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Chapter 14
Anti-quorum Sensing Properties 
of Mushrooms

Zdenka Bedlovičová and Imrich Strapáč

Abstract  The increasing resistance of pathogens to conventionally used antibiotics 
forces the scientific community to look for new ways of treatment for infectious 
diseases. It is the pressing need to find out the new sources of effective drugs. Nature 
is an unlimited source of substances with health-promoting properties. The discov-
ery of new drugs, in general, is based on current knowledge of natural medicine, 
chemistry, and biology with the combination of modern technologies. Mushrooms 
are appreciated as naturally occurring source of compounds with nutritional, chemi-
cal, and medicinal qualities, so they can be used for the development of natural 
medicines and as a source of anti-infective agents. Quorum sensing is known as an 
intercellular mechanism of communication between microbes and is very important 
for life of microorganisms and population growth. These facts have made quorum 
sensing inhibition an interesting target in the development of the new antibacterial 
drugs. Mushrooms offer a variety of chemical compounds inhibiting quorum sens-
ing such as flavonoids, phenolics, quinones, terpenoids, or vitamins and polysac-
charides. The aim of this chapter is to summarize the results in the field of quorum 
sensing inhibition by mushrooms as a response in fighting with the microbial 
resistance.
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MRSA	 Methicillin-resistant Staphylococcus aureus
MS	 Mass spectrometry
QQ	 Quorum quenching
QS	 Quorum sensing
QSI	 Quorum sensing inhibition

1  �Introduction

The increasing resistance in pathogens is a relevant reason to find out the new anti-
infective agents. The researchers are forced to identify new chemical structures to 
develop novel drugs to treat microbial infections. Diseases caused by microorgan-
isms (viruses, bacteria, fungi) are relatively common cause of mortality of patients 
worldwide (in the EU, there were 33,100 deaths during the years 2011–2012; in the 
United States, 50,000 people per year die on MRSA (methicillin-resistant 
Staphylococcus aureus) infections), but the alarming situation is in developing 
countries (Asfour 2018; Cassini et al. 2019; Chokshi et al. 2019).

Bacterial cells are capable of social interactions including quorum sensing (QS) 
as intercellular communication possibility. QS controls variety of extracellular 
functions, such as virulence, biofilm production, nutrient scavenging, and popula-
tion growth. Inhibition of quorum sensing (QS) as the way of communication 
between bacterial cells then plays a noble target for developing new antibiotics and 
biocides (Asif and Acharya 2012; Azimi et al. 2020). Inhibition of QS can be exe-
cuted by interfering with signalling pathways and/or intercepting with the signal 
molecules of quorum sensing (Zhang and Dong 2004; Rasmussen and Givskov 
2006; Williams 2007). Naturally occurred chemical compounds represent a promis-
ing way to develop antibacterial drugs based on the QS disruption, for example, 
flavonoids and phenolics have been studied as inhibitors of virulence factors pro-
duction and biofilm generation (Nazzaro et al. 2013).

In that context, the mushrooms are good candidate to be a source of bioactive 
compounds with anti-QS properties. They represent a valuable resource of bioactive 
compounds such as proteins, saccharides, fatty acids, vitamins, phenolic com-
pounds, flavonoids, carotenoids, terpenes, lycopenes, anthraquinones, and minerals, 
indicating antioxidant, antimicrobial, antitumour, antiviral, and otherwise beneficial 
properties (Borchers et al. 2004; Obi et al. 2009; Bedlovičová et al. 2016; Lee-Hoon 
et al. 2020).

The aim of this chapter is to briefly introduce the readers into quorum sensing, 
quorum quenching, and capability of mushrooms to inhibit this intercellular 
communication.
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2  �Quorum Sensing

The quorum sensing (QS), or cell-to-cell communication, is understood as social 
interaction of bacterial cells. Bacteria are able to co-operate and sense the informa-
tion from other cells in the population to coordinate activities of every single cell 
when they reach a quorum (threshold concentration). This process is usually 
achieved through formation of small signal molecules (autoinducers) which are 
responsible for gene expression regulation and then controlling density of bacterial 
cell population. When the sufficient bacteria cell concentration is reached, the den-
sity of population increases, the synthesis of autoinducers (AIs) rises in the environ-
ment leading to threshold concentration of AIs followed by activation of repress 
target genes (Fig. 14.1) (Williams 2007; Deep et al. 2011; Wu and Luo 2021). Thus, 
mechanism of quorum sensing is based on the biosynthesis, release, and uptake of 
autoinducers accumulated in the environment.

