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Abstract Flowvisualization is a research discipline that is concernedwith the visual
exploration and analysis of vector fields. An important class of methods are the
topology-based techniques, which concentrate on individual structures in the domain
that govern, constrain or guide the behavior of particles in the vector field. In this
chapter, we give an overview of existing techniques for steady and unsteady vector
fields in 2D and 3D. For time-dependent flows, we describe streamline-oriented and
pathline-oriented approaches, eventually leading us to closely related feature-based
visualization concepts such as reference frame invariance and Lagrangian coherent
structures.

1 Introduction

Topology-based flow visualization concentrates on locations in the domain that gov-
ern the motion of the surrounding fluid. When flows are steady, this provides a
compact description of asymptotic particle behavior. In time-dependent flows, there
are still many open research problems despite decades of research [18]. One of the
earliest topology-related visualization papers was published by Dallmann [23], who
studied vortex separation. His work was not only influential in later topology-driven
research, such as by Helman and Hesselink [55, 56] or Globus and Levit [34], but his
visualization approaches were also source of inspiration for illustrative flow visu-
alization methods [14]. The following manuscript is written for novice readers as
an entry point to topology-based methods in flow visualization, primarily giving an
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overview of topological elements and related concepts from feature-based visualiza-
tion. Over the course of this chapter, we concentrate mainly on differential methods,
covering both steady as well as time-dependent vector fields. We refer the reader
to existing surveys on topology-based methods, which cover older methods in more
detail or also include scalar field and tensor field topology [18, 32, 53, 72, 90, 108,
130]. Topology-basedmethods are not only used for feature extraction, but also found
applications in vector fieldmodeling [117, 136], editing [20], simplification [73, 124,
125], smoothing [137], and compression [68, 75, 118].

The chapter is organized as follows. We begin with steady vector fields, covering
the topological elements of 2Dflows and afterwards 3Dflows.When it comes to time-
dependent vector fields, there are two classes of approaches: streamline-oriented and
pathline-oriented topology. We summarize the streamline-oriented approaches first,
covering the different transitions that topological elements undergo, and proceed
with the current state on pathline-oriented approaches. Finally, we discuss ongoing
researchopportunities in the areas of reference frameextraction, high-dimensionality,
uncertainty, and scalability.

Notation. In general, we denote scalar-valued quantities such as s with italic letters.
Vector-valued quantities such as v are expressed in bold letters and matrices such as
J are denoted in capital bold letters. When we discuss concepts in time-dependent
flows, we use an overline symbol, e.g., p, to denote a vector in the space-time domain,
which means that the time coordinate is added as an additional dimension.

2 Steady Vector Fields

Steady vector field topology is mainly interested in the asymptotic behavior of par-
ticles. That is, for each point in the domain, we would like to know where a particle
will flow to in the limit and where it originally came from. In a steady vector field,
the trajectory of a particle is commonly referred to as streamline. The limit behavior
of particles is given by the topological skeleton, which consists of a number of points
(critical points and special points on the boundary), which are connected with each
other by streamlines, so-called separatrices. These separatrices divide the flow into
regions with coherent behavior, as shown in Fig. 1. This means, every particle seeded
from the same area will end up in the same sink or source, respectively, when tracing
forward or backward. In the following, we introduce the elements of the topological
skeleton for 2D and 3D flows. Note that most of these techniques only apply for
steady vector fields. Time-dependent flows are covered in the subsequent section.

2.1 Two-Dimensional Flows

Given is a two-dimensional steady vector field v(x) : R2 → R
2:
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Fig. 1 The topological skeleton of two steady 2D vector fields. Critical points (sources in red, sinks
in blue, saddles in yellow) are connected by separatrices (black), which divide the flow into regions
with the same asymptotic behavior. That is, particles released from any point inside such a region
terminate in the same sink or source when tracing forward or backward, respectively

v(x) =
(
u(x, y)
v(x, y)

)
(1)

Since particles follow the flow tangentially, a particle trajectory x(τ ) can be computed
by requesting that the tangent of the particle path is equal to the vector field direction
at the particle position:

dx(τ )

dτ
= v(x(τ )) x(0) = x0 (2)

This ordinary differential equation (ODE) is commonly solved with numerical inte-
grators to compute the trajectory for a given initial position x0. We refer to the text
book of Lapidus and Seinfeld [71] for a comprehensive introduction to the numerical
integration of ordinary differential equations. In the following sections, we are also
deeply interested in the spatial derivatives of the vector field, namely:

∂v(x)

∂x
= ∇v(x) = J(x) =

(
∂u(x,y)

∂x
∂u(x,y)

∂y
∂v(x,y)

∂x
∂v(x,y)

∂y

)
(3)

The above matrix is called the Jacobian J(x) of vector field v(x) and it captures the
first-order flow behavior. In other words, it is a first-order estimate that tells us how
particles behave in the immediate surrounding. We will later use this information to
define and classify certain topological elements and flow features.
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2.1.1 Critical Points

The key ingredient to steady vector field topology is the extraction of critical points.
In general, critical points are locations x where the velocity vanishes:

v(x) = 0 (4)

The term critical point was coined in the flow visualization community by Helman
and Hesselink [55, 56]. In other fields, these locations are also known as fixed points
or stagnation points.

First-order Critical Points. A point x0 is a first-order critical point of v(x) if

1. x0 is a critical point of v(x)

2. v(x) is differentiable at x0
3. det (J(x0)) �= 0.

The first condition is a minimal requirement. The second condition ensures that
we can compute a Jacobian matrix, which is later relevant for the classification
of first-order critical points. If the last condition is fulfilled, the critical point is
said to be non-degenerate. In case of a first-order critical point, this means that the
critical point is isolated, i.e., in an epsilon neighborhood there is no other critical
point: v(x0 + ε) �= 0. This protects us from trying to identify critical points inside
of obstacles. The first-order critical points can be analyzed by an eigenanalysis of
J(x0), as described in the following.

First-Order Classification. Let λ1 and λ2 be the possibly complex-valued eigenval-
ues of J(x0) and c1 and c2 be their corresponding eigenvectors, i.e.,

J(x0) · ci = λi · ci for i ∈ {1, 2}. (5)

By convention, we will assume that the eigenvalues are sorted in ascending order
by their real parts, i.e., Re(λ1) ≤ Re(λ2). The eigenvalues characterize the behavior
of the flow around the critical point and the corresponding eigenvectors indicate
the direction of this behavior [55, 56]. For instance, if both eigenvalues have a
positive real part, then we observe outgoing flow (source). If, on the other hand, both
eigenvalues have a negative real part, then the flow is ingoing (sink). If one real part
is positive and the other is negative, then a saddle is present. Finally, if both real
parts are zero, then there is neither inflow nor outflow. The imaginary part of a pair
of complex-conjugate eigenvalues denotes the swirling strength [145]. If this part is
zero, then there is no rotation. Figure2 illustrates the possible configurations of a
steady 2D vector field.

