super-
stable matchings. The problem was stated in the book by Gusfield and Irving [4]
as one of the 12 open problems. The structure of the set of all stable matchings
in the stable marriage problem without ties is well understood in Gusfield and
Irving’s book [4]. Recently, Kunysz et al. [11] gave compact representations for
the set of all strongly stable matchings and showed that the construction can be
done in O(mn) time, where n and m denote the number of vertices and edges
in the graph. Scott [22] investigated the structure of all super-stable matchings
by defining an object that he called meta-rotation, which corresponds to one
collection of rotations in some arbitrary tie-breaking instance of the original
instance and the time complexity of the construction is O(m2).

We give two compact representations of the set of all super-stable matchings
that can be constructed in, respectively, O(nm2) and O(mn) time.

The first representation of the set of all super-stable matchings consists of
O(m) matchings, each of which is a man-optimal stable matching among all
super-stable matchings that contains a given edge. We show that computing
such matching for each edge can be reduced to computing a man-optimal super-
stable matching in a reduced graph by deleting an appropriate subset of edges
in graph G. The algorithm is described in Sect. 3.

Our second representation explicitly constructs rotations, which are differ-
ences between consecutive super-stable matchings in a maximal sequence of
super-stable matchings starting with a man-optimal super-stable matching and
ending with a woman-optimal super-stable matching. Unlike Scott’s [22] meta-
rotation, our rotation is the symmetric difference of two super-stable matchings,
which could be a cycle or multiple cycles.

Our construction takes O(mn) time, while Scott’s [22] algorithm takes O(m2)
time. We also show how to efficiently construct a partial order among rotations.
This poset can be used to solve other problems connected to super-stable match-
ings such as the enumeration of all super-stable matchings and the maximum
weight super-stable matching problem. Fleiner et al. [3] solve the weight super-
stable matching by reducing it to the 2-SAT problem and the time complexity

Characterization of Super-Stable Matchings 487

is O(mn log(W)), where W is the maximum weight among all edges in G. By
using the rotation poset constructed in this paper, the weighted problem can
also be solved in O(mn log(W)) time.

In this paper we also give a polyhedral characterization for the set of all
super-stable matchings and prove that the super-stable matching polytope is
integral. This result implies that the maximum weight super-stable matching
problem can be solved in polynomial time. Though the complexity of solving LP
is usually higher than combinatorial methods, like in [3], this gives an alternative
direction to solve the weighted super-stable matching problem. Previously, it has
been shown that the stable matching polytope and the strongly stable matching
polytope are integral [11,21,25], we complete all three cases by proving that the
super-stable matching polytope is integral as well.

We also proved a property called self-duality for the super-stable matching
polytope, which also holds for the classical stable matching polytope [24] and
the strongly stable matching polytope [11]. See details in our full version.

1.1 Related Works

Irving [6] gave an O(m) algorithm to find a super-stable matching if it exists.
Spieker [23] showed that super-stable matchings form a distributive lattice. Fur-
ther properties of super-stable matchings were proved by Manlove in [14]. Scott
[22] introduced the concept called meta-rotation poset for super-stable matchings
and showed the one-to-one correspondence between super-stable matchings and
closed subsets of the poset.

Irving [6] and Manlove [14] gave an O(m2) algorithm to find a strongly sta-
ble matching if it exists. Kavitha et al. [9] gave an O(nm) algorithm for the
strongly stable matching problem. Manlove [14] showed that strongly stable
matchings form a distributive lattice. Kunysz et al. [12] gave a characterization
of all strongly stable matchings and later Kunysz [11] gave a polyhedral descrip-
tion for the set of all strongly stable matchings and proved that the strongly
stable matching polytope is integral.

For weakly stable matchings, it is not true that all weakly stable matchings
of a given instance always have the same size. Weakly stable matching can be
easily found by running the deferred-acceptance algorithm while breaking ties in
an arbitrary manner. The problem of computing a maximum-size weakly stable
matching is NP-hard, which has been proved by Iwama et al. [7]. Thus finding
good approximations of the problem becomes very interesting. For the version
when ties are allowed on both sides, the currently best approximation factor
is 3/2 [10,16,17]. For the case when ties only occur on one side, there are a
sequence of works pushing the approximation factor lower. Iwama et al. [8] gave
an 25/17 approximation algorithm. Huang and Kavitha [5] improved it to 22/15.
Later Radnai [20] improved the approximation factor to 41/28, then Dean et al.
[2] pushed the approximation factor to 19/13. Most recent result by Lam and
Plaxton [13] gave the currently best approximation factor of 1 + 1/e.

488 C. Hu and V. K. Garg

2 Preliminaries

In this section we give some definitions and theorems that are useful in the
following sections.

Theorem 1. [6,14] There is an O(m) algorithm to determine a man-optimal
super-stable matching of the given instance or report that no such matching
exists.

Theorem 2. [14] In a given instance of the super-stable matching problem, the
same set of vertices are matched in all super-stable matchings.

Lemma 1. [14] Let M,N be two super-stable matchings in a given super-stable
matching instance. Suppose that, for any agent p, (p, q) ∈ M and (p, q′) ∈ N ,
where p is indifferent between q and q′, then q = q′.

We recall some standard notations and definitions from the theory of match-
ings under preferences. For a given edge (m,w), any matching containing (m,w)
is called an (m,w)-matching. Let us denote the set of all super-stable matchings
of G by MG. Let MG(m,w) be the set of all super-stable (m,w)-matchings in
G.

For two super-stable matchings M and N , we say that M dominates N and
write M � N if each man m weakly prefers M(m) to N(m). If M dominates N
and there exists a man m who prefers M(m) to N(m), then we say M strictly
dominates N , write M � N and we call N a successor of M . Note that by
Lemma 1, M � N implies M � N , assuming M is not equal to N .

3 Irreducible Super-Stable Matchings

In this section, we give our first representation via irreducible matchings.
Birkhoff’s representation theorem [1] for distributive lattices states that the ele-
ments of any finite distributive lattice can be represented as finite sets in such
a way that the lattice operations correspond to unions and intersections of sets.
The theorem gives a one-to-one correspondence between distributive lattices and
partial orders. Our goal is to find the partial order that represents the set of all
super-stable matchings.

Distributive lattice is closely related to rings of sets, which is a family of sets
that is closed under set unions and set intersections. If the sets in a ring of sets
are ordered by set inclusion, they form a distributive lattice. Theory regarding
rings of sets and its application to representations of the set of stable matchings
in the classical stable marriage problem is well studied by Irving and Gusfield
[4]. Below we give a brief summary of this theory that serves as a preliminary
for our algorithm.

Given a finite set B, the base set, a family F = {F0, F1, · · · , Fk} of subsets of
B is called a ring of sets over B if F is closed under set union and intersection. A
ring of sets contains a unique minimal element and a unique maximal element.

Characterization of Super-Stable Matchings 489

For any element a ∈ B, we denote F(a) the set of all elements of F that
contains a. It is obvious that F(a) is also a ring of sets over B. We define F (a)
to be the unique minimal element of F(a). An element F ∈ F that is F (a)
for some a ∈ B is called irreducible. We denote I(F) the set of all irreducible
elements of F . We view (I(F),≤) as a partial order under the relation ≤ of set
containment. We give the Birkhoff’s representation theorem in the language of
rings of sets below.

Theorem 3. [4] i) There is a one-to-one correspondence between the closed sub-
sets of I(F) and the elements of F .
ii) If S and S′ are closed subsets of I(F) that generate F =

⋃
S and F ′ =

⋃
S′

respectively, then F ⊆ F ′ if and only if S ⊆ S′.

In the context of super-stable matchings, the base set B corresponds to the
set of all acceptable pairs (m,w) ∈ E. We define the P -set of a super-stable
matching M to be the set of all pairs (m,w), where w is either M(m) or a
woman whom m weakly prefers to M(m), which corresponds to an element in
F . It is obvious that the unique minimal (man-optimal) super-stable matching
in MG(m,w), if nonempty, is irreducible.

Here we describe an O(|E|) algorithm for computing a man-optimal super-
stable (m,w)-matching in G. Algorithm 1 essentially constructs a reduced graph
G′ ⊆ G by removing some edges from G (line 3 to line 13 in Algorithm1). After
that, the algorithm computes a man-optimal super-stable matching M ′ in the
reduced graph G′. By adding back the edge (m,w), the new matching M∪(m,w)
is super-stable in G.

Lemma 2. Let M be a super-stable (m,w)-matching. Then M ′ = M\{(m,w)}
is a super-stable matching in the reduced graph G′.

Proof. We need to prove M ′ ⊆ G′ or equivalently none of edges removed from
G is matched in M ′. Suppose not, an edge (m′, w′) was removed from G and
is matched in M ′. Note that m′ �= m and w′ �= w. Hence, it follows that there
is an edge (m,w′) or (m′, w) which caused the removal of (m′, w′). W.l.o.g,
let’s assume it is (m,w′) which caused the removal of (m′, w′). Then we have
w 	m w′ and m �w′ m′. Obviously, (m,w′) is a blocking pair, which leads to a
contradiction of M being super-stable.

To prove super-stability of M ′ is easy. If there were an edge e blocking M ′,
it would also block M .

Lemma 3. Let M ′ be some super-stable matching in the reduced graph G′ if
exists. If M ′ ∪ (m,w) is a super-stable matching in G, then for each super-stable
matching N ′ in G′, N ′ ∪ (m,w) is a super-stable matching in G. If G′ does not
have any super-stable matching, then there is no super-stable (m,w)-matching.

Proof. Let M = M ′ ∪ (m,w). Since M ′ is super-stable in G′. It follows that only
the removed edges in E\E′ can potentially block M . We have two cases. (i):
any edge that is incident to m or w cannot block M . W.l.o.g, Suppose that for
some w′ that is incident to m, and (m,w′) blocks M . Then we have w′ �m w.

490 C. Hu and V. K. Garg

Algorithm 1: Computing man-optimal super-stable (m,w)-matching
1 Input: the graph G = (A ∪ B,E) and preference lists of G and an edge

(m,w) ∈ E.
2 Output: man-optimal super-stable (m,w)-matching or deciding that no such

matching exists.
3 G′ ← G\{m,w} // remove m and w and all edges that are incident to them
4 for m′ s.t. (m′, w) ∈ E and m �w m′ do
5 for w′ s.t. (m′, w′) ∈ E and w �m′ w′ do
6 G′ ← G′\(m′, w′)
7 end for
8 end for
9 for w′ s.t. (m,w′) ∈ E and w �m w′ do

10 for m′ s.t. (m′, w′) ∈ E and m �w′ m′ do
11 G′ ← G′\(m′, w′)
12 end for
13 end for
14 compute man-optimal super-stable matching in G′.
15 if exists man-optimal super-stable matching M in G′ and M ∪ (m,w) is

super-stable in G
16 return M ∪ (m,w)
17 else
18 return no super-stable (m,w)-matching exists.
19 end if

By the construction of G′, any edge (m′, w′) such that m �w′ m′ was removed.
Hence w′ must be unmatched in M . From Theorem 2, w′ is unmatched in any
super-stable matching of G. Let us assume there exists some super-stable (m,w)-
matching N . Then N ′ = N\(m,w) is super-stable in G′. Since w′ is unmatched
in N , (m,w′) blocks N , contradiction. (ii): any edge (m′, w′) such that m′ �= m
and w′ �= w cannot block M . By the construction of the reduced graph G′, the
removal of (m′, w′) was caused by some edge (m,w′) or (m′, w). W.l.o.g, some
edge (m,w′) caused the removal of (m′, w′). Hence, if w′ is matched in M , then
M(w′) �w′ m′. (m′, w′) does not block M . In the case that w′ is unmatched
in M , w′ is unmatched in any super-stable matching in G. Similar to Case 1,
if there exists some super-stable (m,w)-matching N , then (m,w′) blocks N,
contradiction. By the same argument, if M is super-stable in G, for any other
super-stable matching N ′ in G′, M ′ and N ′ match the same set of vertices. No
edges in E\E′ can block N ′ ∪ (m,w).

Theorem 4. Let (m,w) be an edge in G. There is an O(m) algorithm for com-
puting a man-optimal super-stable (m,w)-matching or deciding that no super-
stable (m,w)-matching exists.

Proof. Lemma 3 makes sure if Algorithm 1 outputs a matching M , then M is
super-stable in G. Lemma 2 guarantees that if there exists any super-stable
matching in G, then Algorithm 1 would never miss it.

Characterization of Super-Stable Matchings 491

Theorem 5. (I(MG),≤) can be constructed in O(nm2) time.

Proof. I(MG) can be computed in O(m2) time by running Algorithm1 for each
edge (m,w) ∈ E. The set I(MG) has at most m elements. By checking each
pair of I(MG), we can construct the partial order. Each check takes O(n) time.
Thus, the total time is O(nm2).

4 A Maximal Sequence of Super-Stable Matchings

Representation via irreducible matchings is intuitive, but the time complexity is
high. In this section, we give another representation via rotation poset and the
time complexity to construct this rotation poset is only O(mn).

Rotation poset derives from the concept of minimal differences of a ring of
sets. A chain C = {C1, · · · , Cq} in F is an ordered set of elements of F such
that Ci is an immediate predecessor of Ci+1 for each i ∈ [q]. The maximal
chain is a chain that begins at the minimal element of F , F0 and ends at the
maximal element of F , Fz. Let Fi and Fi+1 be two elements of F such that
Fi is an immediate predecessor of Fi+1. The difference D = Fi+1\Fi is called a
minimal difference of F . Note that for each two consecutive elements of a chain
C, there is a minimal difference D, we say that C contains D. The following
two theorems give another version of Birkhoff’s representation theorem in the
language of minimal differences. The reader can find more details in Irving and
Gusfield’s book [4].

Theorem 6. [4] If F and F ′ are two elements in F such that F ⊂ F ′, then every
chain from F to F ′ in F contains exactly the same set of minimal differences
(in a different order).

Theorem 7. [4] Let D(F) denote the set of all minimal differences in F . For
two minimal differences D and D′, D ≺ D′ if and only if D appears before D′

on every maximal chain in F . There is a one-to-one correspondence between the
elements of F and the closed subsets of D(F).

In the context of super-stable matchings, we want to compute a maximal
sequence of super-stable matchings in M(G), i.e. a sequence M0 � M1 � · · · �
Mz where M0 is the man-optimal super-stable matching and Mz is the woman-
optimal super-stable matching and for each 1 ≤ i ≤ z, there is no super-stable
matching M ′ such that Mi−1 � M ′ � Mi. We call a matching M ′ a strict
successor of a matching M if M ′ is a successor of M , i.e. M � M ′ and there
exists no super-stable matching M ′′ such that M � M ′′ � M ′. We can solve
this problem by computing a strict successor of any super-stable matching M .

Let M be a super-stable matching in G and m a vertex in A. Suppose that
there exists a super-stable matching M ′ such that m gets a worse partner in M ′

than in M , i.e. M(m) �m M ′(m). Let w = M ′(m), by Lemma 1, w must be
matched in M and m �w M(w). Hence we are essentially searching for some
vertex w such that M(m) �m w and m �w M(w). In Algorithm 2, the set Ec

492 C. Hu and V. K. Garg

contains for each man m highest ranked edges incident to him that satisfies the
condition above. For each man m, the candidate edge (m,w) is not unique, there
might be other edge (m,w′) that forms a tie with (m,w). While in the case of
strict preference list, the candidate edge is unique.

A strongly connected component S of a directed graph G is a subgraph S
that is strongly connected, i.e. there is a path in S in each direction between each
pair of vertices of S, and is maximal with this property: no additional edges or
vertices from G can be included in the subgraph without breaking its property
of being strongly connected. We say that e = (m,w) is an outgoing edge of S
if m ∈ S and w /∈ S. Let S(m) denote the strongly connected component that
contains m.

In Algorithm 2 given below we maintain a directed graph Gd = (V,Ed),
whose every edge (m,w) ∈ Ed ∩M is directed from w to m and every other edge
(m,w) is directed from m to w. Gd is a subgraph of G that contains the edges the
algorithm traverses so far. The basic idea of this algorithm is that for each man
m such that M(m) �= Mz(m), we traverse the preference list of m until we find
some candidate edges defined above. We add the edges traversed into Gd and
the candidate edges into Gc. For each strongly connected component S of Gd

without outgoing edges, we try to find a perfect matching on S in Gc = (V,Ec).
If we are successful, we find a strict successor of M . Otherwise, we modify Gc

and Gd by allowing edges of lower ranks.

4.1 Correctness of Algorithm2

Due to the space limit, we defer the proof of Lemma4, Lemma 5 and Lemma 6
in our full version. Lemma4 proves that any edge removed from Gd (line 9 and
line 30) never block any super-stable matching that the algorithm will output.

Lemma 4. Let M be a super-stable matching in G. For any successor N of M
such that N is also a super-stable matching in G and each (m,w) ∈ M , any edge
(m,w′) such that w′ �m w or (m′, w) such that m �w m′ cannot block N .

Lemma 5. No edge deleted in line 17 can belong to any super-stable matching
N dominated by M .

Lemma 6. No edge deleted in line 23 can belong to any super-stable matching
N dominated by M .

Lemma 7. The output matching Mi is super-stable and a strict successor of
Mi−1.

Proof. Note that the algorithm outputs Mi when the edge set Ec is a perfect
matching in a strongly connected component S with no outgoing edges and
Mi = (Mi−1\S) ∪ (Ec ∩ S). Suppose, for a contradiction, that Mi is blocked by
some edge (m,w) ∈ Ed. There are four cases. (i): m /∈ S and w /∈ S, it is obvious
that (m,w) cannot block Mi, since it would block Mi−1 as well. (ii): m ∈ S
and w /∈ S, this is not possible, because this will imply S has an outgoing edge

Characterization of Super-Stable Matchings 493

Algorithm 2: Computing a maximal sequence of super-stable matchings
1 let M0 be the (unique) man-optimal super-stable matching of G.
2 let Mz be the (unique) woman-optimal super-stable matching of G.
3 M ← M0

4 let M ′ contain edge (m,M(m)) for each man m such that M(m) =m Mz(m)
5 let Ed contain all edges of M
6 let Gd be the directed graph (V,Ed) such that each edge (m,w) ∈ Ed ∩ M is

directed from w to m and every other edge (m,w) is directed from m to w
7 E′ ← E\Ed

8 let Ec = M ′ and Gc = (V,Ec)
9 for each (m,w) ∈ M remove from E′ each edge (m′, w) such that m′ ≺w m and

each edge (m,w′) such that w′ �m w
10 repeat
11 while (∃m ∈ A) degGc(m) = 0 do
12 add the set Em of top choices of m from E′ to Ed

13 if outdeg(S(m)) = 0 then
14 add every edge (m,w) ∈ Em such that m
w M(w) and
15 M(m)
m w to Ec

16 for each edge (m,w) of Ec that becomes strictly dominated by
17 some added edge (m′, w) remove it from Gc

18 remove Em from E′

19 end if
20 end while
21 for each m ∈ A such that outdeg(S(m)) = 0 do
22 delete all lowest ranked edge in Ec ∪ E′ incident to any w ∈ S such
23 that w is multiple engaged
24 end for
25 while (∃S) outdeg(S) = 0 and Ec is a perfect matching on S do
26 M ← (Ec ∩ S) ∪ (M\S)
27 Mi ← M
28 output Mi

29 i ← i + 1
30 update Gc and Gd: Ec ∩ S contains only edges (m,M(m)) such that
31 M(m) =m Mz(m); an edge (m,w) ∈ S stays in Gd only if w = M(m)
32 and rankw(m) ≤ rankM (w)
33 end while
34 until (∀m ∈ A) rankM (m) = rankMz (m)

in Ed. (iii): m /∈ S and w ∈ S, then Mi(m)(= Mi−1(m)) �m w, hence (m,w)
would not block Mi. (iv): m ∈ S and w ∈ S, if (m,w) never belong to Ec, then
Mi(w) �w Mi−1(w) =w m, (m,w) can not block Mi; if (m,w) once belongs
to Ec and got deleted later, then w always get a strictly better partner than
m. We prove that no edge from Ed can block Mi. There might be some other
edges e �∈ Ed that can potentially block Mi. These edges are deleted during the
updating of Ed. Lemma 4 gives a proof that these set of edges cannot block any
matching N that is dominated by Mi−1. Hence Mi is super-stable.

494 C. Hu and V. K. Garg

Next we prove that Mi is a strict successor of Mi−1. Suppose not and let m be
any man in S and N a successor of Mi−1 such that Mi−1(m) � N(m) � Mi(m).
If (m,N(m)) ∈ Ec and is not deleted during the algorithm, then (m,Mi(m))
would not be in Ec, which is not true. Since N is a successor of M and is super-
stable, by Lemma 5 and Lemma 6, the edge (m,N(m)) can never once belong to
Ec. Let w = N(m), by our updating rule of Ed, we have N(w) �w M(w). While
if N(w) �w M(w), then the edge (m,w) must once belong to Ec. Thus we have
N(w) =w M(w), which violates Lemma 1.

Lemma 8. If Mi �= Mz, the algorithm always outputs a matching.

Proof. The algorithm will end without outputting any matching if and only if in
line 25 the while loop, it cannot find any strongly connected component with no
outgoing edges. Note that every directed graph can be expressed as a directed
acyclic graph of its strongly connected components. Hence, we can always find
a strongly connected component without outgoing edges.

Theorem 8. Algorithm2 computes a maximal sequence of super-stable match-
ings.

Proof. By Lemma 7 and Lemma 8, it is obvious that Algorithm2 outputs a max-
imal sequence of super-stable matchings.

4.2 Running Time of Algorithm2

Theorem 9. The running time of Algorithm2 is O(mn).

Proof. Each time we add new edges into Ed, we need to compute strongly con-
nected components of Gd. Computing strongly connected component of any
directed graph G′ = (V ′, E′) can be done in O(E) time. Each edge e of G is
added to Gd at most once, and Gd is always a subgraph of G. Hence, a naive
implementation takes O(m2) on computing strongly connected components of
Gd. As mentioned in [12], Pearce [19] and Pearce and Kelly [18] sketch how to
extend their algorithm and that of Marchetti-Spaccamela et al. [15] to compute
strongly connected component dynamically. Their algorithm runs in O(mn) if
edges can only be added to the graph and not deleted. The edges in Gd can
be deleted during the algorithm, but they are deleted only when Ec is per-
fect on a strongly connected component without outgoing edges. Thus, other
strongly connected components are unchanged. Also as mentioned in [12], the
edges remaining in the selected strongly connected component can be treated
as they were added anew to the graph. Since the ranks of men increase as we
output subsequent super-stable matchings, each edge can be added anew to Gd

constant number of times. Thus, the amortized cost of edge insertion remains
unchanged. The reader can easily check the other part of the algorithm takes at
most O(m) time. Hence, the total time is O(mn).

Characterization of Super-Stable Matchings 495

4.3 Rotation Poset

We have shown all rotations D(MG) can be found in time O(mn) by Algo-
rithm2. It remains to show how to efficiently construct the precedence ration ≺
on D(MG). Our construction is essentially the same as the construction given
in [4] for the classical stable marriage problem. The only difference here is that
one rotation for super-stable matchings can be one or multiple cycles, while one
rotation for stable matchings in the classical stable marriage problem is always
a cycle. The reader can find more details in [4]. Due to the space limit, we defer
this section in our full version.

We summarize Sect. 4 with the following theorem.

Theorem 10. The partial order (D(MG),≺) can be constructed in O(mn).

Proof. The construction of D(MG) takes O(mn) time by running Algorithm2.
The precedence relation can be constructed in O(m) time. Hence, the time com-
plexity is O(mn).

5 The Super-Stable Matching Polytope

In this section, we give a polyhedral characterization of the set of all super-stable
matchings and prove that the super-stable matching polytope is integral. The
main result is the following theorem.

Theorem 11. Let G = (V,E) be a stable matching problem with ties where
the graph G is bipartite, then the super-stable matching polytope SUSM(G) is
described by the following linear system:

∑

u∈N(v)

xu,v ≤ 1, ∀v ∈ V, (1a)

∑

i>uv

xu,i +
∑

j>vu

xj,v + xu,v ≥ 1, ∀(u, v) ∈ E, (1b)

xu,v ≥ 0, ∀(u, v) ∈ E (1c)

where N(v) denotes the set of neighbors of v in G, and w >u v means u prefers
w to v.

Proof. Let x be a feasible solution. Define E+ to be the set of edges (u, v) with
xu,v > 0, and V + the set of vertices covered by E+. For each u ∈ V +, let N∗(u)
be the maximal elements in {i : xu,i > 0}. Note that there might be multiple
maximal elements that form a tie.

We first show the following lemma.

Lemma 9. For each vertex u and each vertex v ∈ N∗(u), then u is the unique
minimal element in {j : xj,v > 0} and that

∑
j∈N(v) xj,v = 1.

496 C. Hu and V. K. Garg

Proof. Indeed, (1b) implies

1 ≤
∑

j>vu

xj,v +xu,v =
∑

j∈N(v)

xj,v −
∑

j<vu

xj,v −
∑

j=vu;
j �=u

xj,v ≤ 1−
∑

j<vu

xj,v −
∑

j=vu;
j �=u

xj,v ≤ 1

(2)
Hence we have equality throughout in (2). This implies that xj,v = 0 for each
{j : j <v u} and each {j : j =v u; j �= u} and that

∑
j∈N(v) xj,v = 1. Since

xj,v = 0 for each {j : j =v u; j �= u}, v strictly prefers any other vertices in
{j : xj,v > 0} over u, making u the unique minimal element in {j : xj,v > 0}.

We then prove that for any v such that v ∈ N∗(u) for some u, then u is
unique. Suppose not, there is a vertex u′ �= u and v ∈ N∗(u′). By Lemma 9, u
is the unique minimal element in {j : xj,v > 0}, and u′ is the unique minimal
element in {j : xj,v > 0}, contradiction.

Now let U and W be the color classes of G. For any u ∈ U ∩ V +, there is
at least one unique vertex w ∈ N∗(u), such that

∑
j∈N(w) xj,w = 1. Let FW (x)

be the set of these vertices. Formally, FW (x) = {w : w ∈ N∗(u), u ∈ U ∩ V +}.
Then we have |FW (x)| ≥ |U ∩ V +|. We also have that

|FW (x)| =
∑

w∈FW (x)

∑

j∈N(w)

xj,w =
∑

j∈U∩V +

∑

w∈FW (x)

xj,w ≤
∑

j∈U∩V +

1 = |U ∩ V +|

(3)
implying that |FW (x)| = |U ∩V +|. Hence, we conclude that for each u ∈ U ∩V +,
|N∗(u)| = 1, which implies that u has an unique maximal element in {i : xu,i >
0}. Since |N∗(u)| = 1, we denote this unique vertex as x∗(u). We then have the
following corollary.

Corollary 1. There is a bijection between U ∩ V + and FW (x), and for each
u ∈ U ∩ V +,

∑
i∈N(u) xu,i = 1.

Similarly, we may define FU (x) = {u : u ∈ N∗(w), w ∈ W ∩ V +} and we
have

Corollary 2. There is a bijection between W ∩ V + and FU (x), and for each
w ∈ W ∩ V +,

∑
j∈N(w) xj,w = 1.

Then we have |U ∩ V +| = |FW (x)| ≤ |W ∩ V +| and |W ∩ V +| = |FU (x)| ≤
|U ∩ V +|, implying |U ∩ V +| = |W ∩ V +| = |FW (x)| = |FU (x)|. Then any
u ∈ U ∩ V + is also in FU (x), hence, u has an unique minimal element, denoted
by x∗(u).

The bijection between U ∩ V + and FW (x) forms a perfect matching M in
(V +, E+), i.e. the set of edges {(u, x∗(u)) : u ∈ U ∩V +}. Similarly, the bijection
between W ∩ V + and FU (x) forms another perfect matching N , i.e. the set of
edges {(x∗(w), w) : w ∈ W ∩ V +}.

Consider the vector x′ = x + εχM − εχN , with ε close enough to 0 (positive
or negative). we will show that x′ is also feasible solution of (1a)–(1c). It is

Characterization of Super-Stable Matchings 497

easy to see that x′ satisfies (1a) and (1c). For each vertex u ∈ U ∩ V +, there is
an unique maximal element x∗(u) and (u, x∗(u)) ∈ M and an unique minimal
element x∗(u) and (u, x∗(u)) ∈ N , implying

∑
i∈N(u) x′

u,i =
∑

i∈N(u) xu,i ≤ 1.
To see that x′ satisfies (1b), let (u, v) be an edge in E+ attaining equality in (1b).
The case that (u, v) ∈ M or (u, v) ∈ N is trivial. So assume that (u, v) /∈ M
and (u, v) /∈ N . The edge (u, x∗(u)) ∈ M and x∗(u) >u v. There is no other
edge in {(u, i) : i ∈ N(u)} belongs to M . We prove that there is no edge (j, v)
in M and j >v u since if (j, v) ∈ M , j is the minimal element of v. Similarly,
we can prove that there is exact one edge (j, v) ∈ N and j >v u. Concluding,∑

i>uv
x′
u,i +

∑
j>vu

x′
j,v + x′

u,v =
∑

i>uv
xu,i +

∑
j>vu

xj,v + xu,v = 1. Let x be
an extreme point. The feasibility of x′ implies that χM = χN , that is, M = N .
So E+ = M since the maximal element is the same as the minimal element for
each vertex, hence, x = χM .

5.1 Partial Order Preference Lists

Partial order preference lists are generalisation of preference lists with ties in
such a way that the preference list of each man or woman is an arbitrary partial
order. It turns out that the linear system (1a)–(1c) can also describe the set of
all super-stable matchings with partial order preference list. See more details in
our full version.

5.2 The Strongly Stable Matching Polytope

Kunysz [11] gives a linear system that characterizes the set of all strongly stable
matchings and proves this linear system is integral using the duality theory of
linear programming. Here, we give an alternate and simpler proof that does not
rely on the duality theory and uses only Hall’s theorem. See the proof in our full
version.

References

1. Birkhoff, G., et al.: Rings of sets. Duke Math. J. 3(3), 443–454 (1937)
2. Dean, B., Jalasutram, R.: Factor revealing lps and stable matching with ties and

incomplete lists. In: Proceedings of the 3rd International Workshop on Matching
Under Preferences, pp. 42–53 (2015)

3. Fleiner, T., Irving, R.W., Manlove, D.F.: Efficient algorithms for generalized sta-
ble marriage and roommates problems. Theoret. Comput. Sci. 381(1–3), 162–176
(2007)

4. Gusfield, D., Irving, R.W.: The Stable marriage problem - structure and algo-
rithms. Foundations of computing series. MIT Press (1989)

5. Huang, C.-C., Kavitha, T.: An improved approximation algorithm for the stable
marriage problem with one-sided ties. In: Lee, J., Vygen, J. (eds.) IPCO 2014.
LNCS, vol. 8494, pp. 297–308. Springer, Cham (2014). https://doi.org/10.1007/
978-3-319-07557-0 25

https://doi.org/10.1007/978-3-319-07557-0_25
https://doi.org/10.1007/978-3-319-07557-0_25

498 C. Hu and V. K. Garg

6. Irving, R.W.: Stable marriage and indifference. Discret. Appl. Math. 48(3), 261–
272 (1994)

7. Iwama, K., Miyazaki, S., Morita, Y., Manlove, D.: Stable marriage with incomplete
lists and ties. In: Wiedermann, J., van Emde Boas, P., Nielsen, M. (eds.) ICALP
1999. LNCS, vol. 1644, pp. 443–452. Springer, Heidelberg (1999). https://doi.org/
10.1007/3-540-48523-6 41

8. Iwama, K., Miyazaki, S., Yanagisawa, H.: A 25/17-approximation algorithm for the
stable marriage problem with one-sided ties. Algorithmica 68(3), 758–775 (2014).
https://doi.org/10.1007/s00453-012-9699-2

9. Kavitha, T., Mehlhorn, K., Michail, D., Paluch, K.E.: Strongly stable matchings
in time o (nm) and extension to the hospitals-residents problem. ACM Trans.
Algorithms (TALG) 3(2), 15-es (2007)

10. Király, Z.: Linear time local approximation algorithm for maximum stable mar-
riage. Algorithms 6(3), 471–484 (2013)

11. Kunysz, A.: An algorithm for the maximum weight strongly stable matching prob-
lem. In: 29th International Symposium on Algorithms and Computation (ISAAC
2018). Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik (2018)

12. Kunysz, A., Paluch, K., Ghosal, P.: Characterisation of strongly stable match-
ings. In: Proceedings of the Twenty-Seventh Annual ACM-SIAM Symposium on
Discrete Algorithms, pp. 107–119. SIAM (2016)

13. Lam, C.K., Plaxton, C.G.: A (1+ 1/e)-approximation algorithm for maximum
stable matching with one-sided ties and incomplete lists. In: Proceedings of the
Thirtieth Annual ACM-SIAM Symposium on Discrete Algorithms, pp. 2823–2840.
SIAM (2019)

14. Manlove, D.F.: The structure of stable marriage with indifference. Discret. Appl.
Math. 122(1–3), 167–181 (2002)

15. Marchetti-Spaccamela, A., Nanni, U., Rohnert, H.: Maintaining a topological order
under edge insertions. Inf. Process. Lett. 59(1), 53–58 (1996)

16. McDermid, E.: A 3/2-approximation algorithm for general stable marriage. In:
Albers, S., Marchetti-Spaccamela, A., Matias, Y., Nikoletseas, S., Thomas, W.
(eds.) ICALP 2009. LNCS, vol. 5555, pp. 689–700. Springer, Heidelberg (2009).
https://doi.org/10.1007/978-3-642-02927-1 57

17. Paluch, K.: Faster and simpler approximation of stable matchings. Algorithms
7(2), 189–202 (2014)

18. Pearce, D.J., Kelly, P.H.: Online algorithms for topological order and strongly
connected components. Technical report, Citeseer (2003)

19. Pearce, D.J.: Some directed graph algorithms and their application to pointer
analysis. Ph.D. thesis, University of London (2005)

20. Radnai, A.: Approximation algorithms for the stable matching problem. Eötvös
Lorand University (2014)

21. Rothblum, U.G.: Characterization of stable matchings as extreme points of a poly-
tope. Math. Program. 54(1–3), 57–67 (1992)

22. Scott, S.: A study of stable marriage problems with ties. Ph.D. thesis. University
of Glasgow (2005)

23. Spieker, B.: The set of super-stable marriages forms a distributive lattice. Discret.
Appl. Math. 58(1), 79–84 (1995)

24. Teo, C.P., Sethuraman, J.: The geometry of fractional stable matchings and its
applications. Math. Oper. Res. 23(4), 874–891 (1998)

25. Vate, J.H.V.: Linear programming brings marital bliss. Oper. Res. Lett. 8(3), 147–
153 (1989)

https://doi.org/10.1007/3-540-48523-6_41
https://doi.org/10.1007/3-540-48523-6_41
https://doi.org/10.1007/s00453-012-9699-2
https://doi.org/10.1007/978-3-642-02927-1_57

Uniform Embeddings for Robinson
Similarity Matrices

Jeannette Janssen(B) and Zhiyuan Zhang

Dalhousie University, Halifax, NS, Canada
{Jeannette.Janssen,owen.zhang}@dal.ca

Abstract. A Robinson similarity matrix is a symmetric matrix where
all entries in all rows and columns are increasing towards the diagonal.
A Robinson matrix can be decomposed into the weighted sum of k adja-
cency matrices of a nested family of unit interval graphs. We study the
problem of finding an embedding which gives a simultaneous unit interval
embedding for all graphs in the family. This is called a uniform embed-
ding. We give a necessary and sufficient condition for the existence of a
uniform embedding, derived from paths in an associated graph. We also
give an efficient combinatorial algorithm to find a uniform embedding or
give proof that it does not exist, for the case where k = 2.

Keywords: Robinson similarity · Unit interval graph · Proper interval
graph · Indifference graph

1 Introduction

In many different settings it occurs that a linearly ordered set of data items
is given, together with a pair-wise similarity measure of these items, with the
property that items are more similar if they are closer together in the order-
ing. A classic example of this setting is in archaeology, where sites are ordered
according to their age, and the composition of the items found at the sites are
more similar if the sites are closer in age. Other applications occur in evolution-
ary biology, sociology, text mining, and visualization. (See [12] for an overview.)
The similarity between such an ordered set of items, when presented in the form
of a matrix, will have the property that entries in each row and column increase
towards the diagonal (when items are closer in the ordering), and decrease away
from the diagonal. Such a matrix is called a Robinson matrix, or Robinson sim-
ilarity matrix.

Formally, a Robinson matrix is a symmetric matrix where the entries ai,j

satisfy the following condition:

For all u < v < w, au,v ≥ au,w and av,w ≥ au,w. (1.1)

Supported by an NSERC Discovery grant.

c© Springer Nature Switzerland AG 2021
A. Lubiw et al. (Eds.): WADS 2021, LNCS 12808, pp. 499–512, 2021.
https://doi.org/10.1007/978-3-030-83508-8_36

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-83508-8_36&domain=pdf
https://doi.org/10.1007/978-3-030-83508-8_36

500 J. Janssen and Z. Zhang

In other words, a Robinson matrix is an asymmetric matrix where entries in each
row and column are increasing towards the diagonal. See Example 1 (to follow)
for examples. Robinson matrices are named after Robinson, who first mentioned
such matrices in [14] in the context of archaeology.

Robinson wanted to solve the following question, that is also referred as the
seriation problem: suppose a set of objects has an underlying linear order and
given their pair-wise similarity, arrange the objects so that objects that are closer
in the arrangement are more similar than pairs that are further apart. That is,
find the ordering of the items for which the similarity values form a Robinson
matrix. However, seriation only gives a linear ordering of the items. In this paper
we focus on finding a linear representation of the items that takes into account
the numerical value of the similarity. In the context of archaeology, this would
mean that we are looking not only the order of the sites in terms of their age,
but also of some indication of their age.

We assume similarities cannot be judged very precisely, and thus we
focus on Robinson matrices where the entries are taken from a restricted set
{0, 1, 2 . . . , k}, where k indicates “very similar”, and 0 indicates “not at all sim-
ilar”. We will assume throughout that all diagonal entries equal k. We are then
looking for a linear embedding of the items so that the distance between pairs
with the same similarity value are approximately similar. More precisely, we
require that there exist threshold distances d1 > d2 > · · · > dk > 0 and an
embedding of the items into R, such that, if a pair of items has similarity level
t, then the distance between their embedded values lies between threshold dis-
tances dt+1 and dt. We will call this a uniform embedding ; See Definition 1 for
a formal definition.

A {0, 1}-valued symmetric matrix A is Robinson if and only if A − I is the
adjacency matrix of a proper interval graph [9]. The class of proper interval
graphs equals the class of unit interval graphs [13], which equals the class of
indifference graphs. A graph is an indifference graph if and only if there exists
a linear embedding of the vertices with respect to a threshold distance d > 0 so
that two vertices are adjacent if and only if their embedded values have distance
at most d. An indifference graph embedding is therefore a uniform embedding
for the associated binary Robinson matrix.

A Robinson matrix taking values in {0, 1, . . . , k} can be seen as the repre-
sentation of a nested family of indifference graphs. Namely, any such matrix
A = (au,v) can be written as A =

∑k
t=1 A(t), where for all t ∈ [k], A(t) = (a(t)

u,v)
is a binary matrix such that, a

(t)
u,v = 1 if au,v ≥ t, and 0 otherwise. Clearly,

each A(t) is Robinson and has all ones on the diagonal. Therefore A(t) − I is the
adjacency matrix of an indifference graph G(t). These graphs are nested, i.e. for
all t < k, G(t+1) is a subgraph of G(t). In this light, our problem can be restated
as that of finding a simultaneous indifference graph embedding for all graphs
G(t).

As shown in the following example, not every Robinson matrix has a uniform
embedding.

Uniform Embeddings for Robinson Similarity Matrices 501

Example 1. Consider the following matrices

A =

⎡

⎢
⎢
⎢
⎢
⎣

2 2 1 0 0
2 2 2 1 1
1 2 2 2 1
0 1 2 2 2
0 1 1 2 2

⎤

⎥
⎥
⎥
⎥
⎦

B =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

2 2 1 0 0 0
2 2 2 1 1 1
1 2 2 2 1 1
0 1 2 2 2 1
0 1 1 2 2 2
0 1 1 1 2 2

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

Matrix A has a linear embedding Π with threshold distances d1 = 8, d2 = 6
given by

Π = 〈0, 5, 6.5, 11.75, 12.75〉.
We can check that, for any pair (i, j), if ai,j = 2 then Π(i), Π(j) have distance
at most 6, if ai,j = 1 then the distance between Π(i) and Π(j) lies between 6
and 8, and if ai,j = 0 then this distance is greater than 8.

In contrast, matrix B does not have a uniform embedding. Suppose there
exists such an embedding Π with threshold distances d1 > d2 > 0. Suppose
also that Π is increasing; see Theorem 1 for the justification. Since b1,4 = 0 and
b4,6 = 1, we have that Π(4)−Π(1) > d1 and Π(6)−Π(4) > d2. This implies that
Π(6)−Π(1) > d1+d2. On the other hand, we have that b1,2 = 2 and b2,6 = 1, so
Π(2)−Π(1) ≤ d2 and Π(6)−Π(2) ≤ d1. This implies that Π(6)−Π(1) ≤ d1+d2.
Combining the inequalities results in d1 + d2 < Π(6) − Π(1) ≤ d1 + d2, a
contradiction.

In this paper, we consider the problem of finding a uniform embedding of a
Robinson matrix or giving proof that it does not exist. In Theorem 2 we give
a condition for the existence of a uniform embedding in terms of the threshold
distances d1, . . . , dk. We then show that this condition is sufficient by giving
an algorithm to find a uniform embedding, given threshold distances that meet
the condition. We will also compare the complexity of verifying the given con-
dition with the complexity of solving the inequality system defining a uniform
embedding (Definition 1).

Finally, we consider the case where k = 2, so the problem is to find a uniform
embedding for two nested indifference graphs. We give a combinatorial algorithm
to either find a uniform embedding or give a substructure that shows it does not
exist. The algorithm has complexity O(N2.5), where N = n(n − 1)/2 is the size
of the input.

1.1 Related Works

In [3], the problem of finding a uniform embedding was studied for diagonally
increasing graphons. A graphon is a symmetric function w : [0, 1]2 → [0, 1].
Graphons can be seen as generalizations of matrices. The results from [3] do
not apply in the context of this paper. Namely, a matrix can be represented
as a graphon, but the “boundaries” delineating the regions of [0, 1]2 where the

502 J. Janssen and Z. Zhang

graphon takes a certain value 1 ≤ t ≤ k in this case are piecewise constant func-
tions. The results from [3] apply only to boundary functions that are continuous
and strictly increasing.

In [13], Roberts established the equivalence between the classes of unit
interval graphs, proper interval class, indifference graphs, and claw-free inter-
val graphs. Different proofs can be found in [2] and [7].

A lot of work has been done on the seriation problem. For binary matrices,
this is equivalent to recognizing proper (or unit) interval graphs. Corneil [4] gives
a linear time unit interval recognition algorithm, which improves on [5]. Atkins
et al.[1] gave a spectral algorithm for the general seriation problem. Laurent and
Seminaroti [10,11] give a combinatorial algorithm that generalizes the algorithm
from [4]. A general overview of the seriation problem and its applications can be
found in [12].

2 Uniform Embeddings

We start by formally defining a uniform embedding. First we introduce some
notation. For an integer t ∈ Z+, let [t] = {1, 2, . . . , t}. Let Sn[k] denote the set
of all Robinson matrices with entries in {0, 1, 2, . . . , k}, and let D

k be the set of
threshold vectors D

k = {d ∈ R
k : d = (di)i∈[k], d1 > · · · > dk > 0}.

Definition 1. Given a matrix A ∈ Sn[k] and a threshold vector d ∈ D
k, a map

Π : [n] → R is a uniform embedding of A with respect to d if, for each pair
u, v ∈ [n]:

au,v = t ⇐⇒ dt+1 < |Π(v) − Π(u)| ≤ dt for t ∈ {0, . . . , k}, (2.1)

where we define dk+1 = −∞ and d0 = ∞, so that the lower bound for au,v = k
and the upper bound for au,v = 0 are trivially satisfied.

The following theorem states that, if a uniform embedding exists, then we
may assume it to have certain nice properties. The proof is straightforward but
technical, and has been omitted here; it can be found in [8].

Theorem 1. Let A ∈ Sn[k]. If A has a uniform embedding, then there exist
d ∈ D

k and a uniform embedding Π with respect to d which is strictly monotone
increasing, and which is such that the inequalities 2.1 are all strict. That is, for
all pairs of u, v ∈ [n], u < v,

au,v = t ⇐⇒ dt+1 < Π(v) − Π(u) < dt, (2.2)

where dk+1 = 0 and d0 = ∞.

Note that the definition of dk+1 in Theorem 1 has changed from −∞ to zero;
this change enforces that Π is strictly increasing. In the later context, we will
assume that any uniform embedding Π of matrix A with respect to any d is a
map Π : [n] → R which satisfies Eq. 2.2 (with the new definition of dk+1). This
will simplify the proofs and reduce the need to distinguish different cases. By
Theorem 1, we can make this assumption without loss of generality.

Uniform Embeddings for Robinson Similarity Matrices 503

3 Bounds, Walks, and Their Concatenation

The contradiction for matrix B in the Example 1 was derived from a cyclic
sequence of vertices, namely 〈1, 4, 6, 2, 1〉, and the bounds on the distance
between successive pairs of this sequence. In this section, we show how walks
in an associated graph generate a set of bounds which need to be satisfied by
any linear embedding.

Definition 2. Let A ∈ Sn[k] and fix u, v ∈ [n]. A vector b ∈ Z
k is an upper

bound on (u, v) if the inequality Π(v)−Π(u) < b�d is implied by the inequality
system (2.2) in the sense that, for any uniform embedding Π and threshold vector
d ∈ D

k satisfying inequality system (2.2), it holds that Π(v) − Π(u) < b�d.
Similarly, the vector b is a lower bound on (u, v) if the inequality b�d < Π(v)−
Π(u) is implied by (2.2).

It follows directly from inequality system (2.2) that, for any matrix A ∈ Sn[k],
and any pair u, v ∈ [n], u < v, the all-zero vector 0 is a lower bound on (u, v).
Note that, if b is an upper bound on (u, v), then −b is a lower bound on (v, u),
and vice versa.

We will see how new bounds can be obtained from walks in a corresponding
graph. An original set of bounds, derived from edges, can be obtained directly
from inequality system (2.2). This is made precise in the following definition. Let
χi ∈ Z

k denote the unit vector with 1 at the ith position and zero otherwise.

Definition 3. Let A = (ai,j) ∈ Sn[k]. Let u, v ∈ [n], u < v. Define

β+(u, v) =
{

χt if au,v = t ≥ 1;
undefined if au,v = 0.

and

β−(u, v) =
{

χt+1 if au,v = t ≤ k − 1;
0 if au,v = k.

It follows immediately from Definition 3 and inequality system (2.2) that,
for any u, v ∈ [n], u < v, β+(u, v) is a lower bound on (u, v) (if au,v �= 0), and
β−(u, v) is a lower bound on (u, v).

We can consider 〈u, v〉 as a walk of length 1 in the complete graph with
vertex set [n]. If u < v, then β+(u, v) is the upper bound defined by this walk,
and β−(u, v) is the lower bound. We now extend this notion to unordered pairs,
and, more generally, to longer walks. To accommodate the fact that there is no
upper bound on Π(v) − Π(u) if au,v = 0, we distinguish edges in this graph
which are pairs {u, v} such that au,v > 0, and null-edges which are pairs {u, v}
so that au,v = 0. In the following we will see that we can combine walks to obtain
more bounds.

Definition 4. A (u, v)-walk is a sequence W = 〈w0, w1, . . . , wp〉 where wi ∈ [n],
0 ≤ i ≤ p, and u = w0 and v = wp. In other words, W is a walk in the

504 J. Janssen and Z. Zhang

complete graph with vertex set [n]. The walk W is an upper-bound-walk if for
all 1 ≤ i ≤ p,

{wi−1, wi} is
{

an edge if wi−1 < wi,
an edge or a null-edge if wi−1 > wi.

In other words, in an upper-bound-walk, null-edges are only traversed from larger
to smaller vertices. Similarly, the walk W is a lower-bound-walk if null-edges
are only traversed to go from smaller to larger vertices.

Now first define for all u, v ∈ [n] so that u < v,

β+(v, u) = −β−(u, v) and β−(v, u) = −β+(u, v). (3.1)

Then for any walk W = 〈w0, w1, . . . , wp〉, define

β+(W) =
∑p

i=1 β+(wi−1, wi) if W is an upper-bound-walk, and (3.2)
β−(W) =

∑p
i=1 β−(wi−1, wi) if W is a lower-bound-walk. (3.3)

Given two walks W1 = 〈u0, . . . , us〉 and W2 = 〈us, . . . , up〉, denote W =
W1 + W2 = 〈u0, . . . , up〉 as the concatenation of W1 and W2.

For any walk W = 〈w0, w1, . . . , wp−1, wp〉, define the reverse of W as
W← = 〈wp, wp−1, . . . , w1, w0〉. Clearly, if W is an upper-bound-walk, then W←

is a lower-bound-walk, and vice versa. By (3.1), (3.2) and (3.3), we have that
β+(W) = −β−(W←).

Lemma 1. Let A ∈ Sn[k]. For any u, v ∈ [n] and any (u, v)-walk W , if W is
an upper-bound-walk then β+(W) is an upper bound on (u, v), and if W is a
(u, v)-lower-bound-walk then β−(W) is a lower bound on (u, v).

The proof of this lemma follows by induction on the length of the walk, using
the definitions. It can be found in [8].

4 A Sufficient and Necessary Condition

Section 3 introduced the necessary concepts to state the main theorem of this
paper. We saw in the previous section that upper- and lower-bound-walks give
bounds that must be satisfied by any uniform embedding. This hints at a condi-
tion for the existence of a uniform embedding: there must exist d ∈ D

k so that
each lower bound derived from a (u, v)-walk is smaller than each upper bound
derived from a (u, v)-walk.

As it turns out, we only need to consider lower- and upper-bound-paths,
that is, walks without repeated vertices. Given a matrix A ∈ Sn[k], let Lu,v be
the set of all (u, v)-lower-bound-paths, and Uu,v be the set of all (u, v)-upper-
bound-paths. Note that Uu,v and Lu,v are finite, whereas the set of all walks is
infinite.

Uniform Embeddings for Robinson Similarity Matrices 505

Define the inequality system:
For all u, v ∈ [n], u < v, for any upper bound b = β+(W1) where W1 ∈ Uu,v

and any lower bound a = β−(W2) where W2 ∈ Lu,v,

a�d < b�d. (4.1)

Theorem 2. A Robinson matrix A ∈ Sn[k] has a uniform embedding if and
only if there exists d ∈ D

k satisfying inequality system (4.1).

We can prove the necessity of Theorem 2 without other tools

Proof of the forward implication of Theorem 2: Suppose A has a uniform embed-
ding. By Theorem 1, this implies that A has a uniform embedding Π with respect
to a threshold vector d ∈ D

k which satisfy inequality system (2.2). Let u, v ∈ [n]
with u < v. Let W1 ∈ Lu,v and W2 ∈ Uu,v, and let a = β−(W1) and b = β+(W2).
Then by Lemma 1 and Definition 2, a�d < Π(v) − Π(u) < b�d. �

For the converse, we will obtain an iterative procedure to construct a uniform
embedding Π which satisfies inequality system Eq. 2.2. However, first we need
to prove that condition (4.1) for paths implies that the same condition holds for
all walks.

4.1 Cycles and Paths

In Sect. 3 we saw how walks can be used to generate new inequalities that are
implied by the inequality system 2.2. In this section we show that, for the exis-
tence of a uniform embedding we need only to consider paths.

A (u, v)-upper-bound-walk W = 〈u = w0, w1, . . . , wp = v〉 is an upper-bound-
cycle if u = v. and W contains no other repeated vertices. Note that the order
in which the cycle is traversed determines whether or not it is an upper-bound-
cycle.

Lemma 2. Let A ∈ Sn[k] and d ∈ D
k. Let C = 〈u1, . . . , up〉, u1 = up = u, be

an upper-bound-cycle. If d ∈ D
k satisfies Eq. 4.1, then β+(C)�d > 0.

Proof: Suppose v = ui ∈ C for some 1 < i < p, then C = W1 + W2 where
W1 = 〈u1, . . . , ui〉 and W2 = 〈ui, . . . , up〉. Then W1 is a (u, v)-upper-bound-path,
and W2 is a (v, u)-upper-bound-path, so W←

2 is a (u, v)-lower-bound-path. Then
by Definition 4,

β+(C) = β+(W1) + β+(W2) = β+(W1) − β−(W←
2).

By the choice of d, β−(W
←
2)�d < β+(W1)�d, and thus β+(C)�d > 0. �

Lemma 3. Let A ∈ Sn[k] be a Robinson matrix and let d ∈ D
k, and sup-

pose d satisfies (4.1). Suppose W is a (u, v)-upper-bound-walk W . Then there
exists a (u, v)-upper-bound-path W ′ such that β+(W ′)�d ≤ β+(W)�d. If W is
a (u, v)-lower-bound-walk, then there exists a (u, v)-lower-bound-path W ′ such
that β−(W ′)�d ≥ β−(W)�d.

506 J. Janssen and Z. Zhang

The proof follows easily from the previous lemma and the well-known fact
that each walk can be transformed into a path by successively removing cycles.
Details of the proof can be found in [8]. We now have the following corollary.

Corollary 1. Let A ∈ Sn[k] be a Robinson matrix and let d ∈ D
k. If d satisfies

(4.1), then for every u, v ∈ [n], for every (u, v)-upper-bound-walk W1 and every
(u, v)-lower-bound-walk W2,

β−(W1)�d < β+(W2)�d.

4.2 Finding a Uniform Embedding

In this section we prove the converse of Theorem 2. That is, given a matrix
A ∈ Sn[k] we assume that there exists a d ∈ D

k satisfying inequality system
(4.1), and we show that there exists a uniform embedding Π with respect to
this particular threshold vector d. We present an iterative formula to calculate
Π : [n] → R, given d and the sets Uu,v,Lu,v for all u, v ∈ [n], u < v. For brevity,
let β+(Uu,v) = {β+(W) : W ∈ Uu,v} and β−(Lu,v) = {β−(W) : W ∈ Lu,v}.
Define Π as follows:

Π(1) = 0
Π(v) = (ubv + lbv)/2, for 2 ≤ v ≤ n,

(4.2)

where ubv, lbv are defined iteratively using Π(1), . . . ,Π(v − 1) as:

ubv = min
i∈[v−1]

{
Π(i) + min{b�d : b ∈ β+(Ui,v)}

}
,

lbv = max
i∈[v−1]

{
Π(i) + max{a�d : a ∈ β−(Li,v)}

}
.

(4.3)

The following two lemmas show that Π defined as such is a uniform embedding
of A with respect to d.

Lemma 4. The map Π as defined in (4.2) and (4.3) is strictly increasing.

Proof: We prove by induction on v that Π is increasing on [v]. The base case,
v = 1, is trivial. For the induction step, fix v ≥ 2 and assume Π is increasing on
[v − 1].

Note first that lbv ≥ Π(v − 1). Namely, 〈v − 1, v〉 ∈ Lv−1,v, and thus either
χt ∈ β−(Lv−1,v) for some t ∈ [k], or 0 ∈ β−(Lv−1,v). Therefore, β−(Lv−1,v)
contains at least one lower bound a so that a�d ≥ 0.

We now show that lbv < ubv. This suffices to show that Π is strictly increas-
ing: if lbv < ubv then

Π(v) = (lbv + ubv)/2 > lbv ≥ Π(v − 1).

Let u,w be the vertices attaining ubv and lbv respectively, and bmin ∈ β+(Uu,v)
such that b�

mind = min{b�d : b ∈ β+(Uu,v)}, amax ∈ β−(Lw,v) such that
a�
maxd = max{a�d : a ∈ β−(Lw,v)}, i.e.,

Uniform Embeddings for Robinson Similarity Matrices 507

ubv = Π(u) + b�
mind = min

i∈[v−1]

{
Π(i) + min{b�d : b ∈ β+(Ui,v)}

}
,

lbv = Π(w) + a�
maxd = max

j∈[v−1]

{
Π(j) + max{a�d : a ∈ β−(Lj,v)}

}
.

Let WB be a (u, v)-upper-bound-path such that bmin = β+(WB) and WA a
(w, v)-lower-bound-path such that amax = β−(WA). Suppose first that u = w.
Then, Π(u) = Π(w), and amax ∈ β−(Lu,v) and bmin ∈ β+(Uu,v). By the choice
of d, a�

maxd < b�
mind, and thus lbv < ubv.

Suppose next that u �= w. Then the concatenation WB + W←
A is a (u,w)-

upper-bound-walk and β+(WB +W←
A) = bmin −amax. By Lemma 1 this implies

that Π(w) − Π(u) < (bmin − amax)�d. This results in

lbv = Π(w) + a�
maxd < Π(u) + b�

mind = ubv.

�
Lemma 5. Given Robinson matrix A ∈ Sn[k], and let Π be defined as in (4.2).
Then Π satisfies inequality system (2.2).

Proof: Let u, v ∈ [n] with u < v, and let au,v = t. We need to show that

dt+1 < Π(v) − Π(u) < dt,

where dk+1 = 0 and d0 = ∞.
We first prove the upper bound. If t = 0, then the inequality Π(v) − Π(u) <

d0 = ∞ is trivially satisfied. Suppose then that t �= 0 (so uv is an edge). Then
〈u, v〉 is a (u, v)-upper-bound-path, so β+(u, v) ∈ β+(Uu,v). By Definition 4,
β+(u, v)�d = dt. By Eq. (4.2),

Π(v) < ubv = min
i∈[v−1]

{
Π(i) + min{b�d : b ∈ β+(Ui,v)}

}
,

≤ Π(u) + min{b�d : b ∈ β+(Uu,v)}
≤ Π(u) + β+(u, v)�d = Π(u) + dt.

Next we prove the lower bound. If t = k, then the inequality Π(v) − Π(u) >
dk+1 = 0 is satisfied since Π is strictly increasing. If 0 ≤ t < k, then 〈u, v〉 is a
(u, v)-lower-bound-path. So β−(u, v) ∈ β−(Lu,v), and

Π(v) > lbv = max
i∈[v−1]

{
Π(i) + max{b�d : b ∈ β−(Li,v)}

}
,

≥ Π(u) + max{b�d : b ∈ β−(Lu,v)}
≥ Π(u) + β−(u, v)�d = Π(u) + dt+1.

�
Thus we have established that Π as defined in (4.2) is a uniform embedding.

508 J. Janssen and Z. Zhang

5 Testing the Condition

According to Theorem 1, a uniform embedding exists if and only if the inequality
system (2.2) has a solution. The existence of a uniform embedding can there-
fore be tested, and an embedding found, by using an linear program solver to
determine feasibility of the system and, if feasible, find values for the variables di,
i ∈ [k] and Π(u), u ∈ [n]. The condition for the existence of a uniform embedding
as expressed in Theorem 2 involves solving another inequality system, namely
(4.1). This system only contains the variables di, i ∈ [k], but the number of
inequalities equals the number of pairs of lower- and upper-bound-paths.

In this section, we will first give a bound on the number of inequalities, and
compare the size of the two inequality systems. We then give an algorithm for
generating all bounds that lead to inequalities for system (4.1), and discuss its
complexity. Finally, we discuss the case where k = 2, and give a combinatorial
algorithm to find a uniform embedding for a given matrix in Sn[k], or give proof
that it does not exist.

5.1 A Partial Order on Bounds

Here we define a partial order on bounds and find out we only need the mini-
mal/maximal elements of this partial order for inequality system (4.1). This will
allow us to bound the size of this system.

To bound the number of equalities in (4.1), first note that any such inequality
involves a (u, v)-upper-bound-path W1 and a (u, v)-lower-bound-path W2. Then
W1 + W←

2 is an upper-bound-cycle C, and the inequality can be rewritten as
β+(C) > 0. Thus we can rewrite (4.1). Let C be the set of upper-bound-cycles.
Then d satisfies (4.1) if and only if,

For all C ∈ C, β+(C)�d > 0. (5.1)

Any cycle in the complete graph with vertex set [n] has length at most n. Any
edge in the cycle can contribute at most one to the sum of the coefficients of the
bound. Thus we have that, for any cycle C.

β+(C) ∈ Z
k
n := {a ∈ Z

k :
k∑

i=1

|ai| ≤ n}.

In particular, no coefficient of a path bound can have absolute value more than
n. This implies that the number upper-bound-cycles, and thus the number of
inequalities in (5.1) is at most (2n)k. Thus, inequality system (5.1) has size
O(knk), while inequality system (2.2) has size O(n3).

However, using the partial order defined below we can give a tighter bound
on the number of inequalities.

Definition 5. Define the relation � on Z
k, such that given any a = (ai), b =

(bi) ∈ Z
k,

a � b if
t∑

i=1

ai ≤
t∑

i=1

bi for all t ∈ [k].

Uniform Embeddings for Robinson Similarity Matrices 509

Theorem 3. Let a, b ∈ Z
k, then a � b ⇐⇒ a�d ≤ b�d for all d ∈ D

k.

The proof can be found in [8]. This theorem implies that � is indeed a partial
order. More importantly, we have the following corollary.

Corollary 2. Fix u, v ∈ [n]. If the inequalities of system (5.1) hold for all min-
imal elements of {β+(C) : C ∈ C} under �, then all inequalities of the system
hold.

This implies that the number of inequalities in (5.1) is bounded by the num-
ber of minimal elements (under �), of Zk

n. The following lemma bounds this set
for the special case where k = 2.

Lemma 6. If k = 2, then inequality system (5.1), including only minimal
bounds, has size at most 2n.

Proof: As argued above, the number of inequalities in this system is bounded
by the number of minimal elements of Z2

n. We will bound this number by giving
a decomposition of Z2

n into 2n chains. The result then follows from Dilworth’s
theorem, and the fact that all minimal elements form an antichain.

Fix t ∈ [n]. Let St be the set of vectors a ∈ Z
2 so that |a1| + · · · + |ak| = t.

Consider the sets

S1
t = {(−t + i, i)� : 0 ≤ i ≤ t} ∪ {(i, t − i)� : 1 ≤ i < t}, and

S2
t = {(−t + i,−i)� : 1 ≤ i ≤ t} ∪ {(i,−t + i)� : 1 ≤ i ≤ t}.

Both S1
t and S2

t are chains under �, and they form a partition of St. Since
Z
2
n = ∪n

t=1St, the result follows. �

5.2 Generating the Bounds

We employ a variation on the Floyd-Warshall algorithm [6] to enumerate all
upper-bound-paths. See Algorithm 1 for the pseudocode. This also generates all
lower-bound-paths, by reversal.

The complexity of this algorithm is dominated by the step where bounds are
merged, and thus determined by the size of the set of bounds. If the minimality
test in line 9 is implemented by looping through all elements of S, then the com-
plexity of the bound-generation algorithm is O(n3M3), where M is the number
of minimal elements in Z

k
n.

The minimal upper-bound-paths give insight into the structure of the matrix
that constrains the uniform embedding. If inequality system (5.1) does not have
a solution, then any LP-solver will return a set of k inequalities which, taken
together, show the impossibility of fulfilling all constraints. Each of these inequal-
ities is derived from a cycle, and this collection of cycles can be interpreted as
the bottleneck that prevents the existence of a uniform embedding.