Autoinducers regulate the expression of genes in another bacterial cells leading 
to control of bacterial responses, including variety of physiological processes such 
as virulence, formation of biofilm, antibiotics biosynthesis, etc. (Asfour 2018). The 
signal molecules are divided into three main groups. The first is a group of N-acyl 
homoserine lactones (AHLs) synthesized by Gram-negative bacteria to control den-
sity of population; the second class of AIs are oligopeptides (autoinducing peptides, 
or AIPs) consisting of 5–34 amino acids produced by Gram-positive bacteria for 
intercellular communication, and finally, the third main group of signalling 

Fig. 14.1  The quorum sensing: at low cell density, the AIs are produced at essential concentra-
tions, but when the cell density is increased, the signal molecules are produced at increasing con-
centrations to reach the quorum (threshold density) of cells. At this stage, the gene expression leads 
to accumulation of signals followed by population growth to induct of quorum sensing-dependent 
genes and to switch on QS-controlled features. These features differ between bacteria species
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molecules are AI-2 (identified as a furanosylborate diester produced by members of 
the proteins of LuxS family) generated by both Gram-negative and Gram-positive 
bacterial cells for communications between different species (Xavier and Bassler 
2003; Azimi et al. 2020) (Fig. 14.2).

According to the type of bacteria, various mechanisms of quorum sensing are 
proceeded. In Gram-positive bacteria, the precursors of autoinducing peptides are 
modified and transported by ATP-binding complex into extracellular environment. 
As the concentration of AIPs achieves the threshold level, the kinase protein is acti-
vated and the response-controlling protein is phosphorylated. Finally, this protein 
interacts with the target leading to the QS gene regulation. On the other side, in 
Gram-negative bacteria, signalling molecules directly diffuse into extracellular 
matrix. Signal molecules are accumulated and bind to the receptor and then form 
AI-receptor complex. This complex is ultimately bound to the target promoter lead-
ing to the QS gene regulation (Asfour 2018). It is necessary to mention that the 
concentration of signalling molecule increases with the bacterial cell population 
growth, but when the concentration reaches a certain level, molecules are diffused 
back into the intracellular matrix to regulate specific genes, for example, biofilm 
formation, production of antibiotics, or virulence factors (Finch et al. 1998; Zaki 
et al. 2013).

Fig. 14.2  The chemical structures of signalling molecules AHLs, AIPs, and AI-2
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3  �Compounds Inhibiting Quorum Sensing

A broad spectrum of compounds inhibiting QS has been reported. Several mecha-
nisms of quorum sensing inhibition (referred as quorum quenching) were identified: 
(a) inhibition of the signal molecules (autoinducers) synthesis; (b) degradation of 
AIs by enzymes; (c) scavenging the signal molecules by antibodies and macromol-
ecules; (d) competition with AIs in binding to receptor; (e) interfering with the bind-
ing of AIs to gene promoters leading to inhibition of gene expression (Kato et al. 
2007; Morohoshi et al. 2007; Kalia and Purohit 2011; Kalia et al. 2014; Glamočlija 
et al. 2015a; Paluch et al. 2020).

3.1  �Quorum Quenching

Quorum quenching is defined as inhibition mechanism of quorum sensing process. 
In general, it serves as effective help in inhibition of microbial communication, 
mainly when standard antibiotics and anti-infectives are inefficient due to resistance 
of microorganisms.

Quorum quenching as mechanism of disruption of the bacterial communication 
can decrease or definitely inhibit the virulence factors, for example, production of 
pyocyanin in Pseudomonas aeruginosa or violacein in Chromobacterium viola-
ceum (Morohoshi et al. 2008, 2010; Mion et al. 2021).

