
Chapter 6
Explainable Deep Learning

Recent advances in deep learning have made tremendous progress in the adoption
of neural network models for tasks from resource utilization to autonomous driving.
Most deep learning models are opaque black-box models that are not easily
explainable. Unlike linear models, the weights of a neural network are not inherently
interpretable to humans. The need for explainable deep learning has led to the
development of a variety of methods that can help us better understand the decisions
and decision-making process of neural network models. We note that many of the
general post-hoc model-agnostic methods presented in Chap. 5 are applicable to
deep learning models. This chapter presents a collection of explanation approaches
that are specifically developed for neural networks by leveraging architecture or
learning method.

6.1 Applications

The need for explainable deep learning is being driven by many real-world needs
and applications. We discuss three broad categories: model validation, debugging,
and exploration.

1. Model Validation: Model validation is the task of assessing how well a
model behaves as intended in the real world. By doing so, we can assess the
effectiveness and accuracy of a model. Explainable AI techniques can help us
understand when errors in prediction occur and why they occur.

2. Model Debugging: Sometimes, a model may behave as intended but possess
hidden biases. In recent years, we have seen real-life consequences of data and
model biases. Our understanding of the weaknesses and limitations of deep
learning models is vital for their adoption. Model debugging through explainable
AI can help us uncover these deficiencies and provide insights into solutions to
overcome them.

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2021
U. Kamath, J. Liu, Explainable Artificial Intelligence: An Introduction to
Interpretable Machine Learning, https://doi.org/10.1007/978-3-030-83356-5_6

217

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-83356-5_6&domain=pdf
https://doi.org/10.1007/978-3-030-83356-5_6


218 6 Explainable Deep Learning

3. Model Exploration: With the exponential growth in complexity of recent deep
learning models (for instance, GPT-3 consists of 96 layers and 175 billion
parameters), we have arrived at a point where we are unsure of what hidden
abilities these models possess. Model exploration is the task of assessing the
performance of a model on tasks beyond what it was originally intended.
Explainable AI has become essential in order for us to understand the capabilities
of these deep models through model exploration.

6.2 Tools and Libraries

Table 6.1 provides details of all the libraries used for various models in the chapter.

Table 6.1 Models and
implementations

Model/Algorithm Library

Attention (NMT) TensorFlow

Attention (image captioning) TensorFlow

LIME Captum (PyTorch)

Occlusion Captum (PyTorch)

RISE Keras

Activation Maximization tf-keras-vis

Saliency map Captum (PyTorch)

DeepLIFT Captum (PyTorch)

DeepSHAP Captum (PyTorch)

Deconvolution Captum (PyTorch)

Guided Backprop Captum (PyTorch)

Integrated Gradients Captum (PyTorch)

Layer-wise relevance propagation Captum-0.4.0 (PyTorch)

Excitation backpropagation excitationbp (PyTorch)

GradCAM Captum (PyTorch)

TCAV Captum (PyTorch)

6.3 Intrinsic

Intrinsic explainable deep learning methods leverage inherent model architecture to
provide explanations of model predictions. Intrinsic methods encompass two types:
attention-based and jointly trained multi-task models. One distinction between
intrinsic and post-hoc explainable deep learning methods is that they can provide
explanations even during training.



6.3 Intrinsic 219

6.3.1 Attention

Attention-based neural networks mimic cognitive attention processes and can
implicitly provide explanations of their output directly from the weights of their
attention mechanism. The weights of the attention layer are learned during training.
These weights inform which parts of the input feature space are “attended to” and
influence the prediction. They provide a measure of feature importance and can be
visualized via heatmaps, such as Fig. 6.1 for a word model or Fig. 6.2 for a visual
classifier.

Attention mechanisms can provide useful feature-based explanations, but they
are limited by the scope of the input space. Furthermore, they are interpretable
only if the inputs are themselves interpretable. For intermediate representations in
higher layers of a deep neural network, interpretability may be difficult. Serrato and
Smith [SS19] have shown that attention weights may not necessarily correspond to
importance or represent optimal explanations.

Fig. 6.1 Attention-based heatmap for word modeling



220 6 Explainable Deep Learning

Interpretation of Attention Mechanisms: The attention weights of an
attention-based model provide an intrinsic explanation to feature relevance on
model predictions, but these weights may not provide optimal or interpretable
explanations.

Attention-based neural networks are useful for tasks in NLP (RNNs and LSTMs),
computer vision (CNNs), classification, and others.

Explainable properties of Attention-based methods are shown in Table 6.2.

Fig. 6.2 Attention-based heatmap for visual classifier

Observations:

• Fig. 6.1 is a visualization of the attention weights for a TensorFlow Neural
Machine Translation (NMT) model based on Bahdanau attention. The bi-
LSTM model was trained on the Anki Spanish-to-English dataset for 5
epochs. Lighter colors indicate stronger weights. Word alignment (e.g.,
movie ⇔ pelicula, seen ⇔ visto) explanations are directly observable from
the attention weights.

• Fig. 6.2 shows a sequence of blended attention masks for a neural image
captioning system with a visual attention mechanism that shows what parts
of the image the model focuses on as it generates a caption. The TensorFlow
CNN with soft attention model was trained on the MS-COCO dataset for
just 10 epochs. Note that the visual attention mechanism correctly attended
to “man,” but incorrectly attended to “snowboard.”



6.3 Intrinsic 221

Table 6.2 Explainable
properties of attention-based
methods

Properties Values

Local or global Local

Linear or non-Linear Non-linear

Monotonic or non-monotonic Non-monotonic

Feature interactions captured Yes

Model complexity Low

6.3.2 Joint Training

Another intrinsic method is to adopt a multi-task approach where an additional
task is jointly trained to provide model explanations. This task can be trained
to provide text-based justifications [LYW19, Zel+19], heatmaps over the feature
[LBJ16, Iye+18] or concept space [AJ18, Don+17], or model prototypes [Li+17,
Che+19]. Figure 6.3 illustrates an example of how a DNN architecture can be
augmented with an explanation task that is jointly trained.

Joint training is a flexible method that enables high quality explanations at
the cost of computational complexity due to changes in model architecture. The
explanation task often comes a greater need for more data, and it may require
explanation annotations in the training data in order to be trained with supervision.

Explainable properties of Joint-Training methods are shown in Table 6.3.

Interpretation of Joint Training Tasks: Augmenting network architecture to
jointly train an explanation task is very flexible and can provide high quality
explanations but can impose a heavy computational burden and requires
training data with explanation annotations.

Observations:

• High quality explanations can be generated by jointly training a classifier
against a gold set of explanations, but it can add significant complexity and
computational cost.

• Explanation quality can be evaluated by calculating an explanation factor
based on the explanation classifier output and target model output.



222 6 Explainable Deep Learning

Fig. 6.3 Joint training for explanations

Table 6.3 Explainable
properties of joint-training
methods

Properties Values

Local or global Both

Linear or non-Linear Both

Monotonic or non-monotonic Both

Feature interactions captured Yes

Model complexity High

6.4 Perturbation

Perturbation methods attempt to explain feature relevance by measuring changes
in prediction score as features are altered. Perturbations at a feature level include
replacing, omitting individual features or groups, and learning attribution masks
that can explain the contributions of features.



6.4 Perturbation 223

6.4.1 LIME

As noted in Chap. 5, surrogate explanation methods replace complex models with
simpler models that approximate the predictions of the original model. For neural
networks, this process is known as “model distillation” where the knowledge
encoded in a neural net is distilled into an interpretable machine learning model
that can mimic its behavior [HVD15]. Explanation of the original neural network is
provided through this interpretable model.

