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Preface

Efficient analysis of large and complex data is playing a rapidly increasing role in
essentially all scientific disciplines. Large amounts of data originate from diverse
sources, e.g., simulations and experiments, and contain combinations of scalar,
vector, or tensor data. Therefore, topology-based methods have gained increasing
recognition also in context with visualization due to their robustness and rigorous
mathematical guarantees. However, while reaching more and more applications,
also novel challenges are developing continuously. These include increasing data
complexity with respect to size and structures, multi-scale features, noise, and
uncertainty. Developing efficient and robust numerical methods for specific appli-
cations and making them available to a large user base is another urgent demand.

The book is the 8th in a series based on the biannual TopoInVis workshops that
aim for scientific exchange between researchers working in this field in an open
atmosphere. The 8th workshop was held in Nyköping, Sweden, in June 2019 with a
specific focus on software for topological data analysis and its applications. Most
contributions in the book are related to or based on work that has been presented at
the workshop. The book is structured into four parts. Part I focuses on topological
methods for scalar fields and Part II focuses on more complex fields as vector,
tensor, or multi-fields. Part III deals with topological methods for non-field data.
Finally, Part IV reports the results from efforts trying to establish a community code
bases for software development.

Part I focuses on theory and methods related to scalar field topology, followed
by a couple of chapters on applications which demonstrate how theory translates
into practical solutions to problems from diverse scientific domains. The first
chapter discusses the W-structures in contour tree, algorithms for extraction of such
structures, and their impact on the performance of distributed algorithms. It also
demonstrates using an example that extended persistence is not equivalent to branch
decomposition and leaf-pruning. The next chapter presents a novel interaction
interface for exploring scalar fields using merge trees called mergemaps. The third
chapter is an interesting discussion on application of graph theoretic concept of
percolation analysis to scalar fields. With both Gaussian random fields and real
data, it describes how the histogram or degree of structure influences the shape
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of the percolation function. Then a chapter focuses on a discussion on imple-
menting contour-tree-guided volume rendering of very large scalar field datasets in
the context of in situ and distributed computing. The fifth chapter demonstrates how
ideas from scalar field topology can be used for robust extraction and tracking of
features in climate data. Multi-center cyclones are modeled as a set of critical
points, and the tracking is done based on Morse complex. The last chapter of this
part presents another application of scalar field topology in solving domain-specific
problems, here the domain being astrophysics. It deals with design of
contour-tree-guided feature extraction and visualization tool for analysis of image
data obtained by current generation of radio and millimeter telescopes which are
complex both in its spatial and spectral structures.

Part II contains contributions concerned with the analysis of fields with more
complex attributes. The first three chapters deal with vector data. In the first chapter
the notions of saddles, sinks, and sources originally defined for instantaneous vector
fields are generalized to the finite-time setting based on a flow categorization with
respect to contraction or expansion. The second chapter addresses the extraction of
vortex corelines of inertial particles. Therefore, 3D and 6D parallel vector operators
are introduced resulting in straight and bent inertial vortex corelines, respectively.
In the following chapter it is shown how implicit visualization of 2D vector field
topology can be used for periodic orbit extraction in 2D vector fields. The next two
papers investigate fields with multiple attributes that shall be analyzed at the same
time. The fourth chapter of this part applies visualization to evaluating a new
topological equivalence relation, called topological B+-equivalence for the study of
bounded bivariate fields. Invariants are introduced that approximate the equiva-
lence. It is shown that visualizing the Reeb space gives us a near-instant way of
evaluating these invariants. Topological relationships between multiple scalar fields
to approach the analysis of time-varying multi-fields are considered in the next
contribution. A novel method of finding similarity between two multi-fields by
comparing their respective fiber component distributions is proposed. The Part II
concludes with a chapter that deals with automatic chart analysis from rasterized
images applying ideas from tensor field topology. It is demonstrated how positive
semidefinite second-order tensor fields can be used as an effective model for this
purpose.

Part III deals with topology-based methods for analysis of non-field data. It starts
with a chapter that describes an approximate solution to the tree reconstruction
problem for any finite point cloud in a Euclidean space with theoretical guarantees.
The second chapter presents a novel approach for the extraction of micro-structural
features called fibers from 3D scans of wood-based insulation materials. It describes
how splitting geometry and topology processing of the data allows for topological
simplification while still preserving the geometry of the scanned objects.

Part IV focuses on community efforts for developing the impact of topological
methods in practice. It will particularly interest readers coming from the applica-
tions. It is composed of four chapters. The first chapter is a thorough introduction to
vector field topology, which is an excellent entry point to any new comer to the
field. The following three chapters are dedicated to the Topology ToolKit (TTK), an
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open-source library for topological data analysis and visualization, which is a
community-powered effort for making the research results of our community more
accessible to the applications. The second chapter provides a global overview of the
algorithms currently supported by TTK, including methods for scalar, bivariate,
uncertain, and time-varying data. The following chapter describes with an example
how TTK can be extended with the addition of a new module, dedicated in this
illustration to the persistence-driven clustering of high-dimensional point cloud
data. Finally, the last chapter provides experience feedback regarding the TTK
hackathon organized in conjunction with TopoInVis 2019. It describes its organi-
zation and main results as well as reflections which spontaneously emerged then. It
also provides detailed organizational pieces of advice which will be useful to
anyone willing to organize a hackathon.

Lastly, we would like to mention that the 2019 TopoInVis Workshop was
organized by the division of Media and Information Technology at Linkoping
University. Here we would like to particularly acknowledge the support from
Gun-Britt Löfgern in organizing the workshop and the social event. Further, we
would like to acknowledge the financial support from the Swedish e-Science
Research Center (SeRC). Naturally, we thank all the participants of the workshop
for a successful event and the contributors to this collection of manuscripts. We also
thank the diligent reviewers who helped immensely in improving the quality of the
manuscripts during the two-phase review process. Special thanks goes also to
Leonie Kunz for her help in the production process of this volume.

Ingrid HotzMarch 2021
Talha Bin Masood

Filip Sadlo
Julien Tierny
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W-Structures in Contour Trees

Petar Hristov and Hamish Carr

Abstract The contour tree is one of the principal tools in scientific visualisation. It
captures the connectivity of level sets in scalar fields. In order to apply the contour
tree to exascale data we need efficient shared memory and distributed algorithms.
Recent work has revealed a parallel performance bottleneck caused by substructures
of contour trees called W-structures. We report two novel algorithms that detect
and extract the W-structures. We also use the W-structures to show that extended
persistence is not equivalent to branch decomposition and leaf-pruning.

1 Introduction

Topology is the basis for persistent homology [17], a framework for extracting struc-
tural information from data, and Computational Topology [35], which studies how
to compute and scale topological structures efficiently. Topological algorithms and
data structures have been applied to various problems in structural biology [14, 34],
computer vision [3, 23] medical imaging [32] and visualisation [5, 6, 10].

TheContourTree (CT) is a data structure that captures the topological connectivity
of a scalar field. In scientific visualisation it is used to identify features of more than
local importance in large scale scientific and engineering simulations [22, 30]. As the
size of data sets grows to exascale there is an increasing demand to develop scalable
massively multicore and distributed algorithms and systems.
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The contributions of this paper are to extend the understanding of a pathological
case, called the W-structure [12], that emerges in one of the state of the art parallel
contour tree algorithm (Subsect. 2.2); to demonstrate thatW-structures have implica-
tions for parallel algorithmic efficiency (Subsect. 2.2) and that they can be detected
and characterized (Subsect. 3.2); and finally that they can be used to show that con-
tour tree simplification via persistent homology and branch decomposition [29] are
equivalent (Sect. 5).

2 Background

The goals of this work are study how W-structures affect parallel contour tree com-
putation and how branch decomposition relates to persistent homology. The relevant
background is split between Sect. 2 and Sect. 5 because these two tasks have different
prerequisites. In this section, we introduce methods to compute (Subsect. 2.2) and
simplify (Subsect. 2.3) the Contour Tree (Subsect. 2.1) and leave the background
relating to persistent homology to Subsect. 5.1.

2.1 Contour Trees

Given a scalar function f : Rn → R, a level set is the set of all points with a given
isovalue h: f −1({h}) = {x ∈ R

n | f (x) = h}. We refer to individual connected com-
ponents of a level sets as contours. As h varies, contours may appear, disappear,
connect or disconnect at critical points where the gradient vector is zero.

Fig. 1 A simplicial mesh a that generates a W-structure, the corresponding contour tree b with the
W-structure shown as thicker edges and the corresponding join and split trees c and d. The vertices
are labeled with their height value
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The Reeb Graph of f is constructed by contracting the contours at every isovalue
to a point. The resulting structure is a graph whose vertices are critical points and
whose edges are families of contours with identical connectivity. Since Rn is simply
connected, the ReebGraph is connected and acyclic, also called the Contour Tree [4].

We extend the definition of a level set to a super-level set: the points with higher
values than h, i.e. {x ∈ R

3 | f (x) ≥ h}, or a sub-level set with lower values, {x ∈
R

3 | f (x) ≤ h}. Contracting the connected components of the super-level and sub-
level set gives two merge trees, also referred to as the join & split trees.

2.2 Contour Tree Algorithms

In practice, we assume that the domain is approximated by a simplicial mesh with
a linear interpolant. Under these constraints, critical points occur at vertices, and
we only need to process the graph composed of the vertices and edges of the mesh.
Although these assumptions can be relaxed [7], they are themost common in practical
data analysis, and they simplify our analysis without loss of generality.

The standard contour tree algorithm [8] is based on the idea of an isovalued sweep
- i.e. processing the vertices of the mesh in sorted order from high to low. As each
vertex u is processed, any edge (u, v) to a higher-valued vertex v is also processed. At
each step there is a subgraph representing the super-level set, whose connectivity can
be tracked with an incremental version of the union-find data structure [33]. In the
first stage of the algorithm we construct the join tree, then repeat with a low-to-high
sweep to compute the split tree. In the second stage, we construct the contour tree
iteratively by transferring leaves and their adjacent edge from the merge trees, using
induction on a simple invariant to guarantee correctness. As a result, this algorithm
is sometimes referred to as the sweep and merge algorithm.

There are several approaches to scaling sweep and merge. Distributed algorithms
[22, 26–28] adopt a divide and conquer approach where each node computes the
contour/merge tree on parts of the data. The scalability of distributed methods relies
not only on minimising node communication but also efficient utilisation of indi-
vidual nodes. Efficient utilisation of nodes relies on parallel algorithms using vector
[12], thread [19, 20] or hybrid [2, 24, 31] shared memory parallelism.

The parallel peak pruning algorithm [12] is the only shared memory algorithm
which parallelises the merge phase. Other algorithms introduce a novel way of com-
puting the join and split tree, but combine them in serial. Note that the merge phase
has linear complexity and it is significantly faster to compute than the join and split
trees. Nonetheless, parallelising the merge phase is important for resource utilisation
and parallel speed up according to Amdahl’s law [20].

In the merge phase of the serial contour tree algorithm [8] we transfer the leaves
and their adjacent edge from the merge trees to the contour tree. Since this is a local
operation all leaves can be batched and transferred in a single parallel step. The
algorithm alternates between transferring leaves from the join and split tree until the
contour tree is fully constructed. In the ideal case, each batch transfers at least half
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of the vertices, guaranteeing logarithmic performance. In a tree with no vertices with
degree two, half of the vertices are leaves. Thus we can achieve logarithmic collapse
if we remove degree two vertices in a post process for each batch.

Removing a degree two vertex is straightforward when its neighbouring vertices
have values spanning the value of the vertex. This is the case when the vertex is
connected by a chain of such vertices to a leaf. In effect, these vertices are regular at
this stage (although they may not have been in earlier stages), and can be removed.
For vertices of degree two whose value is smaller or bigger than the value of both
neighbours, this is not so easy to perform. We call these vertices forks.

AW-structure consists of repeated forks zigzagging between upwards and down-
wards, as illustrated in Fig. 1. In order to collapse theW-structure completely we can
only prune from an endpoint of the W-structure to a fork. The internal vertices can-
not be process until we have pruned all forks. Therefore computation is effectively
serialized along the largestW-structure in the contour tree. This prevents logarithmic
collapse and complicates the parallel complexity analysis of the algorithm.

W-structures were first visible in Carr et al. [9], they have previously complicated
proofs [11] and have caused issues with contour tree parallel algorithm design and
analysis [12]. The contribution of this paper is to initiate a systematic study of these
W-structures. A natural starting point is to describe themmathematically and develop
algorithms to detect and extract them from contour trees. These algorithmswill allow
us to quantify the impact they have on computation and determine whether they are
an issue in real life data sets. Finallywewill show thatW-structures lead to theoretical
complications as well, by demonstrating that contour tree simplification via branch
decomposition is not equivalent to persistent homology.

2.3 Contour Tree Simplification

The principal technique for contour tree simplification is branch decomposition [29].
The contour tree is partitioned into a set of disjoint monotone paths (branches). A
branch decomposition is hierarchical when there is exactly one branch that connects
two leaves called themaster branch and every other branch connects a leaf to a saddle.
Branches represent pairs of critical points that can be cancelled [25].

In order to decide the order of cancellation we use the persistence of the branches
[29]. The persistence of a branch is the greater of the difference between the height
value at its endpoints and the persistence of its children. Simplification consists of
removing branches that do not disconnect the tree in order of their persistence. This
produces a hierarchy of cancellations as shown in Fig. 2. In branch decomposition
we repeatedly pair upper leafs to join saddles and lower leaves to split saddles in
order of persistence until all vertices are paired.

As an example we consider branch decomposition of the contour tree from Fig. 1
(b). The first two candidate branches are (6, 3) with persistence 3 and (4, 9) with
persistence 5. We take the branch with lower persistence (6, 3). In the next step
the candidates are (1, 5) with persistence 4 and (4, 9) with persistence 5. We take
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(1, 5). The remaining candidate branches are (4, 8)with persistence 4 and (4, 9)with
persistence 5. After removing (4, 8) the only remaining branch is the master branch -
(2, 9). To conclude, the pairs of critical points produced by the branch decomposition
of the contour tree are (3, 6), (1, 5), (4, 8) and (2, 9).

We can also compute the branch decomposition of the join and split trees. The
candidate branches for the join tree are (3, 6), (4, 8) and (4, 9). We remove them in
order of persistence. First (3, 6), then (4, 8) and finally the master branch (1, 9). In
the split tree the two candidate branches are (1, 5) and (2, 5). We remove (2, 5) first
because it has lower persistence and then the master branch (1, 9).

3 W-Structures in Contour Trees

In this section we will develop the existing understanding about W-structures and
introduce three algorithms to compute the largest W-structure in a contour tree. The
value of these algorithms will be in that they will allow us to build our understanding
of W-structures and allow us to detect W-structures in real life data. We adopt the
following notation: in a contour tree T the set of vertices is V and the set of edges is
E . We refer to paths in the contour tree by their first and last vertex because there is
a unique path between any two vertices.

Fig. 2 Branch decomposition of the contour tree and the twomerge trees from Fig. 1 with the edges
of the master branches in thicker lines. Vertices are labeled with their height. In both merge trees
the master branch is the monotone path from the global minimum 1 to the global maximum 9. Note
that in the absence of a monotone path between 1 and 9 in the mesh and its contour tree they cannot
be paired
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Fig. 3 A W-structure and its monotone path decomposition (forks in solid black)

3.1 Spatial Characterization

An important property of paths in contour trees is theirmonotone path decomposition.
This is a sequence of monotone subpaths that share exactly one vertex and have
alternating direction (Fig. 3). We can use the number of subpaths in the monotone
path decomposition to characterize them. To simplify this characterization we note
that the number of subpaths in the monotone path decomposition is one more than
the number of vertices where an ascending subpath ends and a descending subpath
begins (or vice versa). We will call these vertices forks.

We define the w-length of a path as the number of forks in that path and the length
of a path as the number of edges. To avoid ambiguity between w-length and length
we will use the term w-path to emphasize that we are referring to a path’s w-length.
Note that if two paths share a vertex it may be a fork in one of them, but not the other.
For example vertex 5 from the contour tree in Fig. 1 is a fork in the path from 6 to
9, but not in the path from 1 to 8. This property is crucial in understanding how we
develop algorithms for detecting W-structures.

In this terminology the largest W-structure in a contour tree is a path between two
leaves with maximum w-length (or longest w-path). We will call this the w-diameter
of the contour tree. This again is analogous to how the longest path in a tree is called
the diameter of the tree. As there are efficient algorithms for computing the diameter
of a tree a natural question to ask iswhetherwe can adapt these algorithms to compute
the w-diameter of a contour tree.

3.2 W-Diameter Algorithms

Wewill begin the development ofw-diameter algorithms by first describing three tree
diameter algorithms—brute force, endpoint search and root based search. The brute
force algorithm computes the lengths of all paths in a tree and outputs the maximum
one. The second algorithm relies on the fact that the most distant leaf from any vertex
is the endpoint of the diameter [15]. It requires two breadth first searches, so it has
linear running time. The third algorithm is defined for rooted trees where the longest
path may or may not pass through the root. If it passes through the root then it must
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Fig. 4 Execution of the Double BFS algorithm a and b on an example contour tree and the actual
w-diameter c. Black edges indicate a path of maximum w-length. Numerical labels next to vertices
indicate their w-distance from the start vertex. In stage 1 we start from an arbitrary vertex s and find
the most w-distant vertex from it u. In stage 2 we find the most w-distant vertex from u and call it
v. The w-length of the path from u to v is however suboptimal as demonstrated in the last figure. If
our initial root was a then the algorithm would have obtained the w-diameter

start in a leaf in one of the subtrees of a child of the root, pass through the root and
end in a leaf in another subtree. If it does not then it must be entirely contained in a
subtree of a child of the root. With the use of dynamic programming this algorithm
has linear complexity as well. In the next three subsections we will adapt each one
of these algorithms to compute the w-diameter of a contour tree.

3.3 Algorithm 1—Multi BFS

The brute force approach to finding the w-diameter of a contour tree compares the
w-lengths of all paths in the contour tree. To implement it we modify Breadth First
Search (BFS) to traverse the tree and compute w-length (number of forks) instead of
length (number of edges). We then run this modified BFS from every vertex in the
tree and output the maximum value found. It has quadratic running time and we will
refer to it as Naive BFS.

3.4 Algorithm 2—Double BFS

The algorithm works the same as the second tree diameter algorithm we described in
Subsect. 3.2 except we measure w-distance instead of distance. Consider a contour
tree T and an arbitrary start vertex s. First we find the most w-distant vertex from s
and call it u. Then we find the most w-distant vertex from u and call it v. After the
first search from s we are not guaranteed that v is an endpoint of a w-diameter. We
are however guaranteed that v is an endpoint of a path whose w-length is at least that
of the w-diameter minus two. We will demonstrate why that is true in the following
two paragraphs.
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We illustrate this with an example in Fig. 4. In this example the algorithm does
not produce the w-diameter of the contour tree which is the path from a to b. The
mismatch between the output of the algorithm and the actual w-diameter is due to
vertices which are forks in one path, but not in others. First consider the black vertex
on the path from s to u in Fig. 4 a); it is a fork on the path from s to u, but not on the
path from u to v = b (Fig. 4 b). Secondly, consider the midpoint of the path from a
to b; it is a fork on the path from a to b, but not on the path from u to b or a.

Our argument for the general case is based on this example. In a contour tree T
let s be the start vertex and v the most w-distant vertex from s. During the course of
the algorithm there are two graph searches, one from s to identify v and one from v.
There are at most two turning points which may or may not be forks during the two
searches. One of the turning points is where the path from s to a (or symmetrically
to b) diverges from the path from s to v. The other one is where the path from v to a
(or symmetrically to b) diverges from the path from a to b (or symmetrically from b
to a). This causes the w-length of the path we find to vary by at most two from the
w-diameter of the contour tree.

To implement Double BFS we pick a starting vertex and then run the modified
Breadth First Search twice. The first BFS from the root to find the farthest leaf from
it and then a second BFS from that leaf. The algorithm consists of two consecutive
Breadth First searches and therefore its running time is O(|V |).

3.5 Algorithm 3—Dynamic

The third algorithm works by progressively combining paths from subtrees of the
contour tree to obtain the longest w-path. For a contour tree T we pick an arbitrary
start vertex s to be the root of the rooted tree Ts . Observe that the w-diameter of
T either passes through s or it does not. If it does pass through s then it must also
pass through two children of s and be contained in their subtrees. If it does not pass
through s then it must be entirely contained in the subtree of one of the children of
s. We can then extend this reasoning recursively to all the subtrees of Ts .

For every vertex u in Ts we define Ts,u as the subtree of Ts with root u. We find
the w-diameters of all subtrees of Ts,u and use them to compute the w-diameter of
Ts,u . We now demonstrate how to compute the w-diameter of Ts,u assuming that the
optimal solutions for all subtrees of Ts,u have been found recursively. Note that the
base case is at the leaves of the tree Fig. 5 a).

Case 1—the w-diameter of Ts,u goes through u. To handle this case we must find
two maximum paths contained in two subtrees whose roots are children of u, say
a and b. As we have recursively found all such maximum paths we only have to
determine how to combine them. When combining them three vertices can become
forks. The first one is u and the other two are a and bwhichwere previously endpoints
of the maximum paths in their subtrees. To account for u we simply have to compare
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Fig. 5 Execution of the Dynamic algorithm on an sample contour tree. Black vertices have been
processed, gray ones have not. The black edges are the w-diameters for all subtrees. The numerical
label next to a vertex indicates that it is being processed in the current stage and the number is
the w-diameter in its subtree. Each stage combines w-diameters of smaller subtrees to obtain the
diameter of the whole tree

its height to a and b. To account for a and b we must compare their height with u
and the previous vertex in the maximum w-path they are the endpoint of.

An example of where Case 1 holds is in Fig. 5 c). Note that this requires us to not
only look at all children of u, but also to all children of children of u. In addition to
this it may be the case that u is a leaf and has only one child say a. In this case u
must be the endpoint of the w-diameter. In this case we find all maximum paths that
end at a and account for whether a becomes a fork in them or not.

Case 2—the w-diameter of Ts,u does not pass through u. In this case the w-
diameter has to be entirely contained in one of the subtrees whose root is a child of
u so we pick the maximum one. An example of where Case 1 holds is in Fig. 5 d).

Let us derive the time complexity of the algorithm. Firstly it takes O(|V |) time
to traverse the tree and root it via either BFS or DFS. Secondly, we iterate over the
children of all children of all vertices. Since the algorithm operates on trees, every
vertex has a unique grandparent. Therefore every vertex will be visited exactly once
and contribute O(|V |). Finally we pick all pairs of children of a vertex to find the
maximum w-path that goes through the vertex. Computing this for all vertices in the
graph yields O(

∑
u∈V d(u)2)where d(u) is the degree of a vertex. To see howwe can
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evaluate this consider that in a tree d(u) + d(v) ≤ |V | for any two vertices connected
by an edge (otherwise we would have a cycle). If we sum over all edges we obtain
that

∑
uv∈E(T ) d(u) + d(v) ≤ |V |2. In the summation on the left hand side every term

d(u) is present d(u) times and therefore
∑

uv∈E(T ) d(u) + d(v) = ∑
u∈V (T ) d(u)2 ≤

|V |2. Therefore the overall complexity of the algorithm is O(|V |2). Note that this is
formally more complex than the dynamic programming tree diameter algorithm in
Sect. 3.2. The difference between the two is that the base algorithm does not need to
look at all pairs of children, it can simply pick the child with the largest height.

We have shown that the algorithmic complexity of the Dynamic algorithm is
no better than that of the Naive BFS algorithm. However, the running time of the
Dynamic algorithm depends on the average degree of the vertices of the contour tree.
If we assume the function is generic and PL Morse [16], then the degree of every
vertex is bounded and the running time of the algorithm is linear.

4 Empirical Study

In this section we supplement the theoretical investigation of the W-structures with
an empirical study. We verify the correctness and running time of the w-diameter
algorithms and study the W-structures in contour trees of real life data sets.

We implemented all three w-diameter algorithms in C++. Their source code is in
the supplementarymaterials.We avoided a recursive implementation of the Dynamic
algorithm due to excessive overhead caused by recursive calls. Instead we traversed
the tree once with a standard Breadth First Search to identify the children and parents
of all vertices. We then put them in a list and starting from the leaves we processed
all vertices in the tree making sure their children are processed beforehand.

Thedata setswehave used are taken from theOpenSciVisDataset [1]. The contour
tree was computed using the open source VTK-m implementation. All tests were run
on a Lenovo E550 Laptop with Intel(R) Core(TM) i5-5200U CPU at 2.20GHz and
8GB DDR3 RAM at 1600MHz. The running time of the w-diameter programs was
obtained from an average of five runs on each data set.

4.1 Results

The results from the empirical tests are shown in Table1. The first column shows
the name of the data set, the second column the number of vertices and the third the
diameter of the contour tree (not w-diameter). The fourth column shows the number
of iterations in the merge phase of the PPP algorithm. The following columns show
the running times and output of theDoubleBFS,Dynamic andNaiveBFS algorithms.

From previous work [12] we know that in a contour tree without W-structures the
parallel step complexity of the merge phase is logarithmic. When W-structures are
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Table 1 Analysis of the W-Diameter of real life data sets
Dataset Vertices Tree Merge Double BFS Dynamic Naive BFS

Diam. Iter. Time(s) W-Diam Time(s) W-Diam Time(s) W-Diam

fuel 236 43 6 0.0001 2 0.0003 4 0.0133 4

marschner lobb 1604 371 9 0.0008 3 0.0022 3 0.3881 3

hydrogen atom 13038 3153 6 0.0039 2 0.0139 4 25.382 4

aneurism 65625 23701 10 0.0251 4 0.0671 4 723.39 4

engine 518780 92559 12 0.2183 6 0.5504 6 N/A N/A

foot 870371 133655 14 0.4922 7 1.0342 7 N/A N/A

skull 2199876 340611 14 1.0839 7 2.5048 7 N/A N/A

backpack 7441922 1365783 18 4.2384 7 8.4635 7 N/A N/A

bunny 13078906 1450364 18 8.1435 5 15.903 6 N/A N/A

present 17006950 2349226 16 11.339 5 21.075 6 N/A N/A

christmas tree 24643034 4866458 17 13.399 5 29.015 5 N/A N/A

magnetic rec. 40321359 6401594 18 34.480 6 57.287 6 N/A N/A

taken into account the best formal guarantee that could be given is the tree diameter.
However it was noted that the merge phase usually takes less than a logarithmic
number of iterations. This is reflected in our results as well - the number of iterations
is always less than log2(|V |) and substantially less than the diameter.

In this paper we investigate the case whereW-structures are present in the contour
tree. The key issue in doing so is to detect when they are present and to quantify their
size. Based on the results of this empirical study we can confirm that W-structures
do appear in real world data. Fortunately, the size of the W-structures is relatively
small compared to the size of the data. Furthermore larger data sets do not seem to
have a proportionally larger w-diameter.

A w-diameter of more than 2 log2(|V |) can formally prevent logarithmic collapse
in the merge phase. The maximum w-diameter in our tests was 7 which is less than
2 log2(|V |) in all cases. This highlights the importance of parallelising the merge
phase and explains why it performs well in practice.

Finally the running time and correctness of the w-diameter algorithms is consis-
tent with our theory. The worst case running time for Dynamic is quadratic, but as
predicted it is not exhibited and in practice it is only around twice as slow as the
Double BFS algorithm. The Dynamic and Naive BFS algorithms produce the same
results, while the Double BFS algorithm produces a suboptimal w-path in the bunny,
present, fuel and hydrogen atom data sets.
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5 W-Structure Simplification

The topological complexity of a scalar field is largely governed by the number of
critical points. Some methods for simplification remove critical points in pairs using
an auxiliary topological data structure such as the Morse-Smale Complex, persistent
homology or the Contour Tree. Once selected, pairs are ranked by persistence, or
more advanced metric such as volume or surface area [9], and cancelled in that order.

It is well know that the sequence of simplifications do not always agree with
persistence. For example in Morse-Smale complexes there are blocking structures
known as strangulations [21] and in ε-simplification [18] compound function value
changes can occur when following the persistence order. W-structures are a similar
kind of blocking structures in the case of contour tree simplification.

What is less well known is the relationship between branch decomposition and
persistent homology (first observed [29]). In the merge phase, the contour tree is
build up of branches taken from the join and split tree. The critical pairs defined by
those branches in turn correspond to the 0th persistence pairs of f and − f . In this
chapter we will consider whether the branch decomposition of the contour tree also
corresponds to those persistence pairs.

5.1 Persistent Homology Overview

The building blocks of persistent homology [17] are sequences of nested simplicial
complexes called filtrations. In a filtration we start from the empty set and iteratively
add simplices to obtain the full complex. Throughout this section will consider the
ascending and descending filtrations on Fig. 6 of the simplicial mesh from Fig. 1.
The ascending filtration of M is made up of the sub-level sets Mi which contain all
vertices whose value is lower than or equal to i and all other simplices between them.
The descending filtration of M is made up of the super-level sets Mi which contain
all vertices whose value is bigger than or equal to i and all other simplices between
them. In short, this is exactly the same as the join and split tree computation in the
sweep and merge algorithm we discussed in Subsect. 2.2.

Persistent homology describes how the n-dimensional connectivity of the simpli-
cial complexes in a filtration changes. The n-dimensional connectivity is described
by an algebraic structure called the nth homology group. Since contour and merge
trees only capture connected components and not higher dimensional connectivity
such as holes and voids we will only need to consider the 0th homology group.
When a connected component appears in the progression of the filtration we say
that a 0th homology class is born. When two connected components merge together
the 0th homology class that corresponds to the younger component dies and the 0th
homology class that corresponds to the older one persists.
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Fig. 6 Ascending c and Descending d filtration of Fig. 1 a Direction of travel of the two filtrations
band d. Branch decomposition of the split a and the join tree f with additional vertices corresponding
to connected components

The output of persistent homology is the so called persistence pairs. A persistence
pair is a record of the birth and death of a 0th homology class. The persistence pairs
of a filtration give a basis for topological simplification.
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5.2 Comparison of Critical Point Pairs

The proposition we aim to resolve is whether persistence pairs are equivalent to
branch decomposition cancellation pairs. Since monotone paths in the contour tree
correspond to monotone paths in the simplicial mesh [8] then branches obtained via
branch decomposition correspond to valid topological cancellations in the simplicial
mesh [29]. Therefore they are comparable to cancellations given by persistence pairs.

We start by computing the persistence pairs of the ascending filtration in Fig. 6 c).
One connected component appears in the complex M1, another one in the complex
M2 and they merge in M5. When the two merge the older one born in M1 persists
and the younger one born in M2 dies. We record this with the persistence pair (2, 5).
When the filtration is done we are left with a 0th homology class corresponding to the
single connected component of the mesh. This 0th homology class is called essential
and we give it an infinite persistence pair (1,∞).

In the descending filtration in Fig. 6 d) we can see that three 0th homology classes
are born in the complexes M9, M8 and M6. The one born in M8 dies in M4 when
it merges with the one born in M9 (because M9 is older). The one born in M6 dies
in M3 when it merges with the one born in M9. The one born in M9 does not die in
the descending filtration because it represents the connected component of M itself.
Therefore the persistence pairs are (6, 3), (8, 4) and (9,∞).

The two infinite persistence pairs can be resolved with extended persistence [13].
The idea behind extended persistence is that we take the essential classes from the
ascending and descending pass and pair those which correspond to the same con-
nected component. More generally we know that in a simple domain extended per-
sistence always pairs the global minimumwith the global maximum. In our example
the extended persistence pair for the ascending filtration is (1, 9) and the extended
persistence pair for the descending filtration is (9, 1).

Finally consider the branch decomposition of the contour tree in Fig. 2. While the
first produced branch (6, 3) is the same in the contour tree and in the join tree branch
decomposition, the third branch of the join tree branch decomposition (1, 9) does
not occur as a pair in the contour tree. The same holds for the branch decomposition
of the split tree and the persistent homology pairs of the ascending and descending
filtration - they all pair the globalminimum1with the globalmaximum9. This cannot
occur in the branch decomposition of the contour tree because branches represent
monotone paths. There is no monotone path between the 1 and 9 in the mesh and
therefore no monotone path in the contour tree. The result then follows.

6 Conclusion

In this paper we introduced the theory of a pathological case in contour tree paral-
lel computation called a W-structure. We developed three algorithms to detect and
extract W-structures and showed that they appear in real life data. We also showed



W-Structures in Contour Trees 17

that W-structures cause fundamental theoretical issues. They lead to an example that
contour tree simplification is not equivalent to persistent homology.

Future work in this direction will focus on whether there is a form of persistent
homology which matches the branch decomposition form of simplification, on algo-
rithmic improvements for which W-structures do not pose a parallel bottleneck, and
if need be, on further empirical studies to inform algorithmic development.
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Mergemaps: Treemaps for Scientific Data

Adhitya Kamakshidasan and Vijay Natarajan

Abstract Topology driven methods for analysis of scalar fields often begin with an
exploration of an abstract topological structure such as the merge tree. Such abstrac-
tions are hard to interpret and time-consuming, particularly for feature-rich data.
Current visualization schemes often place less emphasis on enriching user experi-
ence, human perception, or interaction. In this work, we aim to bridge that gap by
utilizing treemaps towards effective topological analysis. We present mergemaps, a
treemap based interactive design, to better understandmerge trees. To aid the percep-
tual understanding of largemerge trees, we provide fusing and diffusing operations to
reduce its hierarchical size while preserving topological features. We show multiple
examples where our design leads to easy interpretations.

1 Introduction

Topological methods for data analysis have proven to be useful in multiple contexts
ranging from exploring cosmic filaments [27] to extracting voids in proteins [29].
Contour trees, Reeb graphs, Morse-Smale complexes, persistence diagrams [5, 9,
11, 13, 26], to name a few, provide abstract representations that aid in topological
analysis of scalar fields. Despite these abstractions being extremely powerful, they
are still yet to gain widespread popularity because their interpretation requires back-
ground in algebraic topology andMorse theory [10]. To this extent, multiple attempts
have been made to provide user interfaces that convey topological information in an
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intuitive manner. In this work, we aim at improving the user experience of exploring
a particular topological structure called the merge tree.

1.1 Related Work

A merge tree traces the connectivity evolution of sub/super-level sets in a scalar
field, a contour tree contains the combined information of both sub- and super-
level sets. From a data analysis perspective, merge trees have been used in various
interesting applications. Bock et al. [3] used it for extracting fishes from micro-CT
scans, Valsangkar et al. [35] track cyclones by understanding how their contours join
and split, Doraiswamy et al. [8] identify congestion in New York roads.

Weber et al. [37] introduced the notion of topological landscapes, which uses a
terrain metaphor for presenting the contour tree. Topological landscapes capture the
nesting behavior of contours, with the intuition that humans better perceive topo-
graphic information. Their two-step algorithm involves placing branches by adap-
tively subdividing a mesh, and rebalancing the mesh to improve space utilization.
While the resulting landscape allows users to grasp high-level features, the number
of triangles increases sharply for deep hierarchies and the terrain can contain large
empty spaces.

Building on the same paradigm, Harvey and Wang [12], observed the connection
between topological landscapes and treemaps. Their proposedmethod, calledDenali,
computes a landscape corresponding to each edge interpreted as the root of the
tree, and chooses the best landscape by defining a metric distance between each of
them. While this method is not computationally expensive, it can result in skinny
boundaries. Bekatayev et al. [1] proposed a solution that preserves the geometry
proximity while constructing the topological landscapes by routing edges across
a Voronoi diagram, but works only for small-sized trees. Demir et al. [7] layout
branches as square boxes and render landscapes with a first-fit box packing scheme,
followed by hierarchically triangulating the corresponding grid. This algorithm is an
improvement over the original algorithm byWeber et al., but the resulting landscape
looks artificial and lacks a spatial context. Topological landscapes have also been
used to study higher dimensional point clouds [20]. Mergescapes [16] proposed
force-directed landscape layouts, constructed directly from a merge tree as opposed
to the branch decomposition. Other visual representations based on tree drawing or
1D profiles [14, 21] have also been proposed for contour trees and merge trees. In
contrast, the nesting behavior is better perceived in a treemap based representation.
In addition, the treemap based approach also supports various visual analysis tasks.

Existing techniques that present the contour tree using a landscape metaphor are
affected by the limits of humanperception and interaction.While a contour tree iswell
suited to be represented as a terrain, the interactive study of terrains is perceptually
difficult. In particular, we believe that the simultaneous exploration of sub-level and
super-level sets is difficult using topological landscapes. Therefore, insteadof directly
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representing the contour tree, we study the merge tree, which captures either sub- or
super-level set connectivity. Focusing on the merge tree enables the exploration of
simple representations that utilize and highlight its hierarchical properties.

1.2 Summary of Results

We present mergemaps, a treemap based visual presentation of a merge tree.1 We
construct a mergemap, by processing the branch tree representation of the merge
tree to compute an intermediate proxy called the aggregate tree, that stores the
hierarchy of persistence pairs. We believe that a mergemap simplifies the process of
comprehending and interacting with the merge tree. We build upon existing work
on treemaps and landscape metaphors and extend it to visualize merge trees. We
also provide fusing and diffusing operations to reduce hierarchical clutter and hence
improve user experience.We demonstrate the utility of our designs for understanding
scientific datasets. Our designs are simple to implement and we hope that they would
be adopted by the community.

2 Background

In this section, wewill provide a brief background about the two essential ingredients
for constructing mergemaps: merge trees and treemaps.

2.1 Merge Tree

Consider a scalar function f : D→R defined on a simply connectedmanifold domain
D. A value c in the range of f is called an isovalue. Given an isovalue, an isocontour
or level set is defined as the collection of all points x ∈ D such that f (x) = c. A
merge tree captures the connectivity of sub-level sets f −1(−∞, c] (join tree) or
super-level sets f −1[c,∞) (split tree) of f . Both join and split trees are referred to
asmerge trees. For the sake of convenience, we use only the split tree for explanation.
Figure1 shows the merge trees and contour tree of the height function defined on a
simply connected domain.

A split tree is constructed by sweeping the domain in decreasing order of function
value. It records the points at which the number of connected components of the
super-level set changes. Nodes of a split tree consist of maxima, split saddles, and
the global minimum. In practice, a split tree can be conceptualized as a rooted binary
tree, in which every interior node has at least two children. The root is defined by

1 Video illustrating mergemaps at https://youtu.be/xuj9jG4E3lM.

https://youtu.be/xuj9jG4E3lM
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(a) (b)

(c) (d)

Fig. 1 Height field of Armadillo rendered using a blue-red colormap ( ). a critical points
of the field and a level set, shown in pink. b, c, d show the contour tree, join tree, and split tree
respectively

the global minimum, the leaves are maxima, and the interior nodes are saddles. All
maxima can be paired with saddles based on the notion of topological persistence,
except for the global maximumwhich is paired with the global minimum. Each such
pair represents a topological feature and its persistence can be defined as the absolute
difference between the two scalar function values.

Similarly, a join tree can be defined using minima, join saddles and the global
maximum. The contour tree contains the combined information present in a split and
a join tree, it captures the evolution of level set connectivity. Collectively, minima,
maxima, join saddles and split saddles are called critical points.

A merge tree can be decomposed into a set of branches, such that each branch
contains a persistence pair. This generates a nested hierarchy of branches, wherein
each parent branch has a persistence greater than that of its children. This hierarchy
of branches is called the branch decomposition representations of the merge tree.
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2.2 Treemap

Trees are generally visualized as node-link diagrams. Such a visualization is inad-
equate while exploring large datasets, since navigating the structure is difficult and
content information is often hidden within the individual nodes [36]. To counter this,
Shneiderman [28] proposed treemaps as a technique to display tree structures using
a two-dimensional nested space-filling approach similar to that of Venn diagrams.
The original algorithm requires dividing the display into nested rectangles, each with
an area corresponding to the weight of the associated node.

The utility of a treemap can be understood with an example, see Fig. 2. The
file system hierarchy of a computer can be comprehended using a treemap. In this
case, the tree to be visualized consists of files and folders. The leaves of the tree
represent the files. All interior nodes, including the root, represent the folders. Each
file is represented as a box with an area corresponding to its file size. All folders are
represented as containers with an area equivalent to the sum of the file sizes of its
children. Every node of the input tree serves as a container for its children.

By definition, treemaps take an input of n weights, a hierarchy upon these weights
(the tree), and a shape (generally a rectangle). Since these weights correspond to the
leaves of the tree, the size of a parent container (present as an interior node of the
tree) should be equal to the sum of the sizes of its children.

Several treemap layouts have been presented in the literature – for improved
presentation of the tree hierarchy, better display of values associated with nodes,
enhanced aspect ratio of rectangles, and multiple other criteria. We refer the reader
to the survey by Schulz et al. [25] for a more elaborate discussion on these variants.
In this paper, we choose an appropriate existing variant based on the requirement. For
our case studies in Sect. 4, we use squarified treemaps [4], zoomable treemaps [2],
spatial treemaps [40], and cascaded treemaps [18].

3 Mergemap

Amergemap is a treemap based visual representation of a merge tree. In this section,
we will describe an algorithm for constructing a mergemap, show how to interact
with it, and use its hierarchical properties to improve perception.

3.1 Motivation

Our main goal is to be able to represent a merge tree using a treemap and allow
for better perceptual and interactive analysis. However, treemaps cannot directly be
used out-of-the-box for representing merge trees. We describe the reason using an
example. Figure2 shows the directory structure as an input tree, visually depicted as
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Fig. 2 An example file directory and its treemap visualization

a treemap. Each box in the treemap corresponds to a file, and each container corre-
sponds to a folder. The area of a treemap box is proportional to the corresponding
file’s size. Note that the folder does not require additional space, therefore the area
of the corresponding containers is equal to the sum of the areas of its children. In
contrast, the internal nodes of a merge tree (the saddles), always have an associ-
ated weight (scalar function value) and cannot be shown in a treemap. Therefore, a
merge tree should first be converted into an intermediate structure that preserves the
topological abstraction, and whose visual representation is amenable to interaction,
perception, and analysis.

3.2 Algorithm

There are three basic steps for generating a mergemap. First, we compute the branch
decomposition. Second, using the branch decomposition, we construct an aggregate
tree to introduce imposter nodes. Third, we visualize this aggregate tree using a
treemap. Optionally, the hierarchy of the treemap is reduced using a sequence of
fusing/diffusing operations and is spatially ordered. Figure3 shows a mergemap and
the output of the different steps.

We use the algorithm by Pascucci et al. [22], to convert a merge tree into a persis-
tence based branch decomposition. The root branch is referred to as the trunk. The
trunk has the global maximum and global minimum at each of its ends. Depend-
ing on which merge tree is used, all other branches have a minimum or maximum,
and a saddle. Each branch can have an importance value like persistence, hypervol-
ume or volume associated with it. For the purpose of our discussion, we assume
that this branch decomposition has only one value associated with each branch, say
persistence.

While the branch decomposition is often displayed as a collection of L-shaped
branches, it can alsobe represented as a rooted tree,whosenodes represents individual
branches. Such a representation is called a persistence hierarchy [23]. Understanding
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(a) 2D scalar field with Gaus-
sians rendered using a blue-red
colormap ( )

(b) Merge tree and its branch decomposi-
tion

(c) Persistence hierarchy and ag-
gregate Tree

(d) Mergemap

Fig. 3 Constructing a mergemap for a scalar field

the branch decomposition in terms of persistence hierarchy, makes visualization
easier.

The persistence hierarchy cannot be directly presented as a treemap. Each node of
the persistence hierarchy has a value associated with it, whereas a treemap requires
values to be associated only with leaf nodes. We construct a new tree, called the
aggregate tree,whose leaves store values corresponding to all nodes of the persistence
hierarchy tree. The aggregate tree can be presented as a treemap.

Every node in the persistence hierarchy is duplicated (without edges) and inserted
as a child of the same node. The nodes are duplicated during a preorder traversal of
the persistence hierarchy. After duplication, every non-leaf node is assigned a value
equal to the sum of its children. This tree contains twice the number of nodes as the
persistence hierarchy and is suitable for visualization using a treemap. Algorithm 1
shows this procedure.

Let us consider the example shown in Fig. 3 to understand the algorithm. The
input scalar field has six critical points, (a, b, c, d, e, f), associated with the split
tree. The branch decomposition consists of 3 branches: (a, c), (b, e), (d, f). These
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Algorithm 1. Create Aggregate Tree
1: function MakeImposter(node)
2: node ← Duplicate(node)
3: for child ∈ node.children do
4: if child not processed then
5: imposter ← MakeImposter(child)
6: node.value ← node.value + imposter.value

7: Mark(node,processed)
8: return node

9: function Duplicate(node)
10: imposter ← Copy(node)
11: imposter.value ← node.value
12: imposter.parent ← node
13: Delete(imposter.children)
14: Insert(node.children, imposter)
15: Mark(imposter,processed)
16: return node

17: AggregateTree ← MakeImposter(node)

pairs have a persistence value and an implicit hierarchy defined upon them. Since
the pairs cannot be directly visualized using a treemap, we create an aggregate tree.
For each node in the persistence hierarchy, an imposter is created, by duplicating
all properties of the original node, except for parent-child relationships. This is then
inserted back as a child of the original node. The imposter can be considered as a
symbolically perturbed saddle with function value lower than its parent.

This aggregate tree satisfies some desirable properties:

(i) the imposter will appear as a leaf node in the aggregate tree,
(ii) the branch will be represented both as an internal node as well as a leaf node

in the aggregate tree, and
(iii) the internal node that represents the branch contains a copy that retains its

original value.

When a node has imposters for itself and its initial children, it takes up a value
equivalent to the sum of all its children. We call such a node as an aggregate node
and denote it as saddle*. In our example, d* will be equal to the value of (d, f), b*

will be equal to the sum of (b, e) and d*, and a* will be equal to the sum of (a, c) and
b*. Topologically, an aggregate node has a value equal to the total persistence of all
branches beneath it.

Using these imposters and aggregate nodes, we can now show the branch decom-
position using a treemap. The leaf nodes, (a, c), (b, e), (d, f) are shown as boxes,
while their respective parents, a*, b* and d* are shown as containers. Each branch has
been represented twice, using a box and a container. The boxes show the exact value
represented by the branch, while the containers express the hierarchical relationship
amongst the branches.
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3.3 Interaction

To explore a large dataset, a mergemap allows a user to navigate through multiple
interesting features. Interaction with mergemaps is straightforward, and can be done
in two ways: focus + context exploration, or using external widgets. In this section,
we look at some best practices for interacting with mergemaps.

3.3.1 Focus + Context Exploration

A direct way to use a mergemap is by linking it with subvolumes of the domain [38].
A user can select individual boxes to interactively view the corresponding vol-
umes. Meta-data associated with a branch is visible by hovering over its box in
the mergemap and more specific information like branch identifiers and persistence
values may be displayed as labels on top of a box. Even though containers and boxes
represent the same branch, providing the same interactive capabilities is redundant.
Containers can be used for size reduction operations (Sect. 3.4) and boxes for volume
selection. A rectangle’s area can also be selected for annotation using text or colour.

In order to focus on a single feature and its properties without getting distracted by
the rest of the treemap, we use zoomable treemaps [2]. Zoomable treemaps provide
capabilities that allow users to navigate up and down the hierarchy of the tree using
animated rolling up and drilling down views. Zooming into a container causes a new
treemap associated with its branches to be rendered into the original area. Zooming
out causes the original context to be restored. A user may use this interaction capa-
bility to select the smallest features of the branch decomposition without the need
for excessive simplification.

3.3.2 Linked Widgets

While interactingwith a large branch decomposition, it can be cumbersome to repeat-
edly select features, one after another, in a hit-and-trial fashion. Hence, the designs
presented in this paper may be used in conjunction with interaction widgets and
tools. For instance, ‘top/bottom k-persistent features’ is a useful query to support.
The traditional persistence diagram, where persistence pairs are plotted as vertical
bars on the diagonal, is not best suited for selection. An alternative representation,
called barcodes, shows the pairs as a sorted bar chart. This representation may be
used in conjunction with mergemaps and standard brushing and linking by simply
changing colors or shades of the corresponding boxes. Topological spines [6] is
also an interesting candidate for a linked widget, since it preserves the underlying
geometry of the scalar field.
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3.4 Operations

User perception may be affected due to two different reasons. First, the mergemap
shows a branch both as a container and a box, even when it has few or no children.
Thismay result in clutter. Second, a branch decomposition often contains large nested
hierarchies. To address this difficulty, we propose few operations that reduce the size
of the branch decomposition. Our proposed operations are generic in nature. Other
operations may be introduced to cater to dataset and application specific require-
ments. We first describe these operations and then describe how they may be used
together with mergemaps.

3.4.1 Reduction Operations

Wepresent three operations: fuseSaddle, diffuseBranch, and fuseBranch. These oper-
ations adapted from [31, 37], either fuse different branches into one or spreads
branches or flatten a deep hierarchy. Figure4 shows an illustration for each
operation.

(i) fuseSaddle: If the critical value at the saddle of a branch is close to that of its
parent, then both branches may be fused together so that they share the same
saddle. This is a saddle stabilization operation.

(ii) diffuseBranch: If a branch has multiple nested children, the hierarchy below
the branch may be flattened by spreading all nested descendant branches as
immediate children. This is a hierarchy compression operation.

(iii) fuseBranch: If the minima of two branches in a join tree are in close proximity
in the spatial domain, then both branches may be fused into a single branch.
Children of both branches are hierarchically placed into the merged branch.
The new branch is pushed up the hierarchy, its saddle value is set to the larger
of the two saddles, and the value of the minimum is set to the smaller of the two
minima. In a split tree, the saddle value is set to the smaller of the two saddles
and the value of the maximum is set to the larger of the two maxima. This is a
proximity-based simplification operation.

The branch decomposition represents a spatial containment relationship between
parent and child branches. So, it may be possible to develop a method to compute the
corresponding simplified scalar field via local changes [33]. For example, fuseSaddle
maybe realized via local changes to scalar values in the neighborhood of the preimage
of the merged saddle point. We do not study this problem further since the intent
here is to improve user perception.
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Fig. 4 Examples of reduction operations

3.4.2 Reducing Mergemaps

The above operations can be performed in two ways, directed by uniform thresholds
or by a human-in-the-loop. We first describe the use of a uniform threshold to direct
each operation.

The fuseSaddleoperation traverses up the hierarchy from the leaves up to the trunk,
merging branches whose saddle values are closer than a given saddle value prox-
imity threshold. The diffuseBranch operation selects all branches at a chosen depth
threshold and diffuses the descendants for each branch. The fuseBranch operation
identifies groups of branches that are pairwise closer than a given spatial proximity
threshold. For each group, a single branch is inserted into the hierarchy replacing all
branches in the group.

Rectangles in a mergemap are easy to select. So, it makes sense to ask a user to
manually identify the branches to be fused or diffused. To perform a fuse operation,
the user selects all containers that are to be merged. Children of the selected branch
are placed within a single container. In case of a diffuse operation, the user selects a
single container and all descendants are hierarchically compressed.

From our experience, it is best to reduce a mergemap in the following order:
perform persistence based simplification of the scalar field [34] and construct a
branch decomposition, use uniform thresholds for the fuse/diffuse operations before
the mergemap is rendered, finally apply the operations manually based on expert
input.
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3.5 Area Distortion

The size of containers in the mergemap is not exactly equal to the sum total size of
its boxes. Each container has a constant padding that acts as a small cushion. This
padding eats into the area of the children. So the area of the boxes in the illustrations
is not exactly proportional to the value associated with it, but slightly smaller. The
padding helps users perceive the hierarchy of the tree and hence select containers to
perform the reduction operations. On a similar note, treemaps cannot directly show
non-positive scalar values.

4 Case Studies

We describe four applications to demonstrate the utility of the mergemap. The
datasets used in this section are available in the public domain [17, 39]. We use
TTK [32] for computing the merge trees and persistence based simplification. Pre-
vious designs [12, 37] have also used the same datasets in Sects. 4.2 and 4.3, and
therefore we compare mergemaps with their representation for those case studies.

4.1 Ethane-1,2-diol

The Ethane-1,2-diol dataset is a 3D electron density distribution over a small
molecule. Higher density regions correspond to atom centers. This is a relatively
small dataset, the merge tree contains only 20 critical points. We use a squarified
treemap [4] for the layout. This layout creates approximate squares as opposed to
elongated rectangles, for easy selection and comparison. After performing a few
reduction operations, we get the mergemap shown in Fig. 5. Using brushable persis-
tence barcodes, we assign a common color to similarly sized boxes. The similarly
sized boxes directly correspond to similar bonding regions in this dataset. The orange
boxes correspond to Carbon-Hydrogen bonds, brown boxes correspond to Oxygen-
Hydrogen bonds, and the pink boxes correspond to the Carbon-Carbon bond.

4.2 Fuel

The dataset represents fuel density in a combustion chamber after fuel is injected.
Understanding its structure is important for finding better combustion schemes. Past
work [31, 37] have shown that the dataset exhibits radial symmetry. We attempt to
replicate their results using mergemaps. Figure6 shows our results. Initially, even
after uniformly diffusing the mergemap, there were too many colors and nodes that
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(a) (b)

Fig. 5 Bonds in Ethane-1,2-diol: a Isosurfaces and the merge tree. b Mergemap. Similar sized
boxes are assigned a common color. We observe that this corresponds to similar bonding regions

affected the ability to locate the interesting features. However, since each container
represents a topological feature, we were able to quickly locate the turbulent region.
In order to remove clutter due to the presence of the other features, we zoomed into
this turbulent container. Next, we used brushable persistence bar codes and found
several boxes of the same size, which directly corresponded to symmetrical features.

We now compare the interface of mergemaps with that of Denali (proposed by
Harvery and Wang [12]) and topological landscapes (proposed by Weber et al. [37])
for this dataset, see Fig. 6 (g)–(i) from [12]. One, mergemaps supports an interac-
tive query-driven approach that helps locate the symmetrical structures. Denali and
topological landscapes do not allow for such interaction. Two, Denali presents the
(unrooted) contour tree. It considers the landscape corresponding to every possible
root edge, and then chooses the best landscape by defining a metric distance between
them. As a result, each such landscape can lead to a different interpretation and anal-
ysis. For instance, it is perceptually difficult to understand why the turbulent part of
the fuel dataset (highlighted in yellow) appears to be below the stable part (high-
lighted in green) in Denali’s landscape. Three, topological landscapes often have
large spaces in the terrain, that diminishes simple comparative perceptual tasks.

4.3 Silicium

In the mergemaps that we have studied so far, if two containers are adjacent to each
other, it implies that the corresponding nodes have the same depth in the persistence
hierarchy tree. This notion of adjacency between containers can also be extended to
show spatial relationships amongst them. We use a spatially ordered treemap [40]
for this purpose.
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Fig. 6 Volume rendering of the density field in the Fuel dataset using a blue-red color map
( ) and the corresponding mergemaps

We illustrate this using a silicium grid, where the atoms appear as maxima. Such a
grid is tightly packed, and the atoms are very close to each other at regular intervals.
Scientists are generally interested in understanding impurities in such datasets and
the atoms that are affected by them. Understanding spatial relationships is significant
for this study. For this dataset, we suppress the hierarchy of the merge tree by fusing
all saddles together, resulting in a bush where all maxima are connected to a single
saddle.

There is one hurdle in depicting the spatial proximity. The coordinates of the
maxima are in 3D and the treemap has a 2D layout. We perform dimensionality
reduction on the coordinates of the maxima using Principal Component Analysis
(PCA) to project them onto the plane. Using the reduced principal coordinates and
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Fig. 7 Volume rendering of the Siliciumdataset using a blue-red colormap ( ) andmaxima
of the density field (left). Spatially ordered treemap where the box size indicates persistence (right)

their persistence values as input to a spatially ordered treemap, we can visualize
spatial relationships amongst the maxima, see Fig. 7.

All the boxes are of the same size. So, we infer that there are no impurities in the
dataset. We expect impurities to have a very small or large persistence and hence
appear disproportionately in the mergemap. If we identify such a box in a spatially
orderedmergemap,we can define a radius and select all atoms that are affected by this
impurity. This technique could potentially be used to understand higher dimensional
datasets that are projected onto the plane using a topology preserving dimensionality
reduction method [41].

We now compare the interface of mergemaps with that of topological landscapes
for this dataset, see Fig. 12 from [37]. In both representations, it is difficult to distin-
guish individualmaxima/minimabecause their sizes are similar.Mergemapsprovides
an additional guarantee that spatially proximal critical points appear close to each
other in the visual representation. Further, we believe that a terrain representation is
cumbersome to perceive contour trees, since it is difficult to analyze both maxima
and minima at the same time without constantly rotating the 3-D view of the ter-
rain. This is probably why a flipped version of the terrain is used to show minima.
Mergemaps avoid this issue by focusing on merge trees.
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4.4 von Kármán Street

The von Kármán street dataset is obtained from a simulation of 2D viscous flow
behind a cylinder. This dataset is widely used as a demonstration for understanding
time-varying data using topological analysis.Maxima of the velocitymagnitude field
directly correspond to vortices. Previous topological analysis of this dataset [15, 19,
24, 30] have reported periodicity in its vortex shedding. Here, we study a single
time step of the data set. In particular, we are interested in answering two questions.
(a) What is the spatial structure of the flow and the vortices? (b) How are individual
vortices different from one another? We propose a minor variant of mergemaps that
helps answer the two questions.

First, we introduce an additional constraint while constructing the branch decom-
position from its merge tree that helps capture the spatial structure. A branch is
attached as a child only if the index of its saddle end point in the preorder traversal
of the merge tree lies in between the preorder indices of the end points of its parent
branch. Further, we use a cascaded treemap [18] to display the aggregate tree. By
design, cascaded treemaps use layering and offsetting rectangles to convey depth and
hence showcase the structure of a tree.

Differences between vortices can be observed by studying maximum-saddle pairs
in the merge tree. This requires the function values associated with the maximum and
the saddle to be presented in the mergemap. So, instead of inserting a single imposter
node to represent a branch, we insert two imposter nodes each one representing
the two critical points. The size of a container now represents the sum total of
function values of all critical points beneath it i.e., the approximate hypervolume
corresponding to the descendant branches. The size of a box represents the scalar
function value associated with the critical point. The box of a saddle and its container
are assigned the same color. One undesirable outcome of this variant is that a low
persistent feature with high function value will be shown as a large container. For
example, given a height function defined over a hand, low persistent features near
the tip of the fingers, will be shown as large rectangles.

We now answer both questions about the dataset. Figure8 shows how the
mergemap captures the structure of the merge tree. It indicates that the domain
can be split into three parts. The clockwise vortices on the top and counter clockwise
vortices on the bottom of the vortex street correspond to the left and right parts of
the mergemap, respectively. The bottom part of the mergemap corresponds to insta-
bilities behind the cylindrical obstacle. We are able to answer the second question
even though the padding results in area distortion. The lower region of the left and
right part contains similar large boxes indicating that the vortices near the cylinder
are extremely stable. However, as we move up, going deeper into the nested hier-
archy, the size of the boxes reduce. This indicates that the vortices away from the
cylinder obstacle have considerably lost speed. We also observe that both vortex
streams “mirror” each other. To check whether our findings from a single time step
are true for other time intervals, we computed and rendered the mergemap for each
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(a) First time step of the von Kármán street rendered using a blue-red colormap ( ) and
merge tree of the magnitude field.

(b) Segmentation using a merge tree

(c) Cascaded mergemap for von Kármán street

Fig. 8 Cascaded mergemap captures the structure of the von Kármán street. Circled boxes in the
mergemap correspond to the segments shown in (b)
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time step. The mergemap for all the time steps contains three parts but several small
noisy features appear and disappear behind the cylindrical obstacle.

5 Conclusions

We have presented a treemap based design, that enables improved perception and
interaction while exploring merge trees. We also discuss the best practices to interact
with and analyze data using such a presentation. We demonstrate their utility on
multiple datasets. They are simple to implement and lead to easy interpretations for
better topological analysis.
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Notes on Percolation Analysis of Sampled
Scalar Fields

Wiebke Köpp, Anke Friederici, Marco Atzori, Ricardo Vinuesa,
Philipp Schlatter, and Tino Weinkauf

Abstract Percolation analysis is used to explore the connectivity of randomly con-
nected infinite graphs. In thefinite case, a closely relatedpercolation function captures
the relative volume of the largest connected component in a scalar field’s superlevel
set. While prior work has shown that random scalar fields with little spatial correla-
tion yield a sharp transition in this function, little is known about its behavior on real
data. In this work, we explore how different characteristics of a scalar field—such as
its histogram or degree of structure—influence the shape of the percolation function.
We estimate the critical value and transition width of the percolation function, and
propose a corresponding normalization scheme that relates these values to known
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results on infinite graphs. In our experiments, we find that percolation analysis can
be used to analyze the degree of structure in Gaussian random fields. On a simulated
turbulent duct flow data set we observe that the critical values are stable and con-
sistent across time. Our normalization scheme indeed aids comparison between data
sets and relation to infinite graphs.

1 Introduction

Percolation theory has been initiated in 1957 by Broadbent and Hammersley [3]. It is
widely used today to characterize and model complex random systems by studying
random connectivity in a graph or lattice using statistics. Examples can be found
in many domains such as fluid dynamics, cosmology, geology, material science,
epidemiology, and others [15].

Percolation is largely a theoretical tool to understand the topology of infinite
graphs. One of its central components is the percolation probability, which describes
the likelihood of the existence of an infinite connected subgraph under certain thresh-
old criteria on the vertices or edges of the original graph. Only few previous works
apply percolation theory to real data such as fluid flow simulations [11].

This paper explores the computational aspects and potential pitfalls when com-
puting and analyzing a percolation function, closely related to the percolation prob-
ability, for real data defined on finite lattices. We give the following contributions:

• We discuss the consequences of computing percolation functions on sampled
data. This includes how the percolation function is influenced by the dimensions
of the grid. We also describe a normalization to the input data that is crucial for
comparing percolation functions between different data sets and to the theory
(Sect. 3).

• We propose a method for analyzing the percolation function and its features,
combinedwith a comprehensive visualization for parameter- and time-dependent
data sets (Sect. 3.2).

• We research the sensitivity of the percolation function to the amount of structure
in data by designing a family of Gaussian random fields with varying degree of
structure (Sect. 5.1).

• Finally, we apply our framework to fully developed turbulent flows (Sect. 5.2).

2 Related Work and Background

Consider an infinite graph L. We define for each of its vertices to be open with prob-
ability 0 ≤ p ≤ 1, and closed otherwise. Based on this, we define the open subgraph
L′ using the open vertices and their adjacent edges only. Percolation theory studies the
structure of L′ depending on the value of p. To do so, we observe the connected com-
ponents of L′: for small values of p, this subgraph consists of many small connected
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Fig. 1 Examples for site percolation on a 2D lattice with 4-connectivity for p = 0.2, 0.6 and 0.8.
The percolating cluster of open sites (black) forms approximately at p2Dc (middle)

components which are finite in size (remember that L and L′ themselves are infinite).
For a critical value pc, large-scale structures form and the open subgraph contains an
infinite connected component pervading the entire domain: the percolating cluster,
see Fig. 1. Intriguingly, the transition from finite components to an infinite connected
component is sharp: for p < pc, the open subgraphL′ contains finite connected com-
ponents only, whereas the picture immediately changes for p > pc, for which we see
an infinite percolating cluster in L′. The critical value pc is often referred to as per-
colation threshold. In random media such as porous rocks, the percolation threshold
denotes thepointwhereglobalphysicalpropertiesof themediumchangequalitatively.
For example, a porous rock is impermeable before pc, but lets liquids through after pc.

The percolation threshold pc depends solely on the connectivity in the infinite
graph L. Different topologies have been researched in the mathematics community
[21] such as 2D and 3D uniform lattices, triangle meshes, or bow-tie lattices. One
also distinguishes between site and bond percolation, which refers to considering the
vertices or edges of the L as open/closed, respectively. We are concerned with site
percolation in this paper, but ourwork transfers to bond percolation straightforwardly.

The 2D lattice with 4-connectivity (infinite structured grid in 2D) has a site perco-
lation threshold pc ≈ 0.5927 [5]. The 3D lattice with 6-connectivity (infinite struc-
tured grid in 3D) has a site percolation threshold pc ≈ 0.3116 [5]. These values are
defined by considering the open subgraph and have been estimated through simula-
tions on finite grids, see Fig. 2a.

Level-set percolation [1, 14], which we are concerned with here, applies percola-
tion theory to real data by considering (seemingly) random scalar data values at the
vertices of a finite lattice. In this setup, we are looking at the superlevel set1 of the
scalar field f (x) defined as the set of voxels fulfilling f (x) ≥ p. The superlevel set
can be equated with the open subgraph L′ from before. Again, we are interested in
the threshold value pc where the connected components of the superlevel set pervade
the entire domain of the scalar field.

To determine the existence of the percolating cluster and the percolation thresh-
old pc in this scenario, we have to define a percolation function. Similar to Moisy
and Jiménez [11], we choose a function based on the volumes of the connected
components:

1 Level-set percolation traditionally refers to the study of the superlevel set, but all the analysis steps
presented in this paper can be applied just as well to the sublevel set.
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Pmax(p) = Vmax

Vtotal
(1)

where Vtotal denotes the total volume of the superlevel set for a given threshold p,
and Vmax is the volume of its largest connected component. Figure2b plots Pmax(p)
for 2D and 3D random noise data sets.

The percolation function can be computed efficiently using an iterative Union-
Find algorithm whose non-iterative version has first been suggested in the context of
percolation by Hoshen and Kopelman [8]. The algorithm uses similar ingredients as
a merge tree computation [4], has been adapted to work in a distributed setting for
large-scale simulation data [7], and works as follows: We traverse all sample points
x in decreasing order of their value f (x). We set p = f (x). LetN denote the set of
components assigned to the neighbors of x. We distinguish three cases:

• N = ∅: We create a new component containing only x.
• |N | = 1: We extend the single component N with x.
• |N | > 1: We merge all of the components in N and add x to the result.

Vtotal and Vmax are recorded in equidistant intervals in order to graph Pmax(p). We
will show later in Sect. 3 how to normalize p with respect to the histogram of the
data, which serves several purposes around the comparison of percolation functions.
The computation of Pmax essentially gathers statistics on the connected components
of the superlevel set. Alternative statistics such as the number of components are not
as expressive, as they are rather featureless. For further exploration, see [7].

It is of interest to automatically analyze the percolation function in order to obtain
the critical value pc and other characteristics such as the width � of the percolation
transition. Stauffer and Aharony [16] suggest to set pc simply where a percolation
function ranging between 0 and 1 first assumes value 0.5. Similarly, they propose
to define the transition’s width � as the interval where the function ranges between
either 0.1 and 0.9, or 0.2 and 0.8, both of which they found to yield empirically
suitable estimations. Ziff [20] proposed more involved estimation methods. In con-
trast to our approach, the goal behind these estimations is to derive pc for an infinite
lattice from a number of simulations on finite lattices. We estimate pc and � by
fitting a suitable function parametrized with these values to the percolation function,
see Sect. 3.2.

It is the purpose of this paper to providemethods andguidance for the computation,
analysis, and visualization of Pmax, and to discuss the shape of this curve under
varying conditions.

3 From Infinite to Finite

Percolation theory was conceived in the context of noise functions defined on infinite
domains.When applying it tomeasured or simulated data, we have finite domains and
not necessarily random data. These aspects affect the percolation function and some
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Fig. 2 Percolation probability P(p) and percolation function Pmax for uniform random noise in 2D
and 3D structured grids. The dashed lines denoted with p2Dc and p3Dc mark the theoretical critical
values on infinite lattices. We can see that Pmax features a sharp transition around these values even
for finite examples

care has to be taken when computing it. As described by Newman and Ziff [12], an
approximation for the percolation threshold pc on an infinite lattice can be obtained
through determining the value at which the percolating cluster forms when sampling
uniform random values on the vertices of a sufficiently large finite lattice. Repeating
this procedure a large number of times and averaging over the function that is 1 where
the percolating cluster exists and 0 elsewhere yields an estimation of the percolation
probability P(p), as shown in Fig. 2a.

Based on these graphs, we can conclude that the size of the domain affects the
transition width. The location of the percolation threshold on the other hand depends
on the grid’s dimensionality. Similar characteristics can be observed in Fig. 2b, where
the percolation function for a single sample per grid size is shown. This is analogous
to analyzing simulated or measured scalar data, as only a fixed set of data values is
available then.

Note that in structured data, it is possible that the data intrinsically has different
dimensionality than the underlying lattice. Consider, for example, a data set where
the same 2D slice repeats over the third dimension. For uniform random data, we
would expect pc to be close to the theoretical two-dimensional value in this case.

As discussed next, the shape of the percolation function is further affected by
value distribution and structure in the data.
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Fig. 3 Histogram, sampling schemes and percolation function for a scalar field f (x) sampled
randomly from a mixture of two Gaussians on a grid of size 1283. Both value-based and voxel-
based sampling yield a sharp transition in the percolation function. However, in case of value-
based sampling, the transition is only sharp due to a large fraction of all voxels being processed
around the transition. It is also not located near the theoretical threshold p3Dc . This hinders the
comparison between data sets and to known results on infinite graphs.Comparability can be achieved
by computing the percolation function over the percentage of voxels in the superlevel set

3.1 The Extremes of the Value Range

We compute Pmax(p) in the interval [pmin, pmax]which corresponds to the data value
range in the scalar field f (x). Only few voxelswill be part of the superlevel set around
pmax. The volume computations for Eq. (1) can be rather erratic in this range, since
they depend on the connectivity between a rather small number of data samples. For
example, consider the very first voxel in our algorithm (global maximum): it is easy
to see that Pmax(pmax) = 1 in this case, since this single voxel is the only connected
component in the superlevel set. Yet, the existence of an infinite cluster in an infinite
domain would have probability 0.

Reliable values are obtained only after having iterated over a sufficiently large
number of data points. We thus only start recording the percolation function after
having reached avalue pmax − ε. In thiswork,we set ε such [pmax − ε, pmax] amounts
to the highest 1% of all data points.

3.2 Histogram Distribution

Percolation thresholds in infinite domains are known for different random distribu-
tions such as uniform and Gaussian noise. See for example Fig. 2. However, a mea-
sured or simulated scalar fieldwill feature an arbitrary value distribution. This leads to
different percolation functions shapes. Is it possible to align these cases such that we
can utilize the theoretical knowledge? For example, it would be interesting to com-
pare percolation thresholds as a way to judge the amount of randomness in data.
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To this end, we propose a simple normalization scheme. Remember from Sect. 2
that the parameter p refers to the percentage of open sites/vertices in a lattice. This
relates directly to the number of vertices in the superlevel set while computing the
percolation function. Hence, instead of setting p = f (x) as it is done in previous
work such as by Moisy and Jiminéz [11], we set p in relation to the number of
voxels in the superlevel set, which also corresponds to Vtotal. More precisely, from
now on p will denote the percentage of voxels in the superlevel set. Computation-
wise, this corresponds to the position of a given data value in the sorted data list.
Meanwhile, the symbol p will refer to the scalar data value f (x). We also normalize
this value to the range [0, 1] to ease comparisons between different percolation
functions. Essentially, this procedure shifts the data values such that the histogram
matches a uniform distribution. This allows us to relate the level of structure in a
given data set to uniform random noise via their percolation functions. An example
for how this affects sampling locations and percolation function is given in Fig. 3.

4 Analysis and Visualization of Percolation Curve
Ensembles

4.1 Analysis of a Single Percolation Curve

We are interested in analyzing the percolation function in Eq. (1) to determine the
critical value pc and the width � of the percolation transition.

The percolation function in purely random data follows an S-shape. Suitable
candidates for approximating curves of this shape come from the family of sigmoidal
functions, which include the logistic function, the hyperbolic tangent, and the error
function. Due to its prevalence in the analysis of percolation curves from Monte-
Carlo simulations [13, 19], we use an adapted version of the error function, defined
as

erf(x) = 2√
π

∫ x

0
e−t2dt. (2)

Note that the error function is related to the normal cumulative distribution function
for mean μ and variance σ 2

�(x, μ, σ ) = 1

2

(
1 + erf

(
x − μ

σ
√
2

))
. (3)

As such, it ranges between –1 and 1, is monotonically increasing, symmetric with
respect to the y-axis and has its point of maximal slope at x = 0. By inserting our
two parameters pc and � we get:
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Fig. 4 A fit of function Perf (gray) to the percolation functions Pmax (green) for uniform random
noise in 2D and 3D structured grids estimates percolation threshold pc and transition width �

Perf(p, pc,�) = 1

2

(
1 + erf

(
p − pc

�

))
with � > 0. (4)

By design, Perf has an inflection point and maximal absolute slope at pc.
Furthermore, the values obtained at pc, pc − � and pc + � are close to the ones

suggested by Stauffer and Aharony [16] for the analysis of percolation functions:

Perf(pc, pc,�) = 1

2
(1 + erf (0)) = 1

2
(5)

Perf(pc − �, pc,�) = 1

2

(
1 + erf

(−�

�

))
≈ 0.07865 (6)

Perf(pc + �, pc,�) = 1

2

(
1 + erf

(
�

�

))
≈ 0.92135 (7)

In order to fit the function Perf , we use a non-linear least squares fitting algorithm
available in SciPy [9]. We obtain an initial guess for pc and � by estimating pc as
the point of maximal slope for a fitted polynomial and � as the half of the inter-
val where that polynomial ranges between 0.1 and 0.9. While a polynomial of any
degree is not able to capture the asymptotic behavior of the percolation function,
estimates based on polynomials serve well as initialization to the actual curve fitting.
Figure4 shows the fitted function Perf for the 2D and 3D examples from Fig. 2. In
both cases, the fitted curve nicely resembles the shape of the sampled percolation
function. Note that for the 3D example, the estimated pc = 0.33533 does not quite
reach p3Dc ≈ 0.3116. We attribute this to the approximate nature of the percolation
function in Eq. (1). To confirm this, we conducted another experiment in this data set
testing for each threshold whether there exists an actual percolating cluster defined
as a connected component of the superlevel set spanning the entire domain in any
dimension. Indeed, we find the percolating cluster at p = 0.311294, which is much
closer to the theoretical p3Dc ≈ 0.3116. We further observe that the percolation func-
tion is more asymmetric in the 3D case. While the current estimation scheme cannot
capture the asymmetric nature of the curve, it yields sufficiently indicative values.
An investigation of alternative estimation schemes is left for future work.
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Fig. 5 Percolation function for randomuniformnoise of dimension 128 × 128 × Lz . The estimated
value pc for Lz = 1, i.e. the 2D case, is close to the site percolation threshold for the infinite square
lattice p2Dc ≈ 0.5927. As we increase the dimensionality, pc moves quickly towards the threshold
for the infinite cubic lattice p3Dc ≈ 0.3116

4.2 Analysis of Percolation Curve Ensembles

For the analysis of multiple percolation curves for a data set varying over a param-
eter t , such as time or dimension, the procedure in Sect. 4.1 is simply repeated for
every sample of t . To then easily assess the development of pc and � over parameter
t while still being able to see the connection to the sampled curves, we visualize
all three together in a heatmap. The heatmap consists of texels, one for each sam-
ple (p, t) with its color encoding the function value Pmax(p). The x-axis of the
heatmap corresponds to threshold p, and the y-axis varies over parameter t . Figure5
shows an example: Random uniform noise is sampled on a structured grid of size
128 × 128 × Lz . The row of colored squares for Lz = 1 at the very bottom of the
plot corresponds to the curve in Fig. 4a, whereas the top row with Lz = 128 is shown
in Fig. 4b. The estimated values for pc and � are graphed on top of the heatmap.