Production of pyocyanin can be avoided by various compounds, for example, 
quaternary ammonium salts containing lipophilic alkyl chains (Piecuch et al. 2016), 
quinolin-2(1H)-ones (Morkunas et al. 2016), heterocycles including aminopyridine 
(Miller et al. 2015), or thiazolidine-2,4-diones (Froes et al. 2020). Violacein biosyn-
thesis may be reduced by furanones (Morohoshi et al. 2007), secondary metabolites 
of Halobacillus salinus (Teasdale et  al. 2009), maniwamycins (Fukumoto et  al. 
2016), etc.

The QQ mechanism is based on the enzymatic degradation of quorum sensing 
signalling molecules to avoid the cumulation of autoinducers and finally to inhibit 
expression of genes. For example, the enzyme AHL-lactonase produced by Bacillus 
cereus VT96 can directly degrade AHLs molecules by cleaving the lactone ring, so 
it is able to control the virulence of P. aeruginosa and P. carotovorum (Rajesh and 
Rai 2016). Another quorum quenching enzyme, MomL, isolated from marine 
Muricauda olearia Th120, has also been investigated as a novel type of AHL-
lactonase (Wang et al. 2019). AHL-acylase (Sio et al. 2006) and/or oxidoreductase 
(Terwagne et al. 2012) can also degrade AHL signal molecules (Fig. 14.3).
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3.2  �Methods of Determination of Quorum Quenching

As the knowledge of quorum sensing/quenching increased, the scientists are focused 
on finding new active quorum sensing inhibitors and investigating their properties. 
Many molecules have been successfully characterized and examined, but the find-
ing of a single molecule which will inhibit all the mentioned quorum sensing mech-
anisms is improbable. Nevertheless, Kalia (2013) proposed some criteria for 
selecting an efficient QS inhibitor. The molecule should be small and chemically 
stable. A good QS inhibitor should be able to reduce gene expression regulated by 
QS. The inhibitor should also be highly specific for QS regulator, then it must not 
have any negative effect on the bacterial or host cells, and should be longer than 
native AHL (Kalia 2013).

The qualitative and quantitative measurements of QQ are proceeded using vari-
ous methods, which can be classified as direct and indirect (biosensors are neces-
sary). Most of the methods are based on the detection of autoinducers reacting with 
specific chemicals leading to color reaction which can be quantitatively determined 
(for example, by colorimetry) or have luminescence or fluorescence ability. Other 
analytical methods are capillary electrophoresis, TLC (thin-layer chromatography), 
HPLC (high performance liquid chromatography), and GC (gas chromatography) 
(Shaw et al. 1997; Teplitski et al. 2003; Yang et al. 2006). Liquid and gas chroma-
tography coupled with mass spectrometry (LC-MS/MS; GC-MS) have been suc-
cessfully used for the detection of AHLs (Cataldi et al. 2004; Purohit et al. 2013; 

Fig. 14.3  AHL-deactivating enzymes  – lactonases, acylases, and oxidoreductases  – redrawn 
according to (Chen et al. 2013)
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Patel et al. 2016; Huang et al. 2020), for example farnesol, and tyrosol produced by 
Candida albicans (Greguš et al. 2010; Pilařová et al. 2020), or peptides (Debunne 
et al. 2018).

Techniques based on bacterial biosensors have also been studied for AHLs detec-
tion. Bacterial biosensors represent a fast tool for detection of specific signalling 
molecules. Biosensors are genetically modified organisms of various species 
(Pseudomonas aeruginosa, Vibrio fischeri) which have the ability to detect quorum 
sensing molecules by proteins and bacterial pathways. These proteins are usually 
detected by optical or electrochemical methods. Most of the QS biosensors express 
a reporter gene from a quorum sensing response promoter. This promoter is getting 
activated immediately as a complex of signal molecule and quorum sensing tran-
scriptional activator binds to the promoter (Rai et al. 2015). The detection of AHLs 
can also be applied by using of genetically modified bacterial strains producing 
bioluminescence. The most usually used assay is bioluminescence Vibrio harveyi 
BB170 method. This V. harveyi strain is disabled to produce AHLs and AI-2 due to 
deleted luxN gene, which encodes LuxN protein. The result of these mutations is 
that the bioluminescence is detected only if the exogenous AI-2 molecule is present 
in bacterial environment (O’Connor et  al. 2016). The approach of using genetic 
modifications to create bacterial strains serving as quorum quenchers is also appli-
cable (Oh et al. 2017).