Local Interpretable Model-agnostic Explanations (LIME) is a useful method for
generating local explanations of a model for specific instances. As LIME is model-
agnostic, it is applicable to a variety of neural networks. LIME maps input data to an
interpretable representation x → z = g(x), which is typically a binary vector used
to represent the presence or absence of specific features in the input. For images or
text, this could be the presence or absence of a patch of pixels or a set of words,
respectively. It seeks to learn an interpretable model h(z) by optimizing with the
objective

argmin
g∈G

L (f, g, πx) + Ω(g) (6.1)

where πx is a distance penalty between samples z and x, L is a measure of the
unfaithfulness of g in imitating f in the local region defined by πx , and Ω is
a complexity penalty that ensures the learned model is not too complex. As an
example, we can generate local explanations for a neural network image classifier
by applying the following:

h(z) =aT
g x

πx(z) = exp
(
−||x − z||2/σ 2

)

L (f, g, πx) =
∑
z,z′

πx(z)
(
f (z) − h(z′)

)2

Ω(h(z)) =||ag||

As previously noted, LIME explanations require a large number of randomly
perturbed samples to compute accurate local explanations of a complex model.
The class of each of these samples must be first predicted by a forward pass of
the complex model, which could add computational burden when explaining large
neural networks.

Explainable properties of LIME are shown in Table 6.4.



224 6 Explainable Deep Learning

Fig. 6.4 LIME explanations on Fashion MNIST

Observations:

• The left side of Fig. 6.4 shows the model prediction from a PyTorch CNN
model with three convolutional layers and two fully connected layers trained
on Fashion MNIST for 2 epochs.

• LIME provides local explanations for image classification by computing the
effect of the presence or absence of superpixels on the classification.

• The right side shows the importance of the superpixels (of a single color) on
the prediction category 3 (Dress).

Table 6.4 Explainable
properties of LIME

Properties Values

Local or global Local

Linear or non-linear Both

Monotonic or non-monotonic Both

Feature interactions captured Yes

Model complexity Medium



6.4 Perturbation 225

6.4.2 Occlusion

Perhaps one of the easiest ways to perturb an instance, occlusion (also named feature
ablation) is a local method by which the input features of an instance are sequentially
replaced with a constant (commonly zero). In 2013, [ZF13] proposed occlusion
sensitivity as an explanation method for image classification by systematically
occluding different portions of the input image with a gray patch sliding window.
Feature relevance is measured by the change in prediction accuracy of the correct
class or feature activation magnitude of the last neural network layer. This approach
is applicable to other machine learning tasks as well. In 2017, [LMJ17] proposed an
occlusion method for natural language-related tasks termed representation erasure,
where input words are systematically erased to determine their contribution to
prediction accuracy.

Interpretation of Occlusion: Occlusion methods are local explanations similar
to ablation methods in Chap. 5, where input features are systematically
replaced with a constant. The more prediction accuracy drops, the more
significant the occluded features. Occlusion methods are computationally
efficient but do not capture feature interaction well.

Like the feature ablation methods of Chap. 5, occlusion has limited ability to
capture feature interaction effects. If interaction effects are significant, occlusion
will likely return incorrect results. Unlike LOCO, occlusion is a local method that
is easy to compute and does not require model retraining.

Explainable properties of Occlusion are shown in Table 6.5.

Observations:

• The left side of Fig. 6.5 shows two category 9 (shoe) classifier predictions
by a PyTorch 3-convolutional layer CNN model trained on Fashion MNIST.

• The right side of Fig. 6.5 shows the occlusion importance maps generated by
sliding a black 3x3 pixel mask across the image and measuring the resulting
change in prediction probability.

• For both images, the importance maps indicate the diagonal area which most
influence the classifier prediction for category 9.



226 6 Explainable Deep Learning

Fig. 6.5 Occlusion-based importance map on Fashion MNIST

Table 6.5 Explainable
properties of occlusion

Properties Values

Local or global Local

Linear or non-linear Non-linear

Monotonic or non-monotonic Non-monotonic

Feature interactions captured No

Model complexity Low

6.4.3 RISE

In 2018, [PDS18a] proposed the Random Input Sampling for Explanations (RISE)
method as generalized version of occlusion by probing a model with randomly
masked portions of the input instance. Given a random mask M , an input instance



6.4 Perturbation 227

x, and a model f (x), the feature importance of xj (the j -th feature of x) is given by

Sf (xj ) = EM

[
f (x � M)|M(xj ) = 1

]
(6.2)

where � denotes element-wise multiplication. Thus, RISE computes the importance
map as the weighted average of random masks.

In practice, Monte Carlo sampling is used to generate random masks to compute
RISE. As binary masks suffer when feature interactions exist, [PDS18a] proposed
a soft version that up-samples a small binary mask using bilinear interpolation. The
resulting mask values are continuous across [0, 1].

Explainable properties of RISE are shown in Table 6.6.

Interpretation of RISE: As a Monte Carlo sampled occlusion method, RISE is
useful for generating importance map explanations of specific instances. By
incorporating bilinear interpolation of smaller binary patches, RISE can take
feature interactions into account.

Fig. 6.6 RISE importance map on Fashion MNIST



228 6 Explainable Deep Learning

Observations:

• The left image in Fig. 6.6 was classified as category 9 (shoe) by a 2-layer
Keras CNN model trained on Fashion MNIST.

• The RISE importance map on the right side was computed using 2000Monte
Carlo generated random pixel maps.

• The right image shows higher importance around the ankle and toe area of
the shoe image, while little to no importance with the rest of the image.

• RISE provides better importance maps than occlusion but at higher compu-
tation cost.

Table 6.6 Explainable
properties of RISE

Properties Values

Local or global Local

Linear or non-linear Non-linear

Monotonic or non-monotonic Non-monotonic

Feature interactions captured Yes

Model complexity Medium

6.4.4 Prediction Difference Analysis

Prediction Difference Analysis (PDA) was proposed by [Zin+17] as a classifier
explanation method to assign a relevance value to each input feature with respect
to each class. It estimates this relevance by measuring how prediction changes if a
feature value is unknown. Since for neural networks it is impractical to either label a
feature as unknown or retrain the model with the feature left out (e.g., LOCO), PDA
simulates the absence of the feature by marginalizing over it. Given a class c and an
input instance x with j -th feature xj , the class probability with unknown feature xj

is given by

p(c|x−j ) =
∑
xj

p(xj |x−j )p(c|x−j , xj ) (6.3)

where x−j is the set of all features in x except the j -th feature and the summation
is taken over all possible values of xj . For large feature spaces, computational
efficiency can be gained by assuming feature xj is uncorrelated with the other
features x−j , and the class probability becomes



6.4 Perturbation 229

p()c|x−j ) ≈
∑
xj

p(xj )p(c|x−j , xj ) (6.4)

where p(xj ) can be approximated by its empirical distribution. PDA compares the
class probability with all features present p(c|x) with p(c|x−j ) to determine feature
relevance by defining a weight-of-evidence function:

WEj(c|x) = log2 (odds(c|x)) − log2
(
odds(c|x−j )

)
(6.5)

where

odds(c|x) = p(c|x)

1 − p(c|x)
odds(c|x−j ) = p(c|x−j )

1 − p(c|x−j )
(6.6)

To account for zero probabilities, [Zin+17] proposed using a Laplace correction to
the class probability:

p(c|x) ← p(c|x)n + 1

n + k
(6.7)

where N is the number of training instances and k is the number of classes. The
magnitude of the evidence function WEj indicates the significance of the j -th
feature on class c prediction. A positive value of WEj implies that feature xj

contributed positively to the evidence for class c, and removing it would reduce
confidence in prediction for the class. A negative value implies evidence against the
class.