5 Experiments

In the following, we discuss the shape of the percolation curve under varying condi-
tions. We examine a family of synthetic data sets with varying degree of randomness
in Sect. 5.1 to understand how the interplay of structure and randomness caries over
to the shape of the percolation function. A simulated flow data set is analyzed in
Sect. 5.2, where we showcase the utility of percolation analysis and observe the
effects of our algorithmic choices such as histogram normalization.
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5.1 Randomness and Structure: Gaussian Random Fields

The original percolation theory [3] is built on homogeneous and isotropic random-
ness without correlation between data values. We want to explore the impact of
structure in a data set on the resulting percolation function. To this end, we employ
Gaussian random fields (GRFs). which allow us to construct a family of fields with
varying degrees of randomness. A GRF is a stochastic process defined by a mean
and a covariance function and can be understood as a probability distribution over
functions, just like its one-dimensional version, the Gaussian process. The unique
property of a GRF is that the values in every finite subset of sample locations have
multivariate Gaussian distribution. There are many ways to sample from GRFs. We
choose a rather efficient method using a fast Fourier transform, which computes a
GRF inO(n log n) for a gridwith n points. Gaussianwhite noise has a constant power
spectrum. To introduce more structure into the field, lower frequencies need to be
more pronounced. This is achieved by multiplying the power spectrum P(k) = k−α

for frequencies k with the power spectrum of generated Gaussian noise. Using an
inverse Fourier transform, we get our desired scalar field with a level of structure
depending on α. We analyze the percolation for varying levels of structure α in
Fig. 6a, where the percolation function is shown over the threshold p for increasing
structure parametrized by α. We focus on the percolation threshold pc and the width
of the percolation transition �, which both change over α. The percolation function
and a rendering of the scalar field are shown for three values of α in Fig. 6b to g.

First, while all curves endwith Pmax(p) = 1, not all of them start with theminimal
value 0. When looking at the curve and scalar field at perfect white noise, α = 0,
we have several small connected components in the data for a low value of p. When
increasing p, more of them will form and slowly grow larger, keeping the highest
relative volume (cf. Eq. (1)) close to 0. Only once a certain point is reached, we
observe a sharp increase in Pmax(p) asmore andmore of themmerge, rapidly forming
a percolating connected component at approximately pc. For α > 0, the non-zero
value at p = 0 stems from the existence of at least one large connected component
for the superlevel set of the largest percent of scalar values. This indicates a high
level of structure. Indeed, in Fig. 6a we can observe that the percolation function
begins below 5% for all α ≤ 3, but not at any α above that. At approximately that
point, no classic sharp percolation transition is visible anymore. Another interesting
change is observed at around α ≈ 3: where the function was very smooth before,
large jumps can be seen to appear in the individual percolation functions at higher
levels of structure. They begin to form as several small discontinuities as can be seen
in Fig. 6e at α = 3.5 and develop into large disconnected segments for α = 10 in
Fig. 6g. Each such visible discontinuity marks the merging of the largest connected
components with another large one. After a merge, the volume of that component
decreases in relation to other structures growing, before merging again.

In the heatmap, we can see that the size of these segments grows with increasing
α, as fewer and larger connected components form early on. At that point, with no
values around zero and considerable jumps in the function, the percolation value pc
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Fig. 6 Percolation function for generated GRFs with power spectrum P(k) = k−α of dimension
1283. Three samples of α ∈ {0, 3.5, 10} are shown separately. We observe the transition until about
α ≈ 3, at which point Pmax(0) does not start from zero anymore, large discontinuities form and the
width � of the fitted function increases considerably
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loses its meaning as the “point of steepest decrease” and the width � of the fitted
function grows.

All these observations indicate that there is a strong correlation between the level
of structure and the shape of the percolation function. While it is up to definition to
pinpoint the exact value ofαwhere nopercolation transition occurs, several indicators
point to the region of α ≈ 3.

5.2 Turbulent Flow: Duct Data Set

One common application for percolation analysis is the study of turbulence in fluid
dynamics. It has, among other applications, been employed to study the impact of
the Reynolds number on the transition from laminar to turbulent flow [10] and to
find optimal thresholds to separate highly turbulent structures from the surrounding
flow [11].

We analyze a duct flow simulated to investigate intense Reynolds-stress events in
fully-developed turbulent flow [17]. It is sampled over 193 × 194 × 1000 data points
at an approximately square cross-section and is periodic in the stream-wise direction.
As an indicator of Reynolds stress, the scalar combination uv has been employed [2].
Here, u = u−uavg

urms
denotes the normalized stream-wise directional component of the

flow, perpendicular to the normalized cross-stream component v. This average uavg

and the root mean squared deviation urms are accumulated over a large number of
stream-wise slices and time samples. The data points close to thewall are disregarded,
as turbulence does not show in that region. Percolation analysis aids in finding the
exact wall distance in which to disregard values, see [6].

5.2.1 Stability of the Percolation Function

To find a sensible threshold for intense Reynolds stress events, it is common to
compute the percolation function for nt time slices and average all function values

Pmax(p) = 1

nt

nt∑
t=1

Pmax(p, t). (8)

The final analysis is applied to this rather smooth averaged curve. However, we are
not aware of any work assessing the temporal evolution of the percolation function
for real simulated data, which we will do in the following.

We compute the percolation function for a number of nt = 2000 time slices and
visualize them in Fig. 7a. All time slices have highly similar statistics and are nor-
malized with the same average and root square error. Note that the heatmap plot is
rotated by 90 degrees as time t is plotted horizontally. This full range visualization
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Fig. 7 Percolation function for the Reynolds-stress field of the duct data set The first visualization
gives an overview of all 2000 time slices, while the following plots are depicting the first 200 times.
In the second row, the percolation function is displayed for both the volume-normalized (left) and
the original scalar values (right). Below them, the same function is plotted after permuting the scalar
field. We observe that the normalization of the original scalar values does have an impact on the
percolation function, but mostly keeps the shape intact. Permuting, on the other hand, removes all
variation between the individual time slices

gives an overview for a long time span, which shows us that the percolation function
is rather stable.

For a more detailed view, Fig. 7b shows the first nt = 200 time slices. The approx-
imated percolation threshold pc and the transition width � are shown as well. The
visualization reveals only minor variations in the percolation function, showing that
the analysis is stable for temporal development.

5.2.2 Effect of Histogram Normalization

As discussed in Sect. 3, all visualizations of the duct shown so far are plotted for
a normalized histogram of p, which is in practice the volume of the sublevel set.
We compare this to working on the values of the scalar field itself. Especially in the
case where percolation is used as an indicator for an optimal threshold, it becomes
necessary to analyze the function by value. On the other hand, in order to connect
these results to percolation theory, the comparison should always be voxel-based.
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Fig. 8 Percolation functions, rendering and histogram of the vorticity magnitude of an isotropic
homogeneous turbulence data set provided by Yeung et al. [18]. Comparing this with Fig. 2b, we
can conclude that this data structurally differs from uniform noise, but is still random enough to not
show any larger discontinuities

Figure7c shows the visualization for Pmax(p) with t ∈ [1, 200]. Figure7b and
7c are overall very similar. Note that also in the value-based plot, the percolation
transition pc is very stable. However, the respective values of pc and the width � are
rather different. This shows that a percolation transition can appear in an irregularly
distributed scalar field, but that normalization of these values has a huge impact on the
actual function parameters. We explore this further using an isotropic turbulent flow
kindly provided by Yeung et al. [18]. This is a 5123 sub-volume of a 40963 vorticity
magnitude field. A visualization is provided in Fig. 8a. The histogram reveals the
non-uniform data value distribution in this data set. The effect on the value-based
percolation function Pmax(p) is drastic: contrary to previous examples, the typical
sharp transition between 0 and 1 is lost (Fig. 8b, top). However, we can recover the
sharp transition with the voxel-based percolation function Pmax(p) (Fig. 8b, bottom).
When comparing it to uniform random noise as shown in Fig. 2b, we can see that
the transition happens at much larger values of p. This indicates that this data is not
random and has indeed some structure.

5.2.3 Effect of De-correlation

To look deeper into the role that structure plays on the shape of the percolation
function as opposed to the value distribution, we remove all structure from the field.
By randomly permuting the input scalar field values, we keep the histogram intact,
but remove any correlation.
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The results for the duct data set are shown for both the volume-based sampling
scheme in Fig. 7d and the original data values in Fig. 7e, which were permuted via
the same random seed. As a histogram normalization for permuted values is the same
as sampling a uniform random distribution for each point, the results are very close
to the theoretical 3D percolation function shape shown in Fig. 2a. Also, the variation
between time slices is virtually zero. When permuting the original scalar values p,
the function is again stable over time slices, but the percolation transition pc is shifted
notably compared to the theoretical values. The latter confirms that the histogram
normalization is effective in enabling the comparison of real data with the theoretical
results.

6 Conclusions and Future Work

In this work, we presented a framework for analyzing the structure of existing scalar
fields with the help of percolation theory. It was established that a normalization
of the scalar values is needed in order to compare the translation and spread of the
percolation function to the theoretical values of uniform white noise or other scalar
fields. These parameters are obtained by fitting a Gauss error function. To visualize
the results, we have shown curve plots of 1D percolation functions and a colormap-
based representation of the evolution of percolation across a smoothly changing
field.

The analysis was applied to two main data series, a Gaussian random field of
increasing correlation and the time series of a fully turbulent duct flow. We could
show that for an increase in structure and correlation, three main features point to the
existence of a percolation transition: the percolation function assuming a value of
almost zero for small p, the absence of large jumps in the curve and a low transition
width �. For a time series of a statistically stable scalar field on the other hand, we
observe a very consistent percolation function.

This work has made a first step in gaining insight into the underlying structure
of scalar fields by means of their percolation function. However, more experiments
need to be made to determine an arithmetic correlation between different kinds of
structure and the parameters of the resulting percolation curve.
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Distributed Task-Parallel
Topology-Controlled Volume Rendering

Jan-Tobias Sohns, Gunther H. Weber, and Christoph Garth

Abstract Topology-controlled volume rendering has proven to be a useful tool for
exploration of volumetric data by highlighting the global, high-level structure of data
sets. However, topological analysis is difficult to parallelize on distributed memory
systems – and thus to utilize for in situ visualization – due to the global nature of
topological descriptors.

This chapter presents and evaluates a task-parallel formulation of topology-
controlled volume rendering applicable to visualization of large scalar field data.
It evaluates previous efforts towards parallel topology extraction and introduces a
distributed computation schema for augmented contour trees. Through data partition-
ing into rectilinear blocks, the algorithm is designed to be in-situ suitable. The use of
a task-parallel framework aims at latency hiding and dataflow-specific scheduling.
It thereby also allows for combining contour tree computation and subsequent vol-
ume rendering. The technique divides the scalar field with separate transfer functions
according to the branch decomposition of the full data set while each local block only
has to keep track of its own vertex augmentation. Beyond describing the approach
and its implementation in the task-parallel framework HPX, initial experiments on
scaling behaviour are presented.

1 Introduction

Computer simulation techniques have become ubiquitous in the investigation of
both scientific and engineering problems. Owing to increased computational ability,
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Fig. 1 Distributed topology-controlledvolume renderingof the jet data set.Branchpruningminimal
persistence is set to 3 (max 16.63)

such simulations have outgrown the ability to retain the data produced by them for
post hoc analysis, and thus a re-thinking of established post-processing visualization
work flows is necessary. In situ techniques that derive analysis artifacts from the
data while it is produced have shown promise in this context. In their most extreme
form, visualization images are generated in situ and examined post hoc. Choosing
an appropriate set of images allows sufficient flexibility in exploring simulation
results [1].

Concurrently, the ever-increasing complexity of data describing real-world prob-
lems has necessitated the development of efficient abstraction and reduction tech-
niques. Among these, topological feature extraction relies on a solid mathematical
foundation to achieve these goals. In particular, topology-controlled volume ren-
dering [2] (Fig. 1) can be employed to automatically define transfer functions for
volume rendering directly on the structure of the data, as represented by the contour
tree [3]. Topology-controlled volume rendering was previously restricted to small
data sets, due to the global nature of contour trees that make them hard to compute
in a distributed manner.

In this book chapter, we report on a proof of concept distributed pipeline
for topology-controlled volume rendering. It is aimed at making bigger, possibly
distributed data sets accessible to the technique. To leverage latency-hiding and
dataflow-based asynchronous scheduling, our implementation is based on a task-
parallel formulation of topological analysis, transfer function generation, and volume
rendering.We present early findings on the performance and scalability of our imple-
mentation. The experiments are designed to get a first impression of the applicability
of topology-controlled volume rendering for bigger data sets. Further investigation in
more extensive settings has to be done in the future to get a complete understanding
of the practical capability.
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The presented work relies heavily on topological descriptors such as the contour
tree [4], merge tree [3] and branch decomposition [5]. The reader is referred towards
the proposing papers for in-depth information on these concepts. Further on, the
augmented version of the trees is used as in [6]. The augmentation is a segmentation
of data in the spatial domain, where each data point is affiliated with an arc in the
corresponding tree.

The manuscript is structured as follows: After briefly reviewing related work in
Sect. 2, we present our approach in Sect. 3 and implementation in Sect. 4. Results and
benchmarks on typical datasets are presented in Sect. 5, and we conclude and reflect
on further improvements in Sect. 6.

2 Related Work

Topology-controlled volume rendering is first presented by Weber et al. [2]. They
use the vertex affiliation with branches in the augmented branch decomposition
of the contour tree to specify individual user-designed transfer functions for each
branch. Weber et al. also realize that a simplification of the topological descriptor is
unavoidable to prevent a cluttering of the scene. The visual results are satisfying and
promise a powerful analysis technique for 3D scalar data. However, the drawback
of their algorithm is the sequential nature of the contour tree computation, which
dominates the runtime. It is calculated separately with the algorithm introduced by
Carr et al. [3].

Parallel contour tree computation was examined before the practical applications
arose. Pascucci et al. [7] describe a parallel algorithm that can also be used in a dis-
tributed setting. Based on a divide-and-conquer formulation, it lists a merge routine
for merge trees of two adjacent data subsets. This approach still forms the basis for
most subsequent algorithms as well as ours. Although vital for many use cases, the
initial method does not keep track of the vertex augmentation of the contour tree.

Gueunet et al. [6] present a parallel algorithm that creates an augmented con-
tour tree by dividing the data in range space. Dividing data sets in range space is
uncommon in distributed settings, since simulations and measurements are usually
allocated in domain space. This makes their algorithm suitable if the data can be
divided in range space without too much effort, yet is not fitted for domain space
distribution. Nonetheless, it provides a fast parallel computation in a shared-memory
system and shows the need of topological simplification again.

Another efficient approach was taken by Carr et al. [8], who demonstrate a highly
thread-parallel algorithm to compute contour trees whilst retaining correct augmen-
tation. More fast and efficient parallel algorithms [9] have been proposed recently
that successfully focus on shared-memory computation, which this work tries to
overcome.

In the wake of the shift towards using graphical processing units for scientific
computations, Rosen et al. [10] published an augmented merge tree construction
algorithm using OpenCL on a GPU. It outperforms the CPU version by a magnitude
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in their benchmarks on 2D scalar fields. Unfortunately, it is mentioned in the article
that the computational benefits are not necessarily carried over to an extension into
3D.

Morozov et al. [11, 12] specifically target their algorithm on distributed systems
and achieved competitive results. They allow for a distributed computation and repre-
sentation of merge and contour tree, which can handle specific topological requests.
These requests do not suffice for the pursued volume rendering and the algorithm
does not produce the desired augmented contour tree.

Another important addition to this field was made by Bremer et al. [13], who uses
a streaming fashion to gather the merge tree and its augmentation. Their sequen-
tial algorithm serves as inspiration for updating the augmentation through a search
process and performing on-the-fly simplification on the topological complexity.

Landge et al. [14] focus on the augmentation of very high or low function values
and compute only the locally relevant parts of a merge tree on distributed blocks.
Their analysis is fast, can be computed in situ and easily highlights smaller features.
The focus on local features of a distributed merge tree is advantageous, since it eases
the distributed computation and is sufficiently accurate for most analysis purposes.

Recent advances in parallel programminghave shown that the algorithmofLandge
et al. [14] can be implemented efficiently in task-parallel frameworks. Petruzza et
al. [15] show that the Legion [16] framework is faster for low core counts but does
not exhibit good scalability, while using Charm++ [17] to schedule the tasks runs
and scales just as well as the original data-parallel implementation. Therefore, local
merge tree analysis can be done in distributed task-parallel settings.

Some techniques like topology-controlled volume rendering [2] rely on the con-
tour tree and a branch decomposition thereof to assign transfer functions consistently
to branches. However, it is not immediately obvious to construct a complete contour
tree from distributed merge trees. Hence, both full merge trees, namely join and split
tree, are required to cover the whole value range with a branch decomposition. The
work in this chapter aims to overcome previous distributed restriction on local merge
tree analysis. The full topology-controlled volume rendering pipeline is presented
for distributed settings, facilitating the approach for larger data.

3 System Design

As other works on this topic already recognized, the size of currently produced data
sets warrants splitting them up into smaller blocks. In some cases data is already
split up by its production process. The global manner of contour trees leads to high
communication effort between these distributed data blocks during their computa-
tion. We aim to overcome this challenge by using a task-parallel setup that allows
for defining complex dependency structures and arbitrary block granularity to suit
most simulation outputs.

Due to noise or necessary symbolic perturbation the topology of data sets can be
too complex to read useful information out of a volume rendering. In many cases
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Fig. 2 Work flow per data block. a complete pipeline, references to Sect. 3 b locally-augmented
join tree assembly, explained in Sects. 4–4.3

expensive computation and communication costs can be cut down by simplifying
the tracked topological descriptors in early stages of their calculation without losing
essential features. In the previous chapter current methods are described, which
struggle either with data size, topological complexity or missing augmentation. Our
approach works on arbitrarily distributed blocks of regular data according to the
schema shown in Fig. 2a.

The key idea is to generate consistent global topological information on all blocks
while keeping track of the local augmentation only and reducing the topological
complexity early. The data is assumed to already be distributed to blocks (0). On
each block the locally-augmented, simplified merge trees are constructed first (1).
The merge trees are then combined on each block following the established scheme
of Carr et al. [3] to create a locally-augmented contour tree (2). Subsequently, the
contour tree is transformed into a locally-augmented branch decomposition covering
the topology of thewhole scalar field (3). This contour tree is identical over all blocks,
whereas each block keeps track of a version with their local augmentation. It is now
possible to define global transfer functions that are identical for all blocks, thereby
guaranteeing a coherent color mapping.

Assuming the transfer functions are assigned automatically, the blocks can be
rendered individually as soon as their precomputation finishes (4). In line with the
task-parallel principle, rendering time can be hidden within preprocessing time. To
conclude, the resulting images are composited regarding their depth level yielding
the topology-controlled volume rendering of a scalar field (5). In the following the
algorithm of creating a locally-augmented simplified merge tree will be elaborated
in detail.

4 Implementation

Initially, all blocks are assumed to be filledwith a coherent fragment of the scalar field
with a single layer of ghost cells. For each block, the locally-augmented, simplified
merge trees are assembled by first computing the augmented merge trees of the local
data. Any sequential algorithm can be used. The established contour tree construction
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algorithm [3], executed in a later phase, requires coinciding nodes in bothmerge trees.
Intending to reduce communication, nodes are exchangedmutually inside each block
on a local stage. Then, local trees are progressively combinedwith unaugmented trees
of tree-neighboring blocks following a reduction schema extended from [14].

The procedure for join trees is illustrated in Fig. 2b, split trees follow analogously.
A recurring sequence of merging two trees and simplifying the result is performed.
The methods will be called Merge and Simplify and are repeated on all blocks until
the local trees cover the topology of the full data set. After that, the augmentation is
corrected accordinglywith theUpdatemethod.The functions aswell as the remaining
pipeline steps will be explained in chronological order hereinafter.

4.1 Merge

Whenever the merge procedure is called, the currently present unaugmented merge
tree ismergedwith a remote one via the algorithmLandge et al. [14] call JoinRoutine.
Their code follows the first proclaimed algorithm for the joining of merge trees [7]
closely, yet is more intuitively formulated. The combined tree is iteratively formed
by traversing the individual trees in value order starting from the lowest valued leaf.

4.2 Simplify

All nodes of the new tree are checked to decide whether the tree can be simplified by
removing them. A node is obsolete when it has become regular through the merge
process, recognizable through a degree of two. This was already proposed in the
first parallel algorithm [7]. Regular nodes are eliminated without losing topological
information.

As mentioned before, we want to reduce the branch decomposition to a distin-
guishable number of branches for rendering. TheMerge function’s runtime depends
linearly on the size of the individual trees. Therefore, the usual chronology of sim-
plifying the topology at the final stage, e.g. the branch decomposition, induces linear
overhead in the magnitude of global topology per processor for each merge. How-
ever, reducing the tracked topological complexity as early as possible should lower
the workload to a small linear overhead of simplified topology per merge. Branch
pruning [2, 18] is employed here as a simple and well-established simplification
tool that works on both topological structures. To keep the merge tree simplifica-
tion comprehensible, it has to conducted as if branches were pruned in the branch
decomposition.

The idea of branch pruning is removing less relevant branches from the tree.
Persistence [19] is chosen as the relevance measure, though other measures work just
aswell as long as they can be tracked throughout themerging process. Consistentwith
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the branch decomposition the more persistent component is considered to survive if
two components merge, while the less persistent component is annexed.

Based on the previous line of reasoning, leaves with a persistence value lower
than a predefined threshold are removed from the tree if they are adjacent to a
saddle. Exceptions are themost persistent ones in comparison to their siblings, which
represent branches that extend above the saddle node. Removing them would prune
a branch partly, yet only complete branches are supposed to be eliminated. Further
on, boundary nodes regarding the new tree and nodes relevant in opposing join/split
tree are retained for stitching in later phases. The conditions hold for regular vertices
as well.

To eliminate chains of removable nodes, the simplification routine is looped until
no more nodes can be removed. In our benchmarks the single digit loop iterations
accrued minuscule overhead.

4.3 Update

After the addition and removal of nodes through joining and simplification, the
mapping of local vertices onto arcs can become incorrect. An update method is
deployed to achieve the correct augmentation according to the new join tree without
recomputing the labels from scratch.

When removing nodes, a new label candidate is saved for every removed node.
For regular nodes, the candidate is the predecessor of the node in leaf direction. For
leaf nodes, the governing saddle is chosen as the candidate, which corresponds to the
parent branch in the branch decomposition. If the candidate is removed as well, the
recursive candidates are traversed until an existing node is reached. Path compression
is implemented to shorten candidate chains.

4.4 Branch Decomposition Assembly

The contour tree and consequently the branch decomposition can be sequentially
assembled for each block individually with any sequential algorithm. With the pre-
sented algorithm design both block size and tree sizes can be reduced to low com-
plexity through parameters. Thus, the construction algorithm runs on small data sizes
per block and all blocks can run in parallel. Hence, a short runtime is expected for the
transformation performed by the libtourtre [20] library. The augmentation with local
vertices of the merge trees is implicitly carried over to the branch decomposition.
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4.5 Transfer Function Assignment

The augmentation of the data points onto branches of the branch decomposition
allows assigning a specific transfer function to each branch. The original topology-
controlled volume rendering algorithm [2] stopped after computing the topology
to allow the user to define custom transfer functions on each branch. Thereby it is
possible to create customized functions and yield pleasing visual results. Since fine-
tuning the transfer functions requires deep domain knowledge and many iterations,
it breaks the algorithm into two separate steps that have to be started individually.

It would be beneficial to the presented method, if these parts could run continu-
ously through forgoing the interactive break. Therefore, a basic automatic transfer
function assignment is chosen for exemplary results which imitates colored isosur-
faces. A distinguishable [21] color is used per branch with an opacity peak at the
saddle value. Overall opacity is increased with branch depth to allow visible inclu-
sion relationships. The main branch is colored in light grey with little opacity to ease
perceiving branch location in the volume.

Since we are aware that automatic transfer function assignment is a complex
topic with numerous sophisticated solutions, this part leaves room for further work.
Exemplary, the implementation also allows user-defined transfer functions as well
as the choice of commonly used predefined ones.

4.6 Rendering

Whenever the transfer functions are defined for a block, it can be rendered. To stay in
line with the distribution of data blocks, the rendering implementation is drawn upon
a task-parallel volume renderer [22] augmented with a branch lookup per sample [2].
The approach divides work in both screen and object space. Each block is rendered
individually with the resulting images being composited in depth order afterwards.
Additionally, the image is split up into rectilinear tiles allowing further steering of
task-size. These tiles are concatenated to create the full resolution image.

5 Results

The following chapter will shine a light on questions arising from this approach.
The algorithmic idea will be validated first on shared memory. Then benchmarks
are run that examine performance for changing input size as well as resources in
distributed settings. In consideration of ever-growing data size, the focus is set on
scaling properties.
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Fig. 3 Distributed
topology-controlled volume
rendering of the ‘CT bones’
data set of TTK [23]. Branch
pruning minimal persistence
is set to 171 (max 255)

5.1 Experimental Design

The implementation is tested on the Cori supercomputing system of NERSC. Per
node two Intel Xeon E5-2698 v3 Haswell processors are provided with a combined
total of 32 cores at 2.3 GHz and 128 GB of memory. For the test cases, a combustion
simulation of a jet turbine with native 256× 512× 256 data points is used. To facil-
itate increasing data size, the jet data set is super-sampled for higher resolution runs.
Resampling a data set is suboptimal for scaling experiments as it theoretically will
keep topological complexity near constant, since the number and relative position of
features remain roughly the same. However, symbolic perturbation can influence the
precise contour tree structure to varying degree and it can be initially examined if
topology-controlled volume rendering can be applied for bigger data, even if further
experiments are necessary to determine practical applicability.

Before starting with the analysis, a few preliminary considerations are taken first.
This algorithm is most useful when analyzing huge distributed data sets such as
the results of a distributed simulation. Therefore, it is assumed that the preceding
application split up the data in ready to use blocks distributed over the hardware. This
is mirrored by assuming that blocks are already loaded into the memory partitions.
For now, data is read from disk, though this set-up is a precursor for the in situ case.

Dependencies in the task-parallel framework can be set in a way that allows
intermingling of precomputation and rendering phase. However, the speedup through
overlapping both phases has shown to be insignificant in comparison to the total
runtime and the usual fluctuations of supercomputing environments. Hence, timings
are taken separately with global barriers before and after each phase to ensure they
don’t slow each other down.
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5.2 General Observations

As mentioned before, the biggest novelty of this approach lies in the creation of
an augmented branch decomposition from distributed data blocks. Hence, the pre-
sented benchmarks address the topology computation. Further analysis towards the
distributed rendering can be found in the proposing paper [22]. The implementa-
tion differences as covered in Sect. 4.6 induce a near constant overhead through a
branch identification per sample. These changes are not expected to lead to changes
in scaling behavior.

The implementation is based on assumptions that come up through observation
of previous use cases. Figure1 and Fig. 3 convey a clear visualization of topological
features while features are still distinguishable. The simplification assumption seems
to hold for two contemporary data sets.

5.3 Algorithm Validation

Before thinking about distributed settings, it needs to be determined if the algorithmic
idea of subdivision into blocks combined with early topological simplification does
behave as expected in the first place. To examine the algorithm’s properties, the
implementation is tested in a shared memory setting where constant data is divided
into an increasing number of blocks (see Fig. 4). The used jet data set spans a value
range from 0 to 16.63 and branches with less than 3 persistence are pruned. The final
branch decomposition contains 25 branches as rendered in Fig. 1.

The examined computation, after which all blocks contain a simplified branch
decomposition augmented with their local vertices as well as common transfer func-
tions, will be called DAB (Distributed Augmented Branch decomposition) in the
following analysis. Only summary timings are provided here, since the task-based
paradigm relies on interleaved execution with latency hiding.

The timings shown in Fig. 4 reveal that subdivision into blocks amounts for a
significant speedup. This can be attributed to a combination of better work distribu-
tion among processors for smaller tasks and the on-the-fly removal of short branches
early in the construction process. Consequential, fewer arcs have to be processed in
the remainder of the algorithm. Considering that computational resources are kept
constant, this means less overall operations have to be done even with more merg-
ing steps. On the other hand, after a certain point the additional merging overhead
outweighs the speedup from early arc removal and the execution time rises.

It has to be noted that the fastest achieved computation time is on par with other
shared memory augmented contour tree algorithms [8] which do not rely on simpli-
fication. Therefore, these are preferable for shared memory settings. However, the
novel point of this approach is that it allows a subdivision without a shared memory
and thus can be applied to much bigger data sets, which will be examined in the
following sections.
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Fig. 4 Computing the DAB on a single Cori Haswell node for the native jet data set with 33M
vertices while dividing into different block sizes

5.4 Strong Scaling

Strong scaling examines the change in execution time that can be achieved for a
fixed problem size by increasing the number of processing units. Multiple measures
can be deployed to indicate strong scaling behavior. A test case that inspects strong
scaling of the DAB computation was constructed via re-sampling the jet data set to
1024× 1024× 1024 vertices and benchmarking it on 1 to 128 nodes.With increasing
processor count the data set is divided accordingly into more blocks, starting with
128 blocks on a single node.

The tests depicted in Fig. 5 showed that increasing hardware availability acceler-
ates the DAB computation in accordance with Amdahl’s Law of 95% parallel and
5% sequential parts. If one remembers that the conversion frommerge tree to branch
decomposition is still done sequentially per block, these results are in expected
bounds.

Further on, for a fixed problem size the algorithm does not speed up infinitely
with additional resources, but slows down after a certain node count. The overhead
through additional merges dominates the cost as in the shared memory test. The
slowdown through additional blocks and resources is even more extreme here, since
network communication is required for each merge of two blocks on different nodes.
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Fig. 5 Speedup for DAB computation on resampled jet data set with 1024× 1024× 1024 vertices
using the single node case as the baseline. Perfect scaling and scaling according to Ahmdahl’s Law
with 95% parallel program parts is shown in lighter blue

5.5 Weak Scaling

One refers to weak scaling when examining the execution time of an algorithm with
proportional increases in resources and problem size. Since the algorithm is designed
to be applicable to future data sets of increasing size, weak scaling benchmarks are
conducted through resampling the jet data set and computing the DAB on increas-
ingly powerful hardware configurations. The baseline is chosen to be a resolution
of 64× 128× 128 data points on a single processor. Processor count and number of
data points are doubled in each iteration so that the ratio of approximately 1 mil-
lion data points per processor remains constant. The last iteration handles 4 billion
data points on a 2048× 2048× 1024 grid. Per processor 8 blocks are created in the
single to 16 processors case, 4 blocks for 32 to 256 processors and 2 blocks from
512 processors on. The successive reduction is chosen to minimize communication
while still performing local early simplification.

From inspecting Fig. 6, it is evident that the execution time increases overall with
problem size. The bumps on 32 and 512 processors coincide with stagnant block
counts on more resources. Comparing the edge cases, increasing data size 4096-fold
while keeping relative resources constant triples the execution time. Communication
accounts for significant overhead on rising problem size and resources, yet for the
examined cases the overhead is sufficiently small to suggest that the algorithm can
stay feasible under the weak scaling paradigm.

In all experiments the communication imposed a high runtime penalty. As a gen-
eral guideline, results were best with block counts per processor of 2 or 4 and block
sizes of ~1 million data points. This should be taken as a starting point for further
experiments on new data sets.
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Fig. 6 Weak scaling for DAB computation keeping relative workload per processor constant
through resampling the jet data set. Each processor handles ~1 million data points

An aspect not mentioned before is that the studies in the scope of this chapter
revealed that contour tree algorithms generally require a substantial amount of mem-
ory during the computation. Most papers did not comment on the memory require-
ments and memory efficient algorithms exist already [13, 24]. However, computing
the contour tree or a directly related topological descriptor for a 3D data set of 4
billion data points is challenging without running out of memory for algorithms
not specifically designed for it. This chapter presents such an algorithm allowing
analysis of huge data sets through on-the-fly topological simplification and minimal
data duplication. If the rising communication overhead and the reduction on a small
number of topological features is still practical on future data sets is up for future
work.

6 Conclusion

The size of contemporary data sets is rising rapidly with no end in sight. Extracting
topological features on them get increasingly time-consuming. Simultaneously, the
processing power available in high performance compute clusters is growing annu-
ally. The idea suggests itself to leverage the distributed systems for preprocessing
and rendering of 3D data sets. In this chapter, a task-parallel distribution is chosen
to present a possible pipeline.

To put the presented work into perspective, the advantages and drawbacks of
current parallel contour tree algorithms are compared first. The analysis revealed
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that while a plethora of shared memory solutions exist, distributed algorithms are
scarce and come with restrictions.

Thereupon, an algorithm is proposed that allows distributed topology-controlled
volume rendering. It relies on eliminating small topological features on-the-fly in a
distributed construction process. It continues bymerging trees so that the full contour
tree is known globally while the augmentation is only locally present. Completing
the pipeline, a possible distributed rendering technique is provided.

The algorithm was implemented in a task-parallel framework to provide portabil-
ity and flexible parallelism granularity. To examine the effects of granularity as well
as scaling performance, extensive benchmarks were run and analyzed.

The results suggest existing yet limited strong scaling ability. Benchmarks where
data size and processor count was raised accordingly revealed that the algorithm
can handle larger data sets with small performance decreases. The algorithm’s main
speedup as well as its limitation stems from the assumption that one is interested in
the simplified topology only.

All things considered, this chapter presented a distributed augmented contour
tree algorithm that exhibits limited strong and promising weak scaling capabilities.
Whether this solution is sufficient for practical use cases or the simplification process
can be circumvented in distributed settings is ground for future work.
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Topology-Based Feature Design and
Tracking for Multi-center Cyclones

Wito Engelke, Talha Bin Masood, Jakob Beran, Rodrigo Caballero,
and Ingrid Hotz

Abstract In this paper, we propose a concept to design, track, and compare
application-specific feature definitions expressed as sets of critical points. Our work
has been inspired by the observation that inmany applications a large variety of differ-
ent feature definitions for the same concept are used. Often, these definitions compete
with each other and it is unclear which definition should be used in which context. A
prominent example is the definition of cyclones in climate research. Despite the dif-
ferences, frequently these feature definitions can be related to topological concepts.

In our approach,weprovide a cyclone tracking framework that supports interactive
feature definition and comparison based on a precomputed tracking graph that stores
all extremal points aswell as their temporal correspondents. The framework combines
a set of independent building blocks: critical point extraction, critical point tracking,
feature definition, and track exploration. One of the major advantages of such an
approach is the flexibility it provides, that is, each block is exchangeable. Moreover,
it also enables us to perform the most expensive analysis, the construction of a
full tracking graph, as a prepossessing step, while keeping the feature definition
interactive. Different feature definitions can be explored and compared interactively
based on this tracking graph. Features are specified by rules for grouping critical
points, while feature tracking corresponds to filtering and querying the full tracking
graph by specific requests. We demonstrate this method for cyclone identification
and tracking in the context of climate research.
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1 Introduction

Dynamic numerical simulations are prevalent and play a substantial role in under-
standing physical phenomena. Usually, such simulations result in feature-rich time-
varying multi-fields and appropriate analysis and visualization methods are essential
to exploit their full potential. This entails formal definitions of meaningful features,
their algorithmic extraction and tracking, and finally a contextual visualization. There
is a large body ofwork dealingwith these aspects, however, efficient and robust track-
ing of semantic features at multiple scales is still challenging.

Inspecting existing work, many methods are proposing generic tracking algo-
rithms of topological features as critical points [14], or contours [7, 8]. While these
methods are valuable, they often cannot directly be applied to solve an application-
specific tracking problem. On the other hand, there are methods inspired by appli-
cations proposing very specific algorithms for a fixed feature definition, for exam-
ple for dissipation elements [18] or tracking of cyclones [22]. Even though these
approaches work well in one setting, they often miss the necessary flexibility to
be useful in a larger context. This is partially because physical phenomena can be
vague in their description and no commonly acceptedmathematical feature definition
exists. Additionally, it is often quite unclear which descriptors work best for which
tasks. A prominent example for such a phenomenon is a cyclone, where new tracking
methods are continuously published [9], but still no efficient robust method that is
satisfactory for general cyclone tracking exists. Often, methods have been designed
for a specific event, are not generic, and depend on many parameters [12].

In this paper, we propose a framework that supports the design and comparison of
features defined as sets of critical points, based on robust topological concepts i.e.,
merge tree and Morse complex. As an underlying principle, our framework discon-
nects the extraction and tracking of topological entities from the specific design of
features for an application-specific task. The topological tracking and extraction of
critical points results in a large directed graph containing all extrema and their tempo-
ral correspondence of the selected scalar fields, as well as a merge tree and its branch
decomposition per time-step. These calculations are performed in a preprocessing
step. Different feature descriptors can then be interactively explored. Tracking of
features is formulated as tracking of groups of extrema and realized as queries to the
tracking graph. As a concrete example, we focus on climate simulation data and the
identification as well as tracking of cyclonic systems.

We demonstrate the framework in a meteorological context where understanding
the dynamics of weather phenomena is essential to generate reliable predictions of
intensity and frequency of extreme weather events in the future. In Europe, such
hazards are mostly associated with extreme extra-tropical cyclones (ETCs), which
are the focus of this paper. We show how our framework can be applied for efficient
identification and tracking of multi-centered systems. This idea has been success-
fully applied in [10] for visualization of cyclonic regions. It formalizes a cyclone
identification and tracking method that relies on a few clear principles but is still
flexible enough to fulfill the domain scientists’ demands.
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The backbone of our method is characterized by a combination of different topo-
logical structures, the merge tree [2] and the Morse Complex [4, 16], facilitating
the advantages of both. The merge tree is well suited for a hierarchical feature def-
inition also supporting multi-centered cyclones, which can be defined as a set of
extremal points based on user-specified criteria. Our tracking algorithm follows a
method similar to Reininghaus et al. [14, 15], which is based on the Morse com-
plex. Parallel implementations are used for both, the merge tree and Morse complex
computation [1, 20]. The tracking itself is inherently local and fast.

Method overview

Fig. 1 Overview: Different building blocks of our approach. Our method consists of a prepro-
cessing phase, which includes the topological data analysis. The result of this stage is the raw
tracking graph containing the temporal correspondence between extrema and the extracted merge
tree including its branch decomposition per time-step. In the second building block domain specific
knowledge can be used to design features. This step includes the feature descriptor itself, visual-
izations and computed statistics. This information can also be used to redesign features and reissue
tracking graph queries

In summary, the key aspect of our work is the separation feature definition and
tracking. For both aspects robust methods from the field of topological data analysis
are used. Figure1 describes our pipeline in detail. The tracking approach relies on
using the Morse complex to map every extrema in each time-step in both forward
and backward directions to construct the raw tracking graph (see Fig. 4). The second
building block is an interface for flexible and interchangeable feature definition as a
set of critical points obtained from themerge tree including its branch decomposition
computed per time-step. This information is enriched with domain specific criteria
and heuristics to form possible feature definitions.

Our main contributions are:

• An extrema tracking method based on the Morse complex for time-varying scalar
fields.

• A concept for flexible feature definitions based on sets of critical points obtained
from a merge tree and its branch decomposition.

• Application of the above as an example to provide robust definition and tracking
of cyclonic systems, possibly containing multiple cyclone centers.
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2 Background

Our feature extraction and tracking is based on two different topological concepts,
the merge tree (join or split tree) and the Morse complex where we use the descend-
ing/ascending manifolds. Both concepts are briefly described in the following.

Merge Trees: Features are groups of critical points that are defined by some rules
acting on the merge tree of a selected scalar field f : M → R defined on a smooth
manifold M . Intuitively, a join tree keeps track of topological changes of sublevel
sets (or superlevel sets in the case of split tree) when changing the level value a. The
sublevel sets of f are defined as Ma := f −1(−∞, a] for some a ∈ R. Respectively,
superlevel sets of f are defined as Ma := f −1[a,−∞). Two points x, y ∈ M are
considered equivalent, x ∼ y if they have the same function value and they belong to
the same connected component of the sublevel set Ma , respectively the superlevel set
Ma . A merge tree is defined as the quotient space M/ ∼; it results from identifying
points specified by the equivalence relation ∼. The merge tree (resp. split tree) is
a graph G = (V, E) rooted at the absolute maximum (resp. absolute minimum),
of the field. Its node-set V consists of local minima and saddle points where the
sublevel-sets grow together. Its edges E represent the equivalent classes.

(a)
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r 
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ue

(b) (c)

Fig. 2 Simple Example: A scalar field a with marked minima (white), maxima (black) and the
saddle (gray) in a and the merge trees in form of a join b and split tree c

Figure2 illustrates a simple example of join and split trees. It is constructed by
tracking the evolution of the components of Ma as the parameter a is increased
(resp. decreased). Specifically, leaves represent the creation of a component at local
extrema, internal nodes represent the merging of components, and the root represents
the entire space as a single component. A merge tree can be embedded in the domain
M by visualizing its edges as straight lines that connect spatially-embedded critical
points or also be visualized abstractly as a tree (Fig. 2(b) and (c)).
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(a) (b)

Fig. 3 Morse-Smale Complex: Example of the Morse decomposition of a domain. (a) shows a
visualization of the gradient field derived from a given Morse function. In (b) the critical points of
the function are visualized. White circles indicate locations of minima, black circles maxima, while
the saddle points are depicted in gray. Critical points are connected via separatrices. Both images
show the same sub-domain

We use a branch decomposition of the merge tree that decomposes the tree in a
hierarchical structure. The root branch connects the two global extrema of the scalar
field. All other branches connect a leaf with an interior node corresponding to a
saddle point in a hierarchical way such that a persistence-based tree simplification
corresponds to removing branches. Formore details, we refer to thework by Pascucci
et al. [11].

MorseDecomposition:Adomain decomposition in ascending (or descending)man-
ifolds forms the basis of our tracking algorithm. These are concepts related to the
Morse-Smale complex of a function f given over a smooth manifold M , in our case
of dimension two. A critical point of this function in the domain is a point where all
spatial derivatives are equal to zero. In the following, we assume that the Hessian
(second order derivatives) at the location of the critical points is non-singular and
all critical points have pairwise different function values. Such functions are also
called Morse functions. Based on the function f one can define a decomposition of
M that carries geometric and topological information. For this, the gradient of the
function f , a vector field on M , is considered. The critical points of f are the zeros
in the gradient field (see Fig. 3(b)). TheMorse-Smale complex then defines a decom-
position into regions with uniform gradient flow behavior. This means all gradient
lines have the same asymptotic behaviour, emerging from the same minimum and
approaching the same maximum. See Fig. 3(a) for an illustration. These cells can
also be interpreted as the intersections of the ascending and descending manifold
of critical points. Ascending (resp. descending) manifolds of the critical points are
defined as the set of points that flow towards (resp. emerge from) the same critical
point. We are especially interested in the ascending manifolds of maxima and the
descending manifolds of minima, which for the two dimensional case are topologi-
cally equivalent to open disks. We use discrete Morse theory for the computation of
the cells [5, 20].
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3 Full Tracking Graph Computation

During the preprocessing phase the full tracking graph of a selected scalar field of
interest, f : M → R, is calculated. This graph provides tracks of all critical points
(Fig. 4). It will later serve as a basis for the identification of feature tracks, merg-
ing, and splitting events, compare Sect. 4. Many algorithms that track critical points
have been proposed. In general, the tracking is a two-step process, where critical
points are extracted for all time-steps and then a critical point correspondence is
established based on some heuristics. Examples are criteria using distances between
critical points or contour overlap [7]. Sohn et al. [21] proposed a method to track
the entire contour tree using volume overlap. Treating the time as an additional spa-
tial dimension and assuming linear interpolation between the time-steps, the critical
point tracks can be derived using the Reeb graph [3, 23]. In principle, all critical
point tracking methods can be used in our framework. In the current implementa-
tion, we decided to follow the concept of combinatorial feature flow fields introduced
by Reininghaus et al. [14]. After the segmentation of the domain into descending or
ascendingmanifolds, the tracking is a local approach and only requires the evaluation
of the next segment a critical point falls into.

Based on the Morse complex as a topologically meaningful partition of the
domain, the tracking graph connects all extremal points in the forward and back-
ward temporal directions across consecutive time-steps. Specifically, we use the
descending manifolds for the case of minima tracking and ascending manifolds for
maxima tracking. The tracking method for minima is described in more detail in the
following. Maxima tracking works analogously.

Given an index set It ⊂ N specifying the minima, let {mt
i , i ∈ It } be the collection

of minima of the scalar field f t in the time-step t . Additionally, let DM(mt
i ) denote

the descending manifold of the minimum mt
i . We say mt

i is forward mapped to
mt+1

j if mt
i ∈ DM(mt+1

j ). Note that mt
i and the points in DM(mt+1

j ) belong to the

same spatial domain, thus checking if mt
i belongs to DM(mt+1

j ) is a valid operation.
Furthermore, in discrete Morse theory, which we use in our implementation, the
partition of the mesh vertices into descending manifolds of minima is complete.
Combined, the above two conditions ensure that the forward mapping operation is
well-defined for all minima mt

i in time-step t , and each minimum mt
i is forward

mapped to a unique minimummt+1
j in the time-step t + 1. Similarly,mt

i is backward

mapped tomt−1
k ifmt

i ∈ DM(mt−1
k ). In other words, we check into which descending

manifold a minimum falls, to determine the next position of the minimum forward
(and backward) in time. In this way we define a forward and backward map for
time-step t as sets of corresponding minima pairs in forward and backward temporal
direction.

FMt = {(mt
i ,m

t+1
j )|i ∈ It , j ∈ It+1 and mt

i ∈ DM(mt+1
j )}

BMt = {(mt
i ,m

t−1
j )|i ∈ It , j ∈ It−1 and mt

i ∈ DM(mt−1
j )}
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Fig. 4 Raw Tracking Graph: Geometric embedding of the complete tracking graph for a two-
dimensional time-dependent pressure field given over the globe. The x- and y-axis represent lon-
gitude and latitude, whereas the z-direction corresponds to time. The tracking graph contains all
minima as vertices and all elements from the forward and backward map as directed edges. This
graph itself is independent of any feature definition or filter criterion. The inset shows a filtered
subset of the graph. As filter criterion, a combination of edge length and spatial location was used

Please note that everyminimum in time-step t is a member of exactly one pair in FMt

and BMt . Combining thesemaps over all time-steps results in the sets FM = ⋃
t FMt

and BM = ⋃
t BMt . The two maps together form a directed graph G = (E ,V ).

Here, V contains all minima mt
i from the scalar field across all available time-steps.

Additionally, each element of the forward and backward map are represented by one
directed edge in E . For two consecutive time-steps the map corresponds to a n : m
mapping between the minima in the respective time-steps.

GraphFiltering andQueries:For the construction of the tracking graph all extremal
points of the Morse complex are considered, except zero-persistence points. This
avoids problems arising from the unstable geometric embedding of high-persistence
critical points over time, compare Fig. 8. This complete tracking graph builds the
foundation for further interaction and semantic feature design. For this purpose, we
allow additional node- and edge-based property-vectors.With this, additional context
information, for example, geometric length of an edge and other scalar values can
further support the filtering and querying mechanism. This is important, since the
domain partition the graph is based on is complete, and connections violating domain
specific requirements may exist. Filtering can be based on spatial and temporal
conditions or rely on edge and node properties. During graph queries, connected
sub-components are extracted, which describe paths of critical points in the spatio-
temporal domain. Here, queries can be formulated such that specific minima or
minima groups are used as request input and current filter criteria are respected. This
gives a powerful tool for exploration and analysis.
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4 Feature Definition and Tracking of Cyclonic Systems

Feature Descriptor: As second building block of our method, the feature design
plays an integral role. The feature descriptor is a set of rules that defines the grouping
of the extremal points of one or several scalar fields. Currently, the merge tree is used
as an interface to setup this set of rules. The specific descriptor is application- and
task-dependent and typically also depends on a set of thresholds. Often, the feature
descriptor itself is an active research topic and an interactive interface for designing
such descriptor is of great benefit.

In this section, we describe the application of this concept to the topic of cyclone
tracking. Relevant scalar fields in this context are pressure and vorticity fields. There
is no generally accepted feature definition or ground truth for how these fields can be
used in a feature descriptor. In fact, the definition of a cyclone is an open scientific
question in thefield of climate research.One commonaspect, however, is that features
are related to extremal points. Therefore, our method allows for a generic description
of features as long as it is based on sets of extremal points. During the development of
our method, where we closely collaborated with the domain scientists, we focused on
cyclone tracking in pressure fields characterized by deep minima. During the course
of this collaboration we experimented with different feature definitions. Using a
global pressure threshold can be seen as a first example of a naïve cyclone definition
groupingminima falling into the same component. Due to the seasonal and latitudinal
variations in the pressure field, global thresholds are not the most promising concept
but could still allow fast inspections of the extracted feature tracks and are therefore
of interest. A combination of rules based on the merge tree’s branch decomposition
and the notion of persistence provides a more meaningful cyclone descriptor [24].

At first, one can build on the classic persistence-based filtering approach. A global
persistence threshold can be interpreted as a single rule that groups all critical points
of a sub-branchof themerge treewith the depth of the persistence threshold.However,
on its own, this criterion is too rigid to account for the local variations of the pressure
field. An alternative is to define locally varying persistence thresholds which can
partially resolve this disadvantage. All of the aforementioned approaches and their
combinations are possible and have their justification. There are also cases where it
is more difficult to formalize a specific intuition. Here, a manual selection of regions
of interest can be part of the setup.

Local Offset Threshold: In the following, we describe one approach that is of
specific interest to our collaborators in more detail. This approach consists of two
rules. The first rule defines aminimummi that qualifies as feature carrier for a feature
Fi , which is similar to the pure persistence-based approach, see Fig. 5(a). Therefore,
a local persistence threshold δ is defined using the background pressure field. This
threshold can be understood as the ‘depth of a pressure minimum’ to qualify as a
cyclone and can depend on the location on earth. Each branch bri = br(bi , di )where
bi = f (mi ) is the birth and di is the death of this branch with persistence (di − bi )
greater than δ creates a cyclonic feature. Clearly, the absolute value of the pressure
minimum does not matter and instead, the relative depth of the minimum is captured.
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Fig. 5 Branch decomposition: A possible feature definition embedded in the branch decomposi-
tion. (a) Definition of feature carriers: The persistence threshold δ(x) = δ (marked in green) is used
to define a cyclonic feature Fi . Only branches with persistence higher than δ are considered. (b)
Definition of the full feature as set of extremal points. If a extremal point m j merges into a given
feature such that s(m j ) ≤ f (mi ) + δ, (d j − b j ) < δ and br j merges into bri , it will be considered
as a part of the feature Fi . For each feature, the branch with the highest persistence can be used
as the representative. Alternatively, the minimum with the lowest value can be used. For geometric
representation, an iso-contour can be used

The second rule uses three criteria (i)-(iii) to define the set of minima attached to this
feature. This results in a complete description of a possible feature definition; where
each feature is an extremal point with additional extremal points attached to it, e.g.,
a set of extremal points, see Fig. 5(b).

Fi = {mi ,m j |m j fulfilling criteria (i)-(iii)}.

with
(i) f (m j ) ≤ f (mi ) + δ

(i i) (d j − b j ) < δ

(i i i) br j merges into bri

Criterion (i) ensures that the scalar value ofm j is in the interval of the feature defining
extremal point itself and δ. Criterion (ii) ensures that the attached extremal point does
not span a feature by itself, and criterion (iii) ensures thatm j is part of a child branch
of bri . Each feature Fi is represented by its master branch bri , which is the branch
with the highest persistence within the feature (see Fig. 5(a)) or alternatively the
lowest minimum mi in the set. A possible geometric representation for this feature
definition are the components of the iso-contour for the iso-value s(mi ) + δ which
contains at least one minimum of the set Fi (see Fig. 6).

The influence of changing the parameter δ is demonstrated in Fig. 6. It can be seen
how the size and the number of extracted features varies. In general, smaller values
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Fig. 6 Parameter Influence: The influence of the parameter δ in the feature definition. In (a)
δ = 2% of the scalar field range. Each of the three minima spans an individual feature. In (b) the
value of delta is increased. As a result, the minimum in the top right is not fulfilling the criterion
(di − bi ) > δ anymore and therefore does not carry a feature. Further increasing δ to 10% and 15%
leads to a feature consisting of 3 minima and 2 separate regions (c) and one region (d) respectively

lead to smaller features, with respect to the number of extremal points contained in
them. At the same time the total number of features is decreased.

Feature Tracking: The feature tracking is based on the full tracking graph. Consid-
ering two features F t

i and F t+1
j in consecutive time-steps, we define the forward

tracking score between these features as:

score(F t
i ,F

t+1
j ) =

∑

mt
i∈F t

i

∑

mt+1
j ∈F t+1

j

w(mt
i ,m

t+1
j ) · fm(mt

i ,m
t+1
j )

with

fm(mt
i ,m

t+1
j ) =

{
1 if (mt

i ,m
t+1
j ) ∈ FM

0 else

wherew determines the importance of thematch between two extremal points in con-
secutive time-steps. The weight w can be proportional to the persistence of extremal
points, overlap between the descending manifolds or sublevel sets or other reason-
able criteria. Each weight criterion has its advantages and disadvantages. We leave
the decision regarding which criteria and weights to use up to the users. In our
implementation, by default, we use w(mt

i ,m
t+1
j ) = persistence(mt

i ) as the weight
function.

Now, for a given featureF t
i in the time-step t , score(F t

i ,F
t+1
j ) can be computed

for all features in the time-step t + 1. Feature F t
i is then mapped to the feature

F t+1
j which has the highest score value. In addition, we also compute the weight of

extremal points inF t
i which could not be matched to any feature in time-step t + 1.

If that weight is greater than the maximum matching score, then the feature F t
i is

not matched to any feature in the next time-step and it dies.

Tracking Events:As described in Sect. 3, the raw tracking graph can be filtered and
queried. Recall that this graph only contains mappings between minima and that the
used feature description is independent of thesemappings. Aminimum can (a) spawn
a feature, (b) be part of a feature spawned by a different minimum, or (c) exist without
any relation to a feature. Since this can also change over time, features can be born
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Fig. 7 Tracking Graph: Abstract representation of the tracking graph. In both figures each time
step is represented as a collection of extremal points (EP) aligned on a vertical axis overlaid by
feature grouping these critical points. In (a) the connections between the critical points illustrate the
point-to-point pairs from the sets FM and BM . The feature tracks live on top of the raw tracking
graph for the extremal points, and are highlighted in (b). In the feature tracks, unmatched features
can exist, supporting the detection of feature birth, death, merge as well as splitting events. However,
note that in the raw tracking graph there are no unmatched EPs

(birth event) or vanish (death event). Furthermore, a strongly expressed minimum
in one time step spawning its own feature can flatten out and be not pronounced
enough to carry its own feature. If it is close to another strong minimum of similar
scalar value the associated features can now merge. This process and the abstraction
between features and minima is illustrated in Fig. 7. With this, features can not only
spawn and vanish but also merge and split.

5 Implementation Details

Our un-optimized prototype implements all algorithmic stages, constructs and stores
the raw tracking graph and supports feature descriptor design. Additionally, various
visualization methods for scalar fields, points and edges as needed for the graph
and two dimensional plots are implemented within the same framework. Our imple-
mentation uses asynchronous execution and parallel processing where applicable.
Currently, the computation of the Morse complex is the most demanding part and
takes about 720 ms for a 320 × 160 grid. During pre-computation of the grid we
calculate neighborhood information for the dimension 0 and 1 cells [5]. Note that
we are not handling dimension 2 cells since we are only interested in descending
manifolds. Computation of the merge tree takes about 170 ms for the same grid size.
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Here, we facilitate a union-find data structure as underlying concept. The given tim-
ings are measured on a single CPU workstation running a Xeon E5-1650 v4 with
3.6GHz. Rendering is done using the OpenGL API and a combination of a G-Buffer
for deferred shading as well as an A-Buffer for order independent transparency.
The current implementation is a proof of concept and we are currently working on
the integration of our approach into the topology toolkit (TTK) where it also would
become open source and freely available to the community.

6 Case Study

In this section we present our case study. Here, we applied our method to the problem
of tracking multi-center cyclones in pressure fields.

Data Set: The data set is given as a time-dependent scalar field containing the mean-
sea-level (MSL) pressure of an atmospheric simulation. The data sets resolution
is 320 × 160 in longitude and latitude, while the temporal resolution is 120 at 6h
intervals. Figure8 shows three consecutive time-steps (i.e., time-steps 97, 98, 99)
of a subdomain on the northern hemisphere. The pressure field is rendered by a
mapping to a yellow to red color-scale. Additionally, the visualization is enriched
with iso-contours in fixed intervals.

Feature Descriptor and Tracking Results: As feature descriptor, we applied a
persistence-based metric as described in Sect. 4. As mentioned, Fig. 8 shows three
consecutive time-steps for a smaller portion of the data-set. The red iso-line indicate
the feature area, whereas the blue circles indicate the location of the local pressure
minima. In addition, the circles are scaled according to the persistence value of these
minima. It can be observed that the geometric embedding of a specificminimum is not
stable, meaning the dominant minimum (i.e., the minimumwith highest persistence)
“jumps” from one minimum to another within a single time-step. Furthermore, a
low persistence minimum can appear or vanish within one time-step (see Fig. 8(c)).
The used feature descriptor handles both cases as it does not rely on a single critical
point. Therefore, the geometric embedding of the feature itself is stable, even if the
geometric embedding of individual minima is not stable.

Feature tracking is realized as filtering and querying of our raw tracking graph
(see Fig. 4). With this, the forward and backward correspondence of features based
on minima correspondence can be calculated. Figure9 shows a visualization of all
features across all time-steps for a specific value of δ. Furthermore, Fig. 9 (b)–(d)
show the merge and split of two features over time.
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Fig. 8 Feature Descriptor: Three consecutive time-steps of the mean-sea-level pressure field. The
spheres indicate the local minima of the field and are scaled by their persistence values. It can be
seen that the geometric embedding of the point with maximum persistence is not stable. However,
the resulting feature (red iso-line), defined as a combination of the extremal points, is stable

Fig. 9 Feature Tracking: In (a) the iso-contours of all features across all time-steps are shown.
The image sequence on the bottom shows the merge of two separate features. In time-step (b) the
features are distinct and merge later in time-step (c). Our tracking graph also contains information
about the backward direction which enables us to also detect splitting events. The feature in (c)
splits into two separate features after (d)

7 Conclusion and Discussion

Wepresented a flexible concept to define and track features in scalar data-fields based
on topological data analysis as a pre-processing step. The goal of this approach is not
to define yet another cyclone tracking method but to give the application scientists
a tool at hand that supports an easy and interactive investigation of changes in their
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feature definition. This concept has already been proven to be of value over the
course of time when we collaborated with our partners in climate sciences who
are experimenting with variations in the definition of cyclones. The core feature of
the method that makes varying cyclone definitions possible is a separation of the
topological analysis and the feature configuration. The preprocessing step consists
of pure topological analysis of the data without any assumptions while following
clear rules. Thus, it provides a well-defined foundation for an application-specific
feature configuration.

A further advantage of this approach is that the computationally expensive steps
are separated into a pre-processing step leaving enough headroom to allow for inter-
active exploration. Additionally, our current concept can be extended further and
adapted to an in situ pipeline. Currently, we are using a critical point tracking method
that is based on descending or ascending manifolds. While this tracking gives stable
results when following extrema, its accuracy depends on the extraction method of
the descending manifolds and can suffer from sub-optimal geometric embedding
when using discrete methods. This is a well-known problem and solutions have been
proposed in the literature, e.g. [13] or [6], which we plan to integrate in the future.
Due to the modular design of our pipeline, the critical point tracking method can be
easily exchanged.

In this paper, we have exemplified our concept for the application of cyclone
extraction and tracking in pressure fields, but our approach is far more powerful and
can be used for other applications as well. There are many possibilities for the exten-
sion of the work. One direction that we want to pursue is to extend the pre-analysis
step towards a multi-field analysis. Another interesting idea would be to employ
user guided classification of critical points into relevant and non-relevant features
in a few selected time steps, and using learning algorithms to automatically extract
relevant features in the complete time series. To improve the feature configuration
and feature tracks, there are a lot of ideas in the literature, for example, to consider
global optimization criteria for the tracks similar as proposed by Saikia et al. [17]
or Schnorr et al. [19]. For this, a better interface for designing rules to be used as
feature descriptors is required. Additionally, we want to extend our prototype in
terms of context embedded visualizations and the extraction of statistics, allowing
for comparison between different feature descriptors.
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Abstract The current generation of radio andmillimeter telescopes, particularly the
Atacama Large Millimeter Array (ALMA), offers enormous advances in observing
capabilities. While these advances represent an unprecedented opportunity to facil-
itate scientific understanding, the increased complexity in the spatial and spectral
structure of these ALMA data cubes lead to challenges in their interpretation. In this
paper, we perform a feasibility study for applying topological data analysis and visu-
alization techniques never before tested by the ALMA community. Using techniques
based on contour trees, we seek to improve upon existing analysis and visualization
workflows of ALMAdata cubes, in terms of accuracy and speed in feature extraction.
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We review our development process in building effective analysis and visualization
capabilities for the astrophysicists. We also summarize effective design practices by
identifying domain-specific needs of simplicity, integrability, and reproducibility, in
order to best target and service the large astrophysics community.

1 Introduction

Radio astronomy is currently undergoing a revolution driven by new high spatial and
spectral resolution observing capabilities. The current generation of radio and mil-
limeter telescopes, particularly the Atacama LargeMillimeter Array (ALMA), offers
enormous advances in capabilities, including significantly increased sensitivity, res-
olution, and spectral bandwidth. While these advances represent an unprecedented
opportunity to facilitate scientific understanding, they also pose a significant chal-
lenge. In some cases, the higher sensitivity and resolution they provide yield new
detections of sourceswithwell-ordered structure that is easy to interpret using current
tools (e.g., [1]). However, these advances often lead to the detection of structure with
increased spatial and spectral complexity, e.g., newmolecules in the chemically-rich
massive star-forming region Sgr B2, outflows in the nuclear region of the nearby
galaxy NGC 253, and rich kinematic structure in the giant molecular cloud “The
Brick” [6, 8, 49]. Visualization is a natural tool to study such data, which are typically
modeled as 3D cubes, commonly referred to as ALMA data cubes, with two spatial
dimensions and one spectral dimension (see Fig. 1). While visualizing volumes is
not new to scientific visualization, ALMA data cubes present unique challenges.
First of all, an ALMA data cube represents the complex interactions of radio signals
produced by the bulk mixing and motion of various molecules deep in space. These
data tend to have a high spectral resolution but low spatial resolution.

Fig. 1 An illustration of theALMAdata cube and a spectral
line.

Yet these complex behav-
iors need precise examina-
tion. Second, the data have
an extraordinarily low signal
to noise ratio. This makes
direct visualization impracti-
cal as the signal is difficult
to extract. Third, the noise is
spectrally varying and inco-
herent, therefore difficult to
model and remove using con-
ventional approaches. Due to
these unique challenges, visualization alone is insufficient for analysis and
exploration.

In this paper, we review our application development process in building effec-
tive analysis and visualization capabilities for ALMA data cubes. Our publicly
available tool is called ALMA-TDA (https://github.com/SCIInstitute/ALMA-TDA).

https://github.com/SCIInstitute/ALMA-TDA
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Fig. 2 An example of ALMA-TDA. The results of varying the simplification level on slice #18 of
the Ghost of Mirach data set using a 2D contour tree. On the top left, a visualization of the original
data is shown. On the bottom left, the contour tree computed on the region is shown with circles at
critical point locations. Finally, on the right, the results of simplifying the data with simplification
levels at 0.0005, 0.001, 0.0015, 0.002, from top to bottom, respectively

ALMA-TDA uses contour trees to extract and simplify the complex signals fromnoisy
radio astronomy data. An example of our tool is shown in Fig. 2. We additionally
summarize effective design practices targeting and servicing the large astrophysics
community. In particular, we need to design tools with simplicity (i.e., light-weight),
integrability (i.e., integrable within existing toolchains), and reproducibility (i.e.,
fully recorded analysis history via command-lines). We hope such learned design
practices will provide guidelines toward the future development of tools and tech-
niques that would benefit astrophysicists’ scientific goals.
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2 Science Case

The new complexity involving ALMA data cubes brought about by increased sensi-
tivity, spatial and spectral resolution, and spectral bandwidth has become a significant
bottleneck in science, as it not only challenges astrophysics analysis tools but also
the users’ ability to understand their data. For example, increased complexity in the
spatial and velocity structure of spectral line emission makes even a single spectral
line hard to interpret. When a cube contains the superposition of multiple spatial
and kinematic structures, such as outflows and rotation and infall, each with their
own relationship between the observed velocity and their actual position along the
line of sight, traditional analysis and exploration tools do not perform well. Users
(the astrophysicists) struggle to follow kinematic trends across multiple structures
by examining movies or channel maps of the data. However, moment map analysis
(e.g., integrated fluxes, mean velocities and mean line-widths), the most commonly
used analysis tool for compressing this 3D information into a more easily parsed 2D
form, no longer has a straightforward interpretation in the presence of such complex
structure, in which mean velocities may be velocities at which no emission is actu-
ally present, and mean line widths may represent the distance between two velocity
components, rather than the width of a single component.

Whether scientists can navigate and correctly interpret this new complexity will
determine their success in addressing a number of important scientific questions.
Among the topics driven by the detection of more complex structures are ISM tur-
bulence [19, 48], the star formation process [32], filaments [46], molecular cloud
structure and kinematics [49], and the kinematics of nearby galaxies [28, 31, 36]
and high redshift galaxies [2, 58].

An even greater challenge arises from our ability to detect an increased number
of spectral lines in more and more sources. There simply are no tools capable of
simultaneously visualizing, comparing, and analyzing the dozens to hundreds of
data cubes for all of the detected spectral lines in a given source. Standard methods
that visualize the data as moment and channel maps, animate cubes as videos or
3D models, cannot scale up to the case involving large numbers of lines, even in
non-complex, well-ordered cases, such as rotating disks or expanding stellar shells.
Users become overwhelmed by, for example, comparing these typical diagnostics
for two lines, side by side or one at a time. In the richest sources with thousands of
lines, such comparisons will simply be impossible—it becomes necessary to resort
to methods that entirely throw away either the spectral information of moment maps
or the spatial information that requires model fitting of complex spectra (such as
Principle Component Analysis). As a result, both exploration and analysis of the
astronomy data becomes time consuming and potentially incomplete.
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As we move into the future and the telescopes reach their full potential, complex
spatial and velocity structures will no longer be a problem that typically occurs
in a separate subset of sources than those exhibiting rich spectra behaviors—the
two problems will coexist, compounding the highlighted issues. The visualization
and analysis challenges currently facing radio astronomy will then only grow more
pressing as the data volumes increase, and the instruments grow more sensitive.

Existing Tools. A critical aspect to the study of ALMA data cubes is the detection,
extraction, and characterization of objects such as stars, galaxies, and blackholes.
Source finding in radio astronomy is the process of detecting and characterizing
objects in radio images (in the forms of data cubes), and returning a survey catalog
of the extracted objects and their properties [26, 59]. A common practice is to use a
computer program (i.e., a source finder) to search the data cubes, followed bymanual
inspection to confirm the sources of electromagnetic radiation [59]. An ideal source
finder aims to determine the location and properties of these astronomical objects in a
complete and reliable fashion [26], while manual inspection is often time-consuming
and expensive.

Several existing tools have been used in the ALMA community in terms of source
finding [27], including the popular ones such as clumpfind [60], dendrograms [54],
cprops [53], and more recent ones such as FellWalker [7], SCIMES [18] and Neu-
roScope [37]. Clumpfind is designed for analyzing radio observations of molecular
clouds obtained as 3D data cubes; it works by contouring the data, searching for local
peaks of emission, and following them down to lower intensity levels [60]. The den-
drograms of a data cube is an abstraction of the changing topology of the isosurfaces
as a function of contour level, which captures the essential features of the hierarchi-
cal structure of the isosurfaces [54]. The FellWalker algorithm is a gradient-tracing
watershed algorithm that segment images into regions surrounding local maxima [7].
FellWalker provides some ability to merge clumps, therefore simplify the underlying
structures, and the merging criteria share some similarities with persistence-based
simplification. However, these criteria are less mathematically rigorous compared
to our approach. SCIMES (Spectral Clustering for Interstellar Molecular Emission
Segmentation) considers the dendrogram of emission under graph theory and uti-
lizes spectral clustering to find discrete regions with similar emission properties [18].
Finally, themost recentNeuroScope [37] (specifically targeted forALMAdata cubes)
employs a set of neural machine learning tools for the identification and visualization
of spatial regions with distinct patterns of motion.
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Fig. 3 a A grayscale image of a 2D scalar function before
simplification. b height map of the contours corresponding
to the scalar function shown in a. c The contour tree struc-
tures capture the evolution of terrain features (i.e., relations
among local minima, local maxima, and saddles). d–f : The
grayscale image, height map, and the contour tree after sim-
plifying the features

However, the studyof source
finding for ALMA data cubes
raises the following question:
How can we help the astro-
physicists to understand the
denoising process? That is,
how to best separate signals
from noise, and to understand
the effects of denoising on the
original data? In other words, it
is important for us to quantify
both signals and noise as well
as to perform simplifications of
the underline data. This kind
of study is current underdevel-
oped within the ALMA com-
munity.

3 Technical Background

From a technical perspective, we focus on performing data analysis and designing
effective visualization of ALMA data cubes by employing the contour tree [11].
The contour tree is a mathematical object describing the evolution of the level sets
of a scalar function defined on a simple, connected domain, such as the grayscale
intensity defined on the 2D domain associated with a slice of a data cube (at a fixed
frequency). There are two key properties associated with a contour tree, making it
a feasible tool in the study of ALMA data cubes. First, a contour tree has a graph-
based representation that captures the changeswithin the topology of a scalar function
and provides a meaningful summarization of the associated data. Second, a contour
tree can be easily simplified, in a quantifiable way, to remove noise while retaining
important features in data.

Fig. 4 Local structures of critical points. From left
to right: a local minimum, a saddle point, and a local
maximum

Contour Trees. Scalar functions
are ubiquitous in modeling sci-
entific information. Topological
structures, such as contour trees,
are commonly utilized to provide
compact and abstract representa-
tions for these functions. The con-
tour tree of a scalar function f :
X → R describes the connectivity of its level sets (isosurfaces) f −1 (a) (for some
a ∈ R), whose connected components are referred to as contours. Given a scalar
function defined within some Euclidean domain X, the contour tree is constructed
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by collapsing the connected components of each level set to a point. The contour
tree stores information regarding the number of components at any function value
(isovalue) as well as how these components split and merge as the function value
changes. Such an abstraction offers a global summary of the topology of the level
sets and enables the development of compact and effective methods for modeling
and visualizing scientific data. See Fig. 3(a)–(c) for an illustrative example. Vertices
in the contour tree correspond to critical points of the 2D scalar function, namely,
local minima, saddle points, and local maxima, whose local structures are illustrated
in Fig. 4.
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Fig. 5 Example of persistence pairing of critical points for
b a 2D height function. The persistence pairing of a critical
points from the contour tree gives rise to c a (scaled) persistence
diagram

Persistence. To simplify
a contour tree, we assign
an importance measure to
each edge of the tree and
collapse (eliminate) edges
of lower importance mea-
sures [10, 12]. Various geo-
metric properties, such as
persistence, volume, and
surface area, can be used
to compute the importance
measure.

We apply ideas from
topological persistence [21]
in our feasibility study. We
describe the idea of persistence using Fig. 5 as an illustrative example [20, Page 163].
Given a height function f : X → R defined on a 2D domain, let Xa denote the sub-
level set of f , that is,Xa = f −1 (−∞, a]. Supposewe sweep a horizontal plane in the
direction of increasing height values and keep track of the (connected) components
of Xa while increasing a. A component of Xa starts at a local minimum and ends at
a (negative) saddle point when it merges with an older component (i.e., a component
that starts earlier). This defines a minimum-saddle persistence pair between critical
vertices, and the persistence of such a pair is the height difference between them.
Similarly, a hole/tunnel of Xa starts at a (positive) saddle point and ends at a local
maximum (where it is capped off). This defines a saddle-maximum pair, with its
persistence being the height difference between its vertices. In a nutshell, minima
stars components, saddles merge components or create tunnels (complete loops), and
maxima fill holes [20, Page 162].

Referring to Fig. 5: points u and v are local minima; y and z are local maxima;
w is a negative saddle point; and x is a positive saddle point. Their corresponding
height values are sorted as a1 < a2 < · · · < a6. We sweep a horizontal plane in the
direction of increasing height value and keep track of the components in the sublevel
set. The pair (v,w) forms a minimum-saddle persistence pair, as a component in the
sublevel set starts at point v, and it merges with an older component that starts at point
u. The pair (x, y) form a saddle-maximum pair. The pair (v,w) has a persistence of
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|a2 − a3|, while the pair (x, y) has a persistence |a5 − a4|. The contour tree is shown
in Fig. 5(a).

Persistence Diagram. The pairing of critical points also gives rise to a persistence
diagram [16] that summarizes and visualizes topological features of a given function.
A persistence diagram contains a multi-set of points in the plane; its x- and y-
coordinates captures the start (birth) time and the end (death) time of a particular
topological feature. The distance of the point to the diagonal captures the persistence
of that feature. Points away from the diagonal have high persistence and correspond
to signals of the data, while points that are close to the diagonal have low persistence,
which is typically treated as noise.1

In the example of Fig. 5, the critical point pairs (x, y) and (v,w) give rise to
points (a4, a5) and (a2, a3) in the persistence diagram, respectively. This persistence
diagram also contains an additional off-diagonal point (a1, a6), which corresponds
to the pairing of global minimum u with the global maximum z that captures the
entire shape of data. This is a global feature that can not be simplified (see [17] for
technical details).

In our context, we only care about minimum-saddle and saddle-maximum pairs.

Fig. 6 Simplifying a saddle-maximum pair (x, y)
in a and minimum-saddle pair (v,w) in b for a 2D
scalar field. a: We reduce the height of the local
maximum y to the level of saddle x , effectively
flattening the region surrounding y. b: We increase
the height of local minimum v to the level of the
saddlew, again flattening the region surrounding v

Contour Tree Simplification. In the
contour tree example of Fig. 3(c), the
pair (b, c) is a minimum-saddle pair
while the pairs (e, f ) and (d, g) are
saddle-maximum pairs. During a hier-
archical simplification, the pair (e, f )
has the smallest persistence. Therefore
the edge connecting them is collapsed
(simplified), as shown in Fig. 3(f); this
can be achieved by a smooth defor-
mation of the surface in Fig. 3(d). In
this paper, we focus on the persistence-
based simplification—other simplifi-
cation schemes may be employed
based on local geometric measures for
individual contours [12], for instance,
surface area and contained volume; we
intend to use these geometricmeasures
in the future to perform contour tree simplification that suppressingminor topological
features of the astronomy data.