Higher-Order Critical Points. When extending the classification of critical points
beyond first-order, isolated critical points can become degenerate, i.e., det (J(x0)) =
0. An example is shown in Fig. 3 (left), where the co-gradient vector field v(x, y) =
(6xy, 3x2 − 3y2)T of a monkey saddle is visualized. Further, saddle critical points
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Fig. 2 Types of critical points in 2D steady vector fields (based on [55]). Re(λ) denotes the real
part of the eigenvalues λ1 and λ2, and Im(λ) the imaginary part. The presence of imaginary parts
(bottom) relates to vortical behavior

can have more than four sectors, which either exhibit parabolic, hyperbolic or elliptic
behavior in their vicinity [107]. A parabolic sector contains streamlines that enter the
critical point in one direction and leave it in the other direction. In an elliptic sector,
streamlines enter the critical points in forward and backward direction. Finally in
hyperbolic sectors, streamlines leave the critical point in both forward and backward
direction. The latter is the kind of sector that is present around first-order saddles.
Figure3 shows examples of all three types of sectors around two higher-order critical
points. Weinkauf et al. [136] visualized the different sectors around higher-order
critical points in 3D, and Tricoche et al. [124] merged 2D critical points into higher-
order critical points in order to simplify a given vector field.



294 T. Günther and I. Baeza Rojo

Fig. 3 Two examples of higher-order saddle critical points. Left, the co-gradient of a monkey
saddle v(x, y) = (6xy, 3x2 − 3y2) is shown, which has six hyperbolic sectors. Right, the field
v(x, y) = (2x2 − 2y2, xy) is visualized which has two parabolic and two elliptic sectors

Existence of Critical Points. Under certain circumstances, selected types of critical
points cannot exist. For instance, in divergence-free flows, sources and sinks will
never occur. Conservative vector fields, i.e., vector fields that are equivalent to the
gradient of a scalar field, are always rotation-free, since their Jacobian is a symmetric
matrix, having real eigenvalues only. Higher-dimensional flows that describe the
motion of finite-sized objects in fluids do not contain sources [36, 40] and time-
dependent flows do not contain any critical points in space-time, since particles
always move forward in time. We address the topology of time-dependent flows in
a later section.

Extraction of Critical Points. The numerical extraction of first-order critical points
requires a root-finding in all components of the vector field. Equivalently, this can be
seen as the intersection of the zero-level isolines of each flow component. For mono-
tonic interpolation schemes, i.e., in bilinear (2D) and trilinear (3D) vectors fields,
Globus et al. [34] discarded candidate cells by checking the signs of the components
at the cell corners. If all signs are either all positive or all negative, then the cell can-
not contain a critical point due to the mean value theorem. The position of the critical
point can be located by recursive subdivision of the cell. Care must be taken, since
this numerical scheme may result in duplicates, which have to be removed in a post-
process. After a certain number of recursive subdivisions, exact locationsmay also be
found by the application of multi-variate Newton-Raphson iterations [34]:

xi+1 = xi − ∇v(xi )−1 · v(xi ) (6)

In practice, it is advisable to either use a QR factorization or the Moore-Penrose
pseudoinverse of the Jacobian ∇v(x) to avoid numerical issues in the matrix inver-
sion. Using a singular value decomposition (SVD), ∇v(xi ) = U�VT, with U and V
being orthonormal matrices and � being a diagonal matrix containing the singular
values, the pseudoinverse is:
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∇v(xi )+ = V�+UT (7)

where�+ contains the reciprocals of the non-zero singular values.We refer the inter-
est reader to the text book of Press et al. [92] (page 61) for a detailed explanation
and discussion of the SVD. Note that the Newton method finds only one solution
and requires an initial guess x0, for instance the center of a cell found by the afore-
mentioned recursive subdivision. At most one critical point can exist per simplex,
i.e., a triangle (2D) or tetrahedron (3D), and its location can be found analytically by
inverting the barycentric interpolation.

2.1.2 Poincaré Index

The Poincaré index is a characteristic number of a closed curve γ in a 2D steady
vector field v = (u, v)T [3]. It is computed by integrating the winding angle of the
velocity vector (counterclockwise rotation) as we integrate along the closed curve γ

in counterclockwise direction [125].

indexγ = 1

2π

∮
γ

dα, with α = arctan
v

u
(8)

The index of the curve is always an integer number. By placing a closed curve γ

around a critical point such that no other critical point is inside the closed curve,
the Poincaré index is extended to critical points. For first-order critical points, we
have index +1 for sinks, sources and centers, and index −1 for saddles. If there are
multiple critical points inside the closed curve γ , the indices of the interior critical
points add up to coincide with the index of the curve γ . Thus, if no critical point is
inside the area enclosed by the closed curve, the index is 0. For higher-order critical
points, the Poincaré index is found by counting the number of elliptic sectors ne and
hyperbolic sectors nh :

indexcp = 1 + ne − nh
2

(9)

In linear vector fields, i.e., on triangular cells with barycentric interpolation, the index
can be efficiently computed by accumulating the angle changes of the velocity vector
along the three triangle edges [125], which can be used to efficiently test, whether
a critical point exists inside the triangle. Scheuermann and Hagen [105] used this
approach to check for critical points in neighboring triangles that may disappear after
a diagonal flip.
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Fig. 4 Along open flowboundaries, the direction of in-flow and out-flowmay changewhenwalking
along the boundary. These so-called boundary switch points are seeds of streamlines that are either
in-bound (enter the domain) or out-bound (leave the domain)

Fig. 5 Examples of attachment and detachment points on closed boundaries

2.1.3 Boundary Switch Points

In case of openflowboundaries, i.e., if thefluidflowcan enter or exit through adomain
boundary, boundary switch points may exist [73]. When traveling along the domain
boundary of a 2D flow, we either observe in-flow or out-flow, and the behavior may
switch at certain locations. In practice, these locations can be determined as points at
which the flow component that is normal to the boundary is zero and the flow vector
is parallel to the domain boundary. Depending on whether the streamline that passes
through the boundary switch point is staying in the domain or is always outside the
domain,we refer to the boundary switch point as in-bound or out-bound, respectively.
The type can be inferred from the direction in which the acceleration is pointing. For
in-bound boundary switches, the acceleration points into the domain and for out-
bound boundary switches it points outwards. An example for both cases is shown in
Fig. 4. A topology-based flow visualization often views the entire domain. However,
engineers might only want to study a region of interest, for example when the data
becomes too large. To this end, Scheuermann et al. [106] found the structural changes
of the streamlines in the region of interest by performing a topological analysis of
the boundary.
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Fig. 6 Separatrices originate from the aforementioned topological elements

2.1.4 Attachment and Detachment Points

When a flow impinges directly on a wall it is forced to split left and right. The
splitting point on the wall is called an attachment point [55], since in theory a single
particle would get stuck on that location, whereas all other particles would slide left
or right along the boundary. If the flow direction is reversed, this location is called a
detachment point. See Fig. 5 for an example of both flow configurations. Both types
of point are found in the same way. They are roots in the flow component that is
tangential to the wall. Whenever a no-slip boundary condition is used, i.e., if the
velocity on the wall is zero, the root finding test is taken an epsilon away from the
boundary.