When feature interactions exist, PDA can be adjusted to account for neighbor
interactions. Instead of assuming feature xj is uncorrelated with every other feature
and replacing the conditional probability p(xj |x−j ) with p(xj ), [Zin+17] proposed
using conditional sampling where a neighborhood patch of features around and
including xj is marginalized:

p(xj |x−j ) ≈ p(xj |x̂−j ) (6.8)

Here, x̂−j is the set of all features except for the patch of features around and
including xj .

PDA is also applicable for visualizing neuron contributions to hidden layer
activations. Given a hidden layer H with neuron values h and the i-th neuron in
the subsequent layer that depends on H with value zi(h), the activation function g

when the j -th neuron value in H is unknown is given by

g(zj |h−j ) =
∑
hj

p(hj |h−j )zi(h−j , hj ) (6.9)

and the activation differenceADj is a measure of the contribution of the j -th neuron
in hidden layer H to the i-th neuron in the subsequent layer:



230 6 Explainable Deep Learning

ADj(zi |h) = g(zi |h) − g(zi |h−j ) (6.10)

In practice, PDA is fairly computationally intensive, especially if conditional
sampling is used to capture neighbor feature interactions.

Explainable properties of Prediction Difference Analysis are shown in Table 6.7.

Interpretation of Prediction Difference Analysis: PDA is a local method
that measures feature relevance by taking the class prediction probability
differences while marginalizing over a feature or a patch of features. It can
account for feature interactions but comes with a larger computation cost.

Table 6.7 Explainable
properties of prediction
difference analysis

Properties Values

Local or global Local

Linear or non-linear Non-linear

Monotonic or non-monotonic Non-monotonic

Feature interactions captured Yes

Model complexity Medium

6.4.5 Meaningful Perturbation

Meaningful perturbation (MP) [FV17] is a local explanation method based on a
framework of meta-predictors to explain predictions for neural classifiers. These
meta-predictors are trained to predict the presence or absence of input features.
Their prediction error is a measure of the faithfulness of the explanation.

For a given instance x0, the method applies a set of meaningful, local perturba-
tions given by

[Φ(x0,m)] =

⎧⎪⎪⎨
⎪⎪⎩

m(u)x0(u) + (1 − m(u))μ0, constant

m(u)x0(u) + (1 − m(u))η(u) noise∫
gσ0m(u)(v − u)x0(v)dv blur

(6.11)

where μ0 is the average color, η(u) are i.i.d. Gaussian noise samples, and σ0 is the
standard deviation of the Gaussian blur kernel gσ . The method plays a “deletion
game,” which seeks to find the smallest deletion mask m∗ that causes the classifier
score fc for class c to drop fc(Φ(x0,m)) < f c(x0) by optimizing:

m∗ = argmin
m∈[0,1]d

λ||1 − m||1 + fc(Φ(x0,m)) (6.12)



6.4 Perturbation 231

where d is the total number of features and ε is a hyperparameter. A symmetric
“preservation game” can also be played, which seeks to find the smallest subset
of the image that must be retained to preserve the classifier score fc(Φ(x0,m)) ≥
f c(x0) by optimizing:

m∗ = argmin
m∈[0,1]d

λ||m||1 + fc(Φ(x0,m)) (6.13)

The deletion game tries to remove just enough evidence to prevent the model from
recognizing the class, while the preservation game ties to keep just enough evidence.
Both of these optimizations can be solved by gradient descent.

To mitigate the effects of artifacts that might exist in the trained neural network,
meaningful perturbations propose a modified deletion game where the learned mask
is regularized:

m∗ = min
m∈[0,1]d

λ1||1 − m||1 + λ2
∑
u

||∇m(u)||ββ + Eτ [fc(Φ(x0(· − τ),m))]

(6.14)
This optimization can be solved with stochastic gradient descent.

Interpretation of Meaningful Perturbations: MP is a global method that learns
where a neural classifier looks by discovering features that most affect its class
prediction output score when locally perturbed. It learns a feature mask that
explains the classification result as an optimization problem.

In practice, the algorithm learns the smallest, low-resolution, sparse set of masks,
which, when up-sampled and added to the input instance, causes the target class
prediction to drop.

Fig. 6.7 Meaningful perturbations mask on Fashion MNIST



232 6 Explainable Deep Learning

Explainable properties of Meaningful Perturbation are shown in Table 6.8.

Observations:

• The left image in Fig. 6.7 shows the category predictions of a PyTorch 3-
layer CNN model trained on Fashion MNIST.

• The right image shows the meaningful perturbations heatmap for the
prediction of category 7 (Sneaker).

Table 6.8 Explainable
properties of meaningful
perturbation

Properties Values

Local or global Local

Linear or non-linear Non-linear

Monotonic or non-monotonic Non-monotonic

Feature interactions captured Yes

Model complexity Medium

6.5 Gradient/Backpropagation

Whereas perturbation-based explanation methods leverage variations in input fea-
tures to explain feature relevance, gradient methods leverage the flow of information
during backpropagation to explain the relationship between input features and
network output. Gradient-based methods typically provide visual explanations
through heatmaps of neuron or feature attributions.

6.5.1 Activation Maximization

Visual explanations provide an efficient and human-interpretable method to under-
stand deep neural network predictions. One of the earliest global explanation
methods is the Activation Maximization method [ECB10], which visually identifies
the input features that can create the greatest response in the output of specific
neurons.

Given a neural network with parameters θ , an input sample x, and the i-th neuron
in the j -th layer with activation hij (θ, x), the goal of is to find a hypothetical
x∗ that can maximize the activation of this neuron. This can be expressed as the
optimization

x∗ = argmax
x

hij (θ, x) (6.15)

which can be solved using gradient ascent in the input space. It is similar to the
backpropagation method, except instead of adjusting network parameters θ , the



6.5 Gradient/Backpropagation 233

optimization is over the input space while the network parameters are held constant.
The synthetic instance x∗ can be visualized and will represent the input feature
pattern that will maximize the activation of a specific neuron in the network.

Interpretation of Activation Maximization: AM is a global method that finds
the input pattern that can generate the highest activation in the response of a
specific neuron in a deep neural network.

Given the non-linear activations, there are no guarantees that gradient ascent will
identify a unique global optimum x∗, but in practice using multiple random starting
points and either averaging or selecting the maximum activation has been shown to
be effective.

Fig. 6.8 Activation maximization map on Fashion MNIST



234 6 Explainable Deep Learning

Explainable properties of Activation Maximization are shown in Table 6.9.

Observations:

• Fig. 6.8 shows the activation maximization maps for 4 neurons at the output
layer of a Keras 2-layer CNN model trained on Fashion MNIST. These
neurons correspond to 4 classification categories.

• Note that it is difficult to determine the original classification category from
the activation maps (1=Trouser, 2=Pullover, 3=Dress, 5=Sandal).

Table 6.9 Explainable
properties of activation
maximization

Properties Values

Local or global Global

Linear or non-Linear Non-linear

Monotonic or non-monotonic Non-monotonic

Feature interactions captured Yes

Model complexity Low

6.5.2 Class Model Visualization

Activation maximization is the basis of class model visualizations. Given a neural
network classifier with scoring function Sc(x) for an output class c and input x, it is
possible to learn an instance x′ that is most representative of the class by optimizing
the equation

x′ ← argmax
x

Sc(x) − λ||x||2 (6.16)

where λ is a regularization parameter. The generated instances for each class are
learned representations by the neural network and can be very visually entertaining.