Scalar Field Simplification. Given a contour tree simplification, we would like to
compute its corresponding scalar field simplification. Simplifying a scalar function
directly in a way that removes topological noise as determined by its persistence

1 Based upon sublevel set filtration, topological features typically appear as points in the upper
left corner of the persistence diagram; points in the lower right corner correspond to features in
superlevel set filtration and/or extended persistence [17], which are not the focus of this paper.
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diagram has been investigated extensively (e.g. [22]). As pointed out by Carr et
al. [13], contour tree simplification has well-defined effects on the underlying scalar
field: collapsing a leaf corresponds to leveling off (or flattening) regions surround-
ing a maximum or a minimum. This is a desirable simplification for the domain
scientists, as they are interested in reducing noise to zero flux during the denoising
process. Figure3(b) and (c) demonstrate the result of edge collapsing: collapsing
the edge (e, f ) from the tree results in flattening the yellow region surrounding the
local maximum f ; this is equivalent to introducing a small perturbation to the neigh-
borhoods of saddle-maximum pair (e, f ) so that both critical points e and f are
removed. Such a flattening process is further highlighted in Fig. 6.

Implementation. Both contour tree calculation and scalar field simplification use
our own implementations of the associated algorithms.

Related Work. The contour tree was first introduced by van Kreveld et al. [30] to
study contours on topographic terrain maps (i.e., curves containing sampled points
with the same elevation values). It has since been widely used for both scientific
and medical visualizations [3, 44, 55, 56]. Efficient algorithms for computing the
contour tree [11, 15, 47] (and its variants, merge tree [41], and Reeb graph [45])
in arbitrary dimensions have been developed. The calculation of contour trees is
theoretically O (n log n). However, the actual running time is approximately O (n).
The latest state-of-the-art regarding contour trees have been parallel or distributed
implementations [9, 14, 25, 33, 38, 39]. We use an approach described in [52],
which is implemented under the piecewise linear setting.

A related concept called dendrograms has been used in astronomical applications
to segment data and to quantify hierarchical structure such as the amount of emis-
sion or turbulence at a given size scale, for example, to study the role of self-gravity
in star formation [24]. A dendrogram is a tree-diagram typically used to character-
ize the arrangement of clusters produced by hierarchical clustering. It tracks how
components (clusters) of the level sets merge as the function value changes, while
a contour tree captures more complete topological changes (i.e., merge and split)
of the level sets. The state-of-the-art Astronomical Dendrogram method [50] has
limited capabilities in automatic data denoising, feature extraction, and interactive
visualization.

4 Application Development Process

We revisit our application development process in building effective analysis and
visualization capabilities of ALMA data cubes by reviewing the timeline of our
project. We reflect on key activities with the goal of learning from experience and
summarizing effective design targeting and serving the astrophysics community, and
how different members of our team interact with one another, including computer
scientists (both visualization and TDA experts) and radio astronomers. To give an
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overview of our design process, we describe the critical activities as identified in [34]:
understand, ideate, make, and deploy.

The discussion of the project started in November 2014, when National Radio
Astronomy Observatory (NRAO) scientist Dr. Jeff Kern, a coauthor of this paper,
visited the Scientific Computing and Imaging (SCI) Institute and saw a talk on the
topic of topological data analysis. Over the following months, follow-up conversa-
tions generated some initial excitement regarding the potentially applying topological
techniques in understanding ALMA data cubes, which has never been done before.

To understand the problem domain and target users, we identified key opportu-
nities, that is, applying emerging techniques from topological data analysis to the
study of ALMA data cubes. The main motivation stemmed from Jeff’s comments
that “there simply are no tools capable of simultaneously visualizing, comparing,
and analyzing the dozens to hundreds of data cubes for all of the detected spec-
tral lines in a given source.” We believed that introducing topological data analysis
techniques to the ALMA community would potentially offer new insights regarding
feature detection, as well as improve their workflow efficiency.

The ideate activity of the project started in May 2015, as the domain problems
became better characterized and possible solutions via contour tree-based approaches
appeared to have the greatest potential among the solution space. We externalized
our ideas and expected technical challenges, while at the same time, formulating a
potential analysis pipeline, visual encodings, and selecting interactive capabilities
within a proposed system for ALMA data cubes.

By January 2016, we have already met with astrophysicists at the NRAO facil-
ity to learn their needs and conducted an on-campus interview with astrophysicist,
Dr. Anil Seth, another collaborator of this project, who works with ALMA data
cubes. We learned the typical pipeline in the analysis and visualization of ALMA
data cubes, specifically, in Anil’s case, via image editing tools or file viewers such
as QFitsView [43] and SAOImage DS9 [29]. We also gave short tutorials regarding
our proposed techniques to obtain comments and feedback from all our interactions.

We started our make activity by constructing a tangible prototype, specifically
encompassing visualization decisions and interaction techniques. The process cou-
pled the ideate and make activities in the design and refinement of our system. We
identified that quantification (of signals and noise) and simplification are two of
the most important aspects for our proposed framework. We went through multiple
rounds of interface mock-ups and functionality discussions. We showcased our first
prototype between June and August 2016, including one-on-one discussions with
Anil and Dr. Julia Kamenetzky on our team, and through a number of talks given to
the astrophysics community, with generally positive feedback.

Over the course of the next half a year, we rolled out multiple phases of deploy
activities in order to put the prototype in a real-world setting to understand how to
improve its effectiveness and performance. Our goal was to have a usable system
that helps with the users’ data-specific tasks. In January 2017, we organized a one-
day workshop where we engaged in panel discussions on the current version of the
prototype, gathered comments and suggestions, and discussed potential research and



Using Contour Trees in the Analysis ... 97

developmental directions moving forward. This workshop, in particular, helped to
cement the lessons learned.

4.1 Designing to Serve the ALMA Community

Throughout the development process, we learned a few best practices for serving the
ALMA community: simplicity, integrability, and reproducibility.

In terms of simplicity, the tool should have a sufficient but not overwhelming
amount of visualization; and minimize GUI interactions. This philosophy is in sharp
contrast with some of the common practices of many visualization tools, where
we aim to create novel, exciting, and sometimes flashy visualizations. Our initial
prototypes were full of many unnecessary functionalities and complex GUIs. We
learned via feedback on user practices that a complex interfacewill distract or confuse
the users to the point that they would not even try using the software. The tool should
also be light-weight. That is, it should be easily installed on a desktop computer
and not require extensive external dependencies or packages to be installed. For
this reason, we chose Java as a platform from the beginning. Though not the most
efficient, Java software is highly portable. This is well-aligned with properties of
commonly used processing tools in the ALMA community.

In terms of integrability, the tool should be integrable with existing workflows
and toolchains. This means that the core functionality of the software needs to be
automatable. In addition to providing a GUI, we also provide a command-line inter-
face for generating results, such that it can one day be integrated with other tools
such as CASA (Common Astronomy Software Applications) [35], astropy [51], or
SAMP (Simple Application Messaging Protocol) [57].

In terms of reproducibility, the analysis history using our tool should be recorded
so that the results can be reproduced. This is supported in twoways. First, by enabling
processing via the command-line, we can save parameters and automatically rerun
the results later. Second, we minimize the amount of GUI interactions, as most
of such interactions are exploratory and do not necessarily contribute to the final
analysis.When the user is satisfiedwith their results using our visualization, the exact
command required to reproduce the visualization results is output to the command-
line for future reference.

5 Software Design

Our software is a visualization tool with both command-line only and interactive
visualization operating modes.

The command-line mode provides a small set of options for complete repro-
ducibility of any computation. Those options are:
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Fig. 7 Upon loading the software in the interactive mode, the user is presented with a view of the
data. Left: Initial view of the software. Right: Visualizations are shown as the user selects a region
of interest, and the contour tree is calculated (on the back end)

• Input file – Path to the file for processing.
• X, Y, & Z range – The dimensions of the region to be processed.
• Simplification type – Either 2D, for a single slice; 2D Stack, for a series of 2D
slices; or 3D, for volume processing.

• Simplification level – Persistence level for feature simplification.
• Output file – Path to save results.

We also provide an interactive visualization mode to explore the capabilities of
our approach and select these parameters. When starting the software, users need
only add the “interactive” tag to the command-line, and the visualization launches.

The visualization initially opens to the interface seen in Fig. 7 (left). The interface
is designed to includeonlyminimal required capabilities. Themainwindow,A, shows
visualizations related to the loaded data cube. The GUI component, B, provides
controls to set options for processing the data. The controls are placed in groups,
numbered for steps 1–5. The GUI component is designed with both simplicity and
functionality in mind to offer the users the most intuitive and yet fully-functional
analysis capabilities.

5.1 Visual Elements

The visualization is composed of five main visual elements.

Scalar Field View (Fig. 7A). Being a sampling of radio waves, the 2D scalar field
(a slice of ALMA data cube along the frequency axis) has both positive and negative
amplitudes. It is therefore displayed using a divergent orange/purple colormap. By
default, the first slice is selected and viewed by centering on themiddle of the domain.
The user can translate and zoom with the mouse. Different slices can be selected by
changing the values in the controls in Fig. 7B.

Persistence Diagram (Fig. 7C). Once the contour tree is calculated, the data are
displayed using a persistence diagram. Being that the distance from the diagonal
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is an analog to persistence, we use this visualization for interactively selecting the
level of simplification by dragging the red simplification bar. Features below the
bar are grayed out, indicating that those features will be simplified. Once released,
a simplified contour tree (on the back-end) and a simplified scalar field (for the
front-end) are calculated.

Contour Tree (Fig. 7D). Displaying the tree structure of the contour tree is not
particularly meaningful, as it is both large and an abstract view of the data. However,
seeing critical points and their persistence in the context of the data is valuable.
The critical points are placed over the scalar field view at their respective spatial
location. Their size is set based upon their persistence (higher persistence, larger
point). Finally, their color is set by their type: local extrema (leaf of the tree) – blue,
negative saddle points (merge) – yellow, and positive saddle points (split) – magenta.
For 3D analysis, contour tree nodes off of the layer are colored gray. This view of
the contour tree can be enabled or disabled on demand using the controls in Fig. 7B.

Simplified Scalar Field (Fig. 7D). Since users are, in large part, interested in the
feature extraction power of this approach, we show the result of scalar field sim-
plification in context. As the user adjusts the level of persistent simplification, the
scalar field is simplified and overlaid with the original visualization. This view can
be enabled or disabled on demand using the controls in Fig. 7B.

Histogram (Fig. 7E).A histogram is produced, indicating the distribution of (inten-
sity) values of data cubes within the current view. In addition to showing histogram
bins, this view shows the mean as a solid red line and ±3 standard deviations as
consecutively lighter red bars. This histogram is adapted as the user navigates their
view or when the simplification level of the scalar field is adjusted. This view is
important, as domain experts are interested in quantifying the total flux gained or
lost during simplification. This is most observable by shifts in the mean.

5.2 Interaction Process

Though the use of our software requires some explanation, we strive to make it
as simple to use as possible. Part of this effort is providing a simple and intuitive
five-step approach to the users.

Step 1:Navigation.The users are first asked to navigate the view to the general region
of interest. This includes translation and zooming, but it also includes selecting the
slice or volume of interest.

Step 2: Tree Dimension. The dimension of the contour tree calculation must be
selected next. The options include 2D, for a single slice; 2D stack, for 2D computation
on a series of slices; and 3D for computation on a volume. These options will be
discussed further in the case studies.

Step 3: Region Selection. Next, the specific region of interest is selected with the
mouse.As soon as themouse is released, computation begins. If the region is large, the
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Fig. 8 Four slices, #16, 18, 20, & 22 from the Ghost of Mirach data set. The bright red spots
(indicated by the arrows) in these images are the signal of interest

user is prompted with the option to cancel, due to computation time. We are actively
investigating scalable contour tree computations to support larger data cubes with
on-the-fly visualization.

Step 4: Exploration. Once the computation is completed, the user is invited to
explore the domain. This includes navigation (translation, zooming, and chang-
ing slices) and adjustment of the simplification level. As simplification levels are
adjusted, the user can observe changes in the scalar field, compare those changes to
the original field, and look for changes in flux in the histogram.

Step 5: Compute and Exit. Steps 1–4 may be repeated as many times as necessary
until the user is satisfied. Once done, the user clicks “Compute and Exit”. This will
trigger the processing of the data cube and the saving of the output. Finally, the precise
command required to reproduce the results will be printed on the command-line.

6 Case Studies

We show the capabilities of our prototype with two case studies involving specific
ALMA data cubes used by coauthors.

6.1 Ghost of Mirach Galaxy Data Set

NGC 404 (also known as Mirach’s Ghost) is data of a molecular gas emission at
the center of the nearby, low mass galaxy. The data was taken using ALMA on
Oct. 31, 2015. A data cube is created using the default ALMA pipeline and involves
a Fourier transformation of the interferometric data at each frequency. The data cube
is approximate 4.5GB with a resolution of 5400 × 5400 in the spatial domain and
30 in the spectral domain (i.e., 30 slices). However, the feature of interest is around
200 × 200 in size and covers around 10 slices. Scientists often sample cubes much
larger than their feature of interest to reduce some structured errors, vignetting, for
example.
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Fig. 9 The result of simplifying using the 3D contour tree on the Ghost of Mirach data set is worse
than expected due to topological pants (tubes connecting through slices). Top left: Visualization
of the 3D contour tree on slice 22. Top right: Simplification of slice 16. Bottom: Simplification
of slices 18, 20, & 22, respectively. The persistent simplification level is 0.00128. At this level
of simplification, many features (we visually consider) as noise remain and, in fact, will not be
removed by multiple levels of simplification

ScienceDescription.Excitedmolecular carbonmonoxidegas emits light at 230GHz.
The Doppler shifts of this line emission can provide information on the motion of
molecular gas in the galaxy. Visualization of the data of NGC404 shows a clear rotat-
ing disk located within the central 20 light-years of the galaxy (see Fig. 10). Similar
rotating molecular gas disks have been used to measure the masses of supermassive
black holes at the centers of galaxies (e.g. [4, 42]). However, the data is noisy, so
coherent gas structures are hard to pick out. NGC 404 presents a special challenge
due to the low mass of its black hole [40]. Fortunately, the high angular resolution
of ALMA provides the highest sensitivity for measuring the black hole mass.

We can see an example of 4 spectral slices of the data set in Fig. 8. In these 4
slices, the bright red spots represent the signal, while most of the remaining patterns
represent noise.

Varying Simplification Levels. Figure2 shows an example of performing simplifi-
cation on a single 2D spectra (i.e., a single slice along the frequency axis). The noisy
structure is captured by the 2D contour tree as many low persistence features (bot-
tom left). Increasing the level of simplification removes much of this noise (right).
However, selecting a simplification level that is too aggressive may result in loss of
signal (bottom right).
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Fig. 10 Result of volume rendering the Ghost of Mirach data set before (top) and after (bottom)
using a stack of images with 2D contour trees. The columns show 3 different viewing angles of
slices 13–26. The persistent simplification level is 0.00138. Side views (middle and right) of the
rendered volume are blurry due to lower resolution along the spectral dimension compared with the
two spatial dimensions

3D Contour Trees. Since the spectral data are treated as cubes, our collabora-
tors are interested in the structures that would be found using 3D contour trees.
The result of capturing the 3D contour tree, shown in Fig. 9, is both a surprise

Fig. 11 Illustration of topo-
logical pants, a series of inter-
connected tubes, on 3 layers
of a volume.

and a disappointment. Although many critical points are
found, the data suffer from topological pants—a sphere
with three disjoint closed discs removed [5]. Essentially,
the 3D contours of noisy features form a complex inter-
connect tubes through the volume that are not physically
meaningful (see Fig. 11). This interferes with the kind of
features that a contour tree can identify. The root cause
of this is that each of the spectra is processed indepen-
dently, and thus, there is no correlationbetweennoise pat-
terns across consecutive slices. Simplifying these tempo-
ral noise patterns as awhole is not physicallymeaningful,
and they interfere with true features in the data. In addi-
tion, while (formally) wavelength (as the 3rd dimension) is continuous, phenomenon
such as Rayleigh diffraction means that nearby spectra can differ radically; such a
phenomenon, together with (essentially) independent noise on individual spectral
channels, makes the assumption of a continuous 3rd dimension rather weak. The
noise characteristic, therefore, drives our choice of 2D contour tree simplification
instead of the 3D version.
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Fig. 12 Result of simplifying the Ghost of Mirach data set using a stack of images with 2D contour
trees. Top left: Visualization of the 2D contour tree on slice 22. Top right: Simplification of slice
16. Bottom: Simplification of slices 18, 20, & 22, respectively. The persistent simplification level
is 0.00138. The simplification level is good for all except slice 20, where a more aggressive level
of simplification is called for

2D Contour Tree Stacks. On the other hand, the processing of 2D contour trees
is highly successful. However, domain scientists still need the ability to process 3D
cubes. The obvious solution is to use a series of 2D contour trees to control the
simplification. Figure12 shows the result of simplifying a stack of spectra (slices).
This example uses a similar level of simplification to the 3D contour tree example
in Fig. 9. In our implementation, the level of simplification is shared between all
slices. This works well for slices 16, 18, and 22 (top right, bottom left, and bottom
right, respectively). However, the level of simplification is not aggressive enough for
slice 20 (bottom middle). At this point, the user could either select a more aggres-
sive simplification or could choose to simplify slice 20 separately from the others.
Figure10 shows the stack of slices 13–26 drawn using a custom-built conventional
volume renderer. Despite the natural denoising properties of volume rendering, the
results without persistent simplification (Fig. 10 top) are difficult to interpret when
compared to those with contour tree stack simplification (Fig. 10 bottom).

Moment 0 Analysis. Astrophysicists often use what is known as moment analysis
to reduce the 3D spectrum to 2D images. Moment 0, 1, and 2 measure the mass
of gas, the direction of gas movement, and the temperature of the gas, respectively.
They are all integrals across the spectra. To demonstrate the noise reducing power
of our approach, we show the result of the moment 0 analysis in Fig. 13 on the 2D
stack simplification from Fig. 12. Moment 0 is calculated as m0 = ∫

Iv , where I
is the intensity for a given spectrum, v. By removing the noise from each of the
layers, the resulting moment map is significantly less noisy, making the signal itself
very apparent. Our collaborator also finds the dim feature pointed to by the arrow
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Fig. 13 Moment 0 analysis of Ghost of Mirach data set between slices 14 and 24 (the range of
the signal) using a stack of 2D contour trees. Left: Visualization of moment 0 for the original data.
Right: Moment 0 results using data with simplification level of 0.0020

Fig. 14 Visualizations of selected slices from the range 100 to 200 of the CMZ data. Top: Slices
100, 120, 140, 160, and 180 before simplification, respectively. Bottom: Slices 100, 120, 140, 160,
and 180 after simplification, respectively. The simplification level used is 3.45

very interesting. He and his collaborators have been actively debating whether this
structure is a signal or a data processing artifact. Nevertheless, our approach retains
it as a signal, and we are excited to see how our results generate further conversations
regarding the data.

6.2 CMZ Data Set

The CMZ data are a 13CO 2-1 image of the Central Molecular Zone (CMZ) of the
galaxy (data are published in [23]). The data cube is approximately 500MB with a
resolution of 1150 × 200 in the spatial domain and 500 in the spectral domain (i.e.,
500 slices). We look at 100 slices of a region with a resolution of about 300 × 200.

Science Description. The cube shows the low-density molecular gas in the Galaxy’s
center, with higher intensities generally indicating that there is more gas moving at
a particular velocity along each line of sight. It contains highly turbulent gas with
properties that are very different than the rest of the Galaxy. Domain scientists use
these data to measure the structure of the interstellar medium, which is important for
determining how stars are formed and how galaxies evolve. Because the gas they are
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Fig. 15 Visualizations of moment 0 for slices 100 to 200 of the CMZ data set computed using 2D
contour trees. Top left: Moment 0 on the original data. Top right: Moment 0 on all 100 simplified
slices. Bottom left: Moment 0 only using every 4th slice. Bottom right: Moment 0 only using every
8th slice. The simplification level used is 3.45

seeing is in diffuse clouds that do not have well-defined edges, signal identification
is a critical component in improving their understanding of how the gas changes
state. Identifying structures in the gas is useful for determining how turbulent it is
on different scales, which plays a key role in may star formation theories.

Denoising Slices. Figure14 shows a number of slices denoised. The signal to noise
ratio in this data set is much better than the previous ones. Nevertheless, many low
persistent features have been removed using our approach.

Denoising for Moment Analysis. Deep cubes (those with many slices) such as
this one are often created in order to mitigate the impact of noise during moment
analysis—by more densely sampling the frequency domain, noise from any single
slice has a smaller impact on the output. However, creating deep cubes such as
this is computationally and manpower expensive. NRAO has significant human and
computational infrastructure dedicated to generating data cubes from the raw data
captured by radio telescopes. By providing strong denoising capabilities, data cubes
can be sampled at lower spectral frequencies and still produce similar moment maps.
See Fig. 15 for an example. Here, the top shows the moment map on the original data.
Then, moment maps are shown that are calculated using every slice (100 total), every
4th slices (25 total), and every 8th slice (12 total). The results using fewer slices are
virtually indistinguishable from the version using all 100 slices.
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7 Discussion

In this feasibility study, we focus on persistence-based simplification of ALMA data
cubes. Our application development process focuses on the usability objectives of
collaborators, simplicity, integrability, and reproducibility, and we recommend these
design objectives for anyone else wishing to collaborate with astrophysicists.

Despite our initial inclination to build a large scale visualization system, we find
that this is unnecessary given the existing array of visualization options. Instead,
what is needed is a simple and compact tool to understand the impact of parameter
selection on the data via visualization. Parameter selection is not intuitive to new
users. Without the visualization of the parameter selection, that intuition is relatively
difficult to build. Nevertheless, once the selection is complete, the visualization and
data processing can be easily reproduced using the information retained via the
command-line interface.

Thus far, the reception of our approach has been good. Virtually everyone who
has seen the results are impressed, for some, almost to the point of skepticism. Pub-
lic outreach with such a new tool using unfamiliar techniques remains challenging.
Among astrophysicists, there is a desire to understand both the tool and the under-
lying technique. Given the complexities of topological data analysis, this can be a
challenging, but potentially transformative undertaking.

Acknowledgements This work was funded in part by a NRAO-NSF ALMA Development Grant
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Objective Finite-Time Flow Topology
from Flowmap Expansion and
Contraction

Roxana Bujack, Soumya Dutta, Duan Zhang, and Tobias Günther

Abstract We extend the definition of the classic instantaneous vector field sad-
dles, sinks, and sources to the finite-time setting by categorizing the domain based
on the behavior of the flow map w.r.t. contraction or expansion. Since the intuitive
Lagrangian approach turns out to be unusable in practice because it requires advec-
tion in unstable regions, we provide an alternative, sufficient criterion that can be
computed in a robust way. We show that both definitions are objective, relate them
to existing approaches, and show how the generalized critical points and their sepa-
ratrices can be visualized.

1 Introduction

The topological analysis of time-dependent vector fields remains to this day a very
active research area in flowvisualization. Similar to the classic steady case, we expect
that particle motion is guided by a number of topological elements that have mainly

Electronic supplementary material The online version of this chapter
(https://doi.org/10.1007/978-3-030-83500-2_7) contains supplementary material, which is
available to authorized users.

R. Bujack (B) · S. Dutta · D. Zhang
Los Alamos National Laboratory, Los Alamos, USA
e-mail: bujack@lanl.gov

S. Dutta
e-mail: sdutta@lanl.gov

D. Zhang
e-mail: dzhang@lanl.gov

T. Günther
Department of Computer Science, ETH Zurich, Zürich, Switzerland
e-mail: tobias.guenther@inf.ethz.ch

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2021
I. Hotz et al. (eds.), Topological Methods in Data Analysis and Visualization VI,
Mathematics and Visualization, https://doi.org/10.1007/978-3-030-83500-2_7

111

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-83500-2_7&domain=pdf
https://doi.org/10.1007/978-3-030-83500-2_7
mailto:bujack@lanl.gov
mailto:sdutta@lanl.gov
mailto:dzhang@lanl.gov
mailto:tobias.guenther@inf.ethz.ch
https://doi.org/10.1007/978-3-030-83500-2_7


112 R. Bujack et al.

been investigated individually, such as vortices [16, 20, 57], separating structures [22,
38, 55] and attractors [60]. In this paper, we introduce a finite-time generalization of
the classic 2D vector field topology that maintains physical meaning in time-varying
flows. In particular, we request the following properties for the topological structures
to be meaningful over finite-time windows:

• In steady flows, the method is consistent with classic vector field topology.
• The definition of topological elements is objective, i.e. invariant w.r.t. Galilean
transformations of the frame of reference.

• The feature definition is pathline-oriented and therefore in accordancewith particle
movement.

In a nutshell, the contributions of this work are as follows

• A coherent theoretical framework of an objective Lagrangian finite-time flow
topology that ties together approaches from the literature.

• A non-Lagrangian sufficient definition that exceeds its Lagrangian counterpart in
robustness.

• A simple algorithm for the extraction based on first-order approximation.
• Efficient visualizations of the finite-time topology.

Reviewing related work (Sect. 2), suggests a Lagrangian definition of finite-time
topology as a logical consequence, because it bridges the gap between several
approaches. Unfortunately, we will see quickly that it is practically useless because
of its lack of robustness (Sect. 3). Therefore, we will dedicate most of this paper
to the theoretical analysis of a non-Lagrangian alternative, which forms a sufficient
criterion for the intuitive Lagrangian definition (Sect. 4). Finally, we will showcase
results and suggest visualizations.

2 Related Work

The recent survey [6] on time dependent flow topology provides an overview on the
goals, challenges, and state of the art.

2.1 Classic Steady Vector Field Topology

Classic steady vector field topology provides us with a compact description of the
asymptotic motion of particles [26, 42]. Governing the asymptotic motion are a num-
ber of topological elements, which were described by Helman and Hesselink [27],
including critical points (sinks, sources, centers, saddles), boundary elements (attach-
ment and detachment points), the manifolds that separate flow regions of homoge-
neous asymptotic behavior (separatrices), and periodic orbits [2]. The extension to
the 3D case [28] gave rise to a broader variety of elements, such as bifurcation
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lines [40] (lines to which nearby streamlines are asymptotically drawn to or repelled
away from at an exponential rate) or saddle connectors [53] (individual streamlines
that connect saddles). Aside from characterizations as extremal lines [33] of vortex-
related scalar fields [47, 48], vortex corelines have also been expressed as lines
along which the velocity vector aligns with the single real-valued eigenvector of the
Jacobian matrix [52]. The parallel vectors operator [39] became a very powerful
descriptor for such line features. In fact, both vortex corelines and bifurcation lines
can be expressed in this way, with the only difference being that vortex corelines
require swirling motion [39] (complex eigenvalues in the Jacobian) and bifurcation
lines require attracting and repelling behavior [38, 44] (negative determinant in the
plane orthogonal to the flow). Extensions include the characterization of higher-order
critical points into sectors of elliptic, parabolic, or hyperbolic behavior [8, 49, 59]
and higher-order bent vortex corelines [45].

2.2 Streamlines vs. Pathlines

More recent research concentrated on the definition and extraction of topological
structures in time-dependent flows [41], inwhichwe face twomajor challenges. First,
aside from periodic flows, the temporal domain is usually bounded, which does not
permit the observation of asymptotic motion. Second, the topology of streamlines
(i.e. the observation of individual time slices) is irrelevant for pathlines,whichwas for
instance demonstrated for vortex corelines [57]. The difference between streamline-
oriented and pathline-oriented topology was discussed by Theisel et al. [54] in detail.
Wiebel et al. [60] demonstrated in a simple 2D rotating petri-dish example that
most existing techniques fail to detect the attracting vortex center that moves on a
circular path. In the literature, this flow is sometimes also referred to as the Beads
problem [58]. Integration-based methods can find the coreline, including the particle
density estimate to extract the preferential particle settling [60] and the vortex coreline
in the vector field in which streaklines are tangent curves [58]. Local methods failed
due to lack of rotation invariance in the feature definitions, which can be obtained
by a deformation from Cartesian to polar coordinates [18].

2.3 Reference Frames

A number of methods suggest to reduce the time-dependent topology back to the
steady case by a suitable choice of the reference frame. Wiebel et al. [61] and Bhatia
et al. [3] used flow decompositions to subtract a flow component that is irrotational
and incompressible, i.e. harmonic. Fuchs et al. [14] selected a reference frame in
which the velocity vanishes at locations at which the acceleration is zero. Bujack et
al. [5] selected extrema in the determinant of the Jacobian to determine the reference
frame. To determine a reference frame in which the vector field becomes steady [37,
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43], reference frames have been calculated by local [16, 19] and global [20] linear
optimizations, as well as by deep learning [32]. Alternatively, several local feature
definitions possess a certain reference frame invariance. However, most of them,
are only invariant to equal-speed translations, e.g., vorticity, λ2 [30], and the Q-
criterion [29]. Objectivity is achieved only by a few, such as by the instantaneous
vorticity deviation [24].

2.4 Lagrangian Coherent Structures

In contrast to the local approaches, a large body of research searched for structures
that behave coherently over afinite-timewindow.This research includes region-based
vortexmethods [24], coherent sets [13], and coherent line and surface structures, typ-
ically called Lagrangian coherent structures (LCS) [23]. The latter results in material
lines that order the flow, including jet cores (parabolic LCS), vortex boundaries (ellip-
tic LCS) and separating structures (hyperbolic LCS). As approximation to hyperbolic
LCS, Haller [25] suggested to use the finite-time Lyapunov exponent (FTLE) [50],
which measures the separation of nearby-released particles over a finite-time win-
dow. A number of approaches to compute FTLE exist, including a discretization of
the flowmap [25], localized FTLE [31], timeline cell tracking [34], a direct sampling
of an advected circle [56] and Monte Carlo rendering [17]. Later, Haller [22] sug-
gested to extract hyperbolic LCS by looking for the biggest separation orthogonal
to a material surface. Similarly, Friederici et al. [11, 12] analyzed the finite-time
separation orthogonal to a separatrix in steady flows.

2.5 Time-Dependent Saddles

Theisel et al. [54] categorized pathlines into attractors, repellors, and saddle-like tra-
jectories based on whether their surrounding pathlines converge toward it in forward
integration, in backward integration, or neither. In the fluid dynamics community,
Haller [21] defined uniformly hyperbolic trajectories as pathlines with the property
that half of their neighboring pathlines converge toward them in forward direction
and the other in backward direction. Further, he introduced the concept of hyper-
bolicity time as the maximal amount of time a pathline spends in a region in which
the Jacobian determinant is strictly negative and shows that the local maxima of
hyperbolicity time are a first approximation to the uniformly hyperbolic trajectories.
Inspired by Haller’s hyperbolic trajectories [21], Sadlo and Weiskopf [46] general-
ized the concept of saddle-type critical points to time-dependent vector fields using
the intersections of forward and backward FTLE ridges. The motivation behind this
choice is that just like saddles, these areas show divergent behavior in forward as
well as backward direction in time. As introduced by Wiebel et al. [62], they used
these points as seeds for generalized streaklines, which form a generalization of sep-
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Fig. 1 The Lagrangian definition is not robust. Categorization of the pathlines of the accelerated
translation of a steady saddle is visualized through color coding: red–source; blue–sink; white–
saddle. Theoretically, the saddle in the center of timestep 0 should move once around the origin of
coordinates on a circle. Instead it is fully driven away by the expanding regions

aratrices to time-dependent flows. Later, Üffinger et al. [55] extended the concept
to 3D. To approximate the path of a saddle, i.e. a bifurcation line in 2D space-time,
Machado et al. [38] applied the reduced velocity criterion [39, 52] and iteratively
aligned the extracted bifurcation line with the flow to obtain a pathline. In his recent
survey on LCS, Haller [23] formulated four desirable properties: objectivity, finite-
time nature, Lagrangian invariance, and spatial convergence. He points out that most
classic definitions of material stability look strictly in forward direction to assess
repelling behavior and strictly in backward direction to assess repelling behavior.
Instead, repelling and attracting behavior should be assessed over the full time win-
dow, i.e. both forward and backward from the current point in time. He rejecteds
Shadden’s definition of LCS as second derivative ridges [50] and suggests shrink
lines and stretch lines as LCSs [9, 10].

3 Intuitive Approach

Many attempts to generalize classic vector field topology to a time-dependent setting
are based on translating the convergence and divergence properties of the classic
critical points to pathlines. Most approaches deal with saddles [4, 21, 22, 46]. A
few take into account sources or sinks, too [54, 60]. In this paper, we also define
our categorization by pulling together existing work into one coherent framework.
Intuitively speaking, we consider a pathline a Lagrangian finite-time saddle if part
of its neighborhood has attracting behavior and part of its neighborhood has repelling
behavior.We consider it a Lagrangian finite-time sink if all of its neighborhood has
attracting behavior, and a Lagrangian finite-time source if all of its neighborhood
has repelling behavior. The term Lagrangian or Lagrangian invariant refers to the
ability of a structure to move with the flow, i.e. to be invariant w.r.t. advection [23].
We translate this into a concise mathematical definition.

Definition 1 (Lagrangian Finite-time Topological Categories). We consider a
point and time (x0, t) ∈ R

d × R a Lagrangian finite-time saddle for a given time
interval t ∈ [t0, t1] ⊂ R if for any ε > 0, we can find a plane containing 4 points
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Fig. 2 Lagrangian intersection of forward and backward FTLE is not robust

x1, ..., x4 ∈ Bε(x0) in its ε-neighborhood (numbered in positive orientation around
x0) so that the pathlines starting at (x1, t) and (x3, t) will expand from x0 forward in
time until t1 while (x2, t) and (x4, t) contract. We consider it a Lagrangian finite-time
sink if there is an ε0 > 0 such that for all ε : ε0 > ε > 0, a pathline starting at any
point x ∈ Bε(x0) in its ε-neighborhood will contract to x0 and a finite-time source if
it expands. ��

To categorize the steady flow behavior in finite-time, we define contraction and
expansion as follows:

Definition 2 (Finite-time Contraction and Expansion). We consider two trajec-
tories x0(t), xi (t) : R → R

d expanding in forward time for a given finite-time inter-
val t ∈ [t0, t1] if ‖x0(t0) − xi (t0)‖ < ‖x0(t1) − xi (t1)‖ and contracting if ‖x0(t0) −
xi (t0)‖ > ‖x0(t1) − xi (t1)‖. Expansion in forward time is equivalent to contraction
in backward time and vice versa. ��

Definition 1 is objective [51] and Lagrangian invariant [23], i.e. it is advected by
theflow. It is not able to classify centers and it does not always coincidewith the steady
topology, for example for linear fields. It is straightforward and very intuitive and
nicely ties together different related work, but it suffers from a significant drawback.
In practice, it is pretty much unusable because it is not robust. The categorization of
the different pathlines at time t0 works just fine, but to determine where these areas
of a category go, we have to integrate along unstable manifolds that strongly deflect
the pathlines, Fig. 1.

Impossibility of integration purely along stable manifolds. To advect in a robust way,
an idea would be to make use of the backward integration [21, 22, 46]. But advecting
the forward time attracting regions (sinks and part of the saddles) in the forward time
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direction and advecting the backward time attracting regions (sources and the other
part of the saddles) in the backward time direction does not work either, because the
saddle lies on a repelling manifold for both directions. This part will be deflected
no matter from where we integrate. Figure2 illustrates the problem in space-time.
Theoretically, the saddle lies on the intersection line of the attracting manifolds in
forward and backward directions. But due to the strong deflection, the surfaces may
not intersect at all or become aligned.

4 Theory

In this section, we will provide a definition of a non-Lagrangian finite-time topol-
ogy, which is a necessary condition for the intuitive Definition 1, but allows for a
robust extraction. We will study its properties and derive an algorithm for its efficient
computation based on its first-order approximation.

4.1 Mathematical Definition

Analogously to the Lagrangian Definition 1, we state a concise mathematical def-
inition that concisely describes the intuitive physical categorization of the domain
into contracting and expanding regions. The first of the two main differences is that
we no longer require these regions to be Lagrangian, which means that instead of
categorizing pathlines, we categorize points in space and time. Second, we explicitly
consider these point’s contracting and expanding behavior (Definition 2) in forward
and also in backward time.

Definition 3 (Finite-time Topological Categories). We consider a point in space
and time (x0, t) ∈ R

d × R a finite-time saddle for a given time interval t ∈ [t0, t1] ⊂
R if for any ε > 0, we can find 4 points x1, ..., x4 ∈ Bε(x0) in its ε-neighborhood
(numbered in positive orientation around x0) so that the pathlines starting at (x1, t)
and (x3, t) will expand from x0 forward in time until t1 and contract backward until
t0 while (x2, t) and (x4, t) do the opposite. We consider it a finite-time sink if there
is an ε0 > 0 such that all ε : ε0 > ε > 0, so that a pathline starting at any point
x ∈ Bε(x0) in its ε-neighborhood will contract to x0 forward in time until t1 and
expands backward until t0 and a finite-time source for the opposite. ��

4.2 Relation to the Lagrangian Definition

Definition 3 is sufficient for Definition 1, which means that every point in space and
time that is classified as a finite-time saddle/source/sink lies on a pathline that is
classified as a Lagrangian finite-time saddle/source/sink.
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To see that, let

Ft1
t0 : R × R × R

d → R
d , t × t0 × x0 �→ Ft1

t0 (x0), (1)

with
Ft0
t0 (x0) =x0,

Ft2
t1 (Ft1

t0 (x0)) =Ft2
t0 (x0),

(2)

denote the flow map describing how a flow parcel at (x0, t0) moves to Ft1
t0 (x0) in the

time interval t1 − t0. Then, we can compactly write the conditions in Definition 3.
For a saddle, there exist xodd , xeven such that:

‖Ft1
t (xodd) − Ft1

t (x0)‖ > ‖xodd − x0‖,
‖Ft1

t (xeven) − Ft1
t (x0)‖ < ‖xeven − x0‖,

‖Ft0
t (xodd) − Ft0

t (x0)‖ < ‖xodd − x0‖,
‖Ft0

t (xeven) − Ft0
t (x0)‖ > ‖xeven − x0‖,

(3)

for a sink for all xi holds:

‖Ft1
t (xi ) − Ft1

t (x0)‖ < ‖xi − x0‖,
‖Ft0

t (xi ) − Ft0
t (x0)‖ > ‖xi − x0‖, (4)

and for a source for all xi holds:

‖Ft1
t (xi ) − Ft1

t (x0)‖ > ‖xi − x0‖,
‖Ft0

t (xi ) − Ft0
t (x0)‖ < ‖xi − x0‖. (5)

From this, we can directly derive the properties of the pathline through (x0, t). We
will show this for the case of a source. Assume (5) holds then at time t0, all points
(Ft0

t (xi ), t0) in the neighborhood of the starting location of this pathline (Ft0
t (x0), t0)

satisfy

‖Ft0
t (xi ) − Ft0

t (x0)‖ (5)
< ‖xi − x0‖ (5)

< ‖Ft1
t (xi ) − Ft1

t (x0)‖, (6)

which is the condition for the pathline to be a Lagrangian finite-time source. The
size of ε0 in Definition 1 depends on the respective flow field, but its existence is
guaranteed if it is continuous, because the flowmap is as many times differentiable
as the vector field [1]. The other cases work analogously.
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4.3 Objectivity

We consider objectivity [51] important because this property ensures that two
observers do not get different answers from looking at the same physical phe-
nomenon.Within the flow, smaller features get advected by larger ones, which results
as a mixture of different ’best’ reference frames to look at the flow. Definition 3
is objective, i.e. invariant w.r.t a Euclidean transformation of the reference frame
x ′ = Q(t)x + c(t) with a time-dependent orthogonal matrix Q : R →∈ SO(d) and
a translation c : R → R

d . This follows from the transformation properties of the
flowmap under Euclidean transformations F ′t1

t0(x
′
0) = Q(t1)F

t1
t0 (x0) − c(t1) [36],

because of which the difference suffices

F ′t1
t0(x

′
0) − F ′t1

t (x ′
i ) = Q(t1)F

t1
t0 (x0) − c(t1) − Q(t1)F

t1
t (xi ) + c(t1)

= Q(t1)(F
t1
t0 (x0) − Ft1

t (xi ))
(7)

and the distance

‖F ′t1
t0(x

′
0) − F ′t1

t (x ′
i )‖2 = (F ′t1

t0(x
′
0) − F ′t1

t (x ′
i ))

T (F ′t1
t0(x

′
0) − F ′t1

t (x ′
i ))

(7)= (Q(t1)(F
t1
t0 (x0) − Ft1

t (xi )))
T (Q(t1)(F

t1
t0 (x0) − Ft1

t (xi )))

= (Ft1
t0 (x0) − Ft1

t (xi ))
T Q(t1)

T Q(t1)(F
t1
t0 (x0) − Ft1

t (xi ))

= (Ft1
t0 (x0) − Ft1

t (xi ))
T (Ft1

t0 (x0) − Ft1
t (xi ))

= ‖Ft1
t0 (x0) − Ft1

t (xi )‖.
(8)

4.4 Linear Approximation

Thedifference between two close points can be approximated usingTaylor’s theorem.
In our case, the conditions (3) to (5) can be expressed using the deformation gradient
∇F : R

d×d

Ft1
t (x0) − Ft1

t (xi ) = ∇Ft1
t (x0)(xi − x0) + O(‖xi − x0‖2). (9)

For the limit ε → 0, we can write its magnitude as

‖Ft1
t (x0) − Ft1

t (xi )‖2 = (Ft1
t (x0) − Ft1

t (xi ))
T (Ft1

t (x0) − Ft1
t (xi ))

= (x0 − xi )
T (∇Ft1

t (x0))
T∇Ft1

t (x0)(x0 − xi ).
(10)

The first part of condition (5) can be rewritten as the ratio
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‖Ft1
t (x0) − Ft1

t (xi )‖
‖x0 − xi‖ > 1. (11)

With the unit vector
n = x0 − xi

‖x0 − xi‖ (12)

and the Cauchy-Green strain tensor Ct1
t0 (x0) = (∇Ft1

t0 (x0))T∇Ft1
t0 (x0) from contin-

uum mechanics, the ratio (11) can be estimated through

‖Ft1
t (x0) − Ft1

t (xi )‖2
‖x0 − xi‖2 = nT (∇Ft1

t (x0))
T∇Ft1

t (x0)n = nTCt1
t (x0)n. (13)

Because of

‖Ft1
t (x1) − Ft1

t (x3)‖
‖x1 − x3‖ > 1 ⇔ ‖Ft1

t (x1) − Ft1
t (x3)‖2

‖x1 − x3‖2 > 1 ⇔ nTCt1
t (x0)n > 1,

(14)
the conditions in (3) to (5) can be expressed through the eigenvalues of C . Since
the eigenvectors maximize max‖n‖=1 |nTCn|, the conditions are transferred to the
eigenvalues. In particular, for a point (x0, t) to be a first-order approximation to
the finite-time saddle in the interval [t0, t1], the tensors Ct1

t (x0) and Ct0
t (x0) must

each have eigenvalues greater as well as smaller than 1. The eigenvalues need to be
both smaller than 1 for Ct1

t (x0) and both greater than 1 for Ct0
t (x0) for a point to be

a first-order approximation of a finite-time sink and the opposite for a finite-time
source.

The linear approximation is also objective. Because of ∇x ′x = d x
d x ′ = QT and the

chain rule [36], the deformation gradient suffices:

∇Ft1
t0

′
(x ′) = Q(t1)∇Ft1

t0 (x)Q(t0)
T . (15)

and the Cauchy-Green strain tensor

Ct1
t0

′
(x ′) = (∇Ft1

t0
′
(x ′))T∇Ft1

t0
′
(x ′)

= (Q(t1)∇Ft1
t0 (x)Q(t0)

T )T Q(t1)∇Ft1
t0 (x)Q(t0)

T

= Q(t0)((∇Ft1
t0 (x))T∇Ft1

t0 (x))Q(t0)
T

= Q(t0)C
t1
t0 (x)Q(t0)

T .

(16)

This approximation is not necessarily objective, because it has two time dependencies
that the definition of objectivity does not encompass, but its eigenvalues are objective.
Let v be an eigenvector of C ′ with eigenvalue λ, i.e. Cv = λv, then ṽ = Q(t0)v is
an eigenvector of C with the same eigenvalue

C ′ṽ (16)= Q(t0)C
t1
t0 (x)Q(t0)

T ṽ = Q(t0)C
t1
t0 (x)v = Q(t0)λv = λQ(t0)v = λṽ. (17)
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4.5 Strength

As can be seen in Fig. 1, Definitions 1 and 3 usually do not produce isolated points
but areas of coherent classification. For each connected component of one category,
we can choose a point as a representative through demanding that it shows the
corresponding contracting or expanding behavior in locally the strongest way, for
example for the saddle through maximizing

Mt1
t0 (x0, t) := max

xodd ,xeven∈Bε (x0)
min(

‖Ft1
t (xodd) − Ft1

t (x0)‖
‖xodd − x0‖ ,

‖xeven − x0‖
‖Ft1

t (xeven) − Ft1
t (x0)‖ ,

‖xodd − x0‖
‖Ft0

t (xodd) − Ft0
t (x0)‖ ,

‖Ft0
t (xeven) − Ft0

t (x0)‖
‖xeven − x0‖ ),

(18)
for the sink through maximizing

Mt1
t0 (x0, t) := min

xi∈Bε (x0)
min(

‖Ft1
t (xi ) − Ft1

t (x0)‖
‖xi − x0‖ ,

‖xi − x0‖
‖Ft0

t (xi ) − Ft0
t (x0)‖ ), (19)

and for the source through maximizing

Mt1
t0 (x0, t) := min

xi∈Bε (x0)
min(

‖xi − x0‖
‖Ft1

t (xi ) − Ft1
t (x0)‖ ,

‖Ft0
t (xi ) − Ft0

t (x0)‖
‖xi − x0‖ ). (20)

The inner most min refers to the minimum of the forward and backward terms to
avoid the detection of examples that only exhibit the behavior in one direction. The
secondmin avoids line sinks and sources, which do not have expanding or contracting
behavior in one direction. The outer most maximization refers to the candidate points
x0 that exhibit the respective behavior in locally the strongest way.

4.6 Weighting Related to FTLE

The first-order approximation shows that our measures of strength are related to
FTLE, where the largest eigenvalue λmax of the Cauchy-Green strain tensor C is
evaluated. To consider the dependence on the size of the time interval and the poten-
tially rapid growth of the expansion, λmax is weighted via

λ̃max(C
t1
t0 (x0)) := FT LEt1

t0 (x0) =
log

√
λmax (C

t1
t0 (x0))

t1 − t0
, (21)

Analogously, we can weight the largest and smallest eigenvalue λmax , λmin of the
Cauchy-Green strain tensor for weighted first-order approximations of our measures
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of strength. The logarithm changes the limit where changes between the categories
happen to 0, which leads to the following cases

(x0, t) is a

⎧
⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

saddle if λ̃max (C
t1
t ) > 0 ∧ λ̃min(C

t1
t ) < 0 ∧ λ̃max (C

t0
t ) > 0

∧λ̃min(C
t0
t ) < 0 ∧ vmax (C

t1
t ) ∦ vmin(C

t0
t ),

source if ∧ λ̃min(C
t1
t ) > 0 ∧ λ̃max (C

t0
t ) < 0,

sink if ∧ λ̃max (C
t1
t ) < 0 ∧ λ̃min(C

t0
t ) > 0

neither else.

(22)

Please note that for a first-order saddle, we additionally have to make sure that the
directions of the strongest expansion in forward and backward time do not coincide
to guarantee that there are really 4 separate points xi as demanded in Definition 3
instead of xodd as suggested in forward time to coincide with xeven as suggested by
backward time, which would occur for example for a blue sky bifurcation, i.e. a flow
that is first a sink and then turns into a source or vice versa.

That also means that we can directly use the absolute value of the weighted
eigenvalues to determine how strong the contracting or expanding properties of each
point are. In particular, we use the minimum over all four λ̃

M̃t1
t0 (x0, t) := min

i∈{0,1} min
j∈{min,max}

|λ̃ j (C
ti
t (x0))|

|ti − t | . (23)

If a point does not fall into a category (for example, it is a source in forward time
and saddle in backward time), we set the strength to zero. If a point is a saddle, we
additionally weight it by the scalar product across the eigenvectors to exclude areas
where they coincide in forward and backward direction. All in all, we get themeasure
of strength

Mt1
t0(x0, t) =

⎧
⎪⎨
⎪⎩

M̃t1
t0 (x0, t) if source or sink,

|vmax (C
t1
t )T vmin(C

t0
t )|M̃t1

t0 (x0, t) if saddle,

0 else.

. (24)

We compute this scalar measure of strength for the whole domain, which will allow
us to determine strong representatives for coherent regions of the same behavior and
to remove weak occurrences for reducing clutter in the visualizations. Since, the
eigenvectors are orthogonal, we do not need to consider the other pair.

The measure of strength is also objective. We already know that the eigenval-
ues are objective from (17) and we can see that the product of the eigenvectors
v1(C

t1
t (x0))T v2(C

t0
t (x0)) is objective, too, because their transformed equivalents suf-

fice
v′
1(C

t1
t

′
(x ′

0))
T v′

2(C
t0
t

′
(x ′

0))
(17)= (Q(t)v1(C

t1
t (x0)))

T Q(t)v2(C
t0
t (x0))

= v1(C
t1
t (x0))

T v2(C
t0
t (x0)).

(25)
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Fig. 3 The non-Lagrangian definition correctly categorizes the pathlines of the accelerated transla-
tion of a steady saddle. Red: source, blue: sink, white: saddle, black: neither.We show the strength of
each region by overlaying (24) ranging from black for low strength to transparent for high strength

4.7 Separatrices

It is common practice to use generalized streaklines [62] seeded around the locally
strongest saddles, sometimes also called bifurcation lines in space-time, [38, 46, 55].
In particular, we seed pathlines with a small offset in both directions of the eigenvec-
tor vmax (C

t1
t (x0)) corresponding to the bigger eigenvalue for the forward separatrix

advection and analogously with a small offset in both directions of the eigenvector
vmax (C

t0
t (x0)) for the backward separatrix. Then, we generate surfaces from them in

space-time. Figure5 shows a visualization. The temporally local separatrices can be
produced from slicing the volume at one timestep.

5 Experiments

In this section, we concentrate mainly on experiments for which we actually know
the ground truth to demonstrate the correctness of the proposed method. For this
purpose, we use two analytic data sets. The first one is a steady saddle

v(x) = v(x, y) = 2

(
x + 0.5

−y

)
e−2

√
(x+0.5)2+y2 (26)

that is moved through an accelerated translation. A Euclidean transformation

x ′ = Q(t)x + c(t) (27)

changes a velocity field via

v′(x, t) = Q(t)v(QT (t)(x − c(t))) + Q̇(t)(x − c(t)) + ċ(t). (28)

We use c(t) = 1
2 (sin(θ) + 1, cos(θ))T with θ = 2π t2/|T |2 and |T | denoting the

number of time steps, which moves the saddle clockwise on the circle with radius
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Fig. 4 Visualizations of the finite-time topology in space-time for two examples of Euclidean
transformations. Left: isosurfaces of the strength colored by category. Red– source; blue– sink;
white– saddle. Middle: separatrices, i.e. streak surfaces forward (red) and backward (blue) in time
seeded at the strongest saddle offset in the direction of the eigenvectors of the Cauchy Green strain
tensor. Right: both. The path of the saddle is one full circle in both cases. The shapes of the sinks,
sources, and separatrices reveal that the top movement is a pure translation, whereas the bottom is
a rotation

0.5 around (0, 0)T starting at (0, 0.5)T . The motivation of using accelerated moving
reference frames is that this is the most complicated case. If a method detects this one
correctly, it will also work for constant movements. We have already seen the results
of the Lagrangian categorization for this dataset in Fig. 1. The results of the robust
categorization using the suggested sufficient first-order approximation suggested in
this work can be found in Fig. 3. This figure shows the expected behavior with the
accelerated movement around the origin. On top of the category, we also encode
the strength of the occurrence fading out weak areas into black. This approach is
consistent with color-coding black areas that belong in no category. Please note that
the two sources (red) and two sinks (blue) around the saddle (white) are a result of
the Gaussian weighting in combination with the saddle. The actual expanding and
contracting character of these regions can bewell perceived in the particle view Fig. 1
offers.



Objective Finite-Time Flow Topology ... 125

Fig. 5 Quad gyre: separatrices (pink: fw,
blue: bw) of strongest saddle (white) in
spacetime

Fig. 6 Petri-dish: the rotating sink (blue)
and pathlines for comparison in spacetime

The second analytic dataset is the same saddle (26) performing an accelerated
rotation with Q(t) ∈ SO2 being the rotation matrix by θ = 2π t2/|T |2. For both
flows, we use the spatial domain [−2, 2]2 with resolution 812 and the full 21 time
steps [t1, t1] = [0, 20]. To avoid boundary artifacts, we computed the flowmap on a
bigger domain. Both transformations are purely Euclidean. They can be interpreted
as a change of the reference frame of the observer and an objective method should
be able to detect the saddle on the circle.

Figure4 shows the results of the classification and the separatrices for both trans-
formations in space-time. We visualize the different categories using the same color
coding. Saddles arewhite, sources are red, sinks are blue, and points that fall in no cat-
egory are black. For the reduction of weak occurrences to gain a less cluttered, more
expressive visualization, we applied isocontours on the scalar strength field (24) and
colored the result using the scalar field of the categories (22). Storing the two fields
makes the visualization of the method easy in any common visualization tool. To get
the separatrices for each time slice, we first chose representatives for the saddle-type
regions by selecting the locations with the global maximum of the strength. Then,
we seeded pathlines as described in Sect. 4.7. Our method detects the true locations
of the saddle up to the accuracy of one cell. It cannot find the exact location within
a cell, because the maximum always lies on a gridpoint in a piecewise linear field.

For these datasets, the intersection of forward and backward FTLE as suggested
by Sadlo [46] produces the same results. The Lagrangian forward and backward
FTLE produces no result for the detection of the saddles. Even though, the ridges are
detected correctly at the first and last time step, the surfaces are deflected so strongly
that they do not intersect at all for the translation and almost everywhere for the
rotation, Fig. 1.
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Fig. 7 Categorization in viscous fingers dataset for timestep t = 70

Figure5 shows the extraction of the strongest saddle and the separatrices of the
quad gyre, which extends the double gyre [50] to the domain [0, 1]2. We used the
resolution 2012 and one full period in time. Here, the global maximum of our mea-
sure (24) coincides with the intersection of forward and backward FTLE of the
adjacent intervals [46]. The double gyre is an incompressible flow, which is why it
does not have sources and sinks.

Figures6 and 7 show results of the categorization for two flow simulations using
red for sources, blue for sinks, white for saddles, and black for neither. The rotating
sink in the last 40 timesteps of the petri-dish dataset [5, 7, 60] is nicely extracted
but the complicated topology in the viscous fingers dataset [35] from the SciVis
contest http://sciviscontest.ieeevis.org is harder to interpret. A limit of our method is
reached if the data shows strong contraction and spans a long period of time. Once all
particles in the flowmap are accumulated in one point, nothing is left for it to capture
in coming time steps, which leads to detail getting lost and most points not belonging
in either category 7a.We show the strength of each region by overlaying (24), ranging
from black for low strength to transparent for high strength. This issue is a known
problem of Lagrangian methods and can be overcome by guaranteeing Lagrangian
invariance for a time period of interest (POI) only [15]. Figures7a and 7b show the
difference of the global [t0, t1] = [0, 120] and the POI 70 approach for time step 70.
Figures7c and 7d show the partial POI categories considering only backward and
only forward information, which together form Fig. 7b. The comparison shows that
the chosen time interval influences how a point is categorized.

6 Discussion

The extension of vector field topology to time-dependent flows has been extensively
studied not only in the scientific visualization community. Our results are based on
many approaches that have been published previously.

The closest related work w.r.t. saddle is [4]. The definition of finite-time saddle is
identical to ours, but sources and sinks were not treated. There, the connection of the
saddle part to Lagrangian coherent structures based on FTLE is treated. Sadlo and

http://sciviscontest.ieeevis.org


Objective Finite-Time Flow Topology ... 127

Weiskopf [46] suggested to intersect forward and backward FTLE ridges, which cor-
responds to half of the constraints in Definition 3. Approaches of this kind, where dif-
ferent time intervals are combined,were criticized byHaller [23], because they are not
Lagrangian w.r.t. the total time interval. But as we have seen, the Lagrangian equiva-
lent in Definition 1 is infeasible in practice. Definition 3 bridges the gap between the
Lagrangian approach and the FTLE intersection of adjacent intervals [46] providing
a categorization that is both Lagrangian and robust.

The closest work w.r.t. sinks is probably by Wiebel et al. [60]. They used the
density maximum of particles that were seeded equidistantly in space and repeatedly
over time. Up to the exact evaluation of the density maxima, our sink definition is
in accordance with theirs because dense particle positions correspond to contracting
flowmap behavior. The main difference is that we consider a concrete finite-time
interval [t0, t1], while they seed repeatedly in time. Their method can be interpreted
as averaging the results of ours over the intervals [ti , t1] with , i ∈ [t0, t1]. They do
not consider saddles in their work.

Probably the closest related work overall is by Theisel et al. [54]. In their pathline-
based approach, they also categorize pathlines into attractors, repellors, and saddle-
like trajectories based on whether their surrounding pathlines converge toward it in
forward integration, in backward integration, or both. There are three main differ-
ences to our work. First, their approach is local in time. They use the instantaneous
orientation of the pathlines in spacetime, whichmeans it cannot encompass the finite-
term behavior of the flow. Second for the actual computation, they categorize a point
using the Jacobian of the vector field that results from projection of these directions
on the plane through spacetime that is orthogonal to the pathline through it. This
approach is not objective. Finally, there is no notion of strength or the extraction of
representatives, or separatrices.

Our notion of separatrices uses generalized streaklines [62] seeded on the saddles,
which is identical to related work on hyperbolic trajectories, saddle core lines, and
bifurcation lines [38, 46, 55].

7 Conclusion

We have presented an intuitive Lagrangian extension of the classic 2D vector field
critical points saddle, source, and sink to finite-time in Definition 1. It is objective
and reflects particle movement in a physically meaningful way. Since it is not robust
in practice, we also provide a sufficient criterion in Definition 3 and a first-order
approximation for the computation of the category and the strength. We show its
independence on changes of the reference frame and point out its relations to existing
approaches in the literature.

Looking at the discussion, we do not necessarily consider Definitions 1 and 3 a
huge leap over existingmethods.We consider themain contribution of this paper to be
how this theoretical framework encompasses saddles, sources, sinks, and separatrices
and therefore ties together multiple valuable approaches from the literature.
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Limitations are that our method is not able to detect all classic critical points, e.g.,
in linear steady fields because there, the Cauchy Green strain tensor is constant. In
addition, just like FTLE, it may detect shear as saddles and may require a high reso-
lution and long computation times for the generation of the flowmap. Furthermore,
it loses its ability to capture details in long simulation runs with strong contraction
when all particles gather in one point. The categorization is always tied to a given
time interval. The same point in space and time could be classified differently for dif-
ferent intervals. In the future, we will analyze strategies to choose meaningful time
intervals. Finally, the categorization is undefined at the boundary where particles
leave the domain and at the boundary times t0 and t1. Analysis of how the method
extends to 3D flow will be future work.
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Coreline Criteria for Inertial Particle
Motion

Irene Baeza Rojo and Tobias Günther

Abstract Dynamical systems, such as the second-order ODEs that govern the
motion of finite-sized objects in fluids, describe the evolution of a state by a tra-
jectory living in a high-dimensional phase space. The high dimensionality leads to
visualization challenges and, for the case of inertial particles, multiple models exist
that pose different assumptions. In this paper, we thoroughly address the extraction
of a specific feature, namely the vortex corelines of inertial particles. Based on a gen-
eral template model that comprises two of the most commonly used inertial particle
ODEs, we first transform their high-dimensional tangent vector field into a Galilean
reference frame in which the observed inertial particle flow becomes as steady as
possible. In the optimal frame, we derive first-order and second-order vortex core-
line criteria, allowing us to extract straight and bent inertial vortex corelines using
3D and 6D parallel vectors operators, respectively. With this, we generalize existing
work in multiple ways: not only do we handle two inertial particle models at once,
we extend the concept of second-order vortex corelines to the inertial case and make
themGalilean-invariant by deriving the criteria from a steady reference frame, rather
than from a geometric characterization.

1 Introduction

In this paper, we study the vortical motion of finite-sized objects in time-dependent
fluids, such as sand particles in air or bubbles in water. Such vortex dynamics occur
for instance when helicopters approach the ground [1–3], in the detection of marine
debris [4], and in the formationof rain [5]. Previousmethods [6, 7] used an aerosol par-
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ticlemodel that had only one degree of freedom.We extend the vortex coreline extrac-
tion in unsteady flows to a more general inertial particle model that captures a wider
spectrum of density ratios between the particle and the surrounding medium. Using
a generalized description that contains both models as special cases, we develop a
first-order and a second-order feature extractor based on Sujudi-Haimes [8] and Roth
and Peikert [9], respectively. While the first-order extraction can be carried out with
standard 3D parallel vectors extractors [10], the second-order criterion requires the
search for 6D parallel vectors in a high-dimensional 6D space, for which we use a
Bézier-based subdivision with subsequent Newton iterations. Instead of deriving the
vortex criteria only from a geometric point of view in space-time [6], we extract the
vortex corelines in local Galilean reference frames in which the flow field becomes
as steady as possible [11, 12]. When it comes to vortex coreline extraction, there are
two orthogonal concepts: the shape of the coreline, and the motion of the coreline.
While previous work [7] concentrated on the motion, our focus is on the shape of
the coreline, as we search for straight and curved corelines. Assuming that vortices
perform Galilean transformations, we transform our flow into a reference frame in
which the time partial derivative vanishes by optimizing for a Galilean transforma-
tion. In the optimal frame, the resulting vortex extraction methods therefore become
Galilean invariant. In summary, we contribute:

• a generalization of the inertial vortex coreline criterion of Günther and Theisel [6]
to a more general particle model,

• and a second-order criterion that extracts bent inertial vortex corelines, for which
we generalize Roth and Peikert [9].

Notation. In the following, we denote scalars s in italic letters, vectors v are bold and
matrices J are bold upper-case letters. Throughout the chapter, I denotes the identity
matrix. Quantities in the space-velocity domain are denoted with a tilde ṽ.

2 Related Work

2.1 Galilean Invariance

Galilean invariance is a desirable formal property that the measure of a feature might
have. If a measure (such as a vortex measure) is Galilean invariant, then it does
not change under Galilean transformations of the reference frame [23]. Formally, a
Galilean transformation maps a point (x, t) to the point (x∗, t∗):

x∗ = x + c + t d, t∗ = t + a, (1)

where c and d are constant vectors and a is a constant scalar. Accordingly, a vector
field u(x, t) is transformed to:
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u∗(x∗, t∗) = u(x, t) + d (2)

= u(x∗ − c − t d, t∗ − a) + d, (3)

which follows from differentiation of Eq. (1) to consider how the tangent of a pathline
dx∗(t∗)

dt = u∗(x∗, t∗) is transformed. A measure M is Galilean invariant if it gives
the same result at both locations in the accordingly transformed vector fields, i.e.,
M(x,u, t) = M(x∗,u∗, t∗). For example, applying the ∇ operator to both sides of
Eq. (2) shows that the Jacobian is Galilean invariant, since ∇u∗(x∗, t∗) = ∇u(x, t),
given that ∇d = 0 because d is constant.

Since the motion of the reference frame and the motion of the feature are relative
to each other, Galilean invariance not only guarantees that measures do not change
under motions of the observer; they also do not change when the feature itself is
moving. In other words, a Galilean invariant vortex measure will give the same
result if vortices move with constant speed in a constant direction, which ultimately
allows us to extract moving vortices.

2.2 Inertial Particle Motion

The motion of finite-sized particles in fluids can be described by a second-order
ODE, which can be rephrased into a coupled first-order ODE [6]. Depending on the
possible simplifying assumptions, different equations of motion are possible, which
resulted in a number of different particle models [13–16]. Throughout this work, we
use two inertial particle models. The underlying fluid flow is described by the n−d
unsteady vector field u(x, t) : IRn × IR → IRn .

Model 1. The first model was described by Crowe et al. [13] and considers small
particles in air. With g being the gravity vector, it reads:

ṽ(x, v, t) =
(

v
u(x,t)−v

r + g

)
. (4)

The particle response time r = d2
pρp

18μ determines howquickly an inertial particle aligns
its own velocity v with the underlying air flow u(x, t), where dp is the particle size,
ρp is the particle density andμ is the viscosity of the underlying air flow. The smaller
r is, the lighter the particle, with tracer particles arising in the limit for r → 0. This
particle model has frequently been used to model the motion of sand particles in
air [1, 3, 17–19], and assumes that particles are spherical, very small, and have a
much higher density than the surrounding air.

Model 2. The second model was used by Haller [14] and distinguishes between
aerosols and bubbles, based on the density ratio R = 2ρ f /(ρ f + 2ρp), where ρ f is
the fluid density and ρp is the particle density. For R < 2/3 we have aerosols (ρp >

ρ f , e.g., sand particles in air), for R = 2/3 we obtain neutrally buoyant particles
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(ρp = ρ f ) and for R > 2/3 the motion of bubbles (ρp < ρ f ) is modeled:

ṽ(x, v, t) =
(

v
R
St (u(x, t) − v) + 3R

2
Du(x,t)

Dt + (
1 − 3R

2

)
g

)
, (5)

where Du(x,t)
Dt = Ju + ut is the material derivative of the flow, i.e., the acceleration,

and ut = ∂u(x,t)
∂t is the time partial derivative of the flow. The Stokes number St

determines the amount of inertia, with St → 0 approaching the behavior of tracer
particles. Thismodel and its variations, such as gravity-free environments or neutrally
buoyant particles, have been used extensively in the fluid dynamics literature [14, 15,
20–22].

2.3 Vortex Corelines of Massless Flows

Vortex coreline definitions have evolved over the last two decades, adding more and
more generality.Wemainly focus on the methods that led up to this paper. For a more
comprehensive overview, we refer to the recent survey of Günther and Theisel [23].

Corelines in Steady Flows. The earliest influential algorithms were built for steady
flows. Globus et al. [24] traced streamlines from attracting and repelling foci and
Sujudi and Haimes [8] introduced the reduced velocity criterion. In the presence of
complex eigenvalues in the Jacobian J = ∇u, let e be the single eigenvector with
a real eigenvalue. Sujudi and Haimes requested that the projection of the velocity
along vector e is zero: u − (uTe) e = 0. In other words, the flow exactly on the vortex
coreline is not in the swirling plane, but only moves forward. Peikert and Roth [10]
introduced the parallel vectors (PV) operator, which returns for two vector fields the
set of locations at which the two vector fields are parallel. With u ‖ e, the method
of Sujudi-Haimes [8] can be rephrased in PV notation, which is often computed as
u ‖ J u. Other vortex coreline conditions, such as helicity extrema, vorticity extrema
and λ2 extrema, can likewise be expressed by the PV operator [10, 25].

Corelines in Unsteady Flows. Fuchs et al. [26] extended this reduced velocity cri-
terion to unsteady flows by extracting u ‖ J u + ut . Another approach was taken by
Weinkauf et al. [27], who applied the reduced velocity criterion in space-time. Since
there are, in space-time, two eigenvectors with real eigenvalue (one of them is zero),
the flow vector u must be in the plane that is spanned by these two eigenvectors to
not take part in the swirling plane. This co-planar vectors condition simplifies to the
PV condition u − f ‖ J(u − f), with f being the feature flow field [28]. Günther et
al. [29] introduced a rotation invariant coreline condition. By linear optimization,
rotating and translating reference frames have recently been extracted, in which the
flow becomes steady [30, 31]. The idea is that, in the optimal frame, vortex features
are no longer obscured by ambient motion. The solution must vary spatially, since
no global observer exists for the entire domain [11, 12, 32]. While Günther and
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Theisel optimized the reference frame locally at each point in space-time, Hadwiger
et al. [31] formulated the search for optimal reference frames as a global optimiza-
tion problem, in which the motion is described by an approximate Killing field. Note
that a global optimization is infeasible for inertial particle motion, since this would
require to discretize the entire seven-dimensional phase space. More recently, ref-
erence frame optimization has been extended to spatially-varying transformations,
which opened a path to topology-based methods beyond vortices [33]. Günther and
Theisel [34] have shown that the method of Weinkauf et al. [27] is optimal for vor-
tices performing Galilean transformations. Other reference frame adjustments used
flow decompositions [35–37], adjusted to Galilean-invariant extremal features [38]
or used machine learning [39].

Second-OrderCorelines.The local coreline conditions above can all be classified as
first-order methods, since they only involve first-order derivatives. For steady flows
u(x, y, z), the method of Roth and Peikert [9] computes bent vortex corelines with

u ‖ b with b = D

Dt
(Ju) = (∇Ju + JJ) u, (6)

where∇Ju = Jxu + Jyv + Jzw. Note that thismethod is notGalilean invariant, even
when calculating b = D

Dt (Ju + ut ), since the material derivative entails a multipli-
cation with u, which is not invariant. In this paper, we extend this approach to the
high-dimensional vector field of inertial particles. When considered in a reference
frame in which the flow is steady, the approach becomes reference frame invariant.

2.4 Vortex Corelines of Inertial Particles

For inertial particles, Günther and Theisel [6] proposed an inertial first-order vortex
coreline criterion that is Galilean invariant. However, their condition is tailored to
Model 1 and can only guarantee to correctly extract straight vortex corelines. To
arrive at this condition, they followed a geometric construction [27].

The method was extended by Günther and Theisel [7] to handle more kinds
of vortex motions, namely all smooth rotations and translations. For this, a linear
optimization is needed that finds a reference frame in which the high-dimensional
flow becomes as steady as possible. Then, the above method [6] is applied to find
straight inertial vortex corelines. As before, the extractor was tailored to Model 1.

In this paper, we further extend the method of Günther and Theisel [6] in three
ways. First, we derive vortex criteria not only for Model 1, but for a more general
template that includes Model 1 and Model 2 as special cases. Second, we extend the
method of Roth and Peikert [9] to derive a second-order vortex coreline criterion that
extracts bent inertial vortex corelines. Third, instead of deriving the vortex criteria
geometrically, we follow a reference frame centered approach, which is for both the
first-order and second-order case Galilean invariant, and arrives for the special case
of Model 1 at the same condition as [6]. This gives new insights on the mathematical
properties of their solution.
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3 Vortex Coreline Criteria for Inertial Particles

Our inertial vortex coreline criteria are fundamentally based on the observation of
the time-dependent high-dimensional vector field in a reference frame in which the
flow becomes steady. Since we concentrate on the shape of the corelines instead
of the motion, we assume a Galilean transformation. Therefore, we first introduce
Galilean reference frame transformations of inertial particles and derive the analytic
solution to the optimal reference frame for both inertial particle models. Afterwards,
we derive the inertial vortex coreline conditions that are applied in the optimal frame.
We begin with first-order criteria in 2D, in 2D space-time, and in 3D. Afterwards,
we introduce the second-order vortex coreline criterion that allows us to find bent
corelines.

3.1 Generalized Inertial Particle Motion

Similar to Günther and Gross [40], we utilize a generalized template-based descrip-
tion of the particle motion, which allows us to express local properties of inertial
particles for multiple models at once. Their template-based description introduces
abstract variables that are assigned dependent on the particle model. While Günther
and Gross generalized the high-dimensional Jacobian matrix J̃, we generalize the
underlying high-dimensional vector field ṽ instead. Let κ be a constant scalar and
k(x, t) be an n-d vector field. The change in particle position x and particle velocity
v of an inertial particle are described by the high-dimensional vector field ṽ(x, v, t):

ṽ(x, v, t) = d

dt

(
x
v

)
=

(
v

k(x, t) − v
κ

)
. (7)

Intuitively speaking, position x and velocityv are the twoproperties that are stored per
particle. Then, the high-dimensional vector field ṽ is the vector field in which inertial
particle trajectories are traced as tangent curves. The high-dimensional Jacobian
matrix J̃ = ∇ṽ contains the x and v partials as column vectors and becomes:

J̃(x, v, t) = (
∂ ṽ(x,v,t)

∂x , ∂ ṽ(x,v,t)
∂v

) =
(

0 I
∇k(x, t) − 1

κ
I

)
, (8)

which can be used to locally analyze the behavior of inertial particles. By a suitable
choice of κ and k(x, t), Eqs. (7) and (8) can describe inertial particle motion:
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Model 1 : κ = r, k(x, t) = u(x, t)
r

+ g, (9)

Model 2 : κ = St

R
, k(x, t) = R

St
u(x, t) + 3R

2

Du(x, t)
Dt

+
(
1 − 3R

2

)
g.

(10)

Galilean Transformation. Since inertial particle motion is described by a higher-
dimensional vector field, we now consider how an inertial particle in the high-
dimensional space changes under Galilean transformations. From Eqs. (1) and (2),

we see how position x(t) and velocity v(t) of an inertial particle p̃(t) =
(
x(t)
v(t)

)
are

transformed to p̃∗(t):

p̃∗(t) =
(
x∗(t)
v∗(t)

)
=

(
x(t) + c + t d

v(t) + d

)
. (11)

The above particle p̃∗ moves tangentially in the high-dimensional vector field ṽ∗ that
governs itsmotion. By differentiating Eq. (11), we consider the tangent of our particle
at (x∗, v∗) to see how the governing high-dimensional vector field is transformed

ṽ∗ = dp̃∗

dt |x∗,v∗
=

( dx(t)
dt + d
dv(t)
dt

)
= dp̃

dt |x,v
+

(
d
0

)
= ṽ +

(
d
0

)
. (12)

By insertingour generalizedparticlemodel fromEq. (7) into theGalilean transformed
high-dimensional flow in Eq. (12), we obtain the transformed high-dimensional vec-
tor field that governs the inertial particle motion for both our considered models:

ṽ∗ =
(

v + d
k(x, t) − v

κ

)
, J̃∗ = J̃, ṽ∗

t =
(

0
kt − ∇k · d

)
. (13)

The Jacobian J̃∗ = ∇ṽ∗ and the time partial derivative of the high-dimensional flow
ṽ∗
t = ∂ ṽ∗

∂t follow directly by differentiation. Note that the calculation of the deriva-
tives requires application of the chain rule, since with Eq. (1) position x is x =
x∗ − c − t d.

3.2 Inertial Motion in Steady Frame

To find the most-steady reference frame for inertial particle motion, Günther and
Theisel [7] considered all smooth rotations and translations of the reference frame.
The final vortex extraction eventually resulted in a parallel vectors operation in
6D. Since we concentrate in this paper on coreline shapes, we assume a Galilean
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transformation for simplicity. For the first-order criteria, this will result in a 3D
parallel vectors problem that can be solved efficiently.

To find a steady reference frame, we rearrange the velocity subspace of Eq. (13) to
select the translation parameter d for which the time partial of the high-dimensional
flow ṽ∗ vanishes, i.e., ṽ∗

t = 0:

d = (∇k)−1kt . (14)

When inserting Eq. (14) in Eq. (13), the flow becomes steady.
For the specific models from Eqs. (9) and (10) we get:

Model 1 : d = J−1 ut . (15)

Model 2 : d =
(
J + 3St

2

∇Du
Dt

)−1 (
ut + 3St

2

D2u
Dt2

)
. (16)

In case of Model 1, we have d = −f , where f = −J−1ut is the feature flow field [28]
of massless particles, cf. Eq. (26) in [23]. Next, we extract inertial vortex corelines
in the Galilean reference frame that is as steady as possible.