2.1.5 Separatrices

The above subsections introduced distinguished points in the domain that are of topo-
logical relevance. All the above points are connected by streamlines, which are called
separatrices. At saddle critical points, separatrices emanate in direction of the eigen-
vectors. To numerically calculate them, the seed point is taken an epsilon away from
the critical point, x0 ± ε ci , in direction of the eigenvectors ci , and the streamlines
are traced in forward or backward direction, depending on the sign of the eigen-
value λi . For first-order critical points, four separatrices are connected to a saddle.
In addition, we obtain two separatrices for in-bound boundary switch points and one
separatrix for each attachment or detachment point. Figure6 illustrates the separatri-
ces that grow from saddle points, in-bound boundary switch points and attachment
or detachment points. The net of separatrices spans the topological skeleton, which
contains cells that are bounded by the separatrices. Each of the cells has the property
that the origin and destination, i.e., the points reached in the limit by either forward or
backward integration, are the same for all seed points within a cell. The topological
skeleton was illustrated earlier in Fig. 1.
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Fig. 7 In 2D flows, isolated closed streamlines either act as sink or source on the surrounding
vector field

2.1.6 Isolated Closed Streamlines

The last remaining topological element are closed streamlines, which are streamlines
that connect to themselves. These structures are also known as periodic orbits. Similar
to critical points, closed streamlines can be isolated or not. Isolated closed streamlines
are either found by locating fixed points of the Poincaré map [142] by intersecting
forward and backward integrated stream surfaces in space-time [121] or by Morse
decomposition [20]. Due to the Poincaré index theorem, every 2D closed streamline
contains at least one sink, source or center critical point, which can be used to
guide the search for closed streamlines. In 2D flows, isolated closed streamlines are
either acting as sink or source on the surrounding flow, as illustrated in Fig. 7, which
means that they are either attracting or repelling. They can therefore not exist in
divergence-free flows. In a divergence-free flow, we can find plenty of non-isolated
closed streamlines.

2.2 Three-Dimensional Flows

The topological skeleton of steady 3D vector fields contains several more types of
elements. The concepts, however, are very similar to the 2D case. Formally, we are
given a three-dimensional steady vector field v(x) : R3 → R

3:

v(x) =
⎛
⎝u(x, y, z)

v(x, y, z)
w(x, y, z)

⎞
⎠ (10)
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with the spatial derivatives

∂v(x)

∂x
= ∇v(x) = J(x) =

⎛
⎜⎝

∂u(x,y,z)
∂x

∂u(x,y,z)
∂y

∂u(x,y,z)
∂z

∂v(x,y,z)
∂x

∂v(x,y,z)
∂y

∂v(x,y,z)
∂z

∂w(x,y,z)
∂x

∂w(x,y,z)
∂y

∂w(x,y,z)
∂z

⎞
⎟⎠ (11)

2.2.1 Critical Points

As in the 2D case, we call locations x0 at which the flow vanishes critical points of
v(x), i.e., v(x0) = 0. As before, a first-order classification is done by an eigenanal-
ysis of the Jacobian J(x) = ∇v(x). Let λi be the eigenvalues corresponding to the
eigenvectors ci , i.e., J(x) · ci = λi · ci for i ∈ {1, 2, 3}. We distinguish the following
types of first-order critical points based on the real-part of the eigenvalues:

source: 0 < Re(λ1) ≤ Re(λ2) ≤ Re(λ3) (12)

repelling saddle: Re(λ1) < 0 < Re(λ2) ≤ Re(λ3) (13)

attracting saddle: Re(λ1) ≤ Re(λ2) < 0 < Re(λ3) (14)

sink: Re(λ1) ≤ Re(λ2) ≤ Re(λ3) < 0 (15)

Figure8 illustrates the different types. Note that there are two types of saddles in 3D,
which are categorized based on their dominant behavior into attracting or repelling
saddles. Each of the four cases above can be further subdivided by considering the
imaginary parts of the eigenvalues:

Focus: Im(λ1) = 0 and Im(λ2) = −Im(λ3) �= 0 (16)

Node: Im(λ1) = Im(λ2) = Im(λ3) = 0 (17)

Without loss of generality we assumed λ1 to be real-valued eigenvalue in the focus
classification. Note that either none or two eigenvalues will have imaginary parts,
since complex eigenvalues always appear in pairs of complex-conjugates. In case of
complex eigenvalues, the rotation occurs in a plane, which is spanned by the real and
imaginary parts of the corresponding complex-conjugate eigenvectors. This plane is
also referred to as the swirling plane.

2.2.2 Boundary Switch Curves

In 3D domains, the boundary is represented by 2D surfaces. On these surfaces, the
flow either enters or exits the domain. A line that separates these two behaviors is
called a boundary switch curve [135]. It consists of all location x at which v(x) is
parallel to the tangent plane of the domain boundary. Figure9 shows the possible
configurations.
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Fig. 8 Types of critical points in 3D steady vector fields

As we travel along a boundary switch curve, we can observe the behavior of
streamlines passing through. Line sectors along which a passing streamline remains
in the domain are called in-bound sectors. Equivalently, these are points at which the
acceleration a = Jv points into the domain. Conversely, if the streamline remains
outside of the domain, the point is part of an out-bound sector. Here, the acceleration
a = Jv points out of the domain. Locations at which the behavior switches from in-
bound to out-bound are called in-out points. In piecewise bilinear vector fields, i.e.,
if the vector field is given on a regular grid and is interpolated bilinearly, boundary
switch curves are either straight line segments on the boundaries of the piecewise
linear fields, or they are hyperbolas inside of the piecewise bilinear fields. Figure9d
gives an example.
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Fig. 9 On open flow boundaries, there are curves that separate regions of in-flow and out-flow.
Segments of the curves are classified based on the behavior of streamlines seeded from them. Curve
points at which the behavior switches are called in-out points (green)

2.2.3 Attachment and Detachment Points

Similar to the 2D flow, attachment and detachment points occur on boundaries and
obstacles. In the analysis of fluid flows, we are not only interested in the particular
points, but also on the behavior of nearby particles. For instance, the attaching or
detaching lines might be swirling and have more or less temporally-coherent behav-
ior. Wiebel et al. [140] detected vortices that detach from a boundary by tracking
critical points in the wall shear stress vector field and continuously releasing parti-
cles from the critical points, which assembles so-called generalized streaklines that
show the swirling behavior. Nsonga et al. [80] developed an algorithm to extract the
regions around attachment and detachment points, which are referred to as splats
and antisplats. In the analysis of meteorological flows around mountains, scientists
are interested in a characteristic number that distinguises whether a stratified air
flow goes over or around a mountain. To decide this, meteorologists use the Froude
number [54, 74], which was adapted from naval architecture.