510 J. Janssen and Z. Zhang

Algorithm 1: Bound-Generation
input : A Robinson matrix A ∈ Sk

output : Lookup table UBW, LBW defined on i, j ∈ [n]: where
UBW(i, j) = all minimal elements of Ui,j ,

1 for i ∈ [n] do
2 for j = i, . . . , n do
3 if ai,j �= 0 then UBW(i, j) ← {〈i, j〉};
4 UBW(j, i) ← {〈j, i〉};

5 for s = 1, . . . , n do
6 for i = 1, . . . , n do
7 for j = i, . . . , n do
8 foreach W1 ∈ UBW(i, s) and W2 ∈ UBW(s, j) do
9 if W1 + W2 is minimal in UBW(i, j) ∪ {W1 + W2} then

10 UBW(i, j) ← UBW(i, j) ∪ {W1 + W2};
11 UBW(j, i) ← UBW(j, i) ∪ {(W1 + W2)

←};

12 return UBW;

5.3 A Combinatorial Algorithm for the Case k = 2

For k = 2, we can convert the bound generation, testing of condition (2.2), and
construction of the uniform embedding into a combinatorial algorithm.

Consider inequality system (5.1) when k = 2. Each inequality is of the form
a1d1 + a2d2 > 0, where (a1, a2)� = β+(C) for some upper-bound-cycle C.
Depending on the sign of a2, −a1/a2 will give either a lower bound (if a2 > 0)
or an upper bound (if a2 < 0) on d2/d1. Thus we can find, in time linear in the
number of minimal bounds, the largest lower bound and smallest upper bound
on d2/d1. The inequality system has a solution if and only if the largest lower
bound is smaller than the smallest upper bound.

If the bounds are incompatible and the system has no solution, then the two
cycles giving the largest lower bound and smallest upper bound identify those
entries of the matrix that cause the non-existence of a uniform embedding.

Combining the methods we have developed, we now give the steps of the
algorithm solving the uniform embedding problem

Uniform Embedding Algorithm. Given a matrix A ∈ Sn[k], perform the
following steps:

1. Generate all minimal upper bounds using the Bound-Generation algorithm
(Algorithm 1). Use UBW(v, v) to extract all minimal upper-bound-cycles.

2. For each minimal upper-bound cycle, find its associated bound β+(C), and
convert the inequality β+(C) into a lower or upper bound on d2/d1. Only keep
the cycles C1 and C2 generating the largest upper bound and the smallest
upper bound encountered in each step.

Uniform Embeddings for Robinson Similarity Matrices 511

3. If the largest lower bound is greater than or equal to the smallest upperbound
on d2/d1, then print NO SOLUTION. Exit and return C1 and C2.

4. If the largest lower bound is smaller than the smallest upper bound on d2/d1,
then choose d1, d2 so that d2/d1 lies between these bounds.

5. Compute a uniform embedding Π with respect to (d1, d2) using the formula
given in (4.2) and (4.3). Exit and return Π.

The complexity of the algorithm is determined by the generation of bounds
in the first step. We can use the partition of Z2

n into chains S1
t , S2

t , 1 ≤ t ≤ n,
as given in Lemma 6. Given a bound (a1, a2)�, we can identify which set Si

t

the bound belongs to: t = |a1| + |a2| and i = 1 if a2 > 0 and i = 2 otherwise.
Therefore, in line 9 of the Bound-Generation algorithm we only need to compare
W1 + W2 with the unique minimal element of the set Si

t it belongs to. This can
be done in O(1) time.

Since there are at most 2n minimal elements in UBW(i, j), the loop starting
in line 8 of the Bound-Generation algorithm takes O(n2) steps. Therefore, the
Bound-Generation algorithm can be implemented to take O(n5) steps. Moreover,
the algorithm can be easily modified to compute the upper-bound-paths as well
as their associated bounds. The generation of the cycle inequalities in Step 2 is
immediate from UBW, since every upper-bound-cycle will be included in UBW(i, i),
i ∈ [n]. Note that there will be duplications, since each cycle C will be included
in UBW(v, v) for any vertex v ∈ C. Therefore, generating the inequalities and the
associated bounds on d2/d1 takes O(n2) steps.

If a threshold vector (d1, d2)� can be found, then the uniform embedding
can be found in O(n3) steps: there are n iterations, and each iteration involves
computing lbv and ubv, which involves looping over all vertices u < v and all
bounds in UBW(u, v).

The resulting complexity is somewhat higher than that of solving inequality
system (2.2) with a state-of-the-art Linear Programming solver. Namely, using
the method of Vaidya [15] , an LP with n variables and m inequalities can be
solved in O((n + m)1.5n) time. In (2.2) there are O(n2) inequalities, so the LP
solver has time complexity O(n4).

Finally, note that the input size of the problem is N = n(n − 1)/2, namely
the number of upper diagonal entries of the matrix. Therefore, the complexity
of the algorithm to find a uniform embedding for the case k = 2 has complexity
O(N2.5).

6 Conclusions

We gave a sufficient and necessary condition for the existence of a uniform
embedding of a Robinson matrix, in the form of a system of inequalities con-
straining the threshold values d1, . . . , dk. For Robinson matrices taking values in
{0, 1, 2}, we gave a O(N2.5) algorithm which returns a uniform embedding, or
returns two cycles that identify the matrix entries that cause a contradiction in
the inequalities defining a uniform embedding.

512 J. Janssen and Z. Zhang

For Robinson matrices having more than three values, the condition for the
existence of a uniform embedding involves solving an inequality system. An
interesting question is whether the condition can be tested with a combinatorial
algorithm, as in the case k = 2. In particular, we saw that the problem can also
be formulated as that of finding simultaneous embeddings for a family of nested
proper interval graphs. The k = 2 case shows that this is possible for a family of
two. For k = 3, we can find conditions on d1, d2, d3 so that any pair of graphs in
the family has a simultaneous embedding. If these conditions are contradictory,
then no uniform embedding of the family exists. But if they are not, can we then
solve the uniform embedding question combinatorially?

References

1. Atkins, J.E., Boman, E.G., Hendrickson, B.: A spectral algorithm for seriation and
the consecutive ones problem. SIAM J. Comput. 28(1), 297–310 (1998)

2. Bogart, K.P., West, D.B.: A short proof that ‘proper = unit’. Discret. Math.
201(1), 21–23 (1999)

3. Chuangpishit, H., Ghandehari, M., Janssen, J.: Uniform linear embeddings of
graphons. Eur. J. Comb. 61, 47–68 (2017)

4. Corneil, D.G.: A simple 3-sweep LBF algorithm for the recognition of unit interval
graphs. Discret. Appl. Math. 138(3), 371–379 (2004)

5. Corneil, D.G., Kim, H., Natarajan, S., Olariu, S., Sprague, A.P.: Simple linear time
recognition of unit interval graphs. Inf. Process. Lett. 55(2), 99–104 (1995)

6. Floyd, R.W.: Algorithm 97: shortest path. Commun. ACM 5(6), 345 (1962)
7. Gardi, F.: The Roberts characterization of proper and unit interval graphs. Discret.

Math. 307(22), 2906–2908 (2007)
8. Janssen, J., Zhang, Z.: Uniform embeddings for Robinson similarity matrices

(2021). arXiv:2105.09197
9. Kendall, D.: Incidence matrices, interval graphs and seriation in archeology. Pac.

J. Math. 28(3), 565–570 (1969)
10. Laurent, M., Seminaroti, M.: A Lex-BF-based recognition algorithm for Robinso-

nian matrices. Discret. Appl. Math. 222, 151–165 (2017)
11. Laurent, M., Seminaroti, M.: Similarity-first search: a new algorithm with applica-

tion to Robinsonian matrix recognition. SIAM J. Discret. Math. 31(3), 1765–1800
(2017)

12. Liiv, I.: Seriation and matrix reordering methods: an historical overview. Stat.
Anal. Data Min ASA Data Sci. J. 3(2), 70–91 (2010)

13. Roberts, F.S.: Indifference graphs, pp. 139–146. Academic Press (1969)
14. Robinson, W.S.: A method for chronologically ordering archaeological deposits.

Am. Antiq. 16(4), 293–301 (1951)
15. Vaidya, P.M.: Speeding-up linear programming using fast matrix multiplication.

In: 30th Annual Symposium on Foundations of Computer Science, pp. 332–337
(1989)

http://arxiv.org/abs/2105.09197

Particle-Based Assembly Using Precise
Global Control

Jakob Keller1 , Christian Rieck1(B) , Christian Scheffer2 ,
and Arne Schmidt1

1 Department of Computer Science, TU Braunschweig, Braunschweig, Germany
{jkeller,rieck,aschmidt}@ibr.cs.tu-bs.de

2 Department of Computer Science, University of Münster, Münster, Germany
christian.scheffer@uni-muenster.de

Abstract. In micro- and nano-scale systems, particles can be moved by
using an external force such as gravity or a magnetic field. In the pres-
ence of adhesive particles that can attach to each other, the challenge
is to decide whether a shape is constructible. Previous work provides a
class of shapes for which constructibility can be decided efficiently, when
particles move maximally into the same direction on actuation.

In this paper, we consider a stronger model. On actuation, each parti-
cle moves one unit step into the given direction. We prove that deciding
constructibility is NP-hard for three-dimensional shapes, and that a max-
imum constructible shape can be approximated. The same approxima-
tion algorithm applies for 2D. We further present linear-time algorithms
to decide whether a tree-shape in 2D or 3D is constructible. If scaling is
allowed, we show that the c-scaled copy of every non-degenerate poly-
omino is constructible, for every c ≥ 2.

Keywords: Programmable matter · Tile assembly · Tilt ·
Approximation · Hardness

1 Introduction

In recent years, the easier access to micro- and nano-scale systems has given rise
to challenges that deal with programmable matter. In some of these applications,
particles can be controlled by a global external force such as gravity or a magnetic
field. On actuation, every particle moves into the same direction at unit speed.
Assembly of particles into desired structures using maximal movements, i.e.,
every particle moves into a given direction until it hits an obstacle or another
particle, has been investigated in [2,3,6,18]. However, it is also reasonable to
expose the particles to these forces just for a limited amount of time, such that
more precise movements become possible. Reconfiguration of a set of particles [2],

Due to space constraints, several technical details and proofs are omitted from this
extended abstract. A full version of the paper can be found at [12].

c© Springer Nature Switzerland AG 2021
A. Lubiw et al. (Eds.): WADS 2021, LNCS 12808, pp. 513–527, 2021.
https://doi.org/10.1007/978-3-030-83508-8_37

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-83508-8_37&domain=pdf
http://orcid.org/0000-0001-9988-953X
http://orcid.org/0000-0003-0846-5163
http://orcid.org/0000-0002-3471-2706
http://orcid.org/0000-0001-8950-3963
https://doi.org/10.1007/978-3-030-83508-8_37

514 J. Keller et al.

gathering all particles [5,13], or assembling patterned rectangles [8] are well
studied problems.

In this paper, we consider the construction of tile-based structures (such as
polyominoes in 2D or polycubes in 3D) through adhesive particles, that all move
one step into the same direction on actuation. Whenever two particles come close,
they stick together. In this model, we consider the problem of deciding whether
a given shape is constructible. For definitions see Sect. 2.

Single Step Tilt Assembly Problem (STAP)
Given a shape P (a polyomino in 2D or a polycube in 3D), does there exist a
sequence of tile moves to construct P?

We denote the problem in 2D and 3D by 2D-STAP and 3D-STAP, respec-
tively. The optimization variant of STAP, called MaxSTAP, asks for a con-
structible subshape Pmax ⊂ P of maximum size.

1.1 Our Contributions

We show the following results.

– 3D-STAP is NP-hard, see Theorem 2.
– In dimension d = 2, 3, there is an Ω(|P |−1/d)-approximation algorithm for
MaxSTAP, see Theorem 3 and Corollary 1.

– For tree-shapes in 2D and 3D, there is a linear-time algorithm for STAP, see
Theorem 4 and Corollary 2.

– For every non-degenerate polyomino P , the 2-scaled copy of P is constructible,
see Theorem 5, and for every non-degenerate polycube P , the 7-scaled copy
of P is constructible, see Theorem 6.

1.2 Related Work

Self-assembly. Instead of relying on universal, external control of agents as
discussed above, it is possible to use DNA as material. DNA-strands can either
be used to fold into the desired shape [16], or to create building blocks based
on Wang tiles [19] that can then again self-assemble into shapes in a non-
deterministic way [17,20]. For more details on algorithmic self-assembly, we refer
to the surveys by Doty [11], Patitz [15], and Woods [21].

Tilt Problems. The process of self-assembly works by diffusion and is non-
deterministic. If a deterministic approach is desired, we can use global control to
move particles into different directions. Using global control opens a wide field
of problems, that we summarize briefly.

Mahadev et al. [13] show how to gather n particles within an obstacle environ-
ment in O(n3) actuation steps. Becker et al. [5] improve the runtime to depend
only on the geometric complexity of the workspace, rather than on the num-
ber of particles. Closely related to this problem are occupancy, relocation and

Particle-Based Assembly Using Precise Global Control 515

reconfiguration problems. For a given set of particles within an obstacle envi-
ronment, these problems ask for a sequence of tilts such that (i) any particle
reaches a designated position, (ii) a specific particle reaches a designated posi-
tion, and (iii) every particle reaches its respective target position. If particles
are allowed to move a unit step on actuation, Caballero et al. [9] show that (i)
permits a linear-time algorithm, while the decision variants of (ii) and (iii) are
NP-hard. More recently, Caballero et al. [10] show PSPACE-completeness for
(ii). Becker et al. [4] show that (i) is NP-hard when particles have to move maxi-
mally. Balanza-Martinez et al. [2] give a tighter result for the maximal movement
model, by proving PSPACE-completeness for all three problems.

All these papers have in common that particles do not stick to each other.
Manzoor et al. [14] provide algorithms for assembling shapes, called drop shapes,
from sticky particles under global control. In this assembly process, only one
particle at a time is added by maximal movements to a seed assembly. They
also show that the assembly process can be pipelined, i.e., the same shape is
produced multiple times. Becker et al. [6] prove that every drop shape permits an
amortized construction time of O(1), provided that sufficiently many copies are
constructed. However, every shape needs a custom-designed obstacle workspace.
Balanza-Martinez et al. [3] designed a single obstacle workspace in which every
drop shape can be constructed, if it fits in a w × h rectangle. By using not
only single particles but whole subassemblies, the class of constructible shapes
increases (see [2,18]). A crucial step is to decompose a given shape into two
connected parts, that can then be pulled apart into a single direction, without
causing collisions. Agarwal et al. [1] recently proved that this problem is NP-
hard, even if a direction is given.

2 Preliminaries

Polyomino. Let P ⊂ Z
2 be a finite set of N grid points in the plane. The grid

points of Z
2 are called positions. The embedded graph GP is the grid graph

induced by P , in which two vertices are adjacent if they are at unit distance.
If GP is connected, we obtain a polyomino by placing a unit square, called tile,
centered on every vertex of GP . Two tiles are adjacent, if their respective vertices
in GP are adjacent, i.e., they share an edge. A position p ∈ Z

2 is occupied, if there
is a tile that is placed on p, and free otherwise. The neighborhood N [·] of a tile
or position is the respective set of adjacent positions. A polyomino P is simple,
if the grid graph Z

2\GP is connected. If there are at least two tiles t1, t2 ∈ P
that share a common point but for which there is no tile in N [t1] ∩ N [t2], P is
called degenerate. If GP is a tree, the respective polyomino is tree-shaped.

Workspace. The workspace is a rectangular region of 2N × 2N positions,
anchored at position (0, 0). The workspace contains a seed tile at position (N,N).

Construction Step. A tile can move within the workspace from one position p
to an adjacent position q, as long as the neighborhood N [p] is free. A construction
step is a sequence σ of moves such that σ moves a tile to a position adjacent to an

516 J. Keller et al.

occupied position. Without loss of generality, we assume that every construction
step starts at position (0, 0). Analogously, we define a deconstruction step as a
sequence σ̃ that moves a tile from its position to the position (0, 0). If there is a
deconstruction step for a tile t, we call t removable.

Constructibility. Beginning with a seed tile, a polyomino P with N tiles is con-
structible, if and only if there is a construction sequence Σ = (σ1, σ2, . . . , σN)
of N consecutive construction steps such that the resulting polyomino P ′,
induced by successively adding tiles with Σ, is equal to P . Reversing Σ yields a
deconstruction sequence ˜Σ, i.e., a sequence of tiles getting removed from P .

Note that the definitions are given for a 2D setting. It is straightforward
to extend these to the 3D setting, by letting P ⊂ Z

3, introducing two addi-
tional directions in that a tile can move, considering unit cubes instead of unit
squares as tiles, and anchoring the workspace, that contains a seed tile at posi-
tion (N,N,N), at position (0, 0, 0).

Firstly, we restate a result by Becker et al. [6] for the full tilt assembly
model in two dimensions, which can easily be adapted for the single step model
considered in this paper, as well as it applies (in both models) to the 3D setting.

Theorem 1 (Theorem 2, [6]). A polyomino P can be constructed if and only
if it can be deconstructed using a sequence of tile removal steps that preserve
connectivity. A construction sequence is a reversed deconstruction sequence.

3 NP-Hardness of 3D-STAP

Becker et al. [6] showed that it is NP-hard to decide whether or not a polycube is
constructible in the full tilt model. However, our model is more powerful and we
cannot adapt their proof. In this section, we show that 3D-STAP is NP-hard.
The proof is based on a reduction from the NP-hard problem Planar Mono-
tone 3Sat [7]. This problem asks to decide whether a Boolean 3-CNF formula
ϕ is satisfiable, for which in each clause the literals are either all positive or all
negative, and for which the clause-variable incidence-graph is planar. Because
of Theorem 1, we will argue that a polycube is deconstructible, if and only if a
Boolean 3-CNF formula is satisfiable. Details of the omitted proofs can be found
in the full version of the paper [12].

Outline of the NP-Hardness Reduction. For every instance ϕ of Planar
Monotone 3Sat, we construct a polycube Pϕ as an instance of 3D-STAP. We
consider a rectilinear planar embedding of the variable-clause incidence-graph
Gϕ of ϕ where the variable vertices are placed on a line, and clauses contain-
ing positive and negative literals are placed on either side, respectively. For a
symbolic overview of Pϕ, consider Fig. 1. In Pϕ, each variable and each clause
of ϕ is represented by a variable gadget and a clause gadget, respectively. To
realize the fact that a variable can be contained in several clauses, we introduce
a conjunction gadget. An edge in Gϕ is realized by a connector gadget. To guar-
antee connectivity during the deconstruction of the polycube Pϕ, we need to

Particle-Based Assembly Using Precise Global Control 517

Fig. 1. Symbolic overview of the NP-hardness reduction. The instance is due to the
Planar Monotone 3Sat formula ϕ = (x1∨x2∨x4)∧(x2∨x3∨x4)∧(x1∨x2∨x4). The
variable gadgets are shown in white, while the positive and negative clause gadgets are
shown in green and red, respectively. The gray cuboids represent connector gadgets.
The ‘colorful lines’ are representing conjunction gadgets. All clauses and variables are
connected by a blue frame above the construction. (Color figure online)

make sure that parts of the variable gadgets that are not participating in the
satisfying assignment, are not disconnected in several parts. Therefore, we add
a frame above the actual polycube, connecting all clauses with certain parts of
the variable gadgets.

We can show that there is a deconstruction sequence for Pϕ if and only if ϕ
is satisfiable. By using a checkered tile arrangement within all gadgets, we can
enforce a specific deconstruction sequence. On the one hand, we ensure that, due
to the connectivity constraint, either the part of the variable that is connected to
their positive or to their negative literal containing clauses can be deconstructed;
this implies that, together with the conjunction gadgets, all clauses containing
the respective literal can be deconstructed. On the other hand, the order of the
deconstruction steps can be used to determine a valid variable assignment for ϕ.

Construction of the Gadgets. In the following, we describe polycubes serving
as gadgets in the NP-hardness reduction. All gadgets are based on the following
polycube that cannot be deconstructed if we restrict the deconstruction direc-
tion.

Indestructible Wall. A wall is the polycube depicted in Fig. 2(a). It consists
of two layers, an odd dimensional solid layer, and a checkered tooth layer. This
tooth layer consists of non-adjacent cubes (dark gray cubes) at even positions.
This construction can easily be modified to construct a k-wall, see Fig. 2 for
examples. Note that k can be at most 6, and that there exist several k-walls for
k ∈ {3, 4}.

Recall that a deconstruction step is a sequence of moves that moves a tile of
the polycube to position (0, 0, 0). We want to show that a k-wall is not decon-
structible from a specific direction, in particular from the solid layer. To do so, we

518 J. Keller et al.

(a) Indestructible 1-wall. (b) Indestructible 2-wall. (c) Indestructible 3-wall.

Fig. 2. Indestructible walls. Red cubes indicate the respective positions of teeth. (Color
figure online)

assume that the workspace is designed such that (0, 0, 0) is below the wall and
that there is no path that starts from above the wall, bypasses it and eventually
reaches (0, 0, 0).

Lemma 1. A k-wall, k ∈ {1, . . . , 6}, is not deconstructible from its solid layers.

Proof. Suppose for the sake of a contradiction that a k-wall is deconstructible
from its solid layers, and let ˜Σ = (σ1, . . . , σN) be a deconstruction sequence.
Because we only have access to the solid layers, σ1 has to remove a cube from a
solid layer. To maintain connectivity, only these cubes can be removed for that
there is no cube at the respective position in the respective tooth layer. But then
there cannot be a σ̃i ∈ ˜Σ such that σ̃i removes a cube from a tooth layer. This
is a contradiction to the existence of ˜Σ. Thus, a wall is not deconstructible from
the solid layer. ��

We can show that the specific design of the tooth layers of a k-wall is neces-
sary to guarantee the indestructability, i.e., if at least one tooth is missing, the
resulting polycube is deconstructible from its solid layers.

Lemma 2. There is at least one position p at a tooth layer of a k-wall, k ∈
{1, . . . , 6} such that the k-wall is deconstructible from its solid layers if p is free.

Proof (Sketch). Remove the cube at the respective position of the missing tooth
and all its adjacent cubes in the respective solid layer. This results in a hole,
large enough that additional cubes from the tooth layers can be removed. ��

Fig. 3. Different views on a disconnected 2-wall. (Color figure online)

Particle-Based Assembly Using Precise Global Control 519

A simple observation is that these k-walls can arbitrarily be enlarged without
losing the property of being indestructible. Of particular interest for the reduc-
tion are enlarged 6-walls, called cuboids, that will serve as clause and connector
gadgets.

Another crucial observation is that because a k-wall is not deconstructible
from its solid layers, we can leave out several cubes of the solid layers so that the
remaining shape is disconnected into two parts, see Fig. 3. This insight will lead
to a configuration that allows for a decision, i.e., that will serve as the variable
gadget.

If two cuboids have to be connected, we place them at distance one to each
other and add a single cube to connect them. Furthermore, we remove cubes at
matching sides in a 3×3 area such that we can move cubes from the inside of one
cuboid to the other through these holes, see Figs. 4(c) and 4(d) for illustration.

Variable Gadget. The variable gadget consists of two indestructible cuboids
(Q1 and Q2) that share a solid layer, see Fig. 4(d) for an exploded illustration.
As shown in Fig. 4, we remove cubes (similar to Fig. 3) to separate an L-shaped
part of each cuboid (light blue cubes). These shapes are then reconnected by

(a) Front view (b) Top view

(c) Side view (d) Exploded view

Fig. 4. Different views on the variable gadget. (Color figure online)

520 J. Keller et al.

two bridges (green and orange cubes), see Fig. 4(a). Additionally, the L-shaped
parts are connected by a thin frame above the cuboids (dark blue cubes).

Observation 1. Solely removing the green and orange cubes of a variable gadget
results in a disconnected shape.

As a consequence of Observation 1, the forced choice of removing either the
green or the orange cubes, can be used to determine an assignment for the
respective Boolean variable. It remains to show how a variable gadget can be
deconstructed, if additional cuboids are attached to each side.

Lemma 3. Let P be a polycube that is put together by a variable gadget and
one cuboid (Q3 and Q4) at each end, connected to the respective L-shaped parts.
Then P is only deconstructible if at least Q3 or Q4 is deconstructible.

As the last ingredient we need a gadget that realizes a conjunction. This
gadget will be used to guarantee that a variable gadget can be completely decon-
structed if and only if all clauses in which the respective variable participates,
are satisfied.

Conjunction Gadget. As illustrated in Fig. 5, the conjunction gadget is T-
shaped. The wall between the positions Q1 and Q2 contains teeth to both sides,
whereas the wall at position Q3 has teeth except for the positions where the T-
shape is connected. This connection will be the crucial part to deconstruct this
gadget. At all three positions (Q1, Q2, and Q3) we attach connector gadgets
leading either to another conjunction, to a variable, or to a clause gadget. Note
that these connector gadgets have the same size as the conjunction gadget, i.e.,
the solid layers of the connectors and the conjunction gadget match.

Fig. 5. Different views on the conjunction gadget.

We can show that this gadget is deconstructible if and only if the cuboid at
Q3, or both cuboids at Q1 and Q2 are deconstructible.

Lemma 4. Let P be a polycube that is put together by three cuboids Q1, Q2,
and Q3 which are connected by a conjunction gadget. Then P is deconstructible
if and only if Q1 and Q2 are both deconstructible, or Q3 is deconstructible.

Putting all these together yields the following.

Theorem 2. 3D-STAP is NP-hard.

Particle-Based Assembly Using Precise Global Control 521

4 Optimization Variant and Approximation

For polyominoes and polycubes that cannot be constructed, it is natural to
consider the problem of maximizing a constructible subshape. We show that for
each shape P , a portion of Ω(|P |(d−1)/d) can always be constructed, implying a
Ω(|P |−1/d)-approximation of MaxSTAP, where d denotes the dimension.

Definition 1. The maximum constructibility of a polyomino P is the ratio
|Pmax|/|P | where Pmax ⊆ P is a constructible polyomino of maximum size.

(a) (b) (c)

Fig. 6. (a) Boundary tiles (dark cyan) and non-boundary tiles (gray). (b) Every step
of the algorithm adds a tile in two steps: (1) Move a new tile t to a boundary position
p of P that is free. (2) Move t on P from p to a position that is adjacent to a tile of the
current polyomino P ′. (c) The curve B (blue), and the set T (orange). (Color figure
online)

Theorem 3. In dimension d = 2, 3, each d-dimensional polyomino P has a
maximum constructibility of at least Ω(|P |−1/d).

Proof. We prove the theorem by showing that greedily filling up accessible free
positions leads to a polyomino P ′ ⊆ P with |P ′|/|P | ∈ Ω(|P |−1/d). A position p is
accessible with respect to a polyomino P if we can move a tile t to this position
such that t is never adjacent to a tile of P unless t lies on p. A tile t ∈ P is a
boundary tile of P if the respective position is accessible with respect to P \ {t},
see Fig. 6(a). If there is a boundary tile t of P that is not part of P ′, we add a
new tile t′ to P ′ in two steps, see Fig. 6(b): (1) We move t′ to the position of t.
(2) We move t′ on P to a position adjacent to a tile of P ′. This implies that the
greedy algorithm ends up with a polyomino holding all boundary tiles of P .

Next, we show a lower bound on the boundary tiles of P of Ω(Nd−1). We only
consider d = 2, a similar surface-volume-argument holds for d = 3. Let B be the
union of all edges lying between an accessible and a non-accessible position with
respect to P , see blue curve in Fig. 6(c). B is a non-self-intersecting curve, by the
definition of accessible positions. Thus, B partitions the plane into a bounded
area A containing P and an unbounded area. Let T be the union of all positions
from A sharing at least a corner with B, see the orange positions in Fig. 6(c).

522 J. Keller et al.

Then |T | ≥ √|A|. Note that not each position of T is occupied by P , see the
light gray positions in Fig. 6(c). Let T ′ be the positions along B that share an
edge with B. It is easy to see that 2|T ′| ≥ |T |. Each position p from T ′ that is
not a boundary tile from P is adjacent to a boundary tile p′ from P . We call p′

a blocking tile of p. Each boundary tile is a blocking tile for a constant number
of positions p ∈ T ′ that are not a boundary tile. Hence, there are Ω(|T ′|) many
positions from T ′ that are not a boundary tile implying that Ω(|T ′|) = Ω(|T |)
tiles from T are boundary tiles. Because P ′ ⊂ A, we obtain |P ′| ≤ |A| implying
|T | ∈ Ω(

√|A|) = Ω(
√|P ′|). Hence, P ′ has at least Ω(N 1/2) boundary tiles. ��

Theorem 3 implies the following.

Corollary 1. In dimension d = 2, 3, the greedy algorithm is an Ω(|P |−1/d)-
approximation for MaxSTAP.

5 Efficient Algorithms for Special Classes

5.1 Tree Shapes

We can show that STAP can be decided in linear time for tree-shaped polyomi-
noes by a greedy algorithm. Because the removal of a tile with more than one
neighbor results in splitting the polyomino in several parts, we are restricted to
remove tiles with exactly one neighbor, i.e., leaves. If there are any tiles left,
but no further tile can be removed, we conclude that the polyomino cannot be
constructed.

We begin by stating two facts about removable tiles. Firstly, by removing
a tile, other removable tiles do not lose their property to be removable. And
secondly, if a tree-shaped polyomino is constructible, then after removing any
removable tile, the resulting polyomino is also constructible.

Lemma 5. Let P be a tree-shaped polyomino and RP the set of removable tiles
of P . For all P ′ ⊆ P it holds that if t ∈ RP ∩ P ′, then t ∈ RP ′ .

Lemma 6. Let P be a constructible tree-shaped polyomino and t a removable
tile. Then, P \ {t} is also constructible.

By using Lemma 6 iteratively, we obtain a simple strategy that decides
whether a tree-shaped polyomino is constructible or not. By applying suitable
subroutines and data structures, this yields a linear-time algorithm.

Theorem 4. Let P be a tree-shaped polyomino consisting of N unit squares.
We can decide in O(N) time whether or not P is constructible.

It is easy to see that the same holds true for tree-shaped polycubes.

Corollary 2. Let P be a tree-shaped polycube consisting of N unit cubes. We
can decide in O(N) time whether or not P is constructible.

Due to space constraints, the proofs can be found in the full version [12].

Particle-Based Assembly Using Precise Global Control 523

5.2 Scaled Shapes

Deciding constructibility of arbitrary polyominoes is more intricate than for
tree-shaped polyominoes. On the one hand, it is not sufficient to restrict the
search for removable tiles to corner’s (tiles with exactly one horizontal and one
vertical neighbor), because for successfully deconstructing a polyomino, it may
be necessary to remove non-corner tiles first, see Fig. 7(a). On the other hand,
removing non-corner tiles can result in an indestructible subshape, again see
Fig. 7(a). Furthermore, even in simple polyominoes, the removal of a corner tile
can result in an indestructible polyomino, see Fig. 7(b). Note that this is not the
case if maximal movement is considered.

(a) (b) (c)

Fig. 7. (a) No corner tile (dark gray) can be removed, because they either do not
have a deconstruction step or are essential for connectivity. Successively removing the
tiles 1, 2, and 3 by suitable deconstruction steps, the obtained shape can easily be
deconstructed. Removing the red tiles first results in an indestructible shape. (b) By
removing a first, we can first remove the spiral starting with c, and the remaining
shape afterwards. By removing b first, the spiral starting with d can be removed, but
the remaining shape is indestructible. (c) For the deconstruction it is necessary to
remove at least one of the red tiles. Independent from the scaling factor, both tiles
block each other and we are only able to deconstruct a staircase part (hatched part)
to the right and below the tiles, respectively. (Color figure online)

However, if scaling is allowed, we can show that the 2-scaled copy of a non-
degenerate polyomino is constructible. Note that no scaling factor will suffice to
guarantee constructibility of degenerate polyominoes, see Fig. 7(c). Recall that
in a non-degenerate polyomino P , for every pair t1, t2 ∈ P of tiles that share
exactly one point, N [t1] ∩ N [t2]
= ∅, i.e., t1, t2 have a common neighbor.

Definition 2. Let P be a polyomino and c ∈ N. By P c we denote the c-scaled
copy of P , i.e., each tile in P is replaced by a c × c square of tiles.

Definition 3. Let P be a polyomino. We call P c-empty if for any pair (p1, p2)
of free positions in the same connected component of GZ\P , a square of size c×c
can be moved from p1 to p2 without overlapping with P . We call P weakly c-
empty if at any time at most one corner of the c × c square overlaps with a tile
of P .

524 J. Keller et al.

For an illustration of Definition 3, see Fig. 8(b). For a 3-empty polyomino P ,
it is straightforward to see that as long as a tile t ∈ P can be moved to a free
position p that lies in the outer face, such that all surrounding positions of p are
free as well, t can be removed from P . The intuition is the following: Consider
a path of a 3 × 3-square, centered at that free position p, that connects p to the
outside of the bounding box of P . The decomposition step for the tile t consists
of all positions given by that path. Note that this still holds if we consider weakly
3-empty polyominoes.

We are able to show that we can always find such a removable tile, when
P is the 2-scaled copy of a non-degenerate polyomino. One of the core ideas of
our method is to make P weakly 3-empty. If P is weakly 3-empty, we consider a
partition of P into horizontal slabs. Based on this partition, we can show that we
can either remove tiles corresponding to a leaf of the dual graph of this partition,
or that we can cut open a hole of P , i.e., we remove two adjacent tiles to reduce
the number of holes of P by 1.

Definition 4. A slice of a polyomino P is the set of all tiles sharing the same
x-coordinate. A slab is a maximal connected set of tiles within a slice.

Definition 5. Let P be a polyomino, and SP its partition into slabs. By C(SP)
we refer to the edge-contact graph of SP , i.e., each slab is represented as a vertex,
and two vertices are connected if and only if the union of both slabs is connected.

(a) (b)

Fig. 8. (a) The 3-scaled copy P 3 of a polyomino P (gray tiles), its partition into
horizontal slabs SP , and its dual graph C(SP) (black). (b) A polyomino that is 3-
empty, weakly 3-empty, and not (weakly) 3-empty, respectively.

It is straightforward to see that the corresponding tiles of any leaf in C(SP)
can be removed, if it lies in the outer face, and the polyomino is weakly 3-empty.

Lemma 7. Let P be a non-degenerate polyomino that is weakly 3-empty. If
C(SP) contains a degree-one vertex lying in the outer face, then the corresponding
slab S can be removed from P .

Theorem 5. Let P be a non-degenerate polyomino. Then P 2 is constructible.

Particle-Based Assembly Using Precise Global Control 525

Proof (Sketch). In a first phase we remove tiles from P 2 such that the remaining
shape is weakly 3-empty. More precisely, we simply scratch off tiles within too
narrow corridors.

In a second phase we deconstruct the remaining shape slab by slab. For this
we make use of Lemma 7. If the shape contains any holes, we cut them open by
removing two adjacent tiles. After this, we restart with the first phase. ��
Because there are (even tree-shaped) non-constructible polyominoes, this result
is tight. If the polyomino is already 3-empty, we can skip the first phase. When-
ever we have to cut open a hole, we remove three (instead of two) tiles, such
that the property of being 3-empty is preserved. This results in the following
corollary.

Corollary 3. Every non-degenerate, 3-empty polyomino is constructible.

This idea can be adapted for 3D shapes scaled by a factor of 7, see the full
version [12] for details.

Theorem 6. Let P be a non-degenerate polycube. Then P 7 is constructible.

Fig. 9. The shape on the right is not constructible, if only one tile at a time is allowed
to be controlled. If we can add multiple tiles at a time, or if we are allowed to position
two (cyan colored) seed tiles, the polyomino is constructible. (Color figure online)

6 Conclusion and Future Work

We provided a number of algorithmic results for assembling shapes by con-
necting particles to a seed tile. For future research several interesting problems
remain open. What is the computational complexity of 2D-STAP? This is also
an open question in the full tilt model [6]. Does 3D-STAP remain NP-hard when
restricted to the class of non-degenerate shapes? We conjecture this to be true.

In this paper, we added one tile after the other to the seed. If this assumption
is relaxed, i.e., more than one tile at a time can be added to the workspace, it
is easy to see that more shapes are constructible, see Fig. 9. Is there a classifica-
tion of shapes that can be built in this model? This also leads to the question:
“Which shapes are constructible by using pre-assembled shapes (e.g., trominoes,
tetrominoes, etc.)?” By taking this a step further, we could also ask for a staged
approach similar to [18], where whole subassemblies can attach to each other.

526 J. Keller et al.

Another question arises by considering multiple seed tiles. What classes of
shapes are constructible, if multiple seed tiles can be placed in advance, see
Fig. 9.

Acknowledgements. We thank Linda Kleist for valuable discussions and suggestions
that improved the presentation of this paper, Matthias Konitzny for the awesome 3D
images, and the anonymous reviewers for providing helpful comments.

References

1. Agarwal, P.K., Aronov, B., Geft, T., Halperin, D.: On two-handed planar assembly
partitioning. In: Proceedings of the Symposium on Discrete Algorithms (2021)

2. Balanza-Martinez, J., et al.: Hierarchical shape construction and complexity for
slidable polyominoes under uniform external forces. In: Proceedings of the Sym-
posium on Discrete Algorithms (2020)

3. Balanza-Martinez, J., et al.: Full tilt: universal constructors for general shapes with
uniform external forces. In: Proceedings of the Symposium on Discrete Algorithms
(2019)

4. Becker, A., Demaine, E.D., Fekete, S.P., Habibi, G., McLurkin, J.: Reconfiguring
massive particle swarms with limited, global control. In: Flocchini, P., Gao, J.,
Kranakis, E., Meyer auf der Heide, F. (eds.) ALGOSENSORS 2013. LNCS, vol.
8243, pp. 51–66. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-642-
45346-5 545346-5545346-55

5. Becker, A.T., et al.: Targeted drug delivery: algorithmic methods for collecting a
swarm of particles with uniform, external forces. In: International Conference on
Robotics and Automation (2020)

6. Becker, A.T., et al.: Tilt assembly: algorithms for micro-factories that build objects
with uniform external forces. Algorithmica (2018)

7. de Berg, M., Khosravi, A.: Optimal binary space partitions for segments in the
plane. Int. J. Comput. Geom. Appl. 22, 187–205 (2012)

8. Caballero, D., Cantu, A.A., Gomez, T., Luchsinger, A., Schweller, R., Wylie, T.:
Building patterned shapes in robot swarms with uniform control signals. In: Pro-
ceedings of the Canadian Conference on Computational Geometry (2020)

9. Caballero, D., Cantu, A.A., Gomez, T., Luchsinger, A., Schweller, R., Wylie, T.:
Hardness of reconfiguring robot swarms with uniform external control in limited
directions. J. Inf. Process. 28, 782–790 (2020)

10. Caballero, D., Cantu, A.A., Gomez, T., Luchsinger, A., Schweller, R., Wylie,
T.: Relocating units in robot swarms with uniform control signals is PSPACE-
complete. In: Proceedings of the Canadian Conference on Computational Geome-
try (2020)

11. Doty, D.: Theory of algorithmic self-assembly. Commun. ACM 55, 78–88 (2012)
12. Keller, J., Rieck, C., Scheffer, C., Schmidt, A.: Particle-based assembly using pre-

cise global control. arXiv:2105.05784 (2021)
13. Mahadev, A.V., Krupke, D., Reinhardt, J.M., Fekete, S.P., Becker, A.T.: Collect-

ing a swarm in a grid environment using shared, global inputs. In: International
Conference on Automation Science and Engineering (2016)

14. Manzoor, S., Sheckman, S., Lonsford, J., Kim, H., Kim, M.J., Becker, A.T.: Parallel
self-assembly of polyominoes under uniform control inputs. Robot. Autom. Lett.
2, 2040–2047 (2017)

https://doi.org/10.1007/978-3-642-45346-5_545346-5 545346-5 5
https://doi.org/10.1007/978-3-642-45346-5_545346-5 545346-5 5
http://arxiv.org/abs/2105.05784

Particle-Based Assembly Using Precise Global Control 527

15. Patitz, M.J.: An introduction to tile-based self-assembly and a survey of recent
results. Natural Comput. 13, 195–224 (2014)

16. Rothemund, P.W.: Design of DNA origami. In: International Conference on
Computer-Aided Design (2005)

17. Rothemund, P.W., Winfree, E.: The Program-size complexity of self-assembled
squares. In: Proceedings of the Symposium on Theory of Computing (2000)

18. Schmidt, A., Manzoor, S., Huang, L., Becker, A.T., Fekete, S.P.: Efficient parallel
self-assembly under uniform control inputs. Robot. Autom. Lett. 3, 3521–3528
(2018)

19. Wang, H.: Proving theorems by pattern recognition-II. Bell Syst. Tech. J. 40, 1–41
(1961)

20. Winfree, E.: Algorithmic self-assembly of DNA. Ph.D. thesis, California Institute
of Technology (1998)

21. Woods, D.: Intrinsic Universality and the Computational Power of Self-Assembly.
Philosophical Transactions of the Royal Society A: Mathematical, Physical and
Engineering Sciences (2015)

Independent Sets in Semi-random Hypergraphs

Yash Khanna, Anand Louis, and Rameesh Paul(B)

Indian Institute of Science, Bangalore, India
{anandl,rameeshpaul}@iisc.ac.in

Abstract. A set of vertices in a hypergraph is called an independent set if no
hyperedge is completely contained inside the set. Given a hypergraph, computing
its largest size independent set is an NP-hard problem.

In this work, we study the independent set problem on hypergraphs in a natu-
ral semi-random family of instances. Our semi-random model is inspired by the
Feige-Kilian model [9]. This popular model has also been studied in the works
of [9,30,35] etc. McKenzie, Mehta, and Trevisan [30] gave algorithms for com-
puting independent sets in such a semi-random family of graphs. The algorithms
by McKenzie et al. [30] are based on rounding a “crude-SDP”. We generalize
their results and techniques to hypergraphs for an analogous family of hypergraph
instances. Our algorithms are based on rounding the “crude-SDP” of McKenzie et
al. [30], augmented with “Lasserre/SoS like” hierarchy of constraints. Analogous
to the results of McKenzie et al. [30], we study the ranges of input parameters
where we can recover the planted independent set or a large independent set.

Keywords: Planted independent sets · Semi-random models · Hypergraphs ·
Approximation algorithms · Semidefinite programming · Lasserre/SoS
hierarchy · Beyond worst-case analysis.

1 Introduction

An independent set of a hypergraph H = (V, E) is a subset of vertices such that no hyper-
edge is completely contained inside the subset. Computing a maximum independent set
is a fundamental problem in the study of algorithms. The problem has applications in
areas such as resource allocation in wireless networks [37], data clustering [36], com-
putational biology [21], etc.

The problem of computing a maximum size independent set in graphs is well known
to be NP-hard [16]. Håstad [13] showed that it is hard to approximate the maximum
independent set in graphs to better than a factor of n1−ε for any ε > 0 unless NP = ZPP.
Zuckerman [38] showed that there is no possible approximation ratio better than n1−ε
unless P = NP. This hardness of approximation holds for the independent set problem
on hypergraphs as well since it generalizes the independent set problem on graphs.

There has been a lot of work studying approximation algorithms of independent
sets in graphs and hypergraphs, see Sect. 1.2 for a brief survey. Another direction of
research related to intractable problems is to study families of “easier” instances of the
problem. This includes studying various random and semi-random models of instances,

c© Springer Nature Switzerland AG 2021
A. Lubiw et al. (Eds.): WADS 2021, LNCS 12808, pp. 528–542, 2021.
https://doi.org/10.1007/978-3-030-83508-8_38

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-83508-8_38&domain=pdf
https://doi.org/10.1007/978-3-030-83508-8_38

Independent Sets in Semi-random Hypergraphs 529

instances satisfying certain properties, etc. We give a brief survey of the special class of
graphs for which the independent set problem has been studied in Sect. 1.2.

The starting point in the study of random instances for the independent set prob-
lem in graphs was the G(n, p) instances (Erdős–Rényi random graphs). Analysis of
G(n, p) [29] showed that a random graph doesn’t have an independent set of size more
than (2 + o(1)) log1/(1−p) n, w.h.p., for a large range of p. A simple algorithm can be used
to compute an independent set of size log1/(1−p) n, w.h.p., but computing an independent
set larger than this seems to be hard. Another popular model, the planted solution model
considers the problem of recovering a hidden planted structure of size k in a graph with
n vertices. For the planted clique (or independent set) model, Alon, Krivelevich, and
Sudakov [1] showed that we can recover the planted clique as long as k = Ω(

√
n)

(for a constant p). Blum and Spencer [4] studied semi-random models of k-colorable
graphs; such models allow an adversary to modify the instance without changing the
planted structure. The model is defined by the set of actions allowed to the adversary.
For the planted clique problem, in a rich adversarial semi-random model introduced by
Feige and Kilian [9], the algorithm of [30] can recover the clique for k = Ωp(n2/3) (see
Sect. 1.2 for precise statement). We note that algorithms for independent set in graphs
mentioned above hold more generally; the results here are stated assuming a constant
value of p for the purpose of illustration.

The above is a broad classification of the models, and there are many other proba-
bilistic generative models that fit at some intermediate hierarchy in this classification.
A key advantage of studying random and semi-random instances is that it gives us
insights into which aspects of the problem make it hard. Often algorithms for stronger
models and stronger regimes of parameters may require using more advanced tools
and techniques. For example, in the case of planted cliques/independent sets, for the
regimes of k � Ω

(√
n log n

)
we can recover the planted graph using combinatorial tech-

niques, which essentially returns the vertices with top k degrees. However in regimes of
k = Ω

(√
n
)

this approach no longer works, and the best-known algorithms [1] use spec-
tral techniques. In the regime of semi-random instances of the problem, the best-known
algorithms [30] are based on semidefinite programming.

1.1 Our Models and Results

Definition 1. Given parameters n, k, r, and p, a hypergraph H is constructed as fol-
lows.

1. Let V be a set of n vertices. Fix an arbitrary subset S ⊂ V of size k.
2. Add a hyperedge independently with probability p for each r−tuple of vertices
{i1, i2, . . . , ir}, such that {i1, i2, . . . , ir} ∩ S � ∅ and {i1, i2, . . . , ir} ∩ (V \ S) � ∅.
We denote the hypergraph induced by the collection of such r-tuples as H[S ,V \ S].

3. Allow a monotone adversary to add r-hyperedges arbitrarily to H[S ,V \ S] and
hypergraph induced on V \ S denoted by H[V \ S].

The model discussed above was introduced by Feige and Kilian [9] in the context
of studying various graph partitioning problems. The work [30] studied an analogous
model in the context of independent sets in graphs.

530 Y. Khanna et al.

We study the ranges of parameters k, r, p (for a fixed n) in this model for which we
can recover S efficiently. Our main results are informally stated below.

Theorem 1. (Informal version1.). There exists a deterministic algorithm which takes
as input an instance of Definition 1 satisfying

k = Ω

(
n(r−1)/(r−0.5)

p3/(2r−1)

)
,

has running time nO(r), and outputs a list of at most n independent sets, one of which is
S , with high probability (over the randomness of the input).

Theorem 2. (Informal version of Theorem 3). There exists a deterministic algorithm
which takes as input ε ∈ (0, 1) and an instance of Definition 1 satisfying

k = Ω

(
n(r−1)/(r−0.5)

ε1/(r−0.5)p1/(2r−1)

)
,

has running time nO(r), and outputs an independent set of size at least (1−ε)k, with high
probability (over the randomness of the input).

Theorem 1 and Theorem 2 generalize to hypergraphs the analogous results for graphs
by [30]. We state and prove the formal version of Theorem 2 in Theorem 3. We refer to
the full version of this paper [19] for the formal version of Theorem 1. Our proofs of
these theorems are based on rounding McKenzie et al. [30] “crude-SDP”, augmented
with “Lasserre/SoS like” hierarchy of constraints. The Lasserre/SoS hierarchy has been
used in designing approximation algorithms for independent sets in hypergraphs in the
works by Chlamtac [5] and Chlamtac and Singh [6], but the power of the Lasserre/SoS
hierarchy for designing approximation algorithm for the independent set problem is yet
to be fully understood.

1.2 Related Work

Independent Set Problem in Hypergraphs. The independent set problem in hyper-
graphs cannot be approximated to a factor better than n1−ε for any ε > 0 unless
P=NP [38]. The work [14] gives a combinatorial algorithm to obtain an approxima-

tion ratio of O
(
n/

(
log(r−1) n

)2
)

for a r-uniform hypergraph where log(r) n denotes a

r-fold repeated application of logarithm as log . . . log n. This has been improved by
Halldórsson in the work [11] where they study the problem on arbitrary weighted hyper-
graphs and give an O (

n/ log n
)

approximation algorithm that runs in poly (n,m) time
where m denotes the number of hyperedges. From here onwards, a lot of work has been
done in studying the problem in special classes of graphs. In this section, we do a brief
survey of these results.

The problem has been extensively studied for 3-uniform hypergraphs which contain
an independent set of size γn. Krivelevich, Nathaniel, and Sudakov [23] give an SDP-
based algorithm that finds an independent set of size Ω̃

(
min

(
n, n6γ−3

))
for γ � 1/2.

1 The formal version of this theorem can be found in the full version of this paper [19].

Independent Sets in Semi-random Hypergraphs 531

The work Chlamtac [5] uses an SDP relaxation with the third level of the Lasserre/SoS
hierarchy and returns an independent set of size Ω

(
n1/2−γ). Chlamtac and Singh [6]

gave an algorithm which computes an independent set of size nΩ(γ2) (where γ � 0 is a
constant) using Θ(1/γ2) levels of a mixed hierarchy which they called the intermediate
hierarchy.

Halldórsson and Losievskaja [12] study the problem on bounded degree hyper-
graphs. For hypergraphs with degree bounded by Δ, the authors show that the classi-
cal greedy set cover algorithm can be analyzed to give (Δ + 1) /2 approximation. The
work [2] shows that the bounded degree case is Unique Games-hard to approximate
within a factor of O

(
Δ/ log2 Δ

)
. In a recent work [3], the authors exhibit how to convert

this inapproximability factor of O
(
Δ/ log2 Δ

)
under UG-hardness to NP-hardness.

Random Models for Independent Set Problem. The model studied in this work is a
generalization (to hypergraphs) of the planted independent set model on graphs studied
in [30]. Their algorithm is based on rounding an SDP solution. However, instead of
using a relaxation of the independent set problem, they used a crude-SDP (this idea was
introduced in [22] and also used in many subsequent works [27]) which helps reveal
the planted solution S . The main idea is to show that the expected �22 distance between
vectors of S (the planted independent set) is “small”. In other words, the SDP solution
“clusters” the vectors of S . Their algorithm outputs an independent set of size (1 − ε)k
for k = Ω

(
n2/3/p1/3

)
and for a larger value of k, i.e. when k = Ω

(
n2/3/p

)
, it outputs

at most n independent sets, one of which is the planted one w.h.p. In this parameter
range, they also consider a list decoding version, where when given a random vertex of
S correctly picks S from this list. The proofs of Theorem 2 and Theorem 1 generalize
the proofs of the corresponding results in [30].

The problem has also been studied in graphs in a weaker semi-random model [8]
by Feige and Krauthgamer, which they call as sandwich model. They propose an algo-
rithm based on Lovász theta function for the same which returns the planted clique
for k � Ω(

√
n) (for p = 1/2). Feige and Kilian [9] studied the problem in their semi-

random model and they give an algorithm to recover an independent set of size αn for
regimes of p > (1 + ε) ln n/αn and any ε > 0, where α is a constant. They also give
efficient algorithms to recover a planted bisection and planted k-colorable graphs in
semi-random models.

A closely related problem is about recovering planted clusters in random graphs
known as the Stochastic Block Model (SBM) given by [15]. In [7] they study the
hypergraph version of the problem where they partition a r-uniform random hypergraph
H(n, r, p, q) into k equally sized clusters with p as edge probability within a cluster and
q as edge probability amongst clusters. They give a spectral algorithm that guaran-
tees exact recovery when the number of clusters k = Θ(

√
n). The work [10] studies

this problem in more general models like the planted partition model for non-uniform
hypergraphs. The work [20] gives an SDP based algorithm for the community detection
problem in k-uniform hypergraphs.

532 Y. Khanna et al.

Other Problems in Semi-random Models. In [27] they develop a general framework
to study graph partition problems in a semi-random model similar (in strength) to the
one by Feige and Kilian [9]. They give bi-criteria approximation algorithms for Spars-
est cut, Uncut, Multi cut, Balanced Cut, and Small set expansion problems. In [28]
they propose another semi-random model, which they call PIE (permutation invari-
ant edges model) for the balanced cut problem. The works by Khanna, Louis, and
Venkat [18,25,26] study the problems of graph expansion (vertex and edge) and the
densest k-subgraph problem in semi-random models. The work by Khanna [17] studies
the semi-random model with a planted clique while the rest of the graph is composed
of small-sized bounded degree graphs, expanders, etc. stitched together by a random
graph. These works also heavily rely on showing that the vectors corresponding to the
planted structure are “clustered” together. Hence, using some basic geometric ideas, we
can recover a large part of the planted portion.

1.3 Preliminaries and Notation

Our algorithms are based on the following “crude SDP”.

SDP 1.
max

∑

{i1,i2,...,ir}∈(Vr)

∥∥∥xi1,i2,...,ir
∥∥∥2

subject to

‖xi‖2 = 1 ∀i ∈ V (1)

‖xe‖2 = 0 ∀e ∈ E (2)

〈xI , xJ〉 = ‖xI∪J‖2 ∀I, J(� ∅) ⊆ V, s.t |I ∪ J| � r + 1 (3)

〈xu, xI〉 � 〈xu, xJ〉 ∀u ∈ V,∀I ⊆ J ⊆ V, |J| � r + 1 (4)

1 − ∥∥∥xu,v1,...,vr
∥∥∥2
�

∑

i∈[r]

(
1 − ∥∥∥xu,vi

∥∥∥2
)

∀ {u, v1, . . . , vr} ∈
(

V
r + 1

)
. (5)

The constraints in SDP 1 are inspired by the Lasserre/SoS hierarchy of constraints.
The Lasserre/SoS hierarchy is a strengthened SDP relaxation for nonlinear 0 − 1 pro-
grams attributed to the works of Shor [34], Nesterov [31], Jean B. Lasserre [24], and
Parrilo [32]. We refer the reader to the survey by Thomas Rothvoß [33] for a detailed
discussion.

We also introduce some basic notation that we will be using throughout this paper.

– Let ∂(S) or the boundary of S denote
(
V
r

)
\
((

S
r

)
∪

(
V\S
r

))
.

– Let the optimal solution of the above SDP be denoted by
{
x∗I

}
I⊂V,1�|I|�r+1

.

– Let d(v)|T be the degree of any vertex v ∈ V , when restricted to only count hyper-
edges in the set {v} ∪ T .

– Throughout the paper, we will assume that k � n/2, and r � 2.

Independent Sets in Semi-random Hypergraphs 533

1.4 Proof Overview

In [30] they study a crude-SDP with the constraint
〈
xi, x j

〉
= 0,∀ {i, j} ∈ E. Their crude

SDP tries to cluster the vertices together, while the constraint
〈
xi, x j

〉
= 0, {i, j} ∈ E tries

to ensure that no edges are contained in a cluster. Constraint 2 is a natural extension of
this to hypergraphs. We add vectors for all subsets of vertices of size at most r + 1, and
add consistency constraints 3 among them, as in the Lasserre/SoS hierarchy. However,
we note that SDP 1 is different from a Lasserre/SoS relaxation since there is no natural
interpretation of solution to this crude-SDP as a low-degree pseudo-distribution over
independent sets in the hypergraph. However, we add the constraints in Eq. 3, 4 and 5
since our intended feasible solution x′ constructed as,

x′i1,i2,...,il =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

ê if {i1, i2, ..., il} ∈
(
S
l

)

x∗i1,i2,...,il if {i1, i2, ..., il} ∈
(
V\S
l

)
∀l ∈ [r + 1]

0 otherwise

(6)

where ê denote a unit vector orthogonal to x∗I , ∀I ⊆ V \ S , |I| � r. satisfies these con-
straints. The constraints in Eq. (4) and Eq. (5) are inspired from the locally consistent
probability distributions viewpoint of a r-level Lasserre/SoS hierarchy [33]. A t-level
vector in a Lasserre/SoS hierarchy can be interpreted as the probability of the joint event
corresponding to indices of the vector. Constraint 4 corresponds to the fact that the prob-
ability of a sub event can only be larger than the probability of an event and constraint 5
corresponds to a union bound on the complement of the joint event (represented by
xu,v1,...,vr) given by sum of the complement of pairwise joint events 1 − xu,vi ∀i ∈ [r].

In Sect. 2, we prove a lower bound on the contribution of the SDP mass in the
optimal solution from the r-level vectors of S , i.e.

{
x∗I

}
I⊂S ,|I|=r (Corollary 1). The high-

level idea of our proof is the same as that of [30]. However, we need some new ideas to
extend them to hypergraphs. Using the approach of [30], we first lower bound the SDP
mass from S and S × (V \ S) (Lemma 1). Therefore, upper bounding the contribution
from S × (V \ S), will give us a lower bound on the contribution from S . In [30], S ×
(V\S) is a random bipartite graph; they use Grothendieck’s inequality and concentration
bounds to upper bound the contribution from this part. In our setting, S × (V \ S) is a
random hypergraph, and [30]’s techniques do not seem to be directly applicable here.
Our main idea is to construct a random bipartite graph G′ = (U1,U2, E′) based on this
random bipartite hypergraph as follows (Construction 1). One side of the graph consists
of vertices corresponding to subsets of S of cardinality at most r − 1, and other side
consists of vertices corresponding to subsets of V \ S of cardinality at most r − 1. We
add an edge between two vertices if the union of the sets corresponding to them forms
a hyperedge in our hypergraph. By our construction,

∑
{a,b}∈E′ 〈xa, xb〉 is equal to the

SDP mass from S × (V \ S) in our hypergraph. Moreover, since S × (V \ S) forms a
random bipartite hypergraph, our construction gives us that G′ is a random bipartite
graph. Therefore, we can now proceed to bound the contribution from G′ using [30]’s
approach (Proposition 1).

Our proof of Theorem 2 (in Sect. 3) is a generalization of the proof of Theorem 1.1
of [30] to the case of hypergraphs and our higher-order SDP (SDP 1). Corollary 1 shows
that the �22 lengths of the r-level vectors completely inside S are large. This in turn (by

534 Y. Khanna et al.

the SDP constraints) implies that there is a vertex u ∈ S such that most of the (r − 1)-
level vectors in S have a large projection on x∗u (Lemma 3). In [30] they use the SDP
constraint 〈xu, xv〉 = 0,∀ {u, v} ∈ E to show that the set of vectors which have a large
projection on x∗u is an independent set. Therefore they proceed to bound the parameter
regimes to obtain a small value of p and a (1 − ε)k lower bound guarantee on the size
of this set. However in our setting, for r � 3, we are unable to guarantee that this set
of (r − 1) level vectors is an independent set. Therefore, we proceed by using Lemma 3
to show that there exists a vertex u such that a large fraction of the 1-level vectors in{
x∗v : v ∈ S }

have a large projection (� R′) on x∗u, along the lines of [30]. Let us consider
the set of 1-level vectors that have a projection � R′ on x∗u (Definition 4). Showing
that the r-level vectors consisting of vertices from this set have non-zero norms will
suffice to guarantee that there are no hyperedges in this set. We use our “union-bound”
SDP constraint 5 in our crude-SDP to establish this (Lemma 5). Choosing R′ to be large
enough (R′ = 1 − 1/2r) and using the SDP constraint 5, we establish a non-zero lower
bound on

〈
x∗u, x∗v1,v2,...,vr

〉
for every r-tuple (v1, . . . , vr) consisting of vertices from the set.

Now using SDP constraints 2 and 4, we can establish that the vertices inside the set do
not form a hyperedge. For our choice of parameters in this theorem, the set of vertices
corresponding to this set will contain at least (1 − ε) fraction of the vertices in S .

Our proof of Theorem 1 (in the full version of this paper [19]) is a generalization
of the proof of Theorem 1.2 of [30] to the case of hypergraphs and our higher order
SDP (SDP 1). In Lemma 3 we show that there exists a vertex u ∈ S such that most
of the (r − 1)-level vectors in S have a large projection on x∗u. Let us consider the set
of (r − 1)-level vectors which have a large projection (� R) on x∗u (Definition 4). The
choice of p ensures that each vertex in V \ S forms a hyperedge with at least one of the
tuples corresponding to (r − 1) level vectors in the set w.h.p. Moreover, the choice of R
ensures that the set can not contain two orthogonal vectors. Therefore, this ensures that
the tuples in the set contain vertices only from S . Therefore, the union of the sets of
vertices contained in the (r−1)-tuples corresponding to such (r−1)-level vectors would
be a subset of S . A greedy algorithm can be used to recover the remaining vertices of
S . Since we don’t know this special vertex u, we perform this procedure on each vertex
and return the set of independent sets obtained; one of these independent sets would
be the planted one w.h.p. The whole procedure is presented in Algorithm 1. The range
of p in this theorem is, however smaller than the range of p for which Theorem 2 is
guaranteed to hold.

2 Bounding the Contribution from the Random Hypergraph

In this section, we bound the contribution of the SDP mass from the random portion of
the hypergraph. As a result, we find a lower bound on the contribution of the vectors
from our planted independent set S . The two key technical results (Proposition 1 and
Corollary 1) which we prove in this section which generalize ([30], Lemma 2.1) to r-
uniform hypergraphs are the following.

Independent Sets in Semi-random Hypergraphs 535

Proposition 1. For k �
r22r+2er

3p
,

∑

{i1,i2,...,ir}∈∂(S)

∥∥∥x∗i1,i2,...,ir
∥∥∥2
�

(
23r−2e3r/2−2

√
3rr−5/2

) ⎛⎜⎜⎜⎜⎜⎜⎝

√
k
p

⎞⎟⎟⎟⎟⎟⎟⎠ n
r−1 .

with high probability (over the randomness of the input).

Corollary 1. For k �
r22r+2er

3p
,

∑

{i1,i2,...,ir}∈(Sr)

∥∥∥x∗i1,i2,...,ir
∥∥∥2
�

(
k
r

)
−

(
23r−2e3r/2−2

√
3rr−5/2

) ⎛⎜⎜⎜⎜⎜⎜⎝

√
k
p

⎞⎟⎟⎟⎟⎟⎟⎠ n
r−1 .

with high probability (over the randomness of the input).

The main lemma which connects the above two results is as follows.

Lemma 1.
∑

{i1i2...ir}∈(Sr)

∥∥∥x∗i1,i2,...,ir
∥∥∥2
+

∑

{i1,i2,...,ir}∈∂(S)

∥∥∥x∗i1,i2,...,ir
∥∥∥2
�

(
k
r

)
.

We refer to the full version of this paper [19] for the proof.
Note that the above lemma, which is similar to ([30], Lemma 2.2) helps us remove

the dependence of the contribution of the vectors from V \ S , is the key lemma that
allows us to work with an arbitrary subhypergraph H[V \ S]. Also, it makes our argu-
ments invariant to any extra hyperedges added by an adversary.

Next, we proceed to prove Proposition 1. We begin by constructing a bipartite graph
to simplify our calculations, as follows.

Construction 1. We construct a bipartite graph G′ def
= (U1,U2, E′) from the given input

hypergraph H as follows.

Here U1
def
= (S) ∪

(
S
2

)
∪ . . . ∪

(
S

r − 1

)
and U2

def
= (V \ S) ∪

(
V \ S

2

)
∪ . . . ∪

(
V \ S
r − 1

)
.

Now for each hyperedge e in our original hypergraph H (before the action of the

monotone adversary on H[S ,V \ S]) such that e ∈ E ∩ ∂(S), let Ie
def
= e ∩ S and

Je
def
= e ∩ (V \ S). We add an edge in the graph G′ between the vertices Ie ∈ U1

and Je ∈ U2. It is easy to see that there is a bijection between the random part of the
hypergraph and G′.