Measurement of enzymatic activity is also the way of quantification of quorum 
sensing inhibition. As we mentioned, the quorum quenching inducting enzymes 
represent AHL-acylase, AHL-oxidoreductase, and AHL-lactonase (Chen et  al. 
2013). The capability of quorum quenching enzymes to decrease virulence of bac-
teria can also be examined by genome modification (Chen et al. 2013).

Biosensor strains, such as Chromobacterium violaceum CV026, Pseudomonas 
aureofaciens 30–84, or Agrobacterium tumefaciens A136, are quite commonly and 

Fig. 14.4  Influence of C4 HSL and 3-oxo-C12 HSL production from P. aeruginosa PAO-1 on 
C. violaceum 12,472 (a) and P. aureofaciens 30–84 (b) overlay. (Permissions by Elsevier (McLean 
et al. 2004))
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successfully used for the detection of QQ (Shaw et al. 1997; McLean et al. 2004; 
Zhu et al. 2012; Tang et al. 2013; Zaki et al. 2013; Tabbouche et al. 2017). The 
C. violaceum and P. aureofaciens methods are based on inhibition of the produced 
pigment violacein and phenazine, respectively (Fig. 14.4).

Some limitations were observed for these methods, they are time-consuming, 
low QQ is undetectable, and measuring of inhibition zones can be inaccurate (Liu 
et al. 2010; Tang et al. 2013; Lee et al. 2016).

4  �Mushrooms as Quorum Sensing Inhibitors

Mushrooms are rich source of various compounds including fatty acids, amino 
acids, polysaccharides (in general β-glucans), minerals, secondary metabolites such 
as phenolics, flavonoids, β-carotenes, lycopenes, vitamins, terpenes, steroids, 
anthraquinones, benzoic acid derivatives, quinolines, organic acids, or high-
molecular-weight molecules (peptides, proteins, nucleic acids) occurring in fruiting 
bodies, mycelia, and spores (Reis et al. 2012; Bedlovičová et al. 2016; Strapáč et al. 
2019; Omer and Alfaig 2020). Mushroom-derived compounds possess a variety of 
biological activities, including antimicrobial properties (Petrović et  al. 2014; 
Soković et al. 2014; Kostić et al. 2017; Strapáč et al. 2019). The presence of men-
tioned molecules is varying depending on the particular species of mushrooms, but 
in general, these compounds are based on phenolics, flavonoids, lactones, chitosans, 
quinones, coumarins, terpenoids, polysaccharides, and alkaloids (Glamočlija et al. 
2015a; Bedlovičová et al. 2016).

De Carvalho et  al. isolated coprinuslactone [(3R,4S)-2-methylene-3,4-
dihydroxypentanoic acid 1,4-lactone] from edible mushroom Coprinus comatus, 
which interferes with QS and disperses biofilms of Pseudomonas aeruginosa and 
Staphylococcus aureus (de Carvalho et al. 2016). Melanin from edible jelly mush-
room (Auricularia auricula) has shown the antibiofilm activity regulated by QS 
(Bin et al. 2012).