Interpretation of Class Model Visualization: this global explanation method
learns the input patterns that generate the greatest activation for a specific
model class. When visualized, these patterns can provide colorful explana-
tions of what the model has learned.

Class model visualizations have recently gained widespread attention for pio-
neering a new branch of deep learning-generated art called “deep dream” and
“Inceptionism” based on the colorful visualizations of model classes.

Explainable properties of Class Model Visualization are shown in Table 6.10.



6.5 Gradient/Backpropagation 235

Fig. 6.9 Class model visualization on Fashion MNIST

Observations:

• Fig. 6.9 shows the model visualizations for category 1 (Trouser) and
category 4 (Coat) from a PyTorch 3-layer CNN model trained on Fashion
MNIST.

• When viewed at a distance, the left image hints at a pair of trousers, while
the right image gives the semblance of a coat.

Table 6.10 Explainable
properties of class model
visualization

Properties Values

Local or global Global

Linear or non-linear Non-linear

Monotonic or non-monotonic Non-monotonic

Feature interactions captured Yes

Model complexity Low

6.5.3 Saliency Maps

Saliency maps [SVZ14a] provide local explanations for specific instances. Given an
instance of interest x0, we can approximate the non-linear scoring function Sc(x) by



236 6 Explainable Deep Learning

a Taylor series expansion around this instance:

Sc(x) ≈ wT x + b (6.17)

where w are the saliency weights

w = ∂Sc

∂x

∣∣∣∣
x=x0

(6.18)

The saliency map Mj for the j -th feature is given by

Mj = |wj | (6.19)

Interpretation of Instance-Specific Saliency Maps: Instance-specific saliency
maps are a local explanation method that takes the partial derivative of
the scoring function with respect to each feature as a measure of feature
importance. They are very quick to calculate but require the scoring function
to be differentiable.

Instance-specific class saliency maps are extremely quick to compute and do not
require any additional annotation to provide explanations. They do, however, require
the scoring function to be differentiable.

Explainable properties of Saliency Maps are shown in Table 6.11.

Observations:

• The left side of Fig. 6.10 shows the category predictions of a PyTorch 3-layer
CNN model trained on Fashion MNIST.

• The right side shows the saliency maps for an image of category 0 (t-shirt)
and category 7 (sandal).

Table 6.11 Explainable
properties of saliency maps

Properties Values

Local or global Local

Linear or non-linear Linear

Monotonic or non-monotonic Monotonic

Feature interactions captured No

Model complexity Low



6.5 Gradient/Backpropagation 237

Fig. 6.10 Saliency maps for instances of Fashion MNIST

6.5.4 DeepLIFT

Deep Learning Important Features (DeepLIFT) [SGK19] is a recursive, local
explanation method that decomposes a neural network model prediction for a
specific instance by backpropagating the contributions of the neurons through the
network. DeepLIFT is based on the difference between the activation of each neuron
and its “reference activation” in order to compute contribution scores. This reference
activation represents a default or a neutral input.

Consider a neuron of interest with activation f (x) and with a set of input neurons
x1, x2, . . . , xn. If f (x′) represents the reference activation of the neuron of interest



238 6 Explainable Deep Learning

for a reference input x′, the difference in neural activation is given by

Δt = f (x) − f (x′) =
n∑

i=1

CΔxiΔt (6.20)

where n is the total number of input neurons necessary to compute f (x) and Δx =
x − x′. This is termed the “summation-to-delta” property. The contribution score
CΔxiΔt relates how changes in input Δx affect changes in neuron activation Δt . If
we divide this contribution score by Δx, we can define a multiplier analogous to a
partial derivative:

mΔxΔt = CΔxΔt

Δx
(6.21)

This multiplier follows a useful chain rule:

mΔxiΔt =
∑
j

mΔxiΔyj
mΔyj Δt (6.22)

This chain rule allows for the contribution scores to be backpropagated layer-by-
layer through the network and is analogous to how gradients are backpropagated.
By using the difference from reference approach, DeepLIFT allows contribution
scores to propagate even when the gradient is zero.

DeepLIFT proposes three contribution scoring functions: a linear rule applicable
to dense and convolutional layers, a rescale rule that can account for saturation and
thresholding problems, and a reveal-cancel rule that treats positive and negative
contributions separately.

The choice of a reference input x′ is an important consideration, as it determines
what relevance scores are computed against. For instance, the use of an all zero
reference may not be as useful if noise is present in the background.

Interpretation of DeepLIFT: as a local explanation method, DeepLIFT calcu-
lates input importance relative to a reference by backpropagating contribution
scores through the network. It is very computationally efficient and provides
an approximation to Shapley values. The choice of scoring function and
reference input should be carefully considered.

DeepLIFT scores can be efficiently computed with a single backward pass. They
are connected to Shapely values, which measure the marginal contribution of each
feature averaged across the set of all possible coalitions of features. If excluding a
feature is equivalent to setting it to its reference value, DeepLIFT can be thought of
as a fast approximation of the Shapely values.

Explainable properties of DeepLIFT are shown in Table 6.12.



6.5 Gradient/Backpropagation 239

Fig. 6.11 DeepLIFT contribution scores on Fashion MNIST

Observations:

• The left side of Fig. 6.11 shows the category predictions of a PyTorch 3-layer
CNN model trained on Fashion MNIST.

• The right side shows the DeepLIFT importance map based on the linear-rule
and black baseline reference.

• Note that DeepLIFT provides better visual explanations in comparison to
saliency maps.



240 6 Explainable Deep Learning

Table 6.12 Explainable
properties of DeepLIFT

Properties Values

Local or global Local

Linear or non-linear Non-linear

Monotonic or non-monotonic Non-monotonic

Feature interactions captured Yes

Model complexity Low

6.5.5 DeepSHAP

DeepSHAP [CLL19] is an extension of the KernelSHAP method of Chap. 5 by
leveraging the compositional architecture of deep neural networks to improve
computational efficiency. As previously mentioned, the per node attribution rules
in DeepLIFT can approximate the Shapley values [SGK19]. DeepSHAP leverages
this approximation as well as DeepLIFT’s multiplier chain rule. In DeepSHAP, the
multipliers are expressed in terms of SHAP values φi :

mxj ,fj
= φi(fj , x)

xj − E
[
xj

] (6.23)

and follow the chain rule:

mxj ,fj
=

∑
j

mxj ,yj
myj ,fj

(6.24)

DeepSHAP calculates SHAP values for large networks by starting with Shapley
values for simple network components and backpropagating them using this rule.

Rather than setting the reference input x′ as in DeepLIFT, DeepSHAP approx-
imates the reference value by averaging over background dataset instances. It can
estimate approximate SHAP values such that they sum up to the difference between
the expected model output on background instances and the current model output
f (x) − E [f (x)].

Interpretation of DeepSHAP: as a local explanation method, DeepSHAP
is an extension of DeepLIFT to backpropagate Shapley values through the
network. DeepSHAP computes an input reference as the expectation over
background data instances. It is very computationally efficient and provides a
quick approximation to Shapley values, which may be biased when features
are strongly correlated.

DeepSHAP is computationally very efficient. Instead of depending on
DeepLIFT’s contribution rules to linearize each node in the network, DeepSHAP
effectively linearizes the network by computing SHAP values using the chain rule.



6.5 Gradient/Backpropagation 241

As such, they are approximations to the true Shapley values and will be biased when
strong feature interactions exist.

Explainable properties of DeepSHAP are shown in Table 6.13.

Observations:

• The left side of Fig. 6.12 shows the predictions of a PyTorch 3-layer CNN
model trained on Fashion MNIST.

• The right side shows the DeepSHAP importance map based on a baseline
reference consisting of a random sample of 10 images from the training set.