Let A denote the adjacency matrix of G′ (of dimension |U1|+ |U2|) and let m′ denote the
maximum number of edges in the random hypergraph.

In the next few lemmas, we setup up groundwork for using this construction in
establishing our claims. We prove the following bounds on |U1|, |U2| and m′. The proof
uses some standard results on binomial coefficients, and we refer to the full version of
paper [19] for these standard results.

Fact 1. For all k � n/2, r � 2 we have,

536 Y. Khanna et al.

1. 1 + |U1| � r

(
2ek
r

)r−1

.

2. 1 + |U2| � r

(
2en
r

)r−1

.

3. m′ �
(4e)r−2knr−1

rr−2
.

4. m′ � k
(n
2r

)r−1
.

We refer to the full version of this paper [19] for the proof.

Definition 2. We define a centered matrix B ∈ �(|U1 |+|U2 |)×(|U1 |+|U2 |),

BI,J
def
=

⎧⎪⎪⎨⎪⎪⎩
p − AI,J ∀i ∈ [r − 1], I ∈

(
S
i

)
, J ∈

(
V\S
r−i

)
;∀ j ∈ [r − 1], I ∈

(
V\S
j

)
, J ∈

(
S
r− j

)

0 otherwise .

where A denotes the adjacency matrix of G′ in Construction 1. Note that by construc-
tion, E[B] = 0. We rewrite the contribution of the random hypergraph towards the SDP
mass in terms of the matrix B using the next lemma.

Lemma 2.

∑

{i1,i2,...,ir}∈∂(S)

∥∥∥x∗i1,i2,...,ir
∥∥∥2
=

1
2p

⎛⎜⎜⎜⎜⎜⎜⎝
∑

u1,u2∈U1∪U2

Bu1,u2

〈
x∗u1
, x∗u2

〉
⎞⎟⎟⎟⎟⎟⎟⎠ .

We refer to the full version of this paper [19] for the proof.

It is important to note that the above lemma rewrites the mass of the SDP by vectors
in the boundary of S (the random part) using the matrix B. The entries of B only depend
on the initial set of random edges, thus any extra edges added by a monotone adversary
can be ignored w.l.o.g.

We are now ready to prove Proposition 1. The proof uses some commonly used
concentration inequalities. We refer to the full version of the paper [19] for the proof.

We define the following function for notational convenience.

Definition 3. Let f (r)
def
=

r5/223r−2e3r/2−2

√
3

.

Proof (Proof of Corollary 1). The proof follows almost immediately from Proposition 1
and Lemma 1,

∑

{i1i2...ir}∈(Sr)

∥∥∥x∗i1i2...ir
∥∥∥2
�

(
k
r

)
−

∑

{i1,i2,...,ir}∈∂(S)

∥∥∥x∗i1,i2,...,ir
∥∥∥2
�

(
k
r

)
−

(
23r−2e3r/2−2

√
3rr−5/2

) ⎛⎜⎜⎜⎜⎜⎜⎝

√
k
p

⎞⎟⎟⎟⎟⎟⎟⎠ n
r−1

=

(
k
r

)
− f (r)nr−1

√
k

rr
√
p
.

Independent Sets in Semi-random Hypergraphs 537

3 Algorithm for Computing a Large Independent Set

In this section, we will prove a formal version of Theorem 2 which is a generalization
of Theorem 1.1 of [30] to r-uniform hypergraphs (Lemma 3, Lemma 4 and proof of
Theorem 2). We will crucially use the lower bound on the SDP mass from the vectors
in S, i.e., Corollary 1. As a first step towards this, in Lemma 3, we show that there exists
a vertex u ∈ S for which the 1 level vectors x∗v (corresponding to vertices in S) in the
optimal solution have a large projection on x∗u.

Lemma 3. For k �
r22r+2er

3p
, there exists a vertex u ∈ S such that, with high probability

(over the randomness of the input).

Ev∈S \{u}
〈
x∗u, x

∗
v

〉
� E{i1,i2,...,ir−1}∼(S \{u}r−1)

〈
x∗u, x

∗
i1,i2,...,ir−1

〉
� 1 − f (r)nr−1

kr−0.5 √p .

We refer to the full version of this paper [19] for the proof.
Lemma 3 shows that a large fraction of the 1-level vectors in S have a large projec-

tion on x∗u. We start with the following definition,

Definition 4. We denote the set of all l-tuples containing vertices from a set T ⊆ V
(where l � |T |) whose corresponding vectors have a projection at least R with the
vector x∗u by

Bu(l,R,T)
def
=

{
{v1, v2, . . . , vl} : {v1, v2, . . . , vl} ∈

(
T
l

)
and

〈
x∗u, x

∗
v1,v2,...,vl

〉
� R

}
.

Note that the typical values of l of interest will be 1 in Theorem 2 and r − 1 in
Theorem 1.

Lemma 4. For k �
r22r+2er

3p
, there exists a vertex u ∈ S such that

∣∣∣∣∣∣Bu

(
1, 1 − 1

2r
, S

)∣∣∣∣∣∣ � (k − 1)

(
1 − 2r f (r)nr−1

√
pkr−0.5

)

with high probability (over the randomness of the input).

We refer to the full version of this paper [19] for the proof.
In [30] they use the SDP constraint 〈xu, xv〉 = 0,∀ {u, v} ∈ E to show that the set

of vectors which have a large projection on x∗u is an independent set. Therefore they
directly analyze the bound on the size of the set to obtain an independent set, in a range
of p such that it covers at least (1 − ε) fraction of vertices in S. However in our setting,
we are unable to guarantee directly that this set of vectors is an independent set. We
crucially use the Lasserre/SoS like SDP constraints 3 and 5 and an appropriately large
value of R (R � 1 − 1

2r) to show that the set guaranteed in Lemma 4 is an independent
set.

538 Y. Khanna et al.

Lemma 5. For k �
r22r+2er

3p
, there exists a vertex u ∈ S such that Bu

(
1, 1 − 1

2r
,V

)
is

an independent set with high probability (over the randomness of the input).

Proof. We consider the SDP constraint 5 and apply it to our optimal solution x∗ .
By using consistency constraints (〈xI , xJ〉 = 〈xI′ .xJ′ 〉 ,∀I ∪ J = I′ ∪ J′) (Eq. (3)) we can
rewrite the constraint in Eq. (5) as,

1 − ∥∥∥x∗u,i1,...,ir
∥∥∥2
�

∑

l∈[r]

(
1 −

〈
x∗u, x

∗
il

〉)
. (7)

For k �
r22r+3er

3p
, if we pick any set of r vertices {i1, . . . , ir} ∈

(
V
r

)
in Bu

(
1, 1 − 1

2r
,V

)

(where u is the vertex guaranteed in Lemma 4) we know that
〈
x∗u, x∗il

〉
� 1− 1

2r
,∀l ∈ [r].

By using Eq. (7) we have that,

∥∥∥x∗u,i1,...,ir
∥∥∥2
� 1 −

∑

l∈[r]

(
1 −

〈
x∗u, x

∗
il

〉)
� 1 −

∑

l∈[r]

1
2r
�

1
2
> 0 . (8)

Now we examine the term
∥∥∥x∗i1,i2,...,ir

∥∥∥2
for these {i!, . . . , ir} and we have that,

∥∥∥x∗i1,i2,...,ir
∥∥∥2
=

〈
x∗i1 , x

∗
i2...,ir

〉
�

〈
x∗i1 , x

∗
u,i2...,ir

〉
=

∥∥∥x∗u,i1,...,ir
∥∥∥2
> 0

where the equality holds by consistency constraints, the first inequality above holds
by constraint 4 and the last inequality holds by Eq. (8). Hence for any r-tuple

{i1, i2, . . . , ir} ⊆ Bu

(
1, 1 − 1

2r
,V

)
, we have

∥∥∥x∗i1,i2,...,ir
∥∥∥2
> 0. Therefore by SDP con-

straint 2, it cannot form a hyperedge. Hence, the set of vertices in Bu

(
1, 1 − 1

2r
,V

)
is

an independent set.

Definition 5. Let Su denote the set of vertices formed by the union of all vertices by
reading off the indices from the tuples of the set, Bu(l, r,V).

Now, we have all the ingredients to prove our main result. We present the complete
algorithm below and the proof of Theorem 2.

Independent Sets in Semi-random Hypergraphs 539

Algorithm 1:
Input: H = (V, E), l ∈ [r], and R ∈ (0, 1).
Output: A list of independent sets in H.

1: Solve SDP 1.
2: for all u ∈ V do
3: Initialize Su denote the union of set of vertices from the tuples in Bu(l,R,V).
4: S′u = {u} ∪ Su. If S′u is not an independent set,

Set S′u = ∅ and skip this iteration.
5: for all v ∈ V \ Su do
6: Add vertex v to S′u if S′u ∪ {v} is an independent set.
7: end for
8: end for
9: Return

{S′u
}
u∈V .

We set our parameters (n, p, k, ε) appropriately and show that the number of vertices
in Bu along with the vertex u (denoted by S′u) cover 1 − ε fraction of vertices in S .

Theorem 3 (Formal version of Theorem 2). There exists a deterministic algorithm
which takes as input ε ∈ (0, 1) and an instance of Definition 1 satisfying

k � max

{
r22r+2er

3p
,

(2r f (r))1/(r−0.5)n(r−1)/(r−0.5)

ε1/(r−0.5)p1/(2r−1)

}
,

has running time nO(r), and outputs an independent set of size at least (1−ε)k, with high
probability (over the randomness of the input).

Proof. We run the Algorithm 1 with the inputs, H, l = 1 and R = 1 − 1
2r

to get
{S′u

}
u∈V .

In Lemma 4 we show that
∣∣∣∣∣∣Bu

(
1, 1 − 1

2r
, S

)∣∣∣∣∣∣ � (k − 1)

(
1 − 2r f (r)nr−1

√
pkr−0.5

)
.

For a suitable choice of parameters we wish to have,
∣∣∣∣∣∣Bu

(
1, 1 − 1

2r
, S

)∣∣∣∣∣∣ � (k − 1)(1 − ε) . (9)

We can then include in the vertex u to our independent set and we get

∣∣∣S′u
∣∣∣ � |Su| + 1 =

∣∣∣∣∣∣Bu

(
1, 1 − 1

2r
,V

)∣∣∣∣∣∣ + 1 �

∣∣∣∣∣∣Bu

(
1, 1 − 1

2r
, S

)∣∣∣∣∣∣ + 1

� (k − 1)(1 − ε) + 1 � k(1 − ε) .

We note that by setting k �
(2r f (r))1/(r−0.5)n(r−1)/(r−0.5)

ε1/(r−0.5)p1/(2r−1)
, Eq. 9 is satisfied and hence we

can recover an independent set of size (1 − ε)k for all ε ∈ (0, 1).

540 Y. Khanna et al.

Acknowledgements. YK and RP thank Theo McKenzie for helpful discussions. AL was sup-
ported in part by SERB Award ECR/2017/003296 and a Pratiksha Trust Young Investigator
Award.

References

1. Alon, N., Krivelevich, M., Sudakov, B.: Finding a large hidden clique in a random graph.
In: Proceedings of the Eighth International Conference Random Structures and Algorithms
(Poznan, 1997), vol. 13, pp. 457–466 (1998)

2. Austrin, P., Khot, S., Safra, M.: Inapproximability of vertex cover and independent set in
bounded degree graphs. Theor. Comput. 7, 27–43 (2011)

3. Bhangale, A., Khot, S.: UG-Hardness to NP-Hardness by losing half. In: Shpilka, A. (ed.)
34th Computational Complexity Conference (CCC 2019). Leibniz International Proceedings
in Informatics (LIPIcs), pp. 3:1-3:20. Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik,
Dagstuhl, Germany (2019)

4. Blum, A., Spencer, J.: Coloring random and semi-random k-colorable graphs. J. Algorithms
19(2), 204–234 (1995)

5. Chlamtac, E.: Approximation algorithms using hierarchies of semidefinite programming
relaxations. In: 48th Annual IEEE Symposium on Foundations of Computer Science (FOCS
2007), pp. 691–701 (2007)

6. Chlamtac, E., Singh, G.: Improved approximation guarantees through higher levels of SDP
hierarchies. In: Goel, A., Jansen, K., Rolim, J.D.P., Rubinfeld, R. (eds.) APPROX/RANDOM
-2008. LNCS, vol. 5171, pp. 49–62. Springer, Heidelberg (2008). https://doi.org/10.1007/
978-3-540-85363-3 5

7. Cole, S., Zhu, Y.: Exact recovery in the hypergraph stochastic block model: a spectral algo-
rithm. Linear Algebra Appl. 593, 45–73 (2020)

8. Feige, U., Krauthgamer, R.: Finding and certifying a large hidden clique in a semi-random
graph. Tech. rep, ISR (1999)

9. Feige, U., Kilian, J.: Heuristics for semirandom graph problems. vol. 63, pp. 639–671 (2001),
special issue on FOCS 98 (Palo Alto, CA)

10. Ghoshdastidar, D.: Consistency of spectral hypergraph partitioning under planted partition
model. Ann. Statist. 45(1), 289–315 (2017)

11. Halldórsson, M.M., Losievskaja, E.: Approximations of weighted independent set and hered-
itary subset problems. J. Graph Algorithms Appl. 4(1), 16 (2000)

12. Halldórsson, M.M., Losievskaja, E.: Independent sets in bounded-degree hypergraphs. Dis-
crete Appl. Math. 157(8), 1773–1786 (2009)

13. Håstad, J.: Clique is hard to approximate within n1−ε . Electron. Colloquium Comput. Com-
plex. 4(38) (1997). http://eccc.hpi-web.de/eccc-reports/1997/TR97-038/index.html

14. Hofmeister, T., Lefmann, H.: Approximating maximum independent sets in uniform hyper-
graphs. In: Brim, L., Gruska, J., Zlatuška, J. (eds.) MFCS 1998. LNCS, vol. 1450, pp. 562–
570. Springer, Heidelberg (1998). https://doi.org/10.1007/BFb0055806

15. Holland, P.W., Laskey, K.B., Leinhardt, S.: Stochastic blockmodels: first steps. Soc. Net-
works 5(2), 109–137 (1983)

16. Karp, R.M.: Reducibility among combinatorial problems, pp. 85–103. Springer, US, Boston,
MA (1972). https://doi.org/10.1007/978-1-4684-2001-2 9

17. Khanna, Y.: Exact recovery of planted cliques in semi-random graphs. CoRR abs/2011.08447
(2020). https://arxiv.org/abs/2011.08447

https://doi.org/10.1007/978-3-540-85363-3_5
https://doi.org/10.1007/978-3-540-85363-3_5
http://eccc.hpi-web.de/eccc-reports/1997/TR97-038/index.html
https://doi.org/10.1007/BFb0055806
https://doi.org/10.1007/978-1-4684-2001-2_9
https://arxiv.org/abs/2011.08447

Independent Sets in Semi-random Hypergraphs 541

18. Khanna, Y., Louis, A.: Planted models for the densest k-Subgraph problem. In: Saxena, N.,
Simon, S. (eds.) 40th IARCS Annual Conference on Foundations of Software Technology
and Theoretical Computer Science (FSTTCS 2020). Leibniz International Proceedings in
Informatics (LIPIcs), vol. 182, pp. 27:1–27:18. Schloss Dagstuhl-Leibniz-Zentrum für Infor-
matik, Dagstuhl, Germany (2020)

19. Khanna, Y., Louis, A., Paul, R.: Independent sets in semi-random hypergraphs (2021)
20. Kim, C., Bandeira, A.S., Goemans, M.X.: Stochastic block model for hypergraphs: statistical

limits and a semidefinite programming approach. CoRR abs/1807.02884 (2018). http://arxiv.
org/abs/1807.02884

21. Klamt, S., Haus, U.U., Theis, F.: Hypergraphs and cellular networks. PLoS Comput. Biol.
5(5), e1000385 6(2009)

22. Kolla, A., Makarychev, K., Makarychev, Y.: How to play unique games against a semi-
random adversary: study of semi-random models of unique games. In: 2011 IEEE 52nd
Annual Symposium on Foundations of Computer Science (2011)

23. Krivelevich, M., Nathaniel, R., Sudakov, B.: Approximating coloring and maximum inde-
pendent sets in 3-uniform hypergraphs. J. Algorithms 41(1), 99–113 (2001)

24. Lasserre, J.B.: Global optimization with polynomials and the problem of moments. SIAM J.
Optim. 11(3), 796–817 (2000)

25. Louis, A., Venkat, R.: Semi-random graphs with planted sparse vertex cuts: algorithms for
exact and approximate recovery. In: Chatzigiannakis, I., Kaklamanis, C., Marx, D., Sannella,
D. (eds.) 45th International Colloquium on Automata, Languages, and Programming, ICALP
2018, July 9–13 2018, Prague, Czech Republic. LIPIcs, vol. 107, pp. 101:1–101:15. Schloss
Dagstuhl - Leibniz-Zentrum für Informatik (2018)

26. Louis, A., Venkat, R.: Planted models for k-way edge and vertex expansion. In: 39th IARCS
Annual Conference on Foundations of Software Technology and Theoretical Computer Sci-
ence, LIPIcs. Leibniz Int. Proc. Inform., vol. 150, pp. Art. No. 23, 15. Schloss Dagstuhl.
Leibniz-Zent. Inform., Wadern (2019)

27. Makarychev, K., Makarychev, Y., Vijayaraghavan, A.: Approximation algorithms for semi-
random partitioning problems. In: Proceedings of the Forty-Fourth Annual ACM Symposium
on Theory of Computing, p. 367–384. STOC 2012, Association for Computing Machinery,
New York, NY, USA (2012)

28. Makarychev, K., Makarychev, Y., Vijayaraghavan, A.: Constant factor approximation for
balanced cut in the PIE model. In: STOC 2014–Proceedings of the 2014 ACM Symposium
on Theory of Computing, pp. 41–49. ACM, New York (2014)

29. Matula, D.: The largest clique in a random graph. Tech. rep., Department of Computer Sci-
ence, Southern Methodist University (1976). https://s2.smu.edu/∼matula/Tech-Report76.pdf

30. McKenzie, T., Mehta, H., Trevisan, L.: A new algorithm for the robust semi-random inde-
pendent set problem. In: Proceedings of the Fourteenth Annual ACM-SIAM Symposium on
Discrete Algorithms, p. 738–746 (2020)

31. Nesterov, Y.: Squared functional systems and optimization problems. In: High performance
optimization, Appl. Optim., vol. 33, pp. 405–440. Kluwer Acad. Publ., Dordrecht (2000)

32. Parrilo, P.A.: Semidefinite programming relaxations for semialgebraic problems. Math. Pro-
gram. 96(2), 293–320 (2003)

33. Rothvoß, T.: The lasserre hierarchy in approximation algorithms - Lecture Notes
for the MAPSP Tutorial (2013). https://sites.math.washington.edu/∼rothvoss/lecturenotes/
lasserresurvey.pdf

34. Shor, N.: An approach to obtaining global extremums in polynomial mathematical program-
ming problems. kibernetika, vol. 5, pp. 102–106 (1998). Nondifferentiable Optimization and
Polynomial Problems (1987)

35. Steinhardt, J.: Does robustness imply tractability? a lower bound for planted clique in the
semi-random model. Electron. Colloquium Comput. Complex. 24, 69 (2017)

http://arxiv.org/abs/1807.02884
http://arxiv.org/abs/1807.02884
https://s2.smu.edu/~matula/Tech-Report76.pdf
https://sites.math.washington.edu/~rothvoss/lecturenotes/lasserresurvey.pdf
https://sites.math.washington.edu/~rothvoss/lecturenotes/lasserresurvey.pdf

542 Y. Khanna et al.

36. Yan, G.: Finding common ground among experts’ opinions on data clustering: with applica-
tions in malware analysis. In: 2014 IEEE 30th International Conference on Data Engineering,
pp. 15–27 (2014)

37. Zhang, H., Song, L., Han, Z., Zhang, Y.: Hypergraph theory in wireless communication
networks. SpringerBriefs in Electrical and Computer Engineering, Springer, Cham (2018)

38. Zuckerman, D.: Linear degree extractors and the inapproximability of max clique and chro-
matic number. Theor. Comput. 3(6), 103–128 (2007)

A Query-Efficient Quantum Algorithm for
Maximum Matching on General Graphs

Shelby Kimmel1 and R. Teal Witter2(B)

1 Department of Computer Science, Middlebury College, Middlebury, USA
skimmel@middlebury.edu

2 Department of Computer Science and Engineering,
NYU Tandon School of Engineering, New York City, USA

rtealwitter@nyu.edu

Abstract. We design quantum algorithms for maximum matching.
Working in the query model, in both adjacency matrix and adjacency list
settings, we improve on the best known algorithms for general graphs,
matching previously obtained results for bipartite graphs. In particular,
for a graph with n vertices and m edges, our algorithm makes O(n7/4)
queries in the matrix model and O(n3/4(m + n)1/2) queries in the list
model. Our approach combines Gabow’s classical maximum matching
algorithm [Gabow, Fundamenta Informaticae, ’17] with the guessing tree
method of Beigi and Taghavi [Beigi and Taghavi, Quantum, ’20].

Keywords: Maximum matching · Quantum algorithm

1 Introduction

A matching is a set of non-adjacent edges in an undirected graph. In the maxi-
mum matching problem, one tries to find the matching with the largest number
of edges. Finding the maximum matching in a graph is a problem that is both of
fundamental and practical importance. Its practical applications range from kid-
ney exchange to scheduling to characterizing chemical structures [7,14,17]. As
a fundamental problem, it has stimulated a string of algorithmic developments,
such as the use of blossoms and dual variables [6], which have been useful in
the development of a broad range of algorithms. Additionally, maximum match-
ing in general (bipartite and non-bipartite) graphs is notable for the difficulty
researchers have had in finding a simple and correct algorithm for this seemingly
straightforward problem [8,15].

We study maximum matching in the query setting: We are given a graph
G as an adjacency matrix or adjacency list and the goal is to find a maximum
matching with as few queries as possible. A query in the matrix model takes the
form, “Do vertices x and y share an edge?” A query in the list model takes the
form, “What is the ith vertex adjacent to vertex x?”

The best classical algorithms for maximum matching solve the problem in
O(m

√
n) time for both bipartite and general graphs [8,9,15,18]. The query com-

plexity of these classical algorithms is the trivial O(n2) in the matrix model and
c© Springer Nature Switzerland AG 2021
A. Lubiw et al. (Eds.): WADS 2021, LNCS 12808, pp. 543–555, 2021.
https://doi.org/10.1007/978-3-030-83508-8_39

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-83508-8_39&domain=pdf
https://doi.org/10.1007/978-3-030-83508-8_39

544 S. Kimmel and R. T. Witter

O(m) in the list model. In fact, using an adversarial argument, it is easy to see
that any classical algorithm must query all pairs of vertices or all edges to find
a maximum matching in the worst case.

Using quantum computers, however, we can do better. Lin and Lin found
a quantum algorithm that solves maximum matching on a bipartite graph in
O(n7/4) queries in the matrix model [13]. Beigi and Taghavi created an algorithm
that uses O(n3/4

√
m + n) queries in the list model for bipartite graphs [3], which

in the worst case when m = Ω(n2), matches the result of Lin and Lin. Both
results use the guessing tree method: Lin and Lin introduced the method for
functions with binary input and Beigi and Taghavi generalized it to functions
with non-binary input.

Our contribution is a quantum maximum matching algorithm for general
graphs that uses O(n7/4) queries in the matrix model and O(n3/4

√
m + n) in the

list model, matching the prior results for bipartite graphs. We combine two pow-
erful techniques to obtain our result: Beigi and Taghavi’s guessing tree method
and Gabow’s relatively simple algorithm for maximum matching [3,8]. The key
technical issues in combining these two approaches are a careful accounting of
which steps of the classical algorithm actually require queries, slight modifica-
tions to the classical algorithm that help us bound the number of queries, and
a well-chosen definition of the guessing scheme for the decision tree used in the
guessing tree method.

The previous best known quantum algorithms for maximum matching on
general graphs ran in trivial query complexity. Ambainis and Špalek designed
algorithms for general maximum matching that run in O(n5/2 log n) time in the
matrix model and O(n2(

√
m/n + log n) log n) time in the list model [2]. Dörn

found an algorithm for general maximum matching that runs in O(n2 log2 n)
time in the matrix model and O(n

√
m log2 n) time in the list model [5].

While our result unifies the cases of bipartite and general graphs, there
remains a gap between our upper bound and the best known lower bound.
Berzina et al. and Zhang found a lower bound for maximum matching of
O(n3/2) [4,19]. Interestingly, Zhang proved that Ambainis techniques (one of
the most useful methods for finding quantum lower bounds) cannot improve the
current lower bound [1,19].

1.1 Graph Theory

Given an undirected graph G, we denote by V (G) the set of vertices and E(G)
be the set of edges of G. Call n = |V (G)| the number of vertices in a graph and
m = |E(G)| the number of edges. We represent an edge between vertices x and
y as xy.

We denote the symmetric difference of two graphs G1 and G2 as G1 ⊕ G2.
Then V (G1 ⊕ G2) is V (G1) ∪ V (G2) and xy ∈ E(G1 ⊕ G2) if and only if xy ∈
E(G1) but xy /∈ E(G2) or xy ∈ E(G2) but xy /∈ E(G1). We may think of the
symmetric difference as the graph equivalent of addition modulo 2.

A matching M is a set of non-adjacent edges of G. That is, if xy is in M ,
then there is no other edge connected to x or y in M . The solid edges in Fig. 1

Quantum Maximum Matching 545

form a matching. A maximum matching on G is a matching with the most edges
of any matching on G. We call a vertex a free vertex if it is not on any edge in
matching M , while if a vertex is not free we called it matched. A matched edge
is in a matching while an unmatched edge is not.

A blossom is a cycle of length 2k + 1 with k matched edges and k + 1
unmatched edges. The edges alternate between matched and unmatched edges
with the exception of the two edges connected to the root of the blossom. In
Fig. 1, the blossom has 2(2)+ 1 = 5 edges and the root is the vertex in the cycle
closest to the left free vertex.

Fig. 1. Example graph with a matching where the solid lines are edges in the matching
and the dotted lines are edges not in the matching but in the underlying graph. The
free vertices are squares, the outer vertices (excluding the free vertices) are filled circles,
and the inner vertices are hollow circles.

An augmenting path is a set of edges between two free vertices that alter-
nates between matched and unmatched edges. In Fig. 1, the horizontal edges
connecting the two free vertices (represented as squares) is not an augmenting
path because there are two consecutive unmatched edges. A sap (shortest aug-
menting path) is an augmenting path with the fewest edges of any augmenting
path. In Fig. 1, the augmenting path along the blossom between the free ver-
tices forms a sap. We call a vertex inner with respect to an augmenting path
if it is closer than its matched pair (the vertex with which it shares a matched
edge) to the closest free vertex. Here ‘closeness’ is measured by the number of
edges on the augmenting path between the vertex in question and the closest
free vertex. Inner vertices are illustrated in Fig. 1 as hollow circles. All other
vertices—including free vertices, all vertices on a blossom, and vertices adjacent
to an edge equidistant between two free vertices—are outer. Whether a vertex is
inner or outer may change as the augmenting paths grow: An inner vertex can
become outer (e.g. if it becomes part of a blossom) but an outer vertex cannot
become inner.

Notice that we can use the partial matching and sap in Fig. 1 to get a larger
(in this case maximum) matching. We simply take the symmetric difference of
the partial matching and augmenting path. That is, we include every unmatched
edge (since it is in augmenting path but not the partial matching) and remove
every matched edge (since it is in both the augmenting path and the partial
matching). The result is a larger matching where each vertex with an edge in

546 S. Kimmel and R. T. Witter

the partial matching has an edge in the larger matching and the previously free
vertices also have matched edges.

1.2 Query Complexity

In both the list and matrix models, we learn the edges of G by querying (i.e.
evaluating at various inputs) a function. We assume that G is a subgraph of
the complete graph of n vertices, labeled by elements of [n] = {0, 1, . . . , n − 1},
where we do not know which edges of the complete graph are part of G and
which are not.1 Then in the case of the adjacency matrix, we have a function
EM : [n] × [n] → {0, 1}, where EM (x, y) = 1 if and only if the edge xy ∈ E(G).

In the case of the adjacency list, we have a function EL : [n] × [n] → [n] ∪
{null} where

EL(x, i) =

{
y if y is the ith neighbor of x

null if u has less than i neighbors
.

Given access to one of these functions, the classical bounded error query
complexity of maximum matching is the number of times we must evaluate the
function in order to find a maximum matching with high probability.

In the quantum model, we are given access to unitaries called oracles that
encode the information of the functions EM and EL. In the adjacency matrix
model, we have access to an oracle OM that acts on the Hilbert space Cn×C

n×C
2

such that for an edge e = xy, and b ∈ {0, 1}, OM |e〉|b〉 = |e〉|b ⊕ EM (e)〉, where
addition is modulo 2. In the adjacency list model, we have access to an oracle
OL that acts on the Hilbert space C

n × C
n × C

n+1, where for a vertex x, index
i, and j ∈ [n + 1], acts as OL|x, i〉|j〉 = |x, i〉|j ⊕ EL(x, i)〉, where addition is
modulo n + 1.

Given access to one of these oracles, the quantum bounded error query com-
plexity of maximum matching is the number of times we must apply the oracle
(as part of a quantum algorithm) in order to find a maximum matching with
high probability.

Given a classical query algorithm, one can create a decision tree that describes
the sequence and outcomes of queries that are made throughout the algorithm.
Each non-leaf vertex in the tree represents a query, and the outgoing edges from
a vertex represent possible outcomes of the query. Sets of query outcomes may
be grouped into a single edge (provided future decisions made by the algorithm
are independent of which particular query outcome within the set occurred).
Given such a decision tree, one can create a guessing scheme. A guessing scheme
is a labeling of edges such that exactly one outgoing edge from each vertex is
labelled as the guess. If the outcome of a query matches the guess, we say that
the guessing scheme correctly guessed the outcome of that query. Otherwise, we
say it was an incorrect guess.

1 One can easily extend to the case that G is a subgraph of a multigraph; we consider
complete graphs only for simplicity.

Quantum Maximum Matching 547

Given such a decision tree and guessing algorithm, it is possible to design a
quantum algorithm:

Theorem 1. (Guessing Tree [3]). For positive integers k, �, and m, let f :
Df → [k] be a function with Df ⊆ [�]m. Let T be a decision tree for f with a
guessing scheme and let T be the depth of T . Define I as the maximum number
of incorrect guesses in any path from the root to a leaf of T . Then the bounded
error quantum query complexity of evaluating f is upper bounded by O(

√
TI).

The quantum space complexity is O(m).

See Beigi and Taghavi [3] for extensive applications of Theorem 1. Observe
that the size of the image of the function f does not affect the query complexity
or space complexity of the quantum algorithm that evaluates it. We use this fact
to specify the maximum matching (all O(n) edges) in the leaves of our decision
tree.

2 Result

We use Gabow’s algorithm to find a maximum matching in graph G. Gabow’s
algorithm runs in two phases. (The high level pseudocode is in Listing 21.) In the
first phase, the algorithm finds all the edges in G that are on saps. In the second
phase, the algorithm finds disjoint saps that are used to augment the partial
matching. Since a maximal set of disjoint saps are found in each iteration, there
are at most O(

√
n) iterations [9].

Listing 21. Gabow’s Algorithm [8]

1 M ← ∅ /∗ M i s the cur rent p a r t i a l matching ∗/
2 loop

3 /∗ Phase 1 ∗/
4 f o r every pa i r o f v e r t i c e s x, y do

5 i f xy ∈ M then w(x, y) ← 2 e l s e w(x, y) ← 0

6 L i s t i n g 2/3 (matrix / l i s t model) to f i nd pa i r s o f v e r t i c e s on saps

7 i f no augmenting path i s found then

8 break /∗ M has maximum ca r d i n a l i t y ∗/
9

10 /∗ Phase 2 ∗/
11 L i s t i n g 4/5 (matrix / l i s t) to c r e a t e maximal s e t o f d i s j o i n t saps P

12 augment M by the paths o f P

The key idea behind the algorithm is the use of dual variables associated with
each vertex, and which we denote using a function d : V → Z. Each dual variable
is initialized to 1. A pair of vertices is tight if the sum of the dual variables d(x)
and d(y) is w(x, y). Recall from Listing 21 that w(x, y) is 2 if xy is a matched
edge and 0 otherwise. Intuitively, a pair of vertices is tight only if their shared
edge could be part of a sap [8].

We use Gabow’s maximum matching algorithm to construct a decision tree
that finds a maximum matching. To apply Theorem1 to the decision tree, we
must design a guessing scheme. In the matrix model, we always guess that the
edge we are querying is not present.

548 S. Kimmel and R. T. Witter

In the list model, when we are querying the ith vertex adjacent to x (call it
y), our guess depends on the phase of the algorithm. In the first phase, we guess
that x and y do not fit either of the following criteria:

– x and y are tight, x and y are not from the same blossom, and y has not yet
been found (i.e. added to S, see Listing 23), or

– x and y are tight, x and y are not from the same blossom, and y is outer.

In the second phase, we guess that x and y do not fit either of the following
criteria:

– x and y are tight, x and y do not share a matched edge, and y has not yet
been found (i.e. added to S′, see Listing 25), or

– x and y are tight, x and y do not share a matched edge, and x and y form a
blossom.

If our query to the list returns null, that is, we have reached the end of a vertex’s
adjacency list, we say that our guess is incorrect.

In the list model, while there might be multiple outcomes of a single query
that satisfy the correct guess conditions, we will see that the subsequent behavior
of the algorithm is the same, so we group all such correct outcomes into a single
edge in our decision tree, as described in Sect. 1.2.

Applying the above guessing scheme to Gabow’s algorithm, we prove our
main result:

Theorem 2. Given a graph G with m edges and n vertices, there is a bounded
error quantum algorithm that finds a maximum matching in O(n7/4) queries in
the matrix model and O(n3/4

√
m + n) queries in the list model.

In the remainder of this section, we explain enough of Gabow’s algorithm
to analyze the performance of the quantum algorithm and to prove Theorem2.
However, we do not address the correctness of Gabow’s algorithm or provide suf-
ficient details to understand why the algorithm is correct. Instead, we encourage
interested readers to peruse Gabow’s paper [8].

The choice to not make this paper self-contained is intentional: including the
full details of Gabow’s algorithm would double the length of this work without
adding any novel contributions.

2.1 Breadth-First Search Subroutine

The first phase of Gabow’s algorithm is a simplified search based on Edmonds’
algorithm that explores G breadth-first [6]. The goal is to identify all the edges
that are on saps. For this purpose, the algorithm maintains a subgraph S of
G with the vertices and edges that have been explored. Initially, S consists of
only free vertices. As the algorithm progresses, edges and vertices are added.
We call the set of edges and vertices connected to a free vertex a search tree.
The algorithm terminates once two search trees become connected i.e. there is
an augmenting path from one free vertex to another.

Quantum Maximum Matching 549

The algorithm also maintains a record of the blossom that contains x, denoted
by Bx. We initially set Bx = x since every vertex is a trivial blossom and redefine
Bx when merging blossoms. When all tight pairs of vertices have been checked
and no sap has been found, the dual variables are adjusted to find new tight pairs
of vertices. If the dual variables cannot be adjusted, there are no augmenting
paths and the partial matching is maximum.

The execution of the simplified search based on Edmonds’ algorithm depends
on the data structure of the input graph. In the case of the matrix model
described in Listing 22, we first identify vertices x and y that fit the criteria
on Line 4. We then query the edge xy only if x and y satisfy either the if-
statement on Line 5 or the if-statement on Line 8. If we reach neither Line 6 nor
Line 9 then no query is made in that iteration. If we make a query on Line 6 or
Line 9 and the edge is not present, our guess is correct. In order to bound the
number of incorrect guesses, we bound the number of times we reach Line 7 and
Line 10 which happens only if xy is present and is in the grow, blossom, or sap
case.

Listing 22. Simplified Search based on Edmonds’ Algorithm in the Matrix Model [8]

1 f o r every ver tex x do d(x) ← 1

2 make every f r e e ver tex outer and add to V (S)

3 loop

4 i f ∃ t i g h t pa i r x, y with x outer , Bx 	= By then

5 i f y /∈ V (S) then /∗ grow step ∗/
6 i f xy ∈ E(G) /∗ query ∗/ then

7 add xy, yy′ to S where yy′ ∈ M

8 e l s e i f y i s outer then

9 i f xy ∈ E(G) /∗ query ∗/ then

10 i f x and y in the same search t r e e then

11 /∗ blossom step ∗/
12 merge a l l blossoms in fundamental c y c l e o f xy

13 e l s e /∗ xy forms a sap ∗/
14 return /∗ cont inue in L i s t i n g 1 ∗/
15 e l s e

16 dual adjustment step

17 /∗ no que r i e s are made , s ee Gabow Figure 2 f o r d e t a i l s ∗/

In the case of the list model described in Listing 23, we query from an outer
vertex x and find some adjacent vertex y. If x and y are not tight, x and y are not
from the same blossom or neither of the criteria on Lines 9 and 11 apply, then
our guess is correct. We bound the number of incorrect guesses by the number
of times we reach Lines 7, 10, and 12, which happens only if we have reached
the end of x’s neighbors or x and y are in the grow, blossom, or sap case.

Observe that we can group the correct guesses in the list model into a single
edge in the decision tree because the algorithm’s behavior is the same in every
case: continue to query neighbors of x.

Lemma 1. The simplified search of Edmonds’ algorithm makes at most O(n)
incorrect guesses in a single call.

Proof. As discussed above, in both the matrix and list models, a guess is incorrect
only if we are in the grow, blossom, or sap case (or in the list model at the end

550 S. Kimmel and R. T. Witter

of a list). Therefore we bound the number of incorrect guesses by the number
of times we can reach each case. In the grow case where y /∈ S, we add both
y and y′ to S, where yy′ is in the current partial matching M . Since this case
only occurs when a vertex y is not in S, and there are at most n vertices in the
graph, this case can trigger at most n incorrect guesses.

In the blossom case where x and y are in the same search tree, we have
merged at least two blossoms. Each vertex is initially a blossom so we start with
a total of n blossoms. Each time we merge two or more blossoms, we reduce the
number of blossoms by at least one. Therefore we can merge blossoms at most
n times, and so we can only make n incorrect guesses in this case.

In the case where xy completes a sap, we halt the algorithm and so this may
happen at most once per call. In the list model, we can reach the end of a list
at most n times so the number of incorrect guesses due to null outcomes is
bounded by n.

Listing 23. Simplified Search based on Edmonds’ Algorithm in the List Model

1 f o r every ver tex x do d(x) ← 1

2 make every f r e e ver tex outer and add to V (S)

3 loop

4 f o r every outer ver tex x do

5 f o r every ver tex y adjacent to x do

6 i f y i s nu l l then /∗ end o f l i s t ∗/
7 break /∗ go to next x ∗/
8 e l s e i f x and y are t i gh t and Bx 	= By then

9 i f y /∈ V (S) then /∗ grow step ∗/
10 add xy, yy′ to S where yy′ ∈ M

11 e l s e i f y i s outer then

12 i f x and y in the same search t r e e then

13 /∗ blossom step ∗/
14 merge a l l blossoms in fundamental c y c l e o f xy

15 e l s e /∗ xy forms a sap ∗/
16 return /∗ cont inue in L i s t i n g 1 ∗/
17 dual adjustment step

18 /∗ no que r i e s are made , s ee Gabow Fig . 2 f o r d e t a i l s ∗/

2.2 Depth-First Search Subroutine

In the second phase of the algorithm—the path-preserving depth-first search—
we identify disjoint saps. We define a subgraph H of the complete graph which
we initialize with the edges between every pair of tight vertices in S. (While
many edges in H were queried in the breadth-first subroutine, not all were; in
particular, most edges between search trees have not yet been queried.) The
algorithm explores H from each free vertex in order to find another free vertex.

Quantum Maximum Matching 551

Listing 24. Path-Preserving Depth-First Search in the Matrix Model [8]

1 i n i t i a l i z e P to an empty s e t

2 f o r each f r e e ver tex f do

3 i f f /∈ V (P) then

4 i n i t i a l i z e S′ to an empty graph

5 add f to S′ as the root o f a new search t r e e

6 find ap(f)

7

8 procedure find ap(x : /∗ x i s an outer ver tex ∗/
9 f o r each edge xy ∈ E(H) \ M do

10 i f y /∈ V (S′) then

11 i f xy ∈ E(G) /∗ query ∗/ then

12 i f y i s f r e e then /∗ y completes a sap ∗/
13 add xy to S′ and sap to P

14 terminate a l l cur rent r e c u r s i v e c a l l s to find ap

15 remove a l l edges o f sap from H

16 r e c u r s i v e l y remove a l l dang l ing edges from H

17 e l s e /∗ grow step ∗/
18 add xy, yy′ to S′ where yy′ ∈ M

19 find ap(y′)
20 /∗ a c c e s s i b l e only i f y′ i s not on a sap ∗/
21 remove y and y′ from H

22 e l s e

23 remove xy from H

24 r e c u r s i v e l y remove a l l dang l ing edges from H

25 e l s e i f blossom found then

26 i f xy ∈ E(G) /∗ query ∗/ then

27 blossom procedure /∗ s ee Gabow Fig . 4 f o r d e t a i l s ∗/
28 /∗ c a l l s find ap(x) from each ver tex x in blossom ∗/
29 e l s e

30 remove xy from H

31 r e c u r s i v e l y remove a l l dang l ing edges from H

While H contains edges on saps, one edge can be on more than one sap. This
is a problem, as we need disjoint saps in order to augment the partial matching.
To account for this, using recursive calls, the depth-first search explores H from
a single free vertex and forms a new subgraph S′ of visited vertices along the way.
Once another free vertex is found from the starting free vertex, the algorithm
processes the sap and terminates all current calls, disallowing edges of the present
sap from being used in future saps and reinitializing S′. Then another call is made
from a new free vertex. If the algorithm identifies a vertex on a blossom that has
already been explored, new recursive calls are initiated from each vertex on the
blossom.

We maintain the property that all edges in H are on as yet unidentified saps
by deleting edges and vertices in several cases: When we find a sap, we remove
all the edges and vertices along it. Thus no remaining sap in H can share an edge
with one that was already found. When we query an edge that is not present,
we remove it from H. When the recursive call does not find a sap containing
vertex x, we remove x and its adjacent edges. After deletions, some dangling
edges may remain in H. A dangling edge has an adjacent vertex with degree one
(as a result of a deletion) that is not a free vertex. We remove dangling edges
from H by recursively deleting the edge and adjacent vertex with degree one in
addition to resulting dangling edges.

552 S. Kimmel and R. T. Witter

Listing 25. Path-Preserving Depth-First Search in the List Model

1 i n i t i a l i z e P to an empty s e t

2 f o r each f r e e ver tex f do

3 i f f /∈ V (P) then

4 i n i t i a l i z e S′ to an empty graph

5 add f to S′ as the root o f a new search t r e e

6 find ap(f)

7

8 procedure find ap(x) : /∗ x i s an outer ver tex ∗/
9 f o r every ver tex y adjacent to x do

10 i f y i s nu l l then /∗ end o f l i s t ∗/
11 break /∗ go to o r i g i n o f cur rent c a l l to find ap ∗/
12 e l s e i f xy ∈ E(H) \ M then

13 i f y /∈ V (S′) then

14 i f y i s f r e e then /∗ y completes a sap ∗/
15 add xy to S′ and sap to P

16 terminate a l l cur rent r e c u r s i v e c a l l s to find ap

17 remove a l l edges o f sap from H

18 r e c u r s i v e l y remove a l l dang l ing edges from H

19 e l s e /∗ grow step ∗/
20 add xy, yy′ to S′ where yy′ ∈ M

21 find ap(y′)
22 /∗ a c c e s s i b l e only i f y′ i s not on a sap ∗/
23 remove y and y′ from H

24 e l s e i f blossom found then

25 blossom procedure /∗ s ee Gabow Figure 4 f o r d e t a i l s ∗/
26 /∗ c a l l s find ap(x) from each ver tex x in blossom ∗/

Gabow’s original version of the path-preserving depth-first search does not
need to maintain the property that all edges in H are on as yet unidentified
saps since other edges can be weeded out through the course of the algorithm.
Since our goal is to bound costly “incorrect” queries, we cannot afford to wait
to remove these edges and must preemptively do so. We need to ensure that this
modification does not affect the correctness of the algorithm, but it is easy to
see that the edges we remove from H (described in the previous paragraph) can
not be part of any as yet undiscovered disjoint saps. Since the purpose of this
subroutine is to discover a set of disjoint saps, this modification does not affect
the correctness of this phase. This change might affect the runtime, but as we
are concerned with query complexity rather than time complexity, we will not
further analyze the runtime consequences.

The path-preserving depth-first search depends on the data structure of the
input graph. In the case of the matrix model described in Listing 24, we identify
vertices x and y that fit the criteria on Line 9 and either Line 10 or Line 25. We
then query the edge xy on Line 11 or Line 26. If the edge is not present, our
guess is correct. In order to bound the number of incorrect guesses, we bound
the number of times we reach Line 12 and Line 27, which happens only if xy is
present and completes a sap, triggers a grow step, or forms a blossom.

In the case of the list model described in Listing 25, we query from outer
vertex x and find some adjacent vertex y. If x and y are not tight, x and y share
a matched edge, or neither of the criteria on Lines 13 and 24 apply, then our
guess is correct. While there might be multiple query outcomes that count as

Quantum Maximum Matching 553

correct, the algorithm behaves the same in each case: continue to query the next
neighbor of x. In order to bound the number of incorrect guesses, we bound the
number of times we reach Lines 11, 13, and 25, which happens only if we have
reached the end of x’s neighbors or x and y complete a sap, trigger a grow step,
or form a blossom.

Lemma 2. The path-preserving depth-first search makes at most O(n) incorrect
guesses in a single call.

Proof. In both the matrix and list models, a guess is incorrect only if we are
in the sap, grow, or blossom case. Therefore we bound the number of incorrect
guesses by the number of times we can reach each case. If y is a free vertex, we
have found a sap and immediately remove x and y from H since they lie on a
sap we have found. Thus we can bound the number of incorrect guesses in this
case by the number of free vertices which is in turn bounded by n.

If y is not a free vertex, y may either be on a sap or not. Note that since xy
is tight, it could be on a sap but if another edge further on the potential sap is
not present or the potential sap overlaps with a sap already in P we say that y
is not on a sap.

If y is not a free vertex and is on a sap, we remove x and y from H once the
sap is found. Observe that there is a one-to-one correspondence between the edge
xy and the vertex y. That is, since y is now in S′, we will not process another
edge zy for some vertex z. It follows that the number of incorrect guesses in this
case is bounded by the number of vertices n.

If y is not a free vertex and is not on a sap, we will return from the call and
remove y and y′ from H (see Line 21 in Listing 24, Line 23 in Listing 25). We
can safely remove these vertices because y′ is not on a sap and for y to be on a
sap, there would be two consecutive unmatched edges which is a contradiction.
Then the number of incorrect guesses in this case is bounded by the number of
vertices we can remove which is n.

If x and y form a blossom then we can bound the number of incorrect guesses
by the number of times blossoms can be merged which is in turn bounded by
n, the number of blossoms initially present. In the list model, we can reach the
end of a list at most n times so the number of incorrect guesses due to null
outcomes is bounded by n.

We now combine the two lemmas to prove our main result.

Proof (of Theorem 2). The guessing scheme is described above the statement of
Theorem 2. We create a decision tree using Listing 21. The depth of the decision
tree is the total number of queries we would need to make to learn the graph
G. In the matrix model, this is n2. In the list model, this is m + n because we
need to check each vertex and all the edges in its adjacency list. We can ensure
this bound by keeping a classical record of our queries and query outcomes and,
before querying the oracle, checking whether we have made this query before.
By Lemma 1, Lemma 2, and the O(

√
n) bound on the number of iterations, the

number of incorrect guesses is bounded by O(n
√

n). Then Theorem 2 follows
from Theorem 1.

554 S. Kimmel and R. T. Witter

3 Conclusion

We used a classical maximum matching algorithm and the guessing tree method
to give a O(n7/4) query bound in the matrix model and O(n3/4

√
m + n) query

bound in the list model for maximum matching on quantum computers and
general graphs. Our result narrows the gap between the previous trivial upper
bounds of O(n2) and O(m) and the quantum query complexity lower bound of
O(n3/2). An important open problem is to determine whether this algorithm is
optimal. Progress on this question could be made by improving the lower bound,
perhaps using the general adversary bound [10].

Another open problem is to bound the time complexity of the guessing tree
method. Such a result would then allow us to compare the maximum match-
ing algorithm described in this paper to existing quantum maximum matching
algorithms that aim to minimize time complexity rather than query complex-
ity. The time complexity of implementing the guessing tree method is currently
unknown. The guessing tree algorithm is based on the dual adversary bound [3],
and the quantum algorithm that results is an alternating sequence of input-
dependent and input-independent unitaries, at least in the binary case [12,16].
While the input-dependent unitary is simply the oracle and may be applied in
constant time, the time complexity of the input-independent unitary depends on
finding an efficient implementation of a quantum walk on the decision tree. The
guessing tree algorithm is similar to the st-connectivity span program algorithm,
for which a relationship between query and time complexity is known [11]. The
scaling between time and query complexity in that algorithm depends on the
time complexity of implementing a quantum walk on the decision tree and on
the spectral gap of the normalized Laplacian of the decision tree. It would be
interesting if a similar relationship holds for the guessing tree algorithm, and if
so, how it applies to the specific case of maximum matching.

References

1. Ambainis, A.: Quantum lower bounds by quntum arguments. J. Comput. Syst.
Sci. 64(4), 750–767 (2002). https://doi.org/10.1006/jcss.2002.1826, http://www.
sciencedirect.com/science/article/pii/S002200000291826X

2. Ambainis, A., Špalek, R.: Quantum algorithms for matching and network flows.
In: Durand, B., Thomas, W. (eds.) STACS 2006. LNCS, vol. 3884, pp. 172–183.
Springer, Heidelberg (2006). https://doi.org/10.1007/11672142 13

3. Beigi, S., Taghavi, L.: Quantum speedup based on classical decision trees. Quan-
tum 4, 241 (2020). https://doi.org/10.22331/q-2020-03-02-241, https://quantum-
journal.org/papers/q-2020-03-02-241/, publisher: Verein zur Förderung des Open
Access Publizierens in den Quantenwissenschaften

4. Berzina, A., Dubrovsky, A., Freivalds, R., Lace, L., Scegulnaja, O.: Quantum
query complexity for some graph problems. In: Van Emde Boas, P., Pokorný, J.,
Bieliková, M., Štuller, J. (eds.) SOFSEM 2004. LNCS, vol. 2932, pp. 140–150.
Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-24618-3 11

5. Dörn, S.: Quantum algorithms for matching problems. Theor. Comput. Syst. 45,
613–628 (2009). https://doi.org/10.1007/s00224-008-9118-x

https://doi.org/10.1006/jcss.2002.1826
http://www.sciencedirect.com/science/article/pii/S002200000291826X
http://www.sciencedirect.com/science/article/pii/S002200000291826X
https://doi.org/10.1007/11672142_13
https://doi.org/10.22331/q-2020-03-02-241
https://quantum-journal.org/papers/q-2020-03-02-241/
https://quantum-journal.org/papers/q-2020-03-02-241/
https://doi.org/10.1007/978-3-540-24618-3_11
https://doi.org/10.1007/s00224-008-9118-x

Quantum Maximum Matching 555

6. Edmonds, J.: Paths, trees, and flowers. Can. J. Math. 17, 449–467 (1965).
https://doi.org/10.4153/CJM-1965-045-4, https://www.cambridge.org/core/
journals/canadian-journal-of-mathematics/article/paths-trees-and-flowers/
08B492B72322C4130AE800C0610E0E21

7. Fujii, M., Kasami, T., Ninomiya, K.: Optimal sequencing of two equivalent proces-
sors. SIAM J. Appl. Math. 17(4), 784–789 (1969). https://www.jstor.org/stable/
2099319

8. Gabow, H.N.: The weighted matching approach to maximum cardinal-
ity matching. Fundamenta Informaticae 154(1–4), 109–130 (2017). https://
doi.org/10.3233/FI-2017-1555, https://content.iospress.com/articles/fundamenta-
informaticae/fi1555, publisher: IOS Press

9. Hopcroft, J.E., Karp, R.M.: An n∧(5/2) algorithm for maximum matchings
in bipartite graphs. SIAM J. Comput. Philadelphia 2(4), 7 (1973). http://
dx.doi.org.ezproxy.middlebury.edu/10.1137/0202019, http://search.proquest.com/
docview/919736551/abstract/79AD5CB7D4BA4C4EPQ/1, num Pages: 7 Place:
Philadelphia, United States, Philadelphia Publisher: Society for Industrial and
Applied Mathematics

10. Hoyer, P., Lee, T., Spalek, R.: Negative weights make adversaries stronger. In: Pro-
ceedings of the Thirty-Ninth Annual ACM Symposium on Theory of Computing,
pp. 526–535. STOC 2007, Association for Computing Machinery, San Diego, Cali-
fornia, USA (2007). https://doi.org/10.1145/1250790.1250867, https://doi.org/10.
1145/1250790.1250867

11. Jeffery, S., Kimmel, S.: Quantum algorithms for graph connectivity and for-
mula evaluation. Quantum 1, 26 (2017). https://doi.org/10.22331/q-2017-08-17-
26, https://quantum-journal.org/papers/q-2017-08-17-26/

12. Lee, T., Mittal, R., Reichardt, B.W., Spalek, R., Szegedy, M.: Quantum query
complexity of state conversion. In: 2011 IEEE 52nd Annual Symposium on Foun-
dations of Computer Science, pp. 344–353 (2011). https://doi.org/10.1109/FOCS.
2011.75, http://arxiv.org/abs/1011.3020, arXiv: 1011.3020

13. Lin, C., Lin, H.H.: Upper bounds on quantum query complexity inspired by the
Elitzur-Vaidman bomb tester. Theor. Comput. 12(18), 1–35 (2016). https://doi.
org/10.4086/toc.2016.v012a018

14. May, J.W.: Cheminformatics for genome-scale metabolic reconstructions. Ph.D.
Thesis, Cambridge University (2015). https://doi.org/10.17863/CAM.15987

15. Micali, S., Vazirani, V.V.: An O(sqrt(—v—)—E—) algorithm for finding max-
imum matching in general graphs. In: 21st Annual Symposium on Foundations
of Computer Science (sfcs 1980), pp. 17–27 (Oct 1980). https://doi.org/10.1109/
SFCS.1980.12, ISSN: 0272-5428

16. Reichardt, B.W.: Span programs and quantum query complexity: the general
adversary bound is nearly tight for every boolean function. In: 2009 50th
Annual IEEE Symposium on Foundations of Computer Science, pp. 544–551
(2009). https://doi.org/10.1109/FOCS.2009.55, http://arxiv.org/abs/0904.2759,
arXiv: 0904.2759

17. Roth, A.E., Sonmez, T., Unver, M.U.: Pairwise Kidney Exchange. J. Econ.
Theor. 125(2), 151–188 (2005). https://www.hbs.edu/faculty/Pages/item.aspx?
num=19520

18. Vazirani, V.V.: A simplification of the MV matching algorithm and its proof.
arXiv:1210.4594 [cs] (2013). http://arxiv.org/abs/1210.4594, arXiv: 1210.4594

19. Zhang, S.: On the power of ambainis lower bounds. Theor. Comput. Sci.
339(2), 241–256 (2005). https://doi.org/10.1016/j.tcs.2005.01.019, http://www.
sciencedirect.com/science/article/pii/S0304397505001234

https://doi.org/10.4153/CJM-1965-045-4
https://www.cambridge.org/core/journals/canadian-journal-of-mathematics/article/paths-trees-and-flowers/08B492B72322C4130AE800C0610E0E21
https://www.cambridge.org/core/journals/canadian-journal-of-mathematics/article/paths-trees-and-flowers/08B492B72322C4130AE800C0610E0E21
https://www.cambridge.org/core/journals/canadian-journal-of-mathematics/article/paths-trees-and-flowers/08B492B72322C4130AE800C0610E0E21
https://www.jstor.org/stable/2099319
https://www.jstor.org/stable/2099319
https://doi.org/10.3233/FI-2017-1555
https://doi.org/10.3233/FI-2017-1555
https://content.iospress.com/articles/fundamenta-informaticae/fi1555
https://content.iospress.com/articles/fundamenta-informaticae/fi1555
http://dx.doi.org.ezproxy.middlebury.edu/10.1137/0202019
http://dx.doi.org.ezproxy.middlebury.edu/10.1137/0202019
http://search.proquest.com/docview/919736551/abstract/79AD5CB7D4BA4C4EPQ/1
http://search.proquest.com/docview/919736551/abstract/79AD5CB7D4BA4C4EPQ/1
https://doi.org/10.1145/1250790.1250867
https://doi.org/10.1145/1250790.1250867
https://doi.org/10.1145/1250790.1250867
https://doi.org/10.22331/q-2017-08-17-26
https://doi.org/10.22331/q-2017-08-17-26
https://quantum-journal.org/papers/q-2017-08-17-26/
https://doi.org/10.1109/FOCS.2011.75
https://doi.org/10.1109/FOCS.2011.75
http://arxiv.org/abs/1011.3020
http://arxiv.org/abs/1011.3020
https://doi.org/10.4086/toc.2016.v012a018
https://doi.org/10.4086/toc.2016.v012a018
https://doi.org/10.17863/CAM.15987
https://doi.org/10.1109/SFCS.1980.12
https://doi.org/10.1109/SFCS.1980.12
https://doi.org/10.1109/FOCS.2009.55
http://arxiv.org/abs/0904.2759
http://arxiv.org/abs/0904.2759
https://www.hbs.edu/faculty/Pages/item.aspx?num=19520
https://www.hbs.edu/faculty/Pages/item.aspx?num=19520
http://arxiv.org/abs/1210.4594
http://arxiv.org/abs/1210.4594
http://arxiv.org/abs/1210.4594
https://doi.org/10.1016/j.tcs.2005.01.019
http://www.sciencedirect.com/science/article/pii/S0304397505001234
http://www.sciencedirect.com/science/article/pii/S0304397505001234

Support Optimality and Adaptive Cuckoo
Filters

Tsvi Kopelowitz1, Samuel McCauley2(B), and Ely Porat1

1 Bar-Ilan University, Ramat Gan, Israel
porately@cs.biu.ac.il

2 Williams College, Williamstown, MA 01267, USA
srm2@williams.edu

Abstract. Filters (such as Bloom Filters) are a fundamental data struc-
ture that speed up network routing and measurement operations by stor-
ing a compressed representation of a set. Filters are very space efficient,
but can make bounded one-sided errors: with tunable probability ε, they
may report that a query element is stored in the filter when it is not.
This is called a false positive. Recent research has focused on design-
ing methods for dynamically adapting filters to false positives, thereby
reducing the number of false positives when some elements are queried
repeatedly.

Ideally, an adaptive filter would incur a false positive with bounded
probability ε for each new query element, and would incur o(ε) total false
positives over all repeated queries to that element. We call such a filter
support optimal .

In this paper we design a new Adaptive Cuckoo Filter, and show
that it is support optimal (up to additive logarithmic terms) over any n
queries when storing a set of size n.

We complement these bounds with experiments that show that our
data structure is effective at fixing false positives on network trace
datasets, outperforming previous Adaptive Cuckoo Filters.

Finally, we investigate adversarial adaptivity, a stronger notion of
adaptivity in which an adaptive adversary repeatedly queries the fil-
ter, using the result of previous queries to drive the false positive rate as
high as possible. We prove a lower bound showing that a broad family
of filters, including all known Adaptive Cuckoo Filters, can be forced by
such an adversary to incur a large number of false positives.

1 Introduction

A filter is a data structure that supports membership queries for a set of ele-
ments S = x1, . . . xn from a universe U . The answer to each filter query is
present or absent. Typically, a filter has a correctness guarantee: if an ele-
ment q ∈ S, the filter must return present to the query with probability 1.

This work was supported in part by ISF grants no. 1278/16 and 1926/19, by a BSF
grant no. 2018364, and by an ERC grant MPM under the EU’s Horizon 2020 Research
and Innovation Programme (grant no. 683064).

c© Springer Nature Switzerland AG 2021
A. Lubiw et al. (Eds.): WADS 2021, LNCS 12808, pp. 556–570, 2021.
https://doi.org/10.1007/978-3-030-83508-8_40

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-83508-8_40&domain=pdf
https://doi.org/10.1007/978-3-030-83508-8_40

Support Optimality and Adaptive Cuckoo Filters 557

There is also a performance guarantee: if an element q /∈ S, the filter must
return present with tunable probability at most ε. If a query on an element
q /∈ S returns present then q is called a false positive . Typically, filters use a
small amount of space.

A filter’s small size means that the filter can be stored in an efficiently accessi-
ble location. Meanwhile, the no-false-negative guarantee implies that if the filter
returns q /∈ S for a query q, then there is no need for accessing the actual data,
which is typically stored in a medium with expensive access cost. This ability
to filter out queries to items not in S in a small-size structure has found a wide
variety of applications both in theory [8,11] and in practice, e.g. [5,10].

There are several different kinds of filters. The Bloom filter [4] was the first
filter data structure to be designed; it is still very popular due to its simplicity
and efficiency. Later filters were designed to provide better worst-case lookup
times and space guarantees [2,14,17], improved practical performance [9,18],
and improved cache performance [3].

In this paper, we focus on filters that achieve space very close to the optimal
n log 1/ε bits [6,12], and that store elements from a large universe |U | � n.

Fixing False Positives. A well-known issue with many existing filters is that
they cannot adapt to queries: if a query q /∈ S is a false positive, all subsequent
queries q′ = q will be false positives. The focus of this paper is designing filters
that do adapt to false positive queries, so that if a query q is a false positive, the
filter undergoes structural changes so that a later query to q is unlikely to be a
false positive. An element q is said to be fixed if q was previously a false positive,
but is no longer a false positive. Similarly, q is broken if q was previously fixed,
but is now a false positive.

Related Work. Bender et al. [2] analyzed how to fix false positives against an
adversary. They give a data structure such that if queries are generated by
an adversary trying to maximize the false positive rate, each query to a filter
is a false positive with probability at most ε, even if the query element was
queried before. This requirement essentially provides concentration bounds: over
n queries, their filter incurs εn false positives, even if the queries are maliciously
chosen based on previous false positives.

However, the benefit of adaptivity goes beyond resisting an adversary. As
shown experimentally by Mitzenmacher et al. [13], adapting to queries can sig-
nificantly decrease the number of false positives—in fact, if queries are repeated
sufficiently frequently, the performance can be much better than O(εn). In par-
ticular, network trace data consists of a structured sequence of queries—can we
give a data structure that performs particularly well on this kind of data?

Most recently, Bender et al. [1] compared adaptivity to cache-based strate-
gies, finding that adaptivity leads to significantly better practical performance.

Support Optimality. Ideally, an adaptive filter would incur a false positive with
probability ε for each new query, and incur no further queries asymptotically.
Thus, every new false positive is fixed, and this fixing is unlikely to break

558 T. Kopelowitz et al.

previously-fixed false positives. In particular, let q1, . . . qn be a predetermined
sequence of queries1 to a filter F , and let Q =

⋃n
i=1{qi} be the set of unique

queries in the sequence. We say that F is support optimal if the expected
number of false positives when querying q1, . . . qn is ε|Q|(1+ o(1)). In this paper
we give a support-optimal filter up to additive polylogarithmic terms, and show
that it significantly improves practical performance.