Related studies showed that extracts of edible mushrooms are able to inhibit 
quorum sensing, but there is a problem to find out the mechanism of QSI (quorum 
sensing inhibition) because extracts are complex mixtures of different chemical 
compounds of various types. Some authors suggest that QSI is probably associated 
with the presence of phenolic compounds (Hossain et al. 2017; Strapáč et al. 2019; 
Vunduk et al. 2019), others proposed furanone-like derivatives (Zhu and Sun 2008), 
but in general, the exact compounds presented in extracts, which are responsible for 
anti-quorum sensing properties, are still unknown, so relevant studies are needed to 
clarify the mechanism of QS inhibition (Petrović et  al. 2014; Glamočlija et  al. 
2015a, 2015b; Tabbouche et al. 2017; Gurgen et al. 2018; Yıldız et al. 2019).

As already mentioned, several studies related to the QSI by extracts of mush-
rooms were released (Table 14.1).

An interesting study was revealed by Koc et al. (2020), in which an extract of 
mushroom Tricholoma terreum was used as chitosan-based film producer. 
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Table 14.1  Quorum sensing inhibition by extracts of mushrooms

Mushroom species
Extraction 
reagent Bacteria species

Method of QSI 
activity References

Tricholoma terreum Water Chromobacterium 
violaceum CV026

Inhibition of 
violacein 
pigment 
production

Koc et al. 
(2020)

Agaricus bisporus
Clitocybe nuda
Lactarius volemus
Macrolepiota procera
Xerocomellus 
chrysenteron

Water Pseudomonas 
aeruginosa 119, 44

Microtiter plate 
method

Strapáč et al. 
(2019)

Pleurotus flabellatus Water MRSA
Escherichia coli
Pseudomonas 
aeruginosa
Proteus mirabilis
Enterococcus 
faecalis

Microtiter plate 
method

Vunduk et al. 
(2019)

Agaricus bisporus
Laccaria bicolor
Bovista plumbea
Lactarius deliciosus
Boletus edulis

Supercritical 
CO2

Chromobacterium 
violaceum

Inhibition of 
violacein 
pigment 
production

Yıldız et al. 
(2019)

Pleurotus ostreatus
Geastrum fornicatum
Agaricus arvensis
Amanita pantherina

Methanol Chromobacterium 
violaceum

Inhibition of 
violacein 
pigment 
production

Gurgen et al. 
(2018)

Amanita rubescens
Lactarius sp.

Ethanol Chromobacterium 
violaceum

Inhibition of 
violacein 
pigment 
production

Tabbouche 
et al. (2017)

Armillaria mellea Methanol Pseudomonas 
aeruginosa PAO1

Biofilm 
inhibition
Twitching and 
flagella motility 
inhibition
Pyocyanin 
production 
inhibition

Kostić et al. 
(2017)

Polyporus squamosus Methanol Pseudomonas 
aeruginosa PAO1

Biofilm 
inhibition
Twitching and 
flagella motility 
inhibition
Pyocyanin 
production 
inhibition

Fernandes et al. 
(2016)

(continued)
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Table 14.1  (continued)

Mushroom species
Extraction 
reagent Bacteria species

Method of QSI 
activity References

Agaricus bisporus
Agaricus bitorquis
Agaricus campestris
Agaricus macrosporus

Methanol Pseudomonas 
aeruginosa PAO1

Biofilm 
inhibition
Twitching and 
flagella motility 
inhibition
Disc-diffusion 
method

Glamočlija 
et al. (2015b)

Inonotus obliquus Water
Ethanol

Pseudomonas 
aeruginosa PAO1

Twitching and 
flagella motility 
inhibition
Swarming
Pyocyanin 
production 
inhibition

Glamočlija 
et al. (2015a)

Agrocybe aegerita Methanol Pseudomonas 
aeruginosa PAO1

Biofilm 
inhibition
Twitching and 
flagella motility 
inhibition
Disc-diffusion 
method
Pyocyanin 
production 
inhibition

Petrović et al. 
(2014)

Agaricus blazei Water Pseudomonas 
aeruginosa PAO1

Biofilm 
inhibition
Twitching and 
flagella motility 
inhibition
Pyocyanin 
production 
inhibition
Disc-diffusion 
method

Soković et al. 
(2014)

Pleurotus florida Methanol
Chloroform

Pseudomonas 
aeruginosa

Swarming 
motility
AHL inhibition
Biofilm 
inhibition

Silambarasan 
et al. (2014)