• Note that DeepSHAP provides slightly worse visual explanations in com-
parison to DeepLIFT but is more computationally efficient.

Fig. 6.12 DeepSHAP importance map on Fashion MNIST



242 6 Explainable Deep Learning

Table 6.13 Explainable
properties of DeepSHAP

Properties Values

Local or global Local

Linear or non-linear Linear

Monotonic or non-monotonic Monotonic

Feature interactions captured No

Model complexity Low

6.5.6 Deconvolution

Deconvolution [ZF13] is an explanation method proposed for visualizing the feature
contributions of CNN architectures (convnets). It takes the output of the CNN and
runs the CNN in reverse. The guiding notion is to determine which portions of an
input instance are most discriminative for a single neuron.

Given a CNN neural network of J layers, the output of the j -th layer Cj is given
by

Aj = Cj−1 ∗ Kj + bj (6.25)

Bj = ReLU(Aj ) = max
(
Aj , 0

)
(6.26)

Cj = maxpool
(
Bj

)
(6.27)

sj = switch
(
Bj

)
(6.28)

whereKj and bj are the learned filter and bias for the j -th layer, respectively. ReLU
is the rectified linear operator, and the switch variable sj records the indices of the
maximum values in the pooling operation for the deconvolution step.

A deconvolution network (deconvnet) is attached to the original convnet to map
feature activations back to the input space. Each layer in this deconvnet inverts
the corresponding layer of the original convnet. To examine each convnet neuron
activation, the activation is set to zero for all other neurons in the layer, and the
feature maps are fed as input to the deconvnet layer, which sequentially applies
unpooling, rectification, and filtering operations.

Ĉj = unpool
(
Cj , sj

)
(6.29)

B̂j = ReLU(Ĉj ) = max
(
Ĉj , 0

)
(6.30)

Âj =
(
B̂j − bj

)
∗ KjT (6.31)



6.5 Gradient/Backpropagation 243

where KjT is the transpose of Kj . Together, the set of deconvolution operations
is called transpose convolution. While the max pooling operation is not invertible,
unpooling can be performed if switch variables are recorded during the forward
propagation of the convnet. The ReLU ensures feature maps are non-negative, and
the filtering operation up-weights and up-scales the feature representation in each
layer.

Interpretation of Deconvolution: deconvolution explains learned feature maps
in CNN-based models by propagating them through an inverted convolutional
network called a deconvnet.

The deconvolution method is specific to CNN architectures, though the process is
applicable to dense layers as well and other non-linearities beyond ReLU. In order
to operate effectively, deconvolution requires a forward pass through the original
convnet in order to calculate and store the switch variables to allow the deconvnet
to reverse the max pooling operations. As a result, visualizations derived from
deconvolution are conditioned on the instance used to calculate the switch variables
and do not directly visualize the learned features [Spr+15b].

Explainable properties of Deconvolution are shown in Table 6.14.

Fig. 6.13 Deconvolution visualizations on Fashion MNIST



244 6 Explainable Deep Learning

Observations:

• The left side of Fig. 6.13 shows the input image and category prediction of
a PyTorch 3-layer CNN model trained on Fashion MNIST.

• The right side shows the deconvolution feature importance map conditioned
on the input image instance.

6.5.7 Guided Backpropagation

Guided backpropagation [Spr+15b] is another explanation method for feature
attribution on CNN-based architectures. It is similar to deconvolution, except it
removes the unpooling operation and adopts a modified operation for the ReLU
non-linearity.

Table 6.14 Explainable
properties of deconvolution

Properties Values

Local or global Global

Linear or non-linear Non-linear

Monotonic or non-monotonic Non-monotonic

Feature interactions captured Yes

Model complexity Medium

In deconvolution, only positive gradients are backpropagated. In vanilla back-
propagation, the gradients for only positive inputs are kept for each layer. Guided
backpropagation incorporates both of these methods such that only positive gra-
dients associated with positive input values are backpropagated. This stops the
backward flow of negative gradients through the inverse network.

Let f
j
i and R

j
i be the i-th neuron input to and feature map of the j -th layer,

respectively. Then for guided backpropagation, we have during the backward pass

R
j
i = (f

j
i > 0)(Rj+1

i > 0) R
j+1
i (6.32)

This is in contrast to deconvolution, where the backward pass applies the operation
after unpooling:

R
j
i = (R

j+1
i > 0) R

j+1
i (6.33)

Because of the additional guidance signal in guided backpropagation, unpooling
is unnecessary and does not require an initial forward pass through the convnet to



6.5 Gradient/Backpropagation 245

compute and store switch variables. As a result, it is more computationally efficient.
Explanations via guided backpropagation are not conditioned on any single instance
as in deconvolution and provide more accurate explanations of feature activations.

Explainable properties of Guided Backpropagation are shown in Table 6.15.

Interpretation of Guided Backpropagation: guided backprop is an improve-
ment upon deconvolution to explain learned feature maps in CNN-based
models. It replaces unpooling and ReLU operations with an operation allow
only positive gradients associated with positive inputs to be backpropagated.

Fig. 6.14 Guided backpropagation visualizations on Fashion MNIST

Observations:

• The left side of Fig. 6.14 shows the category prediction of a PyTorch 3-layer
CNN model trained on Fashion MNIST.

• The right side shows the guided backprop feature importance map without
the need for a forward pass for conditioning as in deconvolution.

• Note the improvement over deconvolution in visual explanation.



246 6 Explainable Deep Learning

Table 6.15 Explainable
properties of guided
backpropagation

Properties Values

Local or global Global

Linear or non-linear Non-linear

Monotonic or non-monotonic Non-monotonic

Feature interactions captured Yes

Model complexity Medium

6.5.8 Integrated Gradients

Integrated gradients [SN19] is an explanation method that does not require modifi-
cation of the original network and takes an axiomatic approach to generate feature
attributions for specific instances. Ideally, an attribution method should obey the
axiom of sensitivity, which states that if two inputs x and x′ differ by a single feature
and have different prediction values f (x) �= f (x′), then the feature should be
given non-zero attribution. Unfortunately, many gradient-based attribution methods
violate this sensitivity axiom, including DeepLIFT, deconvolution, and guided
backpropagation.

An attribution method should also obey the axiom of implementation invariance,
which states that two neural networks, even with vastly different implementations,
are functionally equivalent if they map the same inputs to the same outputs.
Attributions are identical across two functionally equivalent neural networks.

The integrated gradients method satisfies both of these axioms. Given a neural
network model f , an input instance x, and a baseline reference x′, one can traverse
along the direct path from reference to input x′ → x while accumulating gradients.
The integrated gradient along the j -th feature is given by

IGj (x) = (xj − x′
j )

∫ 1

α=0

∂f
(
x′ + α

[
x − x′])

∂xj

∂α (6.34)

Integrated gradients satisfy the axiom of completeness, which states that the sum of
the attributions is equal to f (x) − f (x′).

A key consideration with integrated gradients is selecting a baseline, similar to
DeepLIFT. Ensuring that the baseline reference has near-zero score is important to
ensure the attributions are derived from the input rather than the baseline.

In practice, the path integral is calculated using a Riemann summation approxi-
mation:

IGj (x) ≈ (xj − x′
j )

M

M∑
i=1

∂f

(
x′ + i

M
(x − x′)

)

∂xj

(6.35)

where the parameter M is the number of steps in the Riemann summation.



6.5 Gradient/Backpropagation 247

Interpretation of Integrated Gradients: IG takes an axiomatic approach to
computing feature attributions by accumulating gradients along the direct path
between a baseline reference and an instance of interest. They are simple and
quick to compute.