1.1 Results

We discuss three data structures in this paper: two versions of the Adaptive
Cuckoo Filter originally presented in [13] (which we call the Cyclic ACF and
Swapping ACF), and a Cuckoo Filter augmented with a new method of achiev-
ing adaptivity, which we call the Cuckooing ACF .

The first contribution of this paper is the Cuckooing ACF, a support-optimal
filter which can be implemented using almost-trivial changes to current Cuckoo
Filter implementations.

In Sect. 3, we analyze the Cuckooing ACF and prove that it is support optimal
over any n queries, up to additive polylogarithmic terms. This gives a signifi-
cant performance improvement over previous filters even for large Q, and the
difference becomes more dramatic for small Q. For example, for the case of a
repeated single query (|Q| = 1), static filters incur εn expected false positives,
whereas the Cuckooing ACF incurs O(log4 n) expected false positives.

We show that despite their strong practical performance, the Cyclic ACF and
Swapping ACF are not support optimal–even if there are a constant number of
queries (|Q| = O(1)), they may incur Ω(n) false positives, whereas the Cuckooing
ACF incurs at most O(log4 n). Thus, from the standpoint of support optimality,
cuckooing is a better method for achieving adaptivity.

In Sect. 4, we provide experimental results that show that the theory bears
out in practice: the Cuckooing ACF attains a low false positive rate on network
trace datasets, which contain many repeated queries. The performance is not
only stronger than a vanilla Cuckoo Filter, but also improves upon the per-
formance of a Cyclic ACF and a Swapping ACF of the same size. This shows
that the Cuckooing ACF is effective at fixing false positives in a practical sense.
These results also emphasize the benefit of a simple adaptive filter: not only is
the resulting data structure easier to implement, the simplicity entails less space
usage compared to previous Adaptive Cuckoo Filters, leading to a significant
performance improvement.

Finally, in Sect. 5, we prove lower bounds that demonstrate that a broad
family of filters cannot be adaptive in the adversarial sense of Bender et al. [2];
this includes the Cyclic ACF, the Swapping ACF, and the Cuckooing ACF. This
lower bound motivates the concept of support optimality: a support optimal fil-
ter achieves strong performance on real datasets without achieving adversarial

1 Note that the filter does not have access to this sequence ahead of time; it must
process the queries online.

Support Optimality and Adaptive Cuckoo Filters 559

adaptivity. Our proof also gives insight into the structure of adaptive filters—
specifically, it shows that a space-efficient filter must have variable-sized finger-
prints in order to be adversarially adaptive.

2 Three Adaptive Cuckoo Filters

In this section describe a new kind of filter, the Cuckooing ACF. We then discuss
the Cyclic ACF and the Swapping ACF, both originally introduced in [13].

2.1 ACF Parameters and Internal State

We begin by defining a more general data structure which we call the adaptive
cuckoo filter (ACF). As the name suggests, the Cyclic ACF, the Swapping
ACF, and the Cuckooing ACF are adaptive cuckoo filters.

An ACF F has integer parameters f, k, b > 0, an additional parameter γ > 1,
and supports storing n elements from a universe U with a false positive rate
ε. The internal representation of a filter F consists of k hash tables, each of
N = γn/bk bins,2 where each bin consists of b slots of f bits; thus, the space
usage of F is N · b · f · k bits. The parameter γ determines how densely elements
are packed, trading off between insert time and space; often γ ≈ 1.05 is used.

The hash tables are accessed using k + 1 hash functions: k location hash
functions h�

1, . . . , h
�
k : U → {0, . . . , N − 1} that hash from U to a bit string of

length log N ,3 and a single fingerprint hash hf mapping each x ∈ U to an
f -bit fingerprint . The range and domain of hf depend on which ACF is used
and may depend on the internal state of F ; we provide details below. Following
previous results on filters [2–4,7,9,13], this paper assumes free access to uniform
random hash functions.4

When a set S is stored in F , for each element xi ∈ S, the fingerprint of xi is
stored in one of the slots of bin B(xi) in the βith hash table; this bin is defined
using a location hash: B(xi) = h�

βi
(x) for some integer 0 ≤ βi < k. We say a

slot σ is occupied if the fingerprint of some xi ∈ S is stored in σ; otherwise σ
is empty . We call βi the hash index of xi.

Since an ACF stores each element using a hash index, we can keep track
of the internal state of a filter using the hash index of each element. Thus, we
use C = (C[1], C[2], . . . , C[n]) = (β1, . . . , βn) to define the configuration of F .
This fully defines the internal representation of a Cuckooing ACF. The internal
representation of a Cyclic ACF also depends on s metadata bits stored for each
element, and the internal representation of a Swapping ACF also depends on
which slot within the bin is used to store each element.

2 We assume γn is an integer multiple of bk for simplicity.
3 When treating the hash value as a bit string we assume that N is a power of two

for simplicity; this assumption is not necessary for the implementation.
4 While such strong hashes are not usable in practice, this analysis is generally pre-

dictive of experimental results (see i.e. [9,13,16]).

560 T. Kopelowitz et al.

Suppose S is stored using hash indices β1, . . . βn under some configuration
C. Then query q /∈ S collides with an element xi ∈ S under C when h�

βi
(xi) =

h�
βi

(q) and q and xi have the same fingerprint.

2.2 Cuckoo Filter Operations

We begin by describing how inserts and queries work for an ACF. The Cuckooing
ACF and Swapping ACF insert and query using these methods; the Cyclic ACF
uses a generalization of these methods.

Insert. Suppose an element xi is inserted into a set S of size i − 1 currently
stored with filter F in configuration C, where elements S = x1, . . . xi−1 have
hash indices β1, . . . βi−1. Assume that F can store up to n ≥ i elements. The
insertion algorithm finds a valid configuration C ′ of F on S such that there
exists a hash index β′

i ∈ {0, . . . k − 1} for which bin h�
β′

i
has an empty slot. This

may involve updating the hash indices of other elements; for 1 ≤ j < i let β′
j be

the hash index of x′
j under C ′. We describe how to determine C ′ below.

If there is already an available empty slot, the filter stores the element imme-
diately in that slot. Specifically, if there exists a β ∈ {0, . . . , k − 1} where bin
h�

β(xi) in hash table β contains an empty slot, the filter sets β′
i = β, and stores

the fingerprint of xi in the empty slot. All other slots remain unchanged: β′
j = βj

for all 1 ≤ j < i.
Now, consider the case where there is no available empty slot. Then the ACF

makes room by shifting elements as one would in cuckoo hashing [15]. The filter
selects a hash index βi arbitrarily from {0, . . . , k−1}. Since all slots in bin h�

β′
i
(xi)

are occupied in C, the filter moves the fingerprint of some element xj stored
in a slot in h�

β′
i
(xj) = h�

β′
i
(xi), leaving an empty slot in which xi can be stored.

If h�
β(xj) contains an empty slot for some β ∈ {0, . . . , k − 1} (i.e. if xj can be

stored in an empty slot), one such empty slot is arbitrarily selected to store xj .
Otherwise, the filter increments β′

j = βj + 1 (mod k) and recurses, moving an
element stored in h�

β′
j
(xj) as necessary.

The move the elements as described above, the ACF must be able to access
the set S during an insert in order to rehash each xj . We follow all past work on
adaptive filters [1,2,13] in assuming that an external dictionary can be accessed,
enabling an element to be rehashed while inserting or fixing.

If this recursive process takes too many steps (more than Θ(log n) ele-
ments are moved), the filter chooses new hashes and rebuilds from scratch. If F
uses N = Ω(n) hash slots, then over n inserts, the probability of a rebuild is
O(1/n) [15].

Query. On a query q, a filter F in configuration C returns present if there exists
a β and a slot index σ ∈ {1, . . . b} such that slot σ in bin h�

β(q) of table β is
occupied and stores the fingerprint of q. This immediately guarantees correctness
of the filter (queries to xi ∈ S always return present) and, via a union bound
over the elements of S, a false positive rate of at most n/(N2f). The filter
achieves a desired false positive rate ε by setting f = log(n/(Nε)) = log(bk/εγ).

Support Optimality and Adaptive Cuckoo Filters 561

Fixing False Positives. If an ACF returns present on a false positive query q
(the filter knows that q /∈ S from the external dictionary storing S), the ACF
modifies its configuration to attempt to fix q, so that subsequent queries to q
return absent. Each type of ACF has its own method for fixing false positives,
which we describe below. Notice that the process of modifying the configuration
may cause some query q′ /∈ S to become a false positive, even if q′ was fixed
some time in the past.

2.3 Cuckooing ACF

The primary data structure contribution of this paper is the Cuckooing ACF .
This data structure is a standard Cuckoo Filter [9] with an added operation to
fix false positives; inserts and queries work exactly as described in Sect. 2.2.

Let q be a false positive under configuration C; we define how the Cuckooing
ACF finds a new configuration C ′ with hash indices β′

1, . . . β
′
n to attempt to fix q.

For each xi ∈ S that collides with q under C, the filter moves xi recursively as it
would during an insert. Specifically, the filter sets the new hash index β′

i = βi +1
(mod k); if bin h�

β′
i
(xi) in table β′

i does not contain an empty slot, an element
xj stored in h�

β′
i
(xi) under C is moved recursively. If Ω(log n) steps are taken,

the filter is rebuilt. Standard cuckoo hashing analysis shows that for any false
positive on a Cuckooing ACF with γ = 1 + Ω(1) the probability of a rebuild is
O(1/n2) [15].

2.4 Cyclic ACF

The cyclic ACF of Mitzenmacher et al. [13] is an ACF where each slot contains
s additional hash selector bits. The cyclic ACF generally has b = 1; thus, the
total space used by a Cyclic ACF is kN(f + s). Usually, s is a small constant.

In the Cyclic ACF, the fingerprint hash maps U × {0, . . . , 2s − 1} →
{0, . . . , 2f − 1}. In particular, the hash selector bits are used to determine the
fingerprint of an element stored in a given slot.

When an element xi is initially inserted, the insertion process continues as
in Sect. 2.2, with fingerprint hf (xi, 0). When an empty slot σ is found that can
store xi, the hash selector bits of σ are set to 0, and hf (xi, 0) is stored in σ.

To query an element q, for each location hash h�
β , with β ∈ {0, . . . , k−1}, the

filter looks at the slot h�
β of table β. The s hash selector bits stored in the slot

contain a value 0 ≤ α ≤ 2s −1. The filter compares hf (q, α) with the fingerprint
stored in the slot; the filter returns present if they are equal. Otherwise the
filter increments β and repeats. If no collisions are found for all 0 ≤ β ≤ k − 1,
the filter returns absent.

If a query q is a false positive, the Cyclic ACF fixes the query as follows. Let
xi be the element that collides with q, let σ be the slot storing xi, and let α be
the value of the s hash selector bits stored in σ. Then the filter sets the hash
selector bits of σ to store value α + 1, and stores hf (xi, α + 1) in σ. If multiple
x ∈ S collide with q, this procedure is repeated for each such x.

562 T. Kopelowitz et al.

2.5 Swapping ACF

The idea of the Swapping ACF [13] is to have elements hash to bins with b > 1
slots, and to have the fingerprint of an item depend on its slot. In this way, false
positives can be (potentially) fixed by moving elements to a different slot.

Inserts proceed as described in Sect. 2.2. However, in the Swapping ACF, the
fingerprint hash maps U ×{0, . . . , b− 1} → {0, . . . , 2f − 1}. During an insert, an
element’s slot must be determined before its fingerprint can be calculated.

If a query q is a false positive under configuration C, the filter can fix the
query as follows. Let xi be the element that collides with q and let b(xi) = h�

βi
(xi)

be the bin currently storing xi. Let σi ∈ {0, . . . , b − 1} be the index of the slot
in b(xi) currently storing xi; thus xi is stored in slot h�

βi
(xi) · b + σx.

The filter picks a slot index σ′ ∈ {0, . . . , σi − 1, σi + 1, . . . b − 1}, selected at
random from the slots in b(xi), excluding the slot currently storing xi. Let xj

be the element currently stored in that slot if it exists. The filter then swaps the
elements: it stores fingerprint hf (xi, σ

′) in slot h�
βi

(xi) · b + σ′, and fingerprint
hf (xj , σi) in slot h�

βi
(xi) · b + σi (if xj does not exist, σi becomes unoccupied).

3 Bounding the False Positive Rate by the Number
of Distinct Queries

In this section we show that the Cuckooing ACF is support optimal: it achieves
strong performance against skewed datasets, where the queries are taken from a
relatively small set of elements.

Our analysis focuses on a Cuckooing ACF with k = 2 hash tables, b = 1 slots
per bin, and N = n slots per hash table5 (corresponding to the classic Cuckoo
Hashing analysis). The experiments in Sect. 4 indicate that our analysis likely
extends to broader parameter ranges. However, formally completing the analysis
for all parameters would require significant new structural insights in our proofs
(e.g. Lemma 1); we leave this to future work.

Theorem 1. Consider a sequence of at most n queries q1, . . . qn to a Cuckooing
ACF F with k = 2 hash tables, N = n slots per table, and fingerprints of length
f = log 1/ε bits. Let Q =

⋃n
i=1{qi}. Then the expected number of false positives

incurred by F while querying q1, . . . , qn is ε|Q| + O(ε2|Q| + log4 n).

Thus, for any sequence of n queries with a support of size |Q| = ω(log4 n/ε), the
Cuckooing ACF is support optimal.

In contrast, for a worst-case input sequence, the Cyclic ACF and the Swap-
ping ACF do not perform much better than a Cuckoo Filter. Taking the Cyclic
ACF as an example, consider a sequence of n queries, each chosen uniformly at
random from a randomly-selected set of size |Q| = 1/ε2

s

. Each of these queries
collides with some x ∈ S under every choice of hash selector bits with probabil-
ity Ω(ε2

s

). Thus, over n queries, the Cyclic ACF incurs Ω(n) false positives for
constant ε and s, compared to O(log4 n) false positives for the Cuckooing ACF
via Theorem 1. See the proof of Theorem 2 for a more detailed explanation.
5 That is to say, γ = 2.

Support Optimality and Adaptive Cuckoo Filters 563

3.1 Proof Sketch of Theorem 1

We sketch the proof of Theorem 1, but do not include the details of the proof
due to space. A full proof can be seen in the full version of the paper.

Without loss of generality we assume that each false positive query only
collides in one of the hash tables. Since k = 2, fixing a query that collides in
both hash tables can be simulated by fixing each hash table separately.

To simplify notation, we define B(i, C) = h�
C[i](xi) to be the slot storing xi

under configuration C, and B′(i, C) = h�
1−C[i](xi) to be the alternate slot for xi.

Let C0 be the configuration of F before the first query q1, and for 1 ≤
i ≤ n let Ci be the configuration after query qi. For each 1 ≤ i ≤ n, if
qi is a false positive under Ci−1, let ki be the number of elements moved
when fixing query qi; otherwise let ki = 0. We denote the sequence of
elements moved when fixing qi as xi1 , xi2 , . . . , xiki

. Thus, qi collides with
xi1 under Ci−1. We call the sequence of slots affected by these movements
B(i1, Ci−1), B(i2, Ci−1), . . . B(iki

, Ci−1), B′(iki
, Ci−1) the path on Ci−1 of qi.

We say that qi loops if one of the moved elements repeats; i.e. there exist
1 ≤
1 <
2 ≤ ki such that i�1 = i�2 . Interestingly, classic cuckoo hashing
analysis generally only needs to bound the number of queries that loop twice,
as only twice-looping queries force a rebuild. However, even a query that loops
once cannot be fixed in a Cuckooing ACF, so we must bound how frequently
this happens in our analysis.

Let the initial false positives be the queries in Q that are false positives
for F in configuration C0.

We start with a structural lemma: the elements moved when fixing any query
consist of a (possibly empty) sequence of elements stored in the slot they occu-
pied in C0, followed by a (possibly empty) sequence of elements not stored in
the slot they occupied in C0.

Lemma 1. If a query qi on a configuration Ci−1 moves an element xi�
satisfying

Ci−1[i�] �= C0[i�], and qi does not loop, then all j with
 ≤ j ≤ ki satisfy
Ci−1[ij] �= C0[ij].

Proof. This proof is by induction on j; the base case j =
 is immediate.
Assume by induction that Ci−1[ij−1] �= C0[ij−1] for some j >
. Since qi does

not loop, when xij−1 is moved, it cannot have been moved previously while fixing
qi, and thus must be stored in slot B(ij−1, Ci−1). Then after xij−1 is moved it
must be stored in slot B(ij−1, C0); this must be equal to the slot storing xij

.
Because qi does not loop, xij

must be stored where it was when the fixing
began; i.e. in B(ij , Ci−1). Thus B(ij , Ci−1) = B(ij−1, C0), so C0[ij] �= Ci−1[ij],
as otherwise xij

and xij−1 would be stored in the same slot in C0.

Lemma 1 immediately gives structure to the problem in two key ways. First,
it limits how queries can break one another: if q is a false positive, but is not an
initial false positive, then there must be some initial false positive qi that caused
q to become a false positive. We do not need to worry about non-initial false
positives causing other, new false positives. Second, it ties the behavior of all

564 T. Kopelowitz et al.

elements to how they behave on the initial configuration C0. This means that
we can make statements about how queries interact using C0; we do not need to
reset our analysis every time the filter configuration changes.

Let us summarize how to obtain the ε|Q|+O(ε2|Q|+log4 n) bound in Theo-
rem 1. The initial false positives immediately give us a cost of ε|Q| false positives;
we must bound the cost of all other queries (including repeated queries to the
initial false positives) by O(ε2|Q| + log4 n).

We give a set of four criteria that constitute costly queries. For example,
a query qi is costly if it hashes to the path of some initial false positive qj on
C0—this means that qi can break qj . Another example is if qi loops—in that
case, the Cuckooing ACF cannot fix it.

We begin by showing that all false positives are either costly queries, or are
initial false positives. (Lemma 1 is the basic building block of this proof.)

The remainder of the proof uses a potential function analysis, where the
potential of a configuration of the filter is the number of pairs (q, xi), where
q is a query, and xi is an element of S stored in its original position (i.e. its
position in C0). One important property of this potential function is that if a
query is not costly, it has no amortized cost (if it is a false positive, the potential
function decreases by at least 1, offsetting the false positive cost incurred by the
query)—again, Lemma 1 is crucial in showing this step. This is where we bound
the cost of repeated queries to initial false positives—each such false positive can
be charged to the (costly) query that broke it.

Then, we begin analyzing the impact of the costly queries on the potential
function. We show that the expected amortized cost of a costly query qi is
O(1 + ε|Q|ki/n)—that is to say, it depends on the length of the path of qi.

We complete our analysis by first bounding ki for each qi (conditioned on
qi being costly), and finally bounding the total cost of all costly queries. The
number of elements moved by each query are not independent—for example, it
is possible (though extremely unlikely) that all x ∈ S are stored in n + 1 slots,
where for each j the second hash of xj is equal to the first hash of xj+1. In this
case, we would have E[ki] = Ω(n) for all false positive queries. To avoid these
cases, we must show that all of the paths of costly queries are fairly small and
do not intersect with high probability, allowing us to treat them independently.
These bounds are the source of the O(log4 n) term in the final bound.

4 Experiments

In this section, we examine how the Cuckooing ACF performs on network trace
datasets. There are two main takeaways from this section. First, the design
of the Cuckooing ACF results in better practical performance than previous
adaptive filters on network trace datasets. Second, the analysis of Sect. 3 extends
to practice: an adaptive cuckoo filter with practical parameter settings (including
very high load factor) still achieves strong performance.

Our experiments use three network traces from the CAIDA 2014 dataset, as
in the experiments of Mitzenmacher et al. [13]: equinix-chicago.dirA.20140619

Support Optimality and Adaptive Cuckoo Filters 565

Fig. 1. We examine the false positive rate of each adaptive filter, varying the ratio of the
number of queries to the number of stored elements. The right hand figure normalizes
the false positive rate by the number of false positives incurred by the Cuckooing ACF.
It summarizes the results for the Swapping ACF and the Cyclic ACF with s = 1, for
all three datasets, for f = 8, 12, 16.

(which we call “Chicago A”) equinix-chicago.dirB.20140619-432600 (“Chicago
B”), and equinix-sanjose.dirA.20140320-130400 (“San Jose”). Let A be the set
of query elements. We perform tests for different |A|/|S| ratios; specifically
|A|/|S| = {1, 3, 5, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100}.

We begin by setting n = |S| using the prescribed |A|/|S| ratio and the total
number of unique flows in the trace. The first n unique flows seen in the trace
are inserted into each filter. The remaining flows in the trace (those not in S)
are used as queries. We consider six data structures in our experiments:

– a classic Cuckoo Filter, with k = 4 hash tables and b = 1 slots per bucket;
– the Cuckooing ACF, with k = 4 hash tables and b = 1 slots per bucket;
– three implementations of the Cyclic ACF described in [13], with s = 1, s = 2,

and s = 3 hash selector bits. To ensure a fair comparison in space usage, each
hash selector bit used is accounted for with a corresponding decrease in the
number of fingerprint bits; and

– a Swapping ACF with b = 4 slots per bin and k = 2 hash tables.

All filters are at 95% occupancy in all of our experiments (i.e. γ = 1/.95). We
give results for fingerprints of length f = 8 bits on Chicago A, and summarize
key results for Chicago B and San Jose, as well as results with f = 12 and f = 16
bits on all datasets. All results given are average performance over 10 trials.

4.1 Experimental Results

The left hand plot in Fig. 1 shows that the Cuckooing ACF has the strongest
performance of all adaptive filters on the Chicago A dataset with f = 8. Its
performance is particularly strong for low values of |A|/|S|—that is to say, its
performance is strong when the number of unique queries is small relative to n
(as one may expect given Theorem 1).

We ran further experiments, using fingerprints of size f = 8, f = 12, and
f = 16 on Chicago A, Chicago B, and San Jose datasets, achieving similar (in

566 T. Kopelowitz et al.

fact slightly better) results. These experiments are summarized in the right hand
plot of Fig. 1, and provided in full in the full version of the paper. The y-axis in
this figure indicates the false positive rate of the given filter divided by the false
positive rate of the Cuckooing ACF. This plot only includes the two best filters:
the Swapping ACF, and the Cyclic ACF with s = 1. We run the experiments
for three fingerprint sizes {8, 12, 16} on all three datasets, giving 18 total lines
in the plot. Note that there is some overlap with the left hand plot—one of the
bottommost two lines in the plot corresponds to the Swapping ACF with f = 8
on Chicago A. Specifically, the Cuckooing ACF does even better with larger
fingerprints like f = 12 and f = 16 compared to f = 8.

Overall, the Cuckooing ACF always performs at least as well as every other
cuckoo filter on these datasets, often outperforming them by nearly a factor of 2.

5 Adversarial Adaptivity

Previous work leaves a dichotomy: the Adaptive Cuckoo Filters of Mitzenmacher
et al. [13] work well in practice, whereas the “Broom Filter” of Bender et al. [2]
is effective even against an adversary that tries to “learn” a filter’s internal
state. In Sects. 3 and 4 we showed that the Cuckooing ACF is practical while
retaining theoretical bounds. But our theoretical bounds are not adversarial;
they are based on the number of unique queries made to the filter. Can our
results be taken further—is there an ACF that adapts effectively even against
an adversary?

In this section we give a general lower bound showing that an adversary can
obtain a false positive rate of Ω(1) against any space-efficient ACF. This result
is closely tied to a key structural distinction: the Broom Filter is difficult to
implement because the length of the stored fingerprint may be different for each
element. Our lower bound shows that this flexibility is, in fact, necessary in order
to achieve adaptivity.

5.1 Definition

Bender et al. [2] defined a notion of adaptivity that captures a worst-case adver-
sary attempting to maximize the filter’s false positive rate. We summarize this
model in this subsection, and refer readers to [2] for a more thorough discussion.

In the adaptivity game , an adversary generates a sequence of queries. After
each query q, the adversary and filter both learn if q was a false positive. The
filter may change its internal representation in response. The adversary will use
whether or not q was a false positive to determine the further queries.

At any time, the adversary may name a special element q̂—the adversary is
asserting that this query is likely to be a false positive. The adversary “wins” if
q̂ is a false positive, and the filter “wins” if q̂ is not a false positive.

Support Optimality and Adaptive Cuckoo Filters 567

The sustained false positive rate of a filter is the maximum probability
ε with which the adversary can win the adaptivity game. We call a filter F
adaptive if F can achieve a sustained false positive rate of ε for any constant
ε.

5.2 Lower Bounds

To begin, we note that the Cyclic ACF is not adaptive. A nearly-identical proof
shows that the Swapping ACF is not adaptive.

Theorem 2. Let F be a Cyclic ACF with k = O(1) hash tables, each with
N = Θ(n) slots. Then there exists an adversarial strategy, making Θ(2s/ε2

s

)
queries, which wins the adaptivity game against F with probability Ω(1). Thus
the sustained false positive rate of F is Ω(1).

Proof. The adversary begins by selecting a query element q1 at random. The
adversary queries q1 2s times. If q1 is a false positive every time it is queried, the
adversary sets q̂ ← q1; otherwise the adversary chooses a new query element q2
and repeats. This process is repeated until O(1/ε2

s

) query elements have been
chosen, requiring O(2s/ε2

s

) queries overall.
We show that the adversary finds a q̂ with probability Ω(1), and that q̂ will

be a false positive with probability 1.
Each time q collides with an element xi ∈ S, the hash selector bits associated

with xi are incremented; thus, if q does not collide with xi on the jth query,
it will not collide on the j′th query for j′ > j. Then if q is a false positive
on all 2s collisions, there is an xj ∈ S such that hf (q, α) = hf (xj , α) for all
α ∈ {0, . . . , 2s − 1}. We immediately obtain that any q̂ found by the adversary
is a false positive with probability 1.

For a given query qi and a given xj ∈ S, the probability that h�
βj

(qi) =
h�

βj
(xj) is 1/n. The probability that, for all α, hf (qi, α) = hf (xj , α) is 1/ε2

s

.
After the algorithm has made 1/ε2

s

queries, the probability that there exists
a query q′ and an x∗ ∈ S such that hf (qi, α) = hf (xj , α) for all α is 1 − (1 −
ε2

s

/n)n/ε2
s

= Ω(1). Thus, the adversary finds a q̂ with constant probability.

One might think that hashing elements to another bucket (as in the Cuckoo-
ing ACF) is sufficient to make a filter adaptive. The reason Theorem 2 gives such
a strong lower bound for the Cyclic ACF is that when we move an element to the
next fingerprint, it is still a false positive with probability ε. A constant number
of these movements still leaves a significant probability that a false positive is not
yet fixed. In contrast, when a colliding element is moved in the Cuckooing ACF,
it still collides with the query with probability only ε/n—this seems low enough
that almost all queries are successfully fixed after only a single movement.

Nonetheless, the adversary can use a birthday attack to find a small set of
elements that cannot all be simultaneously fixed.

We obtain lower bounds for a fairly broad class of filters, where the total
total information stored (i.e. hash index plus location plus fingerprint) for each

568 T. Kopelowitz et al.

element is at most log(n/ε) + O(1) bits. This stands in contrast to the Broom
Filter of Bender et al. [2], which is adaptive and which stores an average of
log(n/ε) + O(1) bits—in short, this proof shows that the nonuniformity of hash
lengths in [2] is crucial to achieving adaptivity.

Definition 1. A deterministic k-adaptive filter F on n elements with false pos-
itive rate ε is a filter satisfying the following:

– F has access to k uniform random hash functions h0, . . . , hk−1. Each hash
has length at most log(N/ε), for some N = O(n/k) with N ≥ n/k.

– For every configuration C of F , each xi ∈ S is stored using at least one hash
hC[i](x), 0 ≤ C[i] ≤ k − 1.

– The filter answers present to a query q on configuration C if there exists an
xi such that hC[i](q) = hC[i](xi). Otherwise, it answers absent.

– On a false positive q, F updates C to a new configuration C ′ in round-robin
order. In particular, if a query q collides with an element xi ∈ S stored using
hβ, then xi is stored in C ′ using hβ′ satisfying β′ = β + 1 (mod k).

By setting each hash hi in Definition 1 so that for any i ∈ {0, . . . , k − 1} and
x ∈ U , hi(x) is the concatenation of h�

i(x) and hf (x, i), the Cuckooing ACF is
a deterministic k-adaptive filter. By setting h(i,α)(x) to be the concatenation of
h�

i(x) and hf (x, α), the Cyclic ACF is a deterministic k2s-adaptive filter.6

The round-robin ordering requirement stands out as being a bit artificial, but
our proof can fairly easily be generalized to handle other deterministic methods
to update the configuration.

Theorem 3. There exists an adversarial strategy making O(n) queries such
that, for any deterministic k-adaptive filter F with k < log n/(6 log log n) and
ε > 1/(n1/k), the adversary wins the adaptivity game with probability Ω(1).

Querying to Find a Mutually Unfixable Set. The proof of Theorem 3 begins
with the adversary searching for a structure that “blocks” the filter, preventing
it from fixing a false positive.

Consider a stored element xi ∈ S, and fix a filter F with k hash functions
h0, . . . hk−1. A set of queries K is called mutually unfixable for xi if,

– for all β ∈ {0, . . . , k − 1}, there exists a q′ ∈ K with hβ(xi) = hβ(q′), and
– for all q′ ∈ K there exists a β,∈ {0, . . . , k − 1} such that hβ(xi) = hβ(q′).

The goal of our adversary is to find a mutually unfixable set of the queries,
since for any configuration, at least one element in such a set is a false positive.

We briefly sketch the remaining details of our adversary to prove Theorem 3.
The full proof can be found in the full version of the paper.

The adversary begins by choosing a set Q of size (1+1/k)N/(εn1/k) uniformly
at random from U . We show that if Q is this size, then with constant probability
Q will contain Θ(1) mutually unfixable sets, each of size O(k).
6 The Cyclic ACF does not quite satisfy Definition 1 since its hashes are not indepen-

dent. However, this only makes it easier for an adversary to find false positives.

Support Optimality and Adaptive Cuckoo Filters 569

The adversary then queries members of Q for 2k rounds; any query that is a
false positive during the second set of k rounds is stored in a set Qd. We show
that Qd will be the union of some mutually unfixable subsets of Q.

Finally, the adversary repeatedly selects k elements from Qd and randomly
selects a permutation P on these elements. The adversary queries these elements
in order, twice. We show that, over O(n) total queries, the adversary will (with
constant probability) find k elements corresponding to a mutually unfixable set,
and query them in an order such that each is a false positive every time it is
queried. Then, the adversary can find a false positive q̂ with constant probability.

References

1. Bender, M.A., Das, R., Farach-Colton, M., Mo, T., Tench, D., Ping Wang, Y.: Miti-
gating false positives in filters: to adapt or to cache? In: Symposium on Algorithmic
Principles of Computer Systems (APOCS), pp. 16–24. ACM-SIAM (2021)

2. Bender, M.A., Farach-Colton, M., Goswami, M., Johnson, R., McCauley, S., Singh,
S.: Bloom filters, adaptivity, and the dictionary problem. In: Foundations of Com-
puter Science (FOCS), pp. 182–193. IEEE (2018)

3. Bender, M.A., et al.: Don’t thrash: how to cache your hash on flash. Proc. VLDB
Endow. 5(11), 1627–1637 (2012)

4. Bloom, B.H.: Space/time trade-offs in hash coding with allowable errors. Commun.
ACM 13(7), 422–426 (1970)

5. Broder, A., Mitzenmacher, M.: Network applications of bloom filters: a survey.
Internet Math. 1(4), 485–509 (2004)

6. Carter, L., Floyd, R., Gill, J., Markowsky, G., Wegman, M.: Exact and approximate
membership testers. In: Symposium on Theory of Computing (STOC), pp. 59–65
(1978)

7. Eppstein, D.: Cuckoo filter: simplification and analysis. In: Scandinavian Sympo-
sium and Workshops on Algorithm Theory (SWAT), vol. 53, pp. 8:1–8:12 (2016)

8. Eppstein, D., Goodrich, M.T., Mitzenmacher, M., Torres, M.R.: 2–3 cuckoo filters
for faster triangle listing and set intersection. In: Principles of Database Systems
(PODS), pp. 247–260. ACM (2017)

9. Fan, B., Andersen, D.G., Kaminsky, M., Mitzenmacher, M.D.: Cuckoo filter: prac-
tically better than Bloom. In: International Conference on Emerging Networking
Experiments and Technologies (CoNEXT), pp. 75–88. ACM (2014)

10. Geravand, S., Ahmadi, M.: Bloom filter applications in network security: a state-
of-the-art survey. Comput. Netw. 57(18), 4047–4064 (2013)

11. Jiang, S., Larsen, K.G.: A faster external memory priority queue with decrease
keys. In: Symposium on Discrete Algorithms (SODA), pp. 1331–1343. ACM-SIAM
(2019)

12. Lovett, S., Porat, E.: A lower bound for dynamic approximate membership data
structures. In: Foundations of Computer Science (FOCS), pp. 797–804. IEEE
(2010)

13. Mitzenmacher, M., Pontarelli, S., Reviriego, P.: Adaptive cuckoo filters. In: Work-
shop on Algorithm Engineering and Experiments (ALENEX), pp. 36–47 (2018)

14. Pagh, A., Pagh, R., Rao, S.S.: An optimal bloom filter replacement. In: Symposium
on Discrete Algorithms (SODA), pp. 823–829. ACM-SIAM (2005)

15. Pagh, R., Rodler, F.F.: Cuckoo hashing. J. Algorithms 51(2), 122–144 (2004)

570 T. Kopelowitz et al.

16. Pandey, P., Bender, M.A., Johnson, R., Patro, R.: A general-purpose counting
filter: making every bit count. In: International Conference on Management of
Data (SIGMOD), pp. 775–787. ACM (2017)

17. Porat, E.: An optimal bloom filter replacement based on matrix solving. In: Frid,
A., Morozov, A., Rybalchenko, A., Wagner, K.W. (eds.) CSR 2009. LNCS, vol.
5675, pp. 263–273. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-
642-03351-3 25

18. Wang, M., Zhou, M., Shi, S., Qian, C.: Vacuum filters: more space-efficient and
faster replacement for bloom and cuckoo filters. Proc. VLDB Endow. 13(2), 197–
210 (2019)

https://doi.org/10.1007/978-3-642-03351-3_25
https://doi.org/10.1007/978-3-642-03351-3_25

Computing the Union Join and Subset
Graph of Acyclic Hypergraphs

in Subquadratic Time

Arne Leitert(B)

Department of Computer Science, Central Washington University,
Ellensburg, WA, USA
arne.leitert@cwu.edu

Abstract. We investigate the two problems of computing the union join
graph as well as computing the subset graph for acyclic hypergraphs and
their subclasses. In the union join graph G of an acyclic hypergraph H,
each vertex of G represents a hyperedge of H and two vertices of G are
adjacent if there exits a join tree T for H such that the corresponding
hyperedges are adjacent in T . The subset graph of a hypergraph H is a
directed graph where each vertex represents a hyperedge of H and there
is a directed edge from a vertex u to a vertex v if the hyperedge corre-
sponding to u is a subset of the hyperedge corresponding to v.

For a given hypergraph H = (V, E), let n = |V |, m = |E|, and
N =

∑
E∈E |E|. We show that, if the Strong Exponential Time Hypoth-

esis is true, both problems cannot be solved in O(
N2−ε

)
time for

α-acyclic hypergraphs and any constant ε > 0, even if the created
graph is sparse. Additionally, we present algorithms that solve both
problems in O(

N2/ logN + |G|) time for α-acyclic hypergraphs, in
O(

N log(n+m)+|G|) time for β-acyclic hypergraphs, and in O(
N+|G|)

time for γ-acyclic hypergraphs as well as for interval hypergraphs, where
|G| is the size of the computed graph.

1 Introduction

A hypergraph H = (V, E) is a generalisation of a graph in which each edge E ∈ E ,
called hyperedge, can contain an arbitrary positive number of vertices from V .
One may also see a hypergraph H as a family E of subsets of some set V . Indeed,
we say that the family F of sets forms the hypergraph H = (V, E) if V =

⋃
S∈F S

and E = F . We use n = |V |, m = |E|, and N =
∑

E∈E |E| to respectively denote
the cardinality of the vertex set, the cardinality of the hyperedge set, and the
total size of all hyperedges of H.

1.1 Acyclic Hypergraphs

A tree T is called a join tree for H if the hyperedges of H are the nodes of T and,
for each vertex v ∈ V , the hyperedges containing v induce a subtree of T . That
c© Springer Nature Switzerland AG 2021
A. Lubiw et al. (Eds.): WADS 2021, LNCS 12808, pp. 571–584, 2021.
https://doi.org/10.1007/978-3-030-83508-8_41

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-83508-8_41&domain=pdf
https://doi.org/10.1007/978-3-030-83508-8_41

572 A. Leitert

is, if v ∈ Ei ∩ Ej , then v is contained in each hyperedge (i.e., node of T) on the
path from Ei to Ej in T . A hypergraph is acyclic if it admits a join tree. There
is a linear-time algorithm which determines if a given hypergraph is acyclic and,
in that case, constructs a corresponding join tree for it [21].

Acyclic hypergraphs have various applications. They are, for example, a
desired structure when designing relational databases [1]. There is also a close
relation between acyclic hypergraphs and chordal as well as dually chordal
graphs. Namely, a graph is chordal if and only if its maximal cliques form an
acyclic hypergraph [12], and a graph is dually chordal if and only if its closed
neighbourhoods form an acyclic hypergraph [5].

Tree-decompositions are another application. The idea is to decompose a
graph G = (V,E) into multiple induced subgraphs, usually called bags, where
each vertex can be in multiple bags. The set of bags B forms a tree T in such
a way that the following requirements are fulfilled: Each vertex is in at least
one bag, each edge is in at least one bag, and T is a join tree for the hyper-
graph (V,B). Usually tree-decompositions are considered with additional restric-
tions. The most known is called tree-width; it limits the maximum cardinality of
each bag. For a graph class with bounded tree-width, many NP-complete prob-
lems can be solved in polynomial or even linear time. Alternatively, one may
limit the distances between vertices inside a bag. Such a tree-decomposition can
be used, for example, for constructing tree-spanners [7,8] and efficient routing
schemes [6].

An inclusion-maximal subset of vertices of a graph G is called an atom if it
induces a connected subgraph of G without a clique separator. It is known that
the atoms of a graph form an acyclic hypergraph [16]. The corresponding join
tree is then called atom tree.

The most general acyclic hypergraphs are called α-acyclic (i.e.., each acyclic
hypergraph is α-acyclic). They are closely related to chordal graphs and to dually
chordal graphs. Subclasses of α-acyclic hypergraphs are β-acyclic hypergraphs
which are closely related to strongly chordal graphs and γ-acyclic hypergraphs
which are closely related to ptolemaic graphs (graphs that are chordal and
distance-hereditary). We also consider interval hypergraphs. These are acyclic
hypergraphs for which one of their join trees forms a path. As the name sug-
gests, they are closely related to interval graphs. We give formal definitions
and more information about each subclass later in their respective sections. See
Brandstädt and Dragan [4] for a summary of known properties of acyclic
hypergraphs as well as their relations to various graph classes.

1.2 Union Join Graph

Note that the join tree of an acyclic hypergraph is not always unique. For
example, each tree with n nodes is a valid join tree for the hypergraph formed
by

{{0, 1}, {0, 2}, . . . , {0, n}}
. The union join graph G of a given acyclic hyper-

graph H is the union of all its join trees. That is, each vertex of G represents a
hyperedge of H and two vertices of G are adjacent if there exits a join tree T
for H such that the corresponding hyperedges are adjacent in T . The union join

Union Join and Subset Graph of Acyclic Hypergraphs 573

graph of a hypergraph H may also be called clique graph if H represents the
maximal cliques of a chordal graph [11,14], or atom graph if H represents the
atoms of some graph [15]. In [2], Berry and Simonet present algorithms which
compute the union join graph of an acyclic hypergraph in O(Nm) time.

1.3 Subset Graph

The subset graph of a hypergraph H is a directed graph G where each vertex
represents a hyperedge of H and there is a directed edge from a vertex u to
a vertex v if the hyperedge corresponding to u is a subset of the hyperedge
corresponding to v. Pritchard presents an algorithm in [20] that computes
the subset graph for a given hypergraph in O(

N2/ log N
)

time. They also show
that any subset graph has at most O(

N2/ log2 N
)

many edges. There are various
publications that present algorithms for special cases and different computational
models; see for example [9,19] and the work cited therein.

The Strong Exponential Time Hypothesis, SETH for short, states that there
is no algorithm that solves the Boolean satisfiability problem (without limitation
on clause size) for some constant ε > 0 in O(

(2−ε)n
)

time where n is the number
of variables in the given instance. A function f(n) is called truly subquadratic if
f(n) ∈ O(

n2−ε
)

for some constant ε > 0. Borassi et al. [3] show that, if SETH
holds, then there is no algorithm to compute the subset graph of an arbitrary
hypergraph in truly subquadratic time, even if the output is sparse. Note that
the results in [3] and [20] are not conflicting, since N2−ε ∈ o

(
N2/ log N

)
.

1.4 Our Contribution

In this paper, we investigate the two problems of computing the union join graph
as well as computing the subset graph for acyclic hypergraphs and their sub-
classes. We show in Sect. 3 that there is a close relation between both problems
by presenting reductions in both directions. It then follows that the result by
Borassi et al. still holds when restricted to α-acyclic hypergraphs and also
applies to computing a union join graph. We then develop efficient algorithms
to solve both problems for acyclic hypergraphs and their subclasses. In partic-
ular, we show that, if |G| denotes the size of the computed graph G, then both
problems can be solved in O(

N2/ log N + |G|) time for α-acyclic hypergraphs
(Sect. 3.2), in O(

N log(n + m) + |G|) time for β-acyclic hypergaphs (Sect. 4.1),
and in O(

N+|G|) time for γ-acyclic hypergraphs (Sect. 4.2) as well as for interval
hypergraphs (Sect. 4.3).

2 Preliminaries

Let H = (V, E) be a hypergraph. The incidence graph I(H) =
(
UV ∪ UE , EI

)

of H is a bipartite graph were UV represents the vertices of H, UE represents the
hyperedges of H, and there is an edge between two vertices uv ∈ UV and uE ∈ UE
if the corresponding vertex v (of H) is in the corresponding hyperedge E. That

574 A. Leitert

is, UV = {uv | v ∈ V }, UE = {uE | E ∈ E }, and EI = {uvuE | v ∈ E }. Note
that

∣
∣EI

∣
∣ = N . If not stated or constructed otherwise, the incidence graphs of

all hypergraphs occurring in this paper are connected, finite, undirected, and
without multiple edges. Additionally, whenever a hypergraph is given, it is given
as its incidence graph; hence, the input size is in Θ(N). We say two hyperedges
of H are distinct if they are represented by two different vertices in I(H), even
if both hyperedges contain the same vertices.

A sequence 〈v1, v2, . . . , vk〉 of vertices of H forms a path in H if, for each i
with 1 ≤ i < k, H contains a hyperedge E with vi, vi+1 ∈ E. Let X, Y , and Z
be sets of vertices of H. X separates Y form Z if X �= ∅ and each sequence of
vertices that forms a path from Y to Z in H contains a vertex from X.

Let T be the join tree of some acyclic hypergraph H and let Ei and Ej be
two hyperedges of H which are adjacent in T . We then call the set S = Ei ∩ Ej

a separator of H with respect to T . If T is rooted and Ei is the parent of Ej ,
we call S↑(Ej) := Ei ∩ Ej the up-separator of Ej . Note that each separator
corresponds to an edge of T and vice versa. We call the hypergraph formed by
the set of all separators of H the separator hypergraph S(H) for H with respect
to T . It follows from properties (ii) and (iii) of Lemma 5 (see Sect. 3) that S(H)
is always the same for a given H, independent of the used join tree.

3 α-Acyclic Hypergraphs

In this section, we investigate the problems of computing a union join graph and
computing a subset graph for the most general case of acyclic hypergraphs. We
first show that computing these graphs cannot be done in truly subquadratic
time if the SETH is true. For that, we use a problem called Sperner Family
problem. It asks whether a family of sets contains two sets S and S′ such that
S ⊆ S′. If the SETH is true, then there is no algorithm that solves it truly
subquadratic time [3]. Afterwards, we give an algorithm that allows to quickly
compute the union join graph if a fast algorithm for the subset graph problem
is given.

3.1 Hardness Results

Let F = {S1, S2, . . . , Sm} be a family of sets. We create an acyclic hypergraph H
from F as follows. Create a new vertex u (i.e., u is not contained in any set Si)
and, for each set Si, create a hyperedge Ei = Si ∪ {u}. Additionally, create a
hyperedge S which is the union of all hyperedges Ei. Formally, we have that
H = (V, E) with V = S and E =

{
Ei

∣
∣ Si ∈ F } ∪ {S}. One can create a join

tree T for H by starting with S and then making each hyperedge Ei adjacent to
it. Thus, H is acyclic. Note that one can create H and T from F in linear time.

For the remainder of this subsection, assume that we are given a family F ,
a hypergraph H, and a corresponding join tree T for H as defined above. Our
results in this subsection are based on the following observation.

Union Join and Subset Graph of Acyclic Hypergraphs 575

Lemma 1. F contains two distinct sets Si and Sj with Si ⊆ Sj if and only if
there is a join tree for H that contains the edge EiEj.

Proof. First, assume that F contains two distinct sets Si and Sj with Si ⊆ Sj .
In that case, we can create a new join tree T ′ as follows. Remove the edge EiS
from T and make Ei adjacent to Ej instead. Since Si ⊆ Sj , each element x ∈
Ei ∩ S is also contained in Ej . Thus, T ′ is a join tree for H and contains the
edge EiEj .

Next, assume that there is a join tree T ′ for H with the edge EiEj . Without
loss of generality, let Ej be closer to S in T ′ than Ei. Recall that Ei ⊆ S.
Therefore, by properties of join trees, each vertex in Ei is also in Ej . It then
directly follows from the construction of H that Si ⊆ Sj . ��

We use the Sperner Family problem to show that there is no truly sub-
quadratic-time algorithm to compute the union join graph of a given acyclic
hypergraph. To do so, we first show the following.

Lemma 2. If the SETH is true, then there is no algorithm which decides in
O(

N2−ε
)
time whether or not a given acyclic hypergraph has a unique join tree.

Proof. Recall that we can create a join tree T for H by making each hyperedge Ei

adjacent to the hyperedge S. To prove Lemma 2, we show that F contains two
distinct sets Si and Sj with Si ⊆ Sj if and only if T is not a unique join tree
for H.

First, assume that F contains two such sets Si and Sj . In that case, Lemma 1
implies that there is a join tree T ′ for H with the edge EiEj . Since EiEj is not
an edge in T , T is not unique. Next, assume that T is not unique. Then, there
is a join tree T ′ and a hyperedge Ei such that Ei is not adjacent to S in T ′.
Hence, Ei is adjacent to some hyperedge Ej that is closer to S in T ′ than Ei.
Since Ei ⊆ S, properties of join trees imply that Ei ⊆ Ej . Subsequently, due to
Lemma 1, Si ⊆ Sj .

It follows that a truly subquadratic-time algorithm which determines if an
acyclic hypergraph has a unique join tree would imply an equally fast algorithm
to solve the Sperner Family problem for any family of sets. ��

Note that, by definition of a union join graph, H has a unique join tree if
and only if the union join graph of H is a tree. Therefore, we get the following.

Theorem 3. If the SETH is true, then there is no algorithm which constructs
the union join graph of a given acyclic hypergraph in O(

N2−ε
)
time, even if that

graph is sparse.

We now show that computing the subset graph of an acyclic hypergraph is
as hard as computing the subset graph for a general family of sets.

Theorem 4. If the SETH is true, then there is no algorithm which constructs
the subset graph of a given acyclic hypergraph in truly subquadratic time.

576 A. Leitert

Proof. Let G be the subset graph for H and GF be the subset graph for F .
Since, by construction of H, Ei ⊆ Ej if and only if Si ⊆ Sj , G contains the
edge (Ei, Ej) if and only if GF contains the edge (Si, Sj). We can therefore
construct GF from G by simply removing the vertex representing S from G
(and its incident edges).

Recall that we can construct H from F in linear time. Therefore, a truly
subquadratic-time algorithm to construct the subset graph of a given acyclic
hypergraph would imply an equally fast algorithm to construct a subset graph
of a given family of sets. ��

3.2 Union Join Graph via Subset Graph

In the previous subsection, we show how to compute the subset graph using
the union join graph of an acyclic hypergraph. We now present an algorithm
that computes the union join graph of a given acyclic hypergraph with the help
of a subset graph. The runtime of our algorithm then depends on the runtime
required to compute that subset graph.

For the remainder of this subsection, assume that we are given an acyclic
hypergraph H = (V, E) and let G be the union join graph of H (with for us
unknown edges). Lemma 5 below gives various characterisations for G.

Lemma 5. For any distinct Ei, Ej ∈ E, the following are equivalent.

(i) EiEj is an edge of G.
(ii) H has a join tree with the edge EiEj.
(iii) Each join tree T of H has an edge E′

iE
′
j on the path from Ei to Ej in T

such that Ei ∩ Ej = E′
i ∩ E′

j.
(iv) Each join tree T of H has a separator S on the path Pij from Ei to Ej

in T with S ⊆ Si and S ⊆ Sj where Si and Si are the separators in Pij

which are respectively closest to Ei and Ej.
(v) Ei ∩ Ej separates Ei \ Ej from Ej \ Ei.

Most of the properties in Lemma 5 repeat, generalise, or paraphrase existing
results (see [2,11,14]). Property (iv) is, to the best of our knowledge, a new
observation. For completeness, however, we prove all of them.

Proof. By definition of G, properties (i) and (ii) are equivalent. It follows from
properties of join trees that (ii) implies (v).

We next show that (v) implies (iii). Assume that Ei and Ej are not adjacent
in a join tree T . Then there is a path 〈Ei = X1,X2, . . . , Xk = Ej〉 of hyperedges
from Ei to Ej in T . For each p with 1 ≤ p < k, let Sp = Xp ∩ Xp+1 be the
separator corresponding to the edge XpXp+1 of T . By properties of join trees,
Ei ∩ Ej ⊆ Sp for each Sp. Now assume that each Sp contains a vertex vp /∈
Ei ∩ Ej . Then, 〈v1, v2, . . . , vk−1〉 would form a path in H from v1 ∈ Ei \ Ej

to vk−1 ∈ Ej \ Ei. That contradicts with property (v). Therefore, there is at
least one separator Sp with Sp ⊆ Ei ∩ Ej , i.e., there is an edge XpXp+1 in T
with Ei ∩ Ej = Xp ∩ Xp+1.

Union Join and Subset Graph of Acyclic Hypergraphs 577

To show that (iii) implies (ii), consider a join tree T where Ei and Ej are not
adjacent. We can create a join tree T ′ by removing the edge E′

iE
′
j and adding

the edge EiEj instead. Since Ei and Ej are on different sides of E′
iE

′
j in T , T ′

is also a tree. Additionally, because Ei ∩ Ej = E′
i ∩ E′

j , T ′ is a valid join tree
for H.

It remains to show that (iv) is equivalent to (iii). We first assume prop-
erty (iii). Let S = Ei ∩Ej be a separator on the path from Ei to Ej in some join
tree T . Since, by properties of join trees, each vertex in S = Ei ∩Ej is also in Si

and Sj , it follows that S ⊆ Si and S ⊆ Sj . Now assume property (iv). Because
S ⊆ Si ⊆ Ei and S ⊆ Sj ⊆ Ej , it is also the case that S ⊆ Ei ∩ Ej . Since S is
on the path from Ei to Ej in T , each vertex that is in both Ei and Ej also has
to be in S, i.e., S ⊇ Ei ∩ Ej . Therefore, S = Ei ∩ Ej . ��

Based on Lemma 5, we can construct G as follows. Compute a join tree T
for H, the separator hypergraph S(H) (with respect to T), and its subset
graph GS . Next, use GS to find all triples Si, Sj , S of separators which sat-
isfy property (iv) of Lemma 5. Since their corresponding hyperedges are then
adjacent in some join tree of H, make the corresponding vertices adjacent in G.

Before analysing our approach further, we address some needed preprocess-
ing. Assume that H contains two hyperedges Ei and Ej which are not adjacent
in T , but are adjacent in some other join tree. There might then be multiple
separators S on the path from Ei to Ej in T which satisfy property (iv) of
Lemma 5. Our algorithm would, therefore, add the edge EiEj to G multiple
times, once for each such S. While it is easy to remove redundant edges from G
afterwards, we still want to ensure that the time needed to create and remove
these edges does not become too much. To achieve that, Algorithm 1 modifies T
such that each hyperedge becomes adjacent to its highest possible ancestor in T .
As by-product, Algorithm 1 also computes the up-separator of each hyperedge
(and, thus, the separator hypergraph S(H)).

Algorithm 1. Modifies the join tree of a given acyclic hypergraph such
that each hyperedge becomes adjacent to its highest possible ancestor.
Input: An acyclic hypergraph H = (V, E) and a join tree T for H.
Output: A modified join tree T ′ for H and the separator hypergraph S(H).

1 Root T in an arbitrary hyperedge R and then run a pre-order on T . Let
σ = 〈R = E1, E2, . . . , Em〉 be the resulting order.

2 For each vertex v, set λ(v) := min{ i | v ∈ Ei }.
3 for i := 2 to m do
4 Set S↑(Ei) :=

{
v ∈ Ei

∣
∣ λ(v) < i

}
.

5 Let j = max
{

λ(v)
∣
∣ v ∈ S↑(Ei)

}
and make Ej the parent of Ei.

6 Let S(H) be the hypergraph formed by the family
{

S↑(Ei)
∣
∣ Ei ∈ E , Ei �= R

}
.

578 A. Leitert

Lemma 6. Algorithm 1 runs in linear time.

Proof. Line 1 runs in O(m) time, since the nodes of T are the hyperedges of H.
Recall that H is given as an incidence graph I(H). Hence, the following are
equivalent (with respect to runtime): (i) for each vertex, iterating over all hyper-
edges containing it; (ii) for each hyperedge, iterating over all vertices it contains;
and (iii) iterating over all edges of I(H). Therefore, line 2, line 4, and line 5 (and
subsequently Algorithm 1) run in O(N) total time. ��
Lemma 7. The tree T ′ created by Algorithm 1 is a valid join tree for H.

Proof. Let Ti be the tree after processing Ei, i.e., T = T1 and Tm = T ′. Thus,
T1 is a valid join tree for H. Assume, by induction, that Ti−1 (with i ≥ 2)
is a valid join tree for H too. Recall that, by definition of join trees, the set
of hyperedges containing a vertex v form a subtree Tv of T . The roots of all
such Tv where v ∈ S↑(Ei) are ancestors of Ei in T and, thus, form a path. By
definition of j (line 5), Ej is the lowest of such roots in T . It therefore follows
that S↑(Ei) ⊆ Ej . Subsequently, for each v ∈ S↑(Ei), the hyperedges containing
v still form a subtree of Ti after changing the parent of Ei if they did so in Ti−1.
Note that each subtree Tu of a vertex u /∈ S↑(Ei) remains unchanged, since
it does not contain the edge EiEk. Therefore, for each vertex, the hyperedges
containing it form a subtree of Ti and, thus, Ti is a join tree for H. ��
Lemma 8. Let Ei and Ej be two hyperedges of H, T ′ be the tree computed by
Algorithm 1, and Pij be the path from Ei to Ej in T ′. Additionally, let Si and Sj

be the separators on Pij which are closest to Ei and Ej, respectively. There are
at most two separators S on Pij such that S ⊆ Si and S ⊆ Sj.

Proof. Let Ek be the lowest common ancestor of Ei and Ej in T ′. Although T ′

has a potentially different structure than T , it is still the case that the parent of
a hyperedge in T ′ was an ancestor of it in T . Thus, k ≤ i, j. Note that Pij goes
through Ek and let Pik and Pkj be the respective subpaths of Pij . If Pij contains
more than two separators S as defined in Lemma 8, at least two of them are
either part of Pik or Pkj . Without loss of generality, let them be on Pkj and let
S be the lowest such separator. Additionally, let X be the hyperedge directly
below S, i.e., S↑(X) = S. It follows that X is not adjacent to Ek in T ′.

Since S ⊆ Si, each vertex in S is in all hyperedges on the path from X to Ei

in T ′, including Ek. Therefore, S ⊆ Ek and max
{

λ(v)
∣
∣ v ∈ S

} ≤ k. That is a
contradiction, since Algorithm 1 would have made X adjacent to Ek or one of
its ancestors. ��

Algorithm 2 now implements the approach described above. It also uses Algo-
rithm 1 as preprocessing. Therefore, due to Lemma 8, the algorithm adds each
edge EiEj at most two times into G.

Theorem 9. Algorithm 2 computes the union join graph G of a given acyclic
hypergraph H in O(

TA(H) + N + |G|) time where TA(H) is the runtime of a
given algorithm A with the separator hypergraph of H as input.

Union Join and Subset Graph of Acyclic Hypergraphs 579

Algorithm 2. Computes the union join graph of an acyclic hypergraph.
Input: An acyclic hypergraph H = (V, E) and an algorithm A that computes

the subset graph for a given family of sets.
Output: The union join graph G of H.

1 Find a join tree for H (see [21]) and call Algorithm 1. Let T be the resulting
join tree and S the resulting family of separators (i.e., the hyperedges of S(H)).

2 Use algorithm A to compute the subset graph GS of S.
3 Create a new graph G = (E , EG) with EG = ∅.
4 foreach S ∈ S do
5 Use GS to determine all separators S′ with S ⊆ S′ (including S itself).
6 For each such S′, let EE′ be the edge of T which S′ represents and let E be

the hyperedge farther away from S in T . Add E to a set E of hyperedges. If
S and S′ represent the same edge of T , also add E′.

7 Partition E into two sets E1 and E2 based on which side of S they are in T .
8 For each pair E1, E2 with E1 ∈ E1 and E2 ∈ E2, add E1E2 into EG.

Proof (Correctness). Let Ei and Ej be two hyperedges of H. Additionally, let
Si and Sj be the separators on the path from Ei to Ej in T (computed in
line 1) which are closest to Ei and Ej , respectively. We show the correctness of
Algorithm 2 by showing that EiEj is an edge of G if and only if there is a join
tree for H with the edge EiEj .

First, assume that there is a join tree for H with the edge EiEj . Lemma 5
then implies that there is a separator S ∈ S such that S ⊆ Si, S ⊆ Sj , and
Ei and Ej are on different sides of S in T . Therefore, when processing S, the
algorithm finds Si and Sj (line 5) and consequently adds Ei and Ej into E

(line 6). Since both hyperedges are on different sides of S, Algorithm 2 then also
adds the edge EiEj to G (line 8).

We now assume that EiEj is an edge of G. Note that Algorithm 2 only adds
edges to G in line 8. Thus, there is a separator S ∈ S for which the algorithm
adds EiEj to G. For that S, one of Ei and Ej is in E1 and the other is in E2

(line 8) and, hence, Ei and Ej are on different sides of S in T (line 7). This
implies that S ⊆ Si and S ⊆ Sj (line 5 and line 7). Therefore, by Lemma 5,
there is a join tree for H with the edge EiEj . ��
Proof (Complexity). Creating a join tree for a given acyclic hypergraph H can
be implemented in O(N) time [21]. Modifying that join tree (thereby com-
puting T) and computing S(H) using Algorithm 1 can also be done in O(N)
time (Lemma 6). Thus, line 1 runs in total O(N) time. Computing the subset
graph GS in line 2 requires O(

TA(H)
)

time. Since the hyperedges of H form the
vertices of G and since G is created without edges, line 3 runs in O(m) time.

We show next that a single iteration of the loop starting in line 4 runs in
O(|E1| · |E2|

)
time. That is, the runtime for a single iteration is (asymptotically)

equivalent to the number of edges of G created. Note that each iteration creates
at least one such edge, namely the edge in T that S represents. Additionally,

580 A. Leitert

Lemma 5 and Lemma 8 imply that each edge EiEj is added at most twice to G.
Therefore, line 4 to line 8 run in O(|G|) total time.

For a separator S ∈ S, let S denote the set of separators S′ with S ⊆ S′.
Since the subset graph GS is given, one can compute S (line 5) in O(|S|) time
by determining all incoming edges of S in GS . For each S′ ∈ S, the algorithm
adds, in line 6, exactly one hyperedge into E plus one additional hyperedge for S.
Thus, |E| = |S| + 1.

One can determine the hyperedges E and E′ that form a separator S′, which
one is farther from S, and on which side of S they are in T as follows. When
creating S′, add a reference to both hyperedges and include which is the parent
and which is the child in T . Now assume that each S′ is also a node of T adjacent
to E and E′. Root T in an arbitrary hyperedge, run a pre-order and post-order
on T , and let pre(x) and post(x) be the indices of a node x in that respective
order. For two distinct nodes x and y of T (representing either separators or
hyperedges), x is then a descendant of y if and only if pre(x) > pre(y) and
post(x) < post(y). There are four cases when determining which of E and E′ to
add into E: if S and S′ represent the same edge of T , add both hyperedges; if
S′ is a descendant of S, add the child-hyperedge; if S′ is an ancestor of S, add
the parent-hyperedge; and if S′ is neither an ancestor nor a descendant of S,
add the child-hyperedge. Clearly, one side of S contains all its descendants and
the other side all remaining hyperedges and separators. That allows us, after a
O(m)-time preprocessing, to determine in constant time on which side of S a
give a hyperedge is. Therefore, line 6 and line 7 run in O(|E|) time.

Line 8 clearly runs in O(|E1|·|E2|
)

time. Recall that |S|+1 = |E| = |E1|+|E2|.
Therefore, a single iteration of the loop starting in line 4 also runs in O(|E1|·|E2|

)

time. ��
Recall that there is an algorithm which computes the subset graph for any

given hypergraph in O(
N2/ log N

)
time [20]. Thus, we have the following.

Theorem 10. There is an algorithm that computes the union join graph G of
an acyclic hypergraph in O(

N2/ log N + |G|) time.

The upper bound of at most Θ
(
N2/ log2 N

)
many edges for any subset

graph [20] does not apply to union join graphs. Consider a hypergraph H = (V, E)
with V = {u, v1, . . . , vn} and E = {Ei | 1 ≤ i ≤ n } where Ei = {u, vi}. Note
that N = 2n and that each tree with E as nodes is a valid join tree for H. Hence,
the union join graph of H is a complete graph with Θ

(
N2

)
edges.

4 Subclasses of Acyclic Hypergraphs

In this section, we summarise our results for subclasses of acyclic hypergraphs.
Detailed discussions of these results are omitted due to space limitations. A
pre-print of the full paper is available online [17].

Union Join and Subset Graph of Acyclic Hypergraphs 581

4.1 β-Acyclic Hypergraphs

A hypergraph H = (V, E) is β-acyclic if each subset of E forms an acyclic
hypergraph. See [10] for more definitions.

A matrix is binary if its entries are either 0 or 1. One can use a binary
n×m matrix M to represent a given hypergraph H = (V, E) as follows. Let each
row i represent a vertex vi ∈ V and each column j represent a hyperedge Ej ∈
E . An entry Mi,j is then 1 if and only if vi ∈ Ej . That matrix is called the
incidence matrix of H. A matrix is doubly lexically ordered if rows and columns
are permuted in such a way that rows vectors and columns are both in non-
decreasing lexicographic order (rows from left to right and columns from top
to bottom). Within a row, priorities of entries are decreasing from right to left,
and, within a column, priorities of entries are decreasing from bottom to top.
One can compute such an ordering in O(

N log(n + m)
)

time [18].
Assume now that we are given a β-acyclic hypergraph H and a doubly lexical

ordering σ for some incidence matrix M for H, even though we are not given M
itself. For two hyperedges Ei and Ej of H, we say Ei � Ej if the column of Ei

is lexicographically smaller than or equal to the column of Ej with respect to σ.
Then, we can observe the following.