Phellinus igniarius Fermentation Chromobacterium 
violaceum

Inhibition of 
violacein 
pigment 
production

Zhu et al. 
(2012)

(continued)
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Anti-quorum sensing activities of prepared chitosan-mushroom extract films were 
tested against various types of bacteria (Escherichia coli, Salmonella typhimurium, 
Proteus microbilis, Proteus vulgaris, Pseudomonas aeruginosa, Staphylococcus 
aureus, Streptococcus mutans, and Bacillus thuringiensis). The results showed that 
the combination of chitosan film with mushroom extracts is a good method for 
increasing anti-quorum sensing activity (26 ± 1 mm), due to much more inhibition 
capability of violacein production than gentamicin (12 ± 1 mm) or chitosan film 
without extract of Tricholoma terreum (9.1 ± 1 mm) (Koc et al. 2020).

Methanolic extracts of two different samples of Polyporus squamosus, a wild 
mushroom obtained from Serbia and Portugal, were subjected to the study of quo-
rum sensing inhibition of P. aeruginosa by three methods. The first was antibiofilm 
activity tested at subinhibitory level (0.5 and 0.125 MIC). Inhibition of biofilm for-
mation was observed only for extract of sample obtained from Serbia at the value of 
88.3 ± 0.65%, 84.30 ± 0.55%, respectively. The inhibition of biofilm formation was 
better than ampicillin and streptomycin standards. The second QSI technique was 
study of inhibition of the twitching and flagella motility of P. aeruginosa. The sam-
ple from Serbia showed better activity than from Portugal, and also than the stan-
dard antibiotics. Pyocyanin production inhibition by P. aeruginosa PAO1 was the 
third method of anti-QS activity studies. P. squamosus extract of Portuguese sample 
showed higher ability to reduce pyocyanin production than Serbian sample and 
standard antibiotics. The strain of P. aeruginosa PAO1 produced a significant 
amount of pyocyanin (83.12%) and the methanolic extract of studied mushroom 
from Portugal inhibited this production to an amount of 44.5%. The QSI mechanism 
of action is unclear nevertheless the authors also determined chemical composition 
of extracts (fructose, rhamnose, mannitol, trehalose, fatty acids, organic acids, 
tocopherols) (Fernandes et al. 2016).

Table 14.1  (continued)

Mushroom species
Extraction 
reagent Bacteria species

Method of QSI 
activity References

Phellinus igniarius
Auricularia auricula, 
Cordyceps sinensis
Coriolus 
versicolor, Ganoderma 
luatdum, Inonotus 
obliquus
Antrodia camphorata
Lentinus edodes
Pleurotus ostreatus 
Flammulina velutipe 
Sparassis crispa
Agrocybe aegerita
Agaricus bisporus
Auricularia polytricha

Fermentation Chromobacterium 
violaceum

Inhibition of 
violacein 
pigment 
production

Zhu et al. 
(2011)

Tremella fuciformis 75% 
methanol

Chromobacterium 
violaceum

Inhibition of 
violacein 
pigment 
production

Zhu and Sun 
(2008)
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These methods for QSI study were also used for methanolic extract of Armillaria 
mellea (honey mushroom). The effect of honey mushroom on P. aeruginosa biofilm 
formation was studied using 0.5, 0.25, and 0.125 MIC. The obtained results showed 
that the extracts were more effective than standard antibiotics (streptomycin and 
ampicillin), and biofilm inhibition was in a concentration-dependent manner (for 
0.5, 0.25, and 0.125 MIC, the inhibition was determined at the values of 69.8, 45.89, 
and 17.01%). A. mellea methanolic extract also reduced the twitching motility of 
P. aeruginosa. The anti-quorum sensing activity of extract was also studied against 
pyocyanin production. The highest ability to inhibit pyocyanin production was 
observed for extract of 0.5 MIC concentration (38.47%), whereas the streptomycin 
exhibited 10.96% and ampicillin 15.84% reduction. The chemical composition of 
honey mushroom was also measured. The main components were carbohydrates, 
sugars (mannitol, trehalose, D-xylose, D-glucose, D-galactose), fatty acids, organic 
acids (malic, citric, fumaric, oxalic), polyphenols, and tocopherols. The authors 
claimed that the role of molecules in QS mechanism is elaborate, and there are more 
factors affecting the mechanism, so that it is important to study different mecha-
nisms of action and specifically with the biomolecules present in the species of 
A. mellea (Kostić et al. 2017).