3.3 First-Order Corelines

3.3.1 2D Conditions
In the 2D steady vector fields of tracer particles, vortex centers are critical points with
complex eigenvalues in the Jacobian [41]. Thus, for inertial flows we set ṽ∗ = 0 in
the high-dimensional inertial flow in Eq. (7). The position subspace gives a condition
for v, namely v = −d, which we insert in the velocity subspace, resulting in:

k + d
κ

= 0 ⇔ κk + d = 0 ⇔ κ(∇k)k + kt = 0. (17)

Inserting Model 1 from Eq. (9) or Model 2 from Eq. (10) into the boxed condition
in Eq. (17) gives 2D conditions for locating the vortex center.

Model 1 : u + r g + d = 0, (18)

Model 2 : u + 3St

2

Du
Dt

+
(
St

R
− 3St

2

)
g + d = 0. (19)

To illustrate the above conditions, Fig. 1 shows space-time visualizations of the ana-
lytic Moving Center flow (cf. Eq. (44) in Sect. 5) for Model 1. In this flow, the
vortex moves with constant speed over time, as illustrated by inertial pathlines (left).
The motion results in a feature flow that is also constant and moves in the same
direction as the coreline (right). Using line integral convolution (LIC), we visualize
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Fig. 1 Inertial vortex coreline in the Moving Center flow for Model 1 using g = (−2, 1)T and
r = 0.1. The flow κk + d is shown with a LIC slice at the bottom, and the coreline (•) shows the
center of the vortex over time. Left, inertial pathlines (•) depict the behavior of inertial particles in
the flow. Right, the ambient flow field d (•) is constant and evolves parallel to the vortex coreline

a slice of the vector field κk + d, where 2D vortex centers can be found to obtain a
seed point for the space-time tracking.

Space-Time Extraction. The above condition in Eq. (17) determines vortex centers
for a given moment in time. By lifting the condition into space-time, the paths of
vortex centers can be extracted at once using a parallel vectors operator [10]. In
space-time, the following PV condition arises, where the last component is time:

(
κk
1

)
‖

(−d
1

)
. (20)

The space-time condition has interesting properties and can be reformulated as shown
next. First, let k̄ be the vector field on the left side and let K̄ = ∇k̄ be its space-time
Jacobian:

k̄ =
(

κk
1

)
, K̄ =

(
∂k̄
∂x ,

∂k̄
∂t

)
= κ

(∇k kt
0 0

)
. (21)

Since K̄
(−d

1

)
= 0, we can see that

(−d
1

)
is an eigenvector of K̄ with the corre-

sponding eigenvalue 0. With Eq. (20) it follows that on a vortex coreline, k̄ is also
an eigenvector of K̄ and thus the reduced velocity criterion of Sujudi-Haimes [8]
applies. When using the parallel vectors version [10] of the criterion on k̄, we get:

κ

(∇k kt
0 0

) (
κk
1

)
‖

(
κk
1

)
⇔

(
κ(∇k)k + kt

0

)
‖

(
κk
1

)
. (22)
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Note that the condition on the right can be computed without having to linearly solve
for d in Eq. (14). The criterion on the right of Eq. (22) can only be fulfilled if its left
side becomes zero, due to the time components (only the zero vector can be parallel
to k̄). Thus, the following conditions are equivalent:

k + d
κ

= 0 ⇔ κ(∇k)k + kt = 0. (23)

The latter asks for the acceleration of vector field k to be zero.

3.3.2 3D Conditions
To find 3D corelines, we apply the method of Sujudi and Haimes [8] to the high-
dimensional flow in the optimal steady frame, i.e., to ṽ∗ in Eq. (13). We search for
locations at which the high-dimensional velocity ṽ∗ aligns with its acceleration:

ṽ∗ ‖ J̃∗ṽ∗ ⇒
(
v + d
k − v

κ

)
‖

(
k − v

κ

∇k(v + d) − k− v
κ

κ

)
. (24)

The above parallel vectors condition in Eq. (24) is six-dimensional and requires the
search for both position and velocity. By requiring parallelism in the space subspace
and the velocity subspace individually, the condition is simplified, since the depen-
dence on the velocity v disappears, which was demonstrated for Model 1 [6]. In the
Appendix1, we show this for the general case, arriving at:

κk + d ‖ ∇k (κk + d) , (25)

which is now independent of the particle velocity v. Thus, the parallel vectors condi-
tion in Eq. (25) can be searched in the position subspace using standard extractors,
as introduced by Peikert and Roth [10]. Inserting Model 1 from Eq. (9) or Model 2
from Eq. (10) into Eq. (25) gives:

Model 1 : u + r g + d ‖ J (u + r g + d) , (26)

Model 2 : w ‖
[
J + 3St

2
∇

(
Du
Dt

)]
w, (27)

with w = u + 3St

2

Du
Dt

+
(
St

R
− 3St

2

)
g + d. (28)

Note that Eq. (26) is the 3D condition that was derived by Günther and Theisel [6]
(Eq. (32) in their paper for d = −f as shown above), which appears here as special
case.

Curvature of the Coreline. In the optimal steady reference frame, the condition
ṽ∗ ‖ J̃∗ṽ∗ in Eq. (24) determines locations at which the high-dimensional flow is
parallel to the acceleration. If both are parallel, the curvature of the resulting coreline
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vanishes. The curvature of a parametric curve x(t) is given in any dimension by: κ =√
‖ẋ‖2‖ẍ‖2−(ẋT ẍ)2

‖ẋ‖3 . The numerator vanishes if the enclosed angle θ between ẋ and ẍ is

zero, due to the dot product ẋTẍ = ‖ẋ‖ ‖ẍ‖ cos(θ). In Eq. (24), we have velocity ẋ =
ṽ∗ and steady acceleration ẍ = J̃∗ṽ∗. Thus, the first-order vortex coreline criterion
models vortices as straight line structures.

3.4 Second-Order Corelines

Roth and Peikert [9] introduced an extension of Sujudi and Haimes [8] that models
bent vortex corelines. Applied to our high-dimensional vector field in the optimal
steady reference frame, vortex corelines are identified as locations that fulfill:

ṽ∗ ‖ b̃∗ with b̃∗ = D

Dt
(J̃∗ṽ∗). (29)

The acceleration ã∗ in the transformed reference frame is

ã∗ = Dṽ∗

Dt
= J̃∗ṽ∗ =

(
k − v

κ∇k(v + d) + v
κ2 − k

κ

)
, (30)

which follows from insertion of Eqs. (13) into the left hand side of Eq. (30). Comput-
ing the material derivative of Eq. (30) as b̃∗ = Dã∗

Dt = (∇ã∗)ṽ∗ gives that the change
in acceleration b̃∗ is:

b̃∗ =
( ∇k(v + d) + v

κ2 − k
κ∇(∇k)(v + d)(v + d) − ∇k

κ
(v + d) + ∇k(k − v

κ
) − v

κ3 + k
κ2

)
, (31)

with ∇(∇k)(v + d) = ∂(∇k)

∂x · (u + d1) + ∂(∇k)

∂y · (v + d2) + ∂(∇k)

∂z · (w + d3) for

d = (d1, d2, d3)T. With Eq. (29), this leads to the following parallel vectors prob-
lem:

(
v + d
k − v

κ

)
‖

( ∇k(v + d) + v
κ2 − k

κ∇(∇k)(v + d)(v + d) − ∇k
κ

(v + d) + ∇k(k − v
κ
) − v

κ3 + k
κ2

)

(32)

This is a 6D parallel vectors problem, since both position x (for the evaluation
of k) and velocity v need to be searched. The extraction algorithm is described in
Sect. 4.
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4 Implementation

In the following,we explain the numerical extraction algorithmsused to locate inertial
critical points and inertial vortex corelines.

First-order Method. To find inertial critical points in 2D according to Eq. (17),
we use the numerical subdivision approach of Globus et al. [24]. The line-based
extraction of inertial critical paths in 2D space-time in Eq. (20) and the first-order
extraction of inertial 3D corelines in Eq. (25) are formulated as 3D parallel vectors
problems [10].We used a Bézier-based subdivision to find the roots of the cross prod-
uct [42, 43], which we refined using Newton iterations [44]. Several other existing
algorithms would also be applicable [10, 45].

Second-order Method. The second-order method requires a 6D parallel vectors
extraction in a 6D space. Recently,Hofmann andSadlo [46] introduced the dependent
vectors operator which extends the parallel vector operator to arbitrary dimensions,
where our 6D PV problem is a special case. While their method provides a general
framework for high dimensional features, their proposed algorithm does not scale
well for our problem. The direct computation of the two 6D vector fields in Eq. (32)
is too expensive, both in terms of computation time and memory consumption. To
solve this problem, we follow the approach of Günther and Theisel [7], which we
adapt to our vector configuration.

Bywriting the position subspace and the velocity subspace of Eq. (32) as functions
in v, we can simplify the search. By introducing the spatially-varying 3D vector fields
a, b, c, d, matrix fields B, C, D, and tensor field D, we can calculate the 6D vectors
in Eq. (32) for a certain v on demand using only data stored in 3D:

ṽ∗ ‖ b̃∗ ⇔
(

v + a
B v + b

)
‖

(
Cv + c

Dv · (v + a) + Dv + d

)
, (33)

with the vector fields, matrix fields and tensor field:

a = d, b = k, (34)

c = ∇k · d − k
κ

, C = ∇k + 1

κ2
I, (35)

d = ∇(∇k)d · d − ∇kd
κ

+ ∇kk + k
κ2

, B = − 1

κ
I, (36)

D = ∇(∇k)d − 2∇k
κ

− 1

κ3
I, D = ∇(∇k). (37)

In practice, we discretize the above fields onto a piecewise linear tetrahedral 3D grid.
At three spatial grid points xi with i ∈ {1, 2, 3} of a triangle, we therefore have the
quantities ai , bi , ci , di , Bi , Ci , Di and D

i
, which can be linearly interpolated with

the barycentric weights a, b, c, subject to a + b + c = 1:
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a = a a1 + b b2 + c c3, (38)

b = a b1 + b b2 + c b3, (39)

... (40)

D = a D
1
+ b D

2
+ c D

3
. (41)

At the same time, the velocity subspace is discretized onto a tetrahedral grid, for
which we likewise assume barycentric interpolation with barycentric weights d, e,
f , g inside the tetrahedra, subject to d + e + f + g = 1:

v = d v1 + e v2 + f v3 + g v4. (42)

Thus, the 6D PV condition ṽ∗ ‖ b̃∗ in Eq. (33) can now be expressed with Eqs. (36)–
(42) in barycentric coordinates (a, . . . , g). To search the entire 6D space, each pair of
position triangle and velocity tetrahedra must be tested. The PV solutions are points
on the position triangles, which are connected to 3D lines in a post-process.

Two 6D vector fields ṽ and w̃ are parallel iff in generalization of the cross product
the anti-symmetric matrix X̃ is zero, with

ṽ ‖ w̃ ⇔ X̃ = 06×6 with X̃i, j = ũi w̃ j − w̃i ũ j , (43)

and the element indices i, j ∈ {1, . . . , 6}. Thus, the search for parallel vectors
becomes a root finding problem in all entries of matrix X̃, which is quadratic in
barycentric coordinates X̃(a, b, c; d, e, f, g).

After converting matrix X̃ into Bernstein-Bezier form [42, 43], we use the convex
hull property to quickly decide whether a root may exist inside a pair of position
triangle and velocity tetrahedron. The conversion into Bernstein-Bezier form was
described by Günther and Theisel [7], and we refer to their implementation section
for the details. If a solution could exist in a tested pair, they performed a recursive
subdivision, similar to Oster et al. [51], until the solution was found numerically.
Their computation time is in the order ofmultiple hours. To speed up convergence, we
instead use multi-variate Newton iterations [44] to locate the barycentric coordinate
at which the matrix X̃ vanishes. After uniformly scaling the linear 6D vector fields
ṽ and w̃ such that the longest vector has unit length, we iteratively minimize the
Frobenius norm of X̃. Since we do not recursively subdivide, significantly less pairs
of triangles and tetrahedra need to be tested. For example, the computation time in
the Vortex Ring at an initial spatial resolution of 323 voxels reduces from 70min
to 1.5min. In practice, we use higher grid resolutions, as shown later in Table1, as
our algorithm assumes linear interpolation on the tetrahedral elements covering the
voxels of the grid. Note however that Newton iterations will only find one solution
and can miss others if there a multiple solutions on the face of a cell. It should
therefore only be applied when the bilinear face of a voxel is small enough, either
because the initial grid resolution is fine enough, or after a certain number of recursive
subdivisions have been performed. Our implementation of the multi-variate Newton
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Fig. 2 Inertial (•) and massless (•) vortex coreline in the Moving Center flow for Model 2
using g = (0, 2)T. On the left, R = 0.5 and St = 0.1, which models the behavior of aerosols such
as sand particles in air. On the right, R = 0.7 and St = 0.7, which models the motion of bubbles.
The corelines show the center of the vortex, while inertial pathlines (•) depict the overall movement
of particles, showing that inertial particles close to the coreline revolve around the inertial vortex

iterations does not include further optimizations, such as line search or relaxation.
Thus, there is room for further performance improvements.

5 Results

In the following, we test our extractors in several 2D and 3D flows, both analytic
and numerical. For each experiment, we specify the inertial parameters as well as the
applied extraction methods, that is, first-order or second-order coreline extraction.

5.1 Comparison of Inertial Particle Parameters

The first 2D flow contains a vortex center translating with constant speed along a
straight line over time [27]:

u(x, y, t) =
(−y + t

2 − 1
x + t

2 − 1

)
. (44)

We consider the vector field in the space-time domain D × T = [−2, 2]2 × [0, 4].
Figure2 shows the effect of the parameters St and R on the vortex position forModel
2, showing the behavior of both aerosols and bubbles. Pathlines (•) close to the vortex
center (•) revolve around it over time, which indicates that the coreline extraction
is accurate. In contrast to massless flows, inertial pathlines seeded from the coreline
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Fig. 3 Inertial vortex corelines in the Cylinder flow for Model 1 (left) and 2 (right) using g =
(0, 1)T, r = 0.05, R = 2/3 and St = 0.01. Inertial pathlines (•) show that particles rotate around
inertial corelines (•), giving evidence of correctness

do not necessarily stay exactly on the coreline due to the inertia that carries them
outward. Nevertheless, the general motion around the coreline can be observed.

5.2 Comparison of Inertial Particle Models

Cylinder Flow in 2D. The numerical 2D Cylinder flow contains a von-Kármán
vortex street in the wake of an obstacle. The viscous fluid was injected from the left
into a channel bounded by solid walls with a slip boundary condition. Figure3 shows
two examples of Model 1 and 2 applied to this flow. In both cases, the symmetric
flow creates translating vortices that remain coherent over time, which is visible in
the space-time overview of the corelines (top). Depending on the particle model
parameters, inertial particles can get trapped in the vortices while they are rotating
around the corelines over time, which is visualized with inertial pathlines in the
zoomed images. It becomes apparent that aerosol trajectories of Model 1 spiral
away from the corelines, whereas the smaller neutrally buoyant particles of Model
2 remain close to their coreline. For this data set, the behavior of different inertial
model parameters has previously been studied by Baeza Rojo et al. [47]. In our work,
we automatically extract the vortex corelines, which compactly summarizes the loci
of rotating motion.

Delta Wing in 3D. This numerical 3D flow was provided by Markus Rütten and
contains a simulation of a triangular surface in upstream flow that generates two
large wake vortices. We used a gravity-free environment, i.e., g = 0, to extract a set
of vortex corelines for both particle models. Figure4 shows the difference between
Model 1 and Model 2. Although the location of vortex corelines is similar here,
Model 1 trajectories exhibit significantly more inertia when using a response time of
r = 0.01, compared to trajectories in Model 2 when using R = 0.1 and St = 0.001
as parameters. The Model 2 particles are smaller and thus follow the flow more
tangentially than theModel 1 particles. Similar to the massless case, inertial particles
of Model 2 revolve very closely around the vortex corelines.
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Fig. 4 Inertial vortex corelines for model 1 (left) and 2 (right) in the Delta Wing using g =
(0, 0, 0), r = 0.01, R = 0.1 and St = 0.001

Fig. 5 Comparison of inertial (•) and massless (•) vortex corelines in the flow behind a Square
Cylinder for Model 1 (top, r = 0.25) and Model 2 (bottom, R = 0.8 and St = 0.4). The heavy
aerosol particles of Model 1 are dragged down by gravity g = (0,−1, 0) while the parameters of
Model 2 represent bubbles, which rise upward

Square Cylinder in 3D. This 3D unsteady fluid flow sequence shows the develop-
ment of a von-Kármán vortex street. The obstacle, which is a squared cylinder, is
positioned between two parallel walls, producing a periodic shedding of vortices over
time. Figure5 shows selected frames of an accompanying animation, where we can
see how inertial particles rotate around the extracted corelines. The heavy particles
in Model 1 are affected by gravity, which drags particles down. The inertial vortex
corelines (•) are shifted horizontally compared to the massless case (•) towards the
updraft direction of the vortex, since this is where gravity cancels to zero. The shift
therefore depends on the rotation direction of the vortex. Particles from Model 2, on
the other hand, resemble bubbles (i.e., they have lower density than the liquid) and
thus slowly rise up. It is also apparent that the behavior of particles in and around
the vortices differs, since the inertia of particles of Model 1 carries particles further
out. The low particle density inside vortices is characteristic for aerosol particles.

5.3 Second-Order Corelines in 3D

Vortex Ring. Our next vector field contains a translating Vortex Ring, which
serves as synthetic test case for the second-order extractor. The velocity magnitude
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Fig. 6 Bent second-order inertial vortex corelines in the Vortex Ring data set for Model 1
(left, r = 0.1) and Model 2 (right, R = 0.8 and St = 0.1) using g = (0, 0,−1). The second-order
corelines (•) are shown for three different time steps, and the first-order corelines (•) for t = 0.
Note that inertial pathlines (•) remain near the vortex over time, while inertial pathlines (•) from
t = 0 show the rotating motion

along the coreline is denoted by s and the vortex translates with speed a along the
z-axis.

u(x, y, z, t) =
⎛
⎝−x · (z + a · t) − s · y

−y · (z + a · t) + s · x
x2 + y2 − 1 − a

⎞
⎠ . (45)

In our examples, we set a = s = 1. We consider the flow in the spatial domain
[−2, 2]3. In this flow, the vortex coreline is bent and thus the first-order methods fail
to detect the correct coreline (•), as shown in Fig. 6. For the given model parame-
terization, the inertial particles of Model 1 exhibit more inertia than the particles in
Model 2, leading them onto wider paths. The second-order vortex corelines (•) of
both models are similar to each other. Note that the first-order criterion gives a wrong
solution, since the coreline is not straight, which shows the necessity of our second-
order vortex coreline criterion. Particles seeded on a vortex coreline are expected
to remain close to the coreline over time, which is the case for our second-order
condition.

Helicopter. Our last numerical example stems from brown-out engineering [1, 2],
which studies the uplift of dust and sand when helicopters or airplanes approach the
ground. The simulation shown in Fig. 7 contains a model rotor spinning 75Hz. The
strong vertical airflow pushes down onto the sediment bed, as it carries tip vortices
from the rotor into the domain. Due to numerical dissipation, these vortices are not
well preserved in the simulation data. Very well distinguishable, however, is the
large vortex ring that forms around the helicopter. The first-order and second-order
corelines agree for this ring, since the velocity component along the vortex coreline is
zero. There, particles are not moving along the vortex coreline, but stay stationary on
it. Studying this intrinsically curved vortex is important, since it is a strong driver of
sediment uplift, which causesmechanical wear of the blades and, more importantly, a
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Fig. 7 First-order (•) (left) and second-order (•) (right) inertial vortex corelines in theHelicopter
data set for Model 1 using g = 0 and r = 0.001. Near the ground, a large vortex ring forms around
the hovering helicopter. The trajectories show the paths of sand particles. Differences between the
methods can be seen below the rotor

limited view that frequently causes accidents. Differences between the two methods
can be seen in the flow regime below the rotor blades, where the vortex coreline
spirals outwards. These vortices eventually reach the sediment bed, causing uplift.
Further, we can see that the second-order lines are more spurious than the first-order
lines, which is a consequence of the numerical challenges of higher-order methods.

5.4 Memory Consumption and Performance

For all performance measurements, we used an Intel i7-6700K CPU with 32 GB
RAM. All presented feature definitions are local and their extraction can thus easily
be parallelized. In unsteady 2D flows, we only have to compute a 2D vector field in
which the critical points are searched. This sums up to 2N double variables, where N
is the number of grid points. Note that the time slices can be processed sequentially,
which is why we only need to store a single time slice at a time. In 3D, we store
for the first-order method two 3D vector fields, i.e., 6N double variables. For the
3D second-order methods, we store for each grid point 4 vector fields (a, b, c, d), 3
matrix fields (B, C, D) and 1 tensor field. This accumulates to 66N double variables.
In general, the extraction performance is linear in the number of voxels that are tested
for parallel vectors. The number of tested voxels depends on the amount and extent
of swirling motion in the domain. The computation time of the quantities resulting in
the vortex criterion and of the actual numerical extraction of the corelines are listed
in Table1. While the 2D and first-order 3D extraction can be carried out in the order
of seconds (similar to the traditional massless case), the second-order 6D extraction
is computationally still expensive, taking multiple hours on numerical data. Further
speed-up could be achieved by pruning the search space, e.g., by considering only
visible voxels in the domain or by specifying a region-of-interest, which have both
not been implemented yet.
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Table 1 Computation time in seconds for the vector fields (VF) from Eq. (20) for first order space-
time 2D, Eq. (25) for 3D and Eq. (32) for second order and corelines extraction with parallel vectors
(PV) for the two models (M).

Grid Memory Order M VF PV

Moving Center 2D 128 ×
128 × 128

256KB 1st 1 0.11 0.30

2 9.12 13.27

Cylinder 2D 640 × 80 ×
1501

800KB 1st 1 13.74 2.61

2 80.67 2.73

Squared Cylinder 3D 192 × 64 ×
48

27MB 1st 1 0.55 6.74

2 3.82 14.11

Delta Wing 3D 250 ×
125 × 100

35.2MB 1st 1 2.47 0.07

2 16.36 0.77

Vortex Ring 3D 128 ×
128 × 128

96MB 1st 1 0.59 0.30

2 0.74 0.26

1.03GB 2nd 1 0.48 0.85h

2 0.82 1.1h

Helicopter 3D 128 ×
256 × 256

384MB 1st 1 8.25 1.37

4.12GB 2nd 1 11.18 14h

5.5 Discussion

Parameters. A benefit of our Galilean-invariant method, compared to the objective
approach of Günther and Theisel [7], is that our reference frame optimization is
parameter-free. While the objective method required the specification of a neighbor-
hood region to regularize a linear system, the Galilean invariant approach has a local
analytic solution.

Temporal Coherence. Our coreline definitions are local and do not involve any
spatial or temporal smoothing kernels. Consequentially, temporal coherence is not
directly enforced, which can result in temporal flickering. This is a general limitation
of local methods [6, 27]. Obtaining smoother results is typically achieved through a
pre-processing or post-processing step, which are orthogonal problems to the feature
definition.

Computation Time.By using an iterative Newton refinement, the computation time
of the 6D parallel vectors extraction reduced by about factor 40 compared to the
Bézier-based subdivision in previous work [7], but it can still see improvements. An
implicit or view-dependent computation of the line structures or a smarter selection
of numerical parameters might be paths to faster updates.
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Reference Frame Invariance. The shape of a coreline and its motion are two inde-
pendent phenomena. In fact, in the Vortex Ring data set in Fig. 6, the objective
approach [7] and the first-order Galilean-invariant method [6] will both give an iden-
tical (and wrong) result, since the vortex ring is not straight and performs an equal-
speed translation. In this paper, we introduced a criterion to extract more general
inertial coreline shapes. For this, we concentrated on vortex corelines that perform
Galilean transformations. To handle more arbitrary motions in the future, we would
like to apply the second-order criterion in reference frames that are objective.

LimitCase forTracer Particles.Anatural question that arises for feature definitions
of inertial particles is whether they are consistent with the massless case. In the
Appendix2, we show that our inertial first-order and second-order criteria approach
the massless case in the limit for κ → 0, as desired.

6 Conclusion

In this paper, we developed vortex coreline extractors for inertial particles for two
particle models. Based on the selection of an optimal Galilean reference frame, in
which the flow field becomes steady, we introduced generalized coreline criteria
that include both particle models as special cases. After covering the 2D case, we
discussed the first-order and second-order inertial coreline extraction in 3D, which
required a 3D or 6D parallel vectors extraction. For the latter, we combined a Bézier-
based subdivision approachwith a subsequent iterativeNewton refinement. Ourwork
connects to reference frame optimization, shedding light on the formal mathematical
properties of previous work [6] that derived a criterion geometrically.
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Appendix 1 - Derivation of First-Order 3D Criterion

Next, we show how the 6D parallel vectors condition of the first-order case:

ṽ∗ ‖ J̃∗ṽ∗ ⇒
(
v + d
k − v

κ

)
‖

(
k − v

κ

∇k(v + d) − k− v
κ

κ

)
. (46)

can be simplified to a 3Dcriterion. First,we look at the position subspace.Multiplying
with κ and adding v + d to the right hand side gives:
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v + d ‖ k − v
κ

⇔ v + d ‖ κk − v (47)

⇔ v + d ‖ κk + d, (48)

Equating Eq. (47) and Eq. (48) gives:

k − v
κ

‖ κk + d. (49)

Considering the velocity subspace of Eq. (46):

k − v
κ

‖ ∇k (v + d) − k − v
κ

κ
, (50)

and multiplying the right hand side with κ gives:

k − v
κ

‖ κ∇k (v + d) − k + v
κ

. (51)

Adding the left hand side to the right hand side and dividing by κ:

k − v
κ

‖ ∇k (v + d). (52)

Finally, substituting Eq. (49) on the left hand side of Eq. (52) and inserting Eq. (48)
on the right hand side of Eq. (52) gives Eq. (25):

κk + d ‖ ∇k (κk + d), (53)

which is a 3D condition, independent of the particle velocity v.

Appendix 2 - Tracer Particles as Limit Case

Next, we show that our inertial first-order and second-order criteria approach the
massless case in the limit. The proofs of Model 1 and 2 are analogue. For brevity,
we show the derivation for Model 1.

Inertial Motion. First, the motion of inertial particles is consistent with tracer par-
ticles for r → 0, as shown by Günther and Theisel [6]: Rearranging the velocity
subspace of ṽ in Eq. (7) for v and substituting in the position subspace of ṽ gives
with Eq. (9):

lim
r→0

dx
dt

= v = u(x, t)−r
dv
dt

+ rg︸ ︷︷ ︸
0

. (54)
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Vortex Centers in 2D. The motion of inertial particles is described with Eq. (9). We
consider the limit r → 0 for tracer particles:

κ = r κk = u(x, t) + rg (55)

lim
r→0

κk = u(x, t). (56)

With d = J−1ut = −f from Eq. (15), we insert the limit in Eq. (56) into the general
2D vortex center condition in Eq. (17):

κk + d = 0 r→0⇒ u(x, t) − f = 0, (57)

which is the Galilean invariant 2D vortex coreline criterion for massless particles by
Weinkauf et al. [27], cf. Eq. (55) in [23].

First-Order Corelines in 3D. For the first-order vortex corelines in 3D, we insert
the limit in Eq. (56) into the general first-order vortex coreline condition in Eq. (25):

κk + d ‖ ∇k (κk + d)
r→0⇒ u − f ‖ J

r
(u − f) (58)

u − f ‖ J (u − f), (59)

which is the Galilean invariant first-order 3D vortex coreline criterion for massless
particles by Weinkauf et al. [27], cf. Eq. (53) in [23].

Second-Order Corelines in 3D.We consider the transformed velocity ṽ∗ in Eq. (13)
and the rate of acceleration b̃∗:

b̃∗ =
( ∇k(v + d) + v

κ2 − k
κ∇(∇k)(v + d)(v + d) − ∇k

κ
(v + d) + ∇k(k − v

κ
) − v

κ3 + k
κ2

)
(60)

in the optimal reference frame, i.e., d is the translation rate:

ṽ∗ =
(
v + d
a∗

)
. b̃∗ =

(
b∗
c∗

)
. (61)

We rearrange the velocity subspace in Eq. (60), denoted as c∗ with

c∗ = ∇(∇k)(v + d)(v + d) − ∇k
κ

(v + d) + ∇k(k − v
κ

) − v
κ3

+ k
κ2

and with a∗ = k − v
κ

= J(u − f) [23] and b∗ in Eq. (60) into

c∗ = ∇(∇k)(v + d)(v + d) + ∇k (J(u − f)) − b∗

κ
. (62)

Inserting Model 1 with Eqs. (56) and (57) gives for r → 0:
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c∗ = 1

r
∇J(u − f)(u − f) + J

r
(J(u − f)) − b∗

r
(63)

⇔ r · c∗ = ∇J(u − f)(u − f) + J (J(u − f)) − b∗ = 0. (64)

Rearranging for the rate of acceleration b∗ gives the material derivative of the steady
acceleration D

Dt (Ju
∗) in the optimal frame:

lim
r→0

b∗ = (∇Ju∗ + JJ
)
u∗ with u∗ = u − f . (65)

Thus, the position subspace simplifies to u∗ ‖ b∗, which is equivalent to the criterion
of Roth and Peikert [9] in the optimal steady reference frame. Thus, all proposed
inertial vortex criteria are consistent with the massless case for r → 0.
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Implicit Visualization of 2D Vector Field
Topology for Periodic Orbit Detection

Alexander Straub , Grzegorz K. Karch , Filip Sadlo , and Thomas Ertl

Abstract We present implicit visualization of 2D vector field topology, and show its
utility for validating and guiding approaches for periodic orbit extraction. Instead of
following the traditional approach by explicit extraction of the topological skeleton,
we investigate its implicit visualization by approaches that label the regions that are
separated by the skeleton. While such approaches perform well for gradient fields,
they fail, in particular, to visualize periodic orbits. This motivates us to complement
the label-based approach with a closely related distance-based metric. We show that
our approach is able to reveal periodic orbits, also in configurations in which the
state-of-the-art techniques for periodic orbit extraction fail, and demonstrate their
utility for interactive extraction of all periodic orbits of a 2D vector field.

1 Introduction

There is a wide range of problems in science and engineering that involve vector
fields—and topological analysis is an effective means for their analysis. It is in par-
ticular the reduction of the complex vector field to the so-called topological skeleton,
which has proven very useful for obtaining qualitative insight into the overall struc-
ture of such fields. The topological skeleton consists of the critical points (isolated
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zeros of the vector field), the separatrices (manifolds of streamlines that converge to
saddle-type critical points in forward or reverse time), as well as periodic orbits (iso-
lated closed streamlines) and their manifolds (streamlines converging to saddle-type
periodic orbits). Beyond that, there are also more exotic structures, such as invariant
tori, Cantori, KAM tori [15], and strange attractors. However, whereas the extrac-
tion of critical points in discretized vector fields is trivial, and the only substantial
difficulty with the extraction of separatrices is to choose sufficiently long integration
time, e.g., in case of slowly converging (spiraling) streamlines, the detection and
extraction of periodic orbits is more involved, and the extraction and visualization
of the different types of tori and strange attractors is still in its infancy.

In this paper, we address part of these issues in the traditional visualization of
these structures, in particular the periodic orbits. Instead of aiming at their explicit
extraction and depiction, we investigate approaches for implicit visualization of the
topological skeleton by means of derived scalar fields. Although our approach is
generic, we exemplify it here only for 2D vector fields, and would like to address
its application to 3D flows (which can exhibit the aforementioned tori and strange
attractors) as future work.

Our contributions include:

• a set of scalar fields that enable implicit visualization of vector field topology,
• refinement and progressive computation of these fields, and
• combination of our approach with existing periodic orbit extraction techniques.

2 Related Work

The concept of vector field topology was introduced in flow visualization by Helman
and Hesselink for 2D [8] and later for 3D vector fields [9]. Besides critical points,
Helman and Hesselink account for solid boundaries by including attachment and
separation points in 2D fields, and attachment and separation lines in 3D fields.
Nevertheless, they did not account for periodic orbits. Asimov [1] provides a good
introduction to the topic and gives concise definitions for many topological concepts,
including periodic orbits and the Poincarémaps used for their analysis.Wischgoll and
Scheuermann [22, 23] present approaches for determining if a streamline converges
to a periodic orbit, and, based on this, they propose a simple seeding scheme for
extracting periodic orbits. As the authors state and one can show with our approach,
this simple seeding strategy can miss periodic orbits, i.e., exhibit false negatives.
Alternative methods for the extraction of periodic orbits were introduced by Chen
et al. [3] using Morse decomposition, and by Theisel et al. [19] intersecting stream
surfaces in a derived 3D domain. While both methods are generally able to detect all
periodic orbits and do not rely on seeding strategies, they tend to suffer, compared
to our technique, from numerical problems and performance issues.

Later contributions to topological analysis of vector fields include saddle connec-
tors, i.e., the intersection ribbons of forward and reverse 2-manifold separatrices in
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3D fields by Theisel et al. [18], and boundary switch curves [21], i.e., points/curves
on open domain boundaries separating inflow from outflow, which also give rise
to separating manifolds. While our approach can reveal dynamics related to open
domain boundaries, we focus on fields without open boundaries.

Almost all previous works on the visualization of vector field topology carry out
explicit extraction of the topological skeleton. They typically start with extracting the
critical constructs, such as critical points and periodic orbits, followed by extraction
of the separating manifolds by seeding streamlines at those critical constructs, which
exhibit saddle-type flow behavior. Exceptions from this overall approach include the
work by Park et al. [11], which seeds forward and reverse streamlines and counts
the number of intersections per cell on a predefined grid, resulting in density fields.
These fields reveal the attracting and repelling structures, but cannot capture remote
parts of separatrices, nor the regions of similar flow behavior. A similar approach
was presented by Zhang et al. [24, 25], who construct a so-called �-field from the
angle differences along integral curves. The derived gradient field ‖∇�‖ can then
be used to visualize repelling structures, similar to our distance gradient field. While
their approachworks especially well for regions where streamlines diverge, e.g., near
saddle points, it fails at detecting nested periodic orbits. This is because streamlines
on either side of a periodic orbit diverge only slightly, while rotating in the same
direction. Another exception, which captures regions of similar streamline conver-
gence in an implicit manner, is the approach by Shi et al. [13, 14], which analyzes
the dynamics in periodic 2D time-dependent vector fields. The periodicity of such
flows, and the fact that pathlines represent streamlines in space-time representation
of a time-dependent vector field, enables the authors to reveal the basins of attraction
in the resulting Poincaré maps by dense sampling of the spatial domain, integrating
forward and reverse space-time streamlines for each of the samples, and identifying
the critical point in the Poincaré map that a streamline converges to. This approach is
very similar to the basic idea of our approach, but, e.g., cannot reveal periodic orbits.
We would like to refer to our discussion and comparison to other methods in Sect. 4
for further details.

Our approachalso shares similaritieswith the implicit extractionof streamsurfaces
by vanWijk [20], and its extension to other integral surface types by Stöter et al. [16].
Van Wijk also generates a derived scalar field by determining where densely seeded
streamlinesgo, butwhereashedetermines their intersectionwithplanes, e.g., at inflow
and outflow regions, we determine their convergence to critical points. Finally, less
closely relatedworks that investigate convergence of streamlines, are the explicit ones
by Friederici et al. [4, 5], which augment separatrices with respect to their separating
property, including convergence. Nevertheless, these works do not address visualiza-
tion of regions of similar streamline behavior, as we do.
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3 Motivation

Traditionally, vector field topology is visualized by means of explicit extraction and
depiction of the topological skeleton. The extraction of critical points and integration
of the separatrices therefrom is accurate, efficient, and comparably simple to imple-
ment. However, it is (I) often nontrivial to identify the regions of similar streamline
behavior from the skeleton alone, in particular when the flow exhibits rotational
motion, including densely spiraling and intertwined separatrices (Fig. 1b). A further
difficulty in this context is (II) that it is hard to judge if the integration duration for
computing the separatrices has been chosen long enough, i.e., if the streamlines con-
verged sufficiently to the connecting critical points or periodic orbits, and thus the
respective regions are sufficiently separated by the separatrices. Notice, that it would
take infinite integration time to make the separatrices connect and fully separate the
regions, and that the streamlines can get arbitrarily close to (and spend arbitrarily
long integration time at), e.g., saddle points before they reach the alpha/omega set,
e.g., a sink. This circumstance also impedes the extraction of the regions by detection
and meshing of closed loops in the topological skeleton. Last but not least, extract-
ing all periodic orbits is computationally and algorithmically demanding (III). This
becomes apparent from the limitations of the state-of-the-art methods by Wischgoll
and Scheuermann [22, 23], Theisel et al. [19], and Chen et al. [3], which we discuss
in Sect. 6.4. From these methods, Wischgoll and Scheuermann provide a criterion to
determine if a given streamline converges to a periodic orbit. Although the seeding
strategy used in their approach can suffer from false negatives, their criterion lends
itself for interactive exploration of periodic orbits. Since our approach, on the other
hand, suffers only from false positives, we use it for guiding the interactive explo-
ration and thus extraction of all periodic orbits of a vector field. Hence, we also use
it for evaluation of the techniques byWischgoll and Scheuermann, Theisel et al., and
Chen et al. In the following, we focus primarily on the comparison with Wischgoll
and Scheuermann’s approach, and defer the discussion and evaluation of the other
approaches to Sect. 6.4.

4 Method

We address issues (I)–(III) from Sect. 3 by means of derived scalar fields. As intro-
duced in Sect. 2, Shi et al. [13] obtain a scalar field, which encodes, for each point in
space, the convergence structure of the streamline started at that point. If the forward
trajectory converges to a sink, it encodes the ID of that sink. Otherwise, the field
stores if the respective trajectory left the domain or did not converge within the given
integration time. The same procedure is also carried out in reverse time direction,
i.e., the streamline is integrated in backward time and its convergence to sources is
determined. Thus, a forward and a reverse scalar field are obtained. We maintain two
similar scalar fields, which we denote label fields. However, in contrast to Shi et al.,
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Fig. 1 Buoyant Flow dataset. a Short integration of separatrices from saddle-type critical point
(cross) only reveals local structure. b Long integration, on the other hand, results in visual clutter
because the separatrices converge to periodic orbits in this case. c Seeding a streamline at each point
of the domain and assigning to it the label of the critical point that the streamline’s end is closest
to [13, 14] leads to insignificant visualization (noise). d Our approach, which determines the label
of the critical point closest to the entire streamline, reveals much more topological structure

we address steady (rotational) flow. Our first step is to additionally include critical
points of type attracting focus and repelling focus in the convergence analysis. More
precisely, our set of convergence structures C, for which we determine convergence,
consists of all critical points, including saddles. And we assign an identifier ιζζζ (i.e.,
a label) to each convergence structure ζζζ ∈ C.

To the best of our knowledge, Shi et al. detect convergence by testing theEuclidean
distance between the streamline’s endpoint and the critical points against a user-
defined threshold. While this works well in irrotational flow (see, e.g., Fig. 2), it is
generally not applicable for rotational flow (see Fig. 1c). The reason for the resulting
erroneous (noisy) regions of this approach is that the streamlines may converge to a
periodic orbit, in which case their endpoints are distributed along the orbit, with the
result that they are typically nearest to different critical points.

This motivates us to determine the critical point closest to the entire streamline,
instead of just the endpoint (which leads to more consistent results in such configura-
tions, see Fig. 1d). That is, we measure the distance between a convergence structure
and the point on the streamline closest to it. In our prototype, we achieve this by eval-
uating, at each integration step of a streamline, the distance from the current point to
all convergence structures ζζζ ∈ C, and maintaining the identifier ιζζζ and distance δζζζ of
the closest convergence structure. For a 2D vector field u(x) ∈ R

2 with x ∈ � ⊆ R
2,

this provides us with a respective forward-integrated label field

l+(x) := argmin
ιζζζ

‖ξξξ x(s) − ζζζ‖ , ∀s ∈ [0, τ ], ∀ζζζ ∈ C, (1)

with

ξξξ x0(s) := x0 +
∫ s

0
u

(
ξξξ x0(ς)

)
dς (2)

being the point on the streamline ξξξ x0(·), seeded at point x0 and integrated for time s,
and τ being the total integration time of the label field. If the streamline leaves
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Fig. 2 Rotated Flow dataset, with convergence structures consisting of critical points (crosses).
a Line integral convolution [2], with higher speed by brighter color. b Forward-integrated label field
l+(x). c Reverse-integrated label field l−(x). d Composition of (b) and (c) provides implicit visual-
ization of vector field topology. e–h Same as top row, but with superimposed topological skeleton
for validation, with separatrices seeded at saddles (black lines) and boundary switch points (dots).
Distance fields d+(x) and d−(x) are not shown, as they are very close to zero because all streamlines
converge to critical points (except those in the small top left region)

the domain or stops during integration, we store an “invalid” label in the label field,
whichwemap to gray color in our results. Notice, that we use adaptiveRunge–Kutta–
Fehlberg 4(5) integration, which may lead to such a stop if the step size becomes too
small. Analogously, we obtain a reverse-integrated label field

l−(x) := argmin
ιζζζ

‖ξξξ x(s) − ζζζ‖ , ∀s ∈ [−τ, 0], ∀ζζζ ∈ C. (3)

By assigning each label a unique color, we obtain a respective visual representation
of l+ (Fig. 2b) and l− (Fig. 2c), and by compositing both representations, we obtain
our label-based implicit visualization of vector field topology (Fig. 2d). In irrota-
tional flow, our composed visualization is consistent with the topological skeleton
(see Fig. 2h, in which case the topological skeleton includes separatrices of saddle
points and boundary switch points). In case of open domain boundaries, however,
configurations (with critical points outside of the data domain) can be constructed,
in which the label fields cannot reveal such separatrices of boundary switch points.
This is in analogy to the approach due to Shi et al. [13].

In rotational flow, with C consisting of all critical points, our forward and reverse
label fields l+(x) and l−(x) are able to reveal some topological structure, but at
the same time they suffer from false positives and false negatives. For example,
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Fig. 3 Buoyant Flow dataset, with convergence structures consisting of critical points (crosses).
a Line integral convolution, with higher speed by brighter color. b Forward-integrated label field
l+(x). c Reverse-integrated label field l−(x). d Composition of (b) and (c) reveals some topological
structure, but exhibits false positives and false negatives. e–hSameas top row, butwith superimposed
topological skeleton for validation, with separatrices seeded at saddles (black lines), periodic orbits
extracted according to Wischgoll and Scheuermann [22] (white), and remaining periodic orbits
(turquoise) seeded manually with the help of our distance fields. See Figs. 5 and 6 for more details

the boundary (1) in Fig. 3d does not represent a periodic orbit, as can be seen by
validation with the explicitly extracted topological skeleton (Fig. 3h). On the other
hand, the periodic orbits at (2) are not captured by the label fields. Other issues, which
are also present in explicit visualization of vector field topology, include too short
integration time τ and incomplete C. For example, tightly spiraling separatrices, as
present in Fig. 1b, make it difficult to determine sufficiently large τ . On the other
hand, as discussed above, there is no technique available that robustly provides all
periodic orbits of a vector field, and thus C is potentially incomplete with respect
to periodic orbits. Notice that in our approach, which measures the distance of a
convergence structure to the entire streamline instead of only its endpoint, one could
add a single point located on each known periodic orbit to the convergence set C to
visualize the periodic orbits using the label fields. However, in our example, only
the white orbits in Fig. 3e have been automatically determined by Wischgoll and
Scheuermann’s [22] approach.

These observations motivate us to complement our approach with respective dis-
tance fields. We store the distance δζζζ during forward integration in the forward-
integrated distance field

d+(x) := min ‖ξξξ x(s) − ζζζ‖ , ∀s ∈ [0, τ ], ∀ζζζ ∈ C, (4)
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Fig. 4 Buoyant Flow dataset, with increasing integration time τ from left to right. a–h Composite
label field, i–p combined distance field, and q–x combined distance field gradient

and analogously, during reverse integration, in the reverse-integrated distance field

d−(x) := min ‖ξξξ x(s) − ζζζ‖ , ∀s ∈ [−τ, 0], ∀ζζζ ∈ C. (5)

It is the purpose of d+(x) and d−(x) to help with all abovementioned issues. If a
forward/reverse streamline converges sufficiently close to a convergence structure,
the respective entry in d+(x) or d−(x) is very close to zero. On the other hand, if C
is incomplete, e.g., because (a point on) a periodic orbit has not been added to C, the
streamlines that converge to that structure will obtain labels of nearby convergence
structures, e.g., of critical points, and the resulting entries in the distance fields will be
accordingly large. That is, the distance fields serve as an uncertainty measure of our
implicit topological visualization, i.e., regions with non-negligible values indicate
issues with integration or missing convergence structures.

Figure4 exemplifies this. Figure4a–h shows the (composed) evolution of l+(x)
and l−(x). For small τ (Fig. 4a), the label field reflects the Voronoi diagram of the
convergence structures, while their structure develops with increasing τ (Fig. 4b–h).
Figure4i–p shows the evolution of ‖(d+(x), d−(x)

)�‖. On the one hand, one can
see that this field is monotonically decreasing with increasing τ , i.e., τ needs to be
increased as long as the distance fields are decreasing. On the other hand, one can
see that, although the values decrease with increasing τ , larger values remain along
the periodic orbits, as discussed above. This motivated us to introduce the gradient
of the distance fields, i.e., ∇d+(x) and ∇d−(x). Figure4q–x shows the combined
gradient ‖(∇d+(x),∇d−(x)

)�‖. It can be seen that, as τ increases, the gradient field
increasingly reveals the periodic orbits, which are apparent as sharp lines of high
values (mapped here to darker levels of gray).
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Fig. 5 Buoyant Flow dataset. a–c Label fields (same as Fig. 3b–d), d–f respective distance fields,
and g–i respective distance field gradient. a, d, g Forward integration, b, e, h reverse integration,
and c, f, i their composed representation

A more detailed look at this dataset in terms of the distance fields and their
gradient is provided in Fig. 5. The dark sharp lines in, e.g., Fig. 5i represent candi-
dates for periodic orbits. Figure6 shows a validation with the explicitly extracted
topological skeleton. While some of the candidates have already been detected by
Wischgoll and Scheuermann’s approach (white in Fig. 3e), we tested the remaining
candidates by interactive seeding of streamlines in their vicinity, and usingWischgoll
and Scheuermann’s convergence criterion to determine if the streamlines converge to
periodic orbits. The orbits that we determined in this interactive approach are colored
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Fig. 6 Buoyant Flow dataset. Composite forward and reverse distance field gradient (gray), with
overlaid periodic orbits (attracting green, repelling red)

turquoise in Fig. 3e. All extracted periodic orbits are depicted by color-coded curves
in Fig. 6. We observe two main features in this gradient field: boundaries of almost
uniform regions, which do not represent candidates ((1) and (4)), and sharp ridges
(dark lines) which do represent candidates for periodic orbits. Nevertheless, some
of the dark lines (e.g., (2) and (3)) represent false positives of our approach, i.e.,
candidates that did not lead to a detected orbit. These false positives turned out to be
caused by insufficiently accurate streamline integration. For interactive investigation
using streamlines and Wischgoll and Scheuermann’s convergence criterion, we had
to use an integration step size in the order of one-thousandth of the data grid’s cell
size to be able to reveal that there were no periodic orbits at these locations. However,
for the computation of our label fields and distance fields, we could not afford such
highly accurate integration due to its high computational cost, and thus instead used
adaptive step size control, which caused these false positives.

Overall, we have shown the utility of our approach for: (I) validating automatic
periodic orbit extraction techniques, (II) supporting the user in interactive seeding of
streamlines for periodic orbit extraction, and (III) showing that the extraction scheme
proposed byWischgoll and Scheuermann [22], which seeds streamlines for periodic
orbit extraction only at the critical points, cannot extract nested periodic orbits.
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Fig. 7 Monitoring of improvement 
 w.r.t. increasing integration time τ . In this case, one can
conclude that approximately 106 integration steps suffice. Please note the logarithmic scale

A further issue with a naive application of our approach is that a high resolution
of the label fields and distance fields is required for pleasant and detailed repre-
sentations. However, since each sample of these fields requires the integration of
a computationally costly streamline, and since the label fields exhibit regions with
uniform label, the sampling of our fields lends itself well for adaptive refinement,
which is presented in Sect. 5.2. Finally, to support appropriate choice of the integra-
tion time τ , we employ progressive increase of τ , combined with monitoring of the
change of the resulting visual representation (Sect. 5.1).

Overall, our work can be considered an extension of the work by Shi et al. [13],
with the following main differences:

• we address steady rotational flow and include spiral critical points,
• we determine convergence without a threshold,
• we provide distance fields as a measure for visualization uncertainty, and
• we employ adaptive refinement and progressive computation for efficiency.

5 Algorithm

Algorithm 1 provides an overview of our approach. The procedure starts with initial
seedsX0, consisting of the original nodes of the data grid, and the set of convergence
structures C. After integration of a streamline (Sect. 5.1) at each of these seeds, their
distances to the convergence structures are determined, and the label fields and dis-
tance fields updated accordingly. Then, as second step, the grid is refined (Sect. 5.2),
and streamlines at the resulting new seeds Xnew are integrated. This step is repeated
until the grid is refined according to prescribed thresholds.
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Algorithm 1. Outline
Input: Vector field u(x), initial seed x0 ∈ X0, convergence structures ζζζ ∈ C with labels ιζζζ
Parameters: Integration time N , distance difference threshold γ , and edge length threshold η

Output: Forward and reverse labels l+p , l−p , distances d+
p , d

−
p , and streamline endpoints x+

p , x
−
p

/* Function for updating labels and distances */
function update_labels_and_distances(x, l, d, C)

for each point ζζζ ∈ convergence structures C do
if ‖x − ζζζ‖ < d then

{l, d} ← {ιζζζ , ‖x − ζζζ‖}
end if

end for
return {l, d}

end function

/* Use previously computed sample positions, labels and distances, or initialize values */
if not first execution then({x0, x+, x−, l+, l−, d+, d−}p ∈ Y) ← load previous results

n ← previous stream line integration time
else({x0, {x, l, d}{+,−}}p ∈ Y) ← {x0, {x0, − 1, ∞}}

n ← 0
end if

/* Integrate streamlines, and update labels and distances */
for each {x0, {x, l, d}{+,−}}p ∈ loaded/initialized streamlines Y do

for each σ ∈ {+,−} do
for n to N do

xσ
p ← advect xσ

p with Runge–Kutta on σu(x)
lσp , d

σ
p ← update_labels_and_distances(xσ

p , l
σ
p , d

σ
p , C)

end for
end for

end for

/* Refine grid, re-triangulate, and update labels and distances */
t ← Delaunay triangulation of input seeds X0
repeat

t , Xnew ← refine triangulation t with parameters γ and η

for each point x ∈ new sample positions Xnew do
{x0, {x, l, d}{+,−}}p ← {x, {x, − 1, ∞}}
for each σ ∈ {+,−} do

for 0 to N do
xσ
p ← advect xσ

p with Runge–Kutta on σu(x)
lσp , d

σ
p ← update_labels_and_distances(xσ

p , l
σ
p , d

σ
p , C)

end for
end for
Y ← Y ∪ {x0, {x, l, d}{+,−}}p

end for
until Xnew = ∅

/* Return results, which can be used to initialize further computation */
return all {x0, {x, l, d}{+,−}}p ∈ Y
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(a) (b) (c) (d)

(e) (f) (g) (h)

Fig. 8 Refinement steps. Separatrix (black curve) between two topological regions (green and blue).
Starting with the initial triangulation (a), nodes with different neighbor labels are marked (circles)
(b). In the second stage, all edges with a marked node are selected (orange) (c) and midpoints of
these edges added (d). Existing and new nodes triangulated (e). Procedure is iterated (f)–(h)

5.1 Integration

As discussed in Sect. 4, d+(x) and d−(x) decrease monotonically as integration
time τ is increased. Therefore, we can use them for estimating if τ has been chosen
sufficiently large.We compute the streamlines progressively, i.e., after all streamlines
have been advanced by n integration steps, we compute εi+1, which is the average
of d+(x) and d−(x), and subtract it from the εi that resulted before advancing the
streamlines. This provides us with
i+1 := εi+1 − εi , measuring the “improvement”
of our fields, which we can monitor by plotting (Fig. 7). This plotting supports the
user in finding an appropriate τ , i.e., in deciding when to stop the process. 
 could
also be tested automatically with respect to a user-defined threshold, in particular
to switch between integration phases and refinement phases (see below). We did,
however, not implement such switching and refine only after τ has been determined.

5.2 Refinement

As motivated above, we employ adaptive refinement to efficiently obtain high-
resolution label fields and (gradient of) distance fields. We refine the label fields
and distance fields together, i.e., they are computed on the same refined grid. The
refinement is steered by a distance threshold γ and an edge length threshold η. While
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Fig. 9 Exemplary refinement for theBuoyant Flowdataset inwireframe representation. a–cRefine-
ment at label boundaries, and d–f in regions of high gradient in the respective distance field. Refine-
ment reveals c, f manifolds around saddles (1) and b, e periodic orbits (2)

the former is used to detect and subdivide edges that connect nodes whose distance
values differ bymore than the thresholdγ , the latter is used to prevent over-refinement
by setting aminimum edge length. Additionally, edges are refined that connect nodes
with different values in the label fields. Note, that it suffices that one of the criteria
is met for either forward or reverse integration.

In order to capture all relevant regions, first all nodes are marked for refinement
that share an edge that meets one of the above criteria. Then, all edges connected
to a marked node are subdivided by placing a new seed at their mid. Together, the
nodes from the previous iteration and the new seeds are triangulated using Delaunay
triangulation. Figure8 illustrates the procedure for the label criterion, and Fig. 9
visualizes a possible resulting grid for the Buoyant Flow dataset. Here, one can
observe that the label criterion leads to a refinement at the boundaries between
different regions, which are defined by the label field. The distance criterion, on the
other hand, induces refinement in the neighborhood of periodic orbits and streamlines
passing near the saddle.
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5.3 Implementation

Because very long streamlines of high accuracy are needed, our prototype employs
GPU computation using CUDA [10] for parallel streamline integration. Delaunay
triangulation of the seed points is carried out using the Computational Geometry
Algorithms Library (CGAL) [17] after each refinement. Our prototype is further
designed to be highly flexible and adaptive, allowing the user to change parameters
at runtime. Additionally, intermediate results are visualized directly for monitoring,
and they can be saved to file to later resume the computation. Our implementation,
as part of the flowvis plugin for MegaMol [6, 7], is published on GitHub at https://
github.com/UniStuttgart-VISUS/implicit-topology.

6 Results

We exemplify the utility of our approach using three datasets originating from a time-
dependent convection-driven 2D flow simulation of air in a closed container [12].
Due to the compressibility of air, it exhibits non-vanishing divergence. The Buoyant
Flow dataset (Sect. 6.2), represents the time step at 12.524952 s (physical time), in
a phase where the flow is well developed and highly time-dependent. The Rotated
Flow dataset (Sect. 6.1), on the other hand, has been obtained from this vector field
by rotating each vector by 90◦ in clockwise direction. Our third dataset, the Buoyant
Flow II (Sect. 6.3), represents the time step at 1.849999 s, where the flow is still
developing and exhibits less tightly spiraling streamlines. The dataset is available at
https://dx.doi.org/10.11588/data/LFH1LI.

6.1 Rotated Flow

As this vector field is dominated by irrotational dynamics, all seeded streamlines
eventually converge to a source or a sink, or leave the domain in either forward or
reverse direction. Therefore, the computed distance fields approach zero for suffi-
ciently long integration time τ . Thus, we limit the visualization to the resulting label
fields, which are shown in Fig. 2b for forward, in Fig. 2c for reverse integration, and
Fig. 2d the composed label fields. As one can observe, our method is capable of
implicitly visualizing manifolds of boundary switch points, although they have not
been added toC. In this special case, the results of our approach match the ones using
the method by Shi et al. [13] for this steady field.

For this example, the implicit visualization of the topology is computationally
cheap. With merely 2,000 streamline integration steps per seed, all topological fea-
tures have been revealed. As only the labels are of interest here, it suffices to refine

https://github.com/UniStuttgart-VISUS/implicit-topology
https://github.com/UniStuttgart-VISUS/implicit-topology
https://dx.doi.org/10.11588/data/LFH1LI
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Table 1 Computation time and number of seeded streamlines for the Buoyant Flow (I) and Buoy-
ant Flow II (II) datasets. The number of integration steps per streamline is 106, with refinement
parameters γ = 2.5 × 10−4 and η = 1.2 × 10−4. Note that the error threshold for the adaptive step
size control is 3 × 10−6 for the Buoyant Flow, and 7 × 10−6 for Buoyant Flow II dataset, which
explains the better performance of the latter. Times are given in either seconds or minutes

Refinement step Grid refinement [s] Seeded streamlines Integration [min]

I II I II I II I II

- - - - 10,201 10,201 0.63 0.69

1 1 <1 <1 23,549 20,983 1.35 1.22

2 2 <1 <1 84,938 68,508 4.40 3.27

3 3 <1 <1 270,976 156,929 13.40 7.61

4 4 3 <1 734,185 263,953 34.67 12.89

5 5 3 <1 30,142 4,420 1.70 0.46

6 6 3 <1 6,252 830 0.43 0.36

7 7 3 <1 2,064 344 0.38 0.34

8–57 8–18 111 9 2,367 797 4.79 2.51

57 18 124 13 1,164,674 516,764 61.76 29.35

the grid at label boundaries. Therefore, the cost of the refinement and integration of
respective streamlines is very low, and the computation completed in under a minute.

6.2 Buoyant Flow

Besides the structures already discussed above, one can also observe large gradients
near saddles. Looking at the gradient field for forward (Fig. 5g) and reverse (Fig. 5h)
integration, one can identify the respective separatrices.

Contrary to the computation for the Rotated Flow dataset, longer streamline com-
putation is necessary in this example. This is because there are many regions in
which streamlines converge only slowly to critical points or periodic orbits. Here,
106 streamline integration steps were necessary. Further, much more cells had to be
refined, as—additionally to label boundaries—refinement had to be also performed
with respect to the distance fields. For this, the parameterswere set to γ = 2.5 × 10−4

and η = 1.2 × 10−4. This way, more than one million additional seed points were
generated. Although our method employs parallel streamline computation on the
GPU, this step still consumes most of the time. The complete computation was
conducted in little more than an hour. Details are provided in Table1.
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Fig. 10 Buoyant Flow II dataset. a–c Label fields, d–f distance fields, and g–i distance gradient
fields. a, d, g Forward, b, e, h reverse integration, and c, f, i their composition

6.3 Buoyant Flow II

As introduced, this example consists of an early time step of the same simulation,
exhibiting less tightly spiraling streamlines. Here, the same refinement parameters
γ = 2.5 × 10−4 and η = 1.2 × 10−4 were used as for the Buoyant Flow dataset.
Performance details are again given in Table1. Figure10 shows the label fields,
distance fields, and distance gradient fields. Compared to the Buoyant Flow dataset,
this example exhibits less “gray area”, i.e., less area whose streamlines stopped at
the domain boundary. Figure11 shows the distance gradient field together with the
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Fig. 11 Buoyant Flow II dataset. Composite forward and reverse distance field gradient (gray),
with overlaid periodic orbits (attracting green, repelling red)

topological skeleton. Again, the distance gradient field guided us in our interactive
seeding to the extraction of periodic orbits that have not been captured by Wischgoll
and Scheuermann’s approach, and again in this case we experienced false positives
due to inaccuracies introduced by the adaptive step size control during integration.

6.4 Discussion

Although it is rather difficult to prove without a ground truth (robust existing extrac-
tion technique), we discuss why our technique detects all periodic orbits. In the
neighborhood of a periodic orbit, three types of streamline behavior are possible:

• streamlines seeded on either side converge to a critical point,
• streamlines seeded on either side converge to another periodic orbit, or
• streamlines seeded on one side converge to a critical point, whereas the ones
seeded on the other side converge to a periodic orbit.

In the first case, already the label field captures the periodic orbit, as it coincides
with the region boundary. For the second case, it is theoretically possible to miss the
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Fig. 12 Periodic orbit extraction usingMorse decomposition with 2nd-order Runge–Kutta (a), and
4th-order Runge–Kutta (b) integration. The images are obtained using the reference implementation
by Chen et al. [3]. (c) Our validated results for comparison. The method by Chen et al. finds many
of the periodic orbits. However, for this dataset, there are also false positives and false negatives

periodic orbit if and only if the other periodic orbits, which both seeded streamlines
converge to, have the same minimum distance to a critical point. Then, streamlines
seeded on both sides would exhibit the same minimum distance value, and the dis-
tance gradient would vanish. As such configuration would be degenerate, we can
conclude that also in this case, the discontinuity in the discretized distance field will
reveal the periodic orbit. In the last case, the minimum distance on one side is neg-
ligible because it converges to a critical point, while on the other side it is non-zero
(approaching a periodic orbit) and thus the discretized distance gradient reveals the
periodic orbit.

In the following, we compare our method to previous techniques, which take
completely different approaches to find periodic orbits. Chen et al. [3] employMorse
decomposition, building a Morse connection graph and its refinement, an entity
connection graph. This way, they find both attracting and repelling periodic orbits
in 2D steady vector fields and in surface flows. Like our approach, this method is
able to detect nested periodic orbits. However, numerical instability can lead to false
positive and false negative detection. This is illustrated in Fig. 12, where different
integration schemes lead to different sets of detected closed streamlines.

Theisel et al. [19], on the other hand, extend the 2D static vector fieldu = (ux uy)
�

to a 3D static vector field u′ = (ux uy 0)�. There, they integrate stream surfaces in
forward and reverse time, starting from seeding lines that connect critical points.
Intersections between these forward and reverse stream surfaces, started from the
same seeding line, coincidewith periodic orbits.As theirmethod for choosing seeding
lines guarantees that every periodic orbit can be found, it does not suffer from the
same issue as the seeding scheme by Wischgoll and Scheuermann. However, the
extension to 3D space introduces an additional parameter for controlling the spatial
resolution of the streamsurfacemesh.Especially for (nested) periodic orbits, towhich
streamlines converge very slowly, a fine spatial and temporal resolution is necessary
to detect them all. At the same time, periodic orbits can lie halfway between two
critical points, thus requiring large integration time. This is, for example, the case in
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Fig. 13 Stream-surface-based periodic orbit extraction according to Theisel et al. [19], showing a
all stream surfaces (with color-coded forward and reverse integration), and b the extracted periodic
orbits for an exemplary region. The background shows our distance gradient field for reference.
Comparing the results of the method by Theisel et al. c with our method d, one can observe that
both find the correct nested periodic orbits close to the critical point. However, using Theisel et
al.’s approach, we were not able to find the periodic orbits farther away from the critical points,
annotated (1) and (2) in b. Additionally, their technique can suffer from multiple extractions c

fields such as the Buoyant Flow dataset, and can be observed in Fig. 13: all nested
periodic orbits close to the critical point are found, however, the integration time was
not large enough to find the one farther away. Additionally, as stated by Theisel et
al., it is possible that the stream surfaces intersect twice for the same periodic orbit.
However, due to numerical instabilities, many more intersection points (156) were
found in our case. Computing their distance to each other and removing close ones
from the results is an option, but in the presence of very close nested periodic orbits,
this could lead to the elimination of valid ones, thus leading to false negatives.

Wischgoll andScheuermann [22], as discussed throughout our paper, suffer froma
lack of a seeding strategy that provides all periodic orbits. This issue can bemitigated
by our interactive seeding approach. Another, naive possibility would be to apply
their method with a very high seeding density. While this would likely solve the
seeding problem and detect all periodic orbits within a dataset for sufficiently small
integration steps, it would also be very costly. Because of the required fine temporal
resolution, a large number of integration steps would be needed. As our method can
make use of dynamic step size control to approximate the convergence of the vector
field, our approach is much faster, reducing the costly seeding at the drawback of
possible false positives.
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7 Conclusion

We presented implicit visualization of 2D vector field topology by means of label
fields and distance fields, and demonstrated its utility for evaluating approaches for
periodic orbit extraction. We have shown that it is sufficient to include only critical
points in the computation of these fields. Since the distance fields indicate topological
structures that have not been included in the computation, they readily reveal periodic
orbits. This enabled us to demonstrate that state-of-the-art approaches for periodic
orbit extraction can miss orbits, and at the same time guided us to the missing ones.
As future work, we plan to extend our approach to 3D vector fields, and to more
advanced topological structures, such as strange attractors. Additionally, we further
would like to investigate the influence of the input convergence structures on the
extracted topology by selectively removing structures from the input set C.
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Visually Evaluating the Topological
Equivalence of Bounded Bivariate Fields

Daisuke Sakurai and Takahiro Yamamoto

Abstract We apply visualization to evaluating a new topological equivalence rela-
tion, which we call the topological B+-equivalence. It has been used in our sep-
arate, yet ongoing, study in mathematics. The equivalence is a building block for
the topological study of maps of bounded manifolds into the plane (aka bounded
bivariate fields). In that study, we have introduced a few invariants that approximate
the equivalence, which is hard to treat directly. In this chapter dedicated to the visu-
alization community, we show that visualizing the Reeb space gives us a near-instant
way of evaluating the invariants. The process has traditionally required an unpre-
dictable amount of time due to manual analysis of high-order polynomials, which
was necessary to obtain the invariant values. Our Reeb space visualization reveals
the topological information necessary for evaluating the invariants, and, in doing
so, the topological B+-equivalence itself. Previously, the visualization was found to
serve as an introductory learning tool for studying examples of singular fibers. The
present article goes further to demonstrate professional use cases.

1 Introduction

As with the Morse theory, of particular interest in differential topology is the topo-
logical shapes of fibers g−1(v) for some smooth map g with a possibly vectored
value v, together with the topological transition of fibers when varying v (see Fig. 1,
left) [26]. Though many theories assume manifolds without boundaries, those with
boundaries inevitably arise in nature, and, hence, studies have been going on. So far,
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Fig. 1 Left: The range of somemap g (on top) and theReeb space (bottom)The range can be viewed
as the projection of Reeb space of g with respect to the value g(c) of the connected component c
of each fiber. The range contains singular values (in blue), by crossing which the fiber g−1 (red)
undergoes a topological change. Right: A schematic illustration of the space of maps M → R2 of a
bounded 3-manifold domain. The B+-equivalence partitions the space of maps g into the quotient
space

we have identified topological transitions of fibers [29] and have been developing a
prototype visualization system for constructing examples of them [28, 31] with addi-
tional interest on potential impact to visualization for generalizing the topological
analysis of isocontours to maps with a multi-dimensional range [6].

Throughout this article, maps are assumed to be smooth and the domain manifold
to be compact. We also restrict our interest to bivariate fields g : M → R2, a simple
case mapping a bounded 3-manifold M into the plane.

We wish to understand when, and when not, two maps are identical in terms of
the topology of fibers. One goal of our series of studies is a topological classification
of bounded bivariate fields. The classification directly results from when we regard
two maps to be equivalent.

In the literature, we can find an equivalence relation for maps with boundary,
called the B-equivalence [20]. However, this equivalence, thus also the resulting
classification, considers whether t womaps can bemorphed into each other smoothly.
That is, the fibers must be morphed from one field into the other via a map that
is differentiable for infinite times. Topological equivalence, however, is a looser
distinction that ignores the differentiability in the morphing.

This chapter thus introduces a new topological equivalence, namely the topolog-
ical B+-equivalence, or simply the B+-equivalence. (Find details in Sect. 5.) We
compare the B+-equivalence to B-equivalence in Sect. 6.

It is handy to view the classification as a space partition problem. For, e.g., poly-
nomial maps f = (�kakxk, �lbl xl), the space can be understood as the vector space
R

∞, where each map is located at the point (a0, b0, a1, b1, ...). The B+-equivalence
partitions the space of maps into cells, each inhabited by equivalent maps (Fig. 1,
right). The partitioned map space is called the quotient space. In this view, questions
about the classification of maps turns into those about the structure of the partition.

Aswith theB-equivalence, twomaps are equivalentwhenonemapcanbemorphed
into the other back and forth using someauxiliarymaps� andψ . Though� andψ can
be proven to exist, finding them for a particular pair ofmaps is too difficult to practice.
Hence, we approximate the equivalence with invariants that are easier to obtain.
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Visual Inspection of Reeb space

Manually Compute the Invariant Values

Evaluate Invariants

Improve Invariants Understand Equivalence

Pick Example Maps

Fig. 2 Our workflow

For two equivalent maps, their values of invariants become identical. Therefore,
if the invariant values of two fields differ, we learn that these fields have different
topological characteristics. This also means that an invariant must be evaluated in
terms of how well it reflects the actual, stricter, equivalence relationship.

We have obtained a few invariants (see Sect. 5) for the B+-equivalence in a sepa-
rate yet ongoing mathematical study. Similar studies have been conducted for invari-
ants concerned with unbounded manifolds, and, as they did not employ machine-
aided visualization, they discovered convenient formulae that convert the polynomial
expression of example maps into their invariant values, taking advantage of pertur-
bation [13, 14, 21, 27, 35] (see Sect. 3.2).

As our study is in its infancy, we have yet to find such formulae. In fact, the quest
for such a find has the risk of wasting time. This is especially because (i) such a task
may be unfeasible and (ii) an invariant may turn out to be uninformative.

This is the major reason this work employs visualization to gather hints on the
characteristics of the invariants. Using visualization we can evaluate our invariants
and, consequentially, the B+-equivalence itself (see Fig. 2). The evaluations are con-
ducted by visualizing example maps and comparing the indicated (in)equivalence
due to the B+-equivalence to those due to the B-equivalence. For the visualiza-
tion we use the jcnet [31], which previously helped novices investigate fibers in
g : [−1, 1]3 → R2.

As our interest lies specifically in the topological singularity of fibers at the bound-
ary, we localize our example maps in the H 3 domain, where H 3 = {(x, y, z) ∈
R3|z ≥ 0}. A localized map is called amap germ. Indeed, an arbitrary bivariate field
around the boundary can be approximated with spatially distributed map germs. The
localization also lets us use jcnet without adaptation to general manifold domains.
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The system visualizes the Reeb space [11], a space obtained by contracting each
fiber component to a point. A fiber component is a connected component of a fiber.
An example of a Reeb space is given in the left half of Fig. 1. The Reeb space is also
known as the Stein factorization [16].

Even though our numerical computations are not a mathematical proof by itself,
the hints obtained are valuable. In most cases, it is infeasible to draw this kind
of visualization manually, as it involves solving polynomial equations. The results
helped our communication with other mathematicians during nation-wide research
gatherings. In this sense, the application we introduce is the first example of using the
Reeb space for leading mathematical studies. The outcome in this article indicates
that the visual approach using the Reeb space can be used for evaluating related
invariants that utilize topological singularities.

2 Related Work in Visualization

The concept of Reeb space originates in the Reeb graph [25]. It is a special case of
the Reeb space, for which the range is 1 dimensional. If the domain is free of voids,
the Reeb graph is known to become free of cycles. For such a domain, the Reeb
graph is specifically called the contour tree.

Bajaj et al. [3] first introduced to the visualization community the contour tree.
They navigated contours in scalar field data, which were e.g. computational tomog-
raphy results. Carr et al. [8] proposed the standard serial algorithm, while a recent
parallel algorithm [15] is rapidly gaining popularity with its easily accessible imple-
mentation in the Topology ToolKit framework [34]. The Reeb graph has been used
in visualization and computer graphics for shape analysis [4, 24].

Topological invariants have been used to extract a contour configuration from
scalar fields. Pascucci et al. [23] used Betti numbers to obtain homological informa-
tion. Takahashi et al. [32] extendedMorse indices in order to describe the topological
transitions of isocontours to describe the inclusions of one in another.

Later, Edelsbrunner et al. [11] extended the Reeb graph into the Reeb space.
Their algorithm subdivides the range with the image of the edges of the simplicial
complex embedded in the domain. For bivariate fields g : R3 → R

2 with boundary,
Tierny and Carr [33] proposed a more efficient algorithm. These Reeb spaces can
also be examined on the fly [30], avoiding the cost of full and explicit acquisition of
the Reeb space.

The Joint Contour Net (JCN) [6] is a quantized approximation of the Reeb space.
JCNs were used for Reeb space visualization [31] for studying the fiber topology of
polynomial maps. Other uses include the analysis of nuclear scissions [9]. While the
work targeted learners, we use the visualization to aid obtaining new mathematical
results. Though a demonstration had been done for resolving the degeneracy of cusps
[28], the present article shows the first application of aiding an active and professional
study in mathematics.
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Fig. 3 Examples of the topological shape of a fiber component from κ = 0, 1, 2. Squared dots
indicate the singular point. The black ones indicate a point inside the domain, while the white ones
those at the boundary. The topology in κ = 0 is regular while that in κ > 0 is singular. The full list
can be found in the literature [29]

In this article, we compute the JCN instead of the Reeb space since the JCN
implementation had been readily tuned to capture the topology of ourmaps of interest
[31]. In particular, by controlling the granularity of quantization, we get rid of small
artificial topological singularities that might arise due to tessellation.

Reeb spaces can be combined with a scatterplot to navigate the fiber surface
analysis, which is a brushing-and-linking technique using surfaces composed with a
set of fibers [7, 33].

Given a time-varying scalar field, considering time as the second axis of the range
gives a special case of Reeb space for the thus constructed bivariate field [5, 10].
Lehmann and Theisel [19] revealed that the singular curves appear in the continuous
scatterplot [2]. The Safari interface [18] for time-varying field analysis is similar in
design to the interface we used in this study. An alternative approach for extending
the topological analysis to multi-fields is through the Pareto optimality [17].

3 Set-Up

In this section, we clarify the requirements for our visualization, shedding lights
on the mathematical preliminaries. As stated, we want to understand the equivalence
between smooth maps of bounded 3-manifolds into the plane, and we can localize
these maps into map germs of the upper-half Euclidean domain H 3 = {(x, y, z) ∈
R

3 | z ≥ 0}. Thanks to the Taylor expansion, we can imagine our germs to be in
polynomial expression

∑
ai xi (ai , x ∈ R, i ∈ N), which suggests the map space is

identical to the coefficient space R∞ and perturbation means a movement therein.
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Fig. 4 List of local forms of f (S( f ) ∪ S( f |∂ )) for a stable map f of a 3-manifold with boundary
into a surface without boundary. Solid lines and dotted lines denote f (S( f )) and f (S( f |∂ )),
respectively

3.1 The B+-Equivalence and Fiber Topology

Maps g, g′ : M3 → R
2 are B+-equivalent if they can be transformed to each other

preserving the topology, together with those of the boundary – or, formally, if there
exists a homeomorphism germ � : M3 → M3 preserving the boundary of M3 and
the interior of M3 and a homeomorphism ψ : R2 → R

2 preserving orientation such
that g ◦ � = ψ ◦ g′. If g and g′ are map germs, the domain manifold is set to H 3

without loss of generality.
The topology of fibers for stable maps, i.e. maps whose fibers stay topologically

equivalent after some sufficiently small perturbation, has been classified for certain
configurations of Mn → R

n−1. Specifically, Saeki [26] established those for n = 4
with orientable manifolds and n = 3. We did so for n = 5 and non-orientable case
of n = 4 [36]. The classification was later extended to bounded manifolds for n = 3
[29] (see Fig. 3). Locally around a point in the domain, the polynomial expression
of a map may be transformed into the canonical form associated with a topological
category. If not, the map is unstable, and such topology of a fiber (component) is said
to be degenerate. Any unstable map can be approximated with a stable map that is
close enough in the map space R∞.

