Chapter 3 )
Model Visualization Techniques and Qs
Traditional Interpretable Algorithms

One of the easiest ways to build explainable models is by having the machine
learning algorithm be intrinsically interpretable. Gaining an understanding of how
well a model performs from looking at the results of model evaluation is another
important way to enhance model explainability. We discuss several techniques to
visualize model evaluation including precision-recall curves, ROC curves, residual
plots, silhouette coefficients, and others to give a comprehensive overview of
classification, regression, and clustering techniques. Next, we start understanding
interpretability of some of the traditional machine learning models used in clas-
sification, regression, and clustering. The Pima Indian diabetes dataset is used to
perform supervised and unsupervised classification. The insurance claims dataset is
used for regression model analysis.

3.1 Model Validation, Evaluation, and Hyperparameters

The key to creating great models is to make sure that the model generalizes well
on unseen data. Figure 3.1 gives the most well-established process that ensures
models do not overfit (or underfit) and generalize well for classification and
regression [HTF09a]. The labeled dataset can be divided into training, validation,
and test sets from the original data. Primarily, the test set should be representative of
the unseen real-world data in terms of quality, distribution, class balance, etc. If it is
representative, running the model and evaluating the metrics on the test data gives an
estimate close to what real-world model performance will be. Most algorithms have
various parameters or options that have to be set for optimal performance. Generally,
a separate validation set is used for evaluating model performance on different
parameter values. In the absence of a separate validation set, splitting training data
into train and validation sets is a choice and depends on the amount of labeled data
and the model capacity (VC dimensions). Validation techniques like k-fold cross-
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Fig. 3.1 Training, validation, and test sets for model tuning and evaluation

validation are employed when separate validation sets are not a possibility [CT10].
The validation process plays a vital role in tuning or selecting the model parameters.
The choice of these parameters affects the model performance, and hence explicitly
understanding the options is critical from an explainability standpoint.

To compare and contrast machine learning models it is necessary to use the
same split of train, validation, and test sets to evaluate all the models (with
parameters) using the same performance metric(s). Interpretability is also one
of the aspects that one should focus on along with other metrics.

3.1.1 Tools and Libraries

For all the tasks related to model performance analysis and visualization of results,
we will use the YellowBrick package along with sklearn on the Pima Indian
diabetes dataset (classification) and the insurance claims dataset (regression).
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Fig. 3.2 Validation curves for classifiers with AUC—area under ROC curve. (a) Decision tree. (b)
Logistic regression

3.2 Model Selection and Visualization

Most machine learning algorithms have parameters that need to be tuned for optimal
performance on a given dataset. For example, a decision tree can have different
values of “max depth” and the models corresponding to each such value can exhibit
a range of performance values, measured as accuracy or precision, for example. A
validation set or cross-validation technique is used to tune these parameters.

3.2.1 Validation Curve

Validation curve is a plot of performance metrics such as a score with respect to
different values of the parameters of the model [Bra97].

Observations:

* The validation curve as in Fig. 3.2a for Decision Tree shows that at “max
depth” of 4, the classifier stabilizes to give optimum AUC of around 0.88. As
the number of nodes increases, the validation score remains almost constant
while the training score increases indicating overfitting.

e The validation curve as in Fig.3.2b for Logistic Regression shows best
performance for the parameter C at 0.1 with AUC value around 0.77. As
the C value increases the validation score drops indicating the region of
overfitting.

e The variance in validation and training scores is very high in Logistic
Regression as compared to Decision Tree.
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3.2.2 Learning Curve

A learning curve explains the relationship between a performance metric, such as
accuracy for a classifier, and the number of training samples [Per10]. The learning
curve provides various diagnostic insights into the classifier such as

1. How many training samples does the classifier/regressor need for an optimum
performance score in training and validation?

2. Are the samples representative of the domain?

3. Does the bias or the variance introduce error in the classifier/regressor?

4. Does the model have any overfitting or underfitting issues?

The training and validation learning curves are plotted together so we can look at the
relative metrics to get the overall diagnosis for decision trees and logistic regression
as shown in Fig. 3.3a and b.