Ethanolic extracts of Agaricus species (A. bisporus, A. bitorquis, A. campestris, 
A. macrosporus) were also tested against quorum sensing. All the samples showed 
anti-biofilm effects (reduction was observed in the range of 53–87%), the best 
results were obtained for A. macrosporus. The reduction of biofilm formation by 
standard antibiotics was detected for streptomycin in 51% and for ampicillin in 
31%. The QS inhibition zones obtained by disc diffusion method showed compa-
rable results as ampicillin standard. On the other side, the streptomycin standard 
possessed the best anti-QS activity.

All the extracts also showed a promising inhibition of twitching of P. aeruginosa 
and flagella motility (Glamočlija et al. 2015b).

The methanolic extract of Agrocybe aegerita also possessed antibiofilm activity 
of P. aeruginosa. The tested extract at subMIC concentrations (0.5, 0.25, and 0.125 
MIC) showed better ability to reduce biofilm formation than standard streptomycin 
and ampicillin antibiotics. The best results were observed for 0.5 MIC extract which 
reduced formation of biofilm in 82.24%, whereas ampicillin and streptomycin 
reduced biofilm generation by 30.84% and 50.60%, respectively. The QS zones of 
inhibition were designated by disc diffusion technique. The extracts of all concen-
trations showed a better anti-QS effect between 7.70–10.30 mm of inhibition zone, 
while ampicillin standard possessed lower activity, but at higher concentration 
(7.60  mm). On the other side, the streptomycin activity was much higher 
(15.50–22.06 mm). Pyocyanin pigment reduction was observed for all the Agrocybe 
aegerita extracts in concentration-depending manner. The best results were noticed 
for 2 MIC concentration of extract, and all the extracts showed better reduction of 
pigment than standard antibiotics used for determination. In addition, authors were 
also focused on the twitching and flagella motility inhibition, which are responsible 
for initializing the formation of biofilm by P. aeruginosa. They observe reduction of 
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twitching and flagella motility by the extract, streptomycin reduced flagellas abso-
lutely, ampicillin did not affect the flagella formation (Petrović et al. 2014).

Another study demonstrated that hot water extracts of Agaricus blazei reduced 
P. aeruginosa biofilm formation more effectively than commercial antibiotics 
(streptomycin and ampicillin). The QS-inhibiting zones were also observed in the 
range of 7.0–17.7  mm. Water extracts of A. blazei also much more efficiently 
reduced pyocyanin pigment formation at subMIC concentrations and are able to 
reduce motility of flagella and twitching (Soković et al. 2014).

Chaga mushroom (Inonotus obliquus) is a known medicinal mushroom. 
Glamočlija et al. studied its chemical composition and anti-quorum sensing proper-
ties (Glamočlija et  al. 2015a). The organic acids presented in the extracts were 
oxalic acid, phenolic acids, such as gallic acid, protocatechuic, and p-hydroxybenzoic 
acid. All the extracts exhibited unequivocal activity against P. aeruginosa PAO1 
biofilm formation, pyocyanin productions, and twitching and flagella motility 
(Glamočlija et al. 2015a).

Methanolic extracts of three cultivated mushrooms of Pleurotus ostreatus and 
three wild mushrooms (Geastrum fornicatum, Agaricus arvensis, Amanita pan-
therine), ethanolic extracts of Amanita rubescens, and Lactarius sp. collected in 
Turkey were subjected to anti-quorum sensing activity study by the method of inhi-
bition of violacein pigment production by Chromobacterium violaceum. The 
authors found out that all the extracts of studied mushrooms demonstrated anti-QS 
activity due to inhibition of pigment formation without change of the bacterial count 
(Tabbouche et al. 2017; Gurgen et al. 2018).