2.2.4 Separatrices

In Sect. 2.2.1, we have seen that there are two types of saddles in 3D steady vector
fields: repelling saddles (two positive real parts) and attracting saddles (two negative
real parts). Starting an epsilon neighborhood away from the critical point, separatrices
grow out in the direction of the eigenvectors. Two of the three eigenvalues have
equal sign. Their corresponding eigenvectors span a surface from which a separating
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Fig. 10 Separating surfaces growing out from an attracting and a repelling saddle. The remaining
eigenvector direction points in the direction of a virtual separatrix

Fig. 11 Forward and backward-integrated separating surfaces can be intersected, giving saddle
connectors [120]. Here, the saddles (left), their separatring surfaces (middle) and the intersection
(right) are shown

surface is growing, as illustrated in Fig. 10. A stream surface can be thought of as
the union of infinitely many streamlines that were seeded along a seeding curve.
In our case, the seeding curve lies in the plane spanned by the eigenvectors. We
refer to Schneider et al. [109] for a stream surface extraction algorithm that adapts
the refinement to the presence of critical points. Alternatively, Wiebel et al. [139]
investigated the extraction of separatrices using suitable cross sections of the flow.
The remaining eigenvalue with opposite sign emanates a streamline in direction
of the eigenvector, which is referred to as virtual separatrix [1], as it does not truly
separate space. In addition, separating surfaces grow from in-bound boundary switch
curves. Aside from the pure geometric extraction of separating surfaces, illustrative
techniques have been investigated [14] to produce informative surface visualizations
that were inspired by the early work of Dallmann [23].
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Fig. 12 Boundary switch connectors arisewhen separating surfaces of saddles and boundary switch
curves are intersected [135]. Here, the different configurations are shown

2.2.5 Saddle Connectors and Boundary Switch Connectors

The visualization of separating surfaces becomes cluttered very quickly, since the
separating surfaces may occlude each other on the screen. The picture can be simpli-
fied considerably by intersecting forward-integrated and backward-integrated sepa-
rating surfaces, as shown in Fig. 11. The intersecting curve is called a saddle con-
nector [120], which is a single streamline that connects the two saddles. Saddle
connectors are found by intersecting the separating surfaces of saddles and also by
intersecting the separating surfaces growing from boundary switch curves. The lat-
ter gives rise to boundary switch connectors [135], as shown in Fig. 12. Boundary
switch connectors arise from connection with saddles, from connection with other
boundary switch curves or even by self-connection to themselves.

2.2.6 Isolated Closed Streamlines

Isolated closed streamlines are theoretically well-understood and studied for general
dynamical systems [143]. In 3D, closed streamlines can act as sink, source, center
or saddle [63]. The notion of isolated closed streamlines that locally act as centers
or saddles leads us to the feature curves that are described next.

All the above elements are considered topological elements, and are therefore part
of the topological skeleton. In the following, we introduce two feature curves that
are closely related to topology as they also order the flow.

2.2.7 Vortex Corelines

The first feature curve are vortex corelines. These are segments of streamlines that
other streamlines rotate around, see Fig. 13a. Globus et al. [34] identified them as
virtual separatrices growing out from focus saddle points, by tracing them in the
direction of the eigenvector with corresponding real eigenvalue. For steady vector
fields, Sujudi and Haimes [115] proposed the reduced velocity criterion:

v − (vTe)e = 0 (18)
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Fig. 13 In 3D flows, two types of feature curves are often of interest: vortex corelines (green) and
bifurcation lines (yellow)

This criterion identifies locations at which the flow v flows in the direction of the
eigenvector ewith corresponding real eigenvalue. Since the Jacobian is also requested
to have complex eigenvalues, the criterion makes sure that the projection of the flow
vector onto the swirling plane gives zero. The criterion was applied in practice in
various situations [31, 65]. Peikert and Roth [85] reformulated this criterion into the
parallel vectors form:

v ‖ Jv ⇔ v × Jv = 0 (19)

with the condition that two eigenvalues ofJ are complex.Twovector fields are parallel
if their cross product is zero, which turns the extraction into a component-wise root-
finding problem. We refer to Peikert and Roth for more details on the numerical
extraction of parallel vectors solutions [85]. As shown by Roth and Peikert [97], this
criterion assumes that the curvature of the resulting coreline is zero. The curvature of
a continuous 3D curve is calculated using curve tangent ẋ(t) = dx(t)

dt and acceleration

ẍ(t) = d2x(t)
dt2 :

κ(x(t)) = ẋ(t) × ẍ(t)

‖ẋ(t)‖3 (20)

Since streamlines are tangent curves of the vector field v(x), we have ẋ(t) = v(x(t))
and ẍ(t) = J(x(t)) · v(x(t)). Thus, with Eq. (19), the curvature in Eq. (20) evaluates
to zero.

In generalization, Roth and Peikert [97] introduced a criterion for bent vortex
corelines as v ‖ (∇a)v, which assumes that corelines have zero torsion. We refer
to Günther and Theisel [42] for an overview of vortex extraction methods, includ-
ing density-based methods [138], extremum lines [102, 103], and integration-based
methods [7].
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2.2.8 Bifurcation Lines

Bifurcation lines differ from vortex corelines in one aspect: instead of complex eigen-
values, we need to have saddle-like behavior in the plane that is spanned by the two
eigenvectors that are not parallel to the flow [87, 96]. In consequence, all eigenval-
ues are real-valued. Bifurcation lines of a 3D steady flow are illustrated in Fig. 13b.
In the fluid dynamics literature, these feature curves are also known as hyperbolic
trajectories [47]. We discuss the recent definitions and extraction algorithms for
time-dependent flows later.

2.2.9 Invariant Manifolds

In an n-dimensional vector field v(x) : Rn → R
n sets of locations may exist that

particleswill never leave during advection. Formally,we can say that any point x0 ∈ S
of such an invariant set S ⊂ R

n remains in S, i.e., x0 + ∫ τ

0 v(x(t)) dt ∈ S for any τ .
If the set S is a manifold in the domain, the structure is called an invariant manifold.
Invariantmanifolds are an essential building block of the steady vector field topology.
Every critical point, every closed orbit and every separatrix is an invariant manifold.
Strictly speaking, every trajectory is an invariant manifold, too, which is why being
an invariant manifold is only a necessary condition for a topological element. Under
this definition, bifurcation lines and vortex corelines are not topological elements,
since particles can flow out of a vortex coreline or a bifurcation line, especially when
a specific criterion has to be fulfilled, such as the presence of swirling behavior or
a sectional separation. For this reason, vortex corelines and bifurcation lines are
usually considered to be feature curves.