The integrated gradients method is not limited to CNNs and can be applied to a
wide variety of deep neural networks. They are computationally efficient and simple
to compute.

Explainable properties of Integrated Gradients are shown in Table 6.16.

Fig. 6.15 Integrated gradients attributions on Fashion MNIST



248 6 Explainable Deep Learning

Observations:

• The left side of Fig. 6.15 shows the category prediction of a PyTorch 3-layer
CNN model trained on Fashion MNIST.

• The right side shows the integrated gradients importance map using a zero
baseline and 50-step Riemann approximation.

• Note the quality of the visual explanations in comparison to DeepLIFT.

Table 6.16 Explainable
properties of integrated
gradients

Properties Values

Local or global Local

Linear or non-linear Non-linear

Monotonic or non-monotonic Non-monotonic

Feature interactions captured Yes

Model complexity Medium

6.5.9 Layer-Wise Relevance Propagation

Layer-wise relevance propagation (LRP) [Bac+15a] is an explanation method that
computes feature attributions by backpropagating relevance scores through the
network layers from output to input. Relevance scores measure the connection
strength between any two neurons.

LRP follows the law of relevance conservation, which states that the relevance of
any neuron is equal to the sum of its relevance maps in the previous layer. That is, if
the relevance score for the i-th neuron in layer j is given by R

j
i , then conservation

states that

f (x) =
∑

k

R
j+1
k =

∑
i

R
j
i = . . . =

∑
m

R1
m (6.36)

where f (x) is the neural network prediction for input x. The total relevance is
preserved across layers.

LRP starts with a forward pass on an instance of interest and the class prediction
of a single neuron in the top layer with all other neurons at zero value. The relevance
is set equal to this class prediction and is backpropagated through the network with
the propagation rule:



6.5 Gradient/Backpropagation 249

Rj =
∑

k

ajwjk∑j

0 ajwjk

Rk (6.37)

where neurons j and k are in consecutive layers, aj is the activation for the
neuron in layer j , and wjk is the connection weight between these two neurons.
Relevance scores can thus be recursively calculated back to the input and then
visualized as a heatmap to explain input feature attribution. Note that other
propagation rules can be used for specific applications, and different rules can
be used for different layers (Table 6.17) so long as the law of conservation is
followed [Mon+19].

Explainable properties of Integrated Gradients are shown in Table 6.18.

Interpretation of Layer-wise Relevance Propagation: LRP provides visual
explanations of individual instances by backpropagating relevance scores
from the neural network top layer down to the input. By construction, the
total relevance is conserved across layers. The choice of propagation rule is a
design consideration.

Table 6.17 List of
commonly used LRP rules

Rule Layer

Rj = ∑
k

aj wjk∑
0,j aj wjk

Rk Upper

Rj = ∑
k

aj wjk

ε+∑
0,j aj wjk

Rk Middle

Rj = ∑
k

aj

(
wjk+γw+

jk

)

∑
0,j aj

(
wjk+γw+

jk

)Rk Lower

Rj = ∑
k

(
α

(aj wjk)
+

∑
0,j (aj wjk)

+ − β
(aj wjk)

−
∑

0,j (aj wjk)
−

)
Rk Lower

Rj = ∑
k

1∑
j 1

Rk Lower

Rj = ∑
j

w2
ij∑

i w2
ij

Rj First

Ri = ∑
j

xiwij −liw
+
ij −hiw

−
ij∑

i xiwij −liw
+
ij −hiw

−
ij

Rj First



250 6 Explainable Deep Learning

Fig. 6.16 Layer-wise relevance propagation heatmap on Fashion MNIST

Observations:

• Fig. 6.16 shows the category prediction of a PyTorch 3-layer CNN model
trained on Fashion MNIST.

• The right side shows the layer-wise relevance propagation heatmap using a
zero baseline and 50-step Riemann approximation.

• Note the quality of the visual explanations in comparison to DeepLIFT.



6.5 Gradient/Backpropagation 251

Table 6.18 Explainable
properties of layer-wise
relevance propagation

Properties Values

Local or global Local

Linear or non-linear Non-linear

Monotonic or non-monotonic Non-monotonic

Feature interactions captured Yes

Model complexity Medium

6.5.10 Excitation Backpropagation

Excitation backpropagation (EBP) [Zha+16] is an explanation method that aims
to visualize neuron activations by applying a winner-take-all (WTA) approach to
backpropagating through excitatory connections between neurons for classification
tasks. It backpropagates only positive weights while keeping gradients normalized.

For a neuron ai in the i-th layer, the conditional winning probability P(aj |ai) of
each neuron aj in the preceding layer connected to it is

P(aj |ai) =
{

Ziâjwji wji ≥ 0

0 otherwise
(6.38)

where âj is the input neuron’s response and the normalization factor Zi is given by

Zi =

⎧
⎪⎨
⎪⎩
0

∑
j :wji≥0 âjwji = 0

1∑
j :wji≥0 âjwji

otherwise
(6.39)

In the winner-take-all approach, if ai is a winning neuron, the next winning
neuron will be sampled based on P(aj |ai). The weight wji reflects the top-down
feature expectation and âj captures the bottom-up feature strength. Applying this
recursively allows EBP to compute marginal winning probability maps which can
serve as soft attention maps.

Interpretation of Excitation Backpropagation: EBP learns soft attention maps
by applying a probabilistic winner-take-all process to backpropagate activa-
tions top-down through the network. It can also learn contrastive attention
maps that improve discriminative ability. EBP is restricted to neural classifi-
cation tasks.

In practice, EBP is often used to propagate a pair of contrastive top-down
signals by backpropagating both a positive and a negative neural activations top-
down through the network. As marginal winning probability maps are linear



252 6 Explainable Deep Learning

functions of the top-down signal, the sum of these two activations can be computed
simultaneously during a single backward pass. The resulting contrastive marginal
winning probability map can amplify discriminative excitations.

Explainable properties of Excitation Backpropagation are shown in Table 6.19.

Fig. 6.17 Excitation backpropagation heatmap on Fashion MNIST

Observations:

• Fig. 6.17 shows the input image to a 3-layer MLP model trained on Fashion
MNIST.

• The right side shows the excitation backpropagation soft attention map.

Table 6.19 Explainable
properties of excitation
backpropagation

Properties Values

Local or global Local

Linear or non-linear Non-linear

Monotonic or non-monotonic Non-monotonic

Feature interactions captured Yes

Model complexity Medium



6.5 Gradient/Backpropagation 253

6.5.11 CAM

Class activation maps (CAM) [Zho+15a] is an explanation method applicable
to specific CNN architectures. It has been shown that CNNs can be used for
object localization if the max pooling operation is replaced with global average
pooling [Zho+15b]. By adding a global average pooling operation between the
last convolutional layer and the output layer of a CNN, the discriminative image
regions associated with a prediction for a particular class can be visualized as a
class activation map.

Let fk(x, y) represent the activation of the k-th neuron in the last convolutional
layer of a CNN at spatial location (x, y). Then the output Pc for class c is given by

Pc = exp(Sc)∑
c exp(Sc)

(6.40)

Sc =
∑

k

wc
kFk (6.41)

Fk =
∑
x,y

fk(x, y) (6.42)

where wc
k is the weight corresponding to class c for the k-th neuron, Sc is the input

to the softmax neuron for class c, and Fk is the global average pooled output at the
k-th neuron. The weights wc

k can be interpreted as a measure of the importance of
Fk for class c.