The classifications for κ = 0 and 1 in Fig. 3 match those for contour topology.
This is because the 1-D fiber g−1 = (g−1

1 (v1), g
−1
2 (v2)) can be embedded in the

2-D surface g−1
1 (v1). As we vary v1, these 2-D and 1-D manifolds both morph

continuously. Consequently, we can see components in κ = 1 mapped in the range
as a curve called a fold (Fig. 4). A fold is definite iff the component vanishes by some
perturbation; otherwise indefinite. If a fold is induced by the boundary we call it a
boundary fold.

Folds may intersect with each other in the range, and this may not be resolved
by perturbation (as explained by e.g. Edelsbrunner et al. [10]). For the intersection
points, we find the corresponding topology of fiber components, which are in the
category of κ = 2. The points connecting two folds, as found in Fig. 5, are called
cusps, be they boundary folds or not. The hitting point of a fold and boundary fold
is called a B2 point.
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3.2 Invariants

We saw that the topology is captured by the B+-equivalence. While a stable map is
equivalent to all their close-enough neighbors in the map spaceR∞, an unstable map
is not so by definition. The map is thus more complex, requiring efforts to understand
its characteristics. In the quotient space (Fig. 1), regions of stable maps are split by
borders, whose points are unstable ones. The structure of these partitions is thus in
the interest of studies on the B+-equivalence.

In the schematic picture (Fig. 1), the quotient space is shown as the stable maps
occupying the rooms while unstable maps the walls. The cells’ and walls’ dimen-
sionality is measured by their codimension. Roughly speaking, the codimension of
a map is the dimensionality lacked for its containing wall to become a cell (although
the cells and walls are both generally infinite; consult a book s.a. [1] for details).
Cells having lower codimension are split by higher ones in-between, much like two
2-D cells are split by a 1-D wall in (Fig. 1). Research questions surround the cells
and their codimension, which together contain information of the structure of the
quotient space.

In order to assign an invariant value to unstable maps, which are actually located
at the walls of the quotient space, the maps are perturbed into stable ones. For this
purpose, we have guaranteed that the invariant values are independent of the choice
of the perturbation. The benefit of the perturbation is that we can take advantage of
the well-studied characteristics of the fiber topology – as with Morse functions, a
proper perturbation resolves degeneracy.

Historically, the approach to utilize perturbation for finding invariants is old and
new. It is well known that for a holomorphic map germ g : (Cn, 0) → (C, 0) defin-
ing an isolated singularity at 0, the Milnor number μ(g) of g which is the number
of critical points of a Morse function near f is a topological invariant of f . Con-
sult Milnor [21] for details. Later, Wall [35], Fukuda and Ishikawa [13], Gaffney
and Mond [14] and Ohsumi [22] followed the strategy for g : (Rn, 0) → (R, 0) and
g : (R2, 0) → (R2, 0), g : (C2, 0) → (C2, 0), g : (Rn, 0) → (R2n−1, 0) respectively.
The study closest to ours is that on g : Rn → R

2 [27]. The boundary was not consid-
ered in any of these studies. On the other hand, the characterization of stable maps on
manifolds with boundary is obtained recently. It is natural to investigate map germs
defined on manifolds with boundary by utilizing perturbation.

To verify the stability of the perturbed map is a time-consuming task as it
involves manual analysis of polynomials. Perturbation is thus another beneficiary of
visualization.

Requirement 1. Perturb unstable maps into stable ones.
As demonstrated in Fig. 5, our invariants α, β and γ can be computed from the

structure of the Reeb space and the type of the singularities of fibers. Hence, this is
a requirement for evaluating the invariant:
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Fig. 5 Given a map germ,
our invariants can be
computed from its Reeb
space after perturbation. In
this illustration of a part of a
Reeb space, solid curves
consist of folds induced by
the singular points inside of
the domain and the dotted
ones by the boundary. The
calculation is done by
counting boundary cusps
(white circles) and B2 points
(gray circles) together with
their orientation, which is
indicated with arrows
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Fig. 6 The configuration of a Reeb space (Fig. 5) visualized in jcnet. Left: The visualized range
shows the folds with color-coded identification of singularity types. Right: The configuration of the
Reeb space in a 3-D arrangement

Requirement 2. Determine the singularity of fibers.
The two requirements above can be satisfied by our visualization system. While

the numerical computation is an approximation, the hints and insights obtained are
useful for speculating potential improvements to the invariants.

4 Reeb Space Visualization and Computation

We visualize the Reeb spaces of some example maps and compute the invariant
values. As stated, this allows us to evaluate the invariants by exploring maps judged
to be similar. Maps distinguished from each other are by the invariant values are, in
fact, B+-inequivalent. In other words, they lie in a different partition in the quotient
space.
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Fig. 7 The user interface of the jcnet program. In addition to the views for the range and Reeb
space, the domain view is available. The inverse image of two component functions g1 and g2 are
rendered as yellow and green surfaces. The fiber is drawn in red

4.1 Visualization

To determine the singularity of fibers (Requirement 1), the folds’ configuration like
in Fig. 5 is desirable. The system visualizes the configuration in 2-D and 3-D as in
Fig. 6. The 2-D visualization is rendered the range viewwhile the 3-D one in theReeb
space view. The full interface is equipped with an additional view for studying the
domain (Fig. 7) and some controls for auxiliary interactions. In case folds in the range
overlap, the view for the Reeb space helps seeing the continuity of the singularity of
the fibers.

If the structure of theReeb space becomes too complicated to be investigated in the
Reeb space view, we can look at the domain view and manually track the continuity
of fiber components. Though this last option may take some time to complete, we
have not encountered a map that is infeasible to acquire the invariant values.

For perturbing the map (Requirement 2), the user interface lets us define and
change a map g through polynomial expressions, and shows the domain, range and
Reeb space together with the types of folds. Perturbation can be performed either by
updating the polynomials or by editing the inverse images of component functions.
To allow the latter, implicit surface modeling is employed [31].

We must also check whether the degeneracy of the fibers is resolved. For folds,
this can be done primarily in the range view since folds with degenerate fiber topol-
ogy is detected by the system and given special colors. For points where different
folds intersect as in Fig. 4, the meeting points shall be manually compared with the
classification and decided if it includes degeneracy. Though this observation task is
manual, it is a trivial one that finishes instantly.
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4.2 Computation

The computation of the JCN is done through the rasterization algorithm [6]. The map
is discretized into a tetrahedral grid and interpolated linearly. The tetrahedra is then
projected in the range, which is quantized into equidistant intervals {[vi , vi + δ1)}i ×
{[w j , w j + δ2)} j (∀i, j ∈ N, vk, wk, δk ∈ R). The algorithm rasterizes the tetrahedra
in this pixel space. To contract the fiber component mapped in to the pixels in this
way, we identify tetrahedra neighboring in the domain as a single node in the JCN,
which is in fact a graph structure. We link the nodes with an edge if they neighbor
in the quantized range and share a tetrahedron.

The identification of the type of a fold is done by consulting each node in this
graph. Here, topological singularity is reported when the node has no or multiple
edges [31] to one direction out of up, down, left or right in the pixel space. The
JCN is computed on the boundary, too, for the mesh restricted into a triangular one.
This is for identifying singularities there, and the two JCNs are integrated to finally
determine the type of singularity as found in Fig. 3.

5 Invariants for Bounded Map Germs

From now on, the word “fold” refers exclusively to non-boundary folds unless stated
otherwise. The proof of our results in this section, which by itself is out of scope
of this article, will be published in a forthcoming paper. See Fig. 8. A map germ
g : (H 3, 0) → (R2, 0) is called cone-like if there exist sufficiently small ε > 0 and
δ > 0 such that

1. (D3
δ ∩ {y ≥ 0}) ∩ g−1(S1ε ) is a manifold with boundary,

2. g∂ = g|(D3
δ ∩{y≥0})∩g−1(S1ε ) : (D3

δ ∩ {z ≥ 0}) ∩ g−1(S1ε ) → S1ε is a stable map,
3. g|(S2δ ∩{z>0})∩g−1(D2

ε )
: (S2δ ∩ {z > 0}) ∩ g−1(D2

ε ) → D2
ε is an immersion, and

4. g|(D3
δ ∩{z≥0})∩g−1(D3

ε \{0}) : (D3
δ ∩ {z ≥ 0}) ∩ g−1(D2

ε \ {0}) → D2
ε \ {0} is a proper

C∞ stable map, and it is equivalent to g∂ × id(0,ε] : (D3
δ ∩ {z ≥ 0}) ∩ g−1(S1ε ) ×

(0, ε] → S1ε × (0, ε].
For a generic map germ g′ : (R3, 0) → (R2, 0) and a generic upper half space

H 3, the map germ g = g′|(H 3,0) is cone-like. Note that the set of nongeneric map
germs has infinite codimension [12].

Remark 5.1

AC∞ map f : M → Q on a 3-manifoldwith boundary into a surfacewithout bound-
ary is stable if and only if it has only folds, cusps, swallowtails, boundary folds,
boundary cusps or B2 singularities. f |S( f )∪S( f |∂ ) : S( f ) ∪ S( f |∂ ) → Q may only
have multi-germs shown in Fig. 4. Here, fold and cusp singularity (or boundary fold,
boundary cusp and B2 singularity) are a singular point of f (resp. f |∂ ) around which
f is locally of the form (x, y, z) �→ (x, y2 ± z2) and (x, y, z) �→ (x, y3 + xy + z2)
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Fig. 8 A cone-like map
germ g : (H3, 0) → (R2, 0).
The red cylinder is g−1(S1ε )

Fig. 9 The signs of cusps, boundary cusps, and B2 points of f are defined through the orientation
of their Reeb space configuration

(resp. (x, y, z) �→ (x, y2 ± z), (x, y3 + xy + z), (x, y2 ± z2 + xz)). In particular, if
the sign is positive (or negative), the singularities are definite. In this case, S( f ) and
S( f |∂ ) are a closed non-singular 1-dimensional submanifold of M [20, 29]. �

Let p be a cusp, boundary cusp, or B2 point of a stable map f : M → R
2 of a

3-manifold with boundary into the plane. We define the sign of p in the following
manner. First, we orient R2 in the counter-clockwise manner. At the image of a cusp
point, boundary cusp point or B2 point p, the coincident curves may be configured
only in the ways shown in Fig. 9. If the image around f (p) are in the left hand side
of Fig. 9, then the sign of p is defined to be +1; otherwise, the sign of p is equal to
−1. Then, the algebraic number of cusps (or boundary cusps, B2) of f is the total of
signs of cusps (resp. boundary cusps, B2) of f .

Finally, we introduce the invariants we have obtained.

Theorem 5.1. Let g : (H 3, 0) → (R2, 0) be a cone-like map germ. Then,

1. the difference of the algebraic number of cusps and the algebraic number of
definite B2 points, denote it α,

2. the total of the algebraic number of boundary cusps and the algebraic number of
B2 points, β,

3. the parity of the number of B2 points, γ ∈ {0, 1}
of a stable perturbation f : U → R

2 of a representative U → R
2 of g are invariants

of the topological B+-equivalence class of g. �
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6 Outcome

We have evaluated the B+-equivalence with the jcnet. In the system, the domain
has the bounding box {(x, y, z) ∈ R

3| |x | = 1 or |y| = 1 or |z = 1|; 0 ≤ x, y, z ≤
1}. To study the domain H 3, we choose the surface z = −1, and curves in the range
introduced by |x | = 1, |y| = 1 and z = 1 were ignored. From the folds rendered in
the range, we could determine those from z = −1 by looking at its pre-image in the
domain view.

6.1 Comparing Forms of Equivalence Through Visual
Investigation

We studied the relationship between B+-equivalence and the B-equivalence. The
two are similar concepts, but the B-equivalence (1) additionally requires � and ψ

to be diffeomorphisms, while (2) does not require ψ to preserve the orientation of
the gradient vectors. Martins and Nabarro [20] classified map germs g : (H 3, 0) →
(R2, 0) of the form g(x, y, z) = (x, h(x, y, z)) under B-equivalence. Note that the
corank of a map germ g(x, y, z) = (x, h(x, y, z)) is 0 or 1.

Table1 shows that a selection of the classified map germs g1 and g2, g3 (or g1
and g2, g4) are distinguished by the combination of our invariants (α, β, γ ), but g3
and g4 are not distinguished by the combination of our invariants (α, β, γ ). The
invariant values were computed from the visualization results in Fig. 10, 11, 12 and
13. To summarize, from the visualization we have learned that the B+-equivalence
distinguishes a part of these categories (with a potential error due to numerical
imprecision).

The selection corresponds to themapgermsof codimension 1 found in the studyby
Martins and Nabarro. The codimension 1, among different codimensions, possesses
the largest amount of the unstable maps.

On the other hand, for a map germ g : (H 3, 0) → (R2, 0) obtained by them, a ver-
sal unfolding of g induces a satisfactory perturbation f : U → R

2 of a representative
U → R

2 of g.
Then, we can check the (α, β, γ )-value of g calculated from f coincides with

those calculated with help of the jcnet for map germs in Table1. Indeed, it shows
that map germs g1 and g2, g3, g4 are not all B+ equivalent, suggesting a similarity
between B and B+ with examples.

6.2 Germs of Corank 2

Figure14 shows another example g5(x, y, z) = (x2 − y2 + z, 2xy). The germ was
chosen since we were able to obtain the singularities manually under the restriction



Visually Evaluating the Topological Equivalence ... 193

Table 1 The combination of the invariants α, β and γ distinguish three map germs out of four of
those with codimension 1 in the classification for the B-equivalence.
gi (x, y, z) Perturbation (t = 0) α β γ

g1(x, y, z) = (x, y2 + z3 + xz) (x, y2 + z3 + xz + t z2) −1 1 1

g2(x, y, z) = (x, y2 − z3 + xz) (x, y2 + z3 + xz + t z2) 0 1 1

g3(x, y, z) = (x, yz + xy + y3) (x, yz + zy + y3 + t z) 0 0 1

g4(x, y, z) = (x, yz + xy − y3) (x, yz + zy + y3 + t z) 0 0 1

Fig. 10 Left: Germ g1(x, y, z) = (x, y2 + z3 + xz). Right: Perturbation of g1

Fig. 11 Left: Germ g2(x, y, z) = (x, y2 − z3 + xz). Right: Perturbation of g2

Fig. 12 Left: Germ g3(x, y, z) = (x, yz + zy + y3). Right: Perturbation of g3

Fig. 13 Left: Germ g4(x, y, z) = (x, yz + zy − y3). Right: Perturbation of g4
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Fig. 14 Germ f obtained by perturbing g5(x, y, z) = (x2 − y2 + z, 2xy). Left: g5 perturbed into
(x2 − y2 + z + x, 2xy − y) through equational transforms. Right: perturbed further with mouse
interaction

of z = 0. It is especially difficult to evaluate (α, β, γ ) for this germ manually since
the corank of the map germ is 2, which indicates that the first component of the
2-D range cannot be simplified into x . From the visualization, we learned that the
resolved germ has no cusp point, but three boundary cusp points and one B2 point.
This gave us (α, β, γ ) = (0, 0, 1).

7 Discussion

We combined two perturbation schemes: equation input and mouse input (as intro-
duced in [31]). Equational perturbation was used for rough perturbation via explicit
alteration of perturbation parameters. We tended to find singularities that are not
classified in Fig. 4, i.e. the perturbation leaves unresolved degeneracy. For detailed
perturbation with immediate visual feedback, we used mouse interaction (Fig. 7) to
resolve the degeneracies entirely.

Potentially, errors may arise when quantizing the field during the rasterization
stage in the JCN computation. Thanks to the experiments, we are comfortable about
the numerical precision of the results regarding our fields. Due to the simplicity of
the polynomial expressions, we believe that the examples do not contain singularities
so small that they are not captured during the quantization stage and hence invisible
in the visualization.

Even though the numerical imprecision rules out our visualization as a mathe-
matical proof on the correctness of the invariant values, the hints we get are valuable
given the rapidity of acquisition and the amount of thus obtainable examples.

8 Conclusion

In this article, we investigated the B+-equivalence by visualizing Reeb spaces. We
approximated the equivalence with three invariants, α, β and γ . We acquired a few
canonical forms that are inequivalent to each other both in the B and B+-equivalence.



Visually Evaluating the Topological Equivalence ... 195

We were also able to treat map germs of corank 2, whose treatment would be
significantly more challenging than those of corank 0 and 1 without the Reeb space
visualization.
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and IMI Joint Use Research Program Workshop (II) 20200011 “Fiber Topology Meets
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Topological Feature Search in
Time-Varying Multifield Data

Tripti Agarwal, Amit Chattopadhyay, and Vijay Natarajan

Abstract A wide range of data that appear in scientific experiments and simula-
tions are multivariate or multifield in nature, consisting of multiple scalar fields.
Topological feature search of such data aims to reveal important properties useful
to the domain scientists. It has been shown in recent works that a single scalar field
is insufficient to capture many important topological features in the data, instead
one needs to consider topological relationships between multiple scalar fields. In
the current paper, we propose a novel method of finding similarity between two
multifield data by comparing their respective fiber component distributions. Given
a time-varying multifield data, the method computes a metric plot for each pair of
histograms at consecutive time stamps to understand the topological changes in the
data over time. We validate the method using real and synthetic data. The effective-
ness of the proposed method is shown by its ability to capture important topological
features that are not always possible to detect using the individual component scalar
fields.
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1 Introduction

Scientists understand different physical phenomena by studying the interrelation-
ships between features in different fields. It has been observed and shown that such
multifield ormultivariate data can reveal many important phenomena about an exper-
iment that are impossible to study using a single scalar field data [10, 13]. Develop-
ment of tools and techniques for extracting and visualizing features in multifield data
is an important topic of research interest [18]. Topology-based methods have been
shown to be extremely effective in this context. During the previous two decades,
topological analysis of shapes and data was mostly driven by scalar topology, using
contour tree, Reeb graph, Morse-Smale complex and their variants [6]. Such tech-
niques have also been extended for time-varying scalar field data by defining different
topology-aware similarity measures between two scalar fields [4, 29, 33].

Generalization of the techniques to time-varying multifield data is challenging
and requires further development in both theory and computational methods. More
recently, new tools have been proposed for understanding and visualizing multifield
data—Reeb space [16], Jacobi set [7, 14, 15], Joint Contour Net [9, 13] and Pareto
analysis [21]. Extending these methods to time-varying multifield data requires the
development of techniques for comparative analysis and visualization. For example,
developing a comparative measure between two Reeb spaces is a challenging open
problem. In this paper, we consider a simpler feature descriptor of a multifield,
namely its fiber-component distribution or histogram. Using this, we take the first
step towards a topology-aware distance measure between two multifields in terms
of the distance between their fiber-component distributions. Our contribution in the
current paper is as follows:

• We introduce simple topology-aware distance measures between two multifields
based on their fiber-component distributions or histograms in the range space. We
prove the metric properties of the proposed distance measures.

• We show that the proposed measures capture significant or interesting events in
time-varying phenomena, not possible using a study of individual fields. We val-
idate the method by experimenting on a time-varying synthetic data where topo-
logical features are known in advance.

• We show effectiveness of our method by experimenting on previously studied
nuclear-scission data [13] and re-explain how scission events are captured. We
also apply our method in capturing important feature in the orbital data of Pt-CO
interaction.

Section2 discusses related works on scalar and multifield data analysis. Section3
describes different data structures or representations used for understanding and
visualizing multifield data. Section4 introduces our proposed topology-aware dis-
tancemeasures anddescribes important properties of themeasure. Section5discusses
the implementation details and Sect. 6 and Sect. 7 describe various results of experi-
ments on synthetic and real data. The experiments are conducted on nuclear scission,
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fission, and molecular orbital density data of Pt-CO interaction. Finally, Sect. 8
presents conclusions and lists some limitations of the method.

2 Related Work

Feature extraction in time-varying data is a well studied topic and several approaches
have been proposed. We describe a few relevant approaches here.

Various similarity measures between scalar fields have been studied to analyze
repeating patterns and similar arrangements in the data. Hilaga et al. studied topo-
logical shape matching using a multiresolution Reeb Graph (MRG) [20]. Saikia et
al. propose a method for finding repeating topological structure in a scalar data using
a data structure called the extended branch decomposition graph (eBDG) [33]. In a
following paper [34] the authors describe a histogram feature descriptor to compare
subtrees of merge trees against each other. Narayanan et al. define a distance measure
between extremum graphs to compare two scalar fields [29].

Many other comparison measures have been proposed in the literature for find-
ing the distance between graphs or topological data structures. Bauer et al. have
proposed a functional distortion metric on Reeb Graph and show its stability prop-
erties [4]. A survey on graph edit distance by Gao et al. [17] discusses different
inexact graph matching algorithms for the application in pattern analysis. Sridhara-
murthy et al. propose an edit distance between merge trees for feature visualization
in time-varying scalar data [37]. Thomas et al. propose a multiscale symmetry detec-
tion technique in scalar fields using contour clustering and studying the similarity
between them [38]. In related works, different distance metrics between the merge
trees have been proposed to provide a similarity between the corresponding scalar
fields [5, 28].

Other techniques that are not based on topological analysis have also been pro-
posed in the literature for tracking and visualizing time-varying features. Ji et al. [22]
proposed a global optimization algorithm for time-varying data and resolved the
problems of volume overlapping and aggregate-attribute criteria by using the earth
mover’s distance. A branch-and-bound approach was used for the global cost eval-
uation. The resultant approach and the metric was able to track features accurately
and efficiently. Lee et al. [26] proposed a time activity curve (TAC) to visualize
time-varying features.

However, topological feature search in time-varying multifield data is a compar-
atively new area of research and only few works can be found in the literature. Duke
et al. [13] propose a joint contour net (JCN) based visualization technique for detect-
ing nuclear scission feature in the time-varying multifield density data. It has been
observed that direct visualization of the topological features using JCNs does not
scale to large data sizes because the JCN structure can be extremely complicated.
In this paper, our method replaces this JCN visualization technique by a histogram
comparison method.
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3 Background

In this section, we discuss a few tools and techniques from the literature that are
required to describe our proposed distance measure.

3.1 Histogram and Isosurface Statistics, Continuous Scatter
Plot

A histogram visualizes the distribution of the samples of a scalar field using a bar
graph that is constructedbybinning the samples in thefield range.Histogramsprovide
a measure of importance of isovalues based on the statistics of sample points. Carr
et al. [8] show that histograms represent the spatial distribution of scalar fields with a
nearest neighbourhood interpolation. Moreover, they show that isosurface statistics,
such as the area of isosurfaces [3], betters represent the distribution of a scalar field.

Bivariate histograms represent two fields together. These histograms consist of
bins of possibly different shapes such as square, triangle or hexagonal [35]. Square
shaped bins of the histogram consist of the count for each pair of values defined on
the axes. This count can be used to calculate the variance and bias from the integrated
mean square error by using appropriate formulae. The square bins can be stretched
to a rectangular shape based on the scale defined on the axes.

The density function corresponding to a collection of continuous input fields is
well represented by a continuous scatter plot. Unlike histograms, continuous scatter
plots do not depend on the bin sizes. Bachthaler et al. [2] describe a mathematical
model for generic continuous scatter plots of maps from n-D spatial domain to m-D
data domain. Lehmann et al. [27] describe algorithm for detecting discontinuities in
the continuous scatter plots that reveal important topological features in the data.

3.2 Multifield Topology and Jacobi Set

Amultifield on a d-manifoldM (⊆ R
d) with r component scalar fields fi : M → R

(i = 1, . . . , r ) is a map f = ( f1, f2, . . . , fr ) : M → R
r . In differential topology,

f is considered to be a smooth map when all its partial derivatives of any order are
continuous. A point x ∈ M is called a singular point (or critical point) of f if the
rank of its differential map dfx is strictly less than min{d, r} where dfx is the r × d
Jacobian matrix whose rows are the gradients of f1 to fr at x. And the corresponding
value f(x) = c = (c1, c2, . . . , cr ) in R

r is a singular value . Otherwise if the rank
of the differential map dfx is min{d, r} then x is called a regular point and a point
y ∈ R

r is a regular value if f−1(y) does not contain a singular point.
The inverse image of the map f corresponding to a value c ∈ R

r , f−1(c) is called
a fiber and each connected component of the fiber is called a fiber-component
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[31, 32]. In particular, for a scalar field these are known as the level set and the
contour, respectively. The inverse image of a singular value is called a singular fiber
and the inverse image of a regular value is called a regular fiber. If a fiber-component
passes through a singular point, it is called a singular fiber-component. Otherwise,
it is known as a regular fiber-component. Note that a singular fiber may contain a
regular fiber-component. Topology of a multifield data is usually studied based on
its fiber-topology [12].

Jacobi set is used to study topological relationship between two or multiple scalar
fields. Jacobi set Jf of a multifield f is the closure of the set of all its singular points,
i.e. Jf = cl {x ∈ M : rank dfx < min{d, r}}. Alternatively, the Jacobi set is the set
of critical points of one component field (say fi ) of f restricted to the intersection of
the level sets of the remaining component fields [14]. Intuitively, Jacobi set of two
generic Morse functions f1, f2 : M → R is the set of points where gradients of the
individual fields are parallel, i.e. J = {x ∈ M : ∇ f1(x) × ∇ f2(x) = 0}. Jacobi set
plays a central role in the design of a comparison measure between two or multiple
scalar fields [15].

3.3 Reeb Space and Joint Contour Net

Similar to the Reeb graph of a scalar field, the Reeb space parameterizes the fiber-
components of a multifield and its topology is described by the standard quotient
space topology [16]. A Jacobi structure has been defined as a projection of the Jacobi
set on the Reeb space, by the quotient map [12]. Figure1c illustrates a Reeb space
with Jacobi structure (in red) corresponding to a bivariate field.

Joint Contour Net (JCN) [9] gives a practical algorithm for approximating a Reeb
space. A JCN is built in four stages. The first step of the JCN algorithm constructs all
the contour fragments in each cell of the entire mesh corresponding to a quantization
of each component field. In the second step, the joint contour fragments are computed
by computing the intersections of these contour fragments for the component fields
in a cell. The third step is to construct an adjacency graph (dual graph) of these
joint contour fragments where a node in the graph corresponds to a joint contour
fragment and there is an edge between two nodes if the corresponding joint contour
fragments are adjacent. Finally, the JCN is obtained by collapsing the neighbouring
redundant nodes with identical isovalues. Thus, each node in the JCN corresponds
to a joint contour slab or quantized fiber-component and an edge represents the
adjacency between two quantized fiber-components.We use the JCN implementation
for computing the quantized fiber-components and its histogram, see Fig. 1d.
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Fig. 1 Figure shows a bivariate synthetic data and corresponding structures to understand its
topology. a Paraboloid and height field with Jacobi set (red), total 9 connected components of
the Jacobi set are numbered as 1 to 9 b Singular fiber-components that pass through the Jacobi set
points, c Reeb space (JCN) with Jacobi structure (in red). Jacobi structure components that are the
projection of the Jacobi set components on the Reeb space are shown by the corresponding dashed
numbers. d Histogram with singular values (bins)

3.4 Histogram Distance Measures

Different measures have been proposed in the literature to study the distance between
two histograms [30]. The measures may be classified into two types based on how
they are computed—bin-to-bin measures or cross-bin measures. In the former type,
bins with the same indices are compared. We list below, a few examples of measures
for finding distance between two histograms H and K with bin count hi and ki
respectively.
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Minkowski-form Distance:

dLr (H, K ) =
(∑

i

|hi − ki |r
)1/r

(1)

Commonly used Minkowski-form distances are dL1 , dL2 and dL∞ . These are often
used to compute dissimilarity between two color images.
Histogram Intersection:

d∩(H, K ) = 1 −

∑
i

min(hi , ki )

∑
i ki

(2)

This distance can capture the partial matches when the areas of the two histograms
are not equal.
Kullback-Leibler (KL) Divergence:

dK L(H, K ) =
∑
i

hi log
hi
ki

(3)

This is designed from an information-theoretic viewpoint. The measure is non-
symmetric and sensitive to histogram binning.

One example of a cross-bin dissimilarity measure is the
Quadratic-form Distance:

dA(H, K ) =
√

(h − k)TA(h − k), (4)

where h and k are vector representations of H and K , respectively. The matrix
A = [ai j ] is the similarity matrix where ai j denote the similarity between the i-th
bin of H with the j-th bin of K [30].

4 Our Method

Let us consider two continuous multifields f = (X1, X2, . . . , Xr ) and g = (Y1,Y2,
. . . ,Yr ) over a d-dimensional compact domain D ⊆ R

d where each of Xi and Yi ,
(i = 1, 2, . . . , r) are real-valued scalar fields in the domain We consider compar-
ing multifields f and g at two consecutive time steps of a time-varying multifield
data where topological features vary continuously over time. A fiber of the mul-
tifield f corresponding to a parametric point c = (c1, c2, . . . , cr ) is the preimage
f−1(c) = X−1

1 (c1) ∩ X−1
2 (c2) ∩ . . . ∩ X−1

r (cr ). A connected component of the fiber
is called a fiber-component. Fiber-component topology is used to study multifield
topology, similar to the use of contour topology for scalar field studies. The Reeb
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space is a generalization of the Reeb graph. It captures the fiber-component topology
corresponding to a multifield. However, Reeb space structure is rather complicated
and computing an effective distancemeasure between twoReeb spaces for comparing
corresponding multifields is an open problem.

In the current work, we consider the change in fiber-component distribution over
parametric space to capture the change in topology in two multifields. We observe
that a change in the number of fiber-components that correspond to a point in the
parametric space implies a change (birth or death) in number of sheets of the Reeb
space, as described in Sect. 4.2. Therefore, to study the topological changes from f
to g we first consider the fiber-component distributions as the feature-descriptors of
the respective multifields. Next, we propose few simple distance measures between
the fiber-component distributions to capture the difference in terms of topological
features.

4.1 Fiber-Component Distribution over the Range Space

Let f = (X1, X2, . . . , Xr ) be a continuous multifield from a d-dimensional compact
domain D ⊆ R

d to the r -dimensional range space Rf = [a1, b1] × [a2, b2] × . . . ×
[ar , br ], ai , bi ∈ R. Define the function N : Rf → N as N (x) = |f−1(x)| for x ∈ Rf ,
where |f−1(x)| represents the number of connected components in the fiber f−1(x).
In other words, N (x) maps each point x of Rf to the corresponding number of fiber-
components of f. We assume that N is a bounded function for multifields f defined
over a compact domain D. To compute the total number of fiber-components, we
partition the range Rf into a union of mr sub-boxes by introducing the partitions of
the intervals: ai = x (i)

0 < x (i)
1 < . . . < x (i)

m = bi for i = 1, 2, . . . , r . Let xi1i2...ir be
a point in the sub-box Bi1i2...ir = [x (1)

i1−1, x
(1)
i1

] × [x (2)
i2−1, x

(2)
i2

] × . . . × [x (r)
ir−1, x

(r)
ir

] for
i1, i2, . . . , ir = 1, 2, . . . ,m with volume �Vi1i2...ir . Then, N, defined as the sum of
number of fiber-components over all points in Rf is equal to

N = lim
all �Vi1 i2 ...ir →0

m∑
i1,i2,...,ir=1

N (xi1i2...ir )�Vi1i2...ir =
∫
Rf

N (x)dx. (5)

The function N is bounded and hence integrable. Next, we define a density func-
tion of the fiber-component distribution as:

pf(x) = N (x)
N

for x ∈ Rf , (6)

where ∫
Rf

pf(x)dx = 1.

In practice, to compute the fiber-component distribution over the range space, we
first discretize the continuous multifield f = (X1, X2, . . . , Xr ) in the r -dimensional
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range space. Let field Xi be discretized (quantized) uniformly at the values x (i)
1 <

x (i)
2 < . . . < x (i)

mi
for i = 1, 2, . . . , r . We denote this discrete range space as spec

(Rf) = I1 × I2 × . . . × Ir , the Cartesian product of Ii = {x (i)
1 , x (i)

2 , . . . , x (i)
mi

} (i =
1, 2, . . . , r ). Then we compute the frequency distribution of the corresponding fiber-
components over this discrete range space (spectrum). The probability mass function
of the corresponding discrete probability distribution is given by

pf(x) = Ñx

Ñ
, where x ∈ spec(Rf). (7)

Here, Ñx counts the number of fiber-components at the parametric point x =
(x (1)

i1
, x (2)

i2
, . . . , x (r)

ir
) in spec(Rf) (for i1 = 1, 2, . . . ,m1; i2 = 1, 2, . . . ,m2; …; ir =

1, 2, . . . ,mr ) and Ñ is the sum of number of fiber-components of f over all points in
the discrete range space spec(Rf). Note that pf defines a probability mass function
(p.m.f.) since pf(x) ≥ 0 and

∑
x∈spec(Rf )

pf(x) = 1.

We note, for a piecewise-linear multifield on a triangulated domain, when the quan-
tization level goes to infinity then the corresponding sequence of JCNs converges
to the actual Reeb space [12]. Therefore, the discrete distribution in (7) converges
to the continuous distribution in (6). Alternatively, one can define p.m.f. using Ax

by measuring the size of the quantized fiber-components at the parametric point
x ∈ spec(Rf) and A is the total measure of all the fiber-components over spec(Rf).
Thus we have

pf(x) = Ax

A
, where x ∈ spec(Rf). (8)

In the proposed distance measure that we will describe next, we consider the defini-
tions in (6) and (7) because they capture the topological changes in the fibers of the
multifield.

4.2 Distance Between Two Fiber-Component Distributions

Let us consider twomultifields f1 = (X1, X2, . . . , Xr ) and f2 = (Y1,Y2, . . . ,Yr )over
the domain D ⊆ R

d . Let Rf1 and Rf2 be the range spaces of f1 and f2, respectively.
We note that the range spaces Rf1 and Rf2 may be different but restrict our attention
to the case when they are almost equal. To define our distance measures between
the fiber-component distributions of f1 and f2, first we extend the range spaces Rf1
and Rf2 to an equal range R. We define R as: R = R1 × R2 × . . . × Rr where Ri =
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range Xi ∪ range Yi for i = 1, 2, . . . , r . This extended range R is considered as
the common domain of fiber-component distributions of both f1 and f2. The fiber-
component distributions of f1 on the part R \ Rf1 , corresponding to which f1 has no
data, is filled with zeros. Similarly fiber-component distributions of f2 on R \ Rf2 is
filled with zeros.

For the continuous case: let pf1 and pf2 be the density functions of the fiber-
component distributions of f1 and f2, respectively, over the extended range R. Let
P1 and P2 be the corresponding distribution functions. Then we define a point-wise
distance measure between P1 and P2 as:

dq(P1,P2) =
(∫

R
|pf1(x) − pf2(x)|qdx

)1/q

(9)

for any real number q ≥ 1. In particular for q = 1, q = 2 or q = ∞ we get similar
distance measures of practical importance.

For the discrete case, let the range space R be discretized (quantized) as spec(R) =
I1 × I2 × . . . × Ir where Ii = {x (i)

1 , x (i)
2 , . . . , x (i)

mi
}. Let P1 = {p(1)

x : x ∈ spec(R)}
and P2 = {p(2)

x : x ∈ spec(R)} be the fiber-component distributions of f1 and f2,
respectively, over the discrete range space spec(R). Then we define the point-wise
distance measure between the distributions P1 and P2 as:

dq(P1,P2) =
⎛
⎝ ∑

x∈spec(R)

|p(1)
x − p(2)

x |q
⎞
⎠

1/q

. (10)

for any real number q ≥ 1. In particular, for q = 1, q = 2 and q = ∞ we have

d1(P1,P2) =
∑

x∈spec(R)

|p(1)
x − p(2)

x | (11)

d2(P1,P2) =
⎛
⎝ ∑

x∈spec(R)

|p(1)
x − p(2)

x |2
⎞
⎠

1/2

(12)

and

d∞(P1,P2) = sup
x∈spec(R)

|p(1)
x − p(2)

x |. (13)

These distance measures are motivated from the observation that the point-wise dif-
ference |Ñ (1)

x − Ñ (2)
x | captures the number of changes in fiber-components between

two multifields at consecutive time steps for x ∈ spec(R). Note that each fiber-
component of a multifield corresponds to exactly one sheet of its Reeb space. So, the
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difference in number of fiber-components captures the number of possible changes
in Reeb space sheets containing the parameter value x. Thus, |Ñ (1)

x − Ñ (2)
x | captures

the number of births or deaths of sheets containing the parameter value x of the
corresponding Reeb spaces.

4.3 Weighted Distance for the Singular Values

Singular fibers capture the topological changes in the evolution of fibers in a multi-
field. The image of a singular fiber in the parametric space is called a singular value.
Because of importance of the singular values compare to regular values, we propose
a variant to the distance measure that weights the singular values differently,

dS

q (P1,P2;ω) =
[
ω

∑
x∈S

|p(1)
x − p(2)

x |q +
∑
x/∈S

|p(1)
x − p(2)

x |q
]1/q

. (14)

Here, S is the set of singular values in the discrete range space spec(R) and q ≥ 1.
Moreover, ω > 1 is the weight parameter to impose more importance to the singular
values than the regular values.We observe from our experiments on different datasets
that increasing the weight ω increases the prominence of the events that correspond
to topological changes when we plot weighted distances over time. Figure1d shows
a fiber-component histogram with the singular values (in red) corresponding to the
bivariate field in Fig. 1a.

4.4 Metric Space Properties of the Distance Measures

It is important to show that the proposed distancemeasures between two distributions
satisfy the metric space properties for the spacePR of all possible fiber-component
distributions corresponding to different multifields with range R. Let us first show
that (PR, dq) is a metric space.

1. Non-negativity. Note dq is real-valued, finite and non-negative.
2. Identity. We note that for two distributions P1,P2 ∈ PR , dq(P1,P2) = 0 if and

only if P1 = P2, since
∑

x∈spec(R)

|p(1)
x − p(2)

x |q = 0 implies p(1)
x = p(2)

x for all x ∈
spec(R).

3. Symmetry. It is straight-forward to show that dq(P1,P2) = dq(P2,P1). This
implies the symmetry property of dq .

4. Triangle inequality. To show the triangle inequality of dq we consider three
fiber-component distributions P1, P2 and P3. Note, for q = 1, |p(1)

x − p(3)
x | ≤

|p(1)
x − p(2)

x | + |p(2)
x − p(3)

x |. For q ≥ 1, using Minkowski inequality [19] we can
show that dq(P1,P3) ≤ dq(P1,P2) + dq(P2,P3).
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Similar properties can be proved for the other distance measures dS

q , d1, d2 and d∞.
However, note the above metric properties hold in the space of fiber-component
distributions, not necessarily in the space of actual multifields.

5 Implementation

We implement the distance measures described in the previous section using Visual-
ization Toolkit (VTK) [24] under the Joint Contour Net [9] implementation frame-
work. The implementation works for a generic pair for multifields but is particularly
designed for time-varying multifields. We note that the range spaces of two mul-
tifields at two consecutive time steps are not necessarily the same and may vary
slightly. We expand the range of both multifields by considering their component
wise union and use zero-padding to compute the histogram as described in Sect. 4.2.
Next, we describe the four main steps of our implementation.

I. Computing Fiber-Components: First, we discretize or quantize the common
range of the multifields into finite numbers of bins. Then corresponding to each
bin-value, we compute the quantized fiber-components as described in the JCN algo-
rithm [9]. In other words, compute the contour slabs in each cell for each of the scalar
fields and then find intersection of the slabs to get the fragments. Finally an adjacency
graph is computed from the fragments to obtain quantized fiber-components. Each
quantized fiber-component corresponds to a node of the JCN.

II.ComputingFiber-ComponentHistograms:Next,we compute the r -dimensional
fiber-component histogram corresponding to each multifield on the range space. We
use the same binning as used for the quantized fiber-component computation. Each
bin in the range is populated with the corresponding fiber-components. We compute
the number of fiber-components in each bin for the fiber-component histogram com-
putation. A color map specifying the number of all the nodes is shown in Fig. 1d.
The color map is chosen over a range of blue values. Light blue shows fewer number
of nodes (fiber-components), and as the color darkens the number of nodes (fiber-
components) also increases.

III. Computing Singular Values of Multifields: To compute singular values first
one needs to compute the singular points or the Jacobi set in the domain of the
multifield and then the corresponding range values of those points are actually the
singular values. In the current implementation we first compute the Jacobi structure
using a multi-dimensional Reeb graph (MDRG) as described in [11, 12] and then
project them in the histogram-bins and call those bins as singular bins. We note
that a singular bin of the histogram may contain both singular and regular fiber-
components (nodes). In the histogram plot Fig. 1d, the red colored bins indicate the
singular bins and blue are the regular bins. For the singular bins of the histogram the
singular, regular and total nodes (singular and regular together) are stored separately
for further computation.
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IV. Computing Distance Metrics between Histograms: The above three steps are
performed for multifields at all the time stamps or sites, and the corresponding his-
tograms are stored in different files. A python script is then implemented to compute
the corresponding probability density from the histogram. Then the distance metrics
between two probability densities at the consecutive time steps are computed as in
Sects. 4.2 and 4.3. The distance metric dS

q (as in Eq.14) is computed for different
values of q and ω. This metric is computed using the singular and regular nodes.
Note that if q = 1 and ω = 1 the metric dS

q is same as d1. To validate the experiment
d1 is calculated using all the nodes (regular and singular nodes together). Along with
the measures that we have proposed we even calculated the distance measures for the
already defined metrics for histogram comparison as defined in Sect. 3.4. The values
for these distance metrics are stored and then used to create a comparison line plot.
The values were also used to check the metric properties defined in Sect. 4.4. We also
calculated the simple root mean square distance for bivariate data for experimental
comparison.

6 Applications

We now describe applications of the proposed comparison driven feature search
method to four different datasets, namely (i) a synthetic data consisting of twopolyno-
mial functions, (ii) the scission data of plutonium atom, (iii) fission data of Fermium
atom and (iv) the DFT data of carbon monoxide and platinum (CO-Pt) molecular
bond.

6.1 Synthetic Data

We generate a synthetic bivariate field whose components are the height field
f1(x, y, z) = z and the paraboloid field f2(x, y, z) = x2 + y2 − z. Both fields are
defined on an axis-aligned box [−5.5, 4.5] × [−5.5, 4.5] × [−5.5, 4.5] and sam-
pled on a grid of size 20 × 20 × 20. Next, we generate a sequence of multifield data
by incrementally translating the domain-box along each of the three axes with small
magnitude 0.05, i.e. if (Cx ,Cy,Cz) and (cx , cy, cz) are respectively the coordinates of
a point on the box before and after the translation, then Cx = cx + 0.05, Cx = cy +
0.05, Cz = cz + 0.05. In total, we create 21 bivariate datasets. To create the consec-
utive datasets, we begin with the domain [−5.5, 4.5] × [−5.5, 4.5] × [−5.5, 4.5]
and then apply the above described sequence of translations 21 times until we obtain
the domain of the final dataset, namely [−4.5, 5.5] × [−4.5, 5.5] × [−4.5, 5.5].
The major topological feature is expected in the dataset corresponding to the domain
[−5, 5] × [−5, 5] × [−5, 5] (which is symmetric about origin) because of degen-
erate intersections of the fiber-components with the boundary of the box.
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Fig. 2 Plots of distance measures between consecutive sites in a series of bivariate (height,
paraboloid) fields. a Various distance measures show a peak at site 11, indicating a topological
change. The proposed metric dSq also exhibits a peak, more significant than other distance measures.
b Root-mean-square plot is not able to capture the topological change. This indicates the need for a
topological data structures for multifield data that captures topological changes. c Fiber-component
distributions for selected sites. Singular values are highlighted in red. Blue nodes indicate regular
nodes and the shades of blue indicate the number of nodes in a particular bin (light indicates low).
d Corresponding Reeb spaces. The height field is mapped to color (blue is low and red is high)

Observations and Results
Wecompute the fiber-component histograms for each dataset in the series and plot the
distance between two consecutive datasets, see Fig. 2. The distance peaks at site 11
as expected. The red color in the histograms indicates singular nodes and blue color
indicates regular nodes. The number of regular nodes in a particular bin is mapped
to different shades of blue. Colors in the Reeb space indicate the height field value.
Although various distance measures are able to capture the topological change, the
peak was not sharp enough. The peak is most prominent using the dS

q metric and
increased weight for singular nodes. Note that all the subsequent experiments are
done with ω = 13 in order to keep the consistency in our experiments for all the
datasets. If the value of ω is increased better peaks can be obtained and the value is
not dependent on the chosen dataset.

Comparison with the Root Mean Squares Metric
To show the usefulness of the proposed metrics, we compute the distance between
two multifields by directly extending the root mean square metric. The root mean
square distance between two multifields f = ( f1, . . . , fr ) and g = (g1, . . . , gr ) can
be generalized as the square root of the mean of the sum of the difference between
consecutive component fields:
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dRMS =
√√√√ 1

m

m∑
i=1

{( f1(xi ) − g1(xi ))
2 + · · · + ( fr (xi ) − gr (xi ))

2}.

Here m is the number of data points in the domain. Figure2(b) shows the root mean
square distancemetric plot.We observe that the rmsmetric is not capable of capturing
the topological change. This further motivates the study of measures such as the one
proposed in this paper for comparing multifield data.

6.2 Plutonium Atom Dataset

Nuclear Density Functional Theory (DFT) is an approach to understand the nuclear
fission occurring in a nucleon-nucleon interaction in atomic nuclei. Nuclear fission
is a process by which an atom’s nucleus splits into two or more fragments. The
splitting of the nucleus can be identified as stretching the core, hence it involves some
deformation. This deformation can be a crucial indicator of the topology of the atom’s
nucleus. An important problem in nuclear fission study is the accurate identification
of points in a continuous high dimensional manifold where the core is split. The
time when the atom breaks into multiple fragments is known as nuclear scission. At
this time the topology of the atom changes in terms of the number of components.
Physicists typically identify this phenomenon via tedious manual process. Previous
works have described a visual approach to identification of scission [13]. However,
these methods require the inspection of the geometry of the Reeb space for all time
steps. Further, the Reeb space is a complex structure that is difficult to examine. We
aim to detect the key time steps that correspond to topological changes by plotting a
graph of the distance measure over time.

The dataset consists of nuclear densities of plutonium atom which represents
the internal structure of a heavy nucleus. The dataset is a multifield data consisting
of spatial density of proton, the spatial density of neutrons and spatial density of
nucleons (protons + neutrons) in the nucleus. These densities, represented as p, n
and t are sampled on a 40 × 40 × 66 grid. The dataset available to us is a negative
log transformed sample at 14 different time steps, namely [665, 670, 675, 680, 686,
687, 688, 689, 690, 692, 693, 694, 695, 699]. The time step where the nuclear
scission occurs is reported in earlier work [13] and confirmed by physicists. We use
sufficiently small slab width to capture the topological change. We use the following
parameters in our experiments: p (slab width 8) and n (slab width 2), p (slab width
8) and t (slab width 2), n (slab width 2) and t (slab width 2).

Observations and Results
We experiment with all combination of proton, neutrons and nucleon density con-
sidering two fields at a time. The plots in Fig. 3 show the distance measure for the
first combination, p (slab width 8) and n (slab width 2). We observe a sudden change
between time steps 690 and 692. The d1 distance was typically in the range of 0.0 to
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Fig. 3 Plots of the distance measures for the scission data for the plutonium atom. a Distance
measure between fields at consecutive time steps vs. the time step in the range [665–699]. The pro-
posed distance measure dSq exhibits a prominent peak between time step 690–692, which indicates
a significant change. bGeometry of the plutonium atom at various time steps. The point of scission
is between site 690–692 and can be seen in the geometry

0.02, but at nuclear scission, the measure increases to 0.1. This is due to the change in
the number of quantized fiber-components in the range space. After scission, the dis-
tancemeasure dropped down to small values because the number of fiber-components
does not change after the split. Figure3(a) shows a comparison with other bin-to-bin
measures that are also able to capture the topology change but the peak is not as
prominent. We plot the measure dS

q for different values of q and weights. As the
weight for singular values is increased, the peak becomes more prominent and as q
is increased the plot becomes smoother. Figure3 shows the highest peak in the plot
using weight ω = 13 (for singular bins) and q = 1.

6.3 Fermium Atom Dataset

We experiment with another scission dataset, namely that of the Fermium-258 atom.
In this dataset, our goal is again to find the point where nuclear scission occurs. As
described in the literature [13], this dataset consists of three different types of data
viz. aEF: asymmetric elongated fission, sCF: symmetric compact fission and sEF:
symmetric elongated fission. The dataset that was made available is the sCF data and
was sufficient to detect the topological change where the fermium nucleus scission
happens symmetrically. The sCF dataset consists of three fields i.e. proton density
(p), neutron density (n) and total density (t) defined on a 19 × 19 × 19 sized grid.
The field is available at 56 regularly spaced time steps. Time steps 20–40were chosen
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Fig. 4 Plots of the distance measures for the scission data for the fermium-258 atom. a Distance
measure between fields at consecutive time steps vs. the time step in the range [20, 39]. The proposed
distance measure dSq exhibits a prominent peak at time step 26, which indicates a significant change.
b Geometry of the fermium-258 atom at various time steps. The point of scission is at site 26 and
can be seen in the geometry

for analysis. Choosing the slab width was still an issue, and we end up working with
the same slab width as that for Plutonium atom data, namely p (slab width 8) and
n (slab width 2), p (slab width 8) and t (slab width 2), n (slab width 2) and t (slab
width 2).

Observations and Results
The same set of experiments were done using the fermium-258 atom dataset. Figure4
shows the plots with proton and neutron density data from time step 20 to 39. We
observe a topological change at time step 26. Other bin-to-bin histogram metrics,
e.g. the KL divergence and the histogram intersection, exhibit a much smaller peak
as compared to the proposed dS

q distance.

6.4 Chemistry Data: Pt-CO Bond

Adsorption of gas molecules on metal surfaces has various applications including
heterogeneous catalysis, electrochemistry, corrosion, and molecular electronics [23,
36]. Particularly, the adsorptionof theCOmolecule onplatinumsurfaces has attracted
attention of a wide scientific community, due to its role in the areas of automobile
emission, fuel cells and other catalytic processes [1, 25]. Therefore, an atomic-
level understanding of the CO molecule interacting with the Pt surface is of utmost
importance. In this study, we have considered seven Pt atoms representing a platinum
surfacewhich interacts with a COmolecule. As the COmolecule approaches towards
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Fig. 5 Plots of the distance measures for the orbital density data of Pt-CO bond at different time
steps. a Distance measure between fields at consecutive time steps vs. the time step in the range
[0, 39]. The plots are for two field values, HOMO and LUMO and the highest peak is obtained at
time stamp 21. The proposed distance measure dSq exhibits a prominent peak, which indicates a
significant change. b Pt-COBond length vs time. Bond length stabilizes at time step 21. cGeometry
of the Pt-CO bond creation at various time steps, visualized using the tool Avogadro. Although the
bond is visible at time step 13, the bond length is not stable at this site

one of the Pt atoms, the CO bond starts weakening, and Pt-CO bond formation
takes place. Quantum mechanical computations were used to generate the electron
density distribution corresponding to the highest occupiedmolecule orbital (HOMO),
lowest occupied molecular orbital (LUMO) and HOMO−1. The electron density
distribution was computed for varying distance between the carbon atom of the CO
molecule and the Pt atom. The Pt-CO bond forms when the distance between the Pt
atom and the CO molecule becomes ∼1.83A. This Pt-CO dataset consists of orbital
density for orbital numbers 69, 70 and 71. Orbital number 70 corresponds to HOMO,
orbital number 71 to LUMO and orbital number 69 to HOMO−1.

Observations and Results
Figure5 shows different plots for the Pt-CO dataset. At site 21, we get the most
stable bond length between Pt and CO molecule. We observe that although the bond
is formed at site 13 (as validated by the geometry), the bond-length is not stable. The
bond length stabilizes at site 21 and does not change much later. We observe a sharp
peak in the plot of the proposed dS

q distance. This peak corresponds to the formation
of the stable bond.
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Fig. 6 Distance plot for scalar data for Pt-CO bond detection dataset. a Plot for orbital density 69
(HOMO−1). The highest peak is at site 16. b Plot for orbital density 70 (HOMO). Significant peak
is at site 21

7 Single Scalar Field vs. Multifield

We now describe an experiment to demonstrate the importance of studying tools for
multifield data over single scalar field analysis tools. Consider the Pt-CO molecular
dataset. Using only orbital 69 (HOMO-1) data the highest peak in the distance mea-
sure plot is obtained at site 16 (Fig. 6. Distance plots for orbital 70 (HOMO) exhibit
the highest peak at site 21. On the other hand, using two fields together, i.e. orbital
data 69 and 70, or orbital data 70 and 71, or orbital data 69 and 71, we observe the
highest peak is always at site 21. Some topological changes may not be captured
using a bivariate data and we may need to consider more than two fields to detect
the changes.

8 Conclusions and Future Work

Wepropose theuseoffiber-component distribution as a topological feature-descriptor
for multifield data. We describe a novel method for extracting topological features
from time-varying multifield data based on a distance measure defined between
fiber-component distributions. This method is simple and a first step towards the
development of a more accurate topological comparison measure between two Reeb
spaces. We show effectiveness of our method by applying it on several datasets,
both synthetic and real data. While the method captures important changes, it flags
a few unimportant ones also. For example, in the plot for the Pt-Co data, we observe
additional peaks. Such false positives are a key drawback of the current method.
To overcome such issues in future we want to explore distance measures between
two Reeb spaces. Overall, the proposed distance measures can be used to quickly
identify interesting time-steps and intervals. The Reeb space could be studied in a
subsequent step for detailed analysis. The distance measure can also be computed
for sub-domains thereby allowing for finer grained analysis.
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Tensor Fields for Data Extraction from
Chart Images: Bar Charts and Scatter
Plots

Jaya Sreevalsan-Nair, Komal Dadhich, and Siri Chandana Daggubati

Abstract Charts are an essential part of both graphicacy (graphical literacy), and
statistical literacy. As chart understanding has become increasingly relevant in data
science, automating chart analysis by processing raster images of the charts has
become a significant problem. Automated chart reading involves data extraction and
contextual understanding of the data from chart images. In this paper, we perform the
first step of determining the computational model of chart images for data extraction
for selected chart types, namely, bar charts, and scatter plots. We demonstrate the use
of positive semidefinite second-order tensor fields as an effective model. We identify
an appropriate tensor field as the model and propose a methodology for the use of its
degenerate point extraction for data extraction from chart images. Our results show
that tensor voting is effective for data extraction from bar charts and scatter plots,
and histograms, as a special case of bar charts.

Keywords Chart images · Spatial locality · Local features · Chart data
extraction · Positive semidefinite second-order tensor fields · Structure tensor ·
Tensor voting · Saliency maps · Topological analysis

1 Introduction

Charts fall in the intersection of graphicacy (graphical literacy), and statistical liter-
acy. The recent popularity of statistical analysis in data science and ubiquitousness
of learning algorithms have made chart graphicacy relevant. Chart comprehension
is an outcome of chart graphicacy. Students often face difficulties in comprehending
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Fig. 1 Data extraction in pixel space from a chart image using our method, for chart reconstruction
and chart redesign. The input image is from a Grade-8 mathematics textbook (The textbook is
available at NCERT http://ncert.nic.in/textbook/textbook.htm)

new chart types when learning new concepts in the visual representation of data, e.g.,
grouped bar charts [6]. Chart images embedded in documents, articles and books
often become strenuous to analyze further due to unavailability of source data. Each
entity in a grouped bar corresponds to an ordered proximal placement of a group of
category-wise bars. Such charts give better communicative signals of (inter-category,
intra-entity) trends or relations than those of (intra-category, inter-entity) [6]. In an
example of different academic years (category) grouped together for different sub-
jects (entity) (Fig. 1), the trends in a subject are (inter-category, intra-entity), and those
in an academic year are (intra-category, inter-entity). Combinations of intra- and
inter-category/entity analysis, e.g., “what is the difference between the lowest scores
in the two academic years?” require complex interpretation. The inter-category, intra-
category, and combination questions are best communicated by grouped bar charts, a
set of simple bar charts, and a scatter plot, respectively (Fig. 1). Such chart redesign
is possible only with the data extracted from the original charts, that are usually
available in raster image format scanned from subject textbooks, e.g., mathematics,
science, economics, etc. Thus, we are interested in automatic data extraction from
the chart images.

In 1999, Kimura, a Japanese educator, had proposed a six-level scheme for statis-
tical ability using graphs (charts) [2]. Even though traditionally “graph” and “chart”
are interchangeably used, we use the latter to disambiguate from the graph data struc-
tures used in computer science. The scheme progresses from a basic Level-A with
four sub-levels (A1-A4) to the advanced Level-F, where the knowledge from a chart
combined with other relevant information is used for new inferences. The sub-levels
A1 refers to the basic reading of chart image by reading title, unit and values which
further is enhanced with sub-level A2 by enabling the students to read key features,
e.g., minimum and maximum values and value differences etc. The sub-level A3 is

http://ncert.nic.in/textbook/textbook.htm
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Fig. 2 Our proposed workflow of data extraction from a chart image using positive semidefinite
second-order tensor field of local geometric descriptors (The input image has been downloaded
from https://excelnotes.com/how-to-add-gridlines-to-a-chart/)

for comparing information from two different charts, and A4 is in reading trends in
charts. Levels B-F involves knowledge outside of the chart itself to understand the
chart, e.g. data sources, complex statistical computations, current affairs, etc. The
computational model encompassing the six levels is needed for completely auto-
mated chart interpretation that can address a pertinent need of assistive solutions for
chart graphicacy for the differently-abled, including the visually impaired [6, 8].

Appropriate computational models complement the machine interpretation of
charts [32] and learning algorithms for chart interpretation. The focus of the models
discussed here, are on understanding charts usingWYSIWYG (what you see is what
you get) features from its images. In general, the challenges for developing such
models for chart images lie in the vastness of the charts’ design space, attributed to
the different types, formatting, applications, and usability patterns. Despite the recent
advances in the use of deep learning for chart interpretation [8, 9], these solutions
do not still cover the vast design space of charts [25]. The use of machine learning in
chart interpretation has been limited in its applications owing to the inadequacy of a
single model. The learning models generated using procedurally generated datasets
do not account for artefacts present in readily available images (e.g., those available
on the internet) [9]. Reuse of object detection models, e.g. YOLO that have been
developed for all image types leads to detection errors in chart images, accounting for
about 21.6% cases of data extraction failure [8]. A generalized computational model
for chart image processing that enables feature extraction can ideally complement
existing learning models.

In the cognitive science of chart interpretation, the global precedence principle
states that local properties (color, geometry) of a visual object are processed only after
its global properties [37]. However, computationally building global properties from
local ones ismore tractable [12] thanvice-versa. Structure tensor and tensor voting are
both effective for pixel-wise local structure estimation in images [30]. Tensor voting

https://excelnotes.com/how-to-add-gridlines-to-a-chart/
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has also been used to generate a positive semidefinite second-order tensor field in 3D
point clouds for local geometric descriptors, that used for semantic classification [36].
Similarly, we propose to use these tensor fields for local structure estimation in charts
for data extraction (Fig. 2), using its degenerate points. We focus on two different
chart types, namely, simple bar charts and scatter plots, that have a bijective mapping
between data items and geometric objects (i.e., bars and scatter points, respectively).
But they differ in their source data distributions, namely, univariate and bivariate
distributions, respectively. Similar work has so far been dealt with either a single
chart types [9, 35] or multiple types of a univariate distribution [8, 32]. Thus, our
contributions are in:

• using a positive semidefinite second-order tensor field as a computational model
for processing chart images, with a focus on bar charts and scatter plots,

• identifying an appropriate tensor field representing the geometric information from
the images for data extraction,

• using degenerate points of the tensor field for data extraction.

Overall, our contributions result in a computational model to automate levels A1 and
A2 in Kimura’s scheme, from chart images, as they are the only levels pertaining to
the geometric information.

2 Related Work

We discuss the relevant state-in-the-art in characterizing chart interpretation and
automated systems for chart analysis.

Chart Interpretation and Analysis: While there have been several studies done in
chart interpretation in parts, or whole for few chart types, there is still a gap in stan-
dardized and generalized methods for chart interpretation, which will work for more
than one type of chart [25]. Liu et al. concluded that prior human knowledge is an
important element, which makes a case for machine learning algorithms. Our work
will be useful in generating effective feature vectors for supervised learning models,
which perform chart classification, chart segmentation, and chart segment classifi-
cation, etc., [8]. Chart interpretation has been researched extensively in cognitive
science [15] and document engineering [16]. The findings in the latter continue to
be extensively used in separating text and graphics in charts using Optical Character
Recognition (OCR) techniques [8, 32].

Our proposedmethod has been developed based on the information gathered from
the vast literature in cognitive science in the context of chart analysis. The use of prox-
imity of displayed variables validates our use of spatial locality-based approaches
for an integral display, specifically the scatter plot [19].Wickens and colleagues have
extensively studied separable and integral displays [19] and considered bar charts as
separable displays. Separable displays are known generally to be not effective for
information integration. However, bar chart analysis was found to be useful for infor-
mation integration [39], e.g., when using the proximity of center points of top-line of
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bars to visualize trends. Bar charts and other charts have been found to demonstrate
properties of integral, configural, and separable/object displays depending on the
mapping of the variable [5]. Unlike the use of spatial proximity in chart analysis, we
use spatial proximity differently in bar charts to identify “corners” of the top line of
bars and scatter plots to locate the scatter points. The spatial locations are crucial for
data extraction, thus substantiating the use of spatial locality.

Systems for Chart Analysis: There have been several systems recently developed
for various aspects of chart interpretation: text localization and recognition [32]. A
more comprehensive system for the visually impaired takes in chart images in a web-
page through a browser extension and outputs a data table and accessible interactive
charts [8]. Choi et al. perform data extraction differently for bar charts, pie charts,
and line charts. For bar charts, a combination of a Darknet neural network outcomes
for object detection and an OCR system for text extraction is used. For pie charts, a
combination of color to item matching using the OCR system and finding the pro-
portion of pixels corresponding to a particular color within a bounding box of the
circle is used. For line charts, pixels with the same color and across spans between
consecutive tick values are used to identify y-values at each x-tick mark. However,
since the geometric information captured in these different methods is extracted from
image data, e.g., color, we hypothesize that a geometry-aware method can be gener-
ically used for identifying key pixels in the chart images. FigureSeer [35] is another
end-to-end framework for summarization of line charts. It is implemented using a
convolutional neural network that compares image patches. For data extraction, an
optimal solution for the path-finding problem is used. Beagle [4] is a system for
classifying charts found as visualizations on the internet. ReVision [34], Scatter-
act [9], and a bar chart-based method [1] are examples of automated systems for data
extraction from selected chart type(s).

FeatureExtraction:There has been an even lesser focus ongenerating feature vectors
for chart analysis. In ReVision [34], a feature vector is created using a clustering
method for determining codebook patches in an image and finding similar patches to
determine a histogram of activated patches. The feature vector has been further used
for chart classification. The data extraction has been done using pixel-basedmethods,
driven by the knowledge of chart layouts for bar charts and pie charts. Our proposed
tensor field-based method is generically used across two different chart types to
identify critical points to localize “objects” for value extraction. These critical points
can serve as features.

Overall, chart analysis is a problem solved in pieces, and our work is novel in
geometric analysis of chart canvas for data extraction. Our work would be the closest
to the use of Hough transform in image space to recognize bar charts [42], in the
context of deriving features in image space and finding generic patterns.
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3 Background on Local Geometric Descriptors

Local geometric descriptors, which encode the local geometry of each entity in a
dataset, can be represented in the form of positive semidefinite second-order tensor
fields. Descriptors such as structure tensor [22] have been used for corner detection,
shape analysis, and feature tracking, and tensor voting [27] has been used in images
widely for segmentation [18].

Structure Tensor: Structure tensor Ts encodes the directionality of the gradient of
the local neighborhood. Ts is computed from the gradient tensor, Tg = GTG, using

the gradient vector, G =
[

∂ I
∂x

∂ I
∂y

]
, at a pixel with intensity I .

Difference kernels, such as Sobel operator, are used for determining discretized
differences required for computing G in images. Applying Gaussian convolution
to Tg gives Ts . For a Gaussian function with zero mean and standard deviation ρ,
Ts = Gρ ∗ Tg , where ∗ is a 2D convolution operator, in the case of 2D images.

Tensor Voting: Tensor voting is a technique of determining global perceptual infor-
mation organization by garnering votes at each entity based on the normal tensors of
its local neighbors [27]. It is especially effective for applications requiring a global
context, such as image segmentation.Here, the votes are aggregated component-wise,
namely, stick-, plate-, and ball-tensors, in 3D data, and stick- and ball-tensors in 2D.
Thus, tensor voting gives a positive semidefinite aggregated tensor Tv of propagated
votes, that are positive semidefinite normal tensors.

Gradient information can be used to compute tensor voting by using Tg to ini-
tialize the stick-tensor component specifically [30]. For grey-scale images, the Tg is
computed for any one of the RGB channels; and for color images, the Tg is computed
separately for the three channels, and the tensor votes across all neighbors and all
channels are aggregated by summation. Additionally, the tensor voting in natural
images has been approximated to stick-tensor votes alone, since the percentage of
pixels with a ratio of eigenvalues

(
λ0
λ1

> 0.1
)
, where eigenvalues of Tv at each pixel

are, such that,λ0 ≥ λ1, has been found to be considerably low (∼10%) [30]. Recently,
the closed-form analytical solution of tensor voting has been determined [41].1 The
tensor vote cast at xi by x j using a second-order tensor K j in d-dimensional space
is:

Si j = ci j Ri j K j R
′
i j , where Ri j = (Id − 2ri j r

T
i j ), and R′

i j = (Id − 1

2
ri j r

T
i j )Ri j .

Id is the d-dimensional identity matrix; direction vector ri j = d̂i j , where the distance
vector di j = x j − xi ; and ci j = exp

( − (
σ−1
d .‖di j‖22

))
, where σd is the scale param-

eter. The gradient tensor Tg can be used as K j [30]. In the closed form, if a generic
tensor field is used as K j , then a voting field is not required [41]. Thus, tensor voting
is no longer separately computed as the different components of a stick-, plate-, and
ball-voting fields, and aggregated. Once Si j is computed for a point with each of its

1 This is the version of the paper with clarification of comments given on a previous publication [40].
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neighbors in a (von Neumann or 4-) neighborhood N4. Then the votes are aggregated
across all the neighbors using summation. Using σd = 4, based on neighborhood
size, we get the aggregated positive semidefinite second-order tensor as:

Tv =
(d−1)∑
k=0

∑
j∈N4

Si j (d).

Anisotropic Diffusion: Since Tv propagates the normal tensor votes, the aggregated
tensor is in the normal space. However, we need tensors that encode geometry of
objects (such as bars and points) in the image, implying the tensorsmust be tangential
to the object boundaries. Thus, the tensor Tv must be transformed into tangent space,
which canbe done using anisotropic diffusion [36, 38].Adapting to the 2Dcase, using
eigenvalues of Tv , λ0 ≥ λ1, and corresponding eigenvectors v0 and v1, respectively,
the tensor after anisotropic diffusion using diffusion parameter δ, is:

Tv-ad =
1∑

k=0

λ′
k .vkv

T
k , where λ′

k = exp
(

− λk

δ

)
.

Diffusion parameter (δ = 0.16) is a widely used parameter setting [36, 38].

Saliency Map Computation: The eigenvalue decomposition of the local geometric
descriptor of a 3D point determines if the point is part of either a line-, surface, or
point-type feature [20, 24]. Similarly, in 2D image space, the eigenvalue decom-
position of the local structure estimator, such as Tv-ad, determines the probabilistic
geometric classification of pixels to the line- and point-type features. Hereafter, we
use “local structure estimator” and “local geometric descriptor” interchangeably. The
saliency maps [27] summarize the likelihood of the point or pixel belonging to these
classes at the end of the tensor voting process.

Thus the likelihood of a pixel being a point-type feature, Cp, can be derived from
the junction-map and that of a line-type feature, Cl , from the curve-map. It is a
probabilistic classification, and hence, Cl + Cp = 1.0.

Adapting the computation of anisotropy in superquadric tensor glyphs [21] has
been found suitable for saliency maps of 3D points [36]. Similarly, in 2D images,
weget the saliencymaps at eachpixel, namely curve-mapCl and junction-mapCp, as:

Cl = λ0 − λ1

λ0 + λ1
and Cp = 2λ1

λ0 + λ1
.

where we have eigenvalues of Tv-ad of the pixel with λ0 ≥ λ1. Thus, bringing together
tensor field topology and probabilistic geometric classification, a pixelwithCp ≈ 1.0
is a degenerate point, attributed to the anisotropic local neighborhood.
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4 Our Proposed Method

The aim of our work is twofold—firstly, we propose the use of local structure esti-
mation to generate a computational model for chart interpretation, and secondly,
we show the effectiveness of this model for data extraction from simple bar charts
and scatter plots. We run experiments on a variety of charts to study the effective-
ness of our model. For this work, we focus exclusively on data extraction purely
using geometry, without extracting contextual information from text, axes, and leg-
end. Hence, we work with only with the relevant region in the chart image, which
warrants defining chart image components. The local geometric descriptors of the
pixels in this region are the tensor field, and it is used as a computational model for
chart images. We explain the observed behavior of the proposed tensor model for
geometric entities, namely bars and scatter points, and its degenerate points. The
understanding of the field is important for deciding the data extraction workflow
(Fig. 2) and performing the error analysis of the model. This section has three main
parts on chart image components, our proposed computational model, and the data
extraction workflow.

A. Chart Image Components

Here, we connect the characteristics of chart images with tensor field topology.
Hence, we first define the terminology pertaining to the charts and descriptions of
relevant parts of the charts. As mentioned in Sect. 1, the digitized image format of a
chart is called the chart image.

Definition 1. The chart data is the data used for plotting in a chart. The chart data is
a uni- and bi-variate distribution in simple bar charts and scatter plots, respectively.

Definition 2. A two-dimensional geometric primitive or mark (in information visu-
alization parlance) in the chart that encodes chart data is defined as a chart object.
Bars and scatter points are chart objects in bar charts and scatter plots, respectively.

Definition 3. Two pixels p and q are said to be connected if q ∈ N4(p) or a ∈
N8(p), in 4-neighborhood (N4) or 8-neighborhood (N8) of p. A set of connected
pixels in an image is defined as a connected component. A connected component in
a chart image is called a chart-image-component.

Definition 4. The chart canvas is the rectangular region of the chart image corre-
sponding to the plot, which is the graphical representation of chart data.

Definition 5. A chart-image-component that corresponds to a chart object and is
a subset of chart canvas is defined as a chart-object-component, respectively. Con-
nected components ofmore than one chart object components are called chart-object-
clusters. For sake of simplicity, we refer to isolated chart-object-components also as
chart-object-clusters.

Definition 6. The component boundary of a chart-object-cluster is a chart-image-
component whose pixels belong to the chart-object-cluster, and one or more their N8
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neighbors do not belong to the chart-object-cluster. The borders applied to individual
chart objects using the plotting tool are subsets of the component boundary.

Definition 7. The component interior of a chart-object-cluster is the chart-image-
component whose pixels and their entire N8 neighborhoods belong to the chart-
object-cluster. The union set of component boundary and component interior of all
chart-object-cluster in chart canvas becomes the foreground of the chart canvas.

Definition 8. The component exterior of a chart-object-cluster is the difference set
of the chart canvas and the union of the component boundary and the component
interior of the chart-object-cluster. The intersection set of component exteriors of all
chart-object-clusters in chart canvas is the background of the chart canvas.

B. Computational Model

The size (height) and position of the chart objects encode the information from chart
data in bar charts and scatter plots, respectively. Methods for detection and local-
ization of chart-image-components rely on object detection methods used in image
processing [8]. For objects found in any raster image, its boundary and position can
be extracted using the local descriptors of pixels using edges and junctions [23].
In our case, we are interested in identifying and localizing chart-object-clusters in
bar charts and scatter plots for data extraction. We propose identifying component
boundaries for the chosen chart types. In the chart canvas, the gradient change along
the component boundaries is captured effectively using the gradient tensor Tg . Thus,
we propose to use local geometric descriptors derived from Tg as options for tensor
fields to model the chart canvas. The descriptors are the structure tensor, Ts , and
those from the tensor voting field after anisotropic diffusion, Tv-ad. The use of pos-
itive semidefinite second-order tensor fields formalizes a generalized model across
different chart types, with the potential scope of global-local feature extraction.

The component boundary of chart-object-clusters manifests as line-type features,
i.e., with high Cl of the local geometric descriptors. However, the pixelated bound-
aries also lead to occurrences of point-type features, whereCp is high. The point-type
features are synonymous with the degenerate points in tensor fields, where the eigen-
values of the tensor are equal to each other [10]. In local geometric descriptors of
3D point clouds, these have been loosely referred to as point-type features [36], or
as critical points [20]. The junction points in images are known to have high ball
saliency [28] or high junction saliency [13]. The junctions are also synonymous with
degenerate points in tensor fields, as they are the intersection of multiple edges and,
thus, have anisotropy in its local neighborhood. Overall, the degenerate points are
relevant here for extracting the component boundary in both the two chart types.

• In bar charts, the corners of the bars are captured using junctionmaps or degenerate
points. With the knowledge of the orientation of the bars (vertical/horizontal), it is
straightforward to determine the distance between degenerate points in the corners
along the appropriate axis, which gives the size of the bar in pixel space.
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• In scatter plots, the centroid of the degenerate points in the component boundary
of the chart-object-clusters gives the location of the chart object, i.e., the scatter
point, in pixel space. The centroid of degenerate points in the boundary can be
treated equivalent to the centroid of the component interior of the scatter points.

Thus, the degenerate points of the proposed tensor field encode the information in
the chart data of our chosen chart types. We label the pixels with Cp > τcp for a
threshold τcp as degenerate points. For our experiments, we use τcp = 0.6.

C. Data Extraction Workflow

We first look at data extraction from the tensor fields, and then we look at the require-
ment for chart image preprocessing for improving the tensor fields themselves, as
shown in the blocks in Fig. 2.