2.3 Remarks

As the name suggests, differential vector field topology requires that the vector field
is differentiable. In practice, however, a different vector field discretization, noise in
the data or numerical integration errors during streamline integration will influence
the result. To address these issues, alternatives have been explored, including discrete
vector field topology [21, 22] and combinatorial vector field topology [26, 93, 94].
In this overview, we concentrated on the continuous approaches, i.e., differential
vector field topology. However, we encourage the interested reader to explore the
discrete and combinatorial approaches as well. All methods in the previous sections
were designed for steady vector fields. In the following, we cover the topology of
time-dependent flows.
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3 Unsteady Flows

The previous section assumed that the vector field is not changing over time. In
practice, however, vector fields are often time-dependent. As shown by Theisel et al.
[122], the topology of time-dependent vector fields can be analyzed from two dif-
ferent angles: by studying streamlines or by studying pathlines. To start with, we
look at the difference between a streamline and a pathline. For this, let v(x, y, t) be
a time-dependent vector field:

v(x, y, t) =
(
u(x, y, t)
v(x, y, t)

)
(21)

When freezing the vector field in time, i.e., if we only consider the trajectory of a
particle in one single time slice at time t0, we obtain a streamline x(τ ):

streamline: dx(τ )

dτ
= v(x(τ ), t0) x(0) = x0 (22)

where x0 is the seed point. Such a trajectorymarks the instantaneous path of a particle,
which is more relevant for the study of magnetic field lines. In fluid flow analysis, we
are concerned with the trajectory of a particle over a continuously advancing time:

pathline: dx(t)

dt
= v(x(t), t) x(t0) = x0 (23)

Here, x0 and t0 are the seed position and seed time, respectively. The latter ODE
is not autonomous, since it depends on time t , which is not a state variable of the
dynamical system. In other words, the numerical particle integrator needs additional
information to sample the correct time slice. However, we can turn the definition
of the tangent curves into autonomous first-order ODEs by making time an explicit
state variable. To do so, we lift the vector field one dimension up for which we have
two options:

s(x, y, t) =
⎛
⎝u(x, y, t)

v(x, y, t)
0

⎞
⎠ p(x, y, t) =

⎛
⎝u(x, y, t)

v(x, y, t)
1

⎞
⎠ (24)

The vector field s is called streamline vector field, since its tangent curves are stream-
lines of v(x, t). Since the last component of s is zero, the time will not change during
particle integration, i.e., we obtain streamlines. On the other hand, the vector field p is
called the pathline vector field, since its tangent curves are pathlines of v(x, t). Here,
the last components is one, which causes the time to flow forward at the correct step
size, as we numerically integrate the trajectory. On a side note, other characteristic
curves such as streaklines and timelines can similarly be expressed as tangent curves
of lifted vector fields [132, 134].
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Fig. 14 When critical points change their type, a Hopf bifurcation is present. Here, an attracting
focus (blue) turns into a repelling focus (red) by transitioning through a center (green)

Note that neither s not p have isolated critical points. The vector field s contains
critical lines, i.e., paths of critical points in space-time, and vector field p contains
no critical points at all, since the last component is always unequal to zero.

3.1 Streamline-Oriented Topology

Streamline-oriented topology is concernedwith the changes in the asymptotic behav-
ior of streamlines, when the vector field changes over time. Essentially, this means
that we observe how the topological skeleton is evolving. In the following, we discuss
the possible events in unsteady 2D vector fields. We refer to Tricoche et al. [126] and
Theisel et al. [122] for more details. The last section will explain the differences for
3D unsteady vector fields.

3.1.1 Fold Bifurcations

Fold bifurcations occur when two critical points collapse or appear. This will always
happen in pairs of critical points. Governed by the Poincaré index theorem, the only
possibility is for saddles (index −1) to merge with either a sink, source or center
(index +1). Conversely, two critical points will always appear together in pairs. In
2D flows, it is never possible for sinks to collapse with sources. Fold bifurcations
can be found as critical points in the space-time domain of the vector field:

⎛
⎝ u(x, y, z)

v(x, y, z)
det (J(x, y, z))

⎞
⎠ = 0 (25)

The last component of this vector field contains the determinant of the Jacobian. In
the event of two critical points merging, the two critical points are no longer isolated,
due to the presence of the other point, i.e., the determinant briefly vanishes to zero. An
example of a fold bifurcation is shown later in a space-time visualization in Fig. 16.



308 T. Günther and I. Baeza Rojo

Fig. 15 When separatrices connect saddle points, we obtain heteroclinic (two different saddles)
or homoclinic (same saddle) saddle connectors. Homoclinic saddle connectors occur when the
enclosed critical point undergoes a Hopf bifurcation. The illustrations above show three time steps
of time-dependent vector fields that contain such bifurcations

3.1.2 Hopf Bifurcation

A Hopf bifurcation is the change in the type of a critical point. Thereby, a repelling
focus may turn into an attracting focus via briefly transitioning through a center, as
illustrated in Fig. 14. Alternatively, an attracting focus may turn into a repelling focus
via a center. In the space-time domain, these locations are found as critical points of
the vector field:

⎛
⎝ u(x, y, z)

v(x, y, z)
ux (x, y, t) + vy(x, y, t)

⎞
⎠ = 0 (26)

where the last component is the divergence of the flow, which is zero for the center
configuration that is briefly visited when transitioning from an attracting focus to a
repelling focus or vice versa.
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Fig. 16 Space-time visualization of a Hopf bifurcation (critical point changes type) and a fold
bifurcation (two critical points merge). The paths of critical points are color-coded based on the
type of the critical point (attracting is blue, repelling is red, saddle is yellow). The vertical axis of
the 3D domain represents the time axis

3.1.3 Saddle Connection

Usually, the probability for a streamline to directly enter a saddle is zero. However,
whenever two saddles slide past each other, there is a brief moment in time, when
the separatrices of the two saddles meet, as illustrated in Fig. 15a. This brief connec-
tion is called a heteroclinic saddle connection. There is also a special case called a
homoclinic saddle connection, which is sometimes also referred to as periodic blue
sky bifurcation. In this case, the separatrix of a saddle connects back to the same
saddle, as shown in Fig. 15b. This usually happens if the area that is enclosed by the
self-connecting separatrix contains a critical point that undergoes a Hopf bifurca-
tion. All types of saddle connections are momentary events, which can be found by
intersecting the forward and backward integrated separating surfaces, as described
by Theisel et al. [120].

3.1.4 Cyclic Fold Bifurcations

Previously,wehave seen another typeof topological structure: isolated closed stream-
lines. Two isolated closed streamlines may collapse onto each other, letting both of
them disappear. This event is referred to as a cyclic fold bifurcation. Conversely,
the isolated closed streamlines may be created together. Both kinds of events are
either found by tracking closed streamlines through adjacent time slices [126] or by
searching for adjacent curves in space-time [122].

3.1.5 Space-Time Visualizations

The changes of the topological skeleton in 2D time-dependent flows are best shown in
2D space-time by mapping time to the third dimension. The paths of critical points
appear as curves. Hopf bifurcations are points on the curves, as shown in Fig. 16
and Fold bifurcations are the junctions at which curves meet. Starting from saddles,
separating surfaces can be grown. We refer to Theisel et al. [122] for examples.
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3.1.6 Streamline-Oriented Topology in 3D

Most of the previous bifurcation events carry over to the 3Dcase. Fold bifurcations are
similar to the 2D case.Hopf bifurcations include transitions from sources to attracting
saddles (and vice versa), or from sinks to repelling saddles (and vice versa). Saddle
connections connect a single separatrix of one saddle to the separating surface of
another saddle. Saddle connectors and boundary switch connectors can also collapse
and disappear, which is a called a connector fold bifurcation. We refer the reader to
the work of Weinkauf [131] for a more elaborate explanation of streamline-oriented
topology in 3D.