Lemma 11. Let Ei and Ej be two hyperedges of H and let v be the vertex
in Ei which is earliest in the doubly lexical ordering (i.e., highest in M). Then,
Ei ⊆ Ej if and only if Ei � Ej and v ∈ Ej.

Lemma 11 allows to compute the subset graph G of a β-acyclic hypergraph
as follows. First, find doubly lexicographical ordering of vertices and hyperedges.
For each hyperedge E, determine all hyperedges E′ with E � E′ which contain v
as defined in Lemma 11, and add the edge (E,E′) into G.

Theorem 12. There is an algorithm that computes the subset graph G of a
given β-acyclic hypergraph in O(

N log(n + m) + |G|) time.

Using Theorem 12 together with Algorithm 2 allows us to conclude this
subsection as follows.

Theorem 13. If a hypergraph is β-acyclic, then its separator hypergraph is
β-acyclic, too. Therefore, there is an algorithm that computes the union join
graph G of a given β-acyclic hypergraph in O(

N log(n + m) + |G|) time.

4.2 γ-Acyclic Hypergraphs

A hypergraph is γ-acyclic if, for all distinct hyperedges Ei and Ej , Ei ∩ Ej �= ∅
implies Ei ∩ Ej separates Ei \ Ej from Ej \ Ei. Fagin [10] gives various other
definitions. The line graph L(H) of a hypergraph H is the intersection graph of
its hyperedges. That is, L(H) = (E , EL) with EL = {EiEj | Ei, Ej ∈ E ;Ei∩Ej �=
∅ }. Based on these definitions and Lemma 5, we can observe the following.

582 A. Leitert

Theorem 14. An acyclic hypergraph is γ-acyclic if and only if its line graph is
isomorphic to its union join graph. Therefore, there is an algorithm that com-
putes the union join graph G of a given γ-acyclic hypergraph in O(

N + |G|)
time.

Consider a hypergraph H = (V, E), let E ′ be a subset of E , and let X be
the intersection of all hyperedges in E ′. We then define X as the set of all
such X which are non-empty, i.e., X =

⋃
E′⊆E

{
X

∣
∣
∣ X =

⋂
E∈E′ E,X �= ∅

}
. The

Bachman diagram B(H) of H is a directed graph with the node set X such that
there is an edge from X to Y if X ⊃ Y and there is no Z with X ⊃ Z ⊃ Y.
Note that, if H contains two distinct hyperedges Ei and Ej with the same
vertices, they are represented by the same node in B(H). It is known [10] that
a hypergraph is γ-acyclic if and only if its Bachman diagram forms a tree.

Let φ(E) be the node of B(H) which represents the hyperedge E. We can then
make the following observation: For two hyperedges Ei and Ej of H, Ei ⊆ Ej

if and only if there is a path from φ(Ej) to φ(Ei) in B(H). Using a technique
from [22] and a strong connection between γ-acyclic hypergraphs and distance-
hereditary graphs allow us to compute a simplified version of a Bachman diagram
in O(N) time. Together with the observation above, we are then able to achieve
the following result.

Theorem 15. There is an algorithm that computes the subset graph G of a
given γ-acyclic hypergraph in O(

N + |G|) time.

4.3 Interval Hypergraphs

An acyclic hypergraph H = (V, E) is an interval hypergraph if it admits a join
tree that forms a path. That is, there is an order σ = 〈E1, E2, . . . , Em〉 for the
hyperedges of H such that, for each vertex v ∈ V , v ∈ Ei ∩ Ej implies that
v ∈ Ek for all k with i ≤ k ≤ j. One can recognise interval hypergraphs and
compute a corresponding order σ in linear time [13].

To compute the subset graph and union join graph, we first determine for
each vertex v the index φ(v) of the left-most hyperedge containing it (with
respect to σ). Next, we compute the separators between consecutive hyperedges
(see Algorithm 1). Let Si denote the separator between Ei−1 and Ei and let
φ(Si) = maxv∈Si

φ(v). Then, for each Ej with j < i, it holds that (i) Ej ⊇ Ei if
and only if |Ei| = |Si| and j ≥ φ(Si), and (ii) EiEj is an edge of the union join
graph of H if and only if j ≥ φ(Si). Running the same approach again using the
reverse of σ therefore allows to compute the subset graph and union join graph
in O(

N + |G|) time.

Theorem 16. There are algorithms that compute the union join graph and sub-
set graph, respectively, of a given interval hypergraph in O(

N + |G|) time where
|G| is the size of the computed graph.

Acknowledgements. We would like to thank Feodor F. Dragan and Rachel Walker
for stimulating discussions.

Union Join and Subset Graph of Acyclic Hypergraphs 583

References

1. Beeri, C., Fagin, R., Maier, D., Yannakakis, M.: On the desirability of acyclic
database schemes. J. ACM 30(3), 479–513 (1983). https://doi.org/10.1145/2402.
322389

2. Berry, A., Simonet, G.: Computing the atom graph of a graph and the union join
graph of a hypergraph. CoRR abs/1607.02911 (2016)

3. Borassi, M., Crescenzi, P., Habib, M.: Into the square: on the complexity of some
quadratic-time solvable problems. Electron. Notes Theor. Comput. Sci. 322, 51–67
(2016). https://doi.org/10.1016/j.entcs.2016.03.005

4. Brandstädt, A., Dragan, F.F.: Tree-structured graphs. In: Handbook of Graph
Theory, Combinatorial Optimization, and Algorithms, pp. 751–826. CRC Press
(2015)

5. Brandstädt, A., Dragan, F.F., Chepoi, V., Voloshin, V.I.: Dually chordal
graphs. SIAM J. Discret. Math. 11(3), 437–455 (1998). https://doi.org/10.1137/
S0895480193253415

6. Dourisboure, Y.: Compact routing schemes for generalised chordal graphs. J. Graph
Algorithms Appl. 9(2), 277–297 (2005). https://doi.org/10.7155/jgaa.00109

7. Dourisboure, Y., Dragan, F.F., Gavoille, C., Yan, C.: Spanners for bounded tree-
length graphs. Theoret. Comput. Sci. 383(1), 34–44 (2007). https://doi.org/10.
1016/j.tcs.2007.03.058

8. Dragan, F.F., Köhler, E.: An approximation algorithm for the tree t-spanner prob-
lem on unweighted graphs via generalized chordal graphs. Algorithmica 69(4),
884–905 (2013). https://doi.org/10.1007/s00453-013-9765-4

9. Elmasry, A.: Computing the subset partial order for dense families of sets. Inf.
Process. Lett. 109(18), 1082–1086 (2009). https://doi.org/10.1016/j.ipl.2009.07.
001

10. Fagin, R.: Degrees of acyclicity for hypergraphs and relational database schemes.
J. ACM 30(3), 514–550 (1983). https://doi.org/10.1145/2402.322390

11. Galinier, P., Habib, M., Paul, C.: Chordal graphs and their clique graphs. In: Nagl,
M. (ed.) WG 1995. LNCS, vol. 1017, pp. 358–371. Springer, Heidelberg (1995).
https://doi.org/10.1007/3-540-60618-1 88

12. Gavril, F.: The intersection graphs of subtrees in trees are exactly the chordal
graphs. J. Comb. Theory Ser. B 16(1), 47–56 (1974). https://doi.org/10.1016/
0095-8956(74)90094-X

13. Habib, M., McConnell, R.M., Paul, C., Viennot, L.: LEX-BFS and partition refine-
ment, with applications to transitive orientation, interval graph recognition and
consecutive ones testing. Theor. Comput. Sci. 234(1–2), 59–84 (2000). https://
doi.org/10.1016/S0304-3975(97)00241-7

14. Habib, M., Stacho, J.: Reduced clique graphs of chordal graphs. Eur. J. Comb.
33(5), 712–735 (2012). https://doi.org/10.1016/j.ejc.2011.09.031

15. Kaba, B., Pinet, N., Lelandais, G., Sigayret, A., Berry, A.: Clustering gene expres-
sion data using graph separators. Silico Biol. 7(4–5), 433–452 (2007)

16. Leimer, H.: Optimal decomposition by clique separators. Discret. Math. 113(1–3),
99–123 (1993). https://doi.org/10.1016/0012-365X(93)90510-Z

17. Leitert, A.: Computing the union join and subset graph of acyclic hypergraphs in
subquadratic time. CoRR abs/2104.06636 (2021)

18. Paige, R., Tarjan, R.E.: Three partition refinement algorithms. SIAM J. Comput.
16(6), 973–989 (1987). https://doi.org/10.1137/0216062

https://doi.org/10.1145/2402.322389
https://doi.org/10.1145/2402.322389
https://doi.org/10.1016/j.entcs.2016.03.005
https://doi.org/10.1137/S0895480193253415
https://doi.org/10.1137/S0895480193253415
https://doi.org/10.7155/jgaa.00109
https://doi.org/10.1016/j.tcs.2007.03.058
https://doi.org/10.1016/j.tcs.2007.03.058
https://doi.org/10.1007/s00453-013-9765-4
https://doi.org/10.1016/j.ipl.2009.07.001
https://doi.org/10.1016/j.ipl.2009.07.001
https://doi.org/10.1145/2402.322390
https://doi.org/10.1007/3-540-60618-1_88
https://doi.org/10.1016/0095-8956(74)90094-X
https://doi.org/10.1016/0095-8956(74)90094-X
https://doi.org/10.1016/S0304-3975(97)00241-7
https://doi.org/10.1016/S0304-3975(97)00241-7
https://doi.org/10.1016/j.ejc.2011.09.031
https://doi.org/10.1016/0012-365X(93)90510-Z
https://doi.org/10.1137/0216062

584 A. Leitert

19. Pritchard, P.: Opportunistic algorithms for eliminating supersets. Acta Inform.
28(8), 733–754 (1991). https://doi.org/10.1007/BF01261654

20. Pritchard, P.: On computing the subset graph of a collection of sets. J. Algorithms
33(2), 187–203 (1999). https://doi.org/10.1006/jagm.1999.1032

21. Tarjan, R.E., Yannakakis, M.: Simple linear-time algorithms to test chordality of
graphs, test acyclicity of hypergraphs, and selectively reduce acyclic hypergraphs.
SIAM J. Comput. 13(3), 566–579 (1984). https://doi.org/10.1137/0213035

22. Uehara, R., Uno, Y.: Laminar structure of ptolemaic graphs with applications.
Discret. Appl. Math. 157(7), 1533–1543 (2009). https://doi.org/10.1016/j.dam.
2008.09.006

https://doi.org/10.1007/BF01261654
https://doi.org/10.1006/jagm.1999.1032
https://doi.org/10.1137/0213035
https://doi.org/10.1016/j.dam.2008.09.006
https://doi.org/10.1016/j.dam.2008.09.006

Algorithms for the Line-Constrained Disk
Coverage and Related Problems

Logan Pedersen and Haitao Wang(B)

Department of Computer Science, Utah State University, Logan, UT 84322, USA
logan.pedersen@aggiemail.usu.edu, haitao.wang@usu.edu

Abstract. Given a set P of n points and a set S of m weighted disks
in the plane, the disk coverage problem asks for a subset of disks of
minimum total weight that cover all points of P . The problem is NP-
hard. In this paper, we consider a line-constrained version in which all
disks are centered on a line L (while points of P can be anywhere in the
plane). We present an O((m + n) log(m + n) + κ logm) time algorithm
for the problem, where κ is the number of pairs of disks that intersect.
For the unit-disk case where all disks have the same radius, the running
time can be reduced to O((n + m) log(m + n)). In addition, we solve in
O((m+n) log(m+n)) time the L∞ and L1 cases of the problem, in which
the disks are squares and diamonds, respectively. Using our techniques,
we further solve two other geometric coverage problems. Given in the
plane a set P of n points and a set S of n weighted half-planes, we solve
in O(n4 log n) time the problem of finding a subset of half-planes to cover
P so that their total weight is minimized. This improves the previous best
algorithm of O(n5) time by almost a linear factor. If all half-planes are
lower ones, our algorithm runs in O(n2 log n) time, which improves the
previous best algorithm of O(n4) time by almost a quadratic factor.

Keywords: Disk coverage · Line-constrained · Half-plane coverage ·
Geometric coverage · Facility location

1 Introduction

Given a set P of n points and a set S of m disks in the plane such that each disk
has a weight, the disk coverage problem asks for a subset of disks of minimum
total weight that cover all points of P . We assume that the union of all disks cov-
ers all points of P . The problem is known to be NP-hard [11] and approximation
algorithms have been proposed, e.g., [17,19].

In this paper, we consider a line-constrained version of the problem in which
all disks (possibly with different radii) have their centers on a line L, say, the
x-axis. To the best of our knowledge, this line-constrained problem was not
particularly studied before. We present an O((m+n) log(m+n)+κ log m) time

This research was supported in part by NSF under Grant CCF-2005323. A full version
of this paper is available at https://arxiv.org/abs/2104.14680.

c© Springer Nature Switzerland AG 2021
A. Lubiw et al. (Eds.): WADS 2021, LNCS 12808, pp. 585–598, 2021.
https://doi.org/10.1007/978-3-030-83508-8_42

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-83508-8_42&domain=pdf
https://arxiv.org/abs/2104.14680
https://doi.org/10.1007/978-3-030-83508-8_42

586 L. Pedersen and H. Wang

algorithm, where κ is the number of pairs of disks that intersect (and thus
κ ≤ m(m − 1)/2; e.g., if the disks are disjoint, then κ = 0 and the algorithm
runs in O((m + n) log(m + n)) time). For the unit-disk case where all disks have
the same radius, the running time can be reduced to O((n+m) log(m+n)). We
also solve in O((m + n) log(m + n)) time the L∞ and L1 cases of the problem,
in which the disks are squares and diamonds, respectively. As a by-product, we
obtain an O((m+n) log(m+n)) time algorithm for the 1D version of the problem
where all points of P are on L and the disks are line segments of L. In addition,
we show that the problem has an Ω((m + n) log(m + n)) time lower bound in
the algebraic decision tree model even for the 1D case. This implies that our
algorithms for the 1D, L∞, L1, and unit-disk cases are all optimal.

Our algorithms potentially have applications, e.g., in facility locations. For
example, suppose we want to build some facilities along a railway which is rep-
resented by L (although an entire railway may not be a straight line, it may be
considered straight in a local region) to provide service for some customers that
are represented by the points of P . The center of a disk represents a candidate
location for building a facility that can serve the customers covered by the disk
and the cost for building the facility is the weight of the disk. The problem is to
determine the best locations to build facilities so that all customers can be served
and the total cost is minimized. This is exactly an instance of our problem.

Although the problems are line-constrained, our techniques can actually be
used to solve other geometric coverage problems. If all disks of S have the same
radius and the set of disk centers are separated from P by a line �, the problem
is called line-separable unit-disk coverage. The unweighted case of the problem
where the weights of all disks are 1 has been studied in the literature [2,9,10]. In
particular, the fastest algorithm was given by Claude et al. [9] and the runtime
is O(n log n + nm). The algorithm, however, does not work for the weighted
case. Our algorithm for the line-constrained L2 case can be used to solve the
weighted case in O(nm log(m + n)) time or in O((m + n) log(m + n) + κ log m)
time, where κ is the number of pairs of disks that intersect on the side of � that
contains P . More interestingly, we can use the algorithm to solve the following
half-plane coverage problem. Given in the plane a set P of n points and a set
S of m weighted half-planes, find a subset of the half-planes to cover all points
of P so that their total weight is minimized. For the lower-only case where
all half-planes are lower ones, Chan and Grant [8] gave an O(mn2(m + n)) time
algorithm. In light of the observation that a half-plane is a special disk of infinite
radius, our line-separable unit-disk coverage algorithm can be applied to solve
the problem in O(nm log(m + n)) time or in O(n log n + m2 log m) time. This
improves the result of [8] by almost a quadratic factor (note that the techniques
of [8] are applicable to more general problem settings such as downward shadows
of x-monotone curves). For the general case where both upper and lower half-
planes are present, Har-Peled and Lee [13] proposed an algorithm of O(n5) time
when m = n. By using our lower-only case algorithm, we solve the problem in
O(n3m log(m + n)) time or in O(n3 log n + n2m2 log m) time. Hence, our result
improves the one in [13] by almost a linear factor.

Algorithms for the Line-Constrained Disk Coverage and Related Problems 587

1.1 Related Work

Our problem is a new type of set cover. The general set cover problem, which
is fundamental and has been studied extensively, is hard to solve, even approx-
imately [12,14,18]. Many set cover problems in geometric settings, often called
geometric coverage problems, are also NP-hard, e.g., [8,13]. As mentioned above,
if the line-constrained condition is dropped, then the disk coverage problem
becomes NP-hard, even if all disks are unit disks with the same weight [11].
Polynomial time approximation schemes (PTAS) exist for the unweighted prob-
lem [19] as well as the weighted unit-disk case [17].

Alt et al. [1] studied a problem closely related to ours, with the same input,
consisting of P , S, and L, and the objective is also to find a subset of disks of
minimum total weight that cover all points of P . But the difference is that S
is comprised of all possible disks centered at L and the weight of each disk is
defined as rα with r being the radius of the disk and α being a given constant at
least 1. Alt et al. [1] gave an O(n4 log n) time algorithm for any Lp metric and
any α ≥ 1, an O(n2 log n) time algorithm for any Lp metric and α = 1, and an
O(n3 log n) time algorithm for the L∞ metric and any α ≥ 1. Recently, Pedersen
and Wang [20] improved all these results by providing an O(n2) time algorithm
for any Lp metric and any α ≥ 1. A 1D variation of the problem was studied
in the literature where points of P are all on L and another set Q of m points
is given on L as the only candidate centers for disks. Bilò et al. [5] first showed
that the problem is solvable in polynomial time. Lev-Tov and Peleg [16] gave an
algorithm of O((n + m)3) time for any α ≥ 1. Biniaz et al. [6] recently proposed
an O((n + m)2) time algorithm for the case α = 1. Pedersen and Wang [20]
solved the problem in O(n(n + m) + m log m) time for any α ≥ 1.

Other line-constrained problems have also been studied in the literature,
e.g., [15,21].

1.2 Our Approach

We first solve the 1D problem by a simple dynamic programming algorithm.
Then, for the “1.5D” problem (i.e., points of P are in the plane), an observation
is that if the points of P are sorted by their x-coordinates, then the sorted list
can be partitioned into sublists such that there exists an optimal solution in
which each disk covers a sublist. Based on the observation, we reduce the 1.5D
problem to an instance of the 1D problem with a set P ′ of n points and a set S′

of segments. But two challenges arise.
The first challenge is to give a small bound on |S′|. A naive method shows

that |S′| ≤ n · m. In the unit-disk case and the L1 case, we prove that |S′| can
be reduced to m by similar methods. In the L∞ case, we show that |S′| can be
bounded by 2(n + m). The most challenging case is the L2 case. By a number
of observations, we prove that |S′| ≤ 2(n + m) + κ.

The second challenge is to compute the set S′ (P ′, which actually consists of
all projections of the points of P onto L, can be easily obtained in O(n) time).
Our algorithms for computing S′ for all cases use the sweeping technique. The

588 L. Pedersen and H. Wang

algorithms for the unit-disk case and the L1 case are relatively easy, while those
for the L∞ and L2 cases require much more effort. Although the two algorithms
for L∞ and L2 are similar in spirit, the intersections of the disks in the L2 case
bring more difficulties and make the algorithm more involved and less efficient.
In summary, computing S′ can be done in O((n + m) log(n + m)) time for all
cases except the L2 case which takes O((n + m) log(n + m) + κ log m) time.

Outline. The rest of the paper is organized as follows. We define notation in
Sect. 2. The algorithms for the L∞ and L2 cases are given in Sect. 3. Due to
the space limit, lemma proofs, algorithms for the unit-disk, and L1 cases, the
lower bound proof (which is based on a reduction from the element uniqueness
problem), algorithms for the line-separable disk coverage and half-plane coverage
problems are all omitted but can be found in the full paper.

2 Preliminaries

We assume that L is the x-axis. We also assume that all points of P are above
or on L because if a point pi is below L, then we could obtain the same optimal
solution by replacing pi with its symmetric point with respect to L. For ease of
exposition, we make a general position assumption that no two points of P have
the same x-coordinate and no point of P lies on the boundary of a disk of S.

For any point p in the plane, we use x(p) and y(p) to refer to its x-coordinate
and y-coordinate, respectively. We sort all points of P by their x-coordinates, and
let p1, p2, . . . , pn be the sorted list from left to right on L. For any 1 ≤ i ≤ j ≤ n,
let P [i, j] denote the subset {pi, pi+1, . . . , pj}. Sometimes we use indices to refer
to points of P , e.g., point i refers to pi.

We sort all disks of S by the x-coordinates of their centers from left to right,
and let s1, s2, . . . , sm be the sorted list. For each si, let ci denote its center and
wi denote its weight. We assume that each wi is positive (otherwise one could
always include si in the solution). For each disk si, let li and ri refer to its
leftmost and rightmost points, respectively.

We often talk about the relative positions of two geometric objects O1 and
O2 (e.g., two points, or a point and a line). We say that O1 is to the left of O2 if
x(p) ≤ x(p′) holds for any point p ∈ O1 and any point p′ ∈ O2, and strictly left
means x(p) < x(p′). Similarly, we can define right, above, below, etc.

For convenience, we use p0 (resp., pn+1) to denote a point on L strictly to the
left (resp. right) of all points of P and all disks of S. We use the term optimal
solution subset to refer to a subset of S used in an optimal solution.

In the 1D problem, each disk si ∈ S is a line segment on L. The problem
can be solved by a straightforward dynamic programming algorithm of O((n +
m) log(n+m)) time. The details are omitted but can be found in the full paper.

3 The L∞ and L2 Cases

In this section, we give our algorithms for the L∞ and L2 cases. The algorithms
are similar in the high level. However, the L2 case is more involved in the low

Algorithms for the Line-Constrained Disk Coverage and Related Problems 589

level computations. In Sect. 3.1, we present a high-level algorithmic scheme that
works for both metrics. Then, we complete the algorithms for the L∞ and L2

cases in Sects. 3.2 and 3.3, respectively.

3.1 An Algorithmic Scheme for L∞ and L2 Metrics

In this subsection, unless otherwise stated, all statements are applicable to both
metrics. Note that a disk in the L∞ metric is a square.

For a disk sk ∈ S, we say that a subsequence P [i, j] of P with 1 ≤ i ≤ j ≤ n
is a maximal subsequence covered by sk if all points of P [i, j] are covered by sk

but neither pi−1 nor pj+1 is covered by sk (it is well defined due to p0 and pn+1).
Let F (sk) be the set of all maximal subsequences covered by sk. Note that the
subsequences of F (sk) are pairwise disjoint.

Lemma 1. Suppose Sopt is an optimal solution subset and sk is a disk of Sopt.
Then, there is a subsequence P [i, j] in F (sk) such that the following hold.

1. P [i, j] has a point that is not covered by any disk in Sopt \ {sk}.
2. For any point p ∈ P that is covered by sk but is not in P [i, j], p is covered by

a disk in Sopt \ {sk}.
In light of Lemma 1, we reduce the problem to an instance of the 1D problem

with a point set P ′ and a line segment set S′, as follows.
For each point of P , we vertically project it on L, and the set P ′ is comprised

of all such projected points. Thus P ′ has exactly n points. For any 1 ≤ i ≤ j ≤ n,
we use P ′[i, j] to denote the projections of the points of P [i, j]. For each point
pi ∈ P , we use p′

i to denote its projection point in P ′.
The set S′ is defined as follows. For each disk sk ∈ S and each subsequence

P [i, j] ∈ F (sk), we create a segment for S′, denoted by s[i, j], with left endpoint
at p′

i and right endpoint at p′
j . Thus, s[i, j] covers exactly the points of P ′[i, j].

We set the weight of s[i, j] to wk. Note that if s[i, j] is already in S′, which is
defined by another disk sh, then we only need to update its weight to wk in case
wk < wh (so each segment appears only once in S′). We say that s[i, j] is defined
by sk (resp., sh) if its weight is equal to wk (resp., wh).

By Lemma 1, we intend to say that an optimal solution OPT ′ to the 1D
problem on P ′ and S′ corresponds to an optimal solution OPT to the original
problem on P and S as follows: if a segment s[i, j] ∈ S′ is included in OPT ′,
then we include the disk that defines s[i, j] in OPT . However, since a disk of S
may define multiple segments of S′, to guarantee the correctness of the corre-
spondence, we need to show that OPT ′ is a valid solution: no two segments in
OPT ′ are defined by the same disk of S. For this, we have the following lemma.

Lemma 2. Any optimal solution on P ′ and S′ is a valid solution.

With our algorithm for the 1D problem, we have the following result.

Lemma 3. If the set S′ is computed, then an optimal solution can be found in
O((n + |S′|) log(n + |S′|)) time.

590 L. Pedersen and H. Wang

Fig. 1. Illustrating the definition of bounding couples: the numbers are the indices of
the points of P . In this example, pl(sk) is point 2 and pr(sk) is point 11, and the
bounding couples are: (2, 3), (3, 5), (5, 7), (7, 10), (10, 11).

It remains to determine the size of S′ and compute S′. An obvious answer
is that |S′| is bounded by m · �n/2� because each disk can have at most �n/2�
maximal sequences of P , and a trivial algorithm can compute S′ in O(nm log(m+
n)) time by scanning the sorted list P for each disk. Therefore, by Lemma 3, we
can solve the problem in both L∞ and L2 metrics in O(nm log(m + n)) time.

With more geometric observations, we will prove the following two lemmas.

Lemma 4. In the L∞ metric, |S′| ≤ 2(n + m) and S′ can be computed in
O((n + m) log(n + m)) time.

Lemma 5. In the L2 metric, |S′| ≤ 2(n + m) + κ and S′ can be computed in
O((n + m) log(n + m) + κ log m) time, where κ is the number of pairs of disks
of S that intersect each other.

With Lemma 3, we can solve the L∞ case in O((n+m) log(n+m)) time and
the L2 case in O((n + m) log(n + m) + κ log m) time.

Bounding Couples. Before moving on, we introduce a new concept bounding
couples, which will be used to prove Lemmas 4 and 5 later.

Consider a disk sk ∈S. Let pl(sk) denote the rightmost point of P ∪ {p0, pn+1}
strictly to the left of lk; similarly, let pr(sk) denote the leftmost point of P ∪
{p0, pn+1} strictly to the right of rk. Let P (sk) denote the subset of points of P
between pl(sk) and pr(sk) inclusively that are outside sk. We sort the points of
P (sk) by their x-coordinates, and we call each adjacent pair of points (or their
indices) in the sorted list a bounding couple (e.g., see Fig. 1). Let C(sk) denote
the set of all bounding couples of sk, and for each bounding couple of C(sk), we
assign wk to it as the weight. Let C =

⋃
1≤k≤m C(sk), and if the same bounding

couple is defined by multiple disks, we only keep the copy in C with the minimum
weight. Also, we consider a bounding couple (i, j) as an ordered pair with i < j,
and i is considered as the left end of the couple while j is the right end.

The reason why we define bounding couples is that if P [i, j] is a maximal
subsequence of P covered by sk then (i − 1, j + 1) is a bounding couple. On the
other hand, if (i, j) is a bounding couple of C(sk), then P [i+1, j−1] is a maximal
subsequence of P covered by sk unless j = i + 1. Hence, each bounding couple
(i, j) of C with j �= i + 1 corresponds to a segment in the set S′, and |S′| ≤ |C|.

Algorithms for the Line-Constrained Disk Coverage and Related Problems 591

Observe that C has at most n − 1 couples (i, j) with j = i + 1, and given C, we
can obtain S′ in additional O(|C|) time. According to our above discussion, to
prove Lemmas 4 and 5, it suffices to prove the following two lemmas.

Lemma 6. In the L∞ metric, |C| ≤ 2(n+m) and C can be computed in O((n+
m) log(n + m)) time.

Lemma 7. In the L2 metric, |C| ≤ 2(n + m) + κ and C can be computed in
O((n + m) log(n + m) + κ log m) time.

Consider a bounding couple (i, j) of C, defined by a disk sk. We call it a
left bounding couple if pi = pl(sk), a right bounding couple if pj = pr(sk), and
a middle bounding couple otherwise (e.g., in Fig. 1, (2, 3) is the left bounding
couple, (10, 11) is the right bounding couple, and the rest are middle bounding
couples). Note that a disk can define at most one left bounding couple and at
most one right bounding couple. Therefore, the number of left and right bounding
couples in C is at most 2m. It remains to bound the number of middle bounding
couples of C. We will prove Lemma 6 and 7 in Sects. 3.2 and 3.3, respectively.

3.2 The L∞ Metric

In this section, our goal is to prove Lemma 6. In the L∞ metric, every disk is a
square that has four axis-parallel edges. We use lk and rk to particularly refer
to the left and right endpoints of the upper edge of sk, respectively.

For a point pi and a square sk, we say that pi is vertically above (resp.,
below) the upper edge of sk if pi is above (resp., below) the upper edge of sk and
x(lk) ≤ x(pi) ≤ x(rk). Due to our general position assumption, pi is not on the
boundary of sk, and thus pi above/below the upper edge of sk implies that pi

is strictly above/below the edge. Also, since no point of P is below L, a point
pi ∈ P is in sk if and only if pi is vertically below the upper edge of sk. If pi is
vertically above the upper edge of sk, we also say that pi is vertically above sk

or sk is vertically below pi. The following lemma proves an upper bound for |C|.
Lemma 8. |C| ≤ 2(n + m).

We proceed to compute the set C. The following lemma gives an algorithm
to compute all left and right bounding couples of C.

Lemma 9. All left and right bounding couples of C can be computed in O((n +
m) log(n + m)) time.

Computing the Middle Bounding Couples We now compute all middle
bounding couples of C. We sweep a vertical line l from left to right, and an
event happens if l encounters a point in P ∪ {lk, rk| 1 ≤ k ≤ m}. Let H be
the set of disks that intersect l. During the sweeping, we maintain the following
information and invariants (e.g., see Fig. 2).

592 L. Pedersen and H. Wang

Fig. 2. In this example, P (l) = {pi1 , pi2 , pi3 , pi4}. Each horizontal segment represents
the upper edge of a disk. H(i1) consists of two blue disks and H(i4) consists of two red
disks. H0 consists of three black disks. After processing the event at ph, i2, i3, and i4
will be removed from P (l) and ph will be inserted, so after the event P (l) = {pi1 , ph}.
(i2, h), (i3, h), (i4, h) will be reported as middle bounding couples. (Color figure online)

1. A sequence P (l) = {pi1 , pi2 , . . . , pit} of t points of P , which are to the left of l
and ordered from northwest to southeast. P (l) is stored in a balanced binary
search tree T (P (l)).

2. A collection H of t + 1 subsets of H: H(ij) for j = 0, 1, . . . , t, which form a
partition of H, defined as follows.
H(it) is the subset of disks of H that are vertically below pit . For each j =
t − 1, t − 2, . . . , 1, H(ij) is the subset of disks of H \ ⋃t

k=j+1 H(ik) that are
vertically below pij . H(i0) = H \ ⋃t

j=1 H(ij). While H(i0) may be empty,
none of H(ij) for 1 ≤ j ≤ t is empty.
Each H(ij) is maintained by a balanced binary search tree T (H(ij)) ordered
by the y-coordinates of the upper edges of the disks. We have all disks stored
in leaves of T (H(ij)), and each internal node v of the tree also stores a weight
equal to the minimum weight of all disks in the leaves of the subtree at v.

3. For each point pij ∈ P (l), among all points of P strictly between pij and l,
no point is vertically above any disk of H(ij).

4. Among all points of P strictly to the left of l, no point is vertically above any
disk of H(i0).

In summary, our algorithm maintains the following trees: T (P (l)), T (H(ij))
for all j ∈ [0, t]. Initially when l is to the left of all disks and points of P , we
have H = ∅ and P (l) = ∅. We next describe how to process events.

If l encounters the left endpoint lk of a disk sk, we insert sk to H(i0). The
time for processing this event is O(log m) since |H(i0)| ≤ m.

If l encounters the right endpoint rk of a disk sk, we need to determine which
set H(ij) of H contains sk. For this, we associate each right endpoint with its
disk in the preprocessing so that it can keep track of which set of H contains the
disk. Using this mechanism, we can determine the set H(ij) that contains sk in
constant time. We then remove sk from T (H(ij)). If H(ij) becomes empty and
j �= 0, then we remove pij from P (l). One can verify that all algorithm invariants
still hold. The time for processing this event is O(log(m + n)).

Algorithms for the Line-Constrained Disk Coverage and Related Problems 593

If l encounters a point ph of P , which is a major event we need to handle, we
process it as follows. We search T (P (l)) to find the first point pij of P (l) below
ph (e.g., j = 3 in Fig. 2). We remove the points pik for all k ∈ [j, t] from P (l).

Lemma 10. For each point pik with k ∈ [j, t], (ik, h) is a middle bounding
couple defined by and only by the disks of H(ik) (i.e., H(ik) consists of all disks
of S that define (ik, h) as a middle bounding couple).

By Lemma 10, for each k ∈ [j, t], we report (ik, h) as a middle bounding couple
with weight equal to the minimum weight of all disks of H(ik), which is stored
at the root of T (H(ik)).

Next, we process the point pij−1 , for which we have the following lemma. The
proof technique is similar to that for Lemma 10, so we omit it.

Lemma 11. If ph is vertically below the lowest disk of H(ij−1), then (ij−1, h)
is not a middle bounding couple; otherwise, (ij−1, h) is a middle bounding couple
defined by and only by disks of Hj−1 that are vertically below ph.

By Lemma 11, we first check whether ph is vertically below the lowest disk
of H(ij−1). If yes, we do nothing. Otherwise, we report (ij−1, h) as a middle
bounding couple with weight equal to the minimum weight of all disks of H(ij−1)
vertically below ph, which can be computed in O(log m) time by using weights
at the internal nodes of T (H(ij−1)). We further have the following lemma.

Lemma 12. If all disks of H(ij−1) are vertically below ph, then there does not
exist a middle bounding couple (ij−1, b) with b > h.

We check whether ph is above the highest disk of H(ij−1) using the tree
T (H(ij−1)). If yes, then the above lemma tells that there will be no more middle
bounding couples involving ij−1 any more, and thus we remove pij−1 from P (l).

The following lemma implies that all middle bounding couples with ph as the
right end have been computed.

Lemma 13. For any middle bounding couple (b, h), b must be in
{ij−1, ij , . . . , it}.

Next, we add ph to the end of the current sequence P (l) (note that the points
pik for all k ∈ [j, t] and possibly pij−1 have been removed from P (l); e.g., see
Fig. 2). Finally, we need to compute the tree T (H(h)) for the set H(h), which
is comprised of all disks of H vertically below ph since ph is the lowest point of
P (l). We compute T (H(h)) as follows.

First, starting from an empty tree, for each k = t, t − 1, . . . , j in this order,
we merge T (H(h)) with the tree T (H(ik)). Notice that the upper edge of each
disk in T (H(ik)) is higher than the upper edges of all disks of T (H(h)). There-
fore, each such merge operation can be done in O(log m) time. Second, for the
tree T (H(ij−1)), we perform a split operation to split the disks into those with
upper edges above ph and those below ph, and then merge those below ph with
T (H(h)) while keeping those above ph in T (H(ij−1)). The above split and merge

594 L. Pedersen and H. Wang

operations can be done in O(log m) time. Third, we remove those disks below ph

from H(i0) and insert them to T (H(h)). This is done by repeatedly removing
the lowest disk s from H(i0) and inserting it to T (H(h)) until the upper edge
of s is higher than ph. This completes our construction of the tree T (H(h)).

The above describes our algorithm for processing the event at ph. One can
verify that all algorithm invariants still hold. The runtime of this step is O((1 +
k1+k2) log m), where k1 is the number of points removed from P (l) (the number
of merge operations is at most k1) and k2 is the number of disks of H(i0) got
removed for constructing T (H(h)). As we sweep the line l from left to right,
once a point is removed from P (l), it will not be inserted again, and thus the
total sum of k1 in the entire algorithm is at most n. Also, once a disk is removed
from H(i0), it will never be inserted again, and thus the total sum of k2 in
the entire algorithm is at most m. Hence, the overall time of the algorithm is
O((n + m) log(n + m)). This proves Lemma 6.

3.3 The L2 Metric

In this section we prove Lemma 7. Recall our general position assumption that
no point of P is on the boundary of a disk of S. Also recall that all points of P
are above L. In the L2 metric, the two extreme points lk and rk of a disk sk are
unique. For a point pi ∈ P and a disk sk ∈ S, we say that pi is vertically above
sk if pi is outside sk and x(lk) ≤ x(pi) ≤ x(rk), and pi is vertically below sk if
pi is inside sk. We also say that sk is vertically below pi if pi is vertically above
sk. Lemma 14 gives an upper bound for |C|.
Lemma 14. |C| ≤ 2(n + m) + κ.

We next describe our algorithm for computing the set C. For each disk sk, we
refer to the half-circle of the boundary of sk above L as the arc of sk. Note that
every two arcs of S intersect at most once. Below, depending on the context,
sk may also refer to its arc. Lemma 15 computes the left and right bounding
couples.

Lemma 15. All left and right bounding couples of C can be computed in O((n+
m) log(n + m) + κ log m) time.

To compute the middle bounding pairs of C, the algorithm is similar in spirit
to that for the L∞ case. However, it is more involved and requires new techniques
due to the nature of the L2 metric as well as the intersections of the disks of S.
We sweep a vertical line l from left to right; an event happens if l encounters a
point in P ∪ {lk, rk| 1 ≤ k ≤ m} or an intersection of two disk arcs. Let H be
the set of arcs that intersect l. During the sweeping, we maintain the following
information and invariants (e.g., see Fig. 3).

1. A sequence P (l) = {pi1 , pi2 , . . . , pit} of t points to the left of l that are sorted
from left to right. P (l) is maintained by a balanced binary search tree T (P (l)).

Algorithms for the Line-Constrained Disk Coverage and Related Problems 595

Fig. 3. In this example, P (l) = {pi1 , pi2 , pi3 , pi4}. H(i1) consists of the two blue arcs
and H(i4) consists of the two red arcs. H(i0) consists of the only black arc. After
processing the event at ph ∈ P , (i2, h) and (i4, h) will be reported as middle bounding
couples, point i2 will be removed from P (l), and ph will be inserted to P (l). (Color
figure online)

2. A collection H of t + 1 subsets of H: H(ij) for j = 0, 1, . . . , t, which form a
partition of H, defined as follows. H(it) is the set of disks of H vertically below
pit . For each j = t − 1, t − 2, . . . , 1, H(ij) is the set of disks of H\⋃t

k=j+1 H(ik)
vertically below pij . H(i0) = H \ ⋃t

j=1 H(ij). While H(i0) may be empty,
none of H(ij) for j ≥ 1 is empty.
Each H(ij) for 0 ≤ j ≤ t is maintained by a balanced binary search tree
T (H(ij)) ordered by the y-coordinates of the intersections of l with the arcs
of the disks. We have all disks stored in the leaves of the tree, and each internal
node v of the tree stores a weight that is equal to the minimum weight of all
disks in the leaves of the subtree rooted at v.
For each subset H ′ ⊆ H, the arc of H ′ whose intersection with l is the lowest
is called the lowest arc of H ′. We maintain a set H∗ consisting of the lowest
arcs of all sets H(ik) for 1 ≤ k ≤ t. So |H∗| = t. We use a binary search tree
T (H∗) to store disks of H∗, ordered by the y-coordinates of their intersections
with l.

3. For each point pij ∈ P (l), among all points of P strictly between pij and l,
no point is vertically above any disk of H(ij).

4. Among all points of P strictly to the left of l, no point is vertically above any
disk of H(i0).

Remark. Our algorithm invariants are essentially the same as those in the L∞
case. One difference is that the points of P (l) are not sorted simultaneously
by y-coordinates, which is due to that the arcs of S may cross each other (in
contrast, in the L∞ case the upper edges of the squares are parallel). For the
same reason, for two sets H(ik) and H(ij) with 1 ≤ k < j ≤ t, it may not be the
case that all arcs of H(ik) are above all arcs of H(ij) at l. Therefore, we need
an additional set H∗ to guide our algorithm, as will be clear later.

In our sweeping algorithm, we use similar techniques as the line segment
intersection algorithm [3,4,7] to determine and handle arc intersections of S (we

596 L. Pedersen and H. Wang

are able to do so because every two arcs of S intersect at most once), and the
time on handling them is O((m + κ) log m). Below we will not explicitly explain
how to handle arc intersections.

Initially H = ∅ and l is to the left of all arcs of S and all points of P .
If l encounters the left endpoint of an arc sk, we insert sk to H(i0).
If l encounters the right endpoint rk of an arc sk, then we need to determine

which set of H contains sk. For this, as in the L∞ case, we associate each right
endpoint with the arc. Using this mechanism, we can find the set H(ij) of H
that contains sk in constant time. Then, we remove sk from H(ij). If j = 0, we
are done for this event. Otherwise, if sk was the lowest arc of H(ij) before the
above remove operation, then sk is also in H∗ and we remove it from H∗. If the
new set H(ij) becomes empty, then we remove pij from P (l). Otherwise, we find
the new lowest arc from H(ij) and insert it to H∗. Processing this event takes
O(log(n + m)) time using the trees T (H∗), T (P (l)), and T (H(ij)).

If l encounters an intersection q of two arcs sa and sb, in addition to the
processing work for computing the arc intersections, we do the following. Using
the right endpoints, we find the two sets of H that contain sa and sb, respectively.
If sa and sb are from the same set H(ij) ∈ H, then we switch their order in the
tree T (H(ij)). Otherwise, if sa is the lowest arc in its set and sb is also the lowest
arc in its set, then both sa and sb are in H∗, so we switch their order in T (H∗).
The time for processing this event is O(log m).

If l encounters a point ph of P , which is a major event to handle, we process
it as follows. As in the L∞ case, our goal is to determine the middle bounding
couples (i, h) with pi ∈ P (l).

Using T (H∗), we find the lowest arc sk of H∗. Let H(ij) for some j ∈ [1, t] be
the set that contains sk, i.e., sk is the lowest arc of H(ij). If ph is above sk, then
we can show that (ij , h) is a middle bounding couple defined by and only by the
arcs of H(ij) below ph (e.g., see Fig. 3). The proof is similar to Lemma 10, so
we omit the details. Hence, we report (ij , h) as a middle bounding couple with
weight equal to the minimum weight of all arcs of H(ij) below ph, which can
be found in O(log m) time using T (H(ij)). Then, we split T (H(ij)) into two
trees by ph such that the arcs above ph are still in T (H(ij)) and those below ph

are stored in another tree (we will discuss later how to use this tree). Next we
remove sk from H∗. If the new set H(ij) after the split operation is not empty,
then we find its lowest arc and insert it into H∗; otherwise, we remove pij from
P (l). We then continue the same algorithm on the next lowest arc of H∗.

The above discusses the case where ph is above sk. If ph is not above sk, we
are done with processing the arcs of H∗. We can show that all middle bounding
couples (b, h) with h as the right end have been computed. The proof is similar
to Lemma 13, and we omit it.

Finally, we add ph to the rear of P (l). As in the L∞ case, we need to compute
the tree T (H(h)) for the set H(h), which is comprised of all arcs of H below ph,
as follows.

Initially we have an empty tree T (H(h)). Let H ′ be the subset of the arcs
of H∗ vertically below ph; here H∗ refers to the original set at the beginning of
the event for ph. The set H ′ has already been computed above. Let H′ be the

Algorithms for the Line-Constrained Disk Coverage and Related Problems 597

subcollection of H whose lowest arcs are in H ′. We process the subsets H(ij)
of H′ in the inverse order of their indices (for this, after identifying H′, we can
sort the subsets H(ij) of H′ by their indices in O(|H ′| log m) time; note that
|H ′| = |H′|), i.e., the subset of H′ with the largest index is processed first.

Suppose we are processing a subset H(ij) of H′. Let s be the lowest arc of
H(ij). Recall that we have performed a split operation on the tree T (H(ij)) to
obtain another tree consisting of all arcs of H(ij) below ph, and we use H ′(ij) to
denote the set of those arcs and use T (H ′(ij)) to denote the tree. If T (H(h)) is
empty, then we simply set T (H(h)) = T (H ′(ij)). Otherwise, we find the highest
arc s′ of T (H(h)) at l. If s is above s′ at l, then every arc of T (H ′(ij)) is
above all arcs of T (H(h)) at l and thus we simply perform a merge operation to
merge T (H ′(ij)) with T (H(h)) (and we use T (H(h)) to refer to the new merged
tree). Otherwise, we call (s, s′) an order-violation pair. In this case, we do the
following. We remove s from T (H ′(ij)) and insert it to T (H(h)). If T (H ′(ij))
becomes empty, then we finish processing H(ij). Otherwise, we find the new
lowest arc of T (H ′(ij)), still denoted by s, and then process s in the same way
as above.

The above describes our algorithm for processing a subset H(ij) of H′. Once
all subsets of H′ are processed, the tree T (H(h)) for the set H(h) is obtained.

After processing the arcs of H∗ as above, we also need to consider the arcs
of H(i0). For this, we scan the arcs from low to high using T (H(i0)), and for
each arc s, if s is above ph, then we stop the procedure; otherwise, we remove s
from T (H(i0)) and insert it to T (H(h)).

This finishes our algorithm for processing the event at ph. One can verify
that the time complexity of this step is O((1 + k1 + k2 + k3) · log m) time, where
k1 is the number of middle bounding couples reported (the number of merge and
split operations is at most k1; also, |H ′| = k1), k2 is the number of arcs of H(i0)
got removed for constructing T (H(h)), and k3 is the number of order-violation
pairs. By Lemma 14, the total sum of k1 is at most 2(n + m) + κ in the entire
algorithm. As in the L∞ case, the total sum of k2 is at most m in the entire
algorithm. The following lemma proves that the total sum of k3 is at most κ.
Therefore, the overall time of the algorithm is O((n + m) log(n + m) + κ log m).

Lemma 16. The total number of order-violation pairs in the entire algorithm
is at most κ.

References

1. Alt, H., et al.: Minimum-cost coverage of point sets by disks. In: Proceedings of
the 22nd Annual Symposium on Computational Geometry (SoCG), pp. 449–458
(2006)

2. Ambühl, C., Erlebach, T., Mihalák, M., Nunkesser, M.: Constant-factor approxi-
mation for minimum-weight (connected) dominating sets in unit disk graphs. In:
Proceedings of the 9th International Conference on Approximation Algorithms
for Combinatorial Optimization Problems (APPROX), and the 10th International
Conference on Randomization and Computation (RANDOM), pp. 3–14 (2006)

598 L. Pedersen and H. Wang

3. Bentley, J., Ottmann, T.: Algorithms for reporting and counting geometric inter-
sections. IEEE Trans. Comput. 28(9), 643–647 (1979)

4. de Berg, M., Cheong, O., van Kreveld, M., Overmars, M.: Computational Geometry
– Algorithms and Applications, 3rd edn. Springer-Verlag, Berlin (2008)

5. Bilò, V., Caragiannis, I., Kaklamanis, C., Kanellopoulos, P.: Geometric cluster-
ing to minimize the sum of cluster sizes. In: Proceedings of the 13th European
Symposium on Algorithms, pp. 460–471 (2005)

6. Biniaz, A., Bose, P., Carmi, P., Maheshwari, A., Munro, I., Smid, M.: Faster
algorithms for some optimization problems on collinear points. In: Proceedings
of the 34th International Symposium on Computational Geometry (SoCG), pp.
1–14 (2018)

7. Brown, K.: Comments on Algorithms for reporting and counting geometric inter-
sections. IEEE Trans. Comput. 30, 147–148 (1981)

8. Chan, T., Grant, E.: Exact algorithms and APX-hardness results for geometric
packing and covering problems. Comput. Geom. Theory Appl. 47, 112–124 (2014)

9. Claude, F., et al.: An improved line-separable algorithm for discrete unit disk cover.
Discrete Math. Algorithms Appl. 2, 77–88 (2010)

10. Claude, F., Dorrigiv, R., Durocher, S., Fraser, R., López-Ortiz, A., Salinger, A.:
Practical discrete unit disk cover using an exact line-separable algorithm. In: Pro-
ceedings of the 20th International Symposium on Algorithm and Computation
(ISAAC), pp. 45–54 (2009)

11. Feder, T., Greene, D.: Optimal algorithms for approximate clustering. In: Proceed-
ings of the 20th Annual ACM Symposium on Theory of Computing (STOC), pp.
434–444 (1988)

12. Feige, U.: A threshold of ln n for approximating set cover. J. ACM 45, 634–652
(1998)

13. Har-Peled, S., Lee, M.: Weighted geometric set cover problems revisited. J. Com-
put. Geom. 3, 65–85 (2012)

14. Hochbaum, D., Maass, W.: Fast approximation algorithms for a nonconvex covering
problem. J. Algorithms 3, 305–323 (1987)

15. Karmakar, A., Das, S., Nandy, S., Bhattacharya, B.: Some variations on con-
strained minimum enclosing circle problem. J. Comb. Optim. 25(2), 176–190 (2013)

16. Lev-Tov, N., Peleg, D.: Polynomial time approximation schemes for base station
coverage with minimum total radii. Comput. Netw. 47, 489–501 (2005)

17. Li, J., Jin, Y.: A PTAS for the weighted unit disk cover problem. In: Proceedings
of the 42nd International Colloquium on Automata, Languages and Programming
(ICALP), pp. 898–909 (2015)

18. Lund, C., Yannakakis, M.: On the hardness of approximating minimization prob-
lems. J. ACM 41, 960–981 (1994)

19. Mustafa, N., Ray, S.: PTAS for geometric hitting set problems via local search. In:
Proceedings of the 25th Annual Symposium on Computational Geometry (SoCG),
pp. 17–22 (2009)

20. Pedersen, L., Wang, H.: On the coverage of points in the plane by disks centered
at a line. In: Proceedings of the 30th Canadian Conference on Computational
Geometry (CCCG), pp. 158–164 (2018)

21. Wang, H., Zhang, J.: Line-constrained k-median, k-means, and k-center problems
in the plane. Int. J. Comput. Geom. Appl. 26, 185–210 (2016)

A Universal Cycle for Strings with
Fixed-Content (Which Are Also Known as

Multiset Permutations)

J. Sawada1(B) and A. Williams2

1 School of Computer Science, University of Guelph, Guelph, Canada
jsawada@uoguelph.ca

2 Computer Science, Williams College, Williamstown, USA
aaron.williams@williams.edu

Abstract. We develop the first universal cycle construction for strings with fixed-
content (also known as multiset permutations) using shorthand representation.
The construction runs a necklace concatenation algorithm on cool-lex order for
fixed-content strings, and is implemented to generate the universal cycle in amor-
tized O(1)-time per symbol. This generalizes two previous results: a universal
cycle for shorthand permutations by Ruskey, Holroyd, and Williams [Algorith-
mica 64 (2012)] and a universal cycle for shorthand fixed-weight binary strings
by Ruskey, Sawada, and Williams [SIAM J. on Disc. Math. 26 (2012)]. A conse-
quence of our construction is the first shift Gray code for fixed-content necklaces.

Keywords: De bruijn cycle · Universal cycle · Fixed-content · Multiset
permutation · Parikh vector · Necklace · Gray code · Cool-lex

1 Introduction

A universal cycle for a set S of length n strings, is a circular string of length |S| where
every string in S appears exactly once as a substring. Universal cycles generalize de
Bruijn sequendces, in which S is the set of all k-ary strings of length n. See [7,8] and
debruijnsequence.org for recent surveys on the rich history of these objects.

Universal cycles for many interesting sets are known to exist [3,4,11,12,14,19–23].
But they do not exist for other common sets, such as permutations, or binary strings
with fixed-weight (the number of 1s is fixed), as explained in the first paragraph of [10].
Fortunately, in these two cases, a shorthand notation can instead be used, since both
permutations and fixed-weight strings can be represented by their length n−1 prefixes,
as the final symbol is redundant. When S is the set of these shorthand representations,
universal cycle constructions are known (for permutations [10,17], for fixed-weight
binary strings [16]) and the cycles can be generated efficiently.

J. Sawada—Research supported by NSERC.

c© Springer Nature Switzerland AG 2021
A. Lubiw et al. (Eds.): WADS 2021, LNCS 12808, pp. 599–612, 2021.
https://doi.org/10.1007/978-3-030-83508-8_43

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-83508-8_43&domain=pdf
http://debruijnsequence.org
https://doi.org/10.1007/978-3-030-83508-8_43

600 J. Sawada and A. Williams

Example 1 Consider the set S1 = {12, 13, 21, 23, 31, 32} of shorthand permu-
tations of order n = 3. Observe that 231321 is a universal cycle for S1.

Example 2 Consider the set S2 = {0001, 0010, 0100, 1000, 0011, 0110, 0101,
1001, 1010, 1100} of shorthand fixed-weight strings for n = 5 weight 2. Observe
that 1010011000 is a universal cycle for S2.

A set of strings with fixed-content consists of every arrangement of a multiset of
symbols, which is the content of the set. These sets generalize permutations of order
n, whose content is {1, 2, . . . , n}, and binary strings of length n with fixed-weight d,
whose content is d 1s and n−d 0s. These sets are also known as multiset permutations,
and consist of strings with the same Parikh vector. We consider the construction of
universal cycles for fixed-content strings, using their shorthand representation.

Main Result. The first known construction of universal cycles for strings with
fixed-content. The construction is based on a known concatenation construction
applied to the cool-lex order of necklaces to generate the universal cycles in
O(1)-amortized time per symbol.

Along the way, we develop an algorithm to list necklaces with fixed-content in a shift
Gray code order in O(n)-amortized time per necklace.

The rest of the paper is presented as follows. Section 2 discusses preliminary con-
cepts, including fixed-content necklaces and cool-lex order. Section 3 provides a new
recursive algorithm for generating fixed-content necklaces in cool-lex order. Section 4
presents our universal cycle construction for strings with fixed-content.

Our universal cycle construction for fixed weight strings is implemented in C in the
Appendix, and its output can be viewed at debruijnsequence.org. We also mention that
the shorthand representation used in this article is not the only representation that could
be considered; see [13] and [2] for other representations used for permutations.

2 Preliminaries

In this section, we introduce the basic concepts and notation used in the construction of
our universal cycle.

Let S be a multiset over the alphabet {1, 2, . . . , k}, denoting the fixed-content of
our strings with n = |S|, and let S(S) denote the set of all strings with fixed-content
S. Let α = a1a2 · · · an be a string. Let αt denote the string composed of t copies of
α. The period of α is the smallest value j such that α = (a1 · · · aj)t for some integer
t; we say a1 · · · aj is the aperiodic prefix of α. If α has period n (it is the same as its
aperiodic prefix), we say it is aperiodic; otherwise we say it is periodic.

http://debruijnsequence.org

A Universal Cycle for Strings with Fixed-Content 601

2.1 Necklaces with Fixed-Content

A necklace is defined to be the lexicographically smallest string in an equivalence class
of strings under rotation. LetN(S) denote the set of all necklaces with fixed-content S.
The number of fixed-content necklaces can be deduced using Pólya theory as discussed
in [9]. In the following formula, it is assumed that the content S is composed of ni ≥ 1
occurrences of each symbol i, |S| = n, and k ≥ 1:

N(S) =
1
n

∑

j|gcd(n1,n2,...,nk)

φ(j)
(n/j)!

(n1/j)! · · · (nk/j)!
(1)

where Euler’s totient function φ(j) denotes the number of positive integers less than or
equal to j that are relatively prime to j.

There exists a O(1)-amortized time algorithm to listN(S) [18].

2.2 Cool-Lex Order

Cool-lex order for fixed-content strings was introduced in [24]. The order is a Gray
code, meaning that successive strings differ by a simple operation. More specifically, it
is a prefix-shift Gray code, meaning that successive strings differ by a single prefix-shift.
A prefix-shift removes a single symbol and reinserts it as the first symbol; in a linked
list representation, this corresponds to a removing a node and reinserting it as the head.
The order is also cyclic meaning that a prefix-shift also transforms the last string in the
order into the first. The set S({1, 1, 2, 2, 3, 3}) is listed in cool-lex order on the left side
of Fig. 1, with examples of the prefix-shift operation given in the caption.

One of the most notable features of cool-lex order is that it has a simple successor
rule. In other words, the prefix-shift that creates the next fixed-content string in the
order is relatively easy to specify. To describe the rule, let the non-decreasing prefix
of a string be its longest prefix with no decreases. In other words, if a1a2 · · · an is the
string, then its non-decreasing prefix is a1a2 . . . ap with ai ≤ ai+1 for 1 ≤ i < p and
either p = n or ap > ap+1. Now we can describe the cool-lex successor rule.

Cool-lex Successor Rule
If the non-decreasing prefix of a1a2 · · · an has length p < n, then the next string in

cool-lex order is obtained by a prefix-shift of length p + 1 if p = n − 1 or ap > ap+2, and
otherwise by a prefix-shift of length p + 2.

This rule specifies every transition in the cyclic order except one: If the string itself
is non-decreasing, then the next string is obtained by a prefix-shift of length n.

Another benefit of cool-lex order is that its relative order provides shift Gray codes
for other sets of strings. This phenomenon was discussed for fixed-weight sets in [15],
and for fixed-content sets in [25]. In particular, this occurs for necklaces, as illustrated

602 J. Sawada and A. Williams

311223 132312 132231 113223
131223 313212 213231 121323
113223 331212 321231 123123
211323 133212 231231 112323
121323 213312 123231 113232
312123 321312 312321 131322
132123 231312 132321 113322
213123 323112 313221 121332
321123 332112 331221 132132
231123 233112 133221 123132
123123 123312 213321 112332
112323 112332 321321 121233
311232 211233 231321 122133
131232 121233 323121 123213
113232 212133 332121 122313
311322 221133 233121 112233
131322 122133 123321
313122 312213 212331
331122 132213 221331
133122 213213 322131
113322 321213 232131
211332 231213 223131
121332 123213 322311
312132 212313 232311
132132 221313 323211
213132 322113 332211
321132 232113 233211
231132 223113 223311
123132 122313 122331
312312 312231 112233

Fig. 1. The columns to the left of the vertical line illustrate cool-lex order for strings with content
S = {1, 1, 2, 2, 3, 3}. Observe that each string is obtained from the previous by a prefix-shift.
For example, the third string 113223 is transformed into the fourth string 211323 by moving
the underlined symbol to the left into the first position (or equivalently by rotating the prefix
1132 one position to the right to obtain 2113). The order is also cyclic in this regard, since the
last string is transformed into the first by a prefix-shift. The column to the right of the vertical
line illustrates the necklaces with content S as they appear in cool-lex order. Observe that each
necklace is obtained from the previous one by a shift. For example, the first necklace 113223 is
transformed into the second necklace 121323 by moving the underlined symbol two positions to
the left (or equivalently by rotating the substring 132 one position to the right to obtain 213). The
order is again cyclic in this regard, since the last string is transformed into the first by a shift.

in Fig. 1 for S = {1, 1, 2, 2, 3, 3}. By adapting the techniques from [15,25], we obtain
the successor rule given below for necklaces with fixed-content. Our shift notation is
discussed after the rule is presented, with an example given in the caption of Fig. 1.

A Universal Cycle for Strings with Fixed-Content 603

Cool-lex Successor Rule for Fixed-Content Necklaces
Let α = a1a2 · · · an = λγ ∈ N (S), where |α| = |S| = n, λ is α’s non-decreasing

prefix, and m = |λ|. The necklace following α in cool-lex order is denoted next(α) and is
obtained from α by the shift in the following cumulative cases

next(α) =

⎧
⎪⎨

⎪⎩

lshiftα(m) if m = n (2a)

lshiftα(m+1) if m = n − 1 or am > am+2 or β /∈ N (S) (2b)

lshiftα(m+2) otherwise (2c)

where β is obtained from α by swapping the two symbols after λ (if they exist).

Now we define the lshift operation used in (2). If α = a1a2 · · · an is a necklace,
then lshiftα(i) bubbles ai as far to the left as possible while always maintaining that
the result is still a necklace. In particular, lshiftα(i) = α if the first swap results in a
non-necklace. For example, consider the necklace α = a1a2a3a4a5a6 = 122313. We
can determine the result of lshiftα(4) by bubbling the symbol a4 = 3 to the left, starting
from α, as follows:

a1a2a3a4a5a6 = 122313 is a necklace;
a1a2a4a3a5a6 = 123213 is a necklace;
a1a4a2a3a5a6 = 132213 is not a necklace.

The result is the last necklace in this list. Hence, lshiftα(4) = a1a2a4a3a5a6 =
123213. To motivate the next section, it is important to note that this calculation
involved testing if multiple strings were necklaces. This means that without further
optimization, the necklace successor rule runs in O(n2) time. Note that O(n) time and
O(n) space is sufficient for testing whether or not a string is a necklace [1].

2.3 Necklace-Prefix Algorithm

Perhaps the most well-known de Bruijn sequence is the so-called granddaddy de Bruijn
sequence; it is the lexicographically smallest k-ary de Bruijn sequence of order n. It
can be generated very elegantly using an approach that is often referred to as the FKM
construction or FKM algorithm, due to its discoverers [5,6]. As discussed in [16], the
authors of this article prefer to describe the construction using a slightly different app-
roach called the necklace-prefix algorithm. The latter approach constructs the grand-
daddy de Bruijn sequence in a nearly identical manner, but it is often more well-suited
for creating other sequences.

The necklace-prefix algorithm takes an order of strings, filters out the non-
necklaces, reduces the remaining necklaces to their aperiodic prefix, and concatenates
the prefixes. Amazingly, the granddaddy de Bruijn sequence is created by applying the
necklace-prefix algorithm to the k-ary strings of length n in lexicographic order. This
is illustrated in Fig. 2 for n = 2 and k = 4. The approach has been generalized to other
sets in [22].

604 J. Sawada and A. Williams

necklaces aperiodic granddaddy de Bruijn sequence
prefixes

lexicographic
order

00 0

0 · 01 ·02 ·03·1·12·1
3·

2
· 2
3 · 3

·
01 01
02 02
03 03
11 1
12 12
13 13
22 2
23 23
33 3
(a) (b) (c)

Fig. 2. The necklace-prefix algorithm applied to the 4-ary strings of length 2 constructs the grand-
daddy de Bruijn sequence for n = 2 and k = 4. The algorithm starts with the lexicographic order
of 4-ary strings of length 2 (which are not shown), then reduces the order to the necklaces in col-
umn (a), and their aperiodic prefixes in column (b), and concatenates these prefixes to get the
granddaddy de Bruijn sequence 0010203112132233 in (c).

Unfortunately, the magic runs out when we consider fixed-content strings, even in
their shorthand representatives. As an illustration, note that the lexicographic order of
necklaces with content S = {1, 1, 2, 2, 3, 3} places the following necklaces consecu-
tively,

. . . 113322, 121233, . . . ,

and so, the necklace-prefix algorithm genereates · · · 113322121233 · · · . The bold sub-
string of length n−1 = 5 is not shorthand for a string with the content S because it has
too many 2’s. The cause of the issue is also clear: The leftmost 2 moves several posi-
tions to the left from 113322 to 121233. This issue leads us to instead use a reversed
version of cool-lex order, since this will ensure that individual symbols move at most
one position to the left between successive necklaces.

3 Recursive Algorithm

In [24], a recursive description is given to list all strings with fixed-content S in cool-lex
order. In that description, the focus is on strings in reverse lexicographic order, whereas,
we will focus on lexicographic order. In this section, we restate this recurrence using
the original terminology and then apply it to generate necklaces with fixed-content S.