The class activation map Mc(x, y) is defined as

Mc(x, y) =
∑

k

wc
kfk(x, y) (6.43)

Note that the class c softmax input can be written as

Sc =
∑
x,y

∑
k

wc
kfk(x, y) =

∑
x,y

Mc(x, y) (6.44)

and the class activation map can be interpreted as a measure of importance of the
activation at spatial location (x, y) for class c prediction. By up-sampling the class
activation map to the size of the input image and applying thresholding, a heatmap
is generated that identifies the regions of the input image most relevant to class c.

While CAM is computationally efficient as it requires a forward pass and a partial
backward pass. Unfortunately, it is restricted to a set of specific CNN architectures
that exclude fully connected layers.

Explainable properties of CAM are shown in Table 6.20.



254 6 Explainable Deep Learning

Interpretation of Class Activation Maps: CAMs are useful for a specific set of
CNN models by using global max pooling to visualize the regions of an input
image most relevant to a class prediction. It exploits the spatial information
that is preserved through convolutional layers.

Table 6.20 Explainable
properties of CAM

Properties Values

Local or global Local

Linear or non-linear Non-linear

Monotonic or non-monotonic Non-monotonic

Feature interactions captured Yes

Model complexity Medium

6.5.12 Gradient-Weighted CAM

Gradient-weighed CAM (GradCAM) [Sel+19] is a generalization of CAM to allow
for more flexible CNN architectures. Instead of relying on a global average pooling
after the last convolutional layer, it allows for any architecture as long as layers are
differentiable. GradCAM assigns importance values to each neuron by utilizing the
gradient information that flows into the last convolutional layer of the CNN.

Let yc be the score for class c, and let Ak
xy be the feature map activations of

a convolutional layer neuron at location (x, y). GradCAM calculates the neuron
importance weights αc

k by global average pooling the gradients:

αc
k = 1

Z

∑
x,y

∂yc

∂Ak
xy︸ ︷︷ ︸

gradient

(6.45)

where Z is a proportionality constant that can be disregarded since it is normalized
out during visualization. With these alpha weights, a GradCAM localization
heatmap Lc for class c is calculated by

Lc = ReLU

(∑
k

αc
kA

k

)
(6.46)

The ReLU operation is to ensure only positive importance values are emphasized.
In effect, GradCAM takes the weighted sum of the feature map activations of the



6.5 Gradient/Backpropagation 255

convolutional layer to generate gradient-weighted class activation maps. These class
activation maps are up-sampled to the size of the input image to generate heatmaps
of importance values.

Interpretation of Gradient-Weighted Class Activation Maps: GradCAM is
a generalization of CAM to a broader range of CNN architectures. It can
efficiently generate localization heatmap explanations for specific instances.

Like CAM, GradCAM is computationally efficient and requires a single forward
pass and a partial backward pass. Unlike CAM, it is applicable to a much broader
range of CNN-based architectures.

Explainable properties of GradCAM are shown in Table 6.21.

Fig. 6.18 Up-sampled localization heatmap on Fashion MNIST

Observations:

• Fig. 6.18 shows the input image to a PyTorch 3-layer CNN model trained on
Fashion MNIST.

• The right side shows the up-sampled GradCAM heatmap for the conv3 layer
(the last convolutional layer)

• GradCAM identifies the sleeve areas as important features to the prediction
of category 4 (Coat).



256 6 Explainable Deep Learning

Table 6.21 Explainable
properties of GradCAM

Properties Values

Local or global Local

Linear or non-linear Non-linear

Monotonic or non-monotonic Non-monotonic

Feature interactions captured Yes

Model complexity Medium

6.5.13 Testing with Concept Activation Vectors

One of the challenges of neural explanation methods is that they may not gener-
ate human-interpretable explanations. Feature importance heatmaps may identify
regions of the input instance that influence output prediction, but these do not
correspond to human-relatable concepts. Furthermore, hidden layer activations are
seldom comprehensible. Concept activation vectors (CAVs) [Kim+18] map data and
latent representations to human-interpretable concepts.

Let Em represent the vector space of basis vectors em that span the input features
and neural activations and Eh represent the vector space of human-interpretable
concepts. A concept activation vector is a mapping from Em to Eh and is learned
by training a binary linear classifier f on the layer activations with a set of hand-
selected positive examples that contain the concept, as well as a set of random
negative instances:

f (x) =
{
1 wT x + b ≥ threshold

0 wT x + b < threshold
(6.47)

where w and b are the weights and bias of the binary linear classifier. The CAV vc
j

is the normal vector to the learned hyperplane decision boundary in the direction
toward the concept in the j -th layer, vc

j = w.
Testing with Concept Activation Vectors (TCAV) is an explanation method that

can quantify the class sensitivity of a trained neural network with respect to a
concept in a neural network layer. Let the scoring function Sc

k,j be defined as the
sensitivity of the neural activation at the j -th layer to class k for a given instance x:

Sc
k,j = ∇hk,j (fj (x))vc

j (6.48)

where fj (x) maps the input x to the activation vector of layer j and hk,j maps the
activation vector of layer j to the output activation (logit) of class k. The directional
derivative is taken toward the concept activation vector vc

j for layer j . This scalar
represents the influence of concept c in influencing the model to predict x as class
k. A positive value encourages while a negative value discourages the model toward
class k.

TCAV measures the class sensitivity across inputs of an entire class at layer j by
computing



6.5 Gradient/Backpropagation 257

T CAV c
k,j =

∣∣∣x ∈ Xk : Sc
k,j > 0

∣∣∣
|Xk| (6.49)

where Xk is the set of input instances labeled as class k. This represents the fraction
of instances with activation vectors at layer j positively influenced by concept c. It
neither considers the magnitude of the influence nor negative influences.

TCAV has a distinct advantage in that concept activation vectors for user-
defined concepts can be learned by providing examples from external datasets.
Thus, it is possible to quantify the influence of semantic concepts that are much
more human-comprehensible. However, not all concept activation vectors may be
meaningful, since even a set of randomly selected instances can still produce a
CAV. Furthermore, the CAVs learned for semantically opposing concepts may
significantly overlap, resulting in less discriminative ability of the influence of
related concepts.

Interpretation of Testing with Concept Activation Vectors: concept activation
vectors are effective representations of human-interpretable concepts in the
activations of a neural network layer. These vectors can be used to test
class sensitivity to particular concepts that generate meaningful and human-
understandable explanations.

In practice, learned CAVs should be validated. One method is to retrain the CAV
and calculate TCAV on multiple runs using different random negative instances. A
meaningful CAV should result in consistent TCAV scores across these iterations,
which can be evaluated using a t-test. Another way to validate CAVs is to visualize
the patterns that activate each CAV by applying the activation maximization method.
A further way to validate CAVs is to visualize the set of instances most and least
similar to the CAV in terms of cosine distance.

Explainable properties of TCAV are shown in Table 6.22.

Observations:

• Fig. 6.19 shows the input image (category 9: ankle boot) and individual layer
activations of a PyTorch 3-layer CNN model trained on Fashion MNIST.

• TCAV values were calculated using an SGD classifier for a “sneaker”
concept trained on 100 positive samples with 100 random negative samples
extracted from the test set.

• The TCAV values indicate that class 9 (ankle boot) is fairly sensitive to
the concept “sneaker.” From a human perspective, they share a semantic
relationship as both are types of shoes.