3.2 Pathline-Oriented Topology

In the previous section, we visualized how streamlines are changing when a vector
field is evolving over time. The observation of streamlines, however, is not partic-
ularly meaningful, when we want to assess the behavior of particles over time. In
this case, we are rather interested in the observation of pathlines. There is, however,
an inherent problem. While the streamline-oriented topology could trace particles
in the time slice for an infinite amount of time, enabling an asymptotic observation
of the flow, a pathline-oriented topology, is limited in the integration duration by
the temporal domain of the data set. Unless the flow is periodic, we cannot study
asymptotic behavior. In fact, not even critical points exist in the lifted vector field
p in Eq. (24), since the last component is always non-zero. In the absence of an
asymptotic picture of the flow, we will fall back to a finite-time description of the
behavior, which requires a formal definition of flow maps.

3.2.1 Flow Maps

In a time-dependent vector field v(x, t), we use the flow map φτ
t0(x0), which maps a

particle that was seeded at position x0 and at time t0 to the location that it reaches
after an integration in v(x, t) for a given duration τ :

φτ
t0(x0) = x0 +

∫ t0+τ

t0

v(x(t), t) dt, with x(t0) = x0 (27)

The flow map has a number of useful properties, such as:
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Fig. 17 Overview of the different types of Lagrangian coherent structures (LCS) [49]. a shows
vortices in the wake of Heard Island. The line structures that separate the vortices are the hyperbolic
LCS. The image was released by NASA and was captured with the MODIS instrument aboard their
Aqua satellite. b depicts ocean eddies, which carry plankton and pollutants across the ocean. These
flow structures can persist for weeks. The image was released by the National Science Foundation
and is credited to NASA. c shows a jet stream, which is a fast moving and narrow air current. In
this image, it carries cirrus clouds vertically across the image. The cloud band has a distinct pattern
that is created by the air current. This image is in public domain

φ0
t (x) = x (28)

dφτ
t (x)

dτ
= v(φτ

t (x), t0 + τ) (29)

φτ1+τ2
t0 (x) = φ

τ2
t0+τ1

(φτ1
t0 (x)) (30)

φ−τ
t+τ (φ

τ
t (x)) = x (31)

Equation (28) expresses the identity flow map, where a particle is traced for duration
τ = 0, i.e., it stays at its seed point. Equation (29) states that the derivative of the
flow map with respect to the integration duration is exactly the flow direction at the
end point of the flow map, which is fulfilled, since the flow map follows the tra-
jectory of a pathline. Equation (30) shows that two flow maps can be concatenated.
In practice, the flow maps are discretized, which leads to discretization errors upon
concatenation [19]. And finally, Eq. (31) means that the flow map is invertible. Flow
maps are an essential building block of many feature definitions, including recircu-
lations [141] and Lagrangian coherent structures (LCS) [49], which are described in
the following.

3.2.2 Lagrangian Coherent Structures

Based on the flowmap of the previous section, we can now express particle behavior
that unfolds during a certain finite time range. Similar to separatrices in the previous
section, we are interested in sets of particles that order the flow into regions of
coherent behavior. This leads us to the definition of material lines. There are three
types of material lines, which have been summarized recently by Haller [49]. We
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Fig. 18 Hyperbolic LCS are frequently approximated by the finite-time Lyapunov exponent
(FTLE). Forward FTLE approximates repelling structures and backward FTLE approximates
attracting structures. Left, we see the fluid flow past a heated cylinder and right, we see a close-up
of a cumulus cloud convection simulation

refer to Onu et al. [82] for a discussion of various LCS extraction techniques. An
overview of the three types is given in Fig. 17.

Hyperbolic LCS are material lines that attract or repel locally the strongest.
These lines act as transport barriers that particles do not cross. The lines are either
attracting nearby particles or they are repelling them away. A common measure to
approximate hyperbolic LCS is through the finite-time Lyapunov exponent (FTLE).
FTLE linearly approximates the expansion of a virtual sphere by measuring the
maximal separation of nearby-released particles. The expansion rate is captured by
the right-hand Cauchy-Green tensor ∇φT∇φ, where φ is the aforementioned flow
map. With τ being the integration duration, FTLE is defined as, c.f. Shadden [112]:

FTLE = 1

|τ | ln
√

λmax(∇φT∇φ) (32)

The flow map gradient is typically calculated by finite differences [52]. Alterna-
tively, Kasten et al. [62] proposed localized FTLE, which linearizes the flow at each
step to measure and concatenate the rate of expansion. To obtain hyperbolic LCS at
subgrid accuracy and to avoid the numerical computation of flow map derivatives,
Kuhn et al. [69] tracked timeline cells over time, which are adaptively refined when-
ever the timeline segments intersect. A benchmark comparison of multiple FTLE
extraction algorithms was performed by Kuhn et al. [70]. To reduce the number of
redundant particle integrations and to thereby improve performance, Brunton and
Rowley [15] concatenated flow maps. Garth et al. [30] accelerated the computation
and later limited the visualization of FTLE to boundaries in the flow to reduce clut-
ter [33]. Sadlo et al. [98] and Barakat et al. [9] adaptively refined the flow maps.
Barakat et al. [8] developed an interactive computation and rendering framework
for unsteady 3D flows, in which the FTLE values are stored in a view-dependent
and adaptively refined sparse grid. To avoid discretization artifacts entirely, Monte
Carlo methods have been used [5, 38], which invoke exact FTLE calculations at each
volume sample of a Monte Carlo renderer. Compared to the previous methods, this
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approach is far from interactive speed, but it is able to generate a ground truth image
that can serve as baseline. Examples of FTLE visualizations are shown in Fig. 18.
Haller introduced hyperbolic trajectories [47], which are trajectories that experience
in one spatial direction repelling behavior and in the other attracting behavior in the
locally strongest way. Based on this concept, Sadlo andWeiskopf [99] defined time-
dependent saddles as the intersection of forward and backward FTLE ridges, which
was later extended by Üffinger et al. [129] to 3D. This approach requires the compu-
tation of the finite-time Lyapunov exponent in the entire domain in order to find the
ridge intersections, which is an expensive computation. For this reason,Hofmann and
Sadlo [59] developed a refinement scheme that is applied to an initial guess that was
computed locally [6, 78]. Thereby, the extraction time of distinguished hyperbolic
trajectories [61], i.e., hyperbolic LCS, is greatly reduced. Bujack et al. [16] recently
discussed different options to calculate the separating and repelling behavior in finite
time windows. The above methods were developed for continuous vector fields. For
scenarios, in which the velocity field is represented in a particle-based manner, Agra-
novsky et al. [2] and Shi et al. [113] developed FTLE extraction algorithms from
particle data.