The tail of S, denoted tail(S), is the unique non-decreasing string composed of all
the elements of S. A scut 1 of S is any non-decreasing string α composed of some of
the elements of S such that α is not a suffix of tail(S), but every proper suffix of α is a
suffix of tail(S). Let αi(S) (or simply, αi) denote the i-th scut of S when the scuts are

1 In nature, a scut is a short tail. Here, it is a suffix of tail(S) with a small symbol prepended.

A Universal Cycle for Strings with Fixed-Content 605

listed in decreasing order of the first symbol, then by decreasing length. Let Ri denote
the multi-set S with the content of αi(S) removed.

Example 3 Consider S = {1, 1, 2, 2, 3, 3}. Then tail(S) = 112233 and the
scuts of S in decreasing order of the first symbol, then decreasing length, are:

23, 2, 1233, 133, 13, 1.

Note α4(S) = 133 and R4 = {1, 1, 2, 2, 3, 3} \ {1, 3, 3} = {1, 2, 2}.

If S is a multiset with j scuts, then the following recurrence C(S, γ) (simplified
from Definition 2.4 in [24]) produces a listing for all strings of the form βγ where β
has content S as they appear in cool-lex order:

C(S, γ) = C(R1, α1γ),C(R2, α2γ), . . . ,C(Rj , αjγ), tail(S)γ.

Note that C(S, ε) will produce a listing of all strings with fixed-content S. Recall
Fig. 1 illustrating the cool-lex order for S({1, 1, 2, 2, 3, 3}). This is the same listing
generated by C({1, 1, 2, 2, 3, 3}, ε). In particular observe that the strings are ordered by
suffixes corresponding to the scuts: 23, 2, 1233, 133, 13, 1.

We now focus on how to modify this recurrence to list the necklaces with fixed-
content S as they appear in cool-lex order.

Lemma 1. If a1a2 · · · an is a necklace that contains a smallest index t such that at >
at+1, then a1 · · · at−1at+1atat+2 · · · an is a necklace.

Proof. Let β = b1b2 · · · bn = a1 · · · at−1at+1atat+2 · · · an. Let βj denote the rotation
of β starting at bj and let αj denote the rotation of α = a1a2 · · · an starting at aj .
If β ≤ βj for each 2 ≤ j ≤ n, then β is a necklace. Since α is a necklace, each
ai ≥ a1 and thus each bi ≥ b1. Since b1 · · · bt−1 is non-decreasing it is straightforward
to observe that βj > β for 2 ≤ j ≤ t + 1. Now consider the prefix of length t for βj

where t + 2 ≤ j ≤ n. This prefix is the same as the length t prefix of αj . If this prefix
if less than or equal to b1 · · · bt, then it must be strictly less than a1 · · · at since at > bt.
But this contradicts the fact that α is a necklace. Thus this prefix must be strictly greater
than b1 · · · bt. Thus βj ≥ β for each 2 ≤ j ≤ n and hence β is a necklace.

Lemma 2. C(S, γ) contains a necklace if and only if tail(S)γ is a necklace.

Proof. (⇐) tail(S)γ is in C(S, γ) by definition. Thus if tail(S)γ is a necklace then
C(S, γ) contains a necklace. (⇒) If C(S, γ) contains necklace then it must be of the
form λγ where λ has content S. If λ = tail(S), then we are done. Otherwise, repeated
application of Lemma 1 implies that tail(S)γ is a necklace.

Based on Lemmas 1–2, the recurrence C(S, γ) can be updated to list only the neck-
laces as follows (where 〈 〉 denotes an empty list).

N (S, γ) =

{ 〈 〉 if tail(S)γ is not a necklace;
N (R1, α1γ), . . . ,N (Rj , αjγ), tail(S)γ otherwise,

606 J. Sawada and A. Williams

Algorithm 1. Recursive algorithm to list all necklaces with content S as they appear
in cool-lex order. The string a1a2 · · · an is intialized to tail(S), and the initial call is
COOL(n).
1: procedure COOL(t)
2: i ← t
3: while ai �= a1 do
4: while ai = ai−1 do i ← i−1

5: for j from i to t do
6: SWAP(j−1, j)
7: if a1a2 · · · an is a necklace then COOL(j−1)

8: for j from t down to i do SWAP(j−1, j)

9: i ← i−1

10: VISIT()

The function COOL(t) in Algorithm 1 implements the above recurrence. Given con-
tent S, by initializing the global string a1a2 · · · an to tail(S), the initial call COOL(n)
generates all necklaces with fixed-content S. The parameter t passed in the function
COOL(t) indicates how the string a1a2 · · · an is partitioned into the two pieces based
on N (S′, γ): a1a2 · · · at = tail(S′) and at+1 · · · an = γ. Each call COOL(t) cor-
responding to N (S′, γ) iterates through the scuts of S′ in the proper order. This is
done by scanning tail(S′) = a1 · · · at from right to left until we reach an index i
where ai �= ai−1 (Line 4). To produce all scuts starting with ai−1, and their corre-
sponding recursive calls if a necklace can be produced, we iteratively shift this symbol
through positions i, i + 1, . . . , t obtaining a new scut for each swap (Lines 5–7). Once
all scuts starting with ai−1 have been processed we restore a1 · · · at to tail(S′) (Line
8). We repeat this approach by continuing to traverse tail(S) from right to left until
we reach a symbol that is the same as a1 (Line 3). The function VISIT() outputs the
string a1a2 · · · an, and the function SWAP(i, j) swaps the symbols at index i and j in
a1a2 · · · an.

When analyzing this algorithm, if every string tested in Line 7 was a necklace, then
the work done by each necklace test could be assigned to the following recursive call.
Since each recursive call generates at least one necklace, and since the necklace testing
can be done in O(n)-time [1], the overall algorithm would run in O(n)-amortized time
algorithm. However, within each recursive call, there could be a number of negative
necklace tests. For instance, consider the string α = 112233112233 and the call to
COOL(6). This results in necklace tests for the following 6 strings, none of which are
necklaces since the rotation starting with the suffix 112233 is smaller than string in
question:

112323112233, 112332112233, 121233112233,

122133112233, 122313112233, 122331112233.

Fortunately there exists a simple optimization: once a string tested on Line 7 is
not a necklace, then by applying Lemma 1 (and further observing the definition of a
necklace) none of the following strings tested will be either. This optimization can be
applied to COOL(t) by replacing Line 7 with the following fragment:

A Universal Cycle for Strings with Fixed-Content 607

if a1a2 · · · an is a necklace then COOL(j−1)
else

for s from j down to i do SWAP(s−1, s)
VISIT()
return

This optimization ensures that at most one necklace test is negative per recursive call.

Theorem 1. Let S denote a multi-set from the elements 1, 2, . . . , k If a1a2 · · · an is
initialized to tail(S), then a call to the optimized COOL(n) lists all necklaces with
fixed-content S in cool-lex order in O(n)-amortized time per string.

4 Constructing a Shorthand Universal Cycle for Fixed-Content

In this section, we provide the first explicit construction of a shorthand universal cycle
for fixed-content strings. If the content of the strings is the multiset of symbols S, then
the shorthand universal cycle is obtained by the applying the necklace-prefix algorithm
to cool-lex order for S. More precisely, we use reverse cool-lex order. This order starts
with the unique non-decreasing string. Then successive strings differ by our notion of
a right-shift, which removes and reinserts a single symbol further to the right, while
the intermediate symbols move one position to the left. Also recall that the relative
order of the symbols has been inverted in our presentation, with respect to the original
presentation of fixed-content cool-lex [24], so that we can use the traditional notion of
a necklace being a string in its lexicographically least rotation.

Let U(S) denote the string resulting from the necklace-prefix algorithm applied to
S(S) when listed in reverse cool-lex order. That is, U(S) is the concatenation of the
aperiodic prefixes of necklaces with content S in reverse cool-lex order. An example of
U(S) is provided in Fig. 3 for S = {1, 1, 2, 2, 3, 3}. Let S−1(S) denote the shorthand
representations of the strings in S(S).

Nowwe prove a preliminary result in Theorem 2, followed immediately by our main
result in Theorem 3. Let U+(S) be the result of concatenating the necklaces with con-
tent S in reverse cool-lex order. In other words, U+(S) is the same as U(S), however,
the periodic necklaces are not reduced to their aperiodic prefix.

Theorem 2. The circular string U+(S) contains every string in S−1(S) at least once
as a substring.

Proof. Consider a string in S(S) whose last symbol is x ∈ {1, 2, . . . , k}. At least one
rotation of this string is a necklace. Thus, it can be written as pqx, such that qxp ∈
N(S). We need to find the string’s shorthand reprsentation, pq, as a substring in the
universal cycle U+(S). In all of our cases, we will use the fact that qxp is a necklace.

We first consider two special cases.

– If p is empty, then the desired substring pq = q is contained in the necklace qxp =
qx, and hence is in U+(S).

– If q is empty, then the desired substring pq = p is contained in the necklace qxp =
xp, and hence is in U+(S).

608 J. Sawada and A. Williams

necklaces aperiodic universal cycle
N(S) prefixes U(S)

cool-lex
order

112233 112233 1 1 2 2 3 3 · 1 2 2 3 1 3 · 1 2 3 2 1 3 ·1
2
2
1
3
3 ·1

2
1
2
33·112332·123132·132·121332·11

33
22

·1
31

32
2
·1

1
3
2
3
2
· 1

1
2
3
2
3
· 1

2 3
· 1

2 1
3 2

3 · 1
1 3 2 2 3 ·

122313 122313
123213 123213
122133 122133
121233 121233
112332 112332
123132 123132
132132 132
121332 121332
113322 113322
131322 131322
113232 113232
112323 112323
123123 123
121323 121323
113223 113223

)c()b()a(

Fig. 3. A universal cycle for S−1(S), where S = {1, 1, 2, 2, 3, 3}. The cycle uses the shorthand
representation, and is constructed using the necklace-prefix algorithm on reverse cool-lex order.
The fixed-content necklaces over S are given in reverse cool-lex order in column (a), they are
reduced to their aperiodic prefix in column (b), and their concatenation gives the universal cycle
in column (c).

In the remaining cases, we need to search across two necklaces to find the desired
substring pq. In other words, we must find a necklace α ∈ N(S), such that pq is a
substring of next(α) · α, and thereby a substring of U+(S). Specifically, we will find
α ∈ N(S) with prefix q, such that next(α) has suffix p. The next point handles the
easiest remaining case.

– If q is not non-decreasing (i.e. its non-decreasing prefix is a strict prefix), then the
necklace α = qxp again suffixes. To see why this is true, observe that α has prefix
q, and we claim that next(α) has suffix p. This is because next(α) is obtained from
α by shifting either a symbol in q, or x, to the left by 2. Hence, the suffix p carries
over from α to next(α).

In the remaining cases, p and q are both non-empty, and q is non-decreasing by
itself. We proceed with two representative cases, based on the non-decreasing prefixes
of qxp and qp. In both cases, we create α by starting from the necklace qxp, and
shifting x far enough to the right, so that it becomes the symbol that is shifted to the left
in next(α).

– If the non-decreasing prefix in qxp is q, then we start with α = qxp, and repeatedly
update the necklace until we have the desired properties. Let m be the length of the
non-decreasing prefix, with regard to the successor rule in (2), and note that x is in

A Universal Cycle for Strings with Fixed-Content 609

the (m + 1)st position in α. if m = n − 1, or am > am+2, or β is not a necklace,
then we stop and use the current value of α. Otherwise, bubble x one position to the
right to create a new value of α. Notice that α is a necklace due, to the fact that β
is a necklace. Furthermore, x is again one symbol to the right of the non-decreasing
prefix of α due to the fact that we had am ≤ am+2 with respect to the previous value
of α. Therefore, we can repeat the above steps until we find a suitable α. Observe
that next(α) will shift x to the left by (2b).

– If the non-decreasing prefix in qxp is qx, and the non-decreasing prefix in qp is q,
then the last symbol of q is larger than the first symbol in p. Let α be the result of
bubbling x one position to the right in qxp. Thus, the non-decreasing prefix of α is
precisely q. Let m = |q|, with regard to the successor rule in (2), and note that x is
in the (m + 1)st position in α. Furthermore, am ≤ am+2 based on the assumptions
of this case, and β = qxp is the necklace we started from. Therefore, α suffices
since next(α) will shift x to the left by (2c).

Theorem 3. The string U(S) is universal cycle for fixed-content strings using their
shorthand representation. In other words, every string in S−1(S) appears in U(S)
exactly once as a substring.

Proof. Observe that U(S) has the correct length. That is, |U(S)| = |S−1(S)|. This
is due to the fact that every necklace contributes equally to both quantities. More pre-
cisely, a necklace whose period is p will contribute p symbols to U(S), and its p unique
rotations to S−1(S). Due to this equality, we only need to prove that each string in
S−1(S) appears in U(S) at least once as a substring. Because of Theorem 2, we can
accomplish this by showing that U(S) has the same set of substrings of length n − 1 as
U+(S). In other words, we can prove the result by showing that no substrings are lost
when we reduce each necklace to its aperiodic prefix in the concatenation.

Consider an arbitrary periodic necklace whose aperiodic prefix is γ. Since it is peri-
odic, we can write it as γr for some r > 1. First we prove that next(γr) is aperiodic. To
see why this is true, observe that next(γr) will contain a prefix that is lexicographically
smaller than γ. Thus, next(γr) is aperiodic. Similarly, prev(γr) is aperiodic.

Now we compare the local area around γr in U+(S), and the local area around its
reduction tp γ in U(S).

· · · next(γr) · γr · prev(γr) · · ·︸ ︷︷ ︸
U+(S)

· · · next(γr) · γ · prev(γr) · · ·︸ ︷︷ ︸
U(S)

We claim that the two concatenations have the same set of substrings of length n − 1.
To establish this fact, let the length of the aperiodic prefix of the necklace γr be t =
|γ| = n/r. Now observe two points. First, next(γr) and γr share a suffix of length at
least n − t − 2. This is due to the cool-lex successor rule in (2) and because the length
of the non-decreasing prefix in γr is at most t. Second, γr and prev(γr) must share a
prefix of length at least 1, since they are both necklaces. Therefore, the concatenation
in U+(S) has at least (n − t − 2)+ t+1 = n − 1 consecutive symbols from γr, which
means that it contains γr in shorthand. Furthermore, the substrings of length n − 1 in
U+(S) before and after this shorthand copy of γr are identical to those in U(S).

610 J. Sawada and A. Williams

4.1 Efficiency

To construct the reverse of the universal cycle U(S), we can directly apply Algorithm 1
to list N(S) in cool-lex order with a simple modification. Instead of outputting the
current necklace α = a1a2 · · · an, the function VISIT()

� determines the length p of the aperiodic prefix of α and then
� outputs apap−1 · · · a1.
Since the aperiodic prefix of α can be determined in O(n) (see [1]), the modified

algorithm still runs in O(n)-amortized time per symbol. Since the total length of U(S)
is proportional to n|N(S)| (see Sect. 5 in [18] which implies |U(S)| ≥ n|N(S)|/2)
we obtain the following theorem.

Theorem 4. The universal cycle U(S) for fixed-content strings using their shorthand
representation can be generated in O(1)-amortized time per symbol using O(n) space.

Appendix - Universal Cycles for Fixed-Content Strings Using
Shorthand Representation inO(1) Time Per Symbol

#include <stdio.h>
int N, K, a[100];
//--
// If a[1..n] is a necklace return its period p; otherwise return 0
//--
int Necklace() {

int i, p=1;

for (i=2; i<=N; i++) {
if (a[i-p] > a[i]) return 0;
if (a[i-p] < a[i]) p = i;

}
if (N % p != 0) return 0;
return p;

}
//------------------------------
void Visit() {

int i;
for (i=Necklace(); i>=1; i--) printf("%d ", a[i]);

}
//------------------------------
void Swap(int i, int j) {

int temp;
temp = a[i]; a[i] = a[j]; a[j] = temp;

}
//---------------------------------
void Gen(int t) {

int i,j,s;

i = t;
while (a[i] != a[1]) {

while (a[i] == a[i-1]) i--;
for (j=i; j<=t; j++) {

Swap(j-1,j);
if (Necklace()) Gen(j-1);
else {

for (s=j; s>=i; s--) Swap(s-1,s);
Visit();
return;

}
}

A Universal Cycle for Strings with Fixed-Content 611

for (j=t; j>=i; j--) Swap(j-1,j);
i--;

}
Visit();

}
//---------------------------------
int main() {

int i,j,tmp;

printf("Enter K: "); scanf("%d", &K);
N = 0;
for (i=1; i<=K; i++) {

printf("N_%d: ", i); scanf("%d", &tmp);
for (j=1; j<=tmp; j++) a[N+j] = i;
N += tmp;

}
Gen(N);

}

References

1. Booth, K.S.: Lexicographically least circular substrings. Inf. Process. Lett. 10(4/5), 240–242
(1980)

2. Cantwell, A., Geraci, J., Godbole, A., Padilla, C.: Graph universal cycles of combinatorial
objects. Adv. Appl. Math. 127, (2021)

3. Chung, F., Diaconis, P., Graham, R.: Universal cycles for combinatorial structures. Discret.
Math. 110(1), 43–59 (1992)

4. Diaconis, P., Graham, R.L.: Products of universal cycles. In: Demaine, E., Demaine, M.,
Rodgers, T. (eds.) A Lifetime of Puzzles, pp. 35–55. A K Peters/CRC Press (2008)

5. Fredricksen, H., Kessler, I.: An algorithm for generating necklaces of beads in two colors.
Discret. Math. 61(2), 181–188 (1986)

6. Fredricksen, H., Maiorana, J.: Necklaces of beads in k colors and k-ary de Bruijn sequences.
Discret. Math. 23, 207–210 (1978)

7. Gabric, D., Sawada, J., Williams, A., Wong, D.: A framework for constructing de Bruijn
sequences via simple successor rules. Discret. Math. 341(11), 2977–2987 (2018)

8. Gabric, D., Sawada, J., Williams, A., Wong, D.: A successor rule framework for constructing
k -ary de Bruijn sequences and universal cycles. IEEE Trans. Inf. Theory 66(1), 679–687
(2020)

9. Gilbert, E.N., Riordan, J.: Symmetry types of periodic sequences. Illinois J. Math. 5(4), 657–
665 (1961)

10. Holroyd, A.E., Ruskey, F., Williams, A.: Shorthand universal cycles for permutations. Algo-
rithmica 64(2), 215–245 (2012)

11. Horan, V., Hurlbert, G.: Universal cycles for weak orders. SIAM J. Discret. Math. 27(3),
1360–1371 (2013)

12. Jackson, B., Stevens, B., Hurlbert, G.: Research problems on Gray codes and universal
cycles. Discret. Math. 309(17), 5341–5348 (2009)

13. Johnson, J.R.: Universal cycles for permutations. Discret. Math. 309(17), 5264–5270 (2009)
14. Leitner, A., Godbole, A.: Universal cycles of classes of restricted words. Discret. Math.

310(23), 3303–3309 (2010)
15. Ruskey, F., Sawada, J., Williams, A.: Binary bubble languages and cool-lex Gray codes. J.

Comb. Theory Ser. A 119(1), 155–169 (2012)
16. Ruskey, F., Sawada, J., Williams, A.: De Bruijn sequences for fixed-weight binary strings.

SIAM J. Discret. Math. 26(2), 605–617 (2012)

612 J. Sawada and A. Williams

17. Ruskey, F., Williams, A.: An explicit universal cycle for the (n-1)-permutations of an n-set.
ACM Trans. Algorithms (TALG) 6(3), 45 (2010)

18. Sawada, J.: A fast algorithm to generate necklaces with fixed content. Theor. Comput. Sci.
301(1), 477–489 (2003)

19. Sawada, J., Stevens, B., Williams, A.: De Bruijn Sequences for the Binary Strings with Max-
imum Density. In: Katoh, N., Kumar, A. (eds.) WALCOM 2011. LNCS, vol. 6552, pp. 182–
190. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-19094-0 19

20. Sawada, J., Williams, A., Wong, D.: Universal Cycles for Weight-Range Binary Strings. In:
Lecroq, T., Mouchard, L. (eds.) IWOCA 2013. LNCS, vol. 8288, pp. 388–401. Springer,
Heidelberg (2013). https://doi.org/10.1007/978-3-642-45278-9 33

21. Sawada, J., Williams, A., Wong, D.: The lexicographically smallest universal cycle for binary
strings with minimum specified weight. J. Discret. Algorithms 28, 31–40 (2014). StringMas-
ters 2012, 2013 Special Issue (Volume 1)

22. Sawada, J., Williams, A., Wong, D.: Generalizing the classic greedy and necklace construc-
tions of de Bruijn sequences and universal cycles. Electron. J. Comb. 23(1), P1.24 (2016)

23. Sawada, J., Wong, D.: Efficient universal cycle constructions for weak orders. Discret. Math.
343(10), (2020)

24. Williams, A.: Loopless generation of multiset permutations using a constant number of vari-
ables by prefix shifts. In: Proceedings of the Twentieth Annual ACM-SIAM Symposium on
Discrete Algorithms, SODA 2009, pp. 987–996. SIAM (2009) SODA 2009, pp. 987–996.
SIAM (2009)

25. Williams, A.: Shift Gray codes. PhD thesis, University of Victoria (2009)

https://doi.org/10.1007/978-3-642-19094-0_19
https://doi.org/10.1007/978-3-642-45278-9_33

Routing on Heavy-Path WSPD-Spanners

Prosenjit Bose and Tyler Tuttle(B)

School of Computer Science, Carleton University, Ottawa, Canada
jit@scs.carleton.ca, TylerTuttle@cmail.carleton.ca

Abstract. Using the Well-Separated Pair Decomposition (WSPD) of
Callahan and Kosaraju [JACM, 42(1):67–90, 1995], we present a con-
struction of a 1 + 2/s + 2/(s − 1)-spanner of size O(sdn) on a set of n
points in Rd that we call a heavy-path WSPD-spanner, where s > 2 is
the separation ratio. We also show that this graph has a hop spanning
ratio of at most 2 lg n+1. The heavy-path WSPD-spanner is amenable to
local routing. We present a memoryless local routing algorithm for heavy-
path WSPD-spanners. The routing ratio is at most 1 + 4/s + 1/(s − 1)
and at least 1 + 4/s and the number of edges on a path found by the
algorithm is bounded by 2 lg n + 1. A total of O(sdn logn) bits of infor-
mation is distributed among the vertices of the spanner in the form of
routing tables to aid the routing algorithm.

Keywords: Well-Separated Pair Decomposition · Spanner · Routing

1 Introduction

The Well-Separated Pair Decomposition (WSPD) of a set P of n points in Rd

is a versatile structure that has found many applications [12]. Among these
applications is the ability to construct a (1 + ε)-spanner for any ε > 0. A t-
spanner in this context is a weighted graph whose vertex set is P , whose edges
are weighted by the Euclidean distance between their endpoints and between
every pair of points x, y ∈ P , there exists a path in the graph whose weight is
at most t times the length of the segment xy. This path is often referred to as a
spanner path. Typically, a t-spanner has a linear number of edges and serves as
an approximation of the complete graph.

A t-spanner guarantees the existence of a short path between any pair of ver-
tices, but in most applications, the mere existence of a short path is not sufficient.
One requires that the path actually be computed. There exist many algorithms
to compute shortest paths in weighted graphs, such as Dijkstra’s algorithm [14].
However, Dijkstra’s algorithm requires full knowledge of the graph, in the sense
that the routing algorithm needs to know the vertex set and edge set of the graph.

The problem offers different challenges in the online setting, where the rout-
ing algorithm has no knowledge of the graph at the outset. As such, the algorithm
starts with the knowledge of the source and destination vertices and explores the

Research supported in part by NSERC.

c© Springer Nature Switzerland AG 2021
A. Lubiw et al. (Eds.): WADS 2021, LNCS 12808, pp. 613–626, 2021.
https://doi.org/10.1007/978-3-030-83508-8_44

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-83508-8_44&domain=pdf
https://doi.org/10.1007/978-3-030-83508-8_44

614 P. Bose and T. Tuttle

graph while trying to reach the destination. A route or path is constructed incre-
mentally. After each step, the algorithm acquires the information stored at each
vertex, called the routing table. The routing table can store the neighbourhood
of the vertex, and some additional bits of information.

If the only information that the algorithm uses to make its forwarding decision
is the information stored at the current vertex and knowledge of the destination
vertex, then the algorithm is called local. In addition, if the algorithm has no
memory and each step is a local decision, then the algorithm is called memory-
less. If no routing table is stored at a vertex, then an online local memoryless
routing algorithm cannot identify a short path in general or any path for that
matter [7]. An adversary can fool such an algorithm to cycle and never reach its
destination. As such, the goal is to store as little information as possible in the
routing tables to be able to compute a short path.

The ratio of the length of the path found by a routing algorithm and the
Euclidean distance between the source and destination vertex is called the
routing ratio. Note that the routing ratio is an upper bound on the spanning
ratio. In the literature, online local memoryless (or O(1)-memory) routing algo-
rithms have been designed for various families of geometric spanners such as
Θ-graphs [13,19], Yao-graphs [22,25], or Delaunay Graphs [5,6,8,10].

In this article, we focus on the design of an online local memoryless routing
algorithm on a spanner obtained from a WSPD of a point set P of n points
in Rd. Given a WSPD of P , one can construct many different (1 + ε)-spanners
since there is some flexibility in the structure. Therefore, we present a specific
construction of a (1 + ε)-spanner from a WSPD, which we call a Heavy-Path
WSPD-spanner. We show that a Heavy-Path WSPD-spanner has spanning ratio
1 + 2/s + 2/(s − 1) and O(sdn) size, where s > 2 is the separation ratio. The
larger the value of s, the closer ε is to zero. Our spanner also has the property
that spanner paths have at most 2 lg n + 1 edges.

Our main contribution is a memoryless local routing algorithm for heavy-
path WSPD-spanners. The routing ratio is at most 1 + 4/s + 1/(s − 1) and at
least 1+4/s which is close to the spanning ratio. Moreover, the number of edges
on the path is also bounded by 2 lg n + 1. Each vertex v of the graph stores
O(deg(v) log n) bits of information to aid the routing algorithm, where deg(v) is
the degree of v. This implies a total of O(sdn log n) bits in total.

Our result is a four-fold improvement on previous work in this area [4,9,11].
Our routing algorithm works on d-dimensional point sets whereas all previous
results are focused on 2 dimensions. Our algorithm uses fewer bits in total for the
routing tables. Our routing algorithm has the lowest routing ratio. Finally, our
routing algorithm returns a spanner path that uses at most 2 lg n + 1 edges. We
also feel that our algorithm is simpler than the previous algorithms, however,
it is difficult to quantify simplicity. See Table 1 for a comparison. A full and
detailed description of these results appears in Tuttle’s masters thesis [24].

Now, we will describe the data structures that are needed to construct the
heavy path WSPD spanner. In particular we will define compressed quadtrees,
which are used to construct a WSPD, and WSPDs themselves.

Routing on Heavy-Path WSPD-Spanners 615

Table 1. Routing algorithms for WSPD spanners. B is the number of bits needed to
store a bounding box, Δ is the ratio of the largest distance between two points to the
smallest, and s is the separation ratio. An algorithm is k-local if it uses information
about vertices at most k hops away to make routing decisions.

Algorithm Routing tables Routing Ratio Hop Memory

[11] (2-local) O(s2n2B) 1 + 6/(s − 2) + 4/s O(n) memoryless

[11] (1-local) O(s2nB) 1 + 8/(s − 2) + 4/s + 8/s2 O(n) memoryless

[4] O(s2n logΔ) 1 + O(1/s) O(n) O(logΔ)

This article O(sdn logn) 1 + 4/s + 1/(s − 1) 2 lgn + 1 memoryless

1.1 Compressed Quadtrees

A quadtree is a tree data structure for storing spatial data. Let S be a set of n
points in Rd. If n = 1, then the quadtree for S is a single node that stores the
lone point of S. If n > 1, to construct a quadtree for S we need a hypercube that
contains S. Let C be a hypercube that contains S. We can assume that this is
given to us, but if not it is simple to construct such a hypercube in time O(dn).

Subdivide C into 2d smaller hypercubes Ci, . . . C2d by bisecting it along each
dimension. For each nonempty Ci, recursively construct a quadtree on the points
in Ci. The root of the quadtree stores the hypercube C. Each of the recursively
constructed quadtrees is a child of the root.

In a (uncompressed) quadtree, each node a is associated with a hypercube
C(a) that contains all the points in the subtree of a. If a is at level i in the tree,
then the side length of C(a) is 2−iL, where L is the side length of hypercube
associated to the root.

A quadtree is a tree with n leaves. Each internal node has at least one child,
and at most 2d children. The fact that a node can have only a single child means
the height of the tree can be unbounded. We can fix this in the following way.
If a quadtree has a long chain of internal nodes with only one child, then com-
press them all into a single edge. The resulting structure is called a compressed
quadtree, and the height is now linear with respect to the number of points in
the worst case.

In a compressed quadtree, a node no longer corresponds to just one hyper-
cube. Instead, each node a corresponds to two hypercubes. A node in a com-
pressed quadtree might correspond to an entire path in the uncompressed
quadtree. We store the hypercube CL(a) that corresponds to the shallowest node
on that path, and the hypercube CS(a) that corresponds to the deepest node on
that path. If p(a) denotes the parent of a, then CL(a) is obtained by splitting
CS(p(a)) along each dimension. Let S(a) denote the set of points stored in the
leaves of the subtree rooted at a. For any compressed quadtree node, we have
S(a) ⊂ CS(a) ⊆ CL(a). The two hypercubes CS(a) and CL(a) can be equal if
the node a does not correspond to a compressed chain of nodes in the quadtree.

Theorem 1 ([1, Section 19.2.5]). Let S be a set of n points in Rd. A compressed
quadtree for S can be constructed in O(dn log n) time.

616 P. Bose and T. Tuttle

See [1] for a tof different quadtree variants. For our application, we will need
the following property of compressed quadtrees.

Lemma 1. Let T be a compressed quadtree, and let a be a non-root node of T .
The node a corresponds to two hypercubes, CL(a) and CS(a). Let �(a) be the
diagonal length of CS(a). Note that this is an upper bound on the diameter of
the points stored in the subtree of a. We have �(a) ≤ (1/2)�(p(a)), where p(a) is
the parent of a in T .

1.2 The Well-Separated Pair Decomposition

Let S and S′ be two point sets in Rd. We say that S and S′ are well-separated
with respect to s > 2 if d(S, S′) ≥ s · max{diamS,diamS′}, where d(S, S′) =
min{|pq| : p ∈ S, q ∈ S′} and diamS is the diameter of S, the maximum distance
between two points in S. The number s is called the separation ratio.

The following lemma [12] about well-separated pairs will make precise the
idea that distances in one set are small compared to distances between sets.

Lemma 2. Let S and S′ be well-separated point sets with respect to s > 2. Then
for any points p, p′ ∈ S and q, q′ ∈ S′: |pp′| ≤ (1/s)|pq|, and |p′q′| ≤ (1+2/s)|pq|.

A well-separated pair decomposition (WSPD) of S is a sequence {A1, B1},
. . . , {Am, Bm} of pairs of subsets of S such that (a) Ai ∩ Bi = ∅ for all i (b) for
each pair p, q of points in S there is exactly one i such that p ∈ Ai and q ∈ Bi

(or p ∈ Bi and q ∈ Ai) (c) Ai and Bi are s-well separated for all i.
Given a compressed quadtree T , we can construct a WSPD with a recursive

algorithm [16, Section 3.1.1]. The following theorem summarizes the construc-
tion.

Theorem 2 ([16, Theorem 3.10]). Given a set S of n points in Rd, a WSPD
with separation ratio s > 2 with O(sdn) pairs can be constructed using a com-
pressed quadtree in time O(d(n log n + sdn)).

The WSPD that results from this algorithm has an important property that
we will need in Sect. 2.1, so we will state it now.

Lemma 3. Let T be a compressed quadtree for some point set P , and let W
be a WSPD computed using T . Every pair in W has the form {S(a), S(b)} for
some nodes a, b of T . Let p, q be any two points of P and let {S(a), S(b)} be the
pair that separates them. If c is a node that stores both p and q in its subtree,
then a and b are both descendants of c.

In the construction of a WSPD, we used compressed quadtrees. There are
alternative tree structures that have been used instead. For example, the fair split
tree of Callahan and Kosaraju [12]. The reason compressed quadtrees are used
is so that we can use Lemma 1. The diameter of the hypercube representing a
compressed quadtree node is a constant fraction of the diameter of its parent. In a
fair split tree this fraction depends on the dimension of the point set since a split
is only done along one dimension, instead of along all dimensions simultaneously.
This property of compressed quadtrees will be used in the analysis of the routing
algorithm.

Routing on Heavy-Path WSPD-Spanners 617

2 The Heavy Path WSPD Spanner

We now describe the heavy path decomposition of a tree. Let T be a rooted
tree. If a is a node of T , then the size of a is the number of leaves in the subtree
rooted at a. It is worth noting here that a node a is considered to be an ancestor
and a descendant of itself. For each internal node a, choose one child of maximal
size (breaking ties arbitrarily), and mark the edge from a to that child as heavy.
The other edges are marked light. If b is a child of a and the edge from a to b
is heavy, then we call b the heavy child of a. Otherwise b is a light child of a.
What results is a decomposition of the tree into heavy paths, one for each leaf
node. The heavy path decomposition of a tree with n leaves can be computed in
O(n) time [23].

For an internal node a, let r(a) be the leaf node defined by following the
unique heavy path down the tree starting from a. This leaf is called the repre-
sentative of a. Let h(a) be the node defined by following the heavy path up the
tree, again starting from a, until the edge to the parent is no longer heavy.

Lemma 4 ([23, Lemma 1]). The number of light edges on any root-to-leaf path
in a heavy path decomposition of a compressed quadtree is at most lg n, where n
is the number of leaves in the compressed quadtree.

Lemma 5. Let T be a tree, and let a be an internal node of T . Compute a heavy
path decomposition of T . Let r(a) be the representative of a. Then for every node
b on the path from h(a) to r(a), we have r(b) = r(a).

2.1 Constructing a Heavy Path WSPD Spanner

Constructing a spanner graph given a WSPD is simple. For each pair in the
WSPD, choose an arbitrary point from each set and add an edge between those
two points. The result is a t-spanner for t = (s + 4)/(s − 4), where s > 4 is
the separation ratio of the WSPD [21]. Since we can choose these points in
any manner, we are free to decide on a scheme that benefits our application.
In this article, we will choose the points using a method based on the heavy
path decomposition. The spanner that we construct will be called a heavy path
WSPD spanner. This construction originally appeared in Arya et al. [2,3] for the
fair split tree. Here we present it for WSPDs built from a compressed quadtree.

Let T be the compressed quadtree used to compute the WSPD. Compute a
heavy path decomposition of T . For each pair {A,B} in the WSPD, there is a
corresponding pair {a, b} of nodes in T . The edge that we add to the graph will
be between the points r(a) and r(b).

Now we will prove that this graph is a (1 + 2/s + 2/(s − 1))-spanner. To
construct a path between two points p and q, consider Algorithm 1.1. Let
{S(a), S(b)} be the WSPD pair that separates p from q. The algorithm adds
an edge between r(a) and r(b), and recursively constructs a path from p to r(a)
and from r(b) to q.

To analyze the spanning ratio, we will first consider a special case, where q
is the representative of a node storing p. In other words, h(q) is an ancestor of

618 P. Bose and T. Tuttle

Algorithm 1.1 Constructing a short path in a heavy path WSPD spanner
Input: Two points p and q in a heavy path WSPD spanner
Output: A path between p and q
procedure BuildPath(p, q)

if p = q then � Base case
return ∅

else
let {S(a), S(b)} be the WSPD pair that separates p from q
return BuildPath(p, r(a)) ∪ r(a)r(b) ∪ BuildPath(r(b), q)

end if
end procedure

h(p). In this case, in every call made to BuildPath that does not immediately
return, at least one of the two recursive calls will be to the base case.

Lemma 6. Let S be a set of points in Rd, and let T be a compressed quadtree
for the points of S. Construct a heavy path WSPD spanner for S. Let p and q
be points stored in the leaves of T such that q is the representative of some node
containing p. In a call to BuildPath(p, q), at most one edge is added at each
level of recursion.

Consider an initial call to BuildPath(p, q), where q is not necessarily
the representative of an ancestor of p. Two recursive calls are made, to
BuildPath(p, r(a)) and BuildPath(r(b), q). Both of these calls satisfy the con-
ditions for Lemma 6.

We can also bound the length of the edges being added to the path, as a
function of the recursion depth.

Lemma 7. Let S be a set of points in Rd, and let T be a compressed quadtree
for the points of S. Construct a heavy path WSPD spanner for S. Let p and
q be points of S. Consider the series of recursive calls made during a call to
BuildPath(p, q). If the level of recursion of some call is k, the length of the
edge added during that call is at most (1/s)k|pq|.

Using these two lemmas, we can bound the spanning ratio of the path between
p and q. Note that this implies the graph is connected.

Theorem 3. Let S be a set of n points in Rd. The heavy path WSPD spanner
G for S has a spanning ratio of at most 1 + 2/s + 2/(s − 1).

Proof. Let p and q be points of S. Algorithm 1.1 constructs a path from p to q.
The edge added from r(a) to r(b) has length at most (1 + 2/s)|pq| by Lemma 2.
The length of the path from p to r(a) can be bounded using Lemma 6 and
Lemma 7. There is at most one edge being added at each level of recursion, and
the length of the edge being added at level k is at most (1/s)k|pq|. Let M be

Routing on Heavy-Path WSPD-Spanners 619

the maximum recursion depth. Therefore, the length of the path from p to r(a)
is at most

M∑

k=1

(
1
s

)k

|pq| ≤ 1
s − 1

|pq|.

The length of the path from r(b) to q can be bounded in the same way. Therefore
the total length of the path is at most

1
s − 1

|pq| +
(

1 +
2
s

)
|pq| +

1
s − 1

|pq| =
(

1 +
2
s

+
2

s − 1

)
|pq|.

In addition to bounding the length of the path, we can bound the number
of edges on the path from p to q, using Lemma 4. This is because every edge on
the spanner path “traverses” at least one light edge. The diameter of a spanner
is the maximum number of edges over all the shortest paths between any pair
of points in the spanner.

Lemma 8. For two points p and q in a heavy path WSPD spanner, the number
of edges on the path from p to q found by BuildPath(p, q) is at most 2 lg n + 1.
In other words, the heavy path WSPD spanner is a (2 lg n + 1)-hop spanner.

Proof. Let {S(a), S(b)} be the WSPD pair that separates p from q. Consider
the subpath p = p1, p2, . . . , pk = r(a). For each edge pipi+1, we know that pi is
contained in the subtree of h(pi+1), where h(pi+1) is the shallowest node in the
compressed quadtree that pi+1 is the representative of.

The sequence of nodes h(p1), h(p2), . . . , h(pk) must then all lie on the same
root-to-leaf path (that is, the path from p to the root). Since all of these nodes
have different representatives, by Lemma 4 there can be at most lg n of them.

The same is true for the subpath between r(b) and q, and then adding the
edge between r(a) and r(b) gives an upper bound of 2 lg n + 1 edges on the
spanner path.

We end this section with a theorem that summarizes the entire construction
of a heavy path WSPD spanner and all its properties. Note that the BuildPath
algorithm that finds a path between two points in a heavy path WSPD spanner
is not a local algorithm since it requires knowing the pair {S(a), S(b)} from p.

Theorem 4. Let S be a set of n points in Rd, and let s > 2. In O(d(n log n +
sdn)) time, we can construct a graph G called a heavy path WSPD spanner with
the following properties:

• The number of edges in G is O(sdn).
• G is a (1 + 2/s + 2/(s − 1))-spanner.
• G is a (2 lg n + 1)-hop spanner.

Additionally, between any two points there is a single path (found by algorithm
BuildPath) that achieves both the spanning and hop-spanning ratio.

620 P. Bose and T. Tuttle

3 Local Routing in Euclidean Space

In this section, we present a local routing algorithm for heavy path WSPD
spanners. Let S be a set of points, T be a compressed quadtree for S, W be a
WSPD computed using T , and G be a heavy path WSPD spanner constructed
as described in the previous section. We now have all the tools to describe the
routing algorithm. First, we will explain what we need to store at each vertex.
Then, we can present the routing algorithm and analyze it.

3.1 Routing Tables

First, we describe a labelling scheme for the nodes of T . The vertices of G will
store these labels. The message will only use the label of the destination to route.
In other words, the algorithm is memoryless.

Each leaf will get a unique label in the range 1, 2, . . . , n. Perform a depth-first
traversal of T , and label the leaves in the order that they are visited. The label
of an internal node will be the set of all the labels in the leaves of that node’s
subtree. We call this the DFS labelling scheme. The labelling scheme ensures
that this set will be an interval.

Lemma 9. Let T be a tree, and label its leaves using a depth first search. Let a
be a node of T . Let I be the set of labels of the leaves in the subtree rooted at a.
The labels form a contiguous subset of {1, 2, . . . , n}. That is, if i is the minimum
label and j is the maximum label in I, then I = {i, i + 1, . . . , j − 1, j}.

Since we only need to store the minimum and maximum labels of each inter-
val, we only need 2 lg n bits to store the label of an internal node.

In a depth-first search, the children of a node can be visited in any order.
If we always visit the child with the largest subtree first (i.e., always follow the
heavy edge), and then visit the other children in an arbitrary order, then we can
save some memory as shown in the following lemma. We call this type of DFS
labelling scheme a heavy path DFS labelling scheme.

Lemma 10. Let T be a compressed quadtree and let a be an internal node of T .
In a heavy path DFS labelling of T , the label of r(a) is the minimum label of all
the points stored in the subtree of a. That is, if the label of a is [x, y], then the
label of r(a) is x.

We now describe the information that needs to be stored in the routing table
of a vertex u. First, store the label of u. Second, for each neighbour v of u, let
{S(av), S(bv)} be the WSPD pair that generated the edge between u and v,
where v ∈ S(bv), i.e., v is the leaf in the subtree of bv with minimum label. Store
the labels (defined by the heavy path DFS labelling of T) of v, bv, and h(v).
Recall that h(v) is the shallowest node in T for which v is a representative. Notice
that the label of av is not stored, as it is never used by the routing algorithm.

Lemma 11. The total size of the routing tables is O(sdn log n).

Routing on Heavy-Path WSPD-Spanners 621

Proof. The label of a point is a single integer in the range {1, . . . , n}, and the
label of an internal node is two integers in the same range, so in total we need
to store 5 lg n bits for each neighbour of u. This can be improved by applying
Lemma 10. We know that v is the representative of bv, since the edge uv was
generated by the pair {av, bv}. We also know that v is the representative of h(v),
by the definition of h(v). So if x is the label of v, then the labels of bv and h(v)
are of the form [x, y] and [x, z], respectively. Since three of the integers being
stored are equal, we actually only need 3 lg n bits.

The total size of the routing table at a vertex u of G is (3 deg(u) + 1) lg n,
where deg(u) is the number of neighbours of u in G. The total size of the routing
tables stored in the entire graph is

∑

u∈P

(3 deg(u) + 1) lg n = (6m + n) lg n

where m is the number of edges in the spanner. Since we know m = O(sdn), the
total size of the routing table is therefore O(sdn log n).

3.2 Routing in a Heavy Path WSPD Spanner

We now present the routing algorithm. Let p be the starting vertex, and let q
be the destination vertex. We can assume that the label of the destination q
is stored with the message. No other information needs to be stored with the
message (that is, the algorithm is memoryless). The algorithm proceeds in two
stages: the ascending stage and the descending stage. We first check if we are in
the descending stage of the algorithm. If so, perform a descending step. If not,
perform an ascending step. We will refer to this algorithm as the heavy path
routing algorithm.

1. [Descending step] If u has a neighbour v (with WSPD pair {av, bv}) such that
q ∈ bv, then forward the message to v.

2. [Ascending step] Otherwise, find the representative of the parent of h(u), and
forward the message to that vertex.

The proof that this routing algorithm guarantees delivery is split into two
stages. Let {S(a), S(b)} be the WSPD pair separating p from q. First we will
prove that the ascending step will be applied until the message reaches r(a).
Then, we will prove that the descending step will be applied until the message
reaches its destination. That is, the routing algorithm can be split into two
“stages”: a series of ascending steps followed by a series of descending steps.

First we need to show that it is possible to implement an ascending step
using only the information stored in the vertices of G.

Lemma 12. The representative of the parent of h(u) is a neighbour of u in G,
and can be found using only the information in the routing table at u.

622 P. Bose and T. Tuttle

Another way of viewing Lemma 12 is that one application of the ascending
step will move the message one light edge “up” in the quadtree.

The next two lemmas prove that, from p, the routing algorithm will repeat-
edly apply an ascending step until r(a) is reached. This part of the algorithm is
called the ascending stage.

Lemma 13. Starting from p, repeated application of the ascending step will for-
ward the message to r(a).

Lemma 14. The ascending step is always applied if u is in a, but not equal to
r(a).

Once the message reaches r(a), the descending step will be applied until the
destination is reached.

Lemma 15. If u is on the path constructed in Algorithm 1.1 and not in S(a),
then the descending step is applied and will forward the message to the next point
on the spanner path.

Putting the ascending and descending steps together will therefore success-
fully route a message from p to q.

Theorem 5. The heavy path routing algorithm will successfully route a mes-
sage in a heavy path WSPD spanner, with information stored in each vertex as
outlined in Sect. 3.1.

3.3 Analysis of the Local Routing Algorithm

In this section we will bound the routing ratio of the heavy path routing algo-
rithm. First we will bound the length of the path found in the descending stage,
as it is much easier to do.

Lemma 16. Let p and q be points in a heavy path WSPD spanner. The length
of the path constructed during the descending stage of the heavy path routing
algorithm is at most (1 + 2/s + 1/(s − 1))|pq|.
Proof. Lemma 15 implies that the descending stage finds a path from r(a) to
q, where r(a) is the representative of the set containing p in the WSPD pair
{S(a), S(b)} that separates p from q.

From Theorem 3, we know that the edge r(a)r(b) has length at most (1 +
2/s)|pq|, and that the subpath constructed in Algorithm 1.1 from r(b) to q has
length at most 1/(s − 1)|pq|. Lemma 15 implies that the path from r(a) to q
found by the heavy path routing algorithm is the same as the spanner path, so
its length is at most 1 + 2/s + 1/(s − 1) times |pq|, because that is the length of
the spanner path from r(a) to q.

The only thing that remains to be bounded is the length of the path con-
structed during the ascending stage.

Routing on Heavy-Path WSPD-Spanners 623

Lemma 17. Let p = p1, p2, . . . , pk = r(a) be the points visited during the
ascending stage. For any point pi, the points p1 through pi−1 are all stored in
the subtree rooted at h(pi).

We can bound the length of the path constructed during the ascending stage
using the previous lemma.

Lemma 18. The length of the path constructed during the ascending stage of
the algorithm is no more than (2/s)|pq|.
Proof. First, note that if a is the parent of b in the quadtree, then �(a) ≥
(1/2)�(b), by Lemma 1. The path from p to r(a) is contained in the subtree
rooted at a, so the length of every edge on the path is at most �(a). That path,
minus the last edge, is contained in the subtree rooted at one of the children of
a by Lemma 17, so the length of all but the last edge is at most (1/2)�(a).

Repeating this argument will show that the length of the entire path is
not more than �(a) + (1/2)�(a) + (1/2)2�(a) + · · · = 2�(a). By the condition
for checking well-separatedness in the WSPD construction algorithm, �(a) ≤
(1/s)d(a, b) ≤ (1/s)|pq|. Therefore, the length of the path from p to r(a) is at
most (2/s)|pq|.
Theorem 6. The routing ratio of the heavy path routing algorithm is at most
1 + 4/s + 1/(s − 1).

Proof. By Lemma 18, the total length of the path constructed during the ascend-
ing stage is no more than (2/s)|pq|. The path constructed during the descending
step is equal to the spanner path from r(a) to q, and so we can use the bound
on the spanning ratio to bound this part of the path. By Lemma 16 this is at
most (1 + 2/s + 1/(s − 1))|pq|. Therefore the length of the path from p to q is

2
s
|pq| +

(
1 +

2
s

+
1

s − 1

)
|pq| =

(
1 +

4
s

+
1

s − 1

)
|pq|.

Theorem 7. The routing ratio of the heavy path routing algorithm is at least
1 + 4/s in the worst case.

Similar to Lemma 8, we can bound the number of edges on the spanner path.
In fact, the proof works almost identically to the proof of Lemma 8.

Lemma 19. Starting at a point p, a message can be forwarded to any other
point q after forwarding only 2 lg n + 1 times.

Proof. Let {S(a), S(b)} be the WSPD pair that separates p from q. Consider
the subpath p = p0, p1, . . . , pk = r(a) found during the ascending stage. There
will be one edge added to this path for each light edge on the path from p to a
in the compressed quadtree. By Lemma 4, this is at most lg n.

Since the path constructed during the descending stage follows the spanner
path, Lemma 8 implies that the number of forwards during the descending stage
is at most lg n + 1. Therefore the number of forwards for the entire routing
algorithm is at most 2 lg n + 1.

624 P. Bose and T. Tuttle

The results of this section are summarized in the following theorem.

Theorem 8. Let G be a heavy path WSPD spanner for a set S of points in Rd,
and let p and q be points of S. There exists a local, memoryless routing algorithm
that can find a path from p to q, such that:

– The number of bits stored at each vertex u is (3 deg(u) + 1) lg n
– The length of the path found from p to q is at most (1 + 4/s + 1/(s − 1))|pq|
– The number of edges on the path is at most 2 lg n + 1

4 Conclusions

We presented a spanner construction scheme based on the WSPD of a point set
P of n points in Rd that has spanning ratio 1 + 2/s + 2/(s − 1), has spanning
paths with at most 2 lg n+1 edges and O(sdn) size, where s > 2 is the separation
ratio. We call these spanners heavy-path WSPD-spanners. We then presented a
memoryless local routing algorithm for heavy-path WSPD-spanners with routing
ratio at most 1+4/s+1/(s−1) and at least 1+4/s which is close to the spanning
ratio. The number of edges on the spanner path is bounded by 2 lg n + 1 and
a total of O(sdn log n) bits are used to store all the routing tables. These are
currently the best known bounds for routing algorithms on WSPD-spanners.

The spanner construction and routing algorithm presented in this paper can
be modified to work in a more general setting than d-dimensional Euclidean
space. Specifically it is possible to show that a variant of the heavy-path WSPD-
spanner can be constructed for metric spaces of bounded doubling dimension.
Although the compressed quadtree cannot be constructed in this setting, the net
tree of Har-Peled and Mendel [17] can be used instead. This construction is also
amenable to a memoryless competitive online local routing algorithm, however,
the algorithm is more complicated and the doubling dimension factors into all
of the bounds for both the construction and routing algorithms. For details of
this generalisation, refer to Tuttle [24].

Another avenue to explore is to consider other spanner constructions based
on WSPDs to try to improve some of our bounds. The spanner construction
that we presented is designed to allow for a fairly simple routing algorithm.
Recall that given a WSPD of point set, one can construct many different (1+ε)-
spanners since there is some flexibility in the structure. There are various spanner
construction schemes that can produce WSPD-spanners with other desirable
properties such as bounded degree or o(log n) hop distance. For details on the
various constructions of spanners from WSPDs, see Narasimhan and Smid [21].
These different constructions may improve some of our bounds at the cost of a
slightly more elaborate and complicated routing scheme.

Finally, WSPDs have been defined for the unit disk graph [15]. Using these
WSPDs, local routing in the unit disk graph is possible as was shown by Kaplan
et al. [18] and Mulzer & Willert [20]. Our algorithm routes on spanners con-
structed directly from a WSPD, as such, our result does not immediately transfer
to this setting. We leave as an open problem to determine whether our routing
scheme can be adapted to this setting and provide a better trade-off.

Routing on Heavy-Path WSPD-Spanners 625

References

1. Aluru, S.: Quadtrees and octrees. In: Mehta, D.P., Sahni, S. (eds.) Handbook of
Data Structures and Applications, chapter 19, 1 edn, pp. 1–26. Chapman and
Hall/CRC (2004). https://doi.org/10.1201/9781420035179. ISBN 1-58488-435-5

2. Arya, S., Mount, D.M., Smid, M.: Randomized and deterministic algorithms for
geometric spanners of small diameter. In: Proceedings of the 35th Annual Sympo-
sium on Foundations of Computer Science, pp. 703–712 (1994). https://doi.org/
10.1109/SFCS.1994.365722. ISBN 0-8186-6580-7

3. Arya, S., Das, G., Mount, D.M., Salowe, J.S., Smid, M.: Euclidean spanners: short,
thin and lanky. In: Proceedings of the Twenty-Seventh Annual ACM Symposium
on Theory of Computing, pp. 489–498 (1995). https://doi.org/10.1145/225058.
225191. ISBN 978-0-89791-718-6

4. Baharifard, F., Farhadi, M., Zarrabi-Zadeh, H.: Routing in well-separated pair
decomposition spanners. In: Proceedings of the 1st Iranian Conference on Compu-
tational Geometry, pp. 25–28 (2018)

5. Bonichon, N., Bose, P., De Carufel, J.L., Perković, L., Van Renssen, A.: Upper
and lower bounds for online routing on delaunay triangulations. Discrete Comput.
Geom. 58(2), 482–504 (2017). https://doi.org/10.1137/110832458

6. Bonichon, N., Bose, P., De Carufel, J.L., Despré, V., Hill, D., Smid, M.: Improved
routing on the Delaunay triangulation. In: 26th Annual European Symposium on
Algorithms, pp. 1–13 (2018). https://doi.org/10.4230/LIPIcs.ESA.2018.22. ISBN
978-3-95977-081-1

7. Bose, P., Morin, P.: Online routing in triangulations. SIAM J. Comput. 33(4),
937–951 (2004). https://doi.org/10.1137/S0097539700369387

8. Bose, P., Fagerberg, R., Van Renssen, A., Verdonschot, S.: Optimal local routing on
Delaunay triangulations defined by empty equilateral triangles. SIAM J. Comput.
44(6), 1626–1649 (2015)

9. Bose, P., De Carufel, J.-L., Dujmović, V., Paradis, F.: Local routing in spanners
based on WSPDs. In: WADS 2017. LNCS, vol. 10389, pp. 205–216. Springer, Cham
(2017). https://doi.org/10.1007/978-3-319-62127-2 18

10. Bose, P., De Carufel, J.L., Devillers, O.: Olivier: expected complexity of routing in
θ6 and half-θ6 graphs. J. Comput. Geom. 11(1), 212–234 (2020)

11. Bose, P., De Carufel, J.L., Dujmović, V., Paradis, F.: Local routing in spanners
based on WSPDs. J. Comput. Geom. 12(1), 1–34 (2021)

12. Callahan, P.B., Kosaraju, S.R.: A decomposition of multidimensional point sets
with applications to k-nearest-neighbors and n-body potential fields. J. ACM
42(1), 67–90 (1995). https://doi.org/10.1145/200836.200853

13. Clarkson, K.L.: Approximation algorithms for shortest path motion planning. In:
Proceedings of the 19th Annual ACM Symposium on Theory of Computing, pp.
56–65 (1987). https://doi.org/10.1145/28395.28402. ISBN 978-0-89791-221-1

14. Dijkstra, E.W.: A note on two problems in connexion with graphs. Numer. Math.
1, 269–271 (1959). https://doi.org/10.1007/BF01386390

15. Gao, J., Zhang, L.: Well-separated pair decomposition for the unit-disk graph met-
ric and its applications. SIAM J. Comput. 35(1), 151–169 (2006). https://doi.org/
10.1137/S0097539703436357

16. Har-Peled, S.: Geometric Approximation Algorithms. Number 173 in Mathematical
Surveys and Monographs. American Mathematical Society, USA (2011). ISBN 978-
0-8218-4911-8

https://doi.org/10.1201/9781420035179
https://doi.org/10.1109/SFCS.1994.365722
https://doi.org/10.1109/SFCS.1994.365722
https://doi.org/10.1145/225058.225191
https://doi.org/10.1145/225058.225191
https://doi.org/10.1137/110832458
https://doi.org/10.4230/LIPIcs.ESA.2018.22
https://doi.org/10.1137/S0097539700369387
https://doi.org/10.1007/978-3-319-62127-2_18
https://doi.org/10.1145/200836.200853
https://doi.org/10.1145/28395.28402
https://doi.org/10.1007/BF01386390
https://doi.org/10.1137/S0097539703436357
https://doi.org/10.1137/S0097539703436357

626 P. Bose and T. Tuttle

17. Har-Peled, S., Mendel, M.: Fast construction of nets in low-dimensional metrics
and their applications. SIAM J. Comput. 35(5), 1148–1184 (2006). https://doi.
org/10.1137/S0097539704446281

18. Kaplan, H., Mulzer, W., Roditty, L., Seiferth, P.: Routing in unit disk graphs.
Algorithmica 80(3), 830–848 (2017). https://doi.org/10.1007/s00453-017-0308-2

19. Keil, J.M., Gutwin, C.A.: Classes of graphs which approximate the complete
Euclidean graph. Discret. Comput. Geom. 7(1), 13–28 (1992). https://doi.org/
10.1007/BF02187821

20. Mulzer, W., Willert, M.: Compact routing in unit disk graphs. In: ISAAC, vol. 181
of LIPIcs, pp. 1–14. Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2020)

21. Narasimhan, G., Smid, M.: Geometric Spanner Networks. Cambridge University
Press, Cambridge (2007). ISBN 978-0-521-81513-0

22. Ruppert, J., Seidel, R.: Approximating the d-dimensional complete Euclidean
graph. In: Proceedings of the 3rd Canadian Conference on Computational Geom-
etry (CCCG 1991), pp. 207–210 (1991)

23. Sleator, D.D., Tarjan, R.E.: A data structure for dynamic trees. J. Comput. Syst.
Sci. 26(3), 362–391 (1983). https://doi.org/10.1016/0022-0000(83)90006-5

24. Tuttle, T.G.: Routing on heavy path WSPD spanners. Master’s thesis, Carleton
University, Ottawa, Canada (2020)

25. Yao, A.C.: On constructing minimum spanning trees in k-dimensional space and
related problems. SIAM J. Comput. 11, 721–736 (1981)

https://doi.org/10.1137/S0097539704446281
https://doi.org/10.1137/S0097539704446281
https://doi.org/10.1007/s00453-017-0308-2
https://doi.org/10.1007/BF02187821
https://doi.org/10.1007/BF02187821
https://doi.org/10.1016/0022-0000(83)90006-5

Mapping Multiple Regions to the Grid
with Bounded Hausdorff Distance

Ivor van der Hoog, Mees van de Kerkhof, Marc van Kreveld, Maarten Löffler,
Frank Staals, Jérôme Urhausen(B), and Jordi L. Vermeulen

Department of Information and Computing Sciences, Utrecht University,
Utrecht, The Netherlands

j.e.urhausen@uu.nl

Abstract. We study a problem motivated by digital geometry: given a
set of disjoint geometric regions, assign each region Ri a set of grid cells
Pi, so that Pi is connected, similar to Ri, and does not touch any grid
cell assigned to another region. Similarity is measured using the Haus-
dorff distance. We analyze the achievable Hausdorff distance in terms of
the number of input regions, and prove asymptotically tight bounds for
several classes of input regions.

Keywords: Computational geometry · Digital geometry · Hausdorff
distance · Simple polygons

1 Introduction

Digital geometry is concerned with the proper representation of geometric objects
and their relationships using a grid of pixels. This greatly simplifies both repre-
sentation and many operations, but the downside is that common properties of
geometric objects no longer hold. For example, it may be that two digitized lines
intersect in multiple connected components. One objective of digital geometry is
how to consistently digitize a set of geometric objects. Another objective is the
presentation of vector objects with bounded error, using subsets of pixels.

Early results in digital geometry were mostly concerned with consistency
and arose in computer vision. For a survey, see Klette and Rosenfeld [11,12].
More recently, also error bounds under the Hausdorff distance have been studied.
Chun et al. [5] investigate the problem of digitizing rays originating in the origin
to digital rays such that certain properties are satisfied. They show that rays
can be represented on the n × n grid in a consistent manner with Hausdorff
distance O(log n). This bound is tight in the worst case. By ignoring one of
the consistency conditions, the distance bound improves to O(1). Their research
is extended by Christ et al. [3] to line segments (not necessarily starting in the
origin), who obtain the logarithmic distance bound in this case as well. A possible
extension to curved rays was developed by Chun et al. [4]. Other results with
a digital geometry flavor within the algorithms community are those on snap
rounding [6,7,10], integer hulls [1,9], and discrete schematization [13].
c© Springer Nature Switzerland AG 2021
A. Lubiw et al. (Eds.): WADS 2021, LNCS 12808, pp. 627–640, 2021.
https://doi.org/10.1007/978-3-030-83508-8_45

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-83508-8_45&domain=pdf
https://doi.org/10.1007/978-3-030-83508-8_45

628 I. van der Hoog et al.

In a recent paper, Bouts et al. [2] showed that any simple polygon, no matter
how detailed, can be represented by a simply connected set of unit pixels such
that the Hausdorff distance to and from the input is bounded by 3

√
2/2.

Fig. 1. Three disjoint simply connected
regions and a representation by simply
connected sets of disjoint pixels.

Contribution. We extend the
result from [2] to multiple regions, see
Fig. 1. We investigate several restric-
tions on the class of regions and
we show that stricter restrictions
allow for pixel representations with
a smaller symmetric Hausdorff dis-
tance. All our bounds are tight. We
express our bounds in the number of
input regions. Our results are shown
in Table 1; they are fundamental results on the error that may be incurred
when converting vector to grid representations, a common operation in com-
puter graphics and GIS.

We do not make any assumptions on the resolution of the input. If the mini-
mum distance between any pair of polygons is at least some constant (e.g., 4

√
2

is enough), then we can realize a constant Hausdorff bound in all cases by apply-
ing the results from Bouts et al. [2] separately on each polygon. We consider the
case where no such assumptions are made.

Table 1. Worst-case bounds on Hausdorff distances for m regions; β is constant.

Region class Points Convex β-fat Convex Two regions Three regions

Hausdorff distance Θ(
√

m) Θ(
√

m) Θ(m) Θ(1) unbounded

Notation and Definitions. We denote by Γ the (infinite) unit grid, whose unit
squares are referred to as pixels. The (symmetric) Hausdorff distance between
two sets A,B ⊂ R

2 is defined as H(A,B) = max{maxa∈A(minb∈B(|ab|)),
maxb∈B(mina∈A(|ab|))}, where |ab| is the distance between the points a and b.
Further we denote by H ′(A,B) = max{H(A,B),H(∂A, ∂B)} the (symmetric)
Hausdorff distance between the sets themselves and between their boundaries.
See Fig. 2 for an example where the distinction between H(·, ·) and H ′(·, ·) is
important.

Fig. 2. The Hausdorff distance between the
green and red regions is large while the
Hausdorff distance between their bound-
aries is small. The inverse is true for the red
and purple regions. (Color figure online)

Let R = {R1, R2, . . . Rm} be a set
of m disjoint simply connected regions
in the plane. In this paper, we show
how to assign a subset of the pixels
Two such grid polygons are disjoint if
they do not meet in any edge or ver-
tex of the grid. A grid polygon is con-
nected Pi ⊂ Γ to each region Ri ∈ R,
such that the result is a set of m dis-
joint simply connected regions. if its

Mapping Multiple Regions to the Grid with Bounded Hausdorff Distance 629

pixels are connected by edge adjacency, and simply connected if it is con-
nected and its complement is also connected by edge adjacency. We call the
set {P1, P2, . . . , Pm} of such grid polygons a valid assignment for R.