Data ExtractionUsing Tensor Fields: In the tensor field of the locality of the corners
of bars or the component boundary of scatter points, the degenerate points tend to
form local clusters, some of them tend to be weak. Since our requirement for extract-
ing specific locations of geometric primitives, we perform two-step postprocessing of
degenerate points. Firstly, We discard weak degenerate points by thresholding based
on a tensor invariant, namely the trace. Here, we consider the degenerate points with
unity-based normalized trace T < τwd , for a threshold τwd , as weak. In our exper-
iments, we have used τwd = 0.005 for bar charts, and τwd = 0.01 for scatter plots.
Secondly, we use density-based clustering to consolidate the degenerate points in the
corners of the bar as well as to separate individual scatter points. As most clustering
algorithms depend on the hyperparameters based on cluster output, e.g., the number
and shape of clusters, we require amethod that canworkwithout the prior knowledge
of such variables. Hence, we choose DBSCAN (Density-Based Spatial Clustering of
Applications with Noise) [11] for clustering degenerate points. The DBSCAN algo-
rithm is based on this intuitive notion of “clusters” and “noise,” where each point in a
cluster must have at least a minimum number of local neighbors. DBSCAN output is
influenced by the distance between clusters (ε) and the minimum number of points in
a cluster (n). In our method, we have found that these parameters of DBSCAN need
to be evaluated for each image individually owing to the variability present in the
chart images. We use our visualization of degenerate points to decide these values
for each image.

For visualizing the tensor field of the chart canvas, we use ellipsoid glyphs colored
based on saliency maps. We also use a dot plot to visualize the saliency maps at all
pixels in the chart canvas image and superimpose degenerate points on the original
chart image to identify DBSCAN parameters. We use the colorblind safe divergent
color palette, namely the coolwarm palette, for Cl values from 0 to 1. This color
map also reveals Cp values, as Cl + Cp = 1.0, thus, identifying the blue pixels as
degenerate points. We also use the visualization to evaluate the performance of Ts
and Tv-ad tensor fields as an appropriate computational model.

Our workflow (Algorithm 1) for data extraction from tensor fields includes tensor
field computation in a chart canvas and chart-type-dependent data extraction. Since
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we do not have the contextual information of the plots, the data is extracted in pixel
space.We use the set of centroids of degenerate point clusters Dcq for data extraction.
For bar charts, we sort the centroids of first by x, and then by y. We use a scanline
algorithm in increasing value of x to determine missing points based on the pattern
of occurrence of corners by repeating x- and y-values. We thus use a rule-based
occurrence pattern to find missing points, e.g., simple bar charts, and histograms
have distinct patterns. Finding the range of y-intervals at each unique x value gives
the univariate distribution of the chart data. On the other hand, for scatter plots, the
centroids of points in Dcq provide the bivariate distribution of the chart data. Since
we do not have a mechanism for filling missing values in scatter plots in our current
work, we encounter omission errors (type-2 errors or false negatives), unlike in the
case of bar charts.

Chart Image Preprocessing: We need to preprocess the chart images before com-
puting the tensor field for two reasons. Firstly, since our proposed method works
on a raster image, it is imperative that the image must be of high resolution. While
this is guaranteed by chart images procedurally/programmatically generated, the
images readily available from various sources or scanned from the textbook could be
of lower quality. Conventional image processing includes compression, formatting,
smoothening, etc. One of the undesirable outcomes of these processing methods is
aliasing, which affects our raster-based methods. However, we can preprocess the
chart image by performing antialiasing on the component boundary. Secondly, we
require only the chart canvas from the chart image for data extraction. Thus, we
remove all other chart components, namely, axes, gridlines, legend, and text for data
extraction. Overall, we preprocess for antialiasing and chart canvas extraction.

We perform tasks such as grid removal and adding a border to bars to preprocess
the chart images, implemented using image binarization followed by morphological
operations (Algorithm 2). Morphological operations are a set of image processing
operations that exploit the property of shape. They are used routinely for extracting
connected components from images that are useful in representation and description
of region shape. We first check if the chart objects are filled or not, by binarizing and
checking the percentage of filled pixels. If the chart objects are not filled, we perform
object-fill, as our proposed tensor fields are effective for data extraction only in charts
with filled chart objects. The morphological operations for foreground extraction
involve erosion for white noise removal, dilation for expanding shrunk objects, and
appropriate distance transformations. We perform the morphological opening of the
binarized image and dilation for background extraction. The foreground is used for
extracting connected components, which is followed by the watershed algorithm
used for segmentation. The segmented image is the subset of chart canvas, i.e., the
chart-object-clusters.

Thesemorphological operations remove formatted borders, if present, of all chart-
object-clusters. However, the differences in color between component interior, com-
ponent exterior, and component boundary manifest as strong degenerate points in
corners or junctions. Such degenerate points help in improving the accuracy of the
data extraction. Hence, in our image preprocessing procedure, we further perform
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Algorithm 1: Data extraction using tensor fields from chart images
Input: Chart image Ci , chart-type Ct
Output: Data table D

1 Initialize D ← ∅

2 Initialize Sdeg-pt ← ∅ // Set of degenerate points
3
4 Initialize Dcq ← ∅ // Cluster centroids of degenerate points
5
6 Cc ← chart-canvas-extraction(Ci ) // Algorithm 2
7
8 for pixel i in Ci do
9 N ← find-N8-local-neighborhood(i)

10 Tgeom ← compute-tensor(descriptor-type, N ) // Local geometric
descriptor

11
12 Cl ,Cp ← compute-saliency-map(Tgeom)

/* Check if the pixel is a strong degenerate point */
13
14 if Cp>τcp and trace(Tgeom)>τwd then
15 Sdeg-pt ← set-union(Sdeg-pt, i)

16 Cdeg-pt ← DBScan(Sdeg-pt) // Cluster degenerate points
17
18 for cluster q in Cdeg-pt do
19 Cq ← compute-centroid(q)
20 Dcq ← set-union(Dcq , Cq )

21 if Ct is bar-chart then
22 Dcq ← set-union(Dcq , missing-points) // Rule-based occurrence

patterns
23
24 Dcq ← sort-first-by-x-and-sort-second-by-y(Dcq )
25 for unique x-value in (x,y) in Dcq do
26 δy ← find-y-intervals(x, Dcq )
27 D ← set-union(D, (x, δy)) // Add to data table
28

29 else if Ct is a scatter-plot then
30 for (x,y) in Dcq do
31 D ← set-union(D, (x,y)) // Add to data table
32

33 return D
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contouring to identify component boundary and add a border of predetermined pixel-
width. This ensures borders for all chart-object-clusters, uniformly across input chart
images. We have found 2-pixel-wide borders to be effective.

Algorithm 2: Chart canvas extraction
Input: Chart image Ci
Output: Chart canvas Cc

1 Cb ← binarize(Ci )
2 nw ← count-white-pixels(Cb)
3 nb ← count-black-pixels(Cb)
4 if nw < 0.2 ∗ (nw + nb) then
5 Ci ← object-fill(Ci )
6 Cb ← binarize(Ci )

/* Morphological operations for foreground */
7
8 C fg ← morphology-foreground-extraction(Cb)
9 Cb ← morphology-opening(Cb) // Morphological opening operation

10
11 Cbg ← morphology-dilation(Cb) // Morphological dilation for

background
12
13 components, component-labels ← find-connected-components(C fg)
14 for pixel i in Cbg do
15 component-labels(i) := 0 // Setting component label for background
16

17 Csegmented ← morphology-watershed(Ci , component-labels) // Object extraction
18
19 object-edges ← Canny-edge-detection(Csegmented) // Edge detection
20
21 contours := contouring(object-edges, pixel-width=2) // Contour extraction
22
23 for pixel i in contours do
24 color(Csegmented(i)) := black // Adding 2-pixel width border to

objects
25

26 return Csegmented

ErrorAnalysis of ExtractedData:Wequalitatively compare the visualizations of the
chart of the same type plotted using the extracted data and the original chart for each
experiment. For quantitative evaluation, we must first determine the performance
of chart reading, which is tied to the accuracy with which quantitative information
can be “decoded” from the chart specifiers, such as geometry [7]. In our case, we
observe that our proposed model is effective only if the error in data extraction is
minimal. Hence, we determine the error between our extracted data and the ground
truth. However, for quantitative comparisons, we run into the issue of our data being
extracted in image space, owing to the loss of context of the chart provided by the
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Fig. 3 Our proposed data extraction method from programmatically generated raster images of
bar charts from readily available table data (DSTbl), using saliency map of structure tensor Ts and
tensor voting Tv-ad, to determine degenerate points

text, axes, and legend. Overall, we compare distributions of extracted data with the
ground truth by using appropriate distance measures.

Earth mover’s distance, dEMD, is a measure of cross-bin distances between his-
tograms of distributions, which uses ground distance measures [33]. We compute
dEMD between the univariate distributions for the extracted data and original data in
the case of bar charts, dEMD-BC. In the case of scatter plots, we compute the dEMD

between the 2D point clouds of the extracted data and original data, dEMD-SP.

5 Experiments and Results

For experiments, we have performed data extraction using tensor fields on bar
charts and scatter plots, as well as on histograms, as a special case of bar charts. We
have used three sets of data for our experiments. The dataset descriptions are avail-
able at the project GitHub webpage.2 The dataset DSTbl contains multivariate table
datasets that are publicly available, and DSTImg contains chart images that are pub-
licly available. We have programmatically generated charts for DSTbl using Python

2 https://github.com/GVCL/Tensor-field-framework-for-chart-analysis.

https://github.com/GVCL/Tensor-field-framework-for-chart-analysis
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Fig. 4 Our proposed data extraction method from programmatically generated raster images of
scatter plots from readily available table data (DSTbl), using saliency map of structure tensor Ts and
tensor voting Tv-ad, to determine degenerate points. The reconstruction errors are marked in red in
row F

Table 1 Reconstruction error
using Earth Mover’s Distance
of distributions of normalized
values in data tables from
source and that reconstructed
from chart images

library, matplotlib.pyplot [17], and stored them in .png image format. We
have specifically used this library, as it generates high-resolution images, compared
to a plotting tool, such as Microsoft®Excel®. We have reported the dataset sources
in the Acknowledgements.

For all chart images of test datasets, we have constructed the tensor fields and
reconstructed data. For bar charts, we have tested with datasets with a large number
of bars (i.e., thinner bars), non-uniformly placed bars, smaller set of bars, and bar
charts with large variation in the bar heights. For scatter plots, we have tested for
positive, negative, and zero correlation data, with a large number of scatter points,
with overlapping scatter points. As a special case of simple bar charts, we have used
a dataset for histograms. In the case of histograms, we have tested with datasets
with variations in the number of bins, with close-to-zero frequencies in some of the
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Fig. 5 Our proposed data extraction method from raster images of bar charts and scatter plots from
readily available image data (DSTImg), using saliency map of structure tensor Ts and tensor voting
Tv-ad, to determine degenerate points. The reconstruction errors are marked in red in row F

histogram bins, with several large variations in frequencies (i.e., several peaks and
valleys in the histogram), and with the close-to-normal distribution. Since we have
the ground truth for dataset DSTbl, we have performed an error analysis of the same.
For the error analysis of histograms, we have determined the Earth mover’s distance
between the extracted data and the frequency table of the original data, dEMD-HG.

Our results are provided in Figs. 3, 4, 5, 6, and Table1. We describe aspects of
our results related to the tensor field model, data extraction, and error analysis here.

TensorFieldModel:Starting from the pixel-wise gradient tensors in the chart images,
the tensor voting field after anisotropic diffusion gives stronger degenerate points
(i.e., higher Cp values) than the structure tensor. This is uniformly observable in all
the experiments (Figs. 3, 4, 5 and 6). Hence, we choose to use Tv-ad further for data
extraction.

The glyph-based tensor field visualization of the subsampled grid (Figs. 3, 4, 5 and
6, rowD) is effective for locating strong degenerate points. The dot plots (Figs. 3, 4, 5
and 6, rows B-C) of the tensor fields using color map based on the saliency map are
effective for overall tensor field visualization.

The thickness of the bar influences tensor field modeling. In thicker bars (Fig. 3),
we observe that in the component interior of the bar object has a region of zero-tensor
near the centroid.We refer to this as the region of “homogeneity”, where tensors have
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Fig. 6 Our proposed data extraction method from raster images of histograms, using saliency map
of structure tensor Ts and tensor voting Tv-ad, to determine degenerate points, of (a) readily available
table data (DSTbl) {hg-1, hg-2, hg-3}, and (b) chart images (DSTImg), {hg-4}. The reconstruction
errors are marked in red in row F

zero-gradient value. The homogeneous region near the center of the bar grows with
its thickness.

Data Extraction: Our results for bar charts (Figs. 2, 3 and, 5) show that our method
can extract data for a variety of charts stored in both image format and those pro-
grammatically plotted from available data tables. Using morphological operations
has been effective in removing aliasing effects in low-quality chart images (Fig. 2 and
bc-2 in Fig. 5). In addition to preprocessing, postprocessing by filtering out theweak
degenerate points helps in denoising. We have used filtering threshold τwd = 0.003
for histograms, different from bar charts.

Error Analysis: In the case of scatter plots, our proposed data extraction method
suffers from omission (type-2) errors, i.e., false negatives (Figs. 4 and 5, row F). This
happens when scatter points are clustered together or when the mark of the scatter
point intersects the axes (Fig. 5, sp-2). Our model requires clustering of degenerate
points to localize a single scatter point, and the second level of clustering to separate
clusters of scatter points. DBSCAN parameters have to be modified for each run
depending on the pixel-distances between the scatter points.

We compare our result of data extraction in scatter plots with that of Scatteract [9]
(Fig. 5, sp-2), which had several false positives (type-1 errors). The type-1 errors
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Fig. 7 The differences in the saliency (Slncy.) map of tensor voting with anisotropic diffusion Tv-ad
with and without image preprocessing on chart objects: (left, middle) bars in bar chart with and
without formatted border, (right) marks in scatter plot

have been attributed to each “clover” mark being detected as three different scatter
points. In our case, we have detected the “clover” marks as centroids of clusters.
Thus, we avoided false positives but not omission errors.

As a special case of bar charts, histograms perform well with our proposed data
extraction method (Fig. 6). We observe errors in the case of histograms with two
adjacent bars with similar heights (Fig. 6, hg-2 and, hg-4), as well as with bars
that are close to the x-axis (Fig. 6, hg-3).

The error analysis using dEMD shows higher errors in the case of scatter plots
than the bar charts, or histograms, owing to the type-2 errors (Table1). In the case
of histograms, the histograms of tailed distributions containing ∼0-frequency bins
at the tails cause larger errors (Fig. 6, hg-3).

Discussion

Weexplain the different factors that influence our tensor field construction to evaluate
the robustness of such a field. We also discuss the alternative school of thought, the
Gestalt theory of perceptual organization for chart interpretation.

Geometry: Our results in bar charts (Fig. 3) show the effect of bar width in the
tensor field computation. In a similar vein, we tested the influence of the size of
the mark of scatter points on the tensor field (Fig. 7, sp-mark). We observe and
confirm that the homogeneous regions grow larger in the center/centroid of chart-
object-clusters with the size of the connected component(s). The position of the
chart objects, and hence, that of the chart-object-clusters, is ideally the centroid of
the homogeneous region. However, the homogeneous region itself does not carry
any information, and the degenerate points occur in the non-homogeneous region
surrounding the homogeneous region in the chart-object-cluster. Thus, the position



Tensor Fields for Data Extraction from Chart Images: Bar Charts and Scatter Plots 237

of the chart-object-cluster is approximated as the centroid of the clusters of the
degenerate points in the non-homogeneous region, as done in our proposed method
(Algorithm1).Overall, the chart object size does not affect our data extraction results.

For scatter plots,we observe that all shapes of scatter points have degenerate points
in their pixelated format (Fig. 7, sp-mark). While shapes with inherent corners
reinforce degenerate point clusters, we also observe that the distribution of these
clusters is not uniform in such cases. Hence, this introduces minor errors in the
position of the chart object. We have already discussed the type-2 errors in our
method owing to overlapping or clustered scatter points. It may be noted that not all
type-2 errors lead to a change in correlation, which is an of-studied statisticalmeasure
using scatter plots. We expect similar type-2 errors in bar charts where thin bars are
closely placed. The degenerate-point-clustering algorithm needs to be evaluated and
modified to handle the chart object localization and separation automatically.

Our method currently works for charts with separable geometric objects, such
as bars, scatter plots, and with corners. In such charts, the tensor fields produce
degenerate points whose location corresponds directly to the value of the data to be
extracted. Further study needs to be undertaken on the role of degenerate points in the
case of charts where there is non-linear mapping of the geometric object properties
to data, e.g. sector area in the case of pie charts.

Color: Since the tensor field is computed on raster images which have a color
attribute, the color model and the color difference functions used for generating the
gradient tensor influence the local geometric descriptors. The CIELab color model
has been recommended to be the model for computing tensor voting for color image
denoising [29]. In our work, we have used either the grayscale or 1-color palette,
which requires only one of the 3 channels in the RGBmodel for computing gradients.
The influence of color and in a related way, texture are yet to be studied in depth in
chart image processing for data extraction.

Image Preprocessing: We have observed that the morphological operations per-
formed to address the influence of aliasing and other image formatting help in reduc-
ing noise in the data (Fig. 5, bc-1 and, bc-2). Our image preprocessing procedure
reintroduces border for all chart-object-clusters, owing to which we expect general-
ized behavior of tensor fields and its degenerate points in the bar and scatter point
objects. However, we observe that in the case of bar charts with formatted borders,
our new borders introduce degenerate points in the base of the bar objects (Fig. 7,
bc-border, row B). This experiment was conducted on programmatically gener-
ated bar charts (Fig. 7, bc-border, bc-simple) to remove influences of other
image processing or compression artefacts.

Our method is designed for raster images using gradient tensor field processing
for edge detection. The data extracted from these images is interpreted using the
shapes formed by these edges, and hence, the data is WYSIWYG. That also implies
that our method works only for discernible images. Our method, thus, fails in the
case of images with noisy content and/or of low resolution, which cause the images
to be indiscernible.
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Machine Learning Models: While image processing needed for computer vision
applications is done using robust machine learning models, chart image processing
is an understudied area. Most models work for specific chart type(s) [8, 9], and
unified models for larger classes of chart types are still a gap. This area can be better
served using appropriate machine modeling constructs. The characterization of the
chart images and study of feature extraction from such data enables the construction
of appropriate models that handle sparsity and geometric characterization in images
appropriately. In terms of sparsity, the machine learning models must also account
for the data-ink ratio in chart images. The images used for our experiments, the
data-ink ratio has been less than 10%, which is considerably low.

Emergent Features:There are two different kinds of perceptual information, namely
local and emergent features. Local features are those computed in local proximity
in an image, and emergent features are non-decomposable and higher-order ones,
which provide an overview/global understanding of the image. For instance, in a
scatter plot, a single scatter point is a local feature, whereas the grouping of the
scatter points implies the type of correlation, and hence is an emergent feature.
These features have their respective theories governing how they contribute to the
perceptual understanding of images. The Gestalt theory of perceptual organization
states that emergent features enable in the perceptual understanding of the image,
and the local theory emphasizes on the local features, instead. The Gestalt theory has
been experimentally found to be a better model for perceptual understanding than
the local theory for a pair of dots [14]. In cognitive science, this theory is rephrased
as the Principle of Perceptual Organization [15], which says,

“Ensure that groupings based on Gestalt principles, and emergent features more generally,
are compatible with the tasks to be carried out with a display.”

In our work, we have focused on the local theory. Our overarching goal is to
model the Gestalt theory. We chose tensor voting for generating the tensor field for
its extensibility to the Gestalt model, as tensor voting takes into consideration Gestalt
principles of the perceptual organization [27].

6 Conclusions

Automating chart interpretation has been a long-standing challenge owing to the vast
design space of charts and their raster images. We have demonstrated automating
data extraction from chart images using a computational model that exploits the local
structure in the raster images. The novelty of our work lies in identifying tensor vot-
ing after anisotropic diffusion, Tv-ad, as an effective local geometric descriptor for
data extraction. We have used the positive semidefinite second-order tensor fields
of the local geometric descriptors in the chart canvas and extracted the tensor topo-
logical features, namely degenerate points, for data extraction. We have shown how
patterns of clustering of degenerate points correspond to the chart data, enabling
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data extraction. We focus on bar charts and scatter plots where the proximity of local
features defines the charts’ geometric objects. There are limitations to our work as
the tensor field is dependent on the user-defined image characteristics. These include
image resolution and styling features of the plots, e.g., glyph shapes and sizes, bar
width, and borders.

Our current model achieves Levels-A1 and A2 in Kimura’s six-level scheme
of statistical ability [2] by performing data extraction with considerable accuracy.
The future scope of our work is in automated clustering and cluster-classification
of degenerate points and extending the usefulness of the tensor voting for Gestalt
theory of perceptual organization [27] in charts. This extension will enable the com-
putational model to achieve the Level-A in Kimura’s six-level scheme of statistical
ability [2].
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A Fast Approximate Skeleton with
Guarantees for Any Cloud of Points in a
Euclidean Space

Yury Elkin, Di Liu, and Vitaliy Kurlin

Abstract The tree reconstruction problem is to find an embedded straight-line tree
that approximates a given cloud of unorganized points in Rm up to a certain error. A
practical solution to this problem will accelerate a discovery of new colloidal prod-
ucts with desired physical properties such as viscosity. We define the Approximate
Skeleton of any finite point cloudC in a Euclidean space with theoretical guarantees.
The Approximate Skeleton ASk(C) always belongs to a given offset of C , i.e. the
maximum distance from C to ASk(C) can be a given maximum error. The num-
ber of vertices in the Approximate Skeleton is close to the minimum number in an
optimal tree by factor 2. The new Approximate Skeleton of any unorganized point
cloud C is computed in a near linear time in the number of points in C . Finally, the
Approximate Skeleton outperforms past skeletonization algorithms on the size and
accuracy of reconstruction for a large dataset of real micelles and random clouds.

1 Introduction: Reconstructions from Unorganized Clouds

Potential molecules for new colloidal products are tested by simulations that produce
unorganized finite clouds of points (one point per molecule in Fig. 1). Molecules tend
to form clusters (calledmicelles) whose shapes (degrees of branching, edge-lengths)
affect physical properties of colloidal products, e.g. their viscosity.

These 3D micelles can have complicated branched shapes as in Fig. 7 and are
visually analyzed by human experts who struggle to make reliable measurements
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Fig. 1 Left: point clouds C from real micelles. Right: Approximate Skeletons ASk(C)

quickly. To substantially speed-up the discovery of new molecules, we propose a
new Approximate Skeleton ASk(C) to solve the following problem.

The Tree Reconstruction Problem. Given a point cloud C ⊂ R
m and an error ε,

design a fast algorithm to build a straight-line tree T ⊂ R
m (see Definition 1) that

has a minimum number of vertices and whose ε-offset (neighborhood) covers C .
The first (combinatorial) guarantee is for the number of vertices in ASk(C), which

is close to the minimum number in an optimal tree for a given approximation error
by factor 2, see Theorem 8. The second (geometric) guarantee about a near linear
time for building ASk(C) is the number of points n in C , see Corollary 9.

To automatically characterize branching shapes of micelles (clusters of molecules
in colloids), an Approximate Skeleton ASk(C) allows us to compute

• the topological type of any unorganized cloud C , e.g. count all non-trivial vertices
of ASk(C) ⊂ R

m whose degree is 1 (endpoints) or more than 2 (branching);
• the geometric characteristics of C , e.g. edge-lengths of ASk(C);
• the error of approximating a cloud C by its skeleton ASk(C), see Table1.

Here is the pipeline of the Approximate Skeleton ASk(C).
Stage 1 in Sect. 3: for a cloud C ⊂ R

m , we build an initial tree core(C), which has a
small number of branching vertices within a Minimum Spanning Tree of C .
Stage 2 in Sect. 4: replace polygonal paths of core(C) by approximate paths with
much fewer vertices to get ASk(C) in a near linear time within a given error (Fig. 2).
The key novelty and contributions to the data skeletonization are the following.

• Theorem 8 guarantees a small number of vertices in the Approximate Skeleton
ASk(C) close to the minimum by factor 2 in an optimal tree within a given error.

• Corollary 9 guarantees a near linear time to compute ASk(C) within an error.



A Fast Approximate Skeleton for any Cloud ... 247

Fig. 2 Pipeline to compute anApproximate SkeletonASk(C):MST(C) is classical, the new subtree
core(C) ⊂ MST(C) is introduced in Definition 6 in Sect. 3, final ASk(C) is built in Sect. 4

2 Basic Definitions and a Review of the Related Past Work

Definition 1 (a straight-line graph, ε-approximation) A straight-line graph G ⊂
R

m (briefly, a graph) consists of vertices at points q1, . . . , qk ∈ R
m and undirected

straight-line edges connecting pairs qi , q j , i �= j , in such a way that any edges meet
only at their common vertex. Let d be the Euclidean distance. For ε > 0, a cloud
C ⊂ R

m is ε-approximated by a graph G if C is within the ε-offset that is the union
of ε-balls at all points of G, i.e. Gε = {p ∈ R

m | d(p, q) ≤ ε for some q ∈ G}.
Past Algorithms Without Guarantees. Singh et al. [27] approximated a cloud
C ⊂ R

m by a subgraph of a Delaunay triangulation, which requires O(n�m/2�) time
for n points of C and the three thresholds: a minimum number K of edges in a cycle
and δmin, δmax for inserting/merging 2nd order Voronoi regions. Similar parameters
are need for principal curves [15], which were later extended to iteratively computed
elastic maps [13]. Since it is often hard to estimate a rate of convergence for iterative
algorithms, we discuss below non-iterative methods with theoretical guarantees.

The metric graph reconstruction (MGR) takes as an input a large metric graph
Y , which is an abstract graph with weighted edges and outputs a smaller abstract
metric graph X̂ . The distance between any points of a metric graph is defined as
the length of a shortest path these points. If Y is a good ε-approximation to an
unknown graph X , then Aanjaneya et al. [1, Theorem 5] proved the existence of a
homeomorphism X → X̂ that distorts the metrics on X and X̂ with a multiplicative
factor 1 + cε for c > 30

b , where b > 14.5ε is the length of a shortest edge of X .
The authors of the Reeb graph skeletonization [11, page 3] have checked that for

the MGR algorithm from [1] “it is often hard to find suitable parameters in practice,
and such local decisions tend to be less reliable when the input data are not as nice
(such as a ‘fat’ junction region)”, see this junction in the 2nd picture of Fig. 1.

Definition 2 (a Reeb graph) Given a topological space K ⊂ R
m (or ) with a

function f : K → R, the Reeb graph R f (K ) is obtained from K by collapsing
each connected components of every level set of f to a single point, so the Reeb
graph R f (K ) is the quotient of K by the equivalence relation a ∼ b if and only if
f (a) = t = f (b) and the points a, b ∈ K are in the same connected component of
f −1(t) ⊂ K.

Skeletonization via Reeb-Type Graphs. The Vietoris-Rips complex VR(C;α) on
a cloud C consists of all simplices spanned by points whose pairwise distances are
at most α. Starting from a noisy sample C of an unknown graph G, Ge et al. [11,
Theorem 3.1] proved that the Reeb graph of VR(C;α) has a correct homotopy type
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if there is a triangulated space K with a continuous deformation h : K → G that
ε-approximates the metrics of K ,G. The homotopy type of a graph is its equivalence
class under continuous deformations when any edge can be collapsed to a point.

The Graph Reconstruction by Discrete Morse Theory (DMT). Dey et al. [6] sub-
stantially improved the discrete Morse-based framework and proved new homotopy
guarantees when an input is a density function ρ : K → R, which ‘concentrates’
around a hidden geometric graph G. The key advantage of this approach is the
unbounded noise model that allows outliers far away from an underlying graph G.

Since the molecules of a micelle form an unorganized cloud of points (with large
bounded noise) around hidden tree structures, the Tree Reconstruction problem in
Sect. 1 essentially differs from the above approaches. An initial unorganized cloud of
points is not an abstract metric graph (as in the metric graph reconstruction problem)
and not a simplicial complex with scalar values at vertices (as in the discrete Morse
theory approach), so extra pre-processing was needed in Sect. 5.

The α-Reeb graph G by Chazal et al. [5] solves the metric graph reconstruction
problem, where the input is not an unorganized cloud, but a large metric graph X that
should be approximated by a smaller graph X̂ . For a base point p ∈ X , the image of
the distance function d(p, ∗) : X → R is covered by intervals I j having a length α

and 50% overlap. Every connected component of f −1(I j ) ⊂ X defines a node in the
α-Reeb graph G. Two nodes are linked if the corresponding components overlap.
Informally, α controls the size of a subset of X that maps to a single vertex of G.
Theorem 4.9 in [5] says that if X is ε-close to an unknown graph with edges of
minimum length 8ε, the output G is 34(β(G) + 1)ε-close to X in the Gromov-
Hausdorff distance between spaces, not within one space, where β(G) is the first
Betti number of G. The algorithm has the fast time O(n log n) for n points in X .
Similarly to Reeb graphs, α-Reeb graphs are abstract without an intrinsic embedding
into the space of the cloud C and can have self-intersections even for X ⊂ R

2.
The Mapper [26] extends any clustering algorithm and outputs a network of

interlinked clusters and needs a user-defined function f : C → R, which helps to
link different clusters of a cloud C . Another parameter is a covering of the image of
f by a given number k of intervals I j (often with 50% overlap). Each of k subclouds
f −1(I j ) ⊂ C is clustered. Every cluster defines a node in the Mapper graph. Two
nodes are linked if the corresponding clusters overlap. M. Carriére et al. [4] have
proved first theoretical guarantees for the Mapper output.

More recent persistence-based algorithms for graph reconstruction [14, 19, 20,
28] and image segmentation [8, 9, 21, 22] essentially find most persistent cycles
hidden in a cloud, hence go beyond the tree reconstruction problem in Sect. 1.

Straightening polygonal curves is a key ingredient inmany skeletonization algo-
rithms. Douglas-Peucker’s heuristic [7] approximates a long zigzag line by a simpler
line with fewer vertices, see Sect. 4. The elegant algorithm by P. Agarwal et al. [2]
guarantees a near linear time and a small number of vertices in a final polygonal
approximation when used with the Frechet distance between curves in R

2. For the
Hausdorff distance and higher dimensions, there is no near linear time straightening
with guarantees on the size of a skeleton to our best knowledge.
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Fig. 3 Left. One vertex (large red dot at the bottom) of MST(C) has a high depth by Definition 5
and is connected by longest paths to 3 vertices of degree 1. The other vertices have at most 2 disjoint
long paths within MST(C). Right. The paths of core(C) and subclouds are shown disjointly

Definition 3 (MST(C)) For a cloud C ⊂ R
m, aMinimum Spanning Tree MST(C)

is a connected graph that has (1) the vertex set C, (2) no cycles, and (3) a minimum
total length, where lengths of edges are measured in the Euclidean distance.

If all distances between points ofC are distinct, thenMST(C) is unique.We write
a Minimum Spanning Tree, similarly an Approximate Skeleton, to cover all cases.

Theorem 4 [24, Theorem 5.1] For any cloud C ⊂ R
m of n points, a Minimum

Spanning TreeMST(C) can be computed in time O(max{c6, c2pc2l )}c10n log n α(n)),
where α(n) is the inverse Ackermann function; c, cp, cl are defined in [24].

3 A New Tree core(C) Defined for Any Point Cloud
C ⊂ R

m

This section introduces an important subtree core(C) ⊂ MST(C), which has many
fewer non-trivial vertices than a usually ‘hairy’ MST(C) from Definition 3.

A tree core(C) might still have too many zigzags and will be replaced by a
better tree ASk(C) with fewer vertices in Sect. 4. A vertex of a degree k �= 2 is
called (topologically) non-trivial, because any vertex of degree 2 can be potentially
removed by straightening algorithms in Sect. 4. Since MST(C) contains many non-
trivial vertices, the next hard step is to identify those few vertices of MST(C) that
represent ‘true’ vertices of a tree T , which we try to reconstruct from C .

Definition 5 introduces the depth characterizing how deep a vertex sits within
MST(C). At a deep vertex of a degree k ≥ 3 at least 3 sufficiently long paths (with-
out common edges) should meet, see the 3 red long paths in Fig. 3. The previous
procedural approach by M. Aanjaneya et al. [1, Fig. 1b] to detect branching points
in a shape of C used more parameters than a single branching factor β below.

Definition 5 (deep vertices) For a cloud C ⊂ R
m and a vertex v ∈ MST(C) of

a degree k ≥ 3, let B1, . . . , Bk ⊂ MST(C) be the branches (subtrees) joined at the
vertex v. Let li be the length of a longest path within the branch Bi from v to another
vertex, i = 1, . . . , k. Assuming that l1 ≥ l2 ≥ . . . , set depth(v) = min{l1, l2, l3}. Let
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Fig. 4 Left: black MST(C) for the two clouds C in Fig. 1. Right: red core(C) in Definition 6

l(C) be the average edge-length of MST(C). For a branching factor β > 0, the
vertices of MST(C) whose depths are larger than βl(C) are called deep.

Taking the minimum depth(v) = min{l1, l2, l3} above guarantees that vertices in
any short branches of MST(C) are not deep, hence deep vertices can not form small
cliques. The experiments on real micelles in Sect. 5 justify that Definition 5 separates
deep vertices from other shallow vertices for a long range of the factor β (Fig. 4).

Definition 6 introduces a subtree core(C), which non-essentially depends on the
branching factor β and better approximates a cloud C than MST(C), see Fig. 3.

Definition 6 (core(C)) In Definition 5, if we remove all deep vertices v1, . . . , vm,
MST(C) splits into several subtrees. If the closure of such a subtree S has two deep
vertices vi , v j , they are joined by a unique path Pi j ⊂ S. If S has one deep vertex vi ,
take a longest path Pi ⊂ S from vi to another vertex v′

i ∈ S. We ignore Pi if its length
is less than βl(C), where β is the branching factor from Definition 5. All the vertices
vi , v

′
i and the paths Pi j , Pi between them form the subtree core(C) ⊂ MST(C).

If the closure of a subtree S above has k ≥ 3 deep vertices v1, v2, v3, then S
contains a vertex v with at least 3 paths to v1, v2, v3. Then depth(v) > depth(vi ),
i = 1, 2, 3, so v is also deep and S should be split by removing v. Hence k ≤ 2.

In Fig. 3 the two black edges at the red deep vertex v of degree 5 are too short,
hence ignored in Definition 6. The tree core(C) consists of only 3 red long paths
meeting at v. Here are the steps of Stage 1 for the Approximate Skeleton ASk(C).
Step 1a. If needed, split a cloud C in clusters to approximate them below.
Step 1b. If C is one cluster, find MST(C) by the fast algorithm from Theorem 4.
Step 1c. Find the depths of vertices in MST(C) by Algorithm 1 in Appendix A.
Step 1d. Identify all deep vertices of MST(C) by their depth(v) = min{l1, l2, l3}.
Step 1e. The subtree core(C) ⊂ MST(C) is formed by all the paths Pi and Pi j from
Definition 6 that have lengths more than βl(C), where β is a given branching factor.
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4 ASk(C): Approximate Skeleton of a Cloud C ⊂ R
m

The tree core(C) from Definition 6 has only few non-trivial vertices, but contains
noisy zigzags with too many trivial vertices of degree 2. This section discusses how
to straighten these zigzags and decrease the total number of vertices.

We have tried Douglas-Peucker’s heuristic [7], which was rather unstable and
produced large zigzags on curved micelles in Fig. 1. The worst complexity is O(n2)
in the number n of points for d > 2. A final approximation can have a sizeΩ(n) even
in R

2. Another problem with [7] are potential self-intersections even in R
2, which

are caused by large zigzags that approximate non-monotone curves [29].
The problem of straightening polygonal paths in a tree core(C) is harder than the

curve simplification, because the input is a cloud of unorganized points. So a final
approximation should take into account the points of a cloud C outside core(C).

Definition 7 Let L ⊂ R
m be a straight line. An ordered cloud C = {p1, . . . , pn} ⊂

R
m is called monotone with respect to L if the order of points is preserved by the

orthogonal projection of C to L.

Since there are many paths of core(C) to straighten, we split the cloud C into
monotone subclouds as formalized in Algorithm 2 in Appendix A. Since monotone
subpaths can be quickly found only in R

2 [25], Theorem 8 below will assume that
each subpath P between non-trivial vertices of core(C) is monotone by Definition 7
with respect to the straight line connecting the endpoints of P .

All results in this section are proved in Appendix A. Here are the Stage 2 steps.

Step 2a. Split every polygonal path between non-trivial vertices (of degrees k �= 2)
in the subtree core(C) ⊂ MST(C) into monotone subpaths by Algorithm 2.
Step 2b. Each monotone subpath of core(C) with endpoints (say) p1, pn has the
subcloud C ′ approximated by a polygonal path via points of C ′ by Steps 2c–2f.
Step 2c. For each subcloud C ′ = 〈p1, . . . , pn〉 of points ordered by their orthogonal
projections to [p1, pn], start from ind(1) = 1 and find the next index ind(i) for i =
2, . . . ,m by repeating Steps 2d–2e, which is possible by Lemma 12 in Appendix A.
Step 2d (exponential). Find the smallest index j such that d([pind(i−1) pl],C ′) > ε

for l = ind(i − 1) + 2 j+1, j = 0, 1, 2 . . . For every index l, compute the distance
d([pind(i−1) pl],C ′) orthogonally to the line segment [p1 pn] as in Definition 11.
Step 2e (binary). Search for the maximum ind(i) between ind(i − 1) + 2 j and
ind(i − 1) + 2 j+1 such that d([pind(i−1) pind(i)],C ′) ≤ ε by dividing the range in 2
halves.
Step 2f. The found indices ind(i) specify a polygonal path ε-approximating each
monotone subcloud from Step 2b. Combine all these paths into a full skeleton.
Step 2g. Any edges of a length more than βl(C) from Definition 5 are temporarily
removed from the skeleton. Each remaining connected component with only short
edges is collapsed to its center ofmass. The resulting vertices are connected according
to the temporarily removed edges to get the Approximate Skeleton ASk(C).
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For a cloud C ⊂ R
m , mark the endpoints of all monotone subpaths in core(C)

obtained by Algorithm 2. Consider all skeletons S ⊂ R
m that have fixed vertices at

the marked points ofC such that any polygonal path between fixed vertices (say u, v)
is monotone under the orthogonal projection to the line segment [u, v].
The approximation problem for an error ε > 0 is to minimize the total number
of vertices in a straight-line graph S ⊂ R

m whose each monotone path should ε-
approximate the corresponding subcloud of C by the distance in Definition 11.

Theorem 8 Letk be theminimumnumberofverticesoverallgraphsε-approximating
a given cloud C ⊂ R

m. Then ASk(C) lies in C2ε and has at most k vertices.

Theorem 8 estimates the number of vertices of ASk(C) when the geometric error
is 2ε. In practice, the tree core(C) has an initial approximation error for a given cloud
C , because many points of C may not be vertices of core(C) ⊂ MST(C).

Wemeasure the initial errord(core(C),C)byDefinition 11 and take themaximum
of d([viv j ],C) over monotone paths of core(C) computed in Algorithm 2. Stage 2
approximates C by a graph simpler than core(C), but keeps the approximation error
small. The error ε in Corollary 9 is γ × d(core(C),C), where γ is an error factor
that takes values in the interval [1.1, 1.5] for the experiments in Sect. 5.

Corollary 9 For any n points C ⊂ R
m and any error factor γ > 1, an Approximate

Skeleton ASk(C) ⊂ R
m within the γ d(core(C),C)-offset of the cloud C (as in Def-

inition 1) can be computed in time O(max{c6, c2pc2l )}c10n log n α(n)), where α(n) is
the inverse Ackermann function, the constants c, cp, cl are defined in Appendix A.

5 Comparisons of Five Algorithms on Real and Synthetic
Data

This section experimentally compares the Approximate Skeleton ASk(C)with those
four skeletonization algorithms from Sect. 2 that have theoretical guarantees and
accept any cloud C of points: Mapper [26], Metric Graph Reconstruction MGR [1],
α-Reeb graphs [5] and most recent discrete Morse theory (DMT) algorithm [6].

The Mapper [26] is very flexible in the sense that its parameters might be manu-
ally tuned for given data over numerous clustering algorithms. Having tried several
possibilities, we have settled on the following choices from the original work [26].

1) Convert a cloud C into a connected neighborhood graph N (C) with Euclidean
edge-lengthsbyusingadistance threshold.Thefilter function is thedistance func-
tion in N (C) from a root that is the furthest point from a random point inC .

2) The image of the filter function is covered by 10 intervals with the 50% overlap
so thatC splits into 10 subclouds when filter values are in one of the 10 intervals.
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3) Each subcloudC ′ is clustered by the single-linkage clustering with the threshold
τ×the average edge-length of MST(C ′), where values of the factor τ are given
in Table1. The final Mapper graph has a single node representing each cluster.

The authors of the DMT algorithm by Dey et al. [6] have kindly made their code
available at https://github.com/wangjiayuan007/graph_recon_DM. Starting from an
unorganized cloud of points, e.g. centers of molecules of a micelle, we generated
scalar values at nodes of a regular grid required for the DMT algorithm.

1) We subdivide the axis-aligned bounding box of a cloudC ⊂ R
3 into small boxes:

minimum 20 rectangular boxes (as close to cubic as possible) along each side.
2) The scalar values are found from the Kernel Density Estimate K DE(p) =∑

q∈C
exp(−d(p, q)) at every grid node p. The computed values are passed to the

DMT with a parameter δ that regulates how small density values are replaced
by 0.

The MGR algorithm has required much more efforts, because the original code
was lost as confirmed by the main author of [1]. Since the algorithm was well-
explained, we have implemented MGR ourselves and confirmed the earlier claim
that “it is often hard to find suitable parameters” [11, page 3]. Trying many values
of the key parameter r gave the zero success rate on the homeomorphism type.

Hence we have improved MGR by splitting this parameter into two: the first
r1 = 15 (values used in all experiments) was used for detecting vertex points, the
second r2 (three values 1, 1.5, 2 in Table1 experiments) was used for clustering
points of different types. Only after using these different values, we have managed
to push the success rates of MGR closer to 50% on the homeomorphism type.

The α-Reeb graph has the essential parameter α whose values 20, 25, 30 were
tried in all experiments. ASk(C) has little dependence on the branching factor β,
e.g. all values [20, 50] produced almost identical results in Table1 and Fig. 9.

Since three output graphs (Mapper, α-Reeb and MGR) are abstract, to compute
any geometric error of approximation, we map them to R3 by sending every node v

of G to the average point (center of mass) of the cluster (for Mapper and MGR) or
subgraph (for α-Reeb) corresponding to v. Each link between nodes is mapped as a
line segment between the corresponding points in R

3.
Figures5, 6, 7 and 8 show clouds and outputs of 5 algorithms. Since real micelles

have irregular shapes in R3, their 2D projections may contain intersections of edges.
Table1 shows the average results of the three algorithms on the dataset of more

than 100 real micelles (clouds of about 300 molecules) whose endpoints and homeo-
morphism types weremanually detected. A homeomorphism is a 1-1 continuousmap
with a continuous inverse, so a homeomorphism type is a stronger shape descriptor
than a homotopy type, which counts only linearly independent cycles.

The most important error measure for the tree reconstruction problem in Sect. 1
is the success rate for detecting a correct homeomorphism type. Indeed, an incorrect
graph can be perfect on other errors, e.g. MST(C) is extremely fast, has the zero
geometric error (for many distances between a cloud and a reconstructed graph) and
even has a correct homotopy type (no cycles) for any underlying tree T .

https://github.com/wangjiayuan007/graph_recon_DM
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Fig. 5 1st: a cylindrical micelle with no branching vertices. 2nd: Mapper, 3rd: α-Reeb, 4th: MGR,
5th: DMT, 6th: new ASk(C)

Fig. 6 1st: a branched micelle with exactly one degree 3 vertex, 2nd: Mapper, 3rd: α-Reeb, 4th:
MGR, 5th: DMT, 6th: new ASk(C)

Fig. 7 1st: ‘Christmas tree’ micelle with several degree 3 vertices). 2nd: Mapper, 3rd: α-Reeb,
4th: MGR, 5th: DMT, 6th: new ASk(C). All intersections come only from planar projections
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Fig. 8 1st: a random point sample around an 8-star in R3, 2nd: Mapper, 3rd: α-Reeb, 4th: MGR,
5th: DMT, 6th: new ASk(C)

Hence the key results are in the middle column of Table1 and the top right picture
of Fig. 9.We included the success rate on the number of endpoints (degree 1 vertices)
as aweaker topological error.AsMST(C) shows above, only if an algorithmperforms
well on a topological reconstruction, it makes sense to evaluate the performance on
other measures such as geometric distances and time.

Table1 shows that theMapper,MGR andDMT essentially depend on their param-
eters, because the success rates, run time and distance error significantly vary when
the parameters are only slightly changed. The α-Reeb and ASk were stable, because
Table1 contains almost identical success rates for different parameters.

Both algorithms achieved best results on themost important measure of the home-
omorphism success rate, though the top right picture in Fig. 9 highlights ASk(C) and
MGR as the best for homeomorphism. In comparison with α-Reeb and MGR, the
Approximate Skeleton ASk(C) is much faster and achieves similar distance errors,
see the relevant results in both Table1 and Fig. 9.

In addition to the comparison on more than 100 micelles, we have tested the
algorithms on the much larger dataset of synthetic clouds generated as follows.

1) An N-star in R3 has one vertex at 0 ∈ R
3 and straight edges of length 100 to N

endpointsin random directions with a minimum angle
π

4
between edges.
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Table 1 Columns 3–4 contain success rates for detecting the correct number of endpoints and a
homeomorphism type of a graph over more than 100 real micelles. Column 5 contains themaximum
Euclidean distance from points of a given cloud C to the reconstructed graph G ⊂ R

3

Algorithm Parameters Endpoints success Homeomorphism success Time, ms Max distance from C

Mapper τ = 1.25 54.21% 54.21% 18 4.59

Mapper τ = 1.75 66.36% 66.36% 18 4.62

Mapper τ = 2.25 68.20% 68.20% 19 4.67

MGR r2 = 1 48.60% 45.79% 25010 5.95

MGR r2 = 1.5 40.19% 40.19% 17410 5.51

MGR r2 = 2 29.91% 29.91% 25480 3.46

α-Reeb α = 20 98.13% 98.13% 367 10.49

α-Reeb α = 25 97.20% 97.20% 375 12.50

α-Reeb α = 30 98.13% 98.13% 373 14.19

DMT δ = 0.1 48.60% 45.79% 6290 5.95

DMT δ = 0.2 40.19% 40.19% 6192 5.51

DMT δ = 0.3 29.91% 29.91% 6410 3.46

ASk(C) β = 20 98.13% 98.13% 42 5.16

ASk(C) β = 30 98.13% 98.13% 42 5.16

ASk(C) β = 40 97.20% 97.20% 42 5.31

2) For N = 3, . . . , 8 and every of 100 random N -stars T , we found a minimum
axis-aligned box containing T , enlarged this box by the noise bound of 10%.

3) We uniformly chose a random point p in the resulting box and checked if p is at
a distance at most 10 (=10% of edge-lengths) from T . If successful, 500N such
points form a noisy sample of the ground truth N -star T ⊂ R

3.

Figure9 shows 4 plots for the 4 error measures of 5 algorithms, which were
averaged over 3 values of essential parameters as in Table1. The Mapper threshold
factor for single-edge clustering was τ ∈ {1.25, 1.75, 2.25}. The α-Reeb scale was
α ∈ {20, 25, 30}. The branching factor of ASk(C) was β ∈ {20, 30, 40}.

For the correct number of endpoints, the new skeleton ASk(C) achieves 100%
results on the synthetic clouds, because Definition 5 provides a very stable concept
of a deep vertex not critically depending on a branching factor β. For the homeo-
morphism type, the minimum success of ASk(C) is 96%, because all short branches
of MST(C) are removed to get core(C) homeomorphic to an underlying tree.

For the random point sample of the 8-star graph in Fig. 8, the 2nd, 3rd and 5th
graphs have several branched vertices instead of one. The 5th graph has several
zigzags, which would be straightened in core(C). The 4th graph has a triangular
cycle because of incorrectly detected overlaps of clusters corresponding to vertices.
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Fig. 9 For N = 3, . . . , 8, each dot represents the average over 100 noisy samples around a random
N -star graph in R

3 and 3 parameters as in Table1. Mapper: green and long-dashed, MGR: orange
and sparsely dotted, α-Reeb: red and densely dotted, DMT: olive and short-dashed, ASk(C): blue
and solid. Top left: the success rate in percentages for detecting a correct number of endpoints.
Top right: the success rate in percentages for detecting the homeomorphism type. Bottom left
(logarithmic scale): average run times inmilliseconds.Bottom right: the max distance from a cloud
C to reconstructed graphs. The exact numbers are in the txt files in the supplementary materials

6 Conclusions and a Discussion of the Approximate
Skeleton

Though the current implementation was tested in R
3, all steps and results work in

any R
m . Here is the summary of the key contributions to data skeletonization.

• The detection of deep (branched) vertices in Definition 5 uses a global structure of
longest paths within MST(C), hence is more stable under a change of parameters.

• To improve the Metric Graph Reconstruction by M. Aanjaneya et al. [1], we have
split one parameter r (used for detecting vertex points and also for clustering later)
into two separate parameters (with default values) r1 = 15, r2 ∈ [1, 2], which led
to more successful (20–40% rates instead of 0%) reconstructions in Table1.

• Theorem 8 proves the first size guarantees (on a small number of vertices) for the
Approximate Skeleton ASk(C), while all past methods from Sect. 2 considered
topological (mostly homotopy type) or metric properties of reconstructed graphs.
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• Corollary 9 says that the Approximate Skeleton ASk(C) can be quickly computed
within a given error as required in the Tree Reconstruction Problem from Sect. 1.

Because of the page limit the last author couldn’t include one more result on
ASk(C)with realistic conditions on an underlying tree T ⊂ R

m and its noisy sample
C to guarantee that MST(C) and ASk(C) are homeomorphic to T . This is the first
advance after Giesen’s guarantees for shortest paths through sample points [12] in
1999. The C++ code of ASk(C) is at https://github.com/YuryUoL/AsKAlgorithm.

In comparison with the past methods in Sect. 2, ASk(C) starts from the most chal-
lenging input (an unorganized cloud of points C ⊂ R

m without any extra structure),
outputs an embedded graph in R

m and provides two guarantees in Theorem 8 and
Corollary 9. We plan to extend ASk(C) to graphs with cycles, which can be still
visualized [16, 17, 23] and encoded [18] in a 3-page book (a product of a line and
the tree with 3 edges joined at one central vertex).

Acknowledgement This research was supported by the EPSRC grant EP/R018472/1. We thank
all reviewers for their helpful suggestions.

Appendix A: Proofs of all the Statements from Sect. 4

The proof of Corollary 9 below uses Algorithm 1 for depths of vertices in MST(C)

from Definition 5. The depth is trivial (equal to 0) for any degree 1 vertex. For any
other vertex v, the depth can be recursively computed from lengths of edges at v

and depths of neighbors of v. Imagine a water flow simultaneously starting from all
degree 1 vertices of MST(C) and moving towards internal vertices inside MST(C).
At every vertex v of degree k ≥ 3, the flow waits until v is reached from k − 1
directions (edges at v), then the flow moves further in the remaining k-th direction.

Definition 11 introduces a new distance between a cloudC ⊂ R
m and a polygonal

line. Recall that d is the Euclidean distance in R
m . We assume that the points C =

〈p1, . . . , pn〉 ⊂ R
m are ordered by their orthogonal projections to the line [p1 pn].

Definition 11 For 1 ≤ i < s < j ≤ n, let H(ps) ⊂ R
m be the hyperspace that is

orthogonal to [p1 pn] and passes through ps. The distance between ps and [pi p j ]
is measured orthogonally to [p1 pn] as d(ps, [pi p j ]) = d(ps, H(ps) ∩ [pi p j ]), see
Fig.10. Consider the distance d([pi p j ],C) = max

i<s< j
d(ps, H(ps) ∩ [pi p j ]). For 1 ≤

ind(1) < · · · < ind(k) ≤ n, the distance between C and the polygonal line P =
〈pind(1), . . . , pind(k)〉 is defined as d(P,C) = max

2≤i≤k
d([pind(i−1),ind(i)],C).

Lemma12below justifies the steps of Stage 2 in Sect. 4,which outputs theApprox-
imate SkeletonASk(C) starting fromcore(C)obtained inStage 1 at the end of Sect. 3.

Lemma 12 Let C = 〈p1, . . . , pn〉 be points ordered according to their orthogonal
projections to [p1, pn]. For ε > 0, one canfind indices1 = ind(1) < · · · < ind(m) =

https://github.com/YuryUoL/AsKAlgorithm
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Fig. 10 The distance from
pm to [pi p j ] in
Definition 11 is measured
orthogonally to [p1 pn]

n in time O(n log n) so that the estimates below for the distances in Definition 11
hold:
(a) d([pind(i−1) pk],C) ≤ ε for ind(i − 1) < k ≤ ind(i),
(b) d([pind(i−1) pind(i)+1],C) > ε for any 1 < i < m .

The following lemma is needed for Theorem 8 and is conveniently illustrated in
Fig. 10 below.Recall that the distances fromDefinition 11 are computed orthogonally
to the straight segment [p1, pn] passing through the endpoints of a monotone point
cloud C .

Lemma 13 Let C = 〈p1, . . . , pn〉 be points ordered according to their orthogonal
projections to [p1 pn]. Then d([pk pl],C) ≤ 2d([pi p j ],C) for any indices i ≤ k <

l ≤ j .

Input: the initial tree T = MST(C)

Initialize Minimal Binary Heap H of (vertex,depth)
For all deg 1 vertices v ∈ T , add (v, 0) to H ;
while H is not empty do

(v, d) = H.pop(); // take the vertex v of a min depth
set u = the only neighbor of v in T ;
dnew = d + edge-length of (u, v);
Remove the edge uv from T , but keep u, v ∈ T ;
Add (v, dnew) to front of the list Neighbors(u);
if deg(u) = 0 in T then
Set f lag[u] = true;

else if deg(v) = 1 then
Add the pair (u, dnew) to the heap H

end if
end while
Initialize a vector[] depths; // a future output
for all deg(v) > 2 vertices v ∈ MST(C) do
if f lag[v] = true then
Set depths[v] = 3rd element of Neighbors(v);

else
Set depths[v] = 2nd element of Neighbors(v);

end if
end for

Algorithm 1:Computing depths of vertices fromDefinition 5 in Step 1c by ‘simul-
taneous flows’ moving from endpoints.
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Input: unordered set of points s and line l
Output: Sequence of vertices that form monotone paths k and t containing ordering of points s.
Define t to be ordering of s obtained from projecting s to l orthogonaly.
Define q to be the map from points s to their indices in t .
Define k to be queue and add first point of s to k.
Define a to be the first point of s.
while Point a is not the last point of t do
Let point b be the next point from a in ordering t
while Point b is not the last point of t and k[a] < k[b] do
Set a to be b.
Set b to be the next point from b in ordering t .

end while
Add b to k.
if b is the last point in ordering t then
Exit the program.

end if
while Point b is not the last point of t and k[b] < k[a] do
Set a to be b.
Set b to be the next point from b in ordering t .

end while
Add b to k.

end while
Algorithm 2:monotone subclouds ofC . For each point p in a given cloudC ⊂ R

m ,
find approximately its closest edge of core(C). Then any edge e ⊂ core(C) has the
edge-cloud C(e) ⊂ C of points that are closer to e than to other edges of core(C).
For every polygonal path v1, . . . , vk between non-trivial vertices v1, vk ∈ core(C)

define cloud Y = ∪k−1
i=1C((vi , vi+1)) and straight line L spanned by points v1 and

vk . Run the algorithm above with parameters (Y, L).

Proof. For any k < m < l, let H(pm) ⊂ R
m be the hyperspace that is orthogonal

to [p1 pn] and passes through pm . Consider the intersection points qm = H(pm) ∩
[pi p j ] and rm = H(pm) ∩ [pk pl]. Let ε = d([pi p j ],C), then d(pm, qm) = d(pm,

[pi p j ]) ≤ ε. Since the points pk and pl are ε-close to the segment [pi p j ], the interme-
diate point rm ∈ [pk pl] is also ε-close to [pi p j ], i.e. d(rm, qm) = d(rm, [pi p j ]) ≤ ε.
The triangle inequality implies that d(pm, rm) ≤ d(pm, qm) + d(qm, rm) ≤ 2ε. Tak-
ing the maximum over k < m < l, we get d([pk pl ],C) ≤ 2ε. ��
Proof of Lemma 12. Assuming that indices 1 = ind(1) < · · · < ind(i − 1) were
found, we search for the next index ind(i) as follows. Search exponentially by trying
indices k = ind(i − 1) + 2 j for j = 0, 1, . . . while d([pind(i−1) pk],C) ≤ ε.

Each evaluation of the distance d([pind(i−1) pk],C) requires O(k − ind(i − 1))
time, because we need to compare k − ind(i − 1) − 1 distances to [pind(i−1) pk]
(orthogonally to [p1 pn]) from every point of C between pind(i−1) and pk .

After finding k = ind(i − 1) + 2 j and l = ind(i − 1) + 2 j+1 such thatd([pind(i−1)

pk],C) ≤ ε and d([pind(i−1) pl],C) > ε, we start a binary search for ind(i) in the
range [k, l) each time choosing one half of the current range until both conditions
(a)-(b) hold.
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Finding the next index ind(i) requires O(log n) computations for the distance
d([pk pl],C), where l − k ≤ ind(i) − ind(i − 1), hence O((ind(i) − ind(i − 1))
log n) time overall. Taking the sum over all i = 2, . . . ,m, the total time is
O(n log n). ��
Proof of Theorem 8. Since endpoints of all monotone polygonal paths of core(C)

are fixed in minimization problem before Theorem 8, we separately consider every
corresponding monotone subcloud C ′ of points (say) p1, . . . , pn ordered by their
orthogonal projections to the line through the line segment [p1 pn]. Let 1 = opt(1) <

· · · < opt(k) = n be indices of an optimal ε-approximation (polygonal path) Q to
C ′. In the notations of Lemma 12 for the approximation error 2ε wewill prove below
that opt(i) ≤ ind(i) by induction on i . Then n = opt(k) ≤ ind(k) and the size m of
the list 1 = ind(1) < · · · < ind(m) = n, which is found in Lemma 12, is at most k
as required. Taking the sum of upper bounds over all monotone paths of core(C), we
conclude that the 2ε-Approximate Skeleton ASk(C) has the total number of vertices
not greater than that that number for an ε-optimal skeleton S.

The base i = 1 means that opt(1) = 1 = ind(1), i.e. both paths start from the
point p1. In the inductive step assume that opt(i − 1) ≤ ind(i − 1). If opt(i) ≤
ind(i − 1), then opt(i) ≤ ind(i) and the inductive step is complete. The remain-
ing case is ind(i − 1) < opt(i). Since Q is an ε-approximation to C ′, we have
d([popt(i−1) popt(i)],C) ≤ ε. Lemma 13 implies that d([pind(i−1) pl],C) ≤ 2ε for any
index l such that ind(i − 1) < l ≤ opt(i). Lemma 12(b) for the approximation 2ε
says that d([pind(i−1) pind(i)+1],C) > 2ε, hence opt(i) ≤ ind(i). ��

Definition 14 (expanion constants) Let C ⊂ R
m be a cloud and B̄(p; r) = {q ∈

R
m | d(p, q) ≤ r} be the closed ball with the center p and radius r . The expansion

constant ce is the smallest real number c ≥ 2 such that ∀x : |B̄(x, 2r)| < c|B̄(x, r)|.
Letcs be thesimilarlydefinedconstant for themetricspaceof linesegmentsofMST(C),
then set c = max{ce, cs}. Other constants cp, cl are similarly defined in [3].

Proof of Corollary 9. The distance from Definition 11 measured orthogonally to
the straight line through fixed endpoints [p1 pn] is not smaller than the Hausdorff
distance used for ε-offsets in Definition 1. Hence the algorithm from Lemma 12
produces required ε-approximations in the sense of Definition 1. The current imple-
mentation uses the single-edge clustering based on MST(C), so Step 1a runs in
O(n) time. The total time is dominated by Step 1b computing MST(C) in time
O(max{c6e , c2pc2l )}c10e n log n α(n)), where α(n) is the inverse Ackermann function.

Algorithm 1 in Step 1c has the pseudo-code above and maintains a binary tree on
O(n) vertices, which requires O(n log n) time. Selecting deep vertices in Step 1d and
finding longest paths in Step 1e within subtrees ofMST(C) needs O(n log n) time by
classical algorithms [10]. Step 2a to split C into subclouds is implemented by cover
trees for line segments of core(C) ⊂ MST(C) in time O(c16s n log n) as proved in [3].
ByLemma12Steps 2b-2g for approximating any subcloudofni points by apolygonal
path runs in O(ni log ni ) time. Hence the total time at Stage 2 for computing ASk(C)

over the cloud C of n points is O(max{c6, c2pc2l )}c10n log n α(n)). ��
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Fig. 11 Left: ASk(C) for the branching factor γ = 1.2. Middle: γ = 1.4, Right: γ = 1.6

Fig. 12 1st: a sample around a 4-star in R3, 2nd: Mapper, 3rd: α-Reeb, 4th: ASk(C)

Fig. 13 1st: a sample around a 5-star in R3, 2nd: Mapper, 3rd: α-Reeb, 4th: ASk(C)

Fig. 14 1st: a sample around a 6-star in R3, 2nd: Mapper, 3rd: α-Reeb, 4th: ASk(C)

Appendix B: More Qualitative Comparisons of 3 Algorithms

Figures12, 13, 14 and 15 show example outputs of 3 algorithms on real and randomly
generated clouds in R

3. In almost all cases the Mapper and α-Reeb graphs contain
superfluous short edges, which affect the homeomorphism types.

The error factor γ fromCorollary 9 affects the quality of approximation. Figure11
shows that higher values of γ lead to more straightened curves (Fig. 16).
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Fig. 15 1st: a sample around a 7-star in R3, 2nd: Mapper, 3rd: α-Reeb, 4th: ASk(C)

Fig. 16 Explaining 1.87% failures of ASk(C) in Table1: two micelles C with short edges

Appendix C: Conditions on a Sample C of T so that
MST(C) ≈ T

For a noisy point cloud C ⊂ R
m , a Minimum Spanning Tree MST(C) often looks

as a hairy bunch of caterpillars with many short branches, which is far from an
ideal skeleton approximating C . Theorem 15 gives the first ever (to the best of our
knowledge) sufficient conditions on a noisy point cloud C ⊂ R

m when MST(C) is
homeomorphic to an underlying tree T from which C was sampled.

Theorem 15 Let C be a noisy sample of a straight-line tree T ⊂ R
m. Conditions

(15a)–(15g) on C and T below are sufficient for all 3 trees MST(C), core(C) and
ASk(C) to be homeomorphic to T .
(15a) C is geometrically close to T , i.e. C ⊂ T ε for some ε > 0;
(15b) the vertices V (T ) of T are approximated by C: V (T ) ⊂ Cε;
(15c) C is sufficiently sparse in the sense that the minimum distance δ between points
of C has the lower bound 4√

3
ε;

(15d) the tree T is approximated byC, i.e. T ⊂ Cρ for some parameter ρ > δ
2 , whose

upper bound is restricted by (15f) below;
(15e) the non-adjacent edges of the tree T are sufficiently away from each other, i.e.
the distance between them is at least 2(ρ + ε).
(15f) the tree T has no small angles, i.e. the minimum angle γ between any adjacent
edges of T satisfies sin γ

2 >
ρ+ε

δ−ε
.

(15g) T has no short edges: the minimum edge-length is 2(βρ + ε), where β is the
branching factor from Definition 5.

Most of conditions (15a)–(15g) are trivially necessary for MST(C) ≈ T . For
example, T should be well-approximated by C in (15a)–(15b) with only small
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Fig. 17 A tree T is black, an ε-offset T ε is yellow, C and MST(C) are blue. Left: hard cases
when MST(C) �≈ T (too dense C or small angles of T ). Right: a homeomorphism MST(C) ≈ T
is guaranteed by Theorem 15, disjoint δ

2 -balls at the points of C are green

bounded noise, otherwise MST(C) will have long branches to outliers in C . The
left picture in Fig. 17 shows challenging cases when ε-samples C of simple trees T
can easily led to MST(C) �≈ T , so Theorem 15 is really non-trivial.

Condition (15c) says that the points of C should be closer to T than to each other,
though the minimal ratio δ/ε ≈ 2.3 isn’t large. This sparsity guarantees that any
edge of T will be approximated by a polygonal line of MST(C) without branching
vertices. These polygonal lines of MST(C) can’t have large zigzags between non-
adjacent edges of T by (15e). Conditions (15d) and (15f) can be combined into the
following 2-sided inequality
(15h) δ

2 < ρ < (δ − ε) sin γ

2 − ε, which implies sin γ

2 > 1
2 , γ > π

3 .
To guarantee the existence of ρ by (15h), we check when the left hand side is

less than the right hand side: δ
2 < (δ − ε) sin γ

2 − ε. After dividing both sides by
ε, we get ( δ

ε
− 1) sin γ

2 − 1 > δ
2ε . Then the sparsity ratio satisfies the inequality

δ
ε

>
sin γ

2 + 1

sin γ

2 − 1
2

(15i).

Inequality (15i) can be satisfied for any γ > π
3 when sin γ

2 − 1
2 > 0. For example,

if γ = π
2 , then

δ
ε

>
√
2+2√
2−1

≈ 8.2. If we set δ = 10ε, (15i) gives 5ε < ρ < ( 9√
2

−
1)ε ≈ 5.36ε. For the larger minimum angle γ = 2π

3 , inequality (15i) allows smaller

ratios δ
ε

>
√
3+2√
3−1

≈ 5.1. For δ = 6ε the range of ρ is 3ε < ρ < (5
√
3
2 − 1)ε ≈ 3.33ε.

The homeomorphism guarantee from Aanjaneya et al. [1, Theorem 5] is incom-
parable with Theorem 15, because these results are stated for different inputs and
metrics on graphs. For a rough comparison, [1, Theorem 5] says that, for a correct
topological reconstruction from an (ε, R)-approximation, the shortest edge-length
of a hidden graph is between 120ε and 4R.

Conditions (15a)–(15g) may not be necessary for core(C),ASk(C) ≈ T , because
removing short branches from MST(C) produces core(C) often homeomorphic to
T as justified by the experiments in Sect. 5. The key idea in the proof of Theorem 15
is to view the points of C as non-overlapping δ

2 -balls that sit ε-close to the tree T .
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Fig. 18 Left: a proof of d(q, r) ≥ 2l sin γ
2 in Lemma 18. Middle: a proof of d(q, r) > 2ρ in

Lemma 20. Right: ∠qpr < π
3 in Lemma 22

If these balls are large in comparison with ε, their centres are connected following
the shape of T without confusion. So connecting centers of the balls in a natural
(optimal as in MST) way gives a tree homeomorphic to T .

The claims below are stated under the conditions of Theorem 15 and are needed
to prove Proposition 25 to explicitly describe a structure of MST(C).

Lemma 16 Any vertex v of T has a unique point pv ∈ C in the ε-ball vε at v.

Proof. Condition (15b) implies that C has a point pv the ε-ball vε at v. If there is
another point q ∈ C ∩ vε, then d(p, q) ≤ 2ε < δ, which contradicts (15c). ��
Definition 17 For an edge e of a tree T ⊂ R

m, the edge-cloud Ce ⊂ C consist of
points that are in the ε-offset of e, but not in the ε-balls at the endpoints of e.

Lemma 18 For any non-collinear points p, q, r ∈ R
m, if the angle ∠qpr ≥ γ and

both Euclidean distances d(p, q), d(p, r) ≥ l, then d(q, r) ≥ 2l sin γ

2 .

Proof. In the triangle�pqr if we keep the side lengths d(p, q), d(p, r) and decrease
the angle ∠qpr to γ , then d(q, r) can only decrease, so we can assume that
∠qpr = γ . Assuming that d(p, q) ≥ d(p, r), push q to the point q ′ ∈ [pq] such
that d(p, q ′) = d(p, r), see the 2nd picture of Fig. 17. In the isosceles �pq ′r the
angle ∠pq ′r is acute. In�qq ′r the obtuse angle ∠qq ′r is largest, hence the opposite
side [qr ] is the longest, so d(q, r) ≥ d(q ′, r). The isosceles triangle �pq ′r with
∠q ′ pr = γ has d(q ′, r) = 2d(p, r) sin γ

2 ≥ 2l sin γ

2 , so d(q, r) ≥ 2l sin γ

2 . ��

The ε-offset of any edge e in a straight-line tree T ⊂ R
m is the solid cylinder of

the radius ε around e united with the ε-balls centered at the endpoints of e.

Lemma 19 For any disjoint edges e, h of T ⊂ R
m, the two subsets of C in eε, hε

(including the edge-clouds Ce and Ch) are more than 2ρ away from each other.

Proof. For any points p ∈ eε and q ∈ hε, their distances to the corresponding edges
are d(p, e) ≤ ε and d(q, h) ≤ ε. Since d(e, h) > 2(ρ + ε) by condition (15e), the
triangle inequality implies that d(p, q) ≥ d(e, h) − d(p, e) − d(q, h) > 2ρ. ��
Lemma 20 For any adjacent edges e, h sharing a vertex v of a tree T ⊂ R

m, the
edge-clouds Ce and Ch are more than 2ρ away from each other.
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Proof. Let pv be a unique vertex of C from Lemma 16. For any points q ∈ Ce and
r ∈ Ch , we’ll show how inequality (15g) implies that d(q, r) > 2ρ by using the
lower bounds d(pv, q), d(pv, r) ≥ δ from condition(15c).

Move the points q ∈ Ce and r ∈ Ch towards each other until they are on the
boundaries of the ε-offsets eε, hε, respectively, so that d(q, e) = ε = d(r, h).

Let p be the point in the bisector between the edges e, h meeting at v such that
[pq], [pr ] are parallel to e, h, respectively, so that d(p, e) = ε = d(p, h).

In the 1st picture of Fig. 18 in the right-angle triangle with the hypotenuse [pv]
and 1

2∠(e, h) ≥ γ

2 , we estimate d(v, p) = ε/ sin 1
2∠(e, h) ≤ ε/ sin γ

2 .

The triangle inequality implies that d(p, pv) ≤ d(pv, v) + d(v, p) ≤ sε, where
s = 1 + 1/ sin γ

2 , and d(p, q) ≥ d(q, pv) − d(p, pv) ≥ δ − sε, also d(p, r) ≥ δ −
sε.

Lemma 18 for l = δ − sε says that 1
2d(q, r) ≥ (δ − sε) sin γ

2 . After substitut-
ing s = 1 + 1/ sin γ

2 , the last inequality becomes 1
2d(q, r) ≥ (δ − ε) sin γ

2 − ε > ρ,
which follows from (15g). Hence d(q, r) > 2ρ as required. ��

Lemmas 19 and 20 imply that the cloud C splits into the edge-clouds Ce and
singletons {pv} over all edges e and vertices v of T .

Lemma 21 All edges of MST(C) are not longer than 2ρ and not shorter than δ,
which justifies condition (15d) ρ > δ

2 .

Proof. Assume that the offset Cρ is disconnected. If the tree T is in a single compo-
nent of Cρ , another component contains a point p ∈ C that is more than ρ > δ

2 > ε

away from T , see (15cd), which contradicts condition (15a).

Since the connected tree T cannot overlap with more than one component of Cρ ,
the offset Cρ is connected. Then MST(C) is contained in the union Cρ of ρ-balls
with centers over all p ∈ C , so every edge of MST(C) is at most 2ρ

Condition (15c)means that the open δ
2 -balls centered at points ofC are all disjoint,

hence a shortest edge of MST(C) is at least δ. ��
Lemma 22 For any edge e of a straight-line tree T ⊂ R

m, let p, q, r ∈ eε be
points ordered by their orthogonal projections to the straight line through e. If
d(p, q), d(q, r) ≥ δ > 4√

3
ε, then the edge [pr ] is longest in the triangle �pqr.

Proof. The longest side is opposite to the largest angle. If both angles ∠qpr , ∠qrp
aren’t greater than π

3 , the remaining angle ∠pqr ≥ π
3 should be the largest.

The 2nd picture of Fig. 18 shows the 2D section of the offset eε by the plane
through the points p, q, r . In this 2D section the line Lq passing through the middle
point q orthogonally to e meets the side [pr ] in a point t . The sine theorem in the
triangle �pqt says that d(p, q) sin∠qpr = d(q, t) sin∠ptq ≤ d(q, t), which isn’t
greater than the width 2ε of the offset eε, so sin∠qpr ≤ 2ε

d(p,q)
. The inequalities
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d(p, q) ≥ δ > 4√
3
ε imply that sin∠qpr ≤

√
3
2 . Then ∠qpr ≤ π

3 and similarly we
get ∠qrp ≤ π

3 . ��
Lemma 23 For any edge e ⊂ T , MST(Ce) is a polygonal line going via points of
the edge-cloud Ce according to their ordered orthogonal projections to e.

Proof. By Lemma 22 two points p, q ∈ Ce can be linked by an edge of MST(Ce)

only if they have successive orthogonal projections to e (when there is no other point
r ∈ Ce whose projections separates the projections on p, q to e). ��
Lemma 24 For any edge e ∈ E(T ) with an endpoint v, let pev ∈ Ce be the closest
point from Ce to pv . The whole edge-cloud Ce orthogonally projects to the infinite
straight line through e on one side from the projection of pv .

Proof. The projection of pv from the ε-ball vε to the line through e is the ε-
neighborhood of the endpoint v. The edge-cloud Ce belongs to the solid ε-cylinder
minus δ-ball around pv (or minus the (δ − ε)-ball around v), which projects to e
more than ε away from v since δ > 2ε by (15c). ��
Proposition 25 MST(C) is the union

⋃

e∈E(T )

MST(Ce)
⋃

v∈V (T )

[pv, pve], where pv ∈
C is a unique point from Lemma 16 for every vertex v ∈ V (T ), and pev ∈ Ce is the
closest point from the edge-cloud Ce to pv for each edge e attached at v.

Proof. By Lemma 21 any edge of MST(C) is at most 2ρ. Fix an edge e of T with
endpoints u, v. By Lemmas 19 and 20 a point p ∈ Ce can be linked by an edge
of MST(C) only to points from the edge-cloud Ce or to the points pu, pv from
Lemma 16, because all other points of C are more than 2ρ away from p. Hence all
edges of MST(C) between points p, q ∈ Ce depend only on the edge-cloud Ce and
should belong to MST(Ce), so MST(Ce) ⊂ MST(C).

For any edge e attached at a vertex v, the point pv can be linked by an edge of
MST(C) only to the point pev ∈ Ce from Lemma 24. Indeed, let pv be linked to two
points q, r ∈ Ce ⊂ eε, Then q, r have orthogonal projections to the line through e
on the same side from the projection of pv by Lemma 24. Lemma 22 says that [qr ]
is one of the shortest edges in the triangle pvqr , hence MST(C) cannot include both
edges [pvq] and [pvr ].

For any edge e, the subtree MST(Ce) can be connected by edges of MST(C) only
to the points pu, pv around the endpoints u, v of e. If one of these edges [pv peu]
and [pv pev] is absent, then MST(C) splits into two components: one with Ce and
one with pv . Indeed, all other possible connections between singletons {pv} and
MST(Ce) follow the combinatorial structure of T , which becomes disconnected
after removing only one incidence of v and e. Hence MST(C) contains all expected
edges [pv, pve], which join MST(Ce) over all e ∈ E(T ) into a connected tree by
simulating the incidence of vertices and their edges in T . ��
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Proof of Theorem 15. In the notations of Proposition 25,MST(C) consists of polyg-
onal lines that approximate all edges e of T and connect at points pv close to vertices
v of T . By Lemma 23, every polygonal line MST(Ce) is homeomorphic by the
orthogonal projection to a subedge e′ of the corresponding edge e.