Elliptic LCS are lines that bound regions that rotate coherently [50] or do not
stretchmuch during advection. The latter is expressedmore formally as curves across
which the averaged material stretching rate shows no leading-order variability [110].
In incompressible 2D flows, these lines preserve arc length and surface area. These
structures are tightly related to vortex identification [42], in particular to vortex
boundaries. For instance, Haller [49] selects the outermost nested elliptic LCS as
boundary of a coherent vortex. More recently, Katsanoulis et al. [64] characterized
elliptic LCS as lines that inhibit the diffusion of vorticity. For a summary of more
vortex identification methods we refer to Günther and Theisel [42].

Parabolic LCS are transport barriers along which the material shearing is min-
imized, which corresponds to the cores of jets. Since these structures are embed-
ded inside non-stretching structures, their stretching is also low. Farazmand and
Haller [24] defined them as minimally hyperbolic, structurally stable chains of ten-
sorlines that connect singularities of the Cauchy–Green strain tensor field. In the
visualization community, jets in atmospheric flows have been identified as lines with
maximal velocity magnitude [66] in a local coordinate frame that is aligned with the
flow direction.

3.2.3 Coherent Sets and Almost-Invariant Sets

Dynamical systems are classified into autonomous or non-autonomous systems based
on whether they depend on an independent variable, such as time. In autonomous
systems, regions of the domain that resist mixing over a finite-time duration are
referred to as almost-invariant sets. In time-dependent systems, these regions are
known as coherent sets. Coherent sets can be seen as counterpart to LCS, since
LCS divide the domain into regions of coherent transport behavior. Froyland and
Padberg-Gehle [27] recently introduced tracking algorithms for those regions.
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3.2.4 Local Approaches

All previous methods define the vector field topology of time-dependent flows by
means of particle behavior over a finite time window. A number of methods inves-
tigated the reduction of the time-dependent flow to a steady flow by estimating a
transport component. Weinkauf et al. [133] demonstrated that a constant flow vector
can be subtracted from a von-Kármán vortex street to approximately eliminate a
linear transport. This works well in most parts of the domain, aside from the region
right behind the obstacle, in which the vortices accelerate. Fuchs et al. [28] located
points at which the acceleration vanishes and removed the velocity at those locations.
Similarly, Bujack et al. [17] used the determinant of the Jacobian to pin down the flow
features. Bhatia et al. [12] removed a harmonic flow component using a Helmholtz-
Hodge decomposition (HHD). The HHD splits the flow into a divergence-free and
an irrotational part. In case the domain is bounded or not simply-connected, a har-
monic component can appear, which is both divergence-free and irrotational. Bhatia
et al. [12] proposed to model the ambient motion of the flow features by the har-
monic component. Following up on research on reference frame optimization [37,
46] for vortex extraction, Baeza Rojo and Günther [6] observed topological elements
in a spatially-varying reference frame, in which the flow becomes steady. The latter
connects to a formal property that is highly relevant for flow feature extraction in
time-dependent flow, i.e., reference frame invariance. Section4 explains this concept
in more detail.

3.2.5 Desirable Properties

Recently, Bujack et al. [18] collected the most commonly-used mathematical prop-
erties that an approach for a time-dependent vector field topology should enjoy.
Reciting Bujack et al., these properties are:

Coincidence With the Steady Flow Topology.Amethod thatwas designed for time-
dependent flow should contain the standard steady vector field topology as special
case, when it is applied to a steady flow [90].

Induction of a Partition of the Domain.The unsteady counterpart to the topological
skeleton should divide the domain into regions of coherent temporal behavior. This
means, there are material boundaries that order the flow [90].

Lagrangian Invariance. A common measure for the physical meaningfulness of a
time-dependent topology is the requirement that all topological structures are invari-
ant manifolds of the flow [28, 49]. This means that the path of a time-dependent
critical point becomes a pathline, and that separatrices become material lines or
surfaces that are advected with the flow.

Reference Frame Invariance. The result should be the same, independent of the
choice of the reference frame [45]. In the following section, we introduce reference
frame transformations and the classes of invariance that are commonly desired.
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Bujack et al. [18] reviewed the mathematical properties of many of the existing
extraction algorithms, using carefully-crafted benchmarks and proofs. To this day,
there is no algorithm that fulfills all desirable properties.

4 Concepts

In the following, we introduce a number of concepts that are important in the ongoing
research on a time-dependent vector field topology.

4.1 Reference Frame Transformation

A desirable property for any feature definition is its invariance to the motion of
the observer. First of all, this requires a formal definition of reference frame motion.
Recently, Baeza Rojo andGünther [6] used displacement transformations to describe
the motion of the observer, which originates from continuummechanics [111]. They
used a displacement vector field F(x, t), which moves a space-time point (x, t) to its
destination (x∗, t) via

x∗ = x + F(x, t) (33)

Thereby, F is an invertible transformation that maps between two differential spaces,
i.e., F is a diffeomorphism. By differentiation with respect to time, we see that a
given vector field v(x, t) is transformed to v∗(x∗, t) via:

v∗(x∗, t) = [I + ∇F(x, t)] · v(x, t) + Ft (x, t) (34)

It is interesting to note that other existing classes of reference frame transforma-
tions, such as Galilean transformations [133] (equal-speed translations), objective
transformations [37, 48, 128] (smooth rotation and translation) and affine transfor-
mations [41] are all included as special cases.

4.2 Reference Frame Invariance

In flow visualization, reference frame invariance has first been studied in the context
of flow feature extraction, namely for the detection of vortices.Whenever an observer
sees a vector-valued property, this vector will change with the movement of the
observer. An example of this reference frame dependence is shown in Fig. 19. Here,
three different observers look at the same flow, each seeing different flow patterns.
This is because the motion of the observer and the flow feature add up, as illustrated
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Fig. 19 Three observers see the same vector field from different reference frames. Here, a line
integral convolution (time slice) and pathlines (black) are shown for three different reference frame
movements: standing still, linearly translating and swinging along a sine curve–unfortunately, all
give different results. Only the observer in the middle sees vortex structure. However, moving the
observer a little bit faster of slower, would show the flow structures in a different location. Illustration
from [37]

Fig. 20 The observed vector field is the combination of the feature (blue) and its motion of the
feature (red). In a, the flow is observed from a steady frame of reference. We see a closed streamline
(blue). In b, the observer is moving to the right (red arrow), which creates an apparent opposite
motion of the vortex.What the observer sees is the superposition of the red and blue vector, resulting
in the purple vector. Note that the purple vectors no longer point along a closed streamline (right-
most image). If we can estimate the ambient motion (red), it can be removed to reveal the original
feature (blue)

in Fig. 20. Choosing the right reference, i.e., estimating the motion of the feature
correctly, is quite important for the successful characterization of a vortex [77, 95].
Feature definitions can be classified based on the class of invariance they possess.
The two most common reference frame invariances are the following.
Galilean invariance is the invariance of a measure under equal-speed translations
of the reference frame of the form:

x∗ = x + c0 + t c1, t∗ = t − a (35)
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Fig. 21 Example of a reference frame decomposition using the displacement optimization [6]. A
given input vector field v(x, t) is split into a flow in the steady reference frame w(x, t) and the
ambient motion f(x, t)

where c0 and c1 are constant vectors and a is a constant. Everymeasure that is derived
from the Jacobian J of the vector field is Galilean invariant. There are only few
measures that are Galilean invariant and include temporal derivatives, for instance
the acceleration a = Jv + vt [101] and the subtraction of the feature flow field (v −
f) [119]. Due to the relativity of the observer and the feature we want to track,
all Galilean invariant feature definitions are able to identify features that perform
equal-speed translations. If a vortex performs any other type of movement, Galilean
invariant methods will not produce the correct solution.