Overview. We are interested in finding for any set of regions R a valid assign-
ment such that for all i the (symmetric) Hausdorff distance between Ri and Pi

is at most h, and the (symmetric) Hausdorff distance between their boundaries
is also at most h. In general, a worst-case bound on h will be a function of m.
We study this problem under several restrictions on R; refer to Table 1. For each
class of restrictions, first we show that there is a set of regions in that class for
which any valid assignment contains at least one region Ri with a grid polygon
Pi where H ′(Ri, Pi) = Ω(h). Second we show that for any set of regions in that
class, we can find a valid assignment such that for all regions Ri ∈ R with cor-
responding grid polygon Pi, we have H ′(Ri, Pi) = O(h). Hence, our bounds are
asymptotically tight.

We may interpret a solution to our problem as a coloring of Γ : each pixel
q ∈ Γ is assigned one color in C = {c1, . . . cm} ∪ {b}, where ci is the color of the
input region Ri and b is the background color.

Our upper bound constructions all follow a similar scheme. Let Γk be a coars-
ening of the grid Γ whose cells have k × k pixels. We call these cells superpixels.
We will determine for each region from R which superpixels it contains and
which ones it properly intersects. If a region Ri contains a superpixel, then all
pixels of Γ in that superpixel will be part of Pi. If Ri properly intersects a super-
pixel, we ensure that at least one, but not all pixels in that superpixel will be
part of Pi. A superpixel not intersecting Ri will have no pixels in Pi. The main
challenge is then finding a scheme by which each grid polygon becomes simply
connected yet all remain disjoint. It is then relatively straightforward to see that
H ′(Ri, Pi) ≤ k

√
2.

2 Input Regions are Points

In this section we first consider the simplest possible case, namely, R is a set
of points. We will construct a map that assigns points to pixels such that the
symmetric Hausdorff distance between each point and its corresponding pixel is
bounded. For a lower bound, consider a set of m points R that all lie within a
single pixel. If we want to assign each point to a unique pixel, we clearly need
to use m different pixels. Any set of m pixels has diameter Ω(

√
m), so at least

one of the point regions will be mapped to a pixel at distance Ω(
√

m).
We now present a scheme that maps any set of m points R to a set of pixels,

such that the symmetric Hausdorff distance between any point and its pixel is
at most O(

√
m). Let Γk be a coarsening of Γ with k = 2

⌈√
m

⌉
. Associate each

region in R with the superpixel that contains it. Each superpixel has the space to
accommodate m disjoint pixels without using the bottom row and right column
by using exactly the odd numbered rows and columns. Any assignment of the
points to these pixels is easily seen to have Hausdorff distance O(

√
m).

630 I. van der Hoog et al.

Theorem 1. If R is a set of m points, a valid assignment exists such that
for each region Ri ∈ R with a corresponding region Pi, we have H ′(Ri, Pi) =
O(

√
m). Furthermore, there exists a set R of m points such that for every valid

assignment we have H(Ri, Pi) = Ω(
√

m).

3 Input Regions are Convex β-fat Regions

A connected region R is β-fat if for some point t in R, the ratio of the radius of
the smallest t-centered circle containing R and the radius of the largest t-centered
circle contained in R, is β (or larger) [14]. Observe that the only regions that
are 1-fat are points and disks, as points are β-fat regions for any β ≥ 1 by
convention. In this section we consider the class R of convex β-fat regions for
a constant β. From Sect. 2 it follows that for any m, there exists a set of m
regions for which the (symmetric) Hausdorff distance between R and any valid
assignment is Ω(

√
m).

Let R be a set of convex β-fat regions and let Γk be a coarsening of Γ with
k = 2

⌈√
m

⌉
+ 3. We present an algorithm that maps R to a set of grid polygons

P, such that the symmetric Hausdorff distance between any region Ri and its
assigned region Pi is at most O(β

√
m).

Lemma 1. Let R be a convex β-fat region, and let p be a point in R. Either R
has diameter less than 16βk, or R contains a superpixel within distance 16βk
from p.

This leads to the following algorithm with two cases for each region Ri,
depending on the set of superpixels Si contained in Ri.

Case 1: Si is empty. We select any superpixel S intersected by Ri and we
assign Ri to a unique pixel in S while using neither the topmost, bottommost,
leftmost, or rightmost rows and columns, similar to the procedure in Sect. 2.
This pixel has a distance of at most 16βk +

√
2k to any point on Ri since Ri has

diameter smaller than 16βk by Lemma 1. This also means that for each such
region Ri, we have H ′(Ri, Pi) ≤ 32βk.

Case 2: Si is not empty. We need two steps. First we assign all pixels in each
superpixel of Si to Ri. Note that Si is not necessarily connected, as can be seen
in Fig. 3 (left). Nonetheless we can connect the superpixels in the second step
using Lemma 2 below.

Lemma 2. Let S1 and S2 be two superpixels in different connected components
of Si. Let v1 be the center of S1 and v2 the center of S2. The path consisting
of pixels that either intersect or border the line segment v1v2 must be entirely
contained in Ri, and at least at twice the unit distance from the border of Ri.

Proof. The line segment between v1 and v2 is contained within Ri by convexity.
Similarly, the line segment from any vertex of S1 to a vertex of S2 is contained
in Ri and necessarily also in the bounded slab that bounds these sixteen edges.
Such a slab is at least as wide as S1 and S2 (hence it is at least 16βk pixels wide).

Mapping Multiple Regions to the Grid with Bounded Hausdorff Distance 631

The line segment between v1 and v2 forms the spine of this slab, any pixel that
intersects or borders this spine has at most two unit distance to this spine and
hence is contained within the slab and via transitivity in Ri. Moreover, since the
slab is at least 16βk wide, and since each pixel has distance at most two from
the spine, each pixel in the path is at much more than distance two from the
border of the slab and via transitivity the border of Ri. �	

Fig. 3. A convex β-fat region Ri

(purple), and the region formed by
sweeping a superpixel from S1 to
S2 (green). Pi (red) consists of S1,
S2, and all pixels on the segment
between the centers of S1 and S2.
(Color figure online)

Let S1 and S2 be two superpixels in dif-
ferent connected components of the superpix-
els contained in Ri. We connect S1 and S2

with a path of pixels according to Lemma 2.
Since this path is entirely contained in Ri and
since there are at least two pixels between a
pixel in this path and the border of Ri, no
other region will attempt to color the pixels
in this path. We repeat this process until for
each region the assigned pixels form a con-
nected grid polygon and whenever we enclose
an area between superpixels with these paths,
we make sure to assign all the pixels in this
area to Ri; by the convexity of Ri all these
pixels are contained in Ri. This provides our
pixel assignment Pi.

What remains to be proven, is that for each region Ri with non-empty Si,
H ′(Ri, Pi) ≤ 32βk holds. First, we prove that for each (boundary) point p of Pi,
there is a (boundary) point q of Ri within distance 32βk. By construction, we
know Pi ⊆ Ri, so the claim holds for interior points. Now, let p ∈ ∂Pi. We assume
for the sake of contradiction that there is no point of ∂Ri within distance

√
2k.

As p is contained within Ri, we have that Ri contains the superpixels containing
p, a contradiction. Second, we prove the inverse. For a point q of Ri, Lemma 1
guarantees that Ri contains a superpixel S within distance 16βk of q. Then
S ⊆ Pi holds, proving the claim. As Pi ⊆ Ri, this also proves that for each
boundary point q of Ri, there is a boundary point p of Pi within distance 16βk.

Theorem 2. If R is a set of m β-fat convex regions for a constant β, a valid
assignment exists such that for each region Ri ∈ R with a corresponding region
Pi, we have H ′(Ri, Pi) = O(

√
m). Furthermore, for any β ≥ 1, there exists a set

R of m β-fat regions such that for every valid assignment H(Ri, Pi) = Ω(
√

m).

4 Input Regions are Convex Regions

When R is a set of convex regions, we can easily show that the coloring has a
lower-bound Hausdorff distance of Ω(m): we can place m horizontal line seg-
ments of length Ω(m) that all pass through the same pixels. Then P must have
its elements on disjoint lines of pixels, giving Hausdorff distance at least Ω(m)
for the outer regions. Each Pi must extend sufficiently far left and right. Since
all Pi are connected, they will intersect a common vertical line. The topmost or

632 I. van der Hoog et al.

bottommost intersection with this line belongs to a grid polygon with Hausdorff
distance Ω(m). (Note that if the Pi need not be connected, O(

√
m) Hausdorff

distance can always be realized.)
We will describe an algorithm that, given a set of convex regions R, gives a set

of disjoint orthoconvex grid polygons P such that, for all i, H ′(Ri, Pi) = O(m).

Observation 3. Let R1, R2 ∈ R be two disjoint convex regions, and let � be a
horizontal line that intersects R1 left of R2. Then any horizontal line intersecting
both R1 and R2 intersects R1 left of R2. Similarly, all vertical lines that intersect
both R1 and R2 do so in the same order.

Observation 3 allows us to define two partial orders �x and �y on R: Ri �x

Rj if and only if there is a horizontal line intersecting both regions and Ri

intersects the line left of Rj ; since the regions are convex we get a partial order [8].
We extend this partial order as follows: first we add transitive arrows, where we
recursively add the inequality Ri �x Rj if there exists a region Rk with Ri �x Rk

and Rk �x Rj and we denote this partial order by Πx(R). We then transform
Πx(R) into a linear order XR : R → [1,m] in any manner. A linear order
YR : R → [1,m] is defined symmetrically.

Fig. 4. The coloring algorithm for con-
vex regions. (a) The input of four convex
regions, overlaid onto a superpixel grid with
k = 10. (b) The pixels colored in Step 1 and
2 of the algorithm. (c) The final coloring
obtained after Steps 3 and 4.

Given XR and YR, we assign a
coloring. Let Γk be a coarsening of
Γ with k = 2m. For any superpixel
S ∈ Γk, we denote by S[x, y] the
pixel that is the (2x)th from the left
and (2y)th from the bottom within S.
Additionally the horizontal and ver-
tical lines induced by Γk are called
major lines. Each region Ri that inter-
sects at most one major horizontal
line and at most one major vertical
line is a small region. Each region Ri

that intersects at least two major hor-
izontal lines or at least two major ver-
tical major lines is a large region. Our
assignment of regions to pixels, illustrated in Fig. 4, is:

1. For each small region Ri we choose one superpixel S containing a point of Ri

and color the pixel p(S,Ri) = S[XR(Ri), YR(Ri)] with ci (this single pixel
will be Pi).

2. For each superpixel S and each large region Ri intersecting S that also inter-
sects the two major horizontal lines incident to S, or the two major vertical
lines incident to S, we color p(S,Ri) = S[XR(Ri), YR(Ri)] with ci. Note that
region Ri need not intersect two opposite edges of S.

3. For any two pixels that are colored with ci in edge-adjacent superpixels (Ri

must be large), we color all pixels in the row or column between them with ci.
4. For any four superpixels that share a common vertex, if they each contain a

pixel colored with ci in Step 1, we color all pixels in the square between these
pixels with ci.

Mapping Multiple Regions to the Grid with Bounded Hausdorff Distance 633

Let P be the set of polygons induced by this grid coloring.

Lemma 3. Each polygon Pi ∈ P is simply connected.

Proof. If Ri is small, Pi is a single pixel and thus simply connected. If Ri is
large, it intersects a connected set of superpixels, and our algorithm connects
all of these together, so Pi is connected. The resulting grid polygon Pi cannot
contain holes: the presence of a hole would imply that the set of superpixels
intersected by Ri contains a hole, which is not possible due to Ri being simply
connected and convex.

Fig. 5. The cases for the proof of Lemma 4.

Our algorithm actually produces orthoconvex polygons (refer to the full ver-
sion for details).

Lemma 4. The polygons in P are pairwise disjoint.

Proof. Assume by contradiction that the colorings of two regions R and B inter-
sect. Then the intersection was created during one of the four coloring steps. In
steps 1 and 2, we assign each color to single pixels per superpixel in unique rows
and columns, hence they cannot create two colorings that intersect.

Let the colorings of R and B intersect after step 3. This implies that R
and B are both large regions. The intersection occurs between a vertical and
horizontal pixel sequence in a super pixel S. Assume without loss of generality
that the vertical sequence belongs to R and the horizontal sequence belongs to
B. Consider the case that the pixel p(S,R) assigned to R in S in step 2 is to the
top-left of p(S,B) (See Fig. 5); the other three cases are symmetric. Then the
intersection occurs between the column sequence connecting p(S,R) to p(Sd, R)
and the row sequence connecting p(S,B) to p(S�, B), where Sd is the superpixel
directly below S and S� is the superpixel directly to the left of S.

Since B is large and assigned a pixel in S it intersects both horizontal major
lines incident to S or both vertical major lines incident to S. The same applies
for R. We first consider the case where B does not intersect the major line
through the bottom edge of S, and hence it must intersect both vertical lines.
That is, B spans the vertical slab defined by S and does so in or above S. Since
R intersects the cell Sd below S it then follows that R �y B. However, since

634 I. van der Hoog et al.

p(S,R) lies above p(S,R) we also have B �y R. Since B = R we thus obtain a
contradiction.

Thus, B intersects the horizontal major line � through the bottom edge of S.
Since R is convex, and intersects both S and Sd it intersects the bottom edge
of S (and thus �) in a point r. Symmetrically, B intersects the left edge of S in
a point b. If B also intersects the horizontal line � in some point b′ this point
cannot be left of r, as this would immediately imply that B �x R, contradicting
the assignment of p(S,R) and p(S,B). So b′ lies right of r. However, then the
vertical ray starting at r pointing upwards intersects the segment connecting b
and b′. Since B is convex, this segment is contained in B. This implies R �y B,
which again contradicts the assignment of p(S,R) and p(S,B). It follows that
step 3 does not create intersecting colorings.

Finally, let (the colorings of) R and B intersect only after step 4. Without
loss of generality, the coloring of a region R is entirely contained in the coloring
of a large region B. Let S be the superpixel containing the lone pixel of R.
Without loss of generality we assume that the pixel p(S,R) assigned to R in S
is to the top-left of p(S,B). Thus, B intersects S, the superpixel above S, the
superpixel left of S, and the superpixel left and above S. The point b where these
four superpixels meet lies inside B by convexity. Let r be any point in R ∩ S.

As B is a large region it needs to intersect two opposite major lines incident
to S. Assume that B intersects the vertical major lines, in particular the one
incident to the right edge of S in a point b′. The vertical line through r intersects
the segment between b and b′. The point r is above that segment, because the
opposite would imply R �y B. As a consequence r is also right of the segment
between b and b′, which implies that the horizontal line through r intersects
this segment left of R, a contradiction. The case where B intersects the major
horizontal line through the bottom edge of S is symmetric. �	

If a region Ri intersects a superpixel S, then Pi has a pixel in S or in at least
one of the eight adjacent superpixels. Conversely, if Pi contains a pixel in S, we
know that Ri intersects S. This gives a bound on the Hausdorff distance between
the regions and the grid polygons. For the boundaries, note that if Ri contains a
superpixel S and all four edge-adjacent superpixels, then Pi contains S. Further-
more, if Pi contains a superpixel S, then Ri also contains S. Together this gives
a bound on the Hausdorff distance between the boundaries. Since superpixels
have size Θ(m), the Hausdorff distance between Ri and Pi and between their
boundaries is at most O(m). We thus obtain the following result.

Theorem 4. If R is a set of m convex regions, a valid assignment exists such
that for each region Ri ∈ R with a corresponding region Pi, we have H ′(Ri, Pi) =
O(m). Furthermore, there exists a set R of m convex regions such that for every
valid assignment, there exists some 1 ≤ i ≤ m with H(Ri, Pi) = Ω(m).

5 Input Regions are General Regions

When the input regions are arbitrary, we see a sharp contrast between the case
m ≤ 2, where constant Hausdorff distance can be realized, and the case m ≥ 3,

Mapping Multiple Regions to the Grid with Bounded Hausdorff Distance 635

where the Hausdorff distance may be unbounded. The fact that a single region
can be represented as a grid polygon with constant Hausdorff distance was shown
before by Bouts et al. [2]. In Sect. 5.1 we show that the same result holds for
two regions. In Sect. 5.2 we show that for three regions, no bounded Hausdorff
distance bound exists that applies to all inputs.

5.1 Two Regions

Our result for two arbitrary regions is based on a combination of two previous
results: mapping a polygon to the grid with constant Hausdorff distance by
Bouts et al. [2], and a result on the Painter’s Problem in [15]. We briefly explain
the former result in our framework using superpixels first (see Fig. 6), and then
extend it to our case with two regions using the latter result.

Fig. 6. Left, a region with Γ and Γ3. Middle, the set P ′ of pixels chosen in the first
selection. Right, the set P of pixels chosen after the spanning tree pixels are added.

Assume we have a region R that we want to represent by a grid polygon
P . Consider the grid coarsening Γ3, which has superpixels of 3 × 3 pixels. For
every superpixel fully covered by R, choose all nine pixels in P . For every super-
pixel visited but not covered by R, take the middle pixel. Take nothing from
superpixels not visited by R. Let the chosen pixels be P ′.

Observe that P ′ forms a set of grid polygons that has no interior boundary
cycles. Also observe that all superpixels for which at least one pixel is in P ′ is a
connected (but not necessarily simply connected) part of Γ3.

We make P ′ into one simply connected grid polygon P by using a (mini-
mum) spanning tree on the components of P ′. We will add pixels from visited
superpixels only, and only ones adjacent to the already chosen center pixel. Two
separate components will always be connected using one or two pixels.

Since the boundary of P does not intersect the interior of fully covered super-
pixels and visited superpixels always have a piece of boundary of P , it is easy to
see that H(Ri, Pi) = Θ(1) and H(∂Ri, ∂Pi) = Θ(1). This result is an alternative
to the one by Bouts et al., albeit with worse constants.

A Painter’s Problem instance takes a grid, and for each cell, the color white,
blue, red, or purple. White indicates the absence of red and blue while purple

636 I. van der Hoog et al.

indicates the presence of both red and blue. The question is whether two disjoint
simply connected regions for red and blue exist that are consistent with all
specifications of the cells, or, in the terminology of [15], “admits a painting”.
Since red cells can simply be colored red and blue cells blue, the problem boils
down to recoloring the purple cells with red and blue pieces. The red and blue
pieces in a cell provide a panel, and all panels together make up a painting. They
prove:

Lemma 5 (Theorem 2 in [15]). If a partially 2-colored grid admits a painting,
then it admits a 5-painting.

In a 5-painting each cell contains at most 5 components. The components
make sure that the overall red and blue parts are connected across the whole
painting. Additionally [15] show that each cell has at most 3 intervals of alter-
nating red and blue along each side. This implies that there are only a constant
number of configurations within a cell, so all configurations can be represented
using a grid of constant size c for each cell.

In our problem, we have two regions R1 and R2 that we call red and blue, for
consistency. We create a grid coarsening Γc+2. We record for every superpixel
whether it is fully covered by red or blue, or visited by red and/or blue. If one
color covers a superpixel completely, we assign all of its pixels to that color. If
a color, say, red, visits a superpixel but blue does not, we start by making the
middle c × c pixels of that superpixel red. Finally, for all superpixels visited by
both red and blue, we apply the results from [15]. Since the recording of colors
with panels comes from disjoint simply connected regions, namely, our input, we
know that the 2-colored grid of superpixels admits a painting with connected
regions/colors, so it admits one as specified in Lemma 5.

Once we choose a coloring of pixels in each 2-colored superpixel according to
the panels, it remains to make the red set and blue set of pixels simply connected.
The method from [15] did not produce any cycles in the 2-colored superpixels,
the visited 1-colored superpixels are separate connected components of c × c
pixels in the middle, and the covered 1-colored superpixels cannot create cycles
either. We create a single red component by making a spanning tree of the red
components. To achieve this, we only need to use pixels in the outer ring of
the visited 1-colored superpixels. Then we do the same with blue. Since we add
pixels of the same color to 1-colored superpixels, we will never try to color a
pixel in both colors or create crossings. We then obtain the following result:

Theorem 5. If R consists of two disjoint, simply connected regions, a valid
assignment exists such that for each region Ri ∈ R with corresponding Pi, we
have H ′(Ri, Pi) = Θ(1).

5.2 Three or More Regions

In the following we argue that the Hausdorff distance between an input of at
least three general regions and any corresponding grid polygons is unbounded.

Mapping Multiple Regions to the Grid with Bounded Hausdorff Distance 637

Fig. 7. The regions for h = 3; I is highlighted. The dashed line subdivides the boundary
of I into its left and right part.

Formally, for a given integer h > 0, we show a construction of regions R =
{R,B,G} for which there are no corresponding grid polygons with Hausdorff
distance smaller than h. We only sketch the main idea here, see the full version
for details.

We construct regions R = {R,B,G} that form nested spirals with a long
bottleneck of height 1. The bottleneck is traversed from left to right h times by
each of R, B, and G. If we remove the parts of R, B, and G inside the bottleneck,
we get 3h + 3 connected components in total. This is illustrated in Fig. 7 for
h = 3. Outside the horizontal strip of height 1 containing the bottleneck, the
three regions are more than 2h apart. We define the part of the plane within
distance h of at least one of the bottom horizontal segments of the regions R
as I. All region components must be connected inside I. Inside I, it is possible
that the grid polygons make different connections than those in R. However, we
argue that no matter how these connections are made, the grid polygons PR, PB,
and PG, together have to pass through I from left to right at least h + 2 times,
thus requiring I to have height at least 2h + 3. However, the available vertical
space is only 2h + 1 if the Hausdorff distance must stay below h, allowing h + 1
connections of pixel polygons. Hence, we obtain a contradiction.

The most involved part is to argue that PR, PB, and PG, together have to
pass through I at least h + 2 times. This argument critically depends on the
following Lemma (see Fig. 8 for an illustration).

Lemma 6. Given an alternating sequence V = r1, b1, g1, ..., rk, bk, gk of 3k 3-
colored points on a line, any planar drawing below the line connecting points of
the same color induces a partition of the points into at least 2k + 1 components.

The idea is that I splits the regions in R (and thus their corresponding grid
polygons) into 3h + 3 connected components. However, the regions intersect the

638 I. van der Hoog et al.

Fig. 8. A set Q that includes two red points ri and ri+� splits V into two disjoint
subsequences V1 and V2, that have at most one set, namely Q, in common. If there was
a second such a set Q′, the grid polygons corresponding to Q and Q′ would intersect.
(Color figure online)

right half of the boundary of I only 3h times, and in an order in which the
colors alternate, we can use Lemma 6 to show that we can decrease the number
of connected components by at most h− 1 by connecting the regions incident to
“the right side” of I to other regions on the right side of I. The same holds for the
regions on the left side of I. It thus follows that the remaining 3h−2(h−1) = h+2
of the reduction in the number of connected components (after all, in the end
there are only three regions left) must be achieved by connecting regions incident
to “the left side of” I to “the right side” of I. Therefore, PR, PB , and PG pass
through I at least h+2 times as claimed. Therefore, this allows us to obtain the
following result:

Theorem 6. For all integer h > 0 there exist three regions R = {R1, R2, R3},
for which there is no valid assignment to grid polygons P1, P2, P3 so that all
regions Ri ∈ R have H(Ri, Pi) < h.

6 Conclusion

In this paper we have shown what Hausdorff distance bounds can be attained
when mapping disjoint simply connected regions to the unit grid. We expressed
our bounds in terms of the number of regions and obtained different results
depending on the shape and size characteristics of the regions, and showed that
they are worst-case optimal. The result in Sect. 5.1 generalizes a result of Bouts
et al. [2] and the result in Sect. 5.2 shows that a result by Van Goethem et
al. [15] cannot be generalized from two to three colors. Our results are slightly
more general than we expressed them: for example, the bound for point regions
in fact holds for any set of regions that each have constant diameter.

We assumed that our regions all had the same shape and size characteristics.
In some cases it is interesting to see what happens in combinations. In particular,
suppose we have one general region R0 and m point regions R1, . . . , Rm; what
Hausdorff bounds can be attained? It turns out that we get a trade-off: we can
realize a Hausdorff distance of O(

√
m) for the point regions and for R0, but we

can also realize a Hausdorff distance of O(1) for R0 but then some point region
will have a Hausdorff distance of Θ(m). Figure 9 illustrates this. We may map
the points to the grid first using the O(

√
m) bound, and then map R0, or we

can map the points to the grid in a constant width strip close to the boundary

Mapping Multiple Regions to the Grid with Bounded Hausdorff Distance 639

Fig. 9. Left, an instance with one general region (purple) and m point regions. Middle
and right, two possible realizations for different Hausdorff bounds.

of R0. Note that in the former case, we could have left a spacing of three pixels
between the mappings of the point regions. Then the point regions still attain
the O(

√
m) bound, while H(R0, P0) = O(1) by using the extra space to allow

P0 to reach every necessary place. However, H(∂R0, ∂P0) will still be Θ(
√

m),
so we do not improve H ′(R0, P0).

While we concentrated on worst-case optimal bounds, our constructive proofs
of the upper bounds will often give visually unfortunate output. Also, for a
given instance we may not achieve O(1) Hausdorff distance for m point, β-fat
convex, or convex regions even when constant would be possible for that instance.
This leads to the following two open problems. Firstly, can we realize visually
reasonable output when this is possible for an instance (and how do we define
this)? Secondly, can we realize a Hausdorff distance that is at most a constant
factor worse than the best possible for each instance, in polynomial time?

Acknowledgments. This research was partially supported by the Dutch Research
Council under the projects 612.001.651, 614.001.504 and 628.011.005.

References

1. Althaus, E., Eisenbrand, F., Funke, S., Mehlhorn, K.: Point containment in the
integer hull of a polyhedron. In: Proceedings 15th Annual ACM-SIAM Symposium
on Discrete Algorithms, pp. 929–933 (2004)

2. Bouts, Q.W., Kostitsyna, I., van Kreveld, M., Meulemans, W., Sonke, W., Verbeek,
K.: Mapping polygons to the grid with small Hausdorff and Fréchet distance. In:
Proceedings 24th Annual European Symposium on Algorithms, pp. 1–16 (2016)

3. Christ, T., Pálvölgyi, D., Stojaković, M.: Consistent digital line segments. Discret.
Comput. Geom. 47(4), 691–710 (2012)

4. Chun, J., Kikuchi, K., Tokuyama, T.: Consistent digital curved rays. In: Abstracts
34th European Workshop on Computational Geometry (2019)

5. Chun, J., Korman, M., Nöllenburg, M., Tokuyama, T.: Consistent digital rays.
Discret. Comput. Geom. 42(3), 359–378 (2009)

6. de Berg, M., Halperin, D., Overmars, M.: An intersection-sensitive algorithm for
snap rounding. Comput. Geom. 36(3), 159–165 (2007)

640 I. van der Hoog et al.

7. Goodrich, M.T., Guibas, L.J., Hershberger, J., Tanenbaum, P.J.: Snap rounding
line segments efficiently in two and three dimensions. In: Proceedings 13th Annual
Symposium on Computational Geometry, pp. 284–293 (1997)

8. Guibas, L.J., Yao, F.F.: On translating a set of rectangles. In: Proceedings 12th
Annual ACM Symposium on Theory of Computing, pp. 154–160 (1980)

9. Harvey, W.: Computing two-dimensional integer hulls. SIAM J. Comput. 28(6),
2285–2299 (1999)

10. Hershberger, J.: Stable snap rounding. Comput. Geom. 46(4), 403–416 (2013)
11. Klette, R., Rosenfeld, A.: Digital Geometry: Geometric methods for digital picture

analysis. Elsevier (2004)
12. Klette, R., Rosenfeld, A.: Digital straightness - a review. Discret. Appl. Math.

139(1–3), 197–230 (2004)
13. Löffler, M., Meulemans, W.: Discretized approaches to schematization. In: Pro-

ceedings 29th Canadian Conference on Computational Geometry (2017)
14. Löffler, M., Simons, J.A., Strash, D.: Dynamic planar point location with sub-

logarithmic local updates. In: Proceedings 13th International Symposium on Algo-
rithms and Data Structures, pp. 499–511 (2013)

15. van Goethem, A., Kostitsyna, I., van Kreveld, M., Meulemans, W., Sondag, M.,
Wulms, J.: The painter’s problem: covering a grid with colored connected polygons.
In: Frati, F., Ma, K.-L. (eds.) GD 2017. LNCS, vol. 10692, pp. 492–505. Springer,
Cham (2018). https://doi.org/10.1007/978-3-319-73915-1 38

https://doi.org/10.1007/978-3-319-73915-1_38

Diverse Partitions of Colored Points

Marc van Kreveld1, Bettina Speckmann2, and Jérôme Urhausen1(B)

1 Department of Information and Computing Sciences, Utrecht University,
Utrecht, The Netherlands

{m.j.vankreveld,j.e.urhausen}@uu.nl
2 Department of Mathematics and Computer Science, TU Eindhoven,

Eindhoven, The Netherlands
b.speckmann@tue.nl

Abstract. Imagine that a set of objects is represented by points in space
and that different types or classes of objects are represented by colors. We
study the algorithmic problem of creating convex or Voronoi partitions of
space with maximally diverse cells, using two classic diversity measures:
the richness (number of different colors) and the Shannon index. The
diversity of a partition is the sum of the diversity scores of its cells.
Hence, we wish to compute either a diverse convex partition (DCP) or a
diverse Voronoi partition (DVP), which maximizes the diversity score of
the partition. Surprisingly, computing a DVP is NP-hard already in 1D
and for only four colors, while DCP can easily be computed with dynamic
programming. We show that DVP can be solved in polynomial time in 1D
if a discrete set of candidate positions for the Voronoi sites is part of the
input. These results apply to both the richness and the Shannon index.
For richness, we also present a polynomial-time algorithm to compute
a Voronoi partition whose diversity is at least 1 − ε times the optimal
diversity. In 2D, we show that both DCP and DVP are NP-hard, for
richness as diversity measure. The reductions use constantly many colors
for DVP and polynomially many colors for DCP.

Keywords: Computational geometry · Voronoi diagrams · Diversity ·
Colored points · Convex subdivision · Np-completeness · Species
richness · Shannon index

1 Introduction

Imagine that a data set consists of objects that have different types, or classes,
like genre of a book or species of a tree. As an abstraction, we represent such
different types by different colors, and we are interested in diverse subsets. There

Research on the topic of this paper was initiated at the 3rd Workshop on Applied
Geometric Algorithms (AGA 2018) in Langbroek, The Netherlands. Marc van Kreveld
and Jérôme Urhausen were partially supported by the Dutch Research Council (NWO)
under project no. 612.001.651. Bettina Speckmann was partially supported by the
Dutch Research Council (NWO) under project no. 639.023.208.

c© Springer Nature Switzerland AG 2021
A. Lubiw et al. (Eds.): WADS 2021, LNCS 12808, pp. 641–654, 2021.
https://doi.org/10.1007/978-3-030-83508-8_46

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-83508-8_46&domain=pdf
https://doi.org/10.1007/978-3-030-83508-8_46

642 M. van Kreveld et al.

are many different ways to partition objects, and also many different ways to
define the diversity of a partition. In this paper we study a fundamental geometric
variant, namely the diversity of groups of colored points that are induced by
general convex partitions of space, or those induced by a Voronoi diagram.

Two common ways to define the diversity of a set are the (species) richness
and the Shannon index. The richness is the number of different colors in the set,
while the Shannon index is defined as −∑h

i=1 ρi log ρi, where h is the number of
colors and ρi is the proportion of objects of color i in the set. For example, the
Shannon index of the set {red, green, blue} is −(13 log 1

3 + 1
3 log 1

3 + 1
3 log 1

3) =
log 3 ≈ 1.585, whereas the Shannon index of the set {red, green, blue, blue} is
−(14 log 1

4 + 1
4 log 1

4 + 1
2 log 1

2) = 1.5. Hence the first set is more diverse. When
we have a partition of space and the objects are points, we can view the points
in each cell as a set, and hence we can define the diversity score of a cell. The
diversity score of the partition is the sum of the diversity scores of its cells.

Besides general convex partitions, a meaningful subclass of convex partitions
in this context are Voronoi partitions, that is, partitions of space which are
induced by the Voronoi diagram of a set of sites. The Voronoi site can serve as
the representative of the points contained in its cell. Conversely, each point is
represented by the site closest to it. Using richness, a diverse site represents many
colors; using the Shannon index, a diverse site also represents many colors, which
are additionally present in roughly equal proportions. Intuitively the Shannon
index of a region increases if we add a point with a new color or if we equalize
the proportions of the existing colors.

Formal Problem Statement. Our input is a set P of n points in h different
colors and a number k ∈ N. For any partition into k cells, the diversity di in a
cell is the score of that cell, and

∑
di is the score of the partition. Our goal is to

compute either a diverse convex partition (DCP) or a diverse Voronoi partition
(DVP) with k cells which maximizes the overall diversity score according to
the richness measure or the Shannon index. Since k is given, maximizing the
total diversity and average diversity is equivalent. In the case of diverse Voronoi
partitions, the problem is to find a set S = {s1, . . . , sk} of k sites such that the
sum of the diversity scores over all Voronoi cells is maximized. See Fig. 1 for an
example of a convex partition (left) and a Voronoi partition (right, white disks
represent Voronoi sites).

Results and Organization. We study diverse convex partitions (DCP) and
diverse Voronoi partitions (DVP) both on the line (1D) and in the plane (2D). We
begin in Sect. 2 by surveying related research on diversity and on partitioning
problems for colored points. In Sect. 3 we illustrate how convex and Voronoi
partitions differ in 1D and also show how to test if a given convex partition can
be realized by a Voronoi partition. It is straightforward to compute a DCP in 1D
using dynamic programming. Surprisingly, Sect. 4 shows that computing a DVP
is NP-hard already in 1D and for only 4 colors. This result holds for both the
richness and the Shannon index. For richness, the NP-hardness can be extended
to 2D using 12 colors. We also show that a DVP can be computed in polynomial
time in 1D if a discrete set of m candidate positions for the Voronoi sites is part

Diverse Partitions of Colored Points 643

Fig. 1. A colored point set with a convex partition (left, diversity score 11 for richness,
5.7 for Shannon index) and a Voronoi partition (right, diversity score 9 for richness, 4.3
for Shannon index; white disks denote sites). Each cell is annotated with its (rounded)
Shannon index. (Color figure online)

of the input. In Sect. 5 we show how to compute—in polynomial time for any
constant ε > 0—a 1D Voronoi partition whose richness diversity is at least 1− ε
times the richness of the DVP. Finally, in Sect. 6 we show that computing a DCP
is NP-hard in 2D for richness. We reduce from Maximum Independent Set
in Orthogonal Line Segments using a colored grid structure which allows
us to limit the possible shapes of convex sets.

2 Related Work

Diversity as a scientific concept is used to characterize sets; it is related to
entropy, variety and representation [8]. Diversity plays an important role, for
example, in ecology ([15,19]; diversity of species), information retrieval ([6,20];
diversification of query results), evolutionary algorithms ([14]; diversity in the
population), and machine learning ([17]; diversity of classifiers). There are many
measures of diversity, including species richness, the Shannon index, the Simpson
index, and Rényi entropy. All these measures relate to sets of objects in classes,
and have no spatial aspect. In a seminal paper, Whittaker [19] argued the need for
differentiation in local (small-scale) diversity and regional (larger-scale) diversity.
This requires a partition of a larger region into several smaller regions, and
subsequently the analysis of diversity in the larger region and all of the smaller
regions. The combined diversity measure is referred to as β-diversity; there are
multiple different definitions in use [18]. The partitions we compute maximize the
average or sum of local diversities over arguably reasonable geometric partitions.

The measure richness leads to algorithmic problems with a classic combina-
torial and geometric structure. The Shannon index, however, gives rise to new
challenges, which can be observed in the NP-hardness proof for DVP in 1D, and
the fact that the approximation algorithm does not easily generalize. For rich-
ness, a DCP has at most n different summed diversity scores; for the Shannon
index this is exponential. Furthermore, the richness of a cell cannot decrease if
we grow the cell and collect more points; the Shannon index can decrease when
extra points make the distribution of colors less balanced.

644 M. van Kreveld et al.

Partitioning problems for sets of points are extensively studied in compu-
tational geometry and related areas. There is a variety of specific problem for-
mulations and, correspondingly, a multitude of related work. Here we highlight
some results on bi-colored and multi-colored point sets and convex partitions.

Kaneko and Kano [13] present a survey of results for red and blue points
in the plane. This includes computing convex partitions of the plane, such that
each cell contains a red and b blue points, or, alternatively, a specific ratio.
Bespamyatnikh et al. [4] study equitable partitions of red-blue point sets using
convex sets. This line of inquiry has been further extended by Bereg et al. [1,3],
Chierichetti et al. [7], and Holmsen et al. [12]. Bereg et al. [2] define coarseness
of bicolored point sets as a measure of how mixed the two colors are. They give
efficient algorithms for 2-partitions in the plane, and for point sets in convex posi-
tion. Dumitrescu and Pach [9] partition multi-colored point sets into uni-colored
subsets, whose convex hulls are disjoint; this minimizes diversity. Majumder et
al. [16] consider the same problem, however, they partition the multi-colored
input with axis-parallel lines. In d dimensions, Blagojević et al. [5] show that dn
d-colored points can always be partitioned into n sets with disjoint convex hulls
and evenly distributed colors, thus maximizing diversity.

Diverse Voronoi Partition is in some sense a clustering problem reminiscent
of k-means clustering, which aims to represent multiple points by a single point,
following a nearest neighbor rule. While k-means clustering minimizes the sum of
squared distances to nearest representatives, DVP aims to maximize the diversity
of colors for each representative. DVP also bears resemblance to multi-criteria
facility location, where sites need to be placed to optimize two or more often
conflicting criteria (see the extensive survey by Farahani et al. [10]). In the case
of DVP these criteria are distance and diversity; we are not aware of diversity
being used as a criterion in facility location, nor in partitioning in general.

3 Convex Versus Voronoi Partitions in 1D

In this section we explore the difference between convex and Voronoi partitions
in 1D. Consider the example in Fig. 2 of 15 colored points, 5 in each of h = 3
colors. It is easy to see that there is a convex partition with a perfect richness
score of 15 using k = 5 cells (intervals). To achieve the same score with a
Voronoi partition, we need to place 5 sites such that the induced boundaries
between Voronoi cells lie between the same input points as the corresponding
boundaries of the convex partition. We capture this restriction on the Voronoi
partition using so-called b-intervals. A b-interval is the open interval between
two consecutive input points. A Voronoi partition that realizes a richness score
of 15 must place 5 sites in such a way that each boundary between Voronoi cells
lies in the corresponding b-interval. A careful inspection shows that this cannot
be done. The middle site s3 must be sufficiently far to the left to ensure that
the second boundary is correctly placed (between the second green and the third
red point), and at the same time sufficiently far to the right to ensure that the
third boundary is correctly placed (between the third green and the fourth red
point). It is impossible to move the other sites s1, s2, s4, and s5 to realize this.

Diverse Partitions of Colored Points 645

Testing Realizability for Voronoi Partitions. Using b-intervals it is
straightforward to test—using linear programming—if a given convex parti-
tion can be realized as a Voronoi partition (see also [11]). The convex partition
directly induces the b-intervals. Let bi be the midpoint of the interval between
si and si+1, for 1 ≤ i < k. Then it must hold that s1 ≤ s2 ≤ · · · ≤ sk, and
bi = (si + si+1)/2. To ensure that the Voronoi cell boundaries bi lie inside their
respective b-intervals, we use another 2k − 2 linear inequalities. Altogether, we
have a system of 5k − 5 linear inequalities whose solution—if it exists—gives a
Voronoi partition.

Perfect Partitions. If the input S consists of exactly n/h points per color,
we can ask if there is a perfect partition using k = n/h sites that together
have a richness score of n. The unique perfect convex partition, if it exists, can
be found in O(n) time if the points are given in sorted order. Constructing
the corresponding system of linear inequalities also takes O(n) time. Solving
this linear program, and hence testing for a perfect Voronoi partition, takes
polynomial time in k = n/h.

4 Diverse Voronoi Partition in 1D

4.1 NP-Hardness When Richness is the Diversity Measure

We prove that the decision version of DVP (D-DVP) is NP-complete, even in 1D.
D-DVP has an extra parameter z and asks if a diversity score of at least z can be
realized with a Voronoi partition using k points. We first argue containment in
NP. For a given instance of D-DVP, there are only exponentially many partitions
into subsets, each defined by k − 1 b-intervals. We can test for each of these
partitions if they can be realised as a Voronoi partition with k sites in polynomial
time using linear programming (see Sect. 3).

For hardness we reduce from Subset Sum: for a set A = {a1, . . . , ar} of
integers and an integer b, is there a subset A′ ⊆ A such that

∑
aj∈A′ aj = b? We

first define a few terms. A point p ∈ P is represented by a site s ∈ S if s is the
site closest to p. For each color i ∈ {1, . . . , h}, Pi is the subset of points of color
i, and a point p ∈ Pi is scored if each other point p′ ∈ Pi that is represented by
the same site is to the right of p. That is, for each site only the leftmost point
of each color that it represents is scored. A point is unscored if it is not scored.
Hence, an optimal set S of sites maximizes the number of scored points. Our
reduction uses only four colors, so we define point sets P1, P2, P3, and P4 from
an instance of Subset Sum with total size n = 8r + 14.

Fig. 2. Points that admit a perfect convex partition but not a perfect Voronoi partition.
(Color figure online)

646 M. van Kreveld et al.

Fig. 3. Reducing Subset Sum to D-DVP for a1 = 1, a2 = 2 and b = 2 using P1 (blue),
P2 (green), P3 (red), and P4 (yellow). Touching points are at ε distance, δ is not drawn
to scale. (Color figure online)

The Construction. Let 0 < δ � 1 be a small real and let 0 < ε � δ be an
even smaller real. We can take δ = 1/r2 and ε = 1/r4. Later we can multiply
the coordinates of the constructed points by r4 and thus obtain a set of integer
positions with polynomial size. Let a =

∑r
i=1 ai be the total sum of the integers

of the Subset Sum instance.
We construct the set P using the values ai and b. The goal is that the new

D-DVP instance has a solution if and only if the Subset Sum instance has a
solution. We describe P from left to right. First, there is a starting gadget H
of six points. Then we have a gadget Dj for each aj , consisting of eight points
(these gadgets can be in any order). Next, we have a subset sum gadget E of
two points to represent b, and finally we have an ending gadget G of six points.
P = H ∪ D1 ∪ · · · ∪ Dr ∪ E ∪ G. Figure 3 shows an example for A = {1, 2}
and b = 2, so P = H ∪ D1 ∪ D2 ∪ E ∪ G. Intuitively, each cell in a solution of
the D-DVP instance contains exactly one (blue) point from P1 and one (green)
point from P2. In each gadget Dj there is a choice to either separate two (red)
points from P3 or two (yellow) points from P4. This choice corresponds to not
choosing or choosing aj in the subset sum so far.

To start the construction we define a set H of six points in two colors. We set
H1 = {−2δ,−δ, 0} ⊂ P1 and H2 = {−2δ − ε,−δ − ε,−ε} ⊂ P2. The set H thus
forms three groups of two points of different colors. We can only score all points
in H with three sites s−2, s−1, s0 if we have −δ < s0 < 2δ − 2ε. So, in order to
score all six points with three sites, the rightmost of those sites, s0, needs to be
close to zero.

For each aj ∈ A we create a set Dj of eight points that will encode whether
aj is chosen in the subset A′ or not. Let Dj = Dj

1 ∪Dj
2 ∪Dj

3 ∪Dj
4, with Dj

i ⊂ Pi

(the points in Dj
i have color i). Let Dj

1 = {(4j − 1)a − δ, (4j − 1)a + δ}, Dj
2 =

{(4j − 1)a − δ + ε, (4j − 1)a + δ − ε}, Dj
3 = {(4j − 3)a − δ, (4j − 3)a + δ} and

Dj
4 = {(4j −3)a+aj/2− δ, (4j −3)a+aj/2+ δ}. The distances between Dj

3 and
Dj

4 are roughly aj/2.
We define a set E ⊂ P that encodes that we want the subset sum to be b.

We define E ⊂ P3 with E = {4ra + (a − b)/2 − δ, 4ra + (a − b)/2 + δ}.
Finally we define a set G of six points, similar to H. It can only be scored

fully by three sites if the leftmost of the sites is close to (4r + 1)a. We set
G1 = {(4r + 1)a, (4r + 1)a + δ, (4r + 1)a + 2δ} ⊂ P1 and G2 = {(4r + 1)a +
ε, (4r + 1)a + δ + ε, (4r + 1)a + 2δ + ε} ⊂ P2.

Diverse Partitions of Colored Points 647

Fig. 4. D-DVP instance: a1 = 1, a2 = 2 and b = 2. Sites and boundaries for a score of
7r + 14. (Color figure online)

Equivalence. The instance of D-DVP has n = 8r + 14 points and asks to place
k = 2r + 6 sites to realize a score of z = 7r + 14, which can be achieved if and
only if the corresponding Subset Sum instance has a solution. Intuitively, we
want to use the sites to create boundaries that separate the first three pairs of
points, the last three pairs of points, either Dj

3 or Dj
4, and also E. Separating

Dj
3 corresponds to not choosing aj in a subset and separating Dj

4 corresponds
to choosing aj . If we choose the correct aj , the boundary between the last site
chosen for Dr and the first site chosen for G will “magically” separate the points
in E. Then, only one point of each Dj is not scored. See Fig. 4 for an example.
The proof of correctness argues that essentially there are no other options: the
Subset Sum instance has a solution if and only if the D-DVP instance can score
7r + 14.

Theorem 1. Deciding if a diverse Voronoi partition of n colored points in four
colors in 1D of richness diversity at least z exists, using k cells, is NP-complete.

The extension to 2D is not immediate; the proof uses 12 colors and points on
three parallel lines. The description is omitted from this version of the paper.

4.2 NP-Hardness When Shannon Index is the Diversity Measure

We prove that deciding DVP is NP-complete in 1D, also when using the Shannon
index as diversity measure. For ease of argument, we allow points of different col-
ors to share locations. For containment in NP, we note that we need logarithms
of 1..n only, and we can still guess the partition and approximate its total Shan-
non index sufficiently precisely. For NP-hardness, we reduce from Subset Sum
as before: for a set A = {a1, . . . , ar} of integers and an integer b, is there a subset
A′ ⊆ A such that

∑
aj∈A′ aj = b? The set of points we construct is similar to

the one using richness, but the proof arguments are more complex. We place
all yellow, red, and blue points at exactly the same positions as before, and set
ε = 0 so that each green point coincides with the nearest blue point. We use two
more red points in the start gadget and two more in the end gadget, to coincide
with the first two blue points and the last two blue points, as shown in Fig. 5.

Equivalence. The decision question corresponding to Subset Sum is: using
2r + 6 sites, can we get a score of at least (�3 + �5)r + 6�3 in their Voronoi cells,
where �3 = log(3) ≈ 1, 58 is the score of a cell with three points of different
colors and �5 = log(5) − 2/5 ≈ 1, 92 is the score of a cell with two points of one
color and three other points of different colors?

648 M. van Kreveld et al.

Table 1. The Shannon index for distributions of up to eight points that occur in the
construction.

Cell Score Cell Score Cell Score

[∅] 0 [1, 1, 1] 1.585 [2, 1, 1, 1] 1.922

[1] 0 [2, 1, 1] 1.5 [2, 2, 1, 1] 1.918

[2] 0 [2, 2, 1] 1.522 [2, 2, 2, 1] 1.950

[1, 1] 1 [2, 2, 2] 1.585 [2, 2, 2, 2] 2

[2, 1] 0.918 [3, 3, 2] 1.561 [3, 2, 2, 1] 1.906

[2, 2] 1 [3, 3, 3] 1.585

Table 1 gives the Shannon index for all possible cells in this instance with
up to eight points, where [x1, . . . , xm] denotes a cell with m different colors and
xi points per color. Note that any cell, even with more points, has a score of at
most 2, the maximum with four colors.

We prove that using 2r + 6 convex cells, the maximum possible score is
r(�3 + �5)+6�3, and this can only be achieved with r+6 cells of the form [1, 1, 1]
and r cells of the form [2, 1, 1, 1]. A diverse Voronoi partition can realize this too
if and only if the Subset Sum instance has a solution.

Let A be the subdivision of the DVP instance into 2r + 6 convex cells that
yields the maximum total Shannon index score. Let us count the number of cells
of this optimal assignment using classes. C0 contains the cells that contain at
most 1 color, and C1 (C�3) contain the cells with points of precisely two (resp.,
three) colors. The cells with precisely four colors appear in two classes: C�5 and
C2 contain the cells with four colors that contain exactly one, respectively two
or more blue point(s). Let ci = |Ci|. Each cell with three or more colors contains
at least one blue point, since blue and green points coincide. As there are 2r + 6
cells and 2r + 6 blue points, the following inequalities hold:

2r + 6 ≥ c1 + c�3 + c�5 + c2 (1)
2r + 6 ≥ c�3 + c�5 + 2c2 (2)

Fig. 5. The set of points constructed for a1 = 1, a2 = 2 and b = 2 to prove NP-
completeness when using the Shannon index for diversity, corresponding to Fig. 4.
(Color figure online)

Diverse Partitions of Colored Points 649

Max Score ≤ c1 + �3c�3 + �5c�5 + 2c2
(1)

≤ (2r + 6 − c�3 − c�5 − c2) + �3c�3 + �5c�5 + 2c2

= 2r + 6 + (�3 − 1)c�3 + (�5 − 1)c�5 + c2
(2)

≤ 2r + 6 + (�3 − 1)c�3 + (�5 − 1)c�5 + (2r + 6 − c�3 − c�5)/2
= 3r + 9 + (�3 − 3/2)c�3 + (�5 − 3/2)c�5 (3)

As we have �5 > �3 > 3/2 and c�3 + c�5 ≤ 2r + 6, in order to upper-bound
expression (3) we maximize c�5 first and c�3 second. Each cell in class C�5 has
points of four colors and exactly one blue point. No cell in C�5 can contain a
yellow point p and a red point q with p < q, otherwise the cell would contain
two blue points. The yellow points appear in adjacent pairs and there are r such
pairs. Thus c�5 ≤ r holds, and equality is attainable. Given c�5 = r, we get
c�3 ≤ r + 6, and also here equality is attainable in the construction. So

Max Score ≤ 3r + 9 + (�3 − 3/2)c�3 + (�5 − 3/2)c�5

≤ 3r + 9 + (�3 − 3/2)(r + 6) + (�5 − 3/2)r
= (�3 + �5)r + 6�3

This concludes the proof and shows:

Theorem 2. Deciding if a diverse Voronoi partition of n colored points in four
colors in 1D of Shannon index at least z exists, using k cells, is NP-complete.

4.3 Polynomial-Time Solution for Discrete Candidate Sites

If we assume that there is a fixed set of candidate positions for the sites, then
optimal diverse Voronoi partitions can be computed in 1D by dynamic program-
ming. The description is omitted from this version of the paper.

Theorem 3. A diverse Voronoi partition of n points in h colors in sorted
order in 1D into k cells using m discrete candidate positions can be com-
puted in O(km3 + hm3 + n) time, for richness or Shannon index, or in
O(km3 + m2h log h + n) time for richness.

5 Approximation for Diverse Voronoi Partition in 1D

In this section we show that for any constant ε > 0, we can compute a Voronoi
partition whose diversity (richness) is at least 1 − ε times the optimal diver-
sity in polynomial time. We will first use more sites than allowed in order to
separate subproblems, which we solve optimally using linear programming. We
combine the subsolutions using dynamic programming, and then remove sites to
the desired number without deteriorating the solution too much.

650 M. van Kreveld et al.

Let P = {p1, . . . , pn}, k, and 0 < ε < 1 be given. Let e =
2/ε�, and let δ be
a small number, for example mini=1,..,n−1(pi+1 − pi)/4. For i = 1, . . . , n − 1 we
define mi = (pi + pi+1)/2 as the middle between pi and its right neighbor pi+1.

Our goal is to subdivide P into g =
k/e� subsets and then place e sites
optimally within each subset. For each of the

(
n+1
2

)
non-empty convex subsets

of points, we calculate a specific score s(i, j) that is specified for a convex subset
pi, . . . , pj , where 2 ≤ i < j ≤ n−1, as follows. Place two sites, one at mi−1+δ and
one at mj −δ; these are fixed. Then we place another e sites in between these two
sites in an optimal way, maximizing the score. We do this by placing the e + 1
boundaries between the e+2 sites, and then checking whether these boundaries
are realizable by a Voronoi partition, using linear programming. There are O((j −
i)e+1) = O(ne+1) choices to be checked. We store the maximum in a table for
s(i, j). For the convex subsets p1, . . . , pj or pi, . . . , pn we compute the score
slightly differently, because they do not need the leftmost or rightmost extra
site, and because the last convex subset may have fewer than e sites remaining.
For the last convex subset, we have k mod e = k − e(g − 1) sites, to be precise,
so we compute s(i, n) for all i and k mod e sites, plus one extra at mi−1 + δ.

We then find the optimal subdivision of P into g convex subsets, such that
the sum of the scores of all the subsets is maximal. We do this using dynamic
programming to compute a function f(h, j), representing the optimal score for
the points p1, . . . , pj by using h convex subsets that partition p1, . . . , pj , and
each convex subset is scored with the s(., .) function. Since the application of
dynamic programming is standard, we simply state:

f(h, j) = max
�<j

(f(h − 1, �) + s(� + 1, j)) .

The value f(g, n) then gives the maximum sum of scores when subdividing P
into g subsets; a set S′ of k + 2(g − 1) sites attains this.

Lemma 1. The score of the calculated sites S′ is at least the score Opt of an
optimal solution S∗ with k sites.

The remainder of the algorithm is simple: we determine the score of each site,
choose the site with the lowest score, and remove it. After 2(g−1) iterations, we
have a set of k sites, which we show to be a (1 − ε)-approximation of the best
possible with k sites.

Lemma 2. Reducing the set S′ of sites to a set with k sites costs no more than
ε times the score of S′

Proof. When removing a site the overall score drops by at most the score of
the cell of the site that was removed. So one by one, we choose the site whose
associated cell has the lowest score and remove it. Let Y0 be the score of the
set of sites S′. For w = |S′| = k + 2g − 2, the score drops by at most Y0/w
for removing the first cell, thus the score after removing that cell is larger than
Y1 = Y0

w−1
w . Iteratively, we define Yi = Yi−1

w−i
w−(i−1) . Using a telescope sum

we get Yi = Y0
w−i
w . Thus the score after removing 2g − 2 sites is at least

Diverse Partitions of Colored Points 651

Y2g−2 = Y0
w−2g+2

w . So the score Y ′ of the remaining k sites is at least Y2g−2 ≥
Opt (k+2g−2)−2g+2

k+2g−2 = Opt k
k+2�k/e�−2 ≥ Opt k

k+2(k/e+1)−2 = Opt 1
1+2/e . Thus

Y ′(1 + 2/e) ≥ Opt ⇐⇒ Y ′(1 + ε) ≥ Opt =⇒ Y ′ ≥ Opt(1 − ε). ��
Theorem 4 directly follows.

Theorem 4. Let P be a set of n points in 1D, let k be a positive integer, and let
ε > 0 be a constant. There is a polynomial-time (1− ε)-approximation algorithm
for computing a diverse Voronoi partition based on richness diversity.

6 Diverse Convex Partition is NP-Hard in 2D

We show that the following diverse convex partition problem is NP-hard: given a
set of colored points in the plane, partition the plane into the minimum number
of convex regions so that the total diversity score according to richness is the
same as the number of points (full score). We only sketch the structure and main
ideas of the proof here.

First of all, we use a scaffolding structure that is a regular pattern of points
in four colors, so that unit squares would provide a full score partition with
the minimum number of convex sets. We let the 4-fold colored grid point set
be the point set with all points (i ± δ, j ± δ) with colors: green if i and j are
even; yellow if i is odd and j is even; blue if i is even and j is odd; red if i
and j are odd. The four equal-colored points close to an integer grid point are
called a 4-group. We choose a rectangular portion [0 : w] × [0 : h] of the 4-fold
colored grid point set and call it G; see Fig. 6. At the edges of this rectangular
region there are 2-groups and 1-groups. In total G has 4wh colored points. We
let n = max(w, h) and δ = 1/n2. In an n × n unit grid, it is known that the
shortest strictly positive distance from a line segment between grid points to
another grid point is Ω(1/n). However, the 4-group points are just

√
2/n2 away

from their closest grid point. As a consequence, a convex partition with full
score is severely limited: no connection between two differently colored points
can separate a 4-group of yet a different color, implying that the four points of
a 4-group must be at corners of different cells in a partition with full score.

Fig. 6. The set G of 4wh colored points, a 4-group, and a 2-group. (Color figure online)

652 M. van Kreveld et al.

Fig. 7. Reduction from an instance of Maximum Independent Set in Orthogonal
Line Segments to an instance of 2D Diverse Convex Partition. (Color figure
online)

A 4-set is a set of four different-colored points of G whose convex hull does
not contain any other points of G. We observe that G has a diverse convex
partition into wh convex sets with diversity score 4wh, the best possible, by
choosing wh 4-sets that are squares of side length 1 − 2δ. These squares are
called g-squares; they are shown in grey in the figures. Other 4-sets are possible,
but we can show that they do not lead to a convex partition with diversity score
4wh using wh cells.

We reduce from Maximum Independent Set (MIS) in Orthogonal
Line Segments. This problem is NP-hard if we allow two horizontal or two
vertical line segments to intersect in a joint endpoint. We can assume that all
endpoints of the line segments have different x- and y-coordinates, with the
exception of: (i) the two endpoints of one line segment, and (ii) pairs of parallel
line segments that share an endpoint.

The line segments of an instance are locally scaled in x- and y-direction to
an equivalent instance, so that the endpoints have suitable integer coordinates
and line segments have odd length, see Fig. 7. These endpoints lie in the 4-fold
integer grid and adopt the color of the surrounding 4-group. The odd length
ensures that each line segment has differently colored endpoints.

It remains to argue that a maximum independent set corresponds to certain
groups in a diverse convex partition with full score. This partition will have many
g-squares with four colors, but also cells with only two colors corresponding to
the endpoints of line segments chosen in the independent set, and cells with
only one color corresponding to endpoints of line segments not chosen in the
independent set. Figure 8 shows a small part of such a partition.

To ensure that there are no alternative solutions we need polynomially many
colors that will rule out cells that would extend beyond a single unit square or
a chosen line segment. Note that in Fig. 8, there are other convex partitions

Diverse Partitions of Colored Points 653

Fig. 8. A convex partition that includes convex cells corresponding to a line segment
chosen in the independent set, and an isolated endpoint. (Color figure online)

with the same score and the same number of cells (the isolated red point can be
combined with one of eight points roughly one unit away into a cell with two
colored points), but these alternative solutions will still include the maximum
independent set.

Theorem 5. Computing a minimum-size convex partition of full richness diver-
sity score is NP-hard.

7 Conclusions

We have cast the non-spatial concept of diversity into a geometric setting and
introduced the computational problem of computing geometric partitions with
high diversity. We used two versions of diversity: richness and the Shannon index.
While richness leads to computational problems common in computational geom-
etry, the Shannon index needs new proof ingredients. The main open problems
are finding a (1 − ε)-approximation scheme for 1D DVP for the Shannon index
and an NP-hardness proof for 2D DCP for richness using constantly many colors.
NP-hardness of 2D DCP for the Shannon index is also unresolved.

As an alternative to high within-cell diversity, a partition could aim for a high
diversity between different cells. Then statistics like the Jaccard index could be
used to measure differences between cells. We leave this extension to future work.

References

1. Bereg, S., Bose, P., Kirkpatrick, D.: Equitable subdivisions within polygonal
regions. Comput. Geom. 34(1), 20–27 (2006)

2. Bereg, S., Dı́az-Báñez, J.M., Lara, D., Pérez-Lantero, P., Seara, C., Urrutia, J.:
On the coarseness of bicolored point sets. Comput. Geom. 46(1), 65–77 (2013)

3. Bereg, S., et al.: Balanced partitions of 3-colored geometric sets in the plane. Dis-
cret. Appl. Math. 181, 21–32 (2015)

4. Bespamyatnikh, S., Kirkpatrick, D., Snoeyink, J.: Generalizing ham sandwich cuts
to equitable subdivisions. Discret. Comput. Geom. 24(4), 605–622 (2000)

5. Blagojević, P.V., Rote, G., Steinmeyer, J.K., Ziegler, G.M.: Convex equipartitions
of colored point sets. Discret. Comput. Geom. 61(2), 355–363 (2019)

6. Borodin, A., Jain, A., Lee, H.C., Ye, Y.: Max-sum diversification, monotone sub-
modular functions, and dynamic updates. ACM Trans. Algorithms (TALG) 13(3),
1–25 (2017)

654 M. van Kreveld et al.

7. Chierichetti, F., Kumar, R., Lattanzi, S., Vassilvitskii, S.: Fair clustering through
fairlets. In: Advances in Neural Information Processing Systems, pp. 5029–5037
(2017)

8. Drosou, M., Jagadish, H., Pitoura, E., Stoyanovich, J.: Diversity in big data: a
review. Big Data 5(2), 73–84 (2017)

9. Dumitrescu, A., Pach, J.: Partitioning colored point sets into monochromatic parts.
Int. J. Comput. Geom. Appl. 12(05), 401–412 (2002)

10. Farahani, R.Z., SteadieSeifi, M., Asgari, N.: Multiple criteria facility location prob-
lems: a survey. Appl. Math. Model. 34(7), 1689–1709 (2010)

11. Hartvigsen, D.: Recognizing Voronoi diagrams with linear programming. ORSA J.
Comput. 4(4), 369–374 (1992)

12. Holmsen, A.F., Kynčl, J., Valculescu, C.: Near equipartitions of colored point sets.
Comput. Geom. 65, 35–42 (2017)

13. Kaneko, A., Kano, M.: Discrete geometry on red and blue points in the plane, a
survey. In: Aronov, B., Basu, S., Pach, J., Sharir, M. (eds.) Discrete and Com-
putational Geometry, The Goodman-Pollack Festschrift, pp. 551–570. Springer,
Heidelberg (2003). https://doi.org/10.1007/978-3-642-55566-4 25

14. Lacevic, B., Amaldi, E.: On population diversity measures in Euclidean space. In:
IEEE Congress on Evolutionary Computation, pp. 1–8 (2010)

15. Magurran, A.E.: Ecological Diversity and its Measurement. Princeton University
Press, Princeton (1988)

16. Majumder, S., Nandy, S.C., Bhattacharya, B.B.: Separating multi-color points on
a plane with fewest axis-parallel lines. Fundamenta Informaticae 99(3), 315–324
(2010)

17. Tang, E.K., Suganthan, P.N., Yao, X.: An analysis of diversity measures. Mach.
Learn. 65(1), 247–271 (2006)

18. Tuomisto, H.: A diversity of beta diversities: straightening up a concept gone awry.
Part 1. Defining beta diversity as a function of alpha and gamma diversity. Ecog-
raphy 33(1), 2–22 (2010)

19. Whittaker, R.H.: Vegetation of the Siskiyou mountains, Oregon and California.
Ecol. Monogr. 30(3), 279–338 (1960)

20. Zheng, K., Wang, H., Qi, Z., Li, J., Gao, H.: A survey of query result diversification.
Knowl. Inf. Syst. 51(1), 1–36 (2016). https://doi.org/10.1007/s10115-016-0990-4

https://doi.org/10.1007/978-3-642-55566-4_25
https://doi.org/10.1007/s10115-016-0990-4

Reverse Shortest Path Problem
for Unit-Disk Graphs

Haitao Wang and Yiming Zhao(B)

Department of Computer Science, Utah State University, Logan, UT 84322, USA
{haitao.wang,yiming.zhao}@usu.edu

Abstract. Given a set P of n points in the plane, a unit-disk graph
Gr(P) with respect to a radius r is an undirected graph whose vertex
set is P such that an edge connects two points p, q ∈ P if the Euclidean
distance between p and q is at most r. The length of any path in Gr(P)
is the number of edges of the path. Given a value λ > 0 and two points
s and t of P , we consider the following reverse shortest path problem:
finding the smallest r such that the shortest path length between s and
t in Gr(P) is at most λ. It was known previously that the problem can
be solved in O(n4/3 log3 n) time. In this paper, we present an algorithm
of O(�λ� · n logn) time and another algorithm of O(n5/4 log2 n) time.