Five edible mushrooms (Agaricus bisporus, Clitocybe nuda, Lactarius volemus, 
Macrolepiota procera, and Xerocomellus chrysenteron) were studied regarding 
their anti-quorum sensing properties using E. coli JM109 with pSB1142 plasmid 
reporter strain against P. aeruginosa. All the extracts showed significant anti-
quorum sensing activity without affecting the growth of P. aeruginosa (Strapáč 
et al. 2019).

Zhu et al. (2011) tested 14 mushrooms against inhibition of violacein produced 
by C. violaceum. All the tested supernatants obtained by fermentation inhibited vio-
lacein production without affecting bacterial growth (Zhu et al. 2011, 2012).

Tremella fuciformis dimethyl sulfoxide extract was successfully subjected to vio-
lacein inhibition study. The studied mushroom extract inhibited violacein produc-
tion without affecting the growth of C. violaceum (Zhu and Sun 2008).

In the study of Yıldız et al. (2019), four wild mushroom extract (Lactarius deli-
ciosus, Laccaria bicolor, Bolista plumbea, and Boletus edulis) and one cultivated 
mushroom extract (Agaricus bisporus) prepared by extraction using supercritical 
CO2 were tested. Three of four wild mushroom extracts possessed anti-quorum 
sensing activity using violacein pigment inhibition method. Lactarius deliciosus, 
Boletus edulis, and Laccaria bicolor remarkably reduced production of pigment 
produced by C. violaceum. The growth of bacteria was unvaried or only slightly 
affected. QSI was not noticed for cultivated A. bisporus (Yıldız et al. 2019).

Pleurotus florida methanolic and chloroform extracts were studied as anti-QS 
agents. Authors demonstrated that P. florida has the potential to inhibit signalling 
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molecules produced by P. aeruginosa and obstruct its virulence factors. A study of 
swarming motility indicated that extracts are able to reduce motility. Authors also 
determined inhibition of AHL (acyl-homoserine lactone) and biofilm formation in 
concentration-dependent manner. Inhibition of AHL for methanolic and chloroform 
extracts was in the range of 37.89–58.94% and 50.05–70.05%, respectively. These 
results are in correlation with biofilm formation inhibition study, when the metha-
nolic extracts decreased the formation of biofilm in the range of 33.9–83.9%, while 
using chloroform extracts, it was between 60.7 and 82.1%. The authors declared 
that both types of the extracts showed considerable ability to inhibit QS, and chlo-
roform extracts exhibited a higher percentage of inhibition of AHL and biofilm 
production (Silambarasan et al. 2014).

These findings propose that mushrooms have the ability to produce compounds 
serving as a source of anti-quorum sensing agents, but the key molecule and mecha-
nism of action have not been clarified yet.

5  �Conclusions

The problem of microbial resistance is the reality of the current world. This fact 
forced the research communities around the world to exploit new and alternative 
strategies to fight against harmful resistant, or lethal microbes. The good and prom-
ising approach is quorum sensing inhibition.

A broad spectrum of compounds inhibiting QS have been reported, and various 
mechanisms of inhibition quorum sensing were reported. Mushrooms as quorum 
sensing inhibitors are also studied, due to broad spectrum of pharmacological activ-
ities (antimicrobial, antiviral, immunomodulatory, or antioxidant). Mushrooms rep-
resent rich source of bioactive compounds, namely polysaccharides, proteins, 
peptides, or secondary metabolites, such as phenolic compounds, flavonoids, vita-
mins, terpenes, steroids, anthraquinones, benzoic acid derivatives, and quinolines, 
organic acids, which are perspective antimicrobial substances. The various mush-
room extracts underwent the study of anti-quorum sensing activity by various meth-
ods, but with perspective and promising results. But, on the other hand, there is a 
quite difficult challenge to find a single molecule responsible for quorum sensing 
inhibition of mushroom extract, and finally to clarify the mechanism of action.
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