These projections MST(Ce) → e′ can be extended to the full homeomorphism
MST(C) → T by mapping each point pv from Lemma 16 to the corresponding
vertex v, and the union of edges [pv, pev] around pv to a small star in T with the
center v and short arcs to the endpoints of subedges e′ of edges at v.

Having proved that MST(C) ≈ T , we show that every polygonal path P between
non-trivial vertices of MST(C) is longer than βl(C), where β is the branching factor
from Definition 5 and l(C) is the average edge-length of MST(C). Then Defini-
tions 5–6 guarantee that P is included into core(C), hence core(C) = MST(C).
Condition (15g) says that any edge e of T has a length at least 2(βρ + ε). By condi-
tion (15b) the endpoints of the corresponding path P ⊂ MST(C) are at most ε away
from the vertices of e. So the length of P is at least 2βρ ≥ βl(C), because any edge
of MST(C) is not longer than 2ρ by Lemma 21.

Having proved that T ≈ MST(C) = core(C), we conclude that T ≈ ASk(C),
because the straightening core(C) → ASk(C) in Sect. 4 only replaces polygonal
paths homeomorphic to [0, 1] by simpler paths also homemorphic to [0, 1]. ��
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Topologically Robust B-spline
Reconstruction of Fibers from 3D Images

Dennis Mosbach, Katja Schladitz, Bernd Hamann, and Hans Hagen

Abstract The micro-structure of wood-based insulation materials is analyzed to
gain insight into how features on microscopic scales influence macroscopic ther-
mal conductivity. Three-dimensional (3D) image data obtained by micro-computed
tomography reveals a complex structure formed by cellulose fibers. To study the
effect of geometry changes, simple B-spline representations of these fibers are highly
desirable. A straightforward solution is to extract a triangulated isosurface from the
3D image and partition it into quadrilateral macro-cells with disk-like topology. For
each cell, a B-spline surface is constructed by minimizing a least squares error term.
However, the physical processing of the material affects the structure of the fibers.
The resulting changes in surface topology cause difficulties for the quadrilateral par-
titioning. Image processing tools can solve these topological issues, but they also
impact geometry. We present a novel approach that splits geometry and topology
processing of the data. It allows for topological simplification while still preserv-
ing the geometry of a scanned object. Established B-spline approximation methods
are used to create a model. The involved mathematical equations are described in
detail with a focus on simple implementation. Our presented results demonstrate that
smooth and accurate models can be created for challenging data.
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1 Introduction

An important part in researching material properties is the generation of models
representing microscopic structures which can be used for visualization and simu-
lation purposes. How these models are obtained strongly depends on the size and
complexity of the samples, the initial data acquisition, and the target application.

We are concerned with model generation of cellulose fibers. A cellulose fiber
is understood as a hollow tube that is open on both ends. The empty space inside
is called lumen. Models of such structures are helpful to understand and assess
mechanical properties of a material on a macroscopic scale [1]. For example, this
understanding allows researchers to establish a relation between the micro-structure
and physical properties of paper [15]. Another example is the analysis of sound-
dampening properties of wood-based acoustic insulation material with respect to its
tortuosity, a parameter that relates physical, acoustic, and morphological properties
of a material [20].

Our goal is to investigate heat conductivity properties of wood-based thermal
insulation materials. The micro-structure of these materials consists of a complex
systemof cellulosefiberswhichoccur in chunks, chips, and as individuals. To conduct
simulations, B-spline surface models of such fibers are desired. These models should
consist of a low number of continuously connected surfaces and include the inner
and outer surfaces of the fiber wall. The main feature of interest is the shape of the
fibers as well as the contained lumen. This means that small holes in the wall as well
as roughness along the surface can be neglected and do not need to be present in the
final model. B-spline surfaces are defined by a grid of control points. Storing just
those control points requires far less memory than a high-resolution triangulation.
Furthermore, B-splines are better suited to represent geometric detail than a down-
sampled mesh. Changing control point locations directly affects the shape of the
surface, which allows scientists to generate additional fibers for simulations from a
small number of prototypes.

The initial data is a scan of a material sample given as 16-bit grayvalue image
which is obtained by high-resolution synchrotron computed tomography. For denois-
ing, a 5 × 5 × 5 median filter is applied after which the image is binarized with a
global gray value threshold. Individual fibers are then extracted from this image
based on a local shape criterion [2].

However, the physical processing of the material causes damage to the micro-
structure which leads to cuts and holes in the fiber walls as well as increased surface
roughness in some areas. As Fig. 1 shows, these effects complicate the topological
structure of the surface by adding numerous small tunnels, holes, and cavities.

A straightforward solution to create a B-spline model of those fibers is to extract
the isosurface of such a fiber in form of a triangulated mesh. In order to compute
a continuous B-spline model, this mesh needs to be partitioned into a collection
of quadrilateral macro-cells. Each macro-cell can then be approximated by a B-
spline surface. Due to the non-trivial topological situation on the fiber’s surface, most
approaches to compute such a quadrilateral decomposition either fail or produce a
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Fig. 1 Example of an extracted fiber. While the overall geometrical shape appears to be smooth,
close-ups show artifacts affecting the local topology on the surface

very large amount of small macro cells. Standard image denoising operations can
solve the topological problems, but might also introduce a geometrical error to the
resulting surface.

Our contribution is a new approach that splits the data processing pipeline into
geometry and topology processing. A strongly cleaned and repaired image is used to
create the mesh of larger quadrilateral faces capturing the topology of the idealized
cellulose fiber. This quad-mesh is then used to partition the original data, extracted
from the unprocessed image, by assigning each data point to the nearest quad-face.
Processing the data this way provides the necessary input for established B-spline
approximation methods. The resulting B-spline models have fiber-like topology and
closely approximate the geometry of the original data.

2 Related Work

While no methods exist to extract isosurfaces directly in form of B-splines, a variety
of research has been published concerning the construction of B-spline approxi-
mations of discrete data given as point clouds or surface meshes. Such an explicit
representation can easily be obtained from a 3D image by contouring methods like
Marching Cubes.

Regular tensor product B-spline surfaces can only represent structures with disk-
like topology. To construct a model for complex objects, the data needs to be decom-
posed into quadrilateral cells. The data points in each cell are then approximated by a
single B-spline surface. The key challenge is to ensure certain continuity constraints
along boundaries. While a watertight model, i.e., C0-continuous transitions along
shared boundaries, is almost always a requirement, it is often desired to also have at
least tangent plane continuity, i.e., G1-continuous transitions.
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Eck and Hoppe [3] provide an in-depth description of the overall pipeline starting
with a point cloud. Their first step is to establish a topological structure of the data
by generating a fine surface mesh. Using a Voronoi-like tessellation and its dual
Delaunay-like complex, the mesh is subdivided into a set of quadrilateral cells where
each cell has a disk-like topology. Those cells are parameterized using harmonic
maps. A B-spline approximation using a modification of Peters’ scheme [18] is then
computed to minimize the least squares error between the surfaces and the data
points.

Gregorski et al. [8] propose a method to construct a set of B-spline surfaces
approximating a given point cloud. They decompose their data into quadrangular
cells based on a so-called strip tree which provides an adaptive subdivision of the
data, similar to a quad-tree, into small boxes such that the points contained in each
box can be approximated by B-spline surfaces with low error. Control points of
neighboring surfaces are then adjusted during a post-processing step to ensure C1-
continuous transitions. Since they do not establish a topological structure of the
surface, their approach works best on mostly flat objects.

Given a triangulated surfacemesh and amanually defined subdivision into quadri-
lateral cells, Krishnamurthy and Levoy [13] do a remeshing of each cell to obtain a
regular sampling of the data. This implicitly defines a parameterization and reduces
the complexity of the B-spline approximation. However, to apply it to complex
objects, an automatization of the quadrilateral decomposition is necessary.

Yoo [22] describes an approach to construct a B-spline model of human bones
given as point cloud or sequence of computed tomography images. First, the input
data is used to define an implicit surface on which a fine quad-mesh is constructed.
Each quad and the normal vectors along its boundaries are then interpolated by a
B-spline surface.

Yoshihara et al. [23] capture the topology of a given point cloud by constructing
an implicit function and applying a level set method. At the cost of geometrical
accuracy in noisy regions, this allows for a stable processing of difficult data. The
object’s surface is approximated by a Catmull-Clark subdivision surface and the
corresponding control points are used to form a fine quad-mesh which is interpolated
by B-spline surfaces.

Lin et al. [14] present a method to create a smooth B-spline model to approximate
amesh. The quadrilateral decomposition is donemanually. After constructing a curve
network representing the boundaries, the data points in each cell are approximated
by a bi-quintic Bézier surface that interpolates the boundary curves. The resulting
surface model is made G1-continuous by also interpolating pre-computed normal
vectors along the boundaries.

Zhao et al. [24] introduce an iterative approach, allowing individual surfaces to use
differing knot vectors. Given a point cloud and a partition into quads, their approach
constructs an initial set of B-spline surfaces to closely approximate the data and then
ensures approximate G1-continuity in a numerical post-processing step.

Based on their previous work, Peters and Fan [19] provide an in-depth theoretical
analysis of G1-continuous B-spline surface constructions. They state necessary con-
straints that B-splines based on a quad-mesh with arbitrary topology need to satisfy
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in order to obtain tangent plane continuity everywhere. A key statement is that in
a general setting, a G1-continuous B-spline surface model can only be constructed
when the used knot vectors have at least two interior double knots.

Satisfying these requirements, Fan and Peters [4] provide a construction scheme
for bi-cubic B-splines with exactly two double inner knots. Equations for all control
points are explicitly given as linear combinations of the surrounding vertices of the
quad-mesh, but the method can also be modified to approximate a set of discrete data
points.

While a large variety of methods for many scenarios exists, they are primarily
designed for structures that allow for a decomposition into a relatively small num-
ber of quadrilateral macro cells. However, this paper deals with rough fiber structures
with complicated surface topology. A straightforward decomposition of the data into
disk-like quadrilateral cells would require a very high number of small cells. Auto-
matically removing these effects during a pre-processing step strongly affects the
geometry of the resulting B-splines. Hence, an alternative solution is introduced here.

3 Pipeline

The key aspect of our method is splitting geometry and topology processing, see
Fig. 2. After the data has been processed this way, standard methods for B-spline
approximation can be applied.

Fig. 2 Pipeline separating geometry and topologyprocessing.Topartition the data into quadrilateral
cells, a morphological closure operation is applied to the input image. The isosurface of the image is
extracted and re-meshed into a quad-mesh defining the topological structure of the B-spline model.
The approximation is computed with respect to the data points extracted from the isosurface of the
original mesh
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Fig. 3 Performing a morphological closure operation simplifies the topology of the object. A slice
of the 3D volume data a and a close-up of the corresponding region in the isosurface b highlight
regions hard to handle for subsequent processing. Applying the closure operation simplifies the
surface structure, as seen in c and d.

To compensate for small holes and the rough surface structure in the data, a
topological simplification is employed. We apply a morphological closure to the
volume image, i.e., we perform a sequential application of dilation and erosion on the
object represented by the image’s foreground [17]. The size of the filter mask needs
to be chosen sufficiently large to fill the entire structure. Efficient implementations
for large filter masks are available [16]. This operation preserves the original outer
boundary in smooth regions and absorbs any outside material into the fiber’s surface,
see Fig. 3. The inside of the fiber and holes in its wall are closed. The resulting object
has the topology of a cylinder. Hence, applying Marching Cubes leads to a surface
mesh with a topological structure that is well-suited to be partitioned into large and
evenly sized macro-cells. A re-meshing into a small number of quadrilateral cells is
performed on this mesh, using a freely available implementation of the Quadriflow
algorithm [11]. The resulting quad-mesh is a “rough geometrical approximation” of
the data, but it provides a suitable topological structure for a B-spline model.

For the geometry-focused part of the pipeline, the original image is considered.
As with the closed image, a triangulated isosurface is extracted using Marching
Cubes. The vertices of this triangulation provide the geometry data for the B-spline
approximation. To associate them with the topological structure of the quad-mesh,
each point is assigned to the closest quad-face. An initial parameterization is obtained
by projecting the points onto their associated faces. By assigning the corners of
a quadrilateral to the corners of the unit square, a correspondence is established
between the position of the projected point in the quadrilateral and a tuple in (u, v)-
parameter space, where (u, v) ∈ [0, 1]2, see Fig. 4. This initial parameterization is
not optimal, but it suffices to generate a proper initial surface approximation. The
parameterization is optimized during the iterative surface construction approach as
described in Subsect. 4.2.1.

Cellulose fibers are hollow.To reconstruct a fiberwall and the contained lumen, the
inside and outside of the isosurface representing the wall are considered separately.
The topology is the same in both cases. Hence, the same quad-mesh can be used for
both approximations. However, each data point needs to be classified as belonging to
either the interior or exterior surface of the fiber wall. This classification can be done
by applying a Euclidean Distance Transform to the closed image, assigning to each
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Fig. 4 Initial
parameterization. Each
vertex of the original
isosurface is orthogonally
projected onto the closest
face of the quad-mesh. The
corners of the quad
correspond to the corners of
the unit square [0, 1]2. The
relative position of the
projected point in the quad
defines the parameterization

voxel the distance to the closest point of the isosurface [7]. As the morphological
closure still mostly preserves the outer surface, data points with low distances (in our
case ≤ 2 voxels) are considered to belong to the outside surface of the wall, while
data points with larger distance values are considered to belong to the inside. Once
the classification is performed, separate surface models are constructed, one for each
set of data points.

The quad-mesh obtained from the simplified image is closed. Since the layout
produced by the Quadriflow algorithm is sensitive to sharp features, the actual open
ends of the fibers align well with individual quad-faces. To reproduce the open struc-
ture of fibers, these quads are removed and the open space between inside and outside
B-spline surfaces is closed via linear interpolation between the boundary curves.

Image processing operations, including closure, Euclidean Distance Transform
and isosurface extraction withMarching Cubes, are performed with the implementa-
tions inMAVI [6]. The projection of the data points onto the quad-mesh is performed
with the freely available software package libigl [12].

4 B-Spline Approximation

This Section reviews the construction of B-spline surfaces to approximate discrete
data. The concepts are based on literature [5] and the methods mentioned in Sect. 2.
Equations that need to be solved are stated in a uniform notation with a focus on
simple implementation.

As input, a set of data points and their parameterization is required. Optionally,
they can also have weights assigned to them, which is useful when considering a
non-uniform distribution of data points. For complex objects that cannot be modeled
with a single surface, a partition into quadrilateral cells is required. The data of each
cell is then approximated by an individual B-spline surface that has to satisfy certain
continuity constraints with neighboring surfaces.

After introducing the basic notation in Subsect. 4.1, Subsect. 4.2 discusses the
construction of a single surface. Finally, a global system including the constraints
necessary for a continuous model consisting of multiple B-spline surfaces is intro-
duced in Subsect. 4.3.
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4.1 B-Spline Surface Notation

A B-spline surface is defined by an order k ∈ N, a knot vector for each parameter
direction, and a rectangular grid of control points. To keep the construction of amodel
with multiple continuously connected surfaces as simple as possible, the B-splines
considered here are restricted to quadratic grids of nc × nc control points and use
the same knot vector

τ = (0, ..., 0
︸ ︷︷ ︸

k+1 times

, τ1, ..., τnc−k−1, 1, ..., 1
︸ ︷︷ ︸

k+1 times

) ∈ [0, 1]nc+k+1

with knots τi ≤ τi+1 in u and v direction. The piecewise polynomial basis functions
of order k defined by knot vector τ are denoted by Ni (·) := Ni,k,τ (·).

The B-spline surface is given by

S :[0, 1]2 → R
3

S(u, v) =
nc

∑

i=1

nc
∑

j=1

Ni (u)N j (v)bi, j .

4.2 Single B-Spline Surface Approximation

First, the approximation of a set of data points by a single B-spline surface is dis-
cussed. Given a set of np points pi ∈ R

3 with assigned parameter values (ui , vi ) ∈
[0, 1]2 and a weight wi ∈ R. The least squares error of the surface with respect to
the data is denoted by

ELS = 1

2

np
∑

i=1

wi ‖S (ui , vi ) − pi‖2 . (1)

An equivalent notation can be used to simplify this term. Let b ∈ R
n2c×3 be a one

dimensional list containing the B-spline control points and let bx , by, bz ∈ R
n2c be

the vectors containing their x, y, and z coordinates. A correlation between the list
index i and the index i, j in the original grid can be established with a bidirectional
mapping, e.g., i = inc + j . Using the same index mapping, let

N (u, v) = [N1(u)N1(v), ... , Nnc (u)Nnc(v)] ∈ R
1×n2c (2)
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be a row vector containing the associated tensor products of basis functions. Then,
Eq. (1) can be written as

ELS = 1

2

np
∑

i=1

wi

∥

∥N (ui , vi )b − pTi
∥

∥
2
.

Furthermore, let N ∈ R
np×n2c be the matrix containing the basis function coeffi-

cients for the parameters ui , vi associated to each data point pi and let a list of all
data points be denoted by p, i.e.,

N =
⎡

⎢

⎣

N (u1, v1)
...

N (unp , vnp )

⎤

⎥

⎦ , p =
⎡

⎢

⎣

pT1
...

pTnp

⎤

⎥

⎦ .

The least squares error can then be expressed as

ELS = 1

2

∑

σ∈{x,y,z}
(Nbσ − pσ )TW (Nbσ − pσ )

with the weights as diagonal matrix W = diag(w1, ..., wnp ) and gradient

∇σ ELS = NTWNbσ − NTWpσ .

Minimizing the least squares error is equivalent to solving ∇σ ELS = 0 for all com-
ponents σ ∈ {x, y, z}.

Due to the discrete nature of the data, an approximation based on only the least
squares error often includes unwanted wiggles. This is compensated by penalizing
the deviation from a smooth surface by a fairing term. A commonly used term is the
thin-plate-energy functional [3, 10]

ETP = 1

2

∫ 1

0

∫ 1

0
‖∂uu S(u, v)‖2 + 2 ‖∂uvS(u, v)‖2 + ‖∂vvS(u, v)‖2 dudv

which, for B-splines, can be rewritten as

ETP = 1

2

∑

σ∈{x,y,z}
bTσ Mbσ

with gradient
∇σ ETP = Mbσ
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where M ∈ R
n2c×n2c is a matrix containing the integrals of the basis functions given

by

M =
∫ 1

0

∫ 1

0
(∂uu N (u, v))T (∂uu N (u, v))

+ 2(∂uvN (u, v))T (∂uvN (u, v))

+ (∂vvN (u, v))T (∂vvN (u, v))dudv.

The B-spline basis functions are piecewise polynomials. Hence, their integrals can
either be determined analytically or by numeric integration, e.g., applying Gaussian
quadrature to each knot interval [τi , τi+1) with a high enough degree to be exact for
the given case.

To compute a smooth surface that approximates the data points, a linear combi-
nation of both terms is minimized, i.e.,

min. (1 − λ)ELS + λETP (3)

with the parameterλ ∈ [0, 1) controlling the impact of the fairing term to the resulting
surface. Since (3) is a system of quadratic equations with respect to the B-spline
control points, its optimal solution can be found by solving

0 = (1 − λ)∇σ ELS + λ∇σ ETP

= (1 − λ)(NTWNbσ − NTWpσ ) + λMbσ

for each coordinate σ ∈ {x, y, z}. It can be written as

((1 − λ)(NTWN ) + λM)b = (1 − λ)NTWp. (4)

This is a linear system with respect to the control points b. It can be solved by a
variety of freely available code packages, e.g., Eigen [9].

4.2.1 Iterative Approximation

The described approach aims on minimizing the distance between data points pi and
the points on the surface S(ui , vi ), associated to them through their parameterization.
However, these are not necessarily the smallest distances between the data points and
the surface. It is common practice to improve the quality of the approximation by
employing an iterative approach alternating between the construction of the surface
and an update to the parameter values.

After a surface has been constructed, the parameter values of each data point are
updated, by minimizing

(u′
i , v

′
i ) = argminu,v∈[0,1]‖S(u, v) − pi‖.
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Fig. 5 Parameter
optimization using first-order
Taylor series. The error
vector between each data
point pi and its
corresponding point on the
surface S(ui , vi ) is projected
onto the tangent plane. The
difference between the
projected point and S(ui , vi )
is proportionally applied to
the parameterization to
obtain an improved
parameter tuple (u′

i , v
′
i )

which can either be done exactly using computationally expensive nonlinear opti-
mization or approximately by considering low-degree Taylor series [21]. An exam-
ple using a first-order Taylor series is shown in Fig. 5. The new parameter values are
restricted to the unit square. To ensure stable behavior of the method, data points that
are close to surface boundaries are not assigned to neighboring surfaces, even when
the distance to them might be smaller.

4.3 Constructing a Continuous Surface Model

When constructing a model with ns surfaces, the same principles than for a single
surface apply, but some modifications are necessary to ensure continuous transitions
between neighboring surfaces. Control points and data can be stored in a global list
by concatenating the lists of each individual surface. The coefficient, weight, and
smoothing matrices are combined to diagonal block matrices. Using

̂b =
⎡

⎢

⎣

b(1)

...

b(ns )

⎤

⎥

⎦ , p̂ =
⎡

⎢

⎣

p(1)

...

p(ns )

⎤

⎥

⎦ ,

̂N =
⎡

⎢

⎣

N (1) 0
. . .

0 N (ns )

⎤

⎥

⎦ , ̂W =
⎡

⎢

⎣

W (1) 0
. . .

0 W (ns )

⎤

⎥

⎦ , ̂M =
⎡

⎢

⎣

M 0
. . .

0 M

⎤

⎥

⎦ ,

instead of the single surface terms in Eq. (4) leads to the same result as constructing
each surface individually.

4.3.1 Achieving C0-continuity by Adding Constraints. To obtain C0-continuity,
i.e., a watertight model, the row of control points along a shared boundary between
any twoneighboring surfaces needs to be identical. This can be expressed by anumber
of constraints of the form̂bi −̂b j = 0 with i, j being the indices in the global control
point vector of the points that need to be identical. All constraints together can be
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expressed by a matrix vector product: Ĝb = 0 where each row of matrix G ensures
that two corresponding control points have to be identical.

With these constraints, the optimization problem (3) becomes

min. (1 − λ)̂ELS + λ̂ETP

s.t. Ĝb = 0. (5)

Using the method of Lagrange multipliers, an optimal solution of (5) can be found
by solving

[

((1 − λ)̂NT
̂W ̂N + λ ̂M GT

G 0

] [

̂b
Λ

]

=
[

(1 − λ)̂NT
̂W p̂

0

]

(6)

with Lagrange multipliers Λ. This system can be implemented and solved in a
straightforward way. However, adding the C0-constraints in form of a matrix,
increases the size of the overall system compared to the unconstrained case.

4.3.2 Achieving C0-continuity by Reduction of Variables. An alternative is to
implicitly enforce C0-continuity, by using only one variable for each set of control
points that are supposed to be identical. The matrix G is not needed and the overall
number of unknowns is reduced, which allows better performance when solving the
system. However, an index transformation is necessary to implement this system,
i.e., each index î in the global (full) control point list b̂ is assigned a new index ĩ in
the reduced list of control points b̃. Using a matrix H with entries Hî,ĩ = 1 and zero

everywhere else, the original list of control points can be reconstructed as b̂ = Hb̃.
Plugging that in into the objective function (5) and solving for the gradient being
equal zero leads to

(

(1 − λ)HT
̂NT

̂W ̂NH + λHT
̂MH

)

b̃ = (1 − λ)HT
̂NT

̂W p̂ (7)

4.3.3 Achieving G1-continuity The index transformation can be modified to also
ensure G1-continuity, i.e., transitions between surfaces with continuous tangent
planes. Here, the method by Fan and Peters [4] is used. Given a quad mesh, they
provide equations for a smooth surfacemodel where all B-spline control points b̂i are
expressed as linear combinations of the quad mesh vertices q. Using these equations
and an appropriate indexing, the overall B-spline control points can be expressed as
b̂ = Vq.

By considering the vertex positions q as unknowns and using the matrix V instead
of the index transformation H , (7) can be rewritten as

(

(1 − λ)V T
̂NT

̂W ̂NV + λV T
̂MV

)

q = (1 − λ)V T
̂NT

̂W p̂. (8)

Solving this linear systemcorresponds tofinding a quadmesh onwhich the schemeby
Fan and Peters produces a set of B-spline surfaces minimizing the objective function
(5). The resulting surfaces are G1-continuous everywhere.
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5 Results

We applied our method to a number of isolated fibers. Figure6 shows an example,
including intermediate steps. Further results are shown in Fig. 7. Even though many
complicated topological situations arise in the data, our algorithm produces stable
results, see Fig. 8. The overall shape and important characteristics, like length and
bending, are well-preserved. Loose noise-like structures occurring in regions with
high roughness are smoothed, while larger material parts are absorbed resulting in
only a small distortion of the surface. Holes in the fiber walls are closed, and the

(a) Original data (553748 triangles) (b) Simplified surface

(c) Quadmesh (118 quads) (d) Partition of original data

(e) B-spline model of inside surface (f) B-spline model of outside surface

(g) Final B-spline model (236 B-spline surfaces)

Fig. 6 Main processing steps. a shows an isosurface of the original image. After applying a mor-
phological closure operation, the topology is simplified b. A quad-mesh is computed for this surface
c. The initial set of data points is partitioned by assigning each vertex to the nearest quad d. A smooth
B-spline construction is applied to model the fiber wall’s inside e and outside surfaces f. The final
model is obtained by removing the B-spline surfaces at the end and linearly interpolating between
the respective boundary curves g
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(a) Isosurface (1203844 triangles) (b) B-spline model (676 B-spline surfaces)

(c) Isosurface (423628 triangles) (d) B-spline model (432 B-spline surfaces)

(e) Isosurface (710808 triangles) (f) B-spline model (580 B-spline surfaces)

(g) Isosurface (601040 triangles) (h) B-spline model (268 B-spline surfaces)

Fig. 7 Additional results. Isosurfaces of the exact image data a, c, e, g and their B-spline approxi-
mations b, d, f, h

topological structure of the surface does not impact the stability of the quadrilateral
partitioning.

Each resulting B-spline surface is of order k = 3 and is defined by 8 × 8 control
points. The surface model is constructed with theG1-continuous approach described
in Subsection 4.3, which defines the knot vector as τ = (0, 0, 0, 0, 1

3 ,
1
3 ,

2
3 ,

2
3 , 1, 1,

1, 1). The computation is done via three iterations of surface approximation and
parameter optimization, with decreasing smoothness parameters λ1 = 0.9, λ2 =
0.5, λ3 = 0.1.
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(a) (b) (c) (d)

(e) (f) (g) (h)

Fig. 8 Examples of data artifacts a–d and the B-spline approximations in those areas e–h

6 Conclusions

We have presented a new approach that reconstructs high-resolution cellulose fibers
from 3D images with a low number of B-spline surfaces. Due to the production pro-
cess of the material, the micro-structure contains complex topology that is problem-
atic for established methods to handle properly. By splitting the processing pipeline
into geometry and topology processing, we can deal with the topological difficulties
and compute stable reconstructions of idealized structures.

After the data is processed with the pipeline, a B-spline surface model can be
generated by using established B-spline methods. Our detailed description of the
resulting linear system of equations focuses on an elegant implementation.

Our method can handle challenging situations in the image. For example, surface
roughness has almost no impact. Even when larger material parts are present near
the surface of a fiber, its wall is still reconstructed in a topologically correct way,
and surplus material is treated as a local deformation of the surface. The triangulated
meshes extracted fromhigh-resolution images contain 423 628 to 1 203 844 triangles,
and they are modeled with 236 to 676 B-spline surfaces.

We designed our method for fiber-like objects having simple overall topology to
deal with local topological changes that arise in the presence of surface roughness
or small holes and tunnels. Future work could address adaptations of our method to
more complex shapes, e.g., chunks of connected fiber bundles.

Acknowledgements This research was funded by the Fraunhofer High Performance Center for
Simulation- and Software-Based Innovation and supported by the Deutsche Forschungsgemein-
schaft (DFG, German Research Foundation) - 252408385 - IRTG 2057, as well as a grant by the
Deutsch-Französische Hochschule (DFH). The wood insulation investigation was funded by the
German Federal Ministry of Food and Agriculture (BMEL) through its Agency for Renewable
Resources, project LowLambda.



286 D. Mosbach et al.

References

1. Badel, E., Delisee, C., Lux, J.: 3D structural characterisation, deformation measurements and
assessment of low-density wood fibreboard under compression: The use of X-ray microtomog-
raphy. Compos. Sci. Technol. 68(7–8), 1654–1663 (2008)

2. Dobrovolskij, D., Engelhardt, M., Rack, A., Schladitz, K.: Shape classification for wood based
insulation material. Presentation (2019). In: Contributed to ICTMS 2019, Cairns (Australia)

3. Eck, M., Hoppe, H.: Automatic reconstruction of B-spline surfaces of arbitrary topological
type. In: Proceedings of the 23rd Annual Conference on Computer Graphics and Interactive
Techniques, pp. 325–334. ACM (1996)

4. Fan, J., Peters, J.: Smooth bi-3 spline surfaces with fewest knots. Computer-Aid. Des. 43(2),
180–187 (2011)

5. Farin, G.: Curves and Surfaces for CAGD: A Practical Guide, 5th edn. Morgan Kaufmann
Publishers, San Francisco (2002)

6. Fraunhofer ITWM, Department of Image Processing: MAVI - modular algorithms for volume
images. http://www.mavi-3d.de (2005). Accessed 23 Sept 2019

7. Godehardt,M.,Mosbach,D.,Roldan,D., Schladitz,K.: Efficient 3Derosiondilation analysis by
sub-pixelEDT. In: International SymposiumonMathematicalMorphology and ItsApplications
to Signal and Image Processing, pp. 243–255. Springer, Cham (2019)

8. Gregorski, B.F., Hamann, B., Joy, K.I.: Reconstruction of B-spline surfaces from scattered data
points. In: Proceedings Computer Graphics International 2000, pp. 163–170. IEEE (2000)

9. Guennebaud, G., et al.: Eigen v3. http://eigen.tuxfamily.org (2010). Accessed 23 Sept 2019
10. Hagen, H., Schulze, G.: Automatic smoothing with geometric surface patches. Comput. Aid.

Geom. Des. 4(3), 231–235 (1987)
11. Huang, J., Zhou, Y., Niessner, M., Shewchuk, J.R., Guibas, L.J.: Quadriflow: A scalable and

robust method for quadrangulation. Comput. Graph. Forum 37, 147–160 (2018)
12. Jacobson, A., et al.: libigl: a simple C++ geometry processing library. https://libigl.github.io/

(2018). Accessed 23 Sept 2019
13. Krishnamurthy, V., Levoy, M.: Fitting smooth surfaces to dense polygon meshes. SIGGRAPH

96, 313–324 (1996)
14. Lin, H., Chen, W., Bao, H.: Adaptive patch-based mesh fitting for reverse engineering.

Computer-Aided Design 39(12), 1134–1142 (2007)
15. Marulier, C., Dumont, P.J., Orgéas, L., du Roscoat, S.R., Caillerie, D.: 3D analysis of paper

microstructures at the scale of fibres and bonds. Cellulose 22(3), 1517–1539 (2015)
16. Mosbach, D., Hagen, H., Godehardt, M., Wirjadi, O.: Fast and memory-efficient quantile filter

for data in three and higher dimensions. In: 2014 IEEE International Conference on Image
Processing (ICIP), pp. 2928–2932. IEEE (2014)

17. Ohser, J., Schladitz, K.: 3D Images of Materials Structures: Processing and Analysis. John
Wiley & Sons, New York (2009)

18. Peters, J.: ConstructingC1 surfaces of arbitrary topology using biquadratic and bicubic splines.
In: Designing Fair Curves and Surfaces: Shape Quality in Geometric Modeling and Computer-
Aided Design, pp. 277–293. SIAM (1994)

19. Peters, J., Fan, J.: On the complexity of smooth spline surfaces from quad meshes. Comput.
Aid. Geom. Des. 27(1), 96–105 (2010)

20. Peyrega, C., Jeulin, D., Delisée, C., Malvestio, J.: 3Dmorphological characterization of phonic
insulation fibrous media. Adv. Eng. Mater. 13(3), 156–164 (2011)

21. Rogers,D.F., Fog,N.:ConstrainedB-spline curve and surfacefitting.Comput.Aid,Des.21(10),
641–648 (1989)

22. Yoo, D.J.: Three-dimensional surface reconstruction of human bone using a B-spline based
interpolation approach. Computer-Aided Design 43(8), 934–947 (2011)

23. Yoshihara, H., Yoshii, T., Shibutani, T., Maekawa, T.: Topologically robust B-spline surface
reconstruction from point clouds using level set methods and iterative geometric fitting algo-
rithms. Comput. Aid. Geom. Des. 29(7), 422–434 (2012)

24. Zhao, X., Zhang, C., Xu, L., Yang, B., Feng, Z.: IGA-based point cloud fitting using B-spline
surfaces for reverse engineering. Inf. Sci. 245, 276–289 (2013)



Part IV: Overview Articles, Software
and Viewpoints



Introduction to Vector Field Topology

Tobias Günther and Irene Baeza Rojo

Abstract Flowvisualization is a research discipline that is concernedwith the visual
exploration and analysis of vector fields. An important class of methods are the
topology-based techniques, which concentrate on individual structures in the domain
that govern, constrain or guide the behavior of particles in the vector field. In this
chapter, we give an overview of existing techniques for steady and unsteady vector
fields in 2D and 3D. For time-dependent flows, we describe streamline-oriented and
pathline-oriented approaches, eventually leading us to closely related feature-based
visualization concepts such as reference frame invariance and Lagrangian coherent
structures.

1 Introduction

Topology-based flow visualization concentrates on locations in the domain that gov-
ern the motion of the surrounding fluid. When flows are steady, this provides a
compact description of asymptotic particle behavior. In time-dependent flows, there
are still many open research problems despite decades of research [18]. One of the
earliest topology-related visualization papers was published by Dallmann [23], who
studied vortex separation. His work was not only influential in later topology-driven
research, such as by Helman and Hesselink [55, 56] or Globus and Levit [34], but his
visualization approaches were also source of inspiration for illustrative flow visu-
alization methods [14]. The following manuscript is written for novice readers as
an entry point to topology-based methods in flow visualization, primarily giving an
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overview of topological elements and related concepts from feature-based visualiza-
tion. Over the course of this chapter, we concentrate mainly on differential methods,
covering both steady as well as time-dependent vector fields. We refer the reader
to existing surveys on topology-based methods, which cover older methods in more
detail or also include scalar field and tensor field topology [18, 32, 53, 72, 90, 108,
130]. Topology-basedmethods are not only used for feature extraction, but also found
applications in vector fieldmodeling [117, 136], editing [20], simplification [73, 124,
125], smoothing [137], and compression [68, 75, 118].

The chapter is organized as follows. We begin with steady vector fields, covering
the topological elements of 2Dflows and afterwards 3Dflows.When it comes to time-
dependent vector fields, there are two classes of approaches: streamline-oriented and
pathline-oriented topology. We summarize the streamline-oriented approaches first,
covering the different transitions that topological elements undergo, and proceed
with the current state on pathline-oriented approaches. Finally, we discuss ongoing
researchopportunities in the areas of reference frameextraction, high-dimensionality,
uncertainty, and scalability.

Notation. In general, we denote scalar-valued quantities such as s with italic letters.
Vector-valued quantities such as v are expressed in bold letters and matrices such as
J are denoted in capital bold letters. When we discuss concepts in time-dependent
flows, we use an overline symbol, e.g., p, to denote a vector in the space-time domain,
which means that the time coordinate is added as an additional dimension.

2 Steady Vector Fields

Steady vector field topology is mainly interested in the asymptotic behavior of par-
ticles. That is, for each point in the domain, we would like to know where a particle
will flow to in the limit and where it originally came from. In a steady vector field,
the trajectory of a particle is commonly referred to as streamline. The limit behavior
of particles is given by the topological skeleton, which consists of a number of points
(critical points and special points on the boundary), which are connected with each
other by streamlines, so-called separatrices. These separatrices divide the flow into
regions with coherent behavior, as shown in Fig. 1. This means, every particle seeded
from the same area will end up in the same sink or source, respectively, when tracing
forward or backward. In the following, we introduce the elements of the topological
skeleton for 2D and 3D flows. Note that most of these techniques only apply for
steady vector fields. Time-dependent flows are covered in the subsequent section.

2.1 Two-Dimensional Flows

Given is a two-dimensional steady vector field v(x) : R2 → R
2:
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Fig. 1 The topological skeleton of two steady 2D vector fields. Critical points (sources in red, sinks
in blue, saddles in yellow) are connected by separatrices (black), which divide the flow into regions
with the same asymptotic behavior. That is, particles released from any point inside such a region
terminate in the same sink or source when tracing forward or backward, respectively

v(x) =
(
u(x, y)
v(x, y)

)
(1)

Since particles follow the flow tangentially, a particle trajectory x(τ ) can be computed
by requesting that the tangent of the particle path is equal to the vector field direction
at the particle position:

dx(τ )

dτ
= v(x(τ )) x(0) = x0 (2)

This ordinary differential equation (ODE) is commonly solved with numerical inte-
grators to compute the trajectory for a given initial position x0. We refer to the text
book of Lapidus and Seinfeld [71] for a comprehensive introduction to the numerical
integration of ordinary differential equations. In the following sections, we are also
deeply interested in the spatial derivatives of the vector field, namely:

∂v(x)

∂x
= ∇v(x) = J(x) =

(
∂u(x,y)

∂x
∂u(x,y)

∂y
∂v(x,y)

∂x
∂v(x,y)

∂y

)
(3)

The above matrix is called the Jacobian J(x) of vector field v(x) and it captures the
first-order flow behavior. In other words, it is a first-order estimate that tells us how
particles behave in the immediate surrounding. We will later use this information to
define and classify certain topological elements and flow features.
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2.1.1 Critical Points

The key ingredient to steady vector field topology is the extraction of critical points.
In general, critical points are locations x where the velocity vanishes:

v(x) = 0 (4)

The term critical point was coined in the flow visualization community by Helman
and Hesselink [55, 56]. In other fields, these locations are also known as fixed points
or stagnation points.

First-order Critical Points. A point x0 is a first-order critical point of v(x) if

1. x0 is a critical point of v(x)

2. v(x) is differentiable at x0
3. det (J(x0)) �= 0.

The first condition is a minimal requirement. The second condition ensures that
we can compute a Jacobian matrix, which is later relevant for the classification
of first-order critical points. If the last condition is fulfilled, the critical point is
said to be non-degenerate. In case of a first-order critical point, this means that the
critical point is isolated, i.e., in an epsilon neighborhood there is no other critical
point: v(x0 + ε) �= 0. This protects us from trying to identify critical points inside
of obstacles. The first-order critical points can be analyzed by an eigenanalysis of
J(x0), as described in the following.

First-Order Classification. Let λ1 and λ2 be the possibly complex-valued eigenval-
ues of J(x0) and c1 and c2 be their corresponding eigenvectors, i.e.,

J(x0) · ci = λi · ci for i ∈ {1, 2}. (5)

By convention, we will assume that the eigenvalues are sorted in ascending order
by their real parts, i.e., Re(λ1) ≤ Re(λ2). The eigenvalues characterize the behavior
of the flow around the critical point and the corresponding eigenvectors indicate
the direction of this behavior [55, 56]. For instance, if both eigenvalues have a
positive real part, then we observe outgoing flow (source). If, on the other hand, both
eigenvalues have a negative real part, then the flow is ingoing (sink). If one real part
is positive and the other is negative, then a saddle is present. Finally, if both real
parts are zero, then there is neither inflow nor outflow. The imaginary part of a pair
of complex-conjugate eigenvalues denotes the swirling strength [145]. If this part is
zero, then there is no rotation. Figure2 illustrates the possible configurations of a
steady 2D vector field.

Higher-Order Critical Points. When extending the classification of critical points
beyond first-order, isolated critical points can become degenerate, i.e., det (J(x0)) =
0. An example is shown in Fig. 3 (left), where the co-gradient vector field v(x, y) =
(6xy, 3x2 − 3y2)T of a monkey saddle is visualized. Further, saddle critical points
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Fig. 2 Types of critical points in 2D steady vector fields (based on [55]). Re(λ) denotes the real
part of the eigenvalues λ1 and λ2, and Im(λ) the imaginary part. The presence of imaginary parts
(bottom) relates to vortical behavior

can have more than four sectors, which either exhibit parabolic, hyperbolic or elliptic
behavior in their vicinity [107]. A parabolic sector contains streamlines that enter the
critical point in one direction and leave it in the other direction. In an elliptic sector,
streamlines enter the critical points in forward and backward direction. Finally in
hyperbolic sectors, streamlines leave the critical point in both forward and backward
direction. The latter is the kind of sector that is present around first-order saddles.
Figure3 shows examples of all three types of sectors around two higher-order critical
points. Weinkauf et al. [136] visualized the different sectors around higher-order
critical points in 3D, and Tricoche et al. [124] merged 2D critical points into higher-
order critical points in order to simplify a given vector field.
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Fig. 3 Two examples of higher-order saddle critical points. Left, the co-gradient of a monkey
saddle v(x, y) = (6xy, 3x2 − 3y2) is shown, which has six hyperbolic sectors. Right, the field
v(x, y) = (2x2 − 2y2, xy) is visualized which has two parabolic and two elliptic sectors

Existence of Critical Points. Under certain circumstances, selected types of critical
points cannot exist. For instance, in divergence-free flows, sources and sinks will
never occur. Conservative vector fields, i.e., vector fields that are equivalent to the
gradient of a scalar field, are always rotation-free, since their Jacobian is a symmetric
matrix, having real eigenvalues only. Higher-dimensional flows that describe the
motion of finite-sized objects in fluids do not contain sources [36, 40] and time-
dependent flows do not contain any critical points in space-time, since particles
always move forward in time. We address the topology of time-dependent flows in
a later section.

Extraction of Critical Points. The numerical extraction of first-order critical points
requires a root-finding in all components of the vector field. Equivalently, this can be
seen as the intersection of the zero-level isolines of each flow component. For mono-
tonic interpolation schemes, i.e., in bilinear (2D) and trilinear (3D) vectors fields,
Globus et al. [34] discarded candidate cells by checking the signs of the components
at the cell corners. If all signs are either all positive or all negative, then the cell can-
not contain a critical point due to the mean value theorem. The position of the critical
point can be located by recursive subdivision of the cell. Care must be taken, since
this numerical scheme may result in duplicates, which have to be removed in a post-
process. After a certain number of recursive subdivisions, exact locationsmay also be
found by the application of multi-variate Newton-Raphson iterations [34]:

xi+1 = xi − ∇v(xi )−1 · v(xi ) (6)

In practice, it is advisable to either use a QR factorization or the Moore-Penrose
pseudoinverse of the Jacobian ∇v(x) to avoid numerical issues in the matrix inver-
sion. Using a singular value decomposition (SVD), ∇v(xi ) = U�VT, with U and V
being orthonormal matrices and � being a diagonal matrix containing the singular
values, the pseudoinverse is:
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∇v(xi )+ = V�+UT (7)

where�+ contains the reciprocals of the non-zero singular values.We refer the inter-
est reader to the text book of Press et al. [92] (page 61) for a detailed explanation
and discussion of the SVD. Note that the Newton method finds only one solution
and requires an initial guess x0, for instance the center of a cell found by the afore-
mentioned recursive subdivision. At most one critical point can exist per simplex,
i.e., a triangle (2D) or tetrahedron (3D), and its location can be found analytically by
inverting the barycentric interpolation.

2.1.2 Poincaré Index

The Poincaré index is a characteristic number of a closed curve γ in a 2D steady
vector field v = (u, v)T [3]. It is computed by integrating the winding angle of the
velocity vector (counterclockwise rotation) as we integrate along the closed curve γ

in counterclockwise direction [125].

indexγ = 1

2π

∮
γ

dα, with α = arctan
v

u
(8)

The index of the curve is always an integer number. By placing a closed curve γ

around a critical point such that no other critical point is inside the closed curve,
the Poincaré index is extended to critical points. For first-order critical points, we
have index +1 for sinks, sources and centers, and index −1 for saddles. If there are
multiple critical points inside the closed curve γ , the indices of the interior critical
points add up to coincide with the index of the curve γ . Thus, if no critical point is
inside the area enclosed by the closed curve, the index is 0. For higher-order critical
points, the Poincaré index is found by counting the number of elliptic sectors ne and
hyperbolic sectors nh :

indexcp = 1 + ne − nh
2

(9)

In linear vector fields, i.e., on triangular cells with barycentric interpolation, the index
can be efficiently computed by accumulating the angle changes of the velocity vector
along the three triangle edges [125], which can be used to efficiently test, whether
a critical point exists inside the triangle. Scheuermann and Hagen [105] used this
approach to check for critical points in neighboring triangles that may disappear after
a diagonal flip.
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Fig. 4 Along open flowboundaries, the direction of in-flow and out-flowmay changewhenwalking
along the boundary. These so-called boundary switch points are seeds of streamlines that are either
in-bound (enter the domain) or out-bound (leave the domain)

Fig. 5 Examples of attachment and detachment points on closed boundaries

2.1.3 Boundary Switch Points

In case of openflowboundaries, i.e., if thefluidflowcan enter or exit through adomain
boundary, boundary switch points may exist [73]. When traveling along the domain
boundary of a 2D flow, we either observe in-flow or out-flow, and the behavior may
switch at certain locations. In practice, these locations can be determined as points at
which the flow component that is normal to the boundary is zero and the flow vector
is parallel to the domain boundary. Depending on whether the streamline that passes
through the boundary switch point is staying in the domain or is always outside the
domain,we refer to the boundary switch point as in-bound or out-bound, respectively.
The type can be inferred from the direction in which the acceleration is pointing. For
in-bound boundary switches, the acceleration points into the domain and for out-
bound boundary switches it points outwards. An example for both cases is shown in
Fig. 4. A topology-based flow visualization often views the entire domain. However,
engineers might only want to study a region of interest, for example when the data
becomes too large. To this end, Scheuermann et al. [106] found the structural changes
of the streamlines in the region of interest by performing a topological analysis of
the boundary.
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Fig. 6 Separatrices originate from the aforementioned topological elements

2.1.4 Attachment and Detachment Points

When a flow impinges directly on a wall it is forced to split left and right. The
splitting point on the wall is called an attachment point [55], since in theory a single
particle would get stuck on that location, whereas all other particles would slide left
or right along the boundary. If the flow direction is reversed, this location is called a
detachment point. See Fig. 5 for an example of both flow configurations. Both types
of point are found in the same way. They are roots in the flow component that is
tangential to the wall. Whenever a no-slip boundary condition is used, i.e., if the
velocity on the wall is zero, the root finding test is taken an epsilon away from the
boundary.

2.1.5 Separatrices

The above subsections introduced distinguished points in the domain that are of topo-
logical relevance. All the above points are connected by streamlines, which are called
separatrices. At saddle critical points, separatrices emanate in direction of the eigen-
vectors. To numerically calculate them, the seed point is taken an epsilon away from
the critical point, x0 ± ε ci , in direction of the eigenvectors ci , and the streamlines
are traced in forward or backward direction, depending on the sign of the eigen-
value λi . For first-order critical points, four separatrices are connected to a saddle.
In addition, we obtain two separatrices for in-bound boundary switch points and one
separatrix for each attachment or detachment point. Figure6 illustrates the separatri-
ces that grow from saddle points, in-bound boundary switch points and attachment
or detachment points. The net of separatrices spans the topological skeleton, which
contains cells that are bounded by the separatrices. Each of the cells has the property
that the origin and destination, i.e., the points reached in the limit by either forward or
backward integration, are the same for all seed points within a cell. The topological
skeleton was illustrated earlier in Fig. 1.
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Fig. 7 In 2D flows, isolated closed streamlines either act as sink or source on the surrounding
vector field

2.1.6 Isolated Closed Streamlines

The last remaining topological element are closed streamlines, which are streamlines
that connect to themselves. These structures are also known as periodic orbits. Similar
to critical points, closed streamlines can be isolated or not. Isolated closed streamlines
are either found by locating fixed points of the Poincaré map [142] by intersecting
forward and backward integrated stream surfaces in space-time [121] or by Morse
decomposition [20]. Due to the Poincaré index theorem, every 2D closed streamline
contains at least one sink, source or center critical point, which can be used to
guide the search for closed streamlines. In 2D flows, isolated closed streamlines are
either acting as sink or source on the surrounding flow, as illustrated in Fig. 7, which
means that they are either attracting or repelling. They can therefore not exist in
divergence-free flows. In a divergence-free flow, we can find plenty of non-isolated
closed streamlines.

2.2 Three-Dimensional Flows

The topological skeleton of steady 3D vector fields contains several more types of
elements. The concepts, however, are very similar to the 2D case. Formally, we are
given a three-dimensional steady vector field v(x) : R3 → R

3:

v(x) =
⎛
⎝u(x, y, z)

v(x, y, z)
w(x, y, z)

⎞
⎠ (10)
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with the spatial derivatives

∂v(x)

∂x
= ∇v(x) = J(x) =

⎛
⎜⎝

∂u(x,y,z)
∂x

∂u(x,y,z)
∂y

∂u(x,y,z)
∂z

∂v(x,y,z)
∂x

∂v(x,y,z)
∂y

∂v(x,y,z)
∂z

∂w(x,y,z)
∂x

∂w(x,y,z)
∂y

∂w(x,y,z)
∂z

⎞
⎟⎠ (11)

2.2.1 Critical Points

As in the 2D case, we call locations x0 at which the flow vanishes critical points of
v(x), i.e., v(x0) = 0. As before, a first-order classification is done by an eigenanal-
ysis of the Jacobian J(x) = ∇v(x). Let λi be the eigenvalues corresponding to the
eigenvectors ci , i.e., J(x) · ci = λi · ci for i ∈ {1, 2, 3}. We distinguish the following
types of first-order critical points based on the real-part of the eigenvalues:

source: 0 < Re(λ1) ≤ Re(λ2) ≤ Re(λ3) (12)

repelling saddle: Re(λ1) < 0 < Re(λ2) ≤ Re(λ3) (13)

attracting saddle: Re(λ1) ≤ Re(λ2) < 0 < Re(λ3) (14)

sink: Re(λ1) ≤ Re(λ2) ≤ Re(λ3) < 0 (15)

Figure8 illustrates the different types. Note that there are two types of saddles in 3D,
which are categorized based on their dominant behavior into attracting or repelling
saddles. Each of the four cases above can be further subdivided by considering the
imaginary parts of the eigenvalues:

Focus: Im(λ1) = 0 and Im(λ2) = −Im(λ3) �= 0 (16)

Node: Im(λ1) = Im(λ2) = Im(λ3) = 0 (17)

Without loss of generality we assumed λ1 to be real-valued eigenvalue in the focus
classification. Note that either none or two eigenvalues will have imaginary parts,
since complex eigenvalues always appear in pairs of complex-conjugates. In case of
complex eigenvalues, the rotation occurs in a plane, which is spanned by the real and
imaginary parts of the corresponding complex-conjugate eigenvectors. This plane is
also referred to as the swirling plane.

2.2.2 Boundary Switch Curves

In 3D domains, the boundary is represented by 2D surfaces. On these surfaces, the
flow either enters or exits the domain. A line that separates these two behaviors is
called a boundary switch curve [135]. It consists of all location x at which v(x) is
parallel to the tangent plane of the domain boundary. Figure9 shows the possible
configurations.
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Fig. 8 Types of critical points in 3D steady vector fields

As we travel along a boundary switch curve, we can observe the behavior of
streamlines passing through. Line sectors along which a passing streamline remains
in the domain are called in-bound sectors. Equivalently, these are points at which the
acceleration a = Jv points into the domain. Conversely, if the streamline remains
outside of the domain, the point is part of an out-bound sector. Here, the acceleration
a = Jv points out of the domain. Locations at which the behavior switches from in-
bound to out-bound are called in-out points. In piecewise bilinear vector fields, i.e.,
if the vector field is given on a regular grid and is interpolated bilinearly, boundary
switch curves are either straight line segments on the boundaries of the piecewise
linear fields, or they are hyperbolas inside of the piecewise bilinear fields. Figure9d
gives an example.
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Fig. 9 On open flow boundaries, there are curves that separate regions of in-flow and out-flow.
Segments of the curves are classified based on the behavior of streamlines seeded from them. Curve
points at which the behavior switches are called in-out points (green)

2.2.3 Attachment and Detachment Points

Similar to the 2D flow, attachment and detachment points occur on boundaries and
obstacles. In the analysis of fluid flows, we are not only interested in the particular
points, but also on the behavior of nearby particles. For instance, the attaching or
detaching lines might be swirling and have more or less temporally-coherent behav-
ior. Wiebel et al. [140] detected vortices that detach from a boundary by tracking
critical points in the wall shear stress vector field and continuously releasing parti-
cles from the critical points, which assembles so-called generalized streaklines that
show the swirling behavior. Nsonga et al. [80] developed an algorithm to extract the
regions around attachment and detachment points, which are referred to as splats
and antisplats. In the analysis of meteorological flows around mountains, scientists
are interested in a characteristic number that distinguises whether a stratified air
flow goes over or around a mountain. To decide this, meteorologists use the Froude
number [54, 74], which was adapted from naval architecture.

2.2.4 Separatrices

In Sect. 2.2.1, we have seen that there are two types of saddles in 3D steady vector
fields: repelling saddles (two positive real parts) and attracting saddles (two negative
real parts). Starting an epsilon neighborhood away from the critical point, separatrices
grow out in the direction of the eigenvectors. Two of the three eigenvalues have
equal sign. Their corresponding eigenvectors span a surface from which a separating
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Fig. 10 Separating surfaces growing out from an attracting and a repelling saddle. The remaining
eigenvector direction points in the direction of a virtual separatrix

Fig. 11 Forward and backward-integrated separating surfaces can be intersected, giving saddle
connectors [120]. Here, the saddles (left), their separatring surfaces (middle) and the intersection
(right) are shown

surface is growing, as illustrated in Fig. 10. A stream surface can be thought of as
the union of infinitely many streamlines that were seeded along a seeding curve.
In our case, the seeding curve lies in the plane spanned by the eigenvectors. We
refer to Schneider et al. [109] for a stream surface extraction algorithm that adapts
the refinement to the presence of critical points. Alternatively, Wiebel et al. [139]
investigated the extraction of separatrices using suitable cross sections of the flow.
The remaining eigenvalue with opposite sign emanates a streamline in direction
of the eigenvector, which is referred to as virtual separatrix [1], as it does not truly
separate space. In addition, separating surfaces grow from in-bound boundary switch
curves. Aside from the pure geometric extraction of separating surfaces, illustrative
techniques have been investigated [14] to produce informative surface visualizations
that were inspired by the early work of Dallmann [23].
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Fig. 12 Boundary switch connectors arisewhen separating surfaces of saddles and boundary switch
curves are intersected [135]. Here, the different configurations are shown

2.2.5 Saddle Connectors and Boundary Switch Connectors

The visualization of separating surfaces becomes cluttered very quickly, since the
separating surfaces may occlude each other on the screen. The picture can be simpli-
fied considerably by intersecting forward-integrated and backward-integrated sepa-
rating surfaces, as shown in Fig. 11. The intersecting curve is called a saddle con-
nector [120], which is a single streamline that connects the two saddles. Saddle
connectors are found by intersecting the separating surfaces of saddles and also by
intersecting the separating surfaces growing from boundary switch curves. The lat-
ter gives rise to boundary switch connectors [135], as shown in Fig. 12. Boundary
switch connectors arise from connection with saddles, from connection with other
boundary switch curves or even by self-connection to themselves.

2.2.6 Isolated Closed Streamlines

Isolated closed streamlines are theoretically well-understood and studied for general
dynamical systems [143]. In 3D, closed streamlines can act as sink, source, center
or saddle [63]. The notion of isolated closed streamlines that locally act as centers
or saddles leads us to the feature curves that are described next.

All the above elements are considered topological elements, and are therefore part
of the topological skeleton. In the following, we introduce two feature curves that
are closely related to topology as they also order the flow.

2.2.7 Vortex Corelines

The first feature curve are vortex corelines. These are segments of streamlines that
other streamlines rotate around, see Fig. 13a. Globus et al. [34] identified them as
virtual separatrices growing out from focus saddle points, by tracing them in the
direction of the eigenvector with corresponding real eigenvalue. For steady vector
fields, Sujudi and Haimes [115] proposed the reduced velocity criterion:

v − (vTe)e = 0 (18)
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Fig. 13 In 3D flows, two types of feature curves are often of interest: vortex corelines (green) and
bifurcation lines (yellow)

This criterion identifies locations at which the flow v flows in the direction of the
eigenvector ewith corresponding real eigenvalue. Since the Jacobian is also requested
to have complex eigenvalues, the criterion makes sure that the projection of the flow
vector onto the swirling plane gives zero. The criterion was applied in practice in
various situations [31, 65]. Peikert and Roth [85] reformulated this criterion into the
parallel vectors form:

v ‖ Jv ⇔ v × Jv = 0 (19)

with the condition that two eigenvalues ofJ are complex.Twovector fields are parallel
if their cross product is zero, which turns the extraction into a component-wise root-
finding problem. We refer to Peikert and Roth for more details on the numerical
extraction of parallel vectors solutions [85]. As shown by Roth and Peikert [97], this
criterion assumes that the curvature of the resulting coreline is zero. The curvature of
a continuous 3D curve is calculated using curve tangent ẋ(t) = dx(t)

dt and acceleration

ẍ(t) = d2x(t)
dt2 :

κ(x(t)) = ẋ(t) × ẍ(t)

‖ẋ(t)‖3 (20)

Since streamlines are tangent curves of the vector field v(x), we have ẋ(t) = v(x(t))
and ẍ(t) = J(x(t)) · v(x(t)). Thus, with Eq. (19), the curvature in Eq. (20) evaluates
to zero.

In generalization, Roth and Peikert [97] introduced a criterion for bent vortex
corelines as v ‖ (∇a)v, which assumes that corelines have zero torsion. We refer
to Günther and Theisel [42] for an overview of vortex extraction methods, includ-
ing density-based methods [138], extremum lines [102, 103], and integration-based
methods [7].
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2.2.8 Bifurcation Lines

Bifurcation lines differ from vortex corelines in one aspect: instead of complex eigen-
values, we need to have saddle-like behavior in the plane that is spanned by the two
eigenvectors that are not parallel to the flow [87, 96]. In consequence, all eigenval-
ues are real-valued. Bifurcation lines of a 3D steady flow are illustrated in Fig. 13b.
In the fluid dynamics literature, these feature curves are also known as hyperbolic
trajectories [47]. We discuss the recent definitions and extraction algorithms for
time-dependent flows later.

2.2.9 Invariant Manifolds

In an n-dimensional vector field v(x) : Rn → R
n sets of locations may exist that

particleswill never leave during advection. Formally,we can say that any point x0 ∈ S
of such an invariant set S ⊂ R

n remains in S, i.e., x0 + ∫ τ

0 v(x(t)) dt ∈ S for any τ .
If the set S is a manifold in the domain, the structure is called an invariant manifold.
Invariantmanifolds are an essential building block of the steady vector field topology.
Every critical point, every closed orbit and every separatrix is an invariant manifold.
Strictly speaking, every trajectory is an invariant manifold, too, which is why being
an invariant manifold is only a necessary condition for a topological element. Under
this definition, bifurcation lines and vortex corelines are not topological elements,
since particles can flow out of a vortex coreline or a bifurcation line, especially when
a specific criterion has to be fulfilled, such as the presence of swirling behavior or
a sectional separation. For this reason, vortex corelines and bifurcation lines are
usually considered to be feature curves.

2.3 Remarks

As the name suggests, differential vector field topology requires that the vector field
is differentiable. In practice, however, a different vector field discretization, noise in
the data or numerical integration errors during streamline integration will influence
the result. To address these issues, alternatives have been explored, including discrete
vector field topology [21, 22] and combinatorial vector field topology [26, 93, 94].
In this overview, we concentrated on the continuous approaches, i.e., differential
vector field topology. However, we encourage the interested reader to explore the
discrete and combinatorial approaches as well. All methods in the previous sections
were designed for steady vector fields. In the following, we cover the topology of
time-dependent flows.
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3 Unsteady Flows

The previous section assumed that the vector field is not changing over time. In
practice, however, vector fields are often time-dependent. As shown by Theisel et al.
[122], the topology of time-dependent vector fields can be analyzed from two dif-
ferent angles: by studying streamlines or by studying pathlines. To start with, we
look at the difference between a streamline and a pathline. For this, let v(x, y, t) be
a time-dependent vector field:

v(x, y, t) =
(
u(x, y, t)
v(x, y, t)

)
(21)

When freezing the vector field in time, i.e., if we only consider the trajectory of a
particle in one single time slice at time t0, we obtain a streamline x(τ ):

streamline: dx(τ )

dτ
= v(x(τ ), t0) x(0) = x0 (22)

where x0 is the seed point. Such a trajectorymarks the instantaneous path of a particle,
which is more relevant for the study of magnetic field lines. In fluid flow analysis, we
are concerned with the trajectory of a particle over a continuously advancing time:

pathline: dx(t)

dt
= v(x(t), t) x(t0) = x0 (23)

Here, x0 and t0 are the seed position and seed time, respectively. The latter ODE
is not autonomous, since it depends on time t , which is not a state variable of the
dynamical system. In other words, the numerical particle integrator needs additional
information to sample the correct time slice. However, we can turn the definition
of the tangent curves into autonomous first-order ODEs by making time an explicit
state variable. To do so, we lift the vector field one dimension up for which we have
two options:

s(x, y, t) =
⎛
⎝u(x, y, t)

v(x, y, t)
0

⎞
⎠ p(x, y, t) =

⎛
⎝u(x, y, t)

v(x, y, t)
1

⎞
⎠ (24)

The vector field s is called streamline vector field, since its tangent curves are stream-
lines of v(x, t). Since the last component of s is zero, the time will not change during
particle integration, i.e., we obtain streamlines. On the other hand, the vector field p is
called the pathline vector field, since its tangent curves are pathlines of v(x, t). Here,
the last components is one, which causes the time to flow forward at the correct step
size, as we numerically integrate the trajectory. On a side note, other characteristic
curves such as streaklines and timelines can similarly be expressed as tangent curves
of lifted vector fields [132, 134].
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Fig. 14 When critical points change their type, a Hopf bifurcation is present. Here, an attracting
focus (blue) turns into a repelling focus (red) by transitioning through a center (green)

Note that neither s not p have isolated critical points. The vector field s contains
critical lines, i.e., paths of critical points in space-time, and vector field p contains
no critical points at all, since the last component is always unequal to zero.

3.1 Streamline-Oriented Topology

Streamline-oriented topology is concernedwith the changes in the asymptotic behav-
ior of streamlines, when the vector field changes over time. Essentially, this means
that we observe how the topological skeleton is evolving. In the following, we discuss
the possible events in unsteady 2D vector fields. We refer to Tricoche et al. [126] and
Theisel et al. [122] for more details. The last section will explain the differences for
3D unsteady vector fields.

3.1.1 Fold Bifurcations

Fold bifurcations occur when two critical points collapse or appear. This will always
happen in pairs of critical points. Governed by the Poincaré index theorem, the only
possibility is for saddles (index −1) to merge with either a sink, source or center
(index +1). Conversely, two critical points will always appear together in pairs. In
2D flows, it is never possible for sinks to collapse with sources. Fold bifurcations
can be found as critical points in the space-time domain of the vector field:

⎛
⎝ u(x, y, z)

v(x, y, z)
det (J(x, y, z))

⎞
⎠ = 0 (25)

The last component of this vector field contains the determinant of the Jacobian. In
the event of two critical points merging, the two critical points are no longer isolated,
due to the presence of the other point, i.e., the determinant briefly vanishes to zero. An
example of a fold bifurcation is shown later in a space-time visualization in Fig. 16.
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Fig. 15 When separatrices connect saddle points, we obtain heteroclinic (two different saddles)
or homoclinic (same saddle) saddle connectors. Homoclinic saddle connectors occur when the
enclosed critical point undergoes a Hopf bifurcation. The illustrations above show three time steps
of time-dependent vector fields that contain such bifurcations

3.1.2 Hopf Bifurcation

A Hopf bifurcation is the change in the type of a critical point. Thereby, a repelling
focus may turn into an attracting focus via briefly transitioning through a center, as
illustrated in Fig. 14. Alternatively, an attracting focus may turn into a repelling focus
via a center. In the space-time domain, these locations are found as critical points of
the vector field:

⎛
⎝ u(x, y, z)

v(x, y, z)
ux (x, y, t) + vy(x, y, t)

⎞
⎠ = 0 (26)

where the last component is the divergence of the flow, which is zero for the center
configuration that is briefly visited when transitioning from an attracting focus to a
repelling focus or vice versa.
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Fig. 16 Space-time visualization of a Hopf bifurcation (critical point changes type) and a fold
bifurcation (two critical points merge). The paths of critical points are color-coded based on the
type of the critical point (attracting is blue, repelling is red, saddle is yellow). The vertical axis of
the 3D domain represents the time axis

3.1.3 Saddle Connection

Usually, the probability for a streamline to directly enter a saddle is zero. However,
whenever two saddles slide past each other, there is a brief moment in time, when
the separatrices of the two saddles meet, as illustrated in Fig. 15a. This brief connec-
tion is called a heteroclinic saddle connection. There is also a special case called a
homoclinic saddle connection, which is sometimes also referred to as periodic blue
sky bifurcation. In this case, the separatrix of a saddle connects back to the same
saddle, as shown in Fig. 15b. This usually happens if the area that is enclosed by the
self-connecting separatrix contains a critical point that undergoes a Hopf bifurca-
tion. All types of saddle connections are momentary events, which can be found by
intersecting the forward and backward integrated separating surfaces, as described
by Theisel et al. [120].

3.1.4 Cyclic Fold Bifurcations

Previously,wehave seen another typeof topological structure: isolated closed stream-
lines. Two isolated closed streamlines may collapse onto each other, letting both of
them disappear. This event is referred to as a cyclic fold bifurcation. Conversely,
the isolated closed streamlines may be created together. Both kinds of events are
either found by tracking closed streamlines through adjacent time slices [126] or by
searching for adjacent curves in space-time [122].

3.1.5 Space-Time Visualizations

The changes of the topological skeleton in 2D time-dependent flows are best shown in
2D space-time by mapping time to the third dimension. The paths of critical points
appear as curves. Hopf bifurcations are points on the curves, as shown in Fig. 16
and Fold bifurcations are the junctions at which curves meet. Starting from saddles,
separating surfaces can be grown. We refer to Theisel et al. [122] for examples.
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3.1.6 Streamline-Oriented Topology in 3D

Most of the previous bifurcation events carry over to the 3Dcase. Fold bifurcations are
similar to the 2D case.Hopf bifurcations include transitions from sources to attracting
saddles (and vice versa), or from sinks to repelling saddles (and vice versa). Saddle
connections connect a single separatrix of one saddle to the separating surface of
another saddle. Saddle connectors and boundary switch connectors can also collapse
and disappear, which is a called a connector fold bifurcation. We refer the reader to
the work of Weinkauf [131] for a more elaborate explanation of streamline-oriented
topology in 3D.

3.2 Pathline-Oriented Topology

In the previous section, we visualized how streamlines are changing when a vector
field is evolving over time. The observation of streamlines, however, is not partic-
ularly meaningful, when we want to assess the behavior of particles over time. In
this case, we are rather interested in the observation of pathlines. There is, however,
an inherent problem. While the streamline-oriented topology could trace particles
in the time slice for an infinite amount of time, enabling an asymptotic observation
of the flow, a pathline-oriented topology, is limited in the integration duration by
the temporal domain of the data set. Unless the flow is periodic, we cannot study
asymptotic behavior. In fact, not even critical points exist in the lifted vector field
p in Eq. (24), since the last component is always non-zero. In the absence of an
asymptotic picture of the flow, we will fall back to a finite-time description of the
behavior, which requires a formal definition of flow maps.

3.2.1 Flow Maps

In a time-dependent vector field v(x, t), we use the flow map φτ
t0(x0), which maps a

particle that was seeded at position x0 and at time t0 to the location that it reaches
after an integration in v(x, t) for a given duration τ :

φτ
t0(x0) = x0 +

∫ t0+τ

t0

v(x(t), t) dt, with x(t0) = x0 (27)

The flow map has a number of useful properties, such as:
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Fig. 17 Overview of the different types of Lagrangian coherent structures (LCS) [49]. a shows
vortices in the wake of Heard Island. The line structures that separate the vortices are the hyperbolic
LCS. The image was released by NASA and was captured with the MODIS instrument aboard their
Aqua satellite. b depicts ocean eddies, which carry plankton and pollutants across the ocean. These
flow structures can persist for weeks. The image was released by the National Science Foundation
and is credited to NASA. c shows a jet stream, which is a fast moving and narrow air current. In
this image, it carries cirrus clouds vertically across the image. The cloud band has a distinct pattern
that is created by the air current. This image is in public domain

φ0
t (x) = x (28)

dφτ
t (x)

dτ
= v(φτ

t (x), t0 + τ) (29)

φτ1+τ2
t0 (x) = φ

τ2
t0+τ1

(φτ1
t0 (x)) (30)

φ−τ
t+τ (φ

τ
t (x)) = x (31)

Equation (28) expresses the identity flow map, where a particle is traced for duration
τ = 0, i.e., it stays at its seed point. Equation (29) states that the derivative of the
flow map with respect to the integration duration is exactly the flow direction at the
end point of the flow map, which is fulfilled, since the flow map follows the tra-
jectory of a pathline. Equation (30) shows that two flow maps can be concatenated.
In practice, the flow maps are discretized, which leads to discretization errors upon
concatenation [19]. And finally, Eq. (31) means that the flow map is invertible. Flow
maps are an essential building block of many feature definitions, including recircu-
lations [141] and Lagrangian coherent structures (LCS) [49], which are described in
the following.

3.2.2 Lagrangian Coherent Structures

Based on the flowmap of the previous section, we can now express particle behavior
that unfolds during a certain finite time range. Similar to separatrices in the previous
section, we are interested in sets of particles that order the flow into regions of
coherent behavior. This leads us to the definition of material lines. There are three
types of material lines, which have been summarized recently by Haller [49]. We
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Fig. 18 Hyperbolic LCS are frequently approximated by the finite-time Lyapunov exponent
(FTLE). Forward FTLE approximates repelling structures and backward FTLE approximates
attracting structures. Left, we see the fluid flow past a heated cylinder and right, we see a close-up
of a cumulus cloud convection simulation

refer to Onu et al. [82] for a discussion of various LCS extraction techniques. An
overview of the three types is given in Fig. 17.

Hyperbolic LCS are material lines that attract or repel locally the strongest.
These lines act as transport barriers that particles do not cross. The lines are either
attracting nearby particles or they are repelling them away. A common measure to
approximate hyperbolic LCS is through the finite-time Lyapunov exponent (FTLE).
FTLE linearly approximates the expansion of a virtual sphere by measuring the
maximal separation of nearby-released particles. The expansion rate is captured by
the right-hand Cauchy-Green tensor ∇φT∇φ, where φ is the aforementioned flow
map. With τ being the integration duration, FTLE is defined as, c.f. Shadden [112]:

FTLE = 1

|τ | ln
√

λmax(∇φT∇φ) (32)

The flow map gradient is typically calculated by finite differences [52]. Alterna-
tively, Kasten et al. [62] proposed localized FTLE, which linearizes the flow at each
step to measure and concatenate the rate of expansion. To obtain hyperbolic LCS at
subgrid accuracy and to avoid the numerical computation of flow map derivatives,
Kuhn et al. [69] tracked timeline cells over time, which are adaptively refined when-
ever the timeline segments intersect. A benchmark comparison of multiple FTLE
extraction algorithms was performed by Kuhn et al. [70]. To reduce the number of
redundant particle integrations and to thereby improve performance, Brunton and
Rowley [15] concatenated flow maps. Garth et al. [30] accelerated the computation
and later limited the visualization of FTLE to boundaries in the flow to reduce clut-
ter [33]. Sadlo et al. [98] and Barakat et al. [9] adaptively refined the flow maps.
Barakat et al. [8] developed an interactive computation and rendering framework
for unsteady 3D flows, in which the FTLE values are stored in a view-dependent
and adaptively refined sparse grid. To avoid discretization artifacts entirely, Monte
Carlo methods have been used [5, 38], which invoke exact FTLE calculations at each
volume sample of a Monte Carlo renderer. Compared to the previous methods, this
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approach is far from interactive speed, but it is able to generate a ground truth image
that can serve as baseline. Examples of FTLE visualizations are shown in Fig. 18.
Haller introduced hyperbolic trajectories [47], which are trajectories that experience
in one spatial direction repelling behavior and in the other attracting behavior in the
locally strongest way. Based on this concept, Sadlo andWeiskopf [99] defined time-
dependent saddles as the intersection of forward and backward FTLE ridges, which
was later extended by Üffinger et al. [129] to 3D. This approach requires the compu-
tation of the finite-time Lyapunov exponent in the entire domain in order to find the
ridge intersections, which is an expensive computation. For this reason,Hofmann and
Sadlo [59] developed a refinement scheme that is applied to an initial guess that was
computed locally [6, 78]. Thereby, the extraction time of distinguished hyperbolic
trajectories [61], i.e., hyperbolic LCS, is greatly reduced. Bujack et al. [16] recently
discussed different options to calculate the separating and repelling behavior in finite
time windows. The above methods were developed for continuous vector fields. For
scenarios, in which the velocity field is represented in a particle-based manner, Agra-
novsky et al. [2] and Shi et al. [113] developed FTLE extraction algorithms from
particle data.

Elliptic LCS are lines that bound regions that rotate coherently [50] or do not
stretchmuch during advection. The latter is expressedmore formally as curves across
which the averaged material stretching rate shows no leading-order variability [110].
In incompressible 2D flows, these lines preserve arc length and surface area. These
structures are tightly related to vortex identification [42], in particular to vortex
boundaries. For instance, Haller [49] selects the outermost nested elliptic LCS as
boundary of a coherent vortex. More recently, Katsanoulis et al. [64] characterized
elliptic LCS as lines that inhibit the diffusion of vorticity. For a summary of more
vortex identification methods we refer to Günther and Theisel [42].

Parabolic LCS are transport barriers along which the material shearing is min-
imized, which corresponds to the cores of jets. Since these structures are embed-
ded inside non-stretching structures, their stretching is also low. Farazmand and
Haller [24] defined them as minimally hyperbolic, structurally stable chains of ten-
sorlines that connect singularities of the Cauchy–Green strain tensor field. In the
visualization community, jets in atmospheric flows have been identified as lines with
maximal velocity magnitude [66] in a local coordinate frame that is aligned with the
flow direction.