258 6 Explainable Deep Learning

Fig. 6.19 TCAV on Fashion MNIST

Table 6.22 Explainable
properties of TCAV

Properties Values

Local or global Global

Linear or non-linear Linear

Monotonic or non-monotonic Monotonic

Feature interactions captured Yes

Model complexity High



References 259

References

[AJ18] D. Alvarez-Melis, T.S. Jaakkola, Towards robust interpretability with self-explaining
neural networks (2018). arXiv:1806.07538 [cs.LG]

[Bac+15a] S. Bach et al., On pixel-wise explanations for non-linear classifier decisions by
layerwise relevance propagation. PLOS ONE 10(7), 1–46 (2015). https://doi.org/10.
1371/journal.pone.0130140.9

[Bin+16] A. Binder et al., Layer-wise relevance propagation for deep neural network archi-
tectures, in Information Science and Applications (ICISA) 2016, ed. by K.J. Kim,
N. Joukov, vol. 376. Lecture Notes in Electrical Engineering (Springer Singapore,
Singapore, 2016), pp. 913–922. ISBN:978-981-10-0557-2

[Che+19] C. Chen et al., This looks like that: Deep learning for interpretable image recognition
(2019). arXiv:1806.10574 [cs.LG]

[CLL19] H. Chen, S. Lundberg, S.-I. Lee, Explaining models by propagating Shapley values of
local components (2019). arXiv:1911.11888 [cs.LG]

[Don+17] Y. Dong et al., Improving interpretability of deep neural networks with semantic
information (2017). arXiv:1703.04096 [cs.CV]

[ECB10] D. Erhan, A. Courville, Y. Bengio, Understanding Representations Learned in Deep
Architectures. Tech. rep. 1355. Université de Montréal/DIRO (Oct. 2010)

[FV17] R.C. Fong, A. Vedaldi, Interpretable explanations of black boxes by
meaningful perturbation, in 2017 IEEE International Conference on
Computer Vision (ICCV) (Oct. 2017). https://doi.org/10.1109/iccv.2017.371.
http://dx.doi.org/10.1109/ICCV.2017.371

[Goy+20] Y. Goyal et al., Explaining classifiers with causal concept effect (CaCE) (2020).
arXiv:1907.07165 [cs.LG]

[HVD15] G. Hinton, O. Vinyals, J. Dean, Distilling the knowledge in a neural network (2015).
arXiv:1503.02531 [stat.ML]

[Iye+18] R. Iyer et al., Transparency and explanation in deep reinforcement learning neural
networks (2018). arXiv:1809.06061 [cs.LG]

[Kim+18] B. Kim et al., Interpretability beyond feature attribution: Quantitative testing with
concept activation vectors (TCAV), in ICML, ed. by J.G. Dy, A. Krause, vol. 80.
Proceedings of Machine Learning Research (PMLR, 2018), pp. 2673–2682

[LBJ16] T. Lei, R. Barzilay, T. Jaakkola, Rationalizing neural predictions. In Proceedings of the
2016 Conference on Empirical Methods in Natural Language Processing (Association
for Computational Linguistics, Austin, Texas, 2016), pp. 107–117. https://doi.org/10.
18653/v1/D16-1011. https://www.aclweb.org/anthology/D16-1011

[LMJ17] J. Li, W. Monroe, D. Jurafsky, Understanding neural networks through representation
erasure (2017). arXiv:1612.08220 [cs.CL]

[Li+17] O. Li et al., Deep learning for case-based reasoning through prototypes: a neural
network that explains its predictions (2017). arXiv:1710.04806 [cs.AI]

[LYW19] H. Liu, Q. Yin, W.Y. Wang, Towards explainable NLP: A generative explanation
framework for text classification (2019). arXiv:1811.00196 [cs.CL]

[Mon+19] G. Montavon et al., Layer-wise relevance propagation: An overview. Explainable AI
(2019)

[PDS18a] V. Petsiuk, A. Das, K. Saenko, RISE: Randomized input sampling for explanation of
black-box models (2018). arXiv:1806.07421 [cs.CV]

[Sel+19] R.R. Selvaraju et al., Grad-CAM: Visual explanations from deep networks via
gradient-based localization. Int. J. Comput. Vis. 128(2), 336–359 (2019). ISSN: 1573-
1405. http://doi.org/10.1007/s11263-019-01228-7

[SS19] S. Serrano, N.A. Smith, Is attention interpretable? (2019). arXiv:1906.03731 [cs.CL]

https://doi.org/10.1371/journal.pone.0130140.9
https://doi.org/10.1371/journal.pone.0130140.9
https://doi.org/10.1109/iccv.2017.371
https://doi.org/10.18653/v1/D16-1011
https://doi.org/10.18653/v1/D16-1011
https://www.aclweb.org/anthology/D16-1011
http://doi.org/10.1007/s11263-019-01228-7


260 6 Explainable Deep Learning

[SGK19] A. Shrikumar, P. Greenside, A. Kundaje, Learning important features through propa-
gating activation differences (2019). arXiv:1704.02685 [cs.CV]

[SVZ14a] K. Simonyan, A. Vedaldi, A. Zisserman, Deep inside convolutional networks: Visual-
ising image classification models and saliency maps (2014). arXiv:1312.6034 [cs.CV]

[Spr+15b] J.T. Springenberg et al., Striving for simplicity: The all convolutional net (2015).
arXiv:1412.6806 [cs.LG]

[STY17] M. Sundararajan, A. Taly, Q. Yan, Axiomatic attribution for deep networks (2017).
arXiv:1703.01365 [cs.LG]

[Tur95] A.M. Turing, Computers & amp; thought (MIT Press, 1995), pp. 11–35. Chap.
Computing Machinery and Intelligence

[ZTF11] M.D. Zeiler, G.W. Taylor, R. Fergus, Adaptive deconvolutional networks for mid and
high level feature learning, in 2011 International Conference on Computer Vision
(2011), pp. 2018–2025. https://doi.org/10.1109/ICCV.2011.6126474

[ZF13] M.D. Zeiler, R. Fergus, Visualizing and understanding convolutional networks (2013).
arXiv:1311.2901 [cs.CV]

[Zel+19] R. Zellers et al., From recognition to cognition: Visual commonsense reasoning, in
2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR),
June 2019, pp. 6713–6724. https://doi.org/10.1109/CVPR.2019.00688

[Zha+16] J. Zhang et al., Top-down neural attention by excitation backprop (2016).
arXiv:1608.00507 [cs.CV]

[Zho+15a] B. Zhou et al., Learning deep features for discriminative localization (2015).
arXiv:1512.04150 [cs.CV]

[Zho+15b] B. Zhou et al., Object detectors emerge in deep scene CNNs (2015). arXiv:1412.6856
[cs.CV]

[Zin+17] L.M. Zintgraf et al., Visualizing deep neural network decisions: Prediction difference
analysis (2017). arXiv:1702.04595 [cs.CV]

https://doi.org/10.1109/ICCV.2011.6126474
https://doi.org/10.1109/CVPR.2019.00688

	6 Explainable Deep Learning
	6.1 Applications
	6.2 Tools and Libraries
	6.3 Intrinsic
	6.3.1 Attention
	6.3.2 Joint Training

	6.4 Perturbation
	6.4.1 LIME
	6.4.2 Occlusion
	6.4.3 RISE
	6.4.4 Prediction Difference Analysis
	6.4.5 Meaningful Perturbation

	6.5 Gradient/Backpropagation
	6.5.1 Activation Maximization
	6.5.2 Class Model Visualization
	6.5.3 Saliency Maps
	6.5.4 DeepLIFT
	6.5.5 DeepSHAP
	6.5.6 Deconvolution
	6.5.7 Guided Backpropagation
	6.5.8 Integrated Gradients
	6.5.9 Layer-Wise Relevance Propagation
	6.5.10 Excitation Backpropagation
	6.5.11 CAM
	6.5.12 Gradient-Weighted CAM
	6.5.13 Testing with Concept Activation Vectors

	References