1 Introduction

Given a set P of n points in the plane and a radius r, a unit-disk graph Gr(P) is
an undirected graph whose vertex set is P such that an edge connects two points
p, q ∈ P if the Euclidean distance between p and q is at most r. Alternatively,
Gr(P) may be viewed as the intersection graph of the set of congruous disks of
radius r/2 centered at the points of P (i.e., disks are vertices and two disks have
an edge if they intersect). The length of a path in Gr(P) is defined to be the
number of edges of the path. For any two points p and q of P , their distance in
Gr(P) is defined as the length of a shortest path from p to q in Gr(P).

Finding shortest paths in unit-disk graphs (e.g., single-source shortest paths
and all-pairs shortest paths) has been extensively studied, e.g., [5,6,14,18,20].
In this paper, we consider the following reverse shortest path problem: Given a
value λ > 0 and two points s and t of P , find the smallest value r such that the
distance between s and t in Gr(P) is at most λ. As the length of any path in
Gr(P) is an integer, the length of a path of Gr(P) is at most λ if and only if the
length of the path is at most �λ�; therefore, we can replace λ in the problem by
�λ�. In the following, we simply assume that λ is an integer.

Using the distance selection algorithm of Katz and Sharir [15], Cabello and
Jejčič [5] pointed out a straightforward algorithm of O(n4/3 log3 n) time for the
problem and asked whether better algorithms exist. In this paper, we present an
algorithm of O(λ · n log n) time and another algorithm of O(n5/4 log2 n) time.
Thus, the first algorithm is preferable when λ is relatively small.

This research was supported in part by NSF under Grant CCF-2005323. A full version
of this paper is available at https://arxiv.org/abs/2104.14476.

c© Springer Nature Switzerland AG 2021
A. Lubiw et al. (Eds.): WADS 2021, LNCS 12808, pp. 655–668, 2021.
https://doi.org/10.1007/978-3-030-83508-8_47

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-83508-8_47&domain=pdf
https://arxiv.org/abs/2104.14476
https://doi.org/10.1007/978-3-030-83508-8_47

656 H. Wang and Y. Zhao

1.1 Related Work

Unit-disk graphs is an important class of geometric intersection graphs, and a
vast amount of problems have been studied in unit-disk graphs due to many of
their applications, e.g., in wireless sensor networks.

Finding a shortest path in the unit-disk graph Gr(P) has been well-studied.
Although Gr(P) may have Ω(n2) edges, it is possible to find a shortest path in
Gr(P) between two given points of P in sub-quadratic time using certain geo-
metric properties of P . Roditty and Segal [18] first gave an algorithm of O(n

4
3+ε)

time, where and throughout the paper ε is an arbitrarily small positive constant.
The algorithm also works for the weighted case where the weight of each edge of
Gr(P) is defined to be the Euclidean distance of the two vertices connected by
the edge; in contrast, in the unweighted case the length of each edge of Gr(P)
is one. Cabello and Jejčič [5] proposed an algorithm of O(n log n) time for the
unweighted case. They also gave an O(n1+ε) time algorithm for the weighted
case by using a dynamic data structure for bichromatic closest pairs [1]. Using
the improved (and randomized) result of Kaplan et al. [14] for the dynamic
bichromatic closest pairs, the weighted case can be solved in O(n log12+o(1) n)
expected time. Recently, Wang and Xue [20] derived a new (deterministic) algo-
rithm for the weighted case and the runtime is O(n log2 n). In addition, Chan
and Skrepetos [6] gave an O(n)-time algorithm for the unweighted case, provided
that the points of P are presorted by both the x- and y-coordinates.

In addition to the shortest path problem, many other problems of unit-disk
graphs have also been studied, i.e. clique [8], independent set [16], distance ora-
cle [7,13], diameter [6,7,13], etc. Comparing to general graphs, many problems
can be solved efficiently in unit-disk graphs by exploiting their underlying geo-
metric structures, although there are still problems that are NP-hard for unit-
disk graphs and other geometric intersection graphs, e.g., [3,8].

Note that reverse/inverse shortest path problems have been studied in the lit-
erature in various problem settings. Roughly speaking, the problems are to mod-
ify the graph (e.g., modify some edge weights) so that certain desired constraints
related to shortest paths in the graph can be satisfied, e.g., [4,21]. Our reverse
shortest path problem in unit-disk graphs may find applications in scenarios like
the following. Consider Gr(P) as a unit-disk intersection graph representing a
wireless sensor network in which each disk represents a sensor and two sensors
can communicate with each other (e.g., directly transmit a message) if there is
an edge connecting them in the graph. The radius of a disk is proportional to
the energy of the sensor. For two specific sensors s and t, suppose we want to
know the minimum energy for all sensors so that s and t can transmit messages
to each other within λ steps for a given value λ. It is easy to see that this is
equivalent to our reverse shortest path problem.

1.2 Our Approach

Let r∗ denote the optimal radius for the reverse shortest path problem, i.e., the
smallest r such that the distance of s and t in Gr(P) is at most λ. Our goal is to

Reverse Shortest Path Problem for Unit-Disk Graphs 657

compute r∗. Given a value r, the decision problem is to decide whether r ≥ r∗. It
is not difficult to see that r ≥ r∗ if and only if the distance of s and t in Gr(P)
is at most λ. Therefore, the decision problem can be solved in O(n log n) time
by using the shortest path algorithm for the unweighted unit-disk graphs [5,6].
More efficiently, with O(n log n)-time preprocessing (to sort the points of P),
given any r, whether r ≥ r∗ can be decided in O(n) time by the algorithm of
Chan and Skrepetos [6].

Observe that r∗ must be equal to the distance of two points of P . Therefore,
we can find r∗ by doing binary search on the set of pairwise distances of all
points of P . Given any k ∈ [1, n(n − 1)/2], the distance selection algorithm of
Katz and Sharir [15] can compute the k-th smallest distance among all pairs of
points of P in O(n4/3 log2 n) time. Using this algorithm, the binary search can
find r∗ in O(n4/3 log3 n) time. This is the algorithm mentioned in [5].

Our new algorithm is based on parametric search [9,17], by parameterizing
the decision algorithm of Chan and Skrepetos [6] (which we refer to as the CS
algorithm). More specifically, the CS algorithm first builds a grid in the plane
and then runs the breadth-first-search (BFS) algorithm with the help of the
grid; in the i-th step of the BFS, the algorithm finds the set of points of P whose
distances from s in Gr(P) are equal to i. Although we do not know r∗, we run
the CS algorithm on a parameter r in an interval (r1, r2] such that each step of
the algorithm behaves the same as the algorithm running on r∗. The algorithm
terminates after t is reached, which will happen within λ steps. In each step, we
use the decision algorithm to compare r∗ with certain critical values, and the
results of these comparisons will shrink the interval (r1, r2]. Once the algorithm
terminates, r∗ is equal to r2 of the current interval (r1, r2]. With the linear-time
decision algorithm (i.e., the CS algorithm [6]), each step runs in O(n log n) time.
The total time of the algorithm is O(λ · n log n).

The above algorithm is only interesting when λ is relatively small. In the
worst case, however, λ can be Θ(n), which would make the running time become
O(n2 log n). Next, by combining the strategies of the above two algorithms, we
derive a better algorithm. The main idea is to partition the cells of the grid in
the CS algorithm into two types: large cells, which contain at least n3/4 points
of P each, and small cells otherwise. For small cells, we process them using the
above binary search algorithm with the distance selection algorithm [15]; for
large cells, we process them using the above parametric search techniques. This
works out due to the following observation. On the one hand, the number of
large cells is relatively small (at most O(n1/4)) and thus the number of steps
using the parametric search is also small. On the other hand, each small cell
contains relatively few points of P (at most O(n3/4)) and thus the total time we
spend on the distance selection algorithm is not big. The threshold value n3/4

is carefully chosen so that the total time for processing the two types of cells is
minimized. In addition, instead of applying the distance selection algorithm [15]
directly, we find that it suffices to use only a subroutine of that algorithm, which
not only simplifies the algorithm but also reduces the total time by a logarithmic
factor. All these efforts lead to an O(n5/4 log2 n) time algorithm to compute r∗.

658 H. Wang and Y. Zhao

C

Fig. 1. The grey cells are all neighbor cells of C.

Outline. In the following, Sect. 2 defines notation and reviews the CS algorithm.
Our first algorithm is presented in Sect. 3 while the second algorithm is described
in Sect. 4. Section 5 concludes with remarks on a more general problem and the
weighted case of the problem. Due to the space limit, many proofs are omitted
but can be found in our full paper.

2 Preliminaries

For any radius r, we use dr(p, q) to denote the distance of two vertices p and q
in Gr(P). Note that dr(p, q) ≤ dr′(p, q) if r ≥ r′.

For any two points p and q in the plane, let |p − q| denote their (Euclidean)
distance. For any subset P ′ of P and any region R in the plane, we use P ′(R)
or P ′ ∩ R to refer to the subset of points P ′ contained in R. For any point p, let
x(p) and y(p) denote its x- and y-coordinates, respectively.

We next review the CS algorithm [6]. Suppose we have a sorted list of P by
x-coordinate and another sorted list of P by y-coordinate. Given a radius r, the
algorithm can compute in O(n) time the distances from s to all other points of
P in Gr(P).

The first step is to compute a grid Ψr(P) of square cells whose side lengths are
r/

√
2. A cell C ′ of Ψr(P) is a neighbor of another cell C if the minimum distance

between a point of C and a point of C ′ is at most r. Note that the number of
neighbors of each cell of Ψr(P) is O(1) (e.g., see Fig. 1) and the distance between
any two points in each cell is at most r.

Next, starting from the point s, the algorithm runs BFS in Gr(P) with the
help of the grid Ψr(P). Define Si as the subset of points of P whose distances
in Gr(P) from s are equal to i. Initially, S0 = {s}. Given Si−1, the i-th step
of the BFS is to compute Si by using Si−1 and the grid Ψr(P), as follows. If a
point p is not in

⋃i−1
j=0 Sj , we say that p has not been discovered yet. For each

cell C that contains at least one point of Si−1, we need to find points that are
not discovered yet and at distances at most r from the points of Si−1 ∩ C (i.e.,
the points of Si−1 in C); clearly, these points are either in C or in the neighbor
cells of C. For points of P (C), since every two points of C are within distance r
from each other, we add all points of P (C) that have not been discovered to Si.
For each neighbor cell C ′ of C, we need to solve the following subproblem: find

Reverse Shortest Path Problem for Unit-Disk Graphs 659

the points of P (C ′) that are not discovered yet and within distance at most r
from the points of Si−1 ∩ C. Since C ′ and C are separated by either a vertical
line or a horizontal line, we essentially have the following subproblem.

Subproblem 1. Given a set of nr red points below a horizontal line � and a set
of nb blue points above �, both sorted by x-coordinate, determine for each blue
point whether there is a red point at distance at most r from it.

The subproblem can be solved in O(nr + nb) time as follows. For each red
point p, the circle of radius r centered at p has at most one arc above � (we say
that this arc is defined by p). Let Γ be the set of these arcs defined by all red
points. Since all arcs of Γ have the same radius and all red points are below
�, every two arcs intersect at most once and the arcs above � are x-monotone.
Further, as all red points are sorted already by x-coordinate, the upper envelope
of Γ , denoted by U , can be computed in O(nr) time by an algorithm similar
in spirit to Graham’s scan. Then, it suffices to determine whether each blue
point is below U , which can be done in O(nr + nb) time by a linear scan. More
specifically, we can first sort the vertices of U and all blue points. After that, for
each blue point p, we know the arc of U that spans p (i.e., x(p) is between the
x-coordinates of the two endpoints of the arc), and thus we only need to check
whether p is below the arc. In summary, solving the subproblem involves three
subroutines: (1) compute U ; (2) sort all vertices of U with all blue points; (3)
for each blue point p, determine whether it is below the arc of U that spans p.

The above computes the set Si. Note that if Si = ∅, then we can stop the
algorithm because all points of P that can be reached from s in Gr(P) have been
computed. For the running time, notice that points of P in each cell of the grid
Ψr(P) can be involved in at most two steps of the BFS. Further, since each grid
cell has O(1) neighbors, the total time of the BFS algorithm is O(n).

In order to achieve O(n) time for the overall algorithm, the grid Ψr(P) must
be implicitly constructed. The CS algorithm [6] does not provide any details
about that. There are various ways to do so. Below we present our method,
which will facilitate our algorithm in the next section.

The grid Ψr(P) we are going to build is a rectangle that is partitioned into
square cells of side lengths r/

√
2 by O(n) horizontal and vertical lines. These

partition lines will be explicitly computed. Let P ′ be the subset of points of P
located in Ψr(P). P ′ has the following property: for each p ∈ P\P ′, p cannot
be reached from s in Gr(P), i.e., the distances from s to the points of P\P ′ in
Gr(P) are infinite. Let C denote the set of cells of Ψr(P) that contain at least
one point of P . For each cell C ∈ C, let N(C) denote the set of neighbors of C in
C. The information computed in Lemma 1 suffices for implementing the above
BFS algorithm in linear time.

Lemma 1. Both P ′ and C, along with all vertical and horizontal partition lines
of Ψr(P), can be computed in O(n) time. Further, with O(n) time preprocessing,
the following can be achieved:

660 H. Wang and Y. Zhao

1. Given any point p ∈ P ′, the cell of C that contains p can be obtained in O(1)
time.

2. Given any cell C ∈ C, the neighbor set N(C) can be obtained in O(|N(C)|)
time.

3. Given any cell C ∈ C, the subset P (C) of P can be obtained in O(|P (C)|)
time.

To make the description concise, in the following, whenever we say “compute
the grid Ψr(P)” we mean “compute the grid information of Lemma 1”; similarly,
by “using the grid Ψr(P)”, we mean “using the grid information of Lemma 1”.

3 The First Algorithm

In this section, we present our O(λ · n log n) time algorithm for the reverse
shortest path problem. Our goal is to compute r∗, the optimal radius of the
disks.

Our algorithm uses parametric search [9,17]. But different than the tradi-
tional parametric search where parallel algorithms are used, our decision algo-
rithm (i.e., the CS algorithm for the shortest path problem [6]) is inherently
serial. We run the CS algorithm with a parameter r in an interval (r1, r2] by
simulating the algorithm on the unknown r∗; at each step of the algorithm, the
decision algorithm will be invoked on certain critical values r to compare r and
r∗, and the algorithm will proceed accordingly based on the results of the com-
parisons. The interval (r1, r2] always contains r∗ and will keep shrinking during
the algorithm (note that “shrinking” includes the case that the interval does not
change). Initially, we set r1 = 0 and r2 = ∞. Hence, (r1, r2] contains r∗.

Recall that the CS algorithm has two major steps: build the grid and then
run BFS with the help of the grid. Correspondingly, our algorithm also first
builds a grid and then runs BFS accordingly using the grid.

3.1 Building the Grid

The first step is to build a grid Ψ(P). Our goal is to shrink (r1, r2] so that it
contains r∗ and if r∗ �= r2 (and thus r∗ ∈ (r1, r2)), then for any r ∈ (r1, r2),
Ψr(P) has the same combinatorial structure as Ψr∗(P), i.e., both grids have the
same number of columns and the same number of rows, and a point of P is in
the cell of the i-th row and j-th column of Ψr∗(P) if and only if it is also in the
cell of the i-th row and j-th column of Ψr(P). To this end, we have the following
lemma.

Lemma 2. An interval (r1, r2] containing r∗ can be computed in O(n log n) time
so that if r∗ �= r2, then for any r ∈ (r1, r2), the grid Ψr(P) has the same combi-
natorial structure as Ψr∗(P).

Let (r1, r2] be the interval computed by Lemma 2. We pick any value r in
(r1, r2) and compute the grid information of Ψr(P) by Lemma 1. By Lemma 2,
these information is the same as that of Ψr∗(P) if r∗ �= r2. Below we will use
Ψ(P) to refer to the grid information computed above.

Reverse Shortest Path Problem for Unit-Disk Graphs 661

3.2 Running BFS

For a fixed radius r, we use Si(r) to denote the set of points of P whose distances
from s is equal to i in Gr(P), which is computed in the i-th step of the BFS
algorithm if we run the CS algorithm with respect to r. Initially, we have S0(r) =
{s}. Below, using the interval (r1, r2] obtained in Lemma 2, we run the BFS as in
the CS algorithm with a parameter r ∈ (r1, r2), by simulating the algorithm for
r∗. The algorithm maintains an invariant that the i-th step computes a subset
Si ⊆ P and shrinks (r1, r2] so that it contains r∗ and if r∗ �= r2 (and thus
r∗ ∈ (r1, r2)), then Si = Si(r) = Si(r∗) for any r ∈ (r1, r2). Initially, we set
S0 = {s} and thus the invariant holds as S0(r) = {s} for any r. As will be seen
later, the algorithm stops within λ steps and each step takes O(n log n) time.

Consider the i-th step. Assume that we have Si−1 and (r1, r2], and the invari-
ant holds, i.e., (r1, r2] contains r∗ and if r∗ �= r2, then Si−1 = Si−1(r) = Si−1(r∗)
for any r ∈ (r1, r2). Using the grid Ψ(P), we obtain the grid cells containing the
points of Si−1. For each such cell C, for points of P in C, we have Lemma 3.

Lemma 3. Suppose r∗ �= r2. Then, for each point p ∈ P (C) that has not been
discovered by the algorithm, i.e., p �∈ ⋃i−1

j=1 Sj, p is in Si(r) for any r ∈ (r1, r2).

Proof. Let q be a point of Si−1 in C. By our algorithm invariant, (r1, r2] contains
r∗. Since r∗ �= r2, r∗ ∈ (r1, r2). Let r be any value of (r1, r2). In light of Lemma 2,
both p and q are in the same cell of Ψr(P), and thus |p − q| ≤ r. By our
algorithm invariant, Sj = Sj(r) for all 0 ≤ j ≤ i− 1. Since p �∈ ⋃i−1

j=1 Sj , we have
p �∈ ⋃i−1

j=1 Sj(r). As q ∈ Si−1(r) and |p − q| ≤ r, we obtain that p ∈ Si(r). �
Due to Lemma 3, we add to Si the points of P (C) that have not been

discovered yet. Next, for each neighbor C ′ of C, we need to solve Subproblem 1;
we use I to denote the set of all instances of this subproblem in the i-th step of
the BFS. Consider one such instance. Recall that solving it for a fixed r involves
three subroutines. First, compute the upper envelope U of the arcs of Γ above
� of all red points. Second, sort all vertices of U with all blue points. Third, for
each blue point p, determine whether it is below the arc of U that spans p. To
solve our problem, we parameterize each subroutine with a parameter r so that
the behavior of the algorithm is consistent with that for r = r∗ if r∗ �= r2.

Computing the Upper Envelope. We use Γ (r) to denote the set of arcs
above � defined by the red points with respect to the radius r; similarly, define
U(r) as the upper envelope of Γ (r). The goal of the first subroutine is to shrink
the interval (r1, r2] such that it contains r∗ and if r∗ �= r2, then U(r∗) has the
same combinatorial structure as U(r) for any r ∈ (r1, r2), i.e., the set of red
points that define the arcs on U(r) is exactly the set of red points that define
the arcs on U(r∗) with the same order. Note that the order of the arcs on U(r) is
consistent with the x-coordinate order of the red points defining these arcs [6].

To this end, we have the following observation. Consider U(r) for an arbitrary
r. If r changes, the combinatorial structure of U(r) does not change until one

662 H. Wang and Y. Zhao

h p1

p2

p3

(a) The upper envelope
is comprised of three arcs
centered at p1, p2 and p3.

h p3

p2

p1

(b) The moment when the
three arcs have a common in-
tersection, which is a vertex of
the upper envelope.

h p3p2p1

(c) The middle arc cen-
tered at p2 disappears
from the upper envelope.

Fig. 2. The change of the combinatorial structure of the upper envelope U(r) (the red
solid arcs) as r increases. (Color figure online)

arc (e.g., defined by a red point p2) disappears from U(r) (e.g., see Fig. 2). Let
p1 and p3 be the red points defining neighboring left and right arcs of the arc
defined by p2 on U(r), respectively. Then, at the moment when p2 disappears
from U(r), the three arcs defined by p1, p2, and p3 intersect at a common point
q, which is equidistant to the three points. Further, since q is currently on U(r),
there is no red point that is closer to q than pi for i = 1, 2, 3, and the distance
from q to each pi, i = 1, 2, 3, is equal to the current value of r. Hence, q is a
vertex of the Voronoi diagram of the red points. This implies that as r changes,
the combinatorial structure of U(r) does not change until possibly when r is
equal to the distance |q − p|, where q is a vertex of the Voronoi diagram of all
red points and p is a nearest red point of q.

Based on the above observation, our algorithm works as follows. We build
the Voronoi diagram for all red points, which takes O(nr log nr) time [12,19].
For each vertex v of the diagram, we add |v − p| to the set Q (initially Q = ∅),
where p is a nearest red point of v (p is available from the diagram). Note that
|Q| = O(nr), and we refer to each value of Q as a critical value. Next, we sort Q,
and then do binary search on Q using the decision algorithm to find the smallest
value r′

2 of Q with r′
2 ≥ r∗ as well as the largest value r′

1 of Q smaller than r∗,
which can be done in O(n log nr) time (note that nr ≤ n). By definition, (r′

1, r
′
2]

contains r∗ and (r′
1, r

′
2) does not contain any value of Q. According to the above

observation, if r∗ �= r′
2, then the combinatorial structure of U(r∗) is the same as

that of U(r) for any r ∈ (r′
1, r

′
2).

We analyze the running time of this subroutine for all instances of I. Clearly,
the total time for all instances is bounded by O(|I| ·n log n), which is O(n2 log n)
as |I| = O(n). We can reduce the time to O(n log n) by considering the critical
values of all instances of I altogether. Specifically, let Q now be the set of
critical values of all instances of I. Then, |Q| = O(n). We sort Q and do binary
search on Q to find r′

1 and r′
2 as defined above with respect to the new Q.

Now, for each instance of I, if r∗ �= r′
2, then the combinatorial structure of

U(r∗) is the same as that of U(r) for any r ∈ (r′
1, r

′
2). The total time for all

instances of I is now bounded by O(n log n). Finally, we update r1 = max{r1, r
′
1}

and r2 = min{r2, r
′
2}. As r∗ ∈ (r′

1, r
′
2], the new interval (r1, r2] still contains

Reverse Shortest Path Problem for Unit-Disk Graphs 663

r∗. Further, as (r1, r2) ⊆ (r′
1, r

′
2), for each instance of I, if r∗ �= r2, then the

combinatorial structure of U(r∗) is the same as that of U(r) for any r ∈ (r1, r2).

Sorting the Upper Envelope Vertices and Blue Points. The goal of the
second subroutine is to shrink the interval (r1, r2] such that it contains r∗ and if
r∗ �= r2, then the sorted list of all vertices of U(r∗) and all blue points by their
x-coordinates is the same as the sorted list of all vertices of U(r) and all blue
points for any r ∈ (r1, r2). Recall that after the first subroutine, the interval
(r1, r2] contains r∗, and if r∗ �= r2, then the combinatorial structure of U(r∗) is
the same as that of U(r) for any r ∈ (r1, r2).

To sort all vertices of U(r∗) and all blue points, we apply Cole’s parametric
search [9] with AKS sorting network [2], using the CS algorithm as the decision
algorithm; the running time is bounded by O(n log n) as the number of vertices
of U(r∗) is O(nr) and the number of blue points is O(nb) (and nr + nb = O(n)).
To see why this works, it suffices to argue that the “root” of each comparison
involved in the sorting can be obtained in O(1) time (more specifically, the root
refers to the value of r ∈ (r1, r2) at which the two operands involved in the
comparison are equal). Indeed, the comparisons can be divided into three types
based on their operands: (1) a comparison between the x-coordinates of two blue
points; (2) a comparison between the x-coordinates of two vertices of U(r∗); (3)
a comparison between the x-coordinates of a blue point and a vertex of U(r∗).
For the first type, as blue points are fixed, independent of the parameter r, it is
trivial to handle. For the second type, as the combinatorial structure of U(r) does
not change for all r ∈ (r1, r2), each such comparison can be resolved by taking
any value of r ∈ (r1, r2) and then comparing the two vertices under r. The third
type is a little more involved. Consider the comparison of the x-coordinates of a
blue point q and a vertex v of U(r∗). Note that v is the intersection of arcs of two
circles of radius r and centered at two red points, say p1 and p2, respectively.
Observe that v is on the bisector of p1 and p2 (e.g., see Fig. 3). Furthermore,
when r changes, v moves on the bisector of p1 and p2, while the position of the
blue point q does not change. Hence, the root of the comparison, i.e., the value
r (if exists) in (r1, r2) such that x(q) = x(v) can be obtained in constant time
by elementary geometry (e.g., see Fig. 4). Note that if such r does not exist in
(r1, r2), then either x(q) < x(v) holds for all r ∈ (r1, r2) or x(q) > x(v) holds for
all r ∈ (r1, r2), which can be easily determined. As such, with Cole’s parametric
search [9] and the linear time decision algorithm (i.e., the CS algorithm), we
can obtain a sorted list of the upper envelope vertices and the blue points by x-
coordinate; the algorithm shrinks (r1, r2] so that the new interval (r1, r2] contains
r∗ and if r∗ �= r2, then the above sorted list is fixed for all r ∈ (r1, r2).

Since the running time of the above sorting algorithm is O(n log n), as
before for the first subroutine, the sorting for all problem instances of I takes
O(n2 log n) time. To reduce the time, as before, we sort all elements in all
instances of I altogether, which takes O(n log n) time in total. Specifically, in
each problem instance, we need to sort a set of blue points and vertices of upper
envelopes of a set of red points. We put all blue points and the upper envelopes

664 H. Wang and Y. Zhao

�

p1 p2

v

Fig. 3. Illustrating a vertex v of the
upper envelope, which is defined by two
red points p1 and p2. The red solid seg-
ment is the bisector of p1 and p2. (Color
figure online)

�

p2

p1

q

v

Fig. 4. Illustrating the scenario where
x(q) = x(v), where v is on the bisector
(the red solid segment) of p1 and p2.
(Color figure online)

of all red points of all problem instances of I in one coordinate system and apply
the sorting algorithm as above. One difference is that we now have a new type
of comparisons: compare the x-coordinate of a vertex v1 of the upper envelope
from one problem instance with the x-coordinate of a vertex v2 of the upper
envelope from another problem instance. In this case, when r changes, both v1
and v2 moves on the bisectors of their defining red points. But we can still find
in constant time a root r (if exists) in (r1, r2) for the comparison by elementary
geometry. As such, we can complete the sorting for all problem instances of I in
O(n log n) time in total, for the total number of all blue points and red points
in all problem instances of I is O(n). Again, the interval (r1, r2] will be shrunk.
This finishes the second subroutine.

Deciding Whether Each Blue Point is Below the Upper Envelope. We
now have an interval (r1, r2] containing r∗ such that if r∗ �= r2, then each blue
point q is spanned by an arc αq(r) of U(r) defined by the same red point for all
r ∈ (r1, r2) (note that αq(r) moves as r changes, for r is the radius of the arc).
Each blue point q is below the upper envelope U(r) if and only if q is below the
arc αq(r). The goal of the third subroutine is to shrink the interval (r1, r2] so
that the new interval (r1, r2] still contains r∗ and if r∗ �= r2, then for each blue
point q, the relative position of q with respect to αq(r) (i.e., whether q is above
or below αq(r)) is fixed for all r ∈ (r1, r2). To this end, we proceed as follows.

As r changes in (r1, r2), αq(r) changes while q does not. For each blue point
q, we compute in constant time a critical value r (if exists) in (r1, r2) such that
q is on αq, and we add r to the set Q (Q = ∅ initially). Note that if such value
r does not exist in (r1, r2), then either q is above αq(r) for all r ∈ (r1, r2) or q
is below αq(r) for all r ∈ (r1, r2), which can be easily determined. The size of
Q is at most nb. Then, we sort Q, and do binary search on Q with our decision
algorithm to find the smallest value r′

2 of Q with r′
2 ≥ r∗ and the largest value

r′
1 of Q with r′

1 < r∗. We then update r1 = max{r1, r
′
1} and r2 = min{r2, r

′
2}.

The new interval (r1, r2] still contains r∗ and (r1, r2) does not contain any value
of Q. Hence, if r∗ �= r2, then for each blue point q, the relative position of q with

Reverse Shortest Path Problem for Unit-Disk Graphs 665

respect to αq(r) is fixed for all r ∈ (r1, r2). As such, the new interval (r1, r2]
satisfies the goal of the third subroutine as mentioned above.

Finally, we pick an arbitrary r ∈ (r1, r2), and for each blue point q, if q is
below the arc αq(r), then we add q to the set Si.

The running time of the above algorithm is O(n log nb). Thus the total time
of the third subroutine is O(n2 log n) for all problem instances of I. To reduce
the time, we again consider the subroutine of all instances of I altogether. More
specifically, we put all critical values r in all problem instances of I in Q. Thus,
the size of Q is O(n). We then run the same algorithm as above using the new
set Q. The total time is bounded by O(n log n).

Terminating the Algorithm. This finishes the i-th step of the BFS, which
computes a set Si along with an interval (r1, r2]. According to the above dis-
cussion, (r1, r2] contains r∗ and if r∗ �= r2 (and thus r∗ ∈ (r1, r2)), then
Si = Si(r∗) = Si(r) for all r ∈ (r1, r2).

If the point t is in Si and i ≤ λ, then we stop the algorithm. In this case, we
have the following lemma.

Lemma 4. If t ∈ Si and i ≤ λ, then r∗ = r2.

Proof. Assume to the contrary that r∗ �= r2. Then, since r∗ ∈ (r1, r2], we have
r∗ ∈ (r1, r2). Let r′ = (r1 + r∗)/2. Clearly, r′ ∈ (r1, r2) and r′ < r∗. As r′ ∈
(r1, r2), Si = Si(r′) by our algorithm invariant. Since t ∈ Si(r′), we obtain that
dr′(s, t) = i ≤ λ. This incurs contradiction as r′ < r∗ and r∗ is the minimum
value r with dr(s, t) ≤ λ. �

If t �∈ Si and i = λ, then we also stop the algorithm. In this case, we have
the following lemma.

Lemma 5. If t �∈ Si and i = λ, then r∗ = r2.

Since initially i = 0 and S0 = {s}, the above implies that the BFS algorithm
will stop in at most λ steps. As each step takes O(n log n) time, r∗ can be
computed in O(λ · n log n) time.

Theorem 1. The reverse shortest path problem for unit-disk graphs can be
solved in O(λ · n log n) time.

4 The Second Algorithm

In this section, we present our second algorithm for the reverse shortest path
problem. As discussed in Sect. 1, the main idea is to combine the strategies of
the first algorithm in Sect. 3 and the naive binary search algorithm using the
distance selection algorithm [15].

First of all, we still build in O(n log n) time the grid Ψ(P) as in Sect. 3.1,
and thus the information of Lemma 2 is available for the grid. More specifically,

666 H. Wang and Y. Zhao

we obtain an interval (r1, r2] such that if r∗ �= r2, then the combinatorial data
structure of Ψr(P) is fixed for all r ∈ (r1, r2), implying that C, P ′, N(C) and
P (C) for each C ∈ C are fixed for all r ∈ (r1, r2). Next, we will run the BFS
algorithm, but in a different way than before.

A cell C of C is called a large cell if |P (C)| ≥ n3/4 and a small cell otherwise.
Clearly, the number of large cells is at most n1/4. For all pairs of cells (C,C ′)
with C ∈ C and C ′ ∈ N(C), we call (C,C ′) a small-cell pair if both C and C ′ are
small cells and a large-cell pair otherwise (i.e., at least one cell is a large cell).
As |N(C)| = O(1) for each cell C and the number of large cells is at most n1/4,
the total number of large-cell pairs is O(n1/4).

Recall that each step of the BFS algorithm of our first algorithm in Sect. 3.2
boils down to solving instances of Subproblem 1, and each such instance involves
a cell pair (C,C ′) with C ∈ C and C ′ ∈ N(C). If (C,C ′) is a large-cell pair, we
will run the same algorithm as in Sect. 3.2. Otherwise, we will use the original CS
algorithm to solve it, which takes only linear time. For this, using the distance
selection algorithm [15], we preprocess all these small-cell pairs before starting
the BFS algorithm by the following lemma.

Lemma 6. An interval (r′
1, r

′
2] containing r∗ can be computed in O(n5/4 log2 n)

time with the following property: for any small cell pair (C,C ′) with C ∈ C and
C ′ ∈ N(C), for any two points p and p′ with p ∈ P (C) and p′ ∈ P (C ′), either
|p − p′| < r holds for all r ∈ (r′

1, r
′
2) or |p − p′| > r holds for all r ∈ (r′

1, r
′
2).

With the interval (r′
1, r

′
2] computed by the above lemma, we update r1 =

max{r1, r
′
1} and r2 = min{r2, r

′
2}. By definition, (r1, r2] ⊆ (r′

1, r
′
2]. Hence, the

interval (r1, r2] also has the same property as (r′
1, r

′
2] in Lemma 6.

Next, we run the BFS algorithm as in Sect. 3.2. To solve each instance of
Subproblem 1, if one of the two involved cells is a large cell (we refer to this
case as the large-cell instance), then we use the same algorithm as before, i.e.,
parametric search; otherwise (i.e., both involved cells are small cells; we refer
to this case as small-cell instance), due to the preprocessing of Lemma 6, we
can solve the subproblem directly using the original CS algorithm by picking
an arbitrary value r ∈ (r1, r2). In this way, the time for solving all small-cell
instances in the entire BFS algorithm is O(n). For each large-cell instance, it
can be solved in O(n log n) time as discussed in Sect. 3.2. As the number of large
cells of C is at most n1/4 and |N(C)| = O(1) for each cell C ∈ C, the total number
of large-cell instances of Subproblem 1 is at most O(n1/4). Hence, the total time
for solving the large-cell instances in the entire BFS algorithm is O(n5/4 log n).
The proof of the following lemma is in our full paper, which presents the details
of the new BFS algorithm sketched above.

Lemma 7. The BFS algorithm, which computes r∗, can be implemented in
O(n5/4 log n) time.

Combining with the algorithm of Lemma 6, the overall time of the algorithm
for computing r∗ is O(n5/4 log2 n). We thus obtain the following theorem.

Theorem 2. The reverse shortest path problem for unit-disk graphs can be
solved in O(n5/4 log2 n) time.

Reverse Shortest Path Problem for Unit-Disk Graphs 667

5 Concluding Remarks

In this paper, we propose two algorithms for the reverse shortest path prob-
lem for (unweighted) unit-disk graphs with time complexities of O(λ · n log n)
and O(n5/4 log2 n), respectively. Interestingly, our second algorithm breaks the
O(n4/3) time barrier for certain geometric problems [10,11].

Our techniques can be extended to solve a more general problem: Given a
source point s ∈ P and a value λ, compute the smallest value r∗ such that
the lengths of shortest paths from s to all vertices of Gr(P) are at most λ, i.e.,
maxt∈P dr∗(s, t) ≤ λ. The decision problem (i.e., deciding whether r ≥ r∗ for any
r) now becomes deciding whether maxt∈P dr(s, t) ≤ λ. The algorithm of Chan
and Skrepetos [6] is actually for finding shortest paths from s to all vertices of
Gr(P), and thus we can solve the decision problem by using the algorithm of
Chan and Skrepetos [6] in the same way as before but with an additional last
step to compute the value maxt∈P dr(s, t) (the total running time is still O(n)
after the O(n log n)-time preprocessing). As such, to compute r∗, we can follow
the same algorithm scheme as before but instead use the above new decision
algorithm. In addition, we make the following changes to the first algorithm
(the second algorithm is changed accordingly). After the i-th step of the BFS,
which computes a set Si along with an interval (r1, r2]. If all points of P have
been discovered after this step and i ≤ �λ�, then we have r∗ = r2 and stop the
algorithm; the proof is similar to Lemma 4. We also stop the algorithm with
r∗ = r2 if i = �λ� and not all points of P have been discovered; the proof is
similar to Lemma 5. As before, the algorithm will stop in at most �λ� steps. In
this way, the first algorithm can compute λ∗ in O(�λ�·n log n) time. Analogously,
the second algorithm can compute λ∗ in O(n5/4 log2 n) time.

Other than further improving our result, future work also includes study-
ing the weighted case of the problem. A straightforward solution is again doing
binary search on all pairwise distances of all points of P using the O(n4/3 log2 n)
time distance selection algorithm [15] with the shortest path algorithms for the
weight unit-disk graphs [5,20] as decision algorithms. The total time of the algo-
rithm is O(n4/3 log3 n). A logarithmic factor can be reduced using our tech-
niques in Lemma 6 (i.e., instead of applying the distance selection algorithm [15]
directly, use a subroutine of it), resulting in an O(n4/3 log2 n) time algorithm. It
would be interesting to see whether better solutions exist, e.g., using parametric
search, and in particular, whether the O(n4/3) time barrier can be broken.

References

1. Agarwal, P., Efrat, A., Sharir, M.: Vertical decomposition of shallow levels in 3-
dimensional arrangements and its applications. SIAM J. Comput. 29, 912–953
(1999)

2. Ajtai, M., Komlós, J., Szemerédi, E.: An O(n logn) sorting network. In: Proceed-
ings of the 15th Annual ACM Symposium on Theory of Computing (STOC), pp.
1–9 (1983)

668 H. Wang and Y. Zhao

3. de Berg, M., Bodlaender, H., Kisfaludi-Bak, S., Marx, D., van der Zanden, T.:
A framework for ETH-tight algorithms and lower bounds in geometric intersec-
tion graphs. In: Proceedings of the 50th Annual ACM Symposium on Theory of
Computing (STOC), pp. 574–586 (2018)

4. Burton, D., Toint, P.: On an instance of the inverse shortest paths problem. Math.
Program. 53, 45–61 (1992)

5. Cabello, S., Jejčič, M.: Shortest paths in intersection graphs of unit disks. Comput.
Geom.: Theory Appl. 48, 360–367 (2015)

6. Chan, T., Skrepetos, D.: All-pairs shortest paths in unit-disk graphs in slightly
subquadratic time. In: Proceedings of the 27th International Symposium on Algo-
rithms and Computation (ISAAC), pp. 24:1–24:13 (2016)

7. Chan, T., Skrepetos, D.: Approximate shortest paths and distance oracles in
weighted unit-disk graphs. In: Proceedings of the 34th International Symposium
on Computational Geometry (SoCG), pp. 24:1–24:13 (2018)

8. Clark, B., Colbourn, C., Johnson, D.: Unit disk graphs. Discret. Math. 86, 165–177
(1990)

9. Cole, R.: Slowing down sorting networks to obtain faster sorting algorithms. J.
ACM 34, 200–208 (1987)

10. Erickson, J.: On the relative complexities of some geometric problems. In: Pro-
ceedings of the 7th Canadian Conference on Computational Geometry (CCCG),
pp. 85–90 (1995)

11. Erickson, J.: New lower bounds for Hopcroft’s problem. Discret. Comput. Geom.
16, 389–418 (1996)

12. Fortune, S.: A sweepline algorithm for Voronoi diagrams. Algorithmica 2, 153–174
(1987)

13. Gao, J., Zhang, L.: Well-separated pair decomposition for the unit-disk graph met-
ric and its applications. SIAM J. Comput. 35, 151–169 (2005)

14. Kaplan, H., Mulzer, W., Roditty, L., Seiferth, P., Sharir, M.: Dynamic planar
Voronoi diagrams for general distance functions and their algorithmic applica-
tions. In: Proceedings of the 28th Annual ACM-SIAM Symposium on Discrete
Algorithms (SODA), pp. 2495–2504 (2017)

15. Katz, M., Sharir, M.: An expander-based approach to geometric optimization.
SIAM J. Comput. 26, 1384–1408 (1997)

16. Matsui, T.: Approximation algorithms for maximum independent set problems
and fractional coloring problems on unit disk graphs. In: Akiyama, J., Kano, M.,
Urabe, M. (eds.) JCDCG 1998. LNCS, vol. 1763, pp. 194–200. Springer, Heidelberg
(2000). https://doi.org/10.1007/978-3-540-46515-7 16

17. Megiddo, N.: Applying parallel computation algorithms in the design of serial
algorithms. J. ACM 30, 852–865 (1983)

18. Roditty, L., Segal, M.: On bounded leg shortest paths problems. Algorithmica 59,
583–600 (2011)

19. Shamos, M., Hoey, D.: Closest-point problems. In: Proceedings of the 16th Annual
Symposium on Foundations of Computer Science (FOCS), pp. 151–162 (1975)

20. Wang, H., Xue, J.: Near-optimal algorithms for shortest paths in weighted unit-disk
graphs. Discret. Comput. Geom. 64, 1141–1166 (2020)

21. Zhang, J., Lin, Y.: Computation of the reverse shortest-path problem. J. Glob.
Optim. 25, 243–261 (2003)

https://doi.org/10.1007/978-3-540-46515-7_16

Correction to: Algorithms and Data Structures

Anna Lubiw , Mohammad Salavatipour , and Meng He

Correction to:
A. Lubiw et al. (Eds.): Algorithms and Data Structures,
LNCS 12808, https://doi.org/10.1007/978-3-030-83508-8

The original version of this book was revised. The originally published omitted one
volume editor of the book. This has now been corrected.

The updated version of the book can be found at
https://doi.org/10.1007/978-3-030-83508-8

© Springer Nature Switzerland AG 2022
A. Lubiw et al. (Eds.): WADS 2021, LNCS 12808, p. C1, 2022.
https://doi.org/10.1007/978-3-030-83508-8_48

https://orcid.org/0000-0002-2338-361X
https://orcid.org/0000-0002-7650-2045
https://orcid.org/0000-0003-0358-7102
https://doi.org/10.1007/978-3-030-83508-8
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-83508-8_48&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-83508-8_48&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-83508-8_48&domain=pdf
https://doi.org/10.1007/978-3-030-83508-8
https://doi.org/10.1007/978-3-030-83508-8_48

Author Index

Akitaya, Hugo A. 1, 15
Albers, Susanne 29, 43
Allair, Corentin 57
An, Shinwoo 71
Antoniadis, Antonios 85
Apple, Jim 101
Arnþórsson, Ívar Marrow 115
Ashur, Stav 129

Bercea, Ioana O. 144
Bergold, Helena 158
Bernardini, Giulia 172
Biniaz, Ahmad 1, 15, 186
Bonizzoni, Paola 172
Bonomo-Braberman, Flavia 200
Bose, Prosenjit 1, 15, 215, 613
Brettell, Nick 200, 229
Buchin, Kevin 243

Cabello, Sergio 258
Capretto, Margarita 85
Chalermsook, Parinya 85
Chaplick, Steven 115, 271

Da Lozzo, Giordano 271
da Silveira, Luís Fernando Schultz Xavier 15
Damerius, Christoph 85
Das, Arun Kumar 258
Das, Sandip 258
De Carufel, Jean-Lou 15
Di Giacomo, Emilio 271
Doron-Arad, Ilan 286
Dragan, Feodor F. 300
Driemel, Anne 315
Ducoffe, Guillaume 300
Dudek, Bartłomiej 329

Eckl, Alexander 29
Eppstein, David 343
Epstein, Leah 357
Erlebach, Thomas 371
Even, Guy 144

Fomin, Fedor V. 385
Friggstad, Zachary 399, 414

Garg, Vijay K. 485
Gawrychowski, Paweł 172, 329, 428
Golovach, Petr A. 385
Goodrich, Michael T. 442
Guarnera, Heather M. 300
Gudmundsson, Joachim 457
Gupta, Siddharth 442
Gylfason, Jökull Snær 115

Halldórsson, Magnús M. 115
Henzinger, Monika 471
Hill, Darryl 215
Hochstättler, Winfried 158
Hu, Changyong 485

Janke, Maximilian 43
Janssen, Jeannette 499
Johnson, Matthew 229

Katz, Matthew J. 129
Keller, Jakob 513
Khanna, Yash 528
Khodabandeh, Hadi 442
Kimmel, Shelby 543
Kling, Peter 85
Kopelowitz, Tsvi 556
Kulik, Ariel 286

Leitert, Arne 571
Liotta, Giuseppe 271
Löffler, Maarten 243, 627
Louis, Anand 528

Mahboub, Maryam 399
Maheshwari, Anil 15, 186
Matias, Pedro 442
Mayer, Uwe 158
McCauley, Samuel 556
Montecchiani, Fabrizio 271

Mousavi, Ramin 414
Mualem, Loay 357
Mukherjee, Joydeep 258
Munaro, Andrea 200

Nölke, Lukas 85

Obscura Acosta, Nidia 85
Oh, Eunjin 71
Ooms, Aurélien 215
Ophelders, Tim 243

Paul, Rameesh 528
Paulusma, Daniël 200, 229
Pedersen, Logan 585
Pokorski, Karol 329
Popov, Aleksandr 243
Porat, Ely 556
Psarros, Ioannis 315
Purohit, Nidhi 385

Reynisson, Jökull Máni 115
Rieck, Christian 513

Sawada, J. 599
Scheffer, Christian 513
Schmidt, Arne 513
Sha, Yuan 457

Shachnai, Hadas 286
Smid, Michiel 15, 186
Speckmann, Bettina 641
Spoerhase, Joachim 85
Spooner, Jakob T. 371
Staals, Frank 627

Tonoyan, Tigran 115
Tuttle, Tyler 613

Urhausen, Jérôme 243, 627, 641
Uznański, Przemysław 428

van de Kerkhof, Mees 627
van der Hoog, Ivor 627
van Kreveld, Marc 627, 641
Verbeek, Kevin 243
Vermeulen, Jordi L. 627
Vigneron, Antoine 57

Wang, Haitao 585, 655
Williams, A. 599
Witter, R. Teal 543
Wu, Xiaowei 471

Zhang, Zhiyuan 499
Zhao, Yiming 655

670 Author Index

	Preface
	Organization
	Abstracts of Invited Talks
	Adjacency Labelling of Planar Graphs (and Beyond)
	Algorithms for Explainable Clustering
	Contents
	On the Spanning and Routing Ratios of the Directed 6-Graph
	1 Introduction
	1.1 Our Contributions

	2 Preliminaries
	2.1 The Routing Model

	3 Upper Bound on the Spanning Ratio
	4 Routing Algorithm and Upper Bound on Routing Ratio
	5 Conclusions
	References

	The Minimum Moving Spanning Tree Problem
	1 Introduction
	2 Preliminaries
	2.1 Definitions
	2.2 Convexity

	3 Minimum Bottleneck Moving Spanning Tree
	4 Minimum Moving Spanning Tree
	4.1 A 2-approximation Algorithm
	4.2 An O(n logn)-time (2+)-approximation Algorithm
	4.3 NP-hardness of MMST

	References

	Scheduling with Testing on Multiple Identical Parallel Machines
	1 Introduction
	1.1 Related Work
	1.2 Contribution
	1.3 Preliminary Definitions

	2 Non-preemptive Setting
	2.1 Lower Bound and Greedy Algorithm
	2.2 SBS Algorithm
	2.3 An Improved Algorithm for the Uniform Case

	3 Results with Preemption
	4 Conclusion
	References

	Online Makespan Minimization with Budgeted Uncertainty
	1 Introduction
	2 Problem Definition
	3 Graham's Greedy Strategy
	3.1 Upper Bound
	3.2 Lower Bound

	4 An Improved Deterministic Algorithm
	4.1 Deterministic Lower Bounds

	References

	Pattern Matching in Doubling Spaces
	1 Introduction
	2 Notation and Preliminary
	3 Reduction from k-Clique
	4 Approximation Algorithm for the -Distortion Problem
	References

	Reachability Problems for Transmission Graphs
	1 Introduction
	2 Improved Algorithm for Computing a t-Spanner
	2.1 Theta Graphs and t-Spanners of Transmission Graphs
	2.2 Efficient Algorithm for Computing the t-Spanner

	3 Reachability Oracle for Unbounded Radius Ratio
	3.1 Chain
	3.2 Separation Tree of R
	3.3 Chain Indices
	3.4 Reachability Oracles

	4 Continuous Reachability Oracle
	References

	On Minimum Generalized Manhattan Connections
	1 Introduction
	1.1 Our Contributions
	1.2 Overview of Techniques
	1.3 Outlook and Open Problems

	2 Model and Preliminaries
	3 NP-Hardness
	4 An Approximation Algorithm for s-Thin Instances
	5 A Sublogarithmic Approximation Algorithm
	References

	HalftimeHash: Modern Hashing Without 64-Bit Multipliers or Finite Fields
	1 Introduction
	1.1 Portability
	1.2 Prior Almost-Universal Families
	1.3 Outline

	2 Notations and Conventions
	3 Prior Work
	3.1 Tree Hash
	3.2 NH
	3.3 Encode, Hash, Combine

	4 Generalized EHC
	5 Implementation
	5.1 EHC
	5.2 Tree Hash

	6 Performance
	6.1 Analysis
	6.2 Cumulative Analysis
	6.3 Benchmarks

	7 Future Work
	References

	Generalized Disk Graphs
	1 Introduction
	2 Geometric Representation
	3 Approximation Scheme for Weighted Independent Sets
	4 Structural Properties
	5 One-Dimensional Case
	6 Conclusion and Open Questions
	References

	A 4-Approximation of the 23-MST
	1 Introduction
	2 Preliminaries
	3 Replacing an Arbitrary Path by a 23-Tree
	3.1 Phase I
	3.2 Phase II
	3.3 Phase III
	3.4 Correctness

	4 Conclusion
	References

	Dynamic Dictionaries for Multisets and Counting Filters with Constant Time Operations
	1 Introduction
	1.1 Results
	1.2 Related Work
	1.3 Paper Organization

	2 Preliminaries
	2.1 The Model

	3 Dictionary for Multisets via Key-Value Dictionaries (Sparse Case)
	4 Dictionary for Multisets (Dense Case)
	4.1 Parametrization
	4.2 Hash Functions
	4.3 The First Level of the Multiset Dictionary
	4.4 The Spare
	4.5 Overflow Analysis
	4.6 Space Analysis

	References

	The Neighborhood Polynomial of Chordal Graphs
	1 Introduction
	2 Preliminaries
	3 Algorithm for Chordal Graphs
	4 Complexity of the Anchor Width
	5 Discussion
	References

	Incomplete Directed Perfect Phylogeny in Linear Time
	1 Introduction
	2 Preliminaries
	2.1 Preliminary Results

	3 (N,N)-DC in O(N2logN) Total Update Time and O(N) Time per Query
	4 (N,N)-DC in O(N2) Total Update Time and O(N) Time per Query
	References

	Euclidean Maximum Matchings in the Plane—Local to Global
	1 Introduction
	1.1 Our Contributions
	1.2 Some Related Works

	2 A Lower Bound for k-Local Maximum Matchings
	3 Better Lower Bound for 3-Local Maximum Matchings
	4 Better Lower Bound for 2-Local Maximum Matchings
	5 Pairwise-Crossing Matchings are Globally Maximum
	6 Discussion
	References

	Solving Problems on Generalized Convex Graphs via Mim-Width
	1 Introduction
	2 The Proof of Theorem 1
	3 The Proof of Theorem 2
	4 The Proof of Theorem 3
	5 A Refined Parameter Analysis and Final Remarks
	References

	Improved Bounds on the Spanning Ratio of the Theta-5-Graph
	1 Introduction
	2 Preliminaries
	3 Analysis
	4 Proving a Spanning Ratio of 5.70
	4.1 Proof of Lemma 13
	4.2 Proof of Lemma 15

	References

	Computing Weighted Subset Transversals in H-Free Graphs
	1 Introduction
	2 Preliminaries
	3 General Framework of the Polynomial Algorithms
	4 Applying Our Framework on (3P1+P2)-Free Graphs
	5 Conclusions
	References

	Computing the Fréchet Distance Between Uncertain Curves in One Dimension
	1 Introduction
	2 Preliminaries
	3 Lower Bound Fréchet Distance in One Dimension
	4 Upper Bound Fréchet Distance
	5 Weak Fréchet Distance
	5.1 Algorithm for Continuous Setting
	5.2 Hardness of Discrete Setting

	References

	Finding a Largest-Area Triangle in a Terrain in Near-Linear Time
	1 Introduction
	2 Preliminaries
	3 Previous Geometric Observations
	4 New Algorithm
	4.1 Interaction Between Two Standard Lists
	4.2 Interaction Between a Standard List and a Hereditary List
	4.3 Putting Things Together

	References

	Planar Drawings with Few Slopes of Halin Graphs and Nested Pseudotrees
	1 Introduction
	2 Preliminaries
	3 Cycle-Trees and Proof of Theorem 1
	3.1 3-Connected Instances
	3.2 2-Connected and 1-Connected Instances

	4 Nested Pseudotrees
	5 Conclusions and Open Problems
	References

	An APTAS for Bin Packing with Clique-Graph Conflicts
	1 Introduction
	1.1 Contribution and Techniques
	1.2 Related Work

	2 Preliminaries: Scheduling with Bag Constraints
	3 An APTAS for GBP
	3.1 Rounding of Large and Medium Items
	3.2 Large and Medium Items
	3.3 Small Items
	3.4 Putting It All Together

	References

	Fast Deterministic Algorithms for Computing All Eccentricities in (Hyperbolic) Helly Graphs
	1 Introduction
	2 Helly Graphs and Their Hyperbolicity
	3 All Eccentricities in Helly Graphs
	4 Eccentricities in Helly Graphs with Small Hyperbolicity
	4.1 Proof of Lemma 6

	References

	ANN for Time Series Under the Fréchet Distance
	1 Introduction
	1.1 Previous Work
	1.2 Known Techniques
	1.3 Preliminaries
	1.4 Our Contributions
	1.5 Signatures

	2 A Constant-Factor Approximation for Time Series
	3 Improving the Approximation Factor to (2+)
	4 An `3́9`42`"̇613A``45`47`"603AO(k)-ANN Data Structure with Near-Linear Space
	5 A Lower Bound in the Cell-Probe Model
	6 Conclusions
	References

	Strictly In-Place Algorithms for Permuting and Inverting Permutations
	1 Introduction
	2 Preliminaries
	3 Leader Election in Smaller Space
	4 Inverting Permutations in Smaller Space
	References

	A Stronger Lower Bound on Parametric Minimum Spanning Trees
	1 Introduction
	2 Background and Preliminaries
	3 Replacing Edges by Triangles
	4 Weighted 2-Trees
	5 Packing into Dense Graphs
	6 Conclusions
	References

	Online Bin Packing of Squares and Cubes
	1 Introduction
	2 Algorithm Extended Harmonic (EH)
	3 Weighting Functions and Results
	3.1 Upper Bounds on the Asymptotic Competitive Ratio

	References

	Exploration of k-Edge-Deficient Temporal Graphs
	1 Introduction
	2 Preliminaries
	3 O(kn logn)-Time Exploration of k-Edge-Deficient Temporal Graphs
	4 Linear-Time Exploration of 1-Edge-Deficient Temporal Graphs
	5 Lower Bound
	6 Conclusion
	References

	Parameterized Complexity of Categorical Clustering with Size Constraints
	1 Introduction
	2 Preliminaries
	3 FPT Algorithm for Parameterization by B
	4 Clustering with Size Constraints
	5 Conclusion
	References

	Graph Pricing with Limited Supply
	1 Introduction
	1.1 Our Results
	1.2 Related Work
	1.3 Organization

	2 Preliminaries
	3 Local-Search Algorithms
	3.1 Single-Swap Analysis
	3.2 An Improved Multi-swap Algorithm for Bounded Capacities
	3.3 Proof of Theorem 5

	4 LP-Based Approximations
	4.1 Proof Sketch for Theorem 4

	A Reduction to L-Pricing
	References

	Fair Correlation Clustering with Global and Local Guarantees
	1 Introduction
	1.1 Our Results
	1.2 Organization

	2 Fair Correlation Clustering
	2.1 6.18-Approximation Algorithm
	2.2 Analysis of 6.18-Approximation Algorithm
	2.3 Towards a 5.5-Approximation Algorithm

	3 Local Fair Correlation Clustering
	3.1 Analysis of Algorithm 2

	References

	Better Distance Labeling for Unweighted Planar Graphs
	1 Introduction
	2 Previous Scheme
	3 Improved Scheme
	4 Efficient Decoding
	References

	How to Catch Marathon Cheaters: New Approximation Algorithms for Tracking Paths
	1 Introduction
	2 Structural Properties
	3 H-Minor-Free Graphs
	4 General Graphs
	References

	Algorithms for Radius-Optimally Augmenting Trees in a Metric Space
	1 Introduction
	1.1 Our Approach

	2 Preliminaries
	3 An O(nlogn) Expected Time Algorithm for the Discrete ROAT problem
	3.1 Case 1: The Center Lies on P
	3.2 Case 2: The Center Does Not Lie on P

	4 A Linear Time Algorithm for Continuous ROAT
	4.1 Simplify the ROAWP Problem
	4.2 Solve ROAMWP in Linear Time

	References

	Upper and Lower Bounds for Fully Retroactive Graph Problems
	1 Introduction
	2 Preliminaries
	3 Lower Bounds
	4 Incremental Fully Retroactive Connectivity and SF
	5 Fully Retroactive Data Structures
	References

	Characterization of Super-Stable Matchings
	1 Introduction
	1.1 Related Works

	2 Preliminaries
	3 Irreducible Super-Stable Matchings
	4 A Maximal Sequence of Super-Stable Matchings
	4.1 Correctness of Algorithm2
	4.2 Running Time of Algorithm2
	4.3 Rotation Poset

	5 The Super-Stable Matching Polytope
	5.1 Partial Order Preference Lists
	5.2 The Strongly Stable Matching Polytope

	References

	Uniform Embeddings for Robinson Similarity Matrices
	1 Introduction
	1.1 Related Works

	2 Uniform Embeddings
	3 Bounds, Walks, and Their Concatenation
	4 A Sufficient and Necessary Condition
	4.1 Cycles and Paths
	4.2 Finding a Uniform Embedding

	5 Testing the Condition
	5.1 A Partial Order on Bounds
	5.2 Generating the Bounds
	5.3 A Combinatorial Algorithm for the Case k=2

	6 Conclusions
	References

	Particle-Based Assembly Using Precise Global Control
	1 Introduction
	1.1 Our Contributions
	1.2 Related Work

	2 Preliminaries
	3 NP-Hardness of 3D-STAP
	4 Optimization Variant and Approximation
	5 Efficient Algorithms for Special Classes
	5.1 Tree Shapes
	5.2 Scaled Shapes

	6 Conclusion and Future Work
	References

	Independent Sets in Semi-random Hypergraphs
	1 Introduction
	1.1 Our Models and Results
	1.2 Related Work
	1.3 Preliminaries and Notation
	1.4 Proof Overview

	2 Bounding the Contribution from the Random Hypergraph
	3 Algorithm for Computing a Large Independent Set
	References

	A Query-Efficient Quantum Algorithm for Maximum Matching on General Graphs
	1 Introduction
	1.1 Graph Theory
	1.2 Query Complexity

	2 Result
	2.1 Breadth-First Search Subroutine
	2.2 Depth-First Search Subroutine

	3 Conclusion
	References

	Support Optimality and Adaptive Cuckoo Filters
	1 Introduction
	1.1 Results

	2 Three Adaptive Cuckoo Filters
	2.1 ACF Parameters and Internal State
	2.2 Cuckoo Filter Operations
	2.3 Cuckooing ACF
	2.4 Cyclic ACF
	2.5 Swapping ACF

	3 Bounding the False Positive Rate by the Number of Distinct Queries
	3.1 Proof Sketch of Theorem 1

	4 Experiments
	4.1 Experimental Results

	5 Adversarial Adaptivity
	5.1 Definition
	5.2 Lower Bounds

	References

	Computing the Union Join and Subset Graph of Acyclic Hypergraphs in Subquadratic Time
	1 Introduction
	1.1 Acyclic Hypergraphs
	1.2 Union Join Graph
	1.3 Subset Graph
	1.4 Our Contribution

	2 Preliminaries
	3 -Acyclic Hypergraphs
	3.1 Hardness Results
	3.2 Union Join Graph via Subset Graph

	4 Subclasses of Acyclic Hypergraphs
	4.1 -Acyclic Hypergraphs
	4.2 -Acyclic Hypergraphs
	4.3 Interval Hypergraphs

	References

	Algorithms for the Line-Constrained Disk Coverage and Related Problems
	1 Introduction
	1.1 Related Work
	1.2 Our Approach

	2 Preliminaries
	3 The L and L2 Cases
	3.1 An Algorithmic Scheme for L and L2 Metrics
	3.2 The L Metric
	3.3 The L2 Metric

	References

	A Universal Cycle for Strings with Fixed-Content (Which Are Also Known as Multiset Permutations)
	1 Introduction
	2 Preliminaries
	2.1 Necklaces with Fixed-Content
	2.2 Cool-Lex Order
	2.3 Necklace-Prefix Algorithm

	3 Recursive Algorithm
	4 Constructing a Shorthand Universal Cycle for Fixed-Content
	4.1 Efficiency

	References

	Routing on Heavy-Path WSPD-Spanners
	1 Introduction
	1.1 Compressed Quadtrees
	1.2 The Well-Separated Pair Decomposition

	2 The Heavy Path WSPD Spanner
	2.1 Constructing a Heavy Path WSPD Spanner

	3 Local Routing in Euclidean Space
	3.1 Routing Tables
	3.2 Routing in a Heavy Path WSPD Spanner
	3.3 Analysis of the Local Routing Algorithm

	4 Conclusions
	References

	Mapping Multiple Regions to the Grid with Bounded Hausdorff Distance
	1 Introduction
	2 Input Regions are Points
	3 Input Regions are Convex -fat Regions
	4 Input Regions are Convex Regions
	5 Input Regions are General Regions
	5.1 Two Regions
	5.2 Three or More Regions

	6 Conclusion
	References

	Diverse Partitions of Colored Points
	1 Introduction
	2 Related Work
	3 Convex Versus Voronoi Partitions in 1D
	4 Diverse Voronoi Partition in 1D
	4.1 NP-Hardness When Richness is the Diversity Measure
	4.2 NP-Hardness When Shannon Index is the Diversity Measure
	4.3 Polynomial-Time Solution for Discrete Candidate Sites

	5 Approximation for Diverse Voronoi Partition in 1D
	6 Diverse Convex Partition is NP-Hard in 2D
	7 Conclusions
	References

	Reverse Shortest Path Problem for Unit-Disk Graphs
	1 Introduction
	1.1 Related Work
	1.2 Our Approach

	2 Preliminaries
	3 The First Algorithm
	3.1 Building the Grid
	3.2 Running BFS

	4 The Second Algorithm
	5 Concluding Remarks
	References

	Correction to: Algorithms and Data Structures
	Correction to: A. Lubiw et al. (Eds.): Algorithms and Data Structures, LNCS 12808, https://doi.org/10.1007/978-3-030-83508-8

	Author Index