3.2.3 Coherent Sets and Almost-Invariant Sets

Dynamical systems are classified into autonomous or non-autonomous systems based
on whether they depend on an independent variable, such as time. In autonomous
systems, regions of the domain that resist mixing over a finite-time duration are
referred to as almost-invariant sets. In time-dependent systems, these regions are
known as coherent sets. Coherent sets can be seen as counterpart to LCS, since
LCS divide the domain into regions of coherent transport behavior. Froyland and
Padberg-Gehle [27] recently introduced tracking algorithms for those regions.
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3.2.4 Local Approaches

All previous methods define the vector field topology of time-dependent flows by
means of particle behavior over a finite time window. A number of methods inves-
tigated the reduction of the time-dependent flow to a steady flow by estimating a
transport component. Weinkauf et al. [133] demonstrated that a constant flow vector
can be subtracted from a von-Kármán vortex street to approximately eliminate a
linear transport. This works well in most parts of the domain, aside from the region
right behind the obstacle, in which the vortices accelerate. Fuchs et al. [28] located
points at which the acceleration vanishes and removed the velocity at those locations.
Similarly, Bujack et al. [17] used the determinant of the Jacobian to pin down the flow
features. Bhatia et al. [12] removed a harmonic flow component using a Helmholtz-
Hodge decomposition (HHD). The HHD splits the flow into a divergence-free and
an irrotational part. In case the domain is bounded or not simply-connected, a har-
monic component can appear, which is both divergence-free and irrotational. Bhatia
et al. [12] proposed to model the ambient motion of the flow features by the har-
monic component. Following up on research on reference frame optimization [37,
46] for vortex extraction, Baeza Rojo and Günther [6] observed topological elements
in a spatially-varying reference frame, in which the flow becomes steady. The latter
connects to a formal property that is highly relevant for flow feature extraction in
time-dependent flow, i.e., reference frame invariance. Section4 explains this concept
in more detail.

3.2.5 Desirable Properties

Recently, Bujack et al. [18] collected the most commonly-used mathematical prop-
erties that an approach for a time-dependent vector field topology should enjoy.
Reciting Bujack et al., these properties are:

Coincidence With the Steady Flow Topology.Amethod thatwas designed for time-
dependent flow should contain the standard steady vector field topology as special
case, when it is applied to a steady flow [90].

Induction of a Partition of the Domain.The unsteady counterpart to the topological
skeleton should divide the domain into regions of coherent temporal behavior. This
means, there are material boundaries that order the flow [90].

Lagrangian Invariance. A common measure for the physical meaningfulness of a
time-dependent topology is the requirement that all topological structures are invari-
ant manifolds of the flow [28, 49]. This means that the path of a time-dependent
critical point becomes a pathline, and that separatrices become material lines or
surfaces that are advected with the flow.

Reference Frame Invariance. The result should be the same, independent of the
choice of the reference frame [45]. In the following section, we introduce reference
frame transformations and the classes of invariance that are commonly desired.
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Bujack et al. [18] reviewed the mathematical properties of many of the existing
extraction algorithms, using carefully-crafted benchmarks and proofs. To this day,
there is no algorithm that fulfills all desirable properties.

4 Concepts

In the following, we introduce a number of concepts that are important in the ongoing
research on a time-dependent vector field topology.

4.1 Reference Frame Transformation

A desirable property for any feature definition is its invariance to the motion of
the observer. First of all, this requires a formal definition of reference frame motion.
Recently, Baeza Rojo andGünther [6] used displacement transformations to describe
the motion of the observer, which originates from continuummechanics [111]. They
used a displacement vector field F(x, t), which moves a space-time point (x, t) to its
destination (x∗, t) via

x∗ = x + F(x, t) (33)

Thereby, F is an invertible transformation that maps between two differential spaces,
i.e., F is a diffeomorphism. By differentiation with respect to time, we see that a
given vector field v(x, t) is transformed to v∗(x∗, t) via:

v∗(x∗, t) = [I + ∇F(x, t)] · v(x, t) + Ft (x, t) (34)

It is interesting to note that other existing classes of reference frame transforma-
tions, such as Galilean transformations [133] (equal-speed translations), objective
transformations [37, 48, 128] (smooth rotation and translation) and affine transfor-
mations [41] are all included as special cases.

4.2 Reference Frame Invariance

In flow visualization, reference frame invariance has first been studied in the context
of flow feature extraction, namely for the detection of vortices.Whenever an observer
sees a vector-valued property, this vector will change with the movement of the
observer. An example of this reference frame dependence is shown in Fig. 19. Here,
three different observers look at the same flow, each seeing different flow patterns.
This is because the motion of the observer and the flow feature add up, as illustrated
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Fig. 19 Three observers see the same vector field from different reference frames. Here, a line
integral convolution (time slice) and pathlines (black) are shown for three different reference frame
movements: standing still, linearly translating and swinging along a sine curve–unfortunately, all
give different results. Only the observer in the middle sees vortex structure. However, moving the
observer a little bit faster of slower, would show the flow structures in a different location. Illustration
from [37]

Fig. 20 The observed vector field is the combination of the feature (blue) and its motion of the
feature (red). In a, the flow is observed from a steady frame of reference. We see a closed streamline
(blue). In b, the observer is moving to the right (red arrow), which creates an apparent opposite
motion of the vortex.What the observer sees is the superposition of the red and blue vector, resulting
in the purple vector. Note that the purple vectors no longer point along a closed streamline (right-
most image). If we can estimate the ambient motion (red), it can be removed to reveal the original
feature (blue)

in Fig. 20. Choosing the right reference, i.e., estimating the motion of the feature
correctly, is quite important for the successful characterization of a vortex [77, 95].
Feature definitions can be classified based on the class of invariance they possess.
The two most common reference frame invariances are the following.
Galilean invariance is the invariance of a measure under equal-speed translations
of the reference frame of the form:

x∗ = x + c0 + t c1, t∗ = t − a (35)
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Fig. 21 Example of a reference frame decomposition using the displacement optimization [6]. A
given input vector field v(x, t) is split into a flow in the steady reference frame w(x, t) and the
ambient motion f(x, t)

where c0 and c1 are constant vectors and a is a constant. Everymeasure that is derived
from the Jacobian J of the vector field is Galilean invariant. There are only few
measures that are Galilean invariant and include temporal derivatives, for instance
the acceleration a = Jv + vt [101] and the subtraction of the feature flow field (v −
f) [119]. Due to the relativity of the observer and the feature we want to track,
all Galilean invariant feature definitions are able to identify features that perform
equal-speed translations. If a vortex performs any other type of movement, Galilean
invariant methods will not produce the correct solution.

Objectivity refers to the invariance of a measure under a smooth rotation and trans-
lation of the reference frame, cf. [127]:

x∗ = Q(t) x + c(t) , t∗ = t − a (36)

whereQ ∈ SO(3) is a rotationmatrix, c is a translation vector, and a is a constant.We
assume Q and c to be smooth functions of t . The most recent feature defintions aim
to be objective [37, 49, 50, 64]. Among the objective quantities are the divergence
∇ · v, the strain rate tensor S, and the flow map gradient ∇φτ

t0(x).

4.3 Topology in Steady Reference Frames

Recently, Baeza Rojo and Günther [6] optimized for steady reference frames by
describing the reference frame motion as inhomogeneous displacement transforma-
tion. Themotion of features in the steady reference frame is therebymodeled bymore
than just rotations and translations. The method thereby become invariant to even
more classes of motion than with objectivity. Given the optimal reference frame, the
flow v(x, t) is decomposed into:
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v(x, t)︸ ︷︷ ︸
inputfield

= w(x, t)︸ ︷︷ ︸
steadyframe

+ f(x, t)︸ ︷︷ ︸
ambientmotion

(37)

While they used the optimal frame w(x, t) to extract topological structures, the
remaining ambient flow f(x, t) can be used to track critical points over time. An
example is given in Fig. 21. The numerical extraction of the reference frame still
remains challenging and becomes harder the more degrees of freedoms are added.
The linear optimization is under-constrained, which requires a regularizer that in turn
places assumptions about the smoothness of the ambient motion and its derivatives.
In case, the feature moves with constant speed in a constant direction, i.e., Galilean
invariance is fulfilled, then f(x, t) = −J−1vt is the normalized feature flow field [35,
41, 119]. This means, the approach of Weinkauf et al. [133] appears as special case.
Reference frameoptimizations have previously been done for vortex extraction, using
local optimization [37, 41], global optimization [46] and deep learning [67].

4.4 High-Dimensional Flows

All sections above concentrated on 2D or 3D domains. Vector fields also arise in the
description of dynamical systems [76], namely when describing how an arbitrarily
high-dimensional state of a system is changing over time. This vector field is called
the phase flow, which depends on the current state of the dynamical system. Typical
fluid flows can be considered as first-order ODEs. Many processes not only depend
on the position of an object, but also on its velocity, which leads us to second-order
ODEs. Examples of such systems are oscillators, pendulums, n-body problems [10]
and the motion of finite-sized objects in fluids [86, 114, 116].

Similar to thefluidflowsabove, suchdynamical systemsalsocontain topologically-
relevant structures and features. An introduction to the topology of dynamical sys-
tems was given by Abraham and Shaw [1]. Hofmann et al. [57] extracted and visu-
alized all types of critical points in a four dimensional vector field. Depending on
the actual structure of the phase flow, the possible types of topological structures
may be limited. Inertial particles for instance, i.e., finite-sized in fluids, exhibit an
attraction by a globally attracting manifold [51, 79], which causes halve the eigen-
values of the phase flow’s Jacobian to be negative, i.e., sources cannot exist [36, 40].
This attracting manifold was visualized by Baeza Rojo et al. [4] for varying particle
sizes. Further, Günther et al. [40] visualized stable sets of inertial systems interac-
tively using multi-dimensional stacking. FTLE has been calculated by Garaboa-Paz
and Pérez-Muñuzuri [29] by measuring the expansion in full phase space, whereas
Sagrista et al. [100] visualized the separation in the subspaces as well, using multi-
dimensional stacking. Inertial vortex corelines have been extracted with the assump-
tion of Galilean invariance [39] and objectivity [43]. The latter requires the search
for parallel vectors in the high-dimensional space, for which Hofmann et al. [58]
introduced the dependent vectors operator. Recently, Bartolovic [10] introduced an
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optimization-based dimensionality reduction method for high-dimensional trajecto-
ries that preserves geometric and topological properties.

4.5 Uncertainty

As the computational resources become more capable, the computation of multiple
simulations with slightly different input conditions or parameters becomes more
affordable. This allows domain scientists to quantify the uncertainty of simulation
models or measurements, for instance in meteorological forecasting. These days,
uncertainty visualization is considered to be among the top challenges in scientific
visualization [13]. For uncertain vector field topology, integral curves andfixed points
have been generalized to define an uncertain vector field topology by integrating
particle density functions [83]. Petz et al. [88] used Monte Carlo sampling to extract
probabilistic local features such as critical points from Gaussian distributed vector
fields. Bhatia et al. [11] introduced edge maps to introduce a fuzzy topology that
performs a topological decomposition based on growing of streamwaves. Hummel
et al. [60] considered the variance among ensemble members to identify LCS that
exist in manymembers. Obermaier and Joy [81] categorized ensemble visualizations
into location-based methods that compare ensemble properties at a fixed location
and feature-based methods that first extract, match and compare features. Guo et
al. [44] usedMonte Carlo sampling to determine the probability for LCS in uncertain
vector fields. Uncertainty visualization remains a very active topic with plenty of
research on different frontiers, including the modeling of correlations [89, 91] and
the visualization of confidence [25, 84, 104, 144].

5 Outlook

While the topological elements of steady vector fields are fairly well understood,
there is still an ongoing discussion on the definition of a time-dependent vector field
topology. As recently shown by Bujack et al. [18], there is no approach yet that
holds up in all unsteady flow scenarios. Meanwhile, the continuum mechanics and
fluid dynamics community are pushing the frontiers of the Lagrangian flow analysis,
which is tightly related to the classical view of vector field topology. In fact, we
hope to see more synergies between the different research directions. Aside from
new theoretical contributions on the feature definitions, we can also expect to see
more work on uncertain data, since ensemble simulations and model variability are
of high interest in the application domains. The analysis of high-dimensional flows
and general dynamical systemswill benefit more from synergies with dimensionality
reduction research. As the data sizes are growing, global topology-based methods
will see more parallelization across multiple compute nodes within in-situ environ-
ments. While scalar field topology algorithms now become more available through
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open-source packages such as the Topology ToolKit (TTK) [123], a similar platform
for vector field topology is missing. We hope that such effort is taken soon. A gen-
eral availability increases the adaption in practice, which in turn reveals new research
challenges.
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Abstract This software paper gives an overview of the features supported by the
Topology ToolKit (TTK), which is an open-source library for topological data anal-
ysis (TDA). TTK implements, in a generic and efficient way, a substantial collection
of reference algorithms in TDA. Since its initial public release in 2017, both its user
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and developer bases have grown, resulting in a significant increase in the number of
supported features. In contrast to the original paper introducing TTK [40] (which
detailed the core algorithms and data structures of TTK), the purpose of this software
paper is to describe the list of features currently supported by TTK, ranging from
image segmentation tools to advanced topological analysis of high-dimensional data,
with concrete usage examples available on the TTK website [42].

1 Introduction

Topological data analysis (TDA) [10, 34, 38] is a vibrant field of study at the cross
roads between mathematics and computer science, which considers the structure of
complex data. In particular thanks to advanced concepts such as persistent homology
[10], TDA provides theories and algorithms for the multi-scale representation and
analysis of the structural features of interest present in the data. It has been shown to
be useful in a variety of fields, ranging from machine learning [7] to geometry pro-
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Fig. 1 Extraction of the
covalent and non-covalent
interactions in a molecular
system with TTK. Covalent
and hydrogen bonds are
captured by the blue
separatrices of the
Morse-Smale complex, and
steric effects (repulsive
forces induced by the carbon
cycles) are captured by
saddle -saddle connectors
(green)

cessing [49]. In scientific applications, TDA is particularly effective for the analysis
of large-scale data sets [16]. The Topology ToolKit (TTK) [40] is an open-source
library for TDA that has been released in 2017 under the permissive BSD license.
It features a substantial collection of generic and efficient implementations of ref-
erence TDA algorithms. TTK is mostly written in C++ (∼110k lines of code) to
offer the best possible performance. To date, 15 institutions have contributed code
to TTK, including 12 academic organizations (Arizona State University, CNRS,
Heidelberg University, INRIA, Linkoping University, Los Alamos National Labora-
tory, Sorbonne Universite, TU Kaiserslautern, University of Arizona, University of
Leeds, University of Utah, Zuse Institute Berlin) and 3 companies (Kitware, Total,
ShapeShift3D). Since its initial release, TTK’s website has collected more than 135k
page-views, frommore than 25k unique visitors, and its video tutorials have collected
more than 16k Youtube views. TTK is accessible to developers through several APIs:
C++, VTK/C++ or Python. For end users, TTK is directly accessible in the form of
a plugin for ParaView [1] and an anaconda package [45]. Data can be provided to
TTK in multiple forms: it can be sampled along 1D, 2D, or 3D regular grids (includ-
ing periodic grids), or 1D, 2D, or 3D meshes (simplicial complexes). It can also be
provided as point clouds of arbitrary dimension (Fig. 1).

The internal data structures and algorithms of TTK have already been presented
in its companion paper [40], its end-user features have not been formally presented,
other than in oral tutorials [12, 13, 15] or hackathons [28]. This software paper
fills this gap by describing the high-level features of TTK through a list of concrete
examples. Note that although the following examples will be discussed based on a
usage of TTK with ParaView, the entire discussion holds for all TTK’s APIs (C++,
VTK/C++, Python) as each TTK filter in the presented ParaView pipelines (green
box in the pipeline browser, top left of each screenshot) represents an individual
TTK object. We also note that ParaView state files can be automatically exported to
Python scripts. All the material necessary to reproduce the examples presented in
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Fig. 2 Persistence-driven analysis pipeline applied to vortex tracking in compu-
tational fluid dynamics. Once TTK and its data package are installed, from the
ttk-data/ directory, run the following command to reproduce this example: “paraview
states/BuiltInExample1.pvsm” (see [42] for further details)

this paper (data and ParaView state files) is available on the TTK website (section
Tutorials [42]). Readers are invited to run these examples (see the caption of each
figure) to further inspect interactively the content of each illustration.

2 Scalar Data

TTK supports the computation of a large number of topological abstractions for
scalar data. In the applications, each topological abstraction supported byTTK serves
a specific purpose. Critical points [5] extract points of interest. Merge/contour trees
and Reeb graphs [18–21] estimate skeletons and meaningfully segment the input
data along level sets. Persistence diagrams [10] visually represent the population of
points of interest (critical points) as well as their salience (topological persistence).
The Morse-Smale complex can be used to extract filament structures in data.

Typically, as illustrated in Fig. 2, to explore the data at multiple scales, the persis-
tence diagram [10] is first computed to identify the main topological features present
in the data and to discard the irrelevant features that correspond to noise. In par-
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ticular, long vertical bars in the diagram (Fig. 2, bottom right) denote topologically
salient features, while small bars near the diagonal correspond to spurious features.
The persistence curve (Fig. 2, top right) provides a visual tool for inspecting relevant
persistence thresholds, under which features should be interpreted as noise. In partic-
ular, these curves often exhibit in practice flat plateaus, which either separate features
from noise (at persistence 0.07 in Fig. 2), or which separate group of features of dif-
ferent scales. Once a proper persistence threshold has been identified by the user, to
reflect the corresponding noise removal in the original data, TTK’s support for topo-
logical simplification [29, 41] can be used. Then, any topological object mentioned
above (critical point, merge/contour tree, Reeb graph, Morse-Smale complex) com-
puted after this data simplification step will subsequently be simplified, supporting
multi-scale feature exploration. In Fig. 2, selecting the persistence threshold corre-
sponding to the flat plateau located at the center of the persitence curve (persistence
threshold of 0.07) enables the simplification of all spurious features, and robustly
extracts the centers of the vortices of this fluid mechanic example (persistent extrema
of the flow orthogonal curl component).

Figs. 3, 4, and 5 show further typical usage examples illustrating classical topo-
logical data analysis pipelines, where data is pre-simplified by preserving only the
most persistent features (highlighted in the corresponding persistence diagrams).

In Fig. 3, the simplification is combined with the Morse complex (bottom) to
extract cells in confocal microscopy (top left: input data). In this example, the seg-
mentation is illustrated by representing the manifold of each local maximum with a
distinct color. In particular, each maximum denotes the nucleus of a cell, its mani-
fold the geometry of the cell, and the network of filament structures extracted from
the separatrices of the Morse complex indicate the boundaries separating the cells.
In this application, the removal of the small bars from the persistence diagram (top
right) removes spuriousmaxima from the data and consequently resolves the possible
over-segmentation provided by the Morse complex alone.

In Fig. 4, data pre-simplification is combined with the merge tree to extract bones
in medical imaging. In particular, in this example, the user segmented the regions
corresponding to each arc of the split tree containing a local maximum (which cor-
responds to locally dense regions). Here the level of persistence has been tuned to
maintain only the five most persistent features (corresponding to the toes of the foot).
Maintainingmore features (in this example, for a persistence threshold of 150) would
precisely segment the bones along each joint, which further illustrates the potential
for multi-scale data exploration.

Note that TTK also offers functionality to design harmonic scalar fields by solving
the Laplace equations subject to Dirichlet constraints [50] provided by the user at key
locations (typically at extremities of prominent shape features). This is illustrated in
Fig. 5 (left), which also illustrates skeleton extraction with the Reeb graph (right).

TTK also implements efficient algorithms [24, 33, 36] for the estimation of dis-
tances between persistence diagrams (such as the bottleneck and Wasserstein dis-
tances [10]). Recently, efficient and progressive algorithms [26, 48] have been inte-
grated for the computation of barycenters of persistence diagrams [27, 46], which
visually summarize the topological features of an ensemble data set, and which
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Fig. 3 Persistence-driven analysis pipeline, combined with Morse complex computation for cell
enumeration in confocal microscopy (example reproduced from [10], page 217). Once TTK and
its data package are installed, from the ttk-data/ directory, run the following command to
reproduce this example: “paraview states/tribute.pvsm” (see [42] for further details)

Fig. 4 Persistence-driven merge-tree based segmentation applied to bone extraction in medical
imaging. Once TTK and its data package are installed, from the ttk-data/ directory, run the
following command to reproduce this example: “paraview states/ctBones.pvsm” (see
[42] for further details)
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Fig. 5 Skeleton estimation from the Reeb graph [21] of a user designed harmonic field [50]. Once
TTKand its data package are installed, from thettk-data/ directory, run the following command
to reproduce this example: “paraview states/harmonicSkeleton.pvsm” (see [42] for
further details)

enable an efficient clustering of the ensemble members based on their persistence
diagram.

3 Bivariate Scalar Data

TTK supports the computation of several topological abstractions for bivariate data
(where the data is characterized by two values defined at each vertex of the geo-
metrical domain). TTK provides a fast implementation of continuous scatterplots
[4], which can be interpreted as continuous histograms of bivariate data defined on
volumes. They are particularly useful for understanding where and how volumetric
data projects to the data range. Fiber surfaces [6, 25] extend the notion of isosurfaces
to bivariate data and enable users to explore the regions in the volume correspond-
ing to features of interest segmented manually in the continuous scatterplot. The
Jacobi sets [9] are also implemented in TTK. They are the bivariate analog of critical
points (points where both gradients are colinear), and they enable the extraction of
filament structures in bivariate data. They correspond to folds of the volume when
projecting it to the plane according to the bivariate data. TTK also supports the fast
computation of Reeb spaces of bivariate data [39], which allows the peeling of the
continuous scatterplot in regions that do not self-overlap during the projection of
the volume induced by the bivariate data. These capabilities areillustrated in Fig. 6.
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Fig. 6 Gallery of bivariate scalar data analysis. Left: Continuous scatterplot (top) of the electron
density and reduced gradient of the ethane-diol molecule, some isosurfaces (bottom left) and fiber
surfaces [6, 25] (bottom right) corresponding to the curves ofmatching color in the scatterplot.Right:
Interactive continuous scatterplot peeling on fluid mechanics example (flow and curl magnitudes):
a sheet of the simplified Reeb space [39] is selected by the user (orange), and its projection is
independently isolated in the scatterplot for further individual inspection. Once TTK and its data
package are installed (see [42] for further details), from thettk-data/ directory, run the following
commands to reproduce these examples: “paraview states/BuiltInExample2.pvsm”
(left) and “paraview states/mechanical.pvsm” (right)

In the left image, the user provides a few strokes on the main visual features of the
continuous scatterplot (colored curves, top), and the corresponding structures in 3D
are extracted as fiber surfaces (surfaces of matching colors, bottom). This feature
definition captures subtle structures that are difficult to extract with the isosurfaces
of either of the two fields of the bivariate data (bottom left). In the right image, the
Reeb space segments the volume into regions that do not self-overlap when projected
onto the plane given the bivariate data. Such regions can be isolated from the con-
tinuous scatterplot for further inspection. Furthermore, TTK also provides heuristics
for persistence-like simplification mechanisms on bivariate Reeb spaces to enable
multi-scale interactive exploration.

4 Uncertain Scalar Data

TTK supports the analysis of uncertain data, where the data is given as two scalar
fields, representing the bounds of the interval of possible data values for each vertex of
the domain. From this representation, mandatory critical points [17] can be extracted
(Fig. 7). These objects correspond to regions where the appearance of at least one
critical point is guaranteed for any realization of the uncertain data (i.e., for any
scalar field randomly generated from the input intervals). This topological analysis
enables the estimation of the structures that always occur despite the uncertainty as
well as their geometrical variability. This construction can be used for instance to
analyze ensemble data sets, in conjunction with clustering techniques, as illustrated
by Favelier et al. [14].



An Overview of the Topology ToolKit 335

Fig. 7 Mandatory critical points [17] (colored regions) on the starting vortex example. Two mem-
bers of the ensemble are shown, along with their persistence diagrams and their critical points in
the domain. These critical points correspond to the vortices forming behind the wing. The most
salient critical points land in the colored regions predicted by the algorithm. In this example, manda-
tory critical points (colored regions) help estimate visually the geometrical variability that can be
expected in the locations of these vortices, given the uncertainty of the data. Once TTK and its
data package are installed, from the ttk-data/ directory, run the following command to repro-
duce this example: “paraview states/uncertainStartingVortex.pvsm” (see [42]
for further details)

5 Time–Varying Scalar Data

TTK also provides several features for the analysis and visualization of time-varying
data. The trajectory of critical points through time can be trackedwith theWasserstein
matcher method introduced by Soler et al. [36]. This technique enables for instance
to represent the path taken by vortices in computational fluid dynamics (Fig. 8, left).
In addition, TTK supports the visualization and analysis of the topological evolution
through time of features of interest, with the notion of nested tracking graphs [31]
(Fig. 8, right). These graphs encode the temporal evolution of the connected compo-
nents of sub-level sets, in the form of a nested hierarchy, where each hierarchy level
(each shade of blue in Fig. 8, top right) correspond to a distinct isovalue (and hence
a specific sub-level set).

6 High–Dimensional Point Cloud Data

TTK recently integrated the popular package scikit-learn [35], leveraging in par-
ticular its dimension reduction capabilities: Principal Component Analysis, Spec-
tral Embedding, Locally Linear Embedding, Isomap, Multi-Dimensional Scaling,
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Fig. 8 Gallery of feature tracking in time-varying data. Left: critical point trajectory tracking
with the Wasserstein matcher [36] (the height denote the temporal component). Right: Nested
tracking graph [31] (viscous fingering data). Once TTK and its data package are installed (see
[42] for further details), from the ttk-data/ directory, run the following commands to repro-
duce these examples: “paraview states/timeTracking.pvsm” (left) and “paraview
states/nestedTrackingGraph.pvsm”

Fig. 9 Examples of topological analysis of high-dimensional point cloud data. Left: Persistence-
driven clustering [7] of the “mfeat” data set (64 dimensions). The data is first projected to 2D with
the t-SNE method (available from TTK’s integration of scikit-learn [35]). Point colors indicate the
ground-truth classification, whereas the clustering computed by TTK is reported by the background
color (cells of the Morse complex). Right: Persistence-driven clustering [7] and beyond, on a toy
point cloud example. In addition to the extraction of the correct clusters, TTKcan also extract genera-
tors of the first homology group (1-dimensional cycles)with looping separatrices connecting saddles
tomaxima of density estimation (Gaussian kernel). Once TTK and its data package are installed (see
[42] for further details), from the ttk-data/ directory, run the following commands to reproduce
these examples: “paraview states/karhunenLoveDigits64Dimensions.pvsm”
(left) and “paraview states/1manifoldLearningCircles.pvsm” (right)

t-distributed Stochastic Neighbor Embedding. Then, high-dimensional point cloud
data (typically in the form of a CSV file) can be processed by TTK. Typically, the
data is first projected to 2D or 3D with one of the above dimension reduction meth-
ods (Fig. 9). Next, a density estimation (e.g., Gaussian kernel) is performed on a
regular grid to describe the projection of the input point cloud (Fig. 9, top right).
From this point, any tool of the TTK arsenal can be employed to further analyze,
visualize, and explore the data. For instance, persistence-driven clustering [7] can
easily be deployed with TTK [8]. The k most persistent features can be selected from
the persistence diagram (Fig. 9) to drive a pre-simplification of the data, in order to
control the number of clusters (where k is the number of desired clusters). Note that,
in practice, a relevant value of k can often be visually inferred from the flat plateaus
of the persistence curve (see Fig. 2, top right). Similarly to the notion of eigen gap
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Fig. 10 Examples of in situ data reduction with TTK. Left: View-based surface approxima-
tion [30] (top: ground-truth, bottom: approximation). Right: Topology-controlled lossy com-
pression [37]. Once TTK and its data package are installed (see [42] for further details),
from the ttk-data/ directory, run the following commands to reproduce these exam-
ples: “paraview states/geometryApproximation.pvsm” (left) and “paraview
states/persistenceDrivenCompression.pvsm” (right)

[32] in spectral clustering, heuristics can be derived for an automatic selection [8].
Next, the Morse complex can be extracted to isolate each basin of attraction of each
of the k remaining maxima (Fig. 9, bottom right, where two clusters are extracted,
corresponding to the two rings present in the data). The final clustering can be pro-
jected from the cells of the Morse complex to the input point cloud with TTK’s
generic interpolator. Note that TTK enables topological explorations that go beyond
simple clustering, such as the extraction of generators of homology groups, as illus-
trated in Fig. 9 (bottom, right), where looping separatrices linking saddles to maxima
are used to extract such generators, hence visually conveying to the user additional
information about the internal structure of each cluster. In particular, such generators,
when mapped back onto the data, provide visual hints that enable users to identify to
which cycle a given data point belongs to. Moreover, it also helps users appreciate
the importance of a given group of cycles, given the size of its generator in the data.
The left example of Fig. 9 further illustrates the clustering capabilities of TTK on the
mfeat data set (64 dimensions, 2000 points). The ground-truth classification is given
by the colors on the points, whereas the non-supervised classification obtained from
the topological clustering is given by the background color (one color per cell of
the Morse complex). This example nicely illustrates how TTK can effectively help
visualize the intrinsic structure of high-dimensional data (Fig. 10).

7 In Situ Topological Analysis

TTK can be efficiently run in situ (i.e., directly from a simulation source codewithout
storing data to disk) using the Catalyst API [3]. TTK’s website reports a complete
tutorial [44] with the open-source fluid mechanic simulation code Code_Saturne
[11], where TDA capabilities are run on the file, without data storage, after each
computation of a simulation time step.
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Fig. 11 Example of convenience TTKmodule: check for manifold-ness on several simplicial com-
plexes. Non-manifold vertices, edges and triangles are reported in green, white, and blue respec-
tively. Once TTK and its data package are installed, from the ttk-data/ directory, run the follow-
ing command to reproduce this example: “paraview states/manifoldChecks.pvsm”
(see [42] for further details)

In addition, TTK offers lossy compression and data reduction tools, to allow the
in situ storage of reduced information. In particular, regular grid data can be saved
in the TTK file format (*.ttk), which implements the topologically controlled com-
pression framework by Soler et al. [37]. This framework enables to compress data in
a lossy way while guaranteeing the exact preservation of the persistence diagrams of
the most salient features. This methodology guarantees, in practice, that any topo-
logical analysis run on the compressed data is faithful to the original data. TTK
also implements the award-winning image-based geometry approximation method
by Lukasczyk et al. [30]. Additionally, TTK implements the latest specification of
Cinema databases [2], which enables users to interactively explore large ensembles
of data sets stored as Cinema databases and to apply specific analysis pipelines to
selections ofmembers, expressedwith SQLqueries on themeta-data of themembers.

8 Convenience

Finally, TTK provides a number of features that make its deployment more con-
venient for users, including generic data interpolators (interpolating data from any
type of object onto any type of object), convertors, mesh processing, and analysis
(subdivision, point merging, manifold checks, Fig. 11, etc.).
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Fig. 12 Integration of TTK in a software ecosystem other than VTK/ParaView: Inviwo [23], a
software framework for the rapid prototyping of visualizations, written in C++ and exploiting
modern graphics hardware. This example shows the topological analysis with the Morse-Smale
complex (with persistence-driven data pre-simplification) of charge densities in iron oxide [22]

9 Conclusion and Perspectives

This paper presented a brief overview of the main end-user features available in the
Topology ToolKit (TTK) along with example application scenarios. The material
that is necessary to reproduce these examples is available on the TTK website [42].
The data analysis pipelines presented in this paper can be easily reproduced with
ParaView, with Python scripts (ParaView supports the automatic export of analysis
pipelines to Python scripts), with VTK or direct C++ code. The examples illustrated
in this paper ranged from basic image segmentation capabilities to the advanced
topological analysis of high-dimensional point cloud data. We refer the reader to
TTK’s online user forum for further discussions and usage examples [43].

In the future, we are looking forward to further extending TTK’s developer and
user communities. We see TTK as an opportunity to grow as a community by feder-
ating our software engineering efforts, to make our research more accessible, repro-
ducible and visible to others. In that regard,wewarmlywelcome any contributors (see
TTK’s contribution page: https://topology-tool-kit.github.io/contribute.html), espe-
ciallywith experience in vector and tensor data analysis.Wewill alsowork toward the
improved integration of TTK in third-party data analysis and visualization tools, as
done, for example, in collaboration with the Inviwo [23] development team (Fig. 12).
Future directions of development of TTK include an improved support for statistical
tasks based on topological data representations as well as an improved integration
of TTK on supercomputers. Such improvements will be partially conducted in the

https://topology-tool-kit.github.io/contribute.html
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context of theVESTEC project [47],which focuses onnovel supercomputingmethod-
ologies for urgent decision making, and for which TTK is one of the core software
technologies.
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Implementing Persistence-Based
Clustering of Point Clouds in the
Topology ToolKit

Ryan Cotsakis, Jim Shaw, Julien Tierny, and Joshua A. Levine

Abstract We show how the scalar field topology features of the Topology ToolKit
(TTK) can be leveraged in a pipeline for persistence-based clustering of point clouds.
While TTK provides numerous features for computing topological structures of
scalar fields on unstructured meshes, prior to this work, it allowed for only basic
point cloud input. In this work, we implemented two new modules in TTK: one
for sampling scalar fields based on either distance or density of the point cloud and
a second for computing persistence-based clusters. Both modules provide heuris-
tics for automatically specifying key thresholds so as to simplify user interaction.
This document outlines the implementation details of the two modules and provides
experimental results that demonstrate their modularity and utility.

1 Introduction

Clustering is an important tool used widely in data analysis.We consider the problem
of clustering point clouds. The input dataset is an unstructured collection of points
that are a discrete subset of Rd . Clustering seeks to partition the points into a set of
logical groups (clusters) such that points in the same group are more similar to each
other than they are to points in the other groups. From a data analysis perspective,
clustering is often an importantmodule for other downstream tasks that either directly
utilize the clusters, or study how many, how large, or how spread out clusters are.
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When the data is unstructured, as is the case of point clouds, clustering typically
requires building a model based on other prior knowledge or assumptions on the
dataset. This knowledge can be used to infer distance and/or similarity measures or
otherwise make decisions about how to define what properties delineate grouping.
As a result there is no singular goal for clustering applicable in all settings.

On the other hand, segmenting a scalar field has similar goals to clustering and pro-
vides an interesting counterpoint. Compared to segmenting a point cloud, segmenting
a scalar field has a variety of tools that naturally decompose the field based on fea-
tures encoded in the scalar field. Common techniques for this include watersheds in
image segmentation [5, 6] and topological segmentation via the Morse complex [12,
26]. A particular advantage of topological segmentation techniques is the ability to
provide a hierarchy of segmentations that respect a notion of simplification. Specifi-
cally, topological persistence allows one to rank the importance of segments, jointly
simplifying the scalar field while leading to a coarser segmentation [13].

Leveraging the strengths of using scalar field topology for segmentation, one
approach for segmenting point clouds is to first compute a scalar field from a given
input point cloud. This scalar field serves to provide the additional prior information
and provide structure for the dataset. For example, one simple proposition is to use
a scalar field that estimates the density of the points themselves, resulting in clusters
that relate to those computed by density-based clustering [14]. Of course, the choice
of scalar field is a free parameter to the clustering algorithm and other scalar fields
could be use that encode distance or similarity. After segmenting the scalar field, one
can then associate each point with the labels assigned to nearby regions of the domain
of the scalar field, and then use this assignment to produce the final clustering.

1.1 Contributions

In this work we leverage the features of scalar field segmentation for point cloud
segmentation. We primarily follow the methodology of Chazal et al.’s algorithm
ToMATo [9] for designing the scalar field, except we replace the domain as rep-
resented by a neighborhood graph with a simple triangulated grid on which we
sample the field. Our main contributions are the implementation details for adapting
this approach into a large framework for topological analysis, the Topology ToolKit
(TTK) [27]. Specifically, our contributions are:

• We describe the implementation for persistence-based clustering of point clouds
in TTK. This involved implementing two newmodules: one for computing a scalar
field from a point and a second for clustering via persistence.

• As we aim for a non-parametric method, we design heuristics for automatically
selecting parameters involved in both modules that work well in most settings.

• We report experimental details on the efficacy of our heuristics as well as discuss
important design considerations.
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2 Related Work

Clustering methods are well-studied over the past forty years, with common
approaches that include k-means [19], density-based clustering like DBSCAN and
its variants [14, 24], mode-seekingmethods [18] such asmean shift [10], and spectral
clustering [30]. These methods have been used in a wide variety of applications in
data analysis, image processing, computer graphics, and statistics. Thus, a variety of
practical tools implement clustering, thus making it desirable for the users of TTK
as well.

Our work emphasizes using topological tools for clustering, via computing seg-
mentations that can be simplified through topological persistence [13]. Topological
analysis has led to a variety of tools for data analysis in general, and relies on the field
of persistent homology to compute and rank features (see Edelsbrunner and Harer
for a thorough introduction [11]). Chazal et al. were one of the pioneers of using
topological persistence for guiding clustering of point clouds [9] and as mentioned
previously our work is using a conceptually similar pipeline adapted to TTK [27].
This approach builds on key theoretical results where the same authors show one can
recover structural information of scalar fields from samples [8].

Others have also pursued using topological analysis for clustering. Particularly,
Beksi and Papnikolopoulos have shown the utility of clustering 3D point clouds [2,
4] and designing signatures for points [3]. Moon et al. design the persistence terrace
to help provide a summary plot to guide the inference process [20]. These methods
all focus on low-dimensional point sets (typically two- and three-dimensional data).
Nevertheless, many applications of clustering focus on higher dimensional point
clouds. Using topological analysis can also work in this setting, but there are certain
challenges with computing and visualizing the topological structure of segments.
Oesterling et al. show methods for capturing the topology of high-dimensional point
cloud density fields [21] by constructing topological landscapes to provide a tangible
metaphor [22].

3 Software Design Overview

We implemented persistence-based clustering for point clouds in TTK by creating
two new modules. The first module, ScalarFieldFromPointCloud, computes a scalar
field from a given input point cloud that will be used to analyze the structure of the
point cloud. The second module, PersistenceSimplification, is used to simplify the
scalar field in preparation for topological segmentation. Both modules enable a few
user controls for segmentation, but can also be used in an automatic mode where all
parameters are set by default heuristics.

To complete the clustering, we wrap these modules in a pipeline with five steps:
(1) read the input point cloud, (2) compute a scalar field, (3) simplify this field with
persistence, (4) perform topological segmentation with the Morse complex, and (5)
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map the segmentation labels from the scalar field domain to the input point clouds.
Steps (1), (4), and (5) leverage existing modules in both TTK as well as standard
methods that exist in the ParaView [1]. Steps (2) and (3) are developed as standard
TTK modules that we also enable as ParaView plugins for experimentation.

4 Computing Scalar Fields from Point Clouds

As previouslymentioned, ScalarFieldFromPointCloud takes a point cloud as an input
and constructs a triangulated regular grid surrounding the input point cloud. The grid
size as well as boundary padding may be specified by the user. The grid is the domain
of the scalar field that ScalarFieldFromPointCloud outputs. As with Chazal et al. [9]
we experimented with two difference options for calculating the scalar values on
each grid point: a kernel density estimation (KDE) or a distance field.

For the distance field, the scalar values on the regular grid can simply be taken
to be the distance to the closest point in the point cloud. In effect, this will yield
very small values for points with nearby neighbors, whereas the KDE will yield the
largest values in regions of high density. Subsequently, in this document we only
report on experiments using density.

The scalar values for the KDE are calculated as follows: We construct identical
Gaussian distributions centered at each point in the point cloud. A continuous scalar
function f : Rd → R defined on the ambient space can be constructed by taking
the sum of all of the Gaussian distributions. The standard deviation or width of the

Fig. 1 Gaussian kernel density estimate. A Gaussian of a certain bandwidth is centered at each
point. The Gaussians are added and the purple curve is the resulting probability distribution that is
estimated from the samples. Image taken from Wikipedia
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Fig. 2 The input to ScalarFieldFromPointCloud on the left, the output scalar field in the middle
when using theGaussianKDEoption, and the output scalar field on the right when using the distance
field option. For the KDE, the colour map is red at locations with a high density of points, and blue
in sparse regions; in the distance field, the colour map is red far away from the points and blue near
the points

Gaussians is denoted as the bandwidth, which is a parameter the user may choose.
The value of the output scalar field for a particular vertex in the regular grid is
determined to be the value of f at that point. See Fig. 1 for a graphic explanation
(Fig. 2).

4.1 Parameter Setting

We also implemented a feature that automatically estimates what the bandwidth
should be. For each point in the point cloud, we calculate the distance to the k−th
closest neighbor. The parameter k is an integer, and we estimate it as follows

k = (0.587 · n4/5)1/d

and then rounding k up. n is the number of points in the point cloud, d is the dimension
of the data (currently we allow d = 2 and d = 3). This method is modified from
Equation19 of [23] to include the 1/d scaling to the n4/5 term. Finally, the mean
distance to the k−th closest neighbor for every point in the point cloud is taken to
obtain the final bandwidth which is used. This method of bandwidth selection can be
used in ScalarFieldFromPointCloud module by selecting the “Automatic Bandwidth
for KDE” option in ParaView.

We also considered a method that uses adaptively-sized bandwidths for the Gaus-
sian kernels, proportional to the k-th nearest neighbor [7].When exploring this varia-
tion,we found that the least persistent clusterswould have an even smaller persistence
with this algorithm, making it likely for PersistenceSimplification module to discard
them as noise.
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5 Persistence-Based Clustering

We briefly review the key concepts we used in persistent homology, for a full
introduction we recommend Edelsbrunner and Harer [11]. Given a scalar field,
f : Rd → R, persistent homology can be used to study the evolution of the sublevel
sets f −1(−∞, a] for every real value a. Intuitively, as one sweeps through increasing
values of a, the connectivity of the sublevel sets will change, and persistent homol-
ogy helps to gauge both when and what types of changes occur. Specifically, one can
observe when new components are created and destroyed, and how long (in terms of
values for a) they exist. Such events will occur at values for a which correspond to
critical points of f . These events can be grouped into what are commonly referred
to as persistence pairs that correspond to a pair of critical points. For a persistence
pair ci and c j such that f (ci ) < f (c j ), we define the persistence as f (c j ) − f (ci ),
which corresponds to the span of function values for which the corresponding feature
was present. The persistence diagram embeds these pairs into a useful tool for data
analysis, as it describes all such pairs and conveniently arranges them so that pairs
with higher persistence are made prominent.

Given the persistent diagram, a common task to filtering such features is to select
a persistence threshold and retain all pairs whose persistence is above the threshold.
The second module we implemented, PersistenceSimplification, performs this form
of persistence simplification on an input scalar field. In our setting, simplification
prepares the scalar field for topological segmentation and ultimately, clustering the
point cloud. Tools for persistence simplification already exist in TTK, but ourmodule
encapsulates this process so as to make it easier for an end user. Specifically, our
newmodule relies components from two existing modules: FTMTreePP [17] (which
computes a merge tree that can be used to construct the persistence threshold for each
persistence pair) andTopologicalSimplification [28] (which is used to compute a new,
simplified scalar field that preserves the persistence pairs that are above threshold).

Previously, in TTK, a user would have to separately compute the persistence dia-
gram, use thresholds to select a set of persistence pairs to preserve, and then run Topo-
logicalSimplification to produce a simplified field. Our new module combines these
features into a single module. First, the scalar field is given to the FTMTreePP object,
and the persistence pairs are computed. The pairs are then sorted based on their persis-
tence, and then a persistence threshold is decided based on user selected parameters
(including automatic selection). Finally, TopologicalSimplification is called using
the pairs with sufficiently high persistence as constraints on the input scalar field.
Our module then computes this simplified field and returns it as output. Thus, unlike
the separate components that exist in TTK, this module starts with a scalar field and
produces a new, simplified one with no intermediate steps, greatly simplifying the
process of simplification.
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Fig. 3 GUI for
PersistenceSimplification.
By checking “Separate
Max/Min”, the user may
select minimum-saddle pairs
and maximum-saddle pairs
in different ways. By ticking
“Use Min/Max Pairs” the
module will choose to retain
minimum/maximum-saddle
pairs. Since “Threshold Min
Pairs by Number” is
specified, we can choose the
number of minimum-saddle
pairs to retain. Alternatively,
since “Threshold Max Pairs
by Number” is not specified,
we retain maximum-saddle
pairs by thresholding
persistence instead.

5.1 User Options

The PersistenceSimplification module makes this process easy by not exposing the
persistence diagram to the user nor requiring manual pair selection. Instead, the
user is given the option to have PersistenceSimplification choose which points are
sufficiently persistent automatically as described below. Nevertheless, we consider
a number of use cases for the PersistenceSimplification module. Although we are
focused on clustering applications, we have made the module as versatile as possi-
ble. The user can override the automatic threshold by interacting with the GUI in
ParaView to choose various threshold options:

• The user has the option tomanually threshold which persistence pairs (min-saddle,
max-saddle, or both) are used to simplify the scalar field based on a known per-
sistence threshold.

• Alternatively, if a threshold is not known, the user can instead threshold based on
the number of pairs they would like to simplify with. The most persistent points
will be chosen. This is conceptually similar to setting the number of clusters, k, in
k-means.

In addition the user can choose to simplify the scalar field using the maximum-
saddle pairs and the minimum-saddle pairs separately, or both together. For density-
based clustering, we expect maxima to delineate centroids for clustering, but this
module provides more flexibility capabilities to be used in other settings too (Fig. 3).
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Fig. 4 Automatic
persistence thresholding.
Each black point is a critical
point pair. We sort the pairs
by persistence. We assume
the noise assumes an
exponential shape. (a · p0 +
b · pn)(k − k0) + p0 is the
tangent line to the
exponential plus some slope
b · pn , where pn is the
persistence of the most
persistent critical pair. The
algorithm essentially looks
point by point to see if the
next point is above this green
line. If the next two points lie
above the line, then all
further points are persistent
enough

5.2 Automatic Parameter Setting

We developed our automatic threshold mechanism based on the concept of finding
large jumps in persistence that separate topological noise (with relatively low per-
sistence) from topological signal (with relatively high persistence). We define such
jumps by first sorting all pairs by their index and looking for locations where the
tangent of the curve does a poor job of predicting the persistence of the next highest
pair, relative to how much this curve increases overall. For an illustration, see Fig. 4.

Specifically, let pn be the persistence of the most persistent critical pair in our
dataset. To identify gaps automatically, we examine the persistence of each pair in
increasing order. Let a = 0.2 and b = 0.025 be two fitting parameters (a describes
the exponential growth in persistence pairs and b weights relative to the maximum).
For a critical pair with persistence p0, we ask if (1) the next most persistent pair has
persistence greater than (1 + a)p0 + bpn and if (2) the pair after that has persistence
greater than (1 + 2a)p0 + 2bpn . If the answer to both questions is yes, then the
persistence threshold is determined to be (1 + a)p0 + bpn . If the answer to either
question is no, then we remove the initial pair and begin the analysis again on the
next pair, until a persistence threshold is decided.

This progressive approach is based on the observation that noisy persistent pairs
fit an exponential function quite well. Thus, the two parameters we select model this
process. Specifically, a is chosen to be the parameter that describes the exponential
growth of persistence in Fig. 4. The parameter b is chosen as a value that captures
discontinuities in these curves. Ideally, one would directly estimate a and b using
data fitting, or let the user vary them. As heuristics, we found they performed quite
well for our data even with fixed parameters.
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Fig. 5 Our automatic persistence clustering, applied to two datasets from the k-means clustering
suite. Left: dataset S4, Right: dataset A3. Each colour indicates a different cluster, as labeled by our
algorithm

6 Experimental Results

We test the effectiveness of our automatic parameter selection technique and ana-
lyze where it fails. For the following experiments, we only cluster with parameters
selected through our automatic selection technique. We used a collection of different
datasets and benchmarks. For evaluating automatic feature detection efficacy, we
used the Ultsch’s Fundamental Clustering Problems Suite (FCPS) [29]1 and Fränti
and Sieranoja’s k-means clustering testing suite [16]2. For comparisons against other
clustering methods, we evaluated on the scikitlearn clustering datasets [25]3.

6.1 Automatic Feature Detection

Results for our clustering method with automatic parameter selection are shown
in Figs. 5 and 6. On the two k-means datasets, our method was quite effective at
separating individual clusters of both different sizes and shapes.

For the FCPS datasets we chose, our technique encountered additional challenges
that stem from the automatic selection of persistence thresholds. While generally
reasonable, we found our thresholds to produce a few additional clusters than neces-
sary, particularly for the TwoSuns (we end up with 4 instead of 2 clusters) and Lsun
(we end up with 5 instead of 3 clusters). Note that if we manually set the number

1 Downloaded from https://www.uni-marburg.de/fb12/arbeitsgruppen/datenbionik/data.
2 Downloaded from http://cs.joensuu.fi/sipu/datasets/.
3 Extracted directly from sklearn.datasets.

https://www.uni-marburg.de/fb12/arbeitsgruppen/datenbionik/data
http://cs.joensuu.fi/sipu/datasets/
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Fig. 6 Our automatic persistence clustering, applied to four datasets fromFCPS. From left-to-right,
we evaluated the TwoSuns, Target, Lsun, and Wingnut datasets. Each colour indicates a different
cluster, as labeled by our algorithm

of clusters to the appropriate number, or method produced correct clusterings for
both. The Wingnut dataset proved a bit challenging when the data sparsity made it
challenging to separate the top from the bottom, as shown in the few points that are
not separated well. We discuss this issue further in Sect. 6.2.

6.2 Comparison Against Other Clustering Methods

We also evaluated our clustering method against a variety of other techniques4,
as shown in Fig. 7. Note that the data generation process in scikitlearn involves
randomness, which explains the minor discrepancies between Fig. 7 and figures on
their website.

In the datasets, we are given the ground truth for what the clusters should be. This
means we can apply the Fowlkes-Mallows score for clustering [15]. The Fowlkes-
Mallow score is a goodness of clustering score from 0 to 1, with 1 being a perfect
clustering and smaller values being bad clusterings. We have labeled each method
and each dataset with a Fowlkes-Mallows score and summed up the scores for all
datasets and each algorithm in Table1.

All algorithms in Fig. 7 except ours which is outlined in red and denoted “Persis-
tence” needs to have parameters specified. For these other algorithms, we used the
same parameters as in https://scikit-learn.org/stable/modules/clustering.html, which
were picked to perform well on these datasets. The best algorithms according to the
sum of scores is Persistence and DBSCAN. DBSCAN, however, does not classify
all points as seen by the black outliers in the figure.

In Fig. 7 we see that the only data set for which our automatic clustering method
fails drastically is the last data set on the bottom row, which has only 1 cluster. The
data itself is not ideal for our method when compared to the other clusters in Fig. 7.
Particularly, it suffers from the fact that it is sampled from a uniform distribution on
a square and thus there are no major topological variations in the resulting density

4 See scikit-learn.org/stable/modules/clustering.html for information on the clustering methods we
compared to.

https://scikit-learn.org/stable/modules/clustering.html
https://scikit-learn.org/stable/modules/clustering.html
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Fig. 7 A comparison of clustering methods. Each colour indicates a different labeling according
to the algorithm. Our method, “Persistence”, is outlined in red.

Table 1 The Fowlkes-Mallows score, a metric for goodness of clustering, for the corresponding
algorithm (column) and dataset (row). The metric ranges from 0 to 1, with 0 being a bad clustering
and 1 being a perfect clustering. The datasets correspond in order to the datasets in Fig. 7

K-Means Affinity Mean
shift

Spectral Ward Agglom. DBSCAN Birch Gauss.
mix

Persistence

Circles 0.50 0.36 0.42 1.0 0.66 1.0 1.0 0.51 0.50 1.0

Moons 0.74 0.67 0.77 1.0 1.0 1.0 1.0 0.57 0.75 1.0

Varied density 0.87 0.88 0.90 0.96 0.95 0.95 0.75 0.74 0.98 0.96

Anisotropic 0.73 0.74 0.75 0.97 0.79 0.69 0.98 0.72 1.0 1.0

Blobs 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0

No structure 0.58 0.50 0.71 0.58 0.59 0.99 1.0 0.59 0.58 0.77

Sum of scores 4.42/6.0 4.15/6.0 4.55/6.0 5.51/6.0 4.99/6.0 5.63/6.0 5.73/6.0 4.13/6.0 4.81/6.0 5.73/6.0

field. This behavior is also byproduct of estimating density by summed Gaussians,
which would naturally weight dense areas higher than sparse areas. As a result, the
one singular cluster has a large area and is ultimately undersampled.

These two conditions (uniform sampling and summing Gaussians) result in
“patchy-ness” in the density estimation. Figure8 illustrates the clustering proce-
dure for the final data set. Despite the relatively low quality density estimation, our
automatic threshold for persistence almost worked. In this test, a in the automatic
persistence algorithm was set to 0.2. In reality, by fitting an exponential curve to the
data, we get that a should be 0.33 instead. This leads to amore appropriate clustering.

It turns out that the TwoSuns datasets in Fig. 6 fails to automatically cluster for the
same reasons as above. The same patchiness in the scalar field results leading to an
incorrect thresholding. Interestingly, fitting an exponential curve to the persistence
curve yields a = 0.53, which we found would indeed lead to the correct two clusters.
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Fig. 8 Clustering of a data set which is sampled from a uniform distribution on a square. Top
Left—Original data set. Top Right—Kernel density estimation; red is high, blue is low. Bottom
Left–Automatic persistence thresholding, with the red line representing the persistence at which
we threshold. Each black dot represents a maximum-saddle pair. We order the pairs by persistence.
The point just above the red threshold lies above the green line, hence the algorithm terminates.
Bottom Right—Segmented domain, with each segment representing a cluster. The red spheres are
maxima, blue minima, and yellow saddle

It seems for both data sets that the bandwidth is too small for the density estima-
tion. However, we noticed that the automatic bandwidth selection on the data sets in
Fig. 5 produced bandwidths that could not be increased without yielding incorrect
clusterings. This observation points out some of the challenges with setting parame-
ters, but in general our automatic method worked well as a heuristic for the data sets
we experimented with.
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7 Discussion

Our work demonstrates the effectiveness of using scalar field topology for clustering
point clouds. Moreover, we also discussed implementing this technique in TTK,
creating new modules to both ease the process for a user as well as designing user
heuristics for automatically specifying parameters. In general, clustering is often
an extremely useful first step in the data analysis pipeline, but as the problem is
ill-constrained there is no single solution that works in all settings.

Our method allows for both distance fields and KDE to building the scalar field
from point clouds. While KDE is a natural choice, its use does restrict the clustering
approach to be sensitive to the density of the input point cloud, similar to DBSCAN.
Of course, there is further control in terms of the persistence and other user-defined
parameters. In some contexts, this control is desirable, but we leave it to future work
to explore what other scalar fields might be better suited in different contexts.

On the computational side, we made an up front choice to limit our approach to
working with point clouds in low-dimensions. This report demonstrates the efficacy
on mainly two-dimensional datasets, but we have also experimented with both three-
dimensional point clouds and point clouds sampled from surfaces embedded in three
dimensions. Our results do extend, although our method for automatically specifying
parameters in both modules does have a dependence on the underlying dimension
of the data. We leave it to future work to specify these parameters (k, a, and b) in
terms of the dimension of the data. For higher dimensional data, utilizing a similar
pipeline is also work in progress, but it has significant challenges with visualizing
the resulting clustering. One method that shows promise is to first project the input
data to a lower dimensional manifold, as is frequently done in other settings.

Since we sample our scalar field on a triangulated grid, the computational work-
load will ultimately be dependent on the resolution of this grid. TTK is optimized
for fast access on triangulations, which is advantageous compared to other alterna-
tive simplicial complexes we could use such as Rips complexes. While we require a
sampling density sufficient for capturing the separation between clusters, it would be
interesting to consider specifying a non-uniform triangulation that adapts to the data
so as to reduce the computational burden. It is future work as how best to balance
clustering accuracy with computational cost.

Finally, our implemented modules are available for download, as well as the
ParaView state files used to produce the results presented in this paper5.

Acknowledgements This work is partially supported by the European Commission grant ERC-
2019-COG “TORI” (ref. 863464). This material is based upon work supported by the U.S. Depart-
ment of Energy, Office of Science, Office ofAdvanced Scientific ComputingResearch, under Award
Number(s) DE-SC-0019039.

5 https://github.com/bluenote-1577/ttk.

https://github.com/bluenote-1577/ttk
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Abstract This paper documents the organization, the execution, and the results
of the Topology ToolKit (TTK) hackathon that took place at the TopoInVis 2019
conference. The primary goal of the hackathon was to promote TTK in our research
community as a unified software development platform for topology-based data
analysis algorithms. To this end, participants were first introduced to the structure
and capabilities of TTK, and then worked on their own TTK-related projects while
being mentored by senior TTK developers. Notable outcomes of the hackathon were
first steps towards Python andDocker packages, further integration of TTK in Inviwo,
the extension of TTK with new algorithms, and the discovery of current limitations
of TTK as well as future development directions.
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1 Introduction

The Topology ToolKit (TTK) [17] is an open-source software library for topological
data analysis (TDA) and scientific visualization. At the time of writing, TTK con-
sists of more than 60 modules—contributed from various researchers from several
institutions—that provide efficient algorithms to compute contour trees [7], Reeb
graphs [8], persistence diagrams [3, 4], topological simplifications [18], Morse-
Smale complexes [15], nested tracking graphs [11, 13], fiber surfaces [10], image-
based geometry reconstructions [12], andmanymoreTDAproducts. The core feature
of TTK is its efficient and unified approach to topological data representation that
makes it possible to coherently chain these different algorithms. Therefore, devel-
opers can contribute new algorithms to TTK in a modular fashion, and end-users
can utilize TTK as a production tool for interactive TDA (Fig. 1). Furthermore, this
unified approach makes it possible for researchers to reproduce results, benchmark
algorithms, and develop new algorithms in an existing interrelated software environ-
ment.

However, TTK has two major limitations: a) TTK is difficult to use and extend
due to its extensive capabilities and complex software architecture; and b) TTK
is not easily accessible since it requires manual compilation and requires several
dependencies to utilize all features (which makes it especially difficult to install
TTK on non UNIX systems). These limitations often discourage new developers and
end-users to utilize TTK in their projects.
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Fig. 1 TTK is a software platform for topological data analysis and scientific visualization. It is
both accessible to end-users—via ParaView plugins a, VTK-based generic GUIs b, and command-
line programs c—and to developers—via Python d, VTK/C++ e or dependence-freeC++ f bindings.
TTK provides an efficient and unified approach to topological data representation and simplifica-
tion, which enables in this example a discrete Morse-Smale complex a to comply to the level of
simplification dictated by a piecewise linear persistence diagram (bottom-right linked view, a). Code
snippets are provided (d–f) to reproduce this pipeline

In an effort to overcome these limitations and simultaneously grow TTK’s user
and developer base, two senior TTK developers (Julien Tierny and Jonas Lukasczyk)
organized a hackathon as an event in which they would be able to directly interact
with people from the topology-based visualization research community, understand
their practical needs, and address the concrete problems they face during integration
ofTTK in their ownprojects. This eventwould therefore be fundamentally different to
previous TTK related workshops, such as the TTK tutorials at IEEE VIS in 2018 [6]
and 2019 [5] that followed a teacher-centered teaching approach. At the same time,
the TopoInVis conference series was experimenting with novel initiatives to increase
interest and collaboration within the same community. Thus, the hackathon became
part of said initiative, as it seemed—and proved to be—beneficial for both the confer-
ence organizers and conference participants to organize the hackathon as a co-located
conference event. However, the hackathon organizers did not have first-hand experi-
ence about organizing and conducting such an event. Therefore, this work documents

• the organizational aspects of the hackathon that can be used to successfully conduct
similar events in the future (Sect. 2); and

• the practical results of the hackathon that actually advanced TTK (Sect. 3).

2 Organization

The hackathon organizers had no prior experience about hosting hackathons; includ-
ing getting people interested, coping with different backgrounds of the participants,
determining a schedule, and setting reasonable goals for such an event. It was only
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clear that the hackathon will be a single day event that will be co-located with
TopoInVis, and that the hackathon should focus on the specific problems developers
and end-users encounter when they try to integrate TTK within their own projects.

2.1 Preparation

To get an initial sense on the number, the different experience levels, and the interests
of potential participants, the organizers provided a five-minute online survey that
consisted of ten multiple choice questions. Thirteen people completed the survey
and they all registered for the hackathon. Participants were first asked about their
familiarity with TDA and TTK, as well as their programming skills (Fig. 2), which
indicated that the hackathon program needs to reflect the diverse backgrounds of
the participants. Next, each participant was asked to select two of the following
suggested hackathon topics she or he is interested in (total number of votes are
shown in parenthesis):

• (6) TTK integration into an existing system
• (5) Actual Data Analysis with TTK
• (5) TTK support for vector fields
• (4) TTK support for periodic grids
• (4) TTK packaging
• (2) TTK support for tensor fields

Two participants also used the option to suggest a new topic: the portation of an
existing algorithm to TTK. This poll also indicated that participants are interested
in largely different topics, so the hackathon program should not focus on a single
subject. The remainingquestions covered the types of datasets participants commonly

Fig. 2 Experience levels of the 13 participants in regard to topological data analysis a, TTK b, and
programming languages c
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Fig. 3 Schedule of the TTK
hackathon: After providing
an overview of TTK’s
structure and usage, the
participants split into groups
that worked on different
tasks, and subsequently
presented their results in a
concluding session

have to process, if they plan to bring these datasets to the hackathon, and minor
organisational issues.

2.2 Program

The hackathon was designed as a single-day event that consisted of four ses-
sions (Fig. 3) led by both organizers. To address the diverse backgrounds of the
participants (Sect. 2.1), the organizers presented in the first session the internal
structure of TTK and demonstrated its capabilities on several examples, where it
was possible for participants to follow along if they already had TTK installed.

The introduction provided a common basis for the rest of the hackathon where
participants split into small groups consisting of 4–5 people to work on a specific,
self-determined coding project based on the topics indicated in the survey. The overall
goal of the coding projects was to help participants with initial steps towards first
results, and to teach them how to continue these projects themselves later on, as it
was already anticipated by the organizers beforehand that most projects can not be
completed in one day. Initially, the organizers intended to provide a more extensive
introduction that would cover the first two sessions, but due to the experience level
and interest of the participants the introduction was cut short to have more time for
the actual coding projects.

In the last session, a representative of each group summarized their corresponding
achievements of the day, the encountered problems, and the next steps they have to
take in order to complete their projects. To this end, every representative had to give
a ten minute presentation, followed by a discussion.

3 Results

This section presents the most prominent results of the workgroups including
improved accessibility, ported algorithms, the integration of TTK in the production
tool Inviwo [9], and the support of periodic grids.
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3.1 Packaging

An often problematic aspect of scientific data analysis and visualization is the main-
tenance of software environments, i.e. creating a working installation of an analysis
package and all its dependencies. Since TTK is shipped with a rich API (C++,
VTK, Python) and a plugin for the production visualization platform ParaView, its
full-option compilation can be challenging for novice users. Moreover, this process
differs substantially between platforms. The resulting complexity of getting depen-
dencies right for a TTK installation is overwhelming to users, and is thus a significant
obstacle towards making TTK’s methods available for a large user base.

3.1.1 Docker
For many scenarios (including scientific workloads), container technologies such as
Docker [14] have proven to be a viable solution. In brief, a container captures not
only an application, but also all of its dependencies in an otherwise self-contained,
minimal install of a base operating system. Execution of containers is achieved via
virtualization technologies built into all major operating systems. One goal of the
packaging project was therefore to create a build process for Docker containers,
which would expose TTK to a large user base.

The actual Docker packaging concept of TTK that was brought forth by the
hackathon is based on the client-server model already provided by ParaView. Specif-
ically, the docker container only contains a ParaView server build, and a full-option
build of TTK, which is integrated into the ParaView server via its common plugin
mechanism. Once this container is running, a vanilla ParaView client downloaded
from Kitware’s website can then be used to connect to the server running inside the
container. Hence, all TTK algorithms are executed on the server within the container,
and the results are send to the client.

During the hackathon, the workgroup was able to produce a minimum viable
prototype. The discussions between hackathon participants were essential in deriving
this server-client based container solution. It could be confirmed that the resulting
containers are surprisingly easy to use and incur few limitations. Among the latter is
a limitation to server-side software rendering, since hardware accelerated graphics
within containers require complex vendor-specific setups that reduce the portability
of the containers. Since the hackathon, the corresponding implementation underwent
several improvements towards robustness and usability, and is now included in TTK.
Currently, publicly available Docker containers for different ParaView versions can
be downloaded from the DockerHub container registry [2].

3.1.2 Anaconda
The packaging workgroup also explored another approach to make TTK more
accessible by providing TTK as an Anaconda [1] package. Anaconda is a cross-
platform open-source distribution platform for Python-based data science software
that includes its own package manager. Similar to a docker image, each Anaconda
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package specifies a build procedure and a list of dependencies; in this case to other
Anaconda packages. VTK is already available as an Anaconda package, so the work-
group investigated if the same build structure can be adapted to the VTK layer of
TTK. To this end, it was necessary to make use of custom CMake functions that are
already included in VTK 9, but were undocumented at the time of the hackathon.
The workgroup spend most of its time on including the various dependencies of
TTK such as Sqlite, GraphViz, and Eigen. Based on the initial steps taken during
the hackathon, the VTK-layer of TTK is now available as the Anaconda package
topologytoolkit from the conda- forge channel [1].

3.2 Vector Field Robustness Module

Due to the limited availability of vector field topology algorithms in TTK, this work-
group set out to implement 2D vector field robustness calculation [19] and simplifi-
cation [16] techniques.

3.2.1 Vector Field Robustness
In brief, robustness is ametric for pairing and canceling critical points usingminimum
perturbation of the L∞ norm of vector magnitudes. The algorithm itself consist of
three phases:

1. computation and classification of critical points, i.e., sources, sinks, and saddles;
2. construction of a specialized merge tree that considers the vector magnitude field

and the previously calculated critical point locations and types; and
3. if the user intends to apply topological simplification, regions of the vector field—

specified as sublevel set regions of the vector magnitude field—are numerically
perturbed.

3.2.2 Implementation
The process of implementing this module can essentially be split into two parts: 1)
building the module infrastructure, and 2) implementing the algorithm. The work-
group faced different struggles at each of these steps and required a lot of assistance
from the organizers.

At the infrastructure level, there aremultiple layers of code that need to bewritten,
including the ParaView level, the VTK level, and finally the TTK level. Configuring
these is non-trivial without extensive experience in at least VTK, but to some extent
TTK as well. First, the selection and usage of data types at each level is non-trivial,
especially if the module is supposed to support vector fields of different data types.
Second, across all layers many definitions have to be repeated and consistent, which
can easily result in errors, i.e., at the Paraview layer the user interface controls class
members of the VTK layer, which are then passed to the base layer as parameters.

Implementing the algorithm portion of the module has its own mix of challenges.
First is the used programming language. Fortunately, the original code was already
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written in c++, but if it would not have been, then the codewould need to be translated
first. Next, the code required translating existing mesh definitions into those used
by TTK/VTK. Again, the workgroup members pointed out that it was fortunate that
TTK’smesh specification is fairly easy to use, whichmade this code transition trivial.
The final challenge wasminimizing the use of external libraries, since ideally plugins
should be self-contained. This was especially problematic for this particular module
since the first phase of the algorithm—the computation and classification of critical
points—was handled by an external library. Moreover, at the time of writing, TTK
was only able to compute and classify critical points of scalar fields, so removing
this dependency would require a lot of additional effort.

3.2.3 Results
The workgroup spend most of its time on the module infrastructure, leaving the
actual implementation of the different phases of the algorithm to be completed after
the hackathon. Yet, the participants felt confident to finish the module by themselves.

3.3 Extending the Integration of TTK in Inviwo

Inviwo [9] is a rapid prototyping framework for visualizing spatial and abstract data.
The network editor of Inviwo provides the functionality for building a visualization
pipeline out of individual blocks, or processors. A basic subset of TTK’s functionality
has been part of Inviwo for some time in form of various processors for creating
TTK triangulations, topological simplification, and persistence diagrams. During
the course of the hackathon, this subset was to be extended to also expose theMorse-
Smale complex computation.

3.3.1 Implementation
Therewere some initial difficulties in understanding the extensive TTK infrastructure
and the plethora of function arguments and results, which might partially have been
caused by API requirements of VTK as TTK uses VTK to wrap algorithms. This
is essentially the same limitation also reported by the vector field topology work-
group (Subsect. 3.2). These difficulties were, however, quickly resolved through
interactions and discussions with the hackathon organizers. One design decision was
to decouple the computation from the output required for the subsequent visualiza-
tion, i.e. the geometric information of critical points and saddle point connections.
Thus, two processors were created. The first accepts a TTK triangulation, performs
the Morse-Smale calculations, and outputs the results. The second processor then
generates geometric primitives from the results.

3.3.2 Results
At the end of the hackathon it was possible to compute the Morse-Smale Complex in
Inviwo using the underlying TTK functionality and to visualize the results. Figure4
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Fig. 4 Results of the TTK-based Morse-Smale complex computation in Inviwo. The figure shows
the underlying visualization pipeline (background), and Morse-Smale complexes for different sim-
plification thresholds (foreground/right)

depicts the Inviwo network computing the Morse-Smale complexes for a synthetic
dataset. In the future, Inviwo will be extended to support an even larger part of the
TTK functionality as well as incorporate periodic boundaries; a topic covered by
another workgroup (see Sect. 3.4).

3.4 Periodic Grids

Periodic boundary conditions are often used tomodel a very large (or infinite) system
using a small representative part called a unit cell. Many physical, chemical, and
biological systems exhibit repetitive symmetric patterns. These systems are ideal for
study and analysis based on simulations on small unit cells with periodic boundary
conditions. Other examples where periodic boundaries are used include the study of
metals, crystal lattices, and bulk solvents in molecular dynamics simulations.

Topological algorithms that are already implemented in TTK—such as theMorse-
Smale complex or merge tree computation—are able to process any domain that
can be represented via a simplicial complex. However, TTK’s original domain data
structures—i.e., implicit and explicit triangulations—did not support periodicity.
Therefore, this workgroup set out to extend the underlying triangulation data struc-
tures to support periodicity boundary conditions.

3.4.1 Implementation
At the base layer, TTK provides a unified triangulation interface that is capable
of representing any domain, and this interface is used by all topological algo-
rithms available in TTK.The TTK triangulation class structure is shown in Fig. 5.
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Fig. 5 The inheritance structure of the different triangulation classes in TTK

TTKdistinguishes between two types of triangulations:ExplicitTriangulation
to represent a triangulation where the cell connectivity is provided explicitly, and
ImplicitTriangulation to provide a highly memory efficient triangula-
tion for structured grids. ImplicitTriangulation, however, assumes that the
boundary is not periodic.

The workgroup decided to implement a new triangulation class for structured
grids with periodic boundaries called PeriodicImplicitTriangulation.
Figure6 illustrates the concept behind this implementation for 2D grids, where addi-
tional edges and triangles are created between boundary vertices to establish period-
icity in all coordinate directions. This concept directly translates to 3D grids. Based
on the design decisions discussed during the hackathon, the workgroup completed
the implementation of the new class after the hackathon and integrated it into the
TTK master branch.

Fig. 6 The periodic
triangulation in 2D is
accomplished by adding the
dashed edges and triangles to
the triangulation shown with
solid edges
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Fig. 7 Results of the Morse-Smale complex computation for a methane crystal modeled via a
fixed unit cell that contains two methane molecules with non-periodic (left) and periodic (right)
boundary conditions. The images show a volume rendering of the underlying scalar field and the
location of the identified critical points, where maxima and saddles are represented as dark and light
blue spheres, respectively. Note that without periodic boundaries eight maxima are obtained at the
corners of the grid, however with periodic boundaries a single maximum is obtained

3.4.2 Results
Aworking example of the Morse-Smale complex computation on a periodic domain
is shown inFigs. 7 and8.Currently,PeriodicImplicitTriangulation estab-
lishes periodic boundaries in all coordinate directions, but in the future this class can
be extended to toggle periodicity for individual directions.
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Fig. 8 Morse-Smale complex-based segmentation of a methane crystal unit cell containing two
methane molecules with a non-periodic (left) and a periodic (right) boundary. (First row) One
methane molecule is located in the middle of the domain and hence it is correctly identified as an
ascendingmanifold of amaximumin theMorse-Smale complexwith orwithout periodic boundaries.
(Second row) However, for the molecule located at the corner of the cell, the ascending manifold
with periodic boundary correctly identifies the region corresponding to the second molecule. The
ascending manifold without periodic boundary fails to correctly segment the volume into two
methane molecules



Report of the TopoInVis TTK Hackathon... 371

4 Conclusion

Overall, the participants and organizers consider the hackathon a success, and the
majority of attendees stated that they would participate again in a future hackathon.
Besides the practical outcomes of the hackathon (Sect. 4.1), the senior developers also
learned about organizing such an event (Sect. 4.2), and derived future development
directions based on feedback of the participants (Sect. 4.3).

4.1 Workgroup Results

The hackathon initiated several significant coding projects that were later completed
and added to TTK’s source code. Specifically, due to the hackathon, TTK is now
also shipped via a Docker image and an Anaconda package (Sect. 3.1), is further
integrated into Inviwo (Sect. 3.3), and supports periodic grids (Sect. 3.4).

The coding project that worked on a new vector field robustness module
(Sect. 3.2) is not yet completed, but yielded valuable insight into the practical chal-
lenges new developers face while adding new algorithms to TTK. Based on that
insight, TTK’s internal API is now getting revised (Sect. 4.3).

4.2 Organizational Aspects

Amajor factor for the success of the TTKhackathonwas to organize it as a co-located
event at the TopoInVis conference. This was advantageous to both the hackathon
organizers as well as the participants, as conference participants correspond to TTK’s
target user base, and participants were able to simply extend their stay by one day to
attend the hackathon.

Although the organizers originally intended to spend the same amount of time
on introducing TTK and working on the actual coding projects, it turned out to be
better to spend more time on the actual coding sessions. In future hackathons, the
organizers recommend to use the revised schedule (Fig. 3), and to adjust the content of
the introduction session based on the attendees. To this end, the initial questionnaire
prior to the hackathon was essential in assessing the different experience levels
and interests of the participants. A shortcoming of the organization was the missed
opportunity to collect a formal feedback of the participants via another questionnaire.
The organizers strongly recommend to do so in future events.
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4.3 TTK Development Directions

Already at the beginning of the hackathon it became apparent that many participants
struggled with installing TTK on their system. In fact, many potential users are
currently discouraged to even try out TTK because it is very difficult to get it up and
running. The hackathon sprout two valuable approaches to this problem by making
TTK accessible via a Docker container and an Anaconda package. Yet, the Docker
container requires superuser privileges and only supports software rendering, and
the Anaconda package does not feature ParaView as a front end. Besides advancing
these approaches, it also seems valuable to improve and simplify the general build
process of TTK in the future.

Moreover, it appeared that TTK’s internal API could be greatly simplified in
the interest of readability and accessibility to new developers, without changes in
performance or in its core design principles. Based on feedback from the participants,
the senior developers are currently revising TTK’s internal API tomake the code base
more transparent, simpler, and easier to modify, in order to drastically reduce the
amount of effort users and developers have to spend on learning and extending TTK.

In conclusion, it is the belief of the organizers that the hackathon was essential
for growing TTK’s user and developer base, for addressing current limitations, and
deriving future development directions.
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