Objectivity refers to the invariance of a measure under a smooth rotation and trans-
lation of the reference frame, cf. [127]:

x∗ = Q(t) x + c(t) , t∗ = t − a (36)

whereQ ∈ SO(3) is a rotationmatrix, c is a translation vector, and a is a constant.We
assume Q and c to be smooth functions of t . The most recent feature defintions aim
to be objective [37, 49, 50, 64]. Among the objective quantities are the divergence
∇ · v, the strain rate tensor S, and the flow map gradient ∇φτ

t0(x).

4.3 Topology in Steady Reference Frames

Recently, Baeza Rojo and Günther [6] optimized for steady reference frames by
describing the reference frame motion as inhomogeneous displacement transforma-
tion. Themotion of features in the steady reference frame is therebymodeled bymore
than just rotations and translations. The method thereby become invariant to even
more classes of motion than with objectivity. Given the optimal reference frame, the
flow v(x, t) is decomposed into:
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v(x, t)︸ ︷︷ ︸
inputfield

= w(x, t)︸ ︷︷ ︸
steadyframe

+ f(x, t)︸ ︷︷ ︸
ambientmotion

(37)

While they used the optimal frame w(x, t) to extract topological structures, the
remaining ambient flow f(x, t) can be used to track critical points over time. An
example is given in Fig. 21. The numerical extraction of the reference frame still
remains challenging and becomes harder the more degrees of freedoms are added.
The linear optimization is under-constrained, which requires a regularizer that in turn
places assumptions about the smoothness of the ambient motion and its derivatives.
In case, the feature moves with constant speed in a constant direction, i.e., Galilean
invariance is fulfilled, then f(x, t) = −J−1vt is the normalized feature flow field [35,
41, 119]. This means, the approach of Weinkauf et al. [133] appears as special case.
Reference frameoptimizations have previously been done for vortex extraction, using
local optimization [37, 41], global optimization [46] and deep learning [67].

4.4 High-Dimensional Flows

All sections above concentrated on 2D or 3D domains. Vector fields also arise in the
description of dynamical systems [76], namely when describing how an arbitrarily
high-dimensional state of a system is changing over time. This vector field is called
the phase flow, which depends on the current state of the dynamical system. Typical
fluid flows can be considered as first-order ODEs. Many processes not only depend
on the position of an object, but also on its velocity, which leads us to second-order
ODEs. Examples of such systems are oscillators, pendulums, n-body problems [10]
and the motion of finite-sized objects in fluids [86, 114, 116].

Similar to thefluidflowsabove, suchdynamical systemsalsocontain topologically-
relevant structures and features. An introduction to the topology of dynamical sys-
tems was given by Abraham and Shaw [1]. Hofmann et al. [57] extracted and visu-
alized all types of critical points in a four dimensional vector field. Depending on
the actual structure of the phase flow, the possible types of topological structures
may be limited. Inertial particles for instance, i.e., finite-sized in fluids, exhibit an
attraction by a globally attracting manifold [51, 79], which causes halve the eigen-
values of the phase flow’s Jacobian to be negative, i.e., sources cannot exist [36, 40].
This attracting manifold was visualized by Baeza Rojo et al. [4] for varying particle
sizes. Further, Günther et al. [40] visualized stable sets of inertial systems interac-
tively using multi-dimensional stacking. FTLE has been calculated by Garaboa-Paz
and Pérez-Muñuzuri [29] by measuring the expansion in full phase space, whereas
Sagrista et al. [100] visualized the separation in the subspaces as well, using multi-
dimensional stacking. Inertial vortex corelines have been extracted with the assump-
tion of Galilean invariance [39] and objectivity [43]. The latter requires the search
for parallel vectors in the high-dimensional space, for which Hofmann et al. [58]
introduced the dependent vectors operator. Recently, Bartolovic [10] introduced an
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optimization-based dimensionality reduction method for high-dimensional trajecto-
ries that preserves geometric and topological properties.

4.5 Uncertainty

As the computational resources become more capable, the computation of multiple
simulations with slightly different input conditions or parameters becomes more
affordable. This allows domain scientists to quantify the uncertainty of simulation
models or measurements, for instance in meteorological forecasting. These days,
uncertainty visualization is considered to be among the top challenges in scientific
visualization [13]. For uncertain vector field topology, integral curves andfixed points
have been generalized to define an uncertain vector field topology by integrating
particle density functions [83]. Petz et al. [88] used Monte Carlo sampling to extract
probabilistic local features such as critical points from Gaussian distributed vector
fields. Bhatia et al. [11] introduced edge maps to introduce a fuzzy topology that
performs a topological decomposition based on growing of streamwaves. Hummel
et al. [60] considered the variance among ensemble members to identify LCS that
exist in manymembers. Obermaier and Joy [81] categorized ensemble visualizations
into location-based methods that compare ensemble properties at a fixed location
and feature-based methods that first extract, match and compare features. Guo et
al. [44] usedMonte Carlo sampling to determine the probability for LCS in uncertain
vector fields. Uncertainty visualization remains a very active topic with plenty of
research on different frontiers, including the modeling of correlations [89, 91] and
the visualization of confidence [25, 84, 104, 144].

5 Outlook

While the topological elements of steady vector fields are fairly well understood,
there is still an ongoing discussion on the definition of a time-dependent vector field
topology. As recently shown by Bujack et al. [18], there is no approach yet that
holds up in all unsteady flow scenarios. Meanwhile, the continuum mechanics and
fluid dynamics community are pushing the frontiers of the Lagrangian flow analysis,
which is tightly related to the classical view of vector field topology. In fact, we
hope to see more synergies between the different research directions. Aside from
new theoretical contributions on the feature definitions, we can also expect to see
more work on uncertain data, since ensemble simulations and model variability are
of high interest in the application domains. The analysis of high-dimensional flows
and general dynamical systemswill benefit more from synergies with dimensionality
reduction research. As the data sizes are growing, global topology-based methods
will see more parallelization across multiple compute nodes within in-situ environ-
ments. While scalar field topology algorithms now become more available through
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open-source packages such as the Topology ToolKit (TTK) [123], a similar platform
for vector field topology is missing. We hope that such effort is taken soon. A gen-
eral availability increases the adaption in practice, which in turn reveals new research
challenges.
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