* A flat training and validation learning curve indicates a high chance of
underfitting as it might signify no improvement and hence no learning.

* A training learning curve indicating a continuous decrease right from the
start is also indicative of underfitting.

* High variability in the validation learning curve, especially with cross-
validation, but not in the training learning curve indicates error due to
variance rather than bias.

* High variability in the training learning curve indicates error due to bias.

* A large gap between the training and validation learning curve diverging
after a point in the curve indicates the ideal split and marks the beginning
of overfitting.

Observations:

* The learning curves in Fig.3.3a for Decision Tree show that training and
validation curves are separated. At about 600 samples, the validation curve
trends downwards. There is a large variance in the cross-validation as
compared to training indicating variance errors in predictions rather than
bias errors.
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Fig. 3.3 Learning curves for classifiers with AUC—area under ROC curve. (a) Decision tree. (b)
Logistic regression

* The learning curves in Fig. 3.3b for Logistic Regression show both training
and validation curves following similar trends and at about 600 samples,
showing divergence. Similar to the Decision tree, logistic regression also
indicates variance error.

e The training learning curve for Logistic Regression also shows variability
and this indicates the bias error. When compared with decision tree, it can
be concluded that the non-linear decision tree algorithm performs better
indicating the presence of non-linear boundaries.

* The variance in logistic regression is more than that of decision tree.

3.3 Classification Model Visualization

As discussed in the last section, model selection happens based on the agreed
metrics that vary based on the domain and the nature of the application [Ras20]. For
example, in some compliance-based domains in financial services, false negatives
have to be minimized (recall-centric), while in other applications such as fraud
detection where there are fewer resources to investigate the positive hits, false
positive minimization becomes imperative (precision-centric).

Many model governance teams consider model metrics and evaluation
results along with the actual model as an artifact that needs to be documented
and reported. From a diagnostic and white-boxing perspective, understanding
how the model performs in various scenarios is critical. This section will
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discuss some well-known model metrics and how they impact selection, especially
of the classification models.

3.3.1 Confusion Matrix and Classification Report

As shown in Fig.3.4, the confusion matrix is a common way to visualize the
classification results on the test dataset. It acts both as a quantitative metrics
provider for making decisions such as how well the model generalizes and
also as a diagnostics tool to understand the model’s behavior on individual
classes.

Classification report is another view of the confusion matrix but with various
metrics that highlight model behavior from an efficiency and effectiveness stand-
point. As shown in Fig. 3.5, various metrics such as precision, recall, F1, and support
per-class basis are given in the classification report as color-coded heatmaps for
Decision Tree model.
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Fig. 3.4 Confusion matrix for decision tree model on diabetes classification dataset
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Fig. 3.5 Classification report for decision tree model on diabetes classification dataset

By visualizing classification reports for various models on the same evaluation
dataset, model behaviors can be understood in a comparative sense, as shown in
Fig. 3.6a and b for Gaussian Naive Bayes and Logistic regression, respectively.

Observations:

* Figure 3.6a shows precision for the diabetic class for the Gaussian Naive
Bayes model (68.9) is slightly higher than that of Logistic Regression (68.3).
The precision for the non-diabetic class for the Gaussian Naive Bayes model
(85.3) is higher than that of Logistic Regression (83.2). Thus if precision is
the metric, then Gaussian Naive Bayes is the model one should select.

» Figure 3.6b shows recall for the diabetic class for the Gaussian Naive Bayes
model (66) is higher than that of Logistic Regression (59.6). But the recall
for the non-diabetic class for Logistic Regression (87.9) is slightly higher
than that of Gaussian Naive Bayes (86.9). The choice of the model then
depends on the skew of the dataset and the bias towards the predictions of a
particular class.

e The F1 score for Gaussian Naive Bayes for both diabetic and non-diabetic
is higher than that of Logistic Regression.

e Comparing Figs. 3.5, 3.6a, and b, one can clearly see that for all the metrics
such as precision, recall, and F1, the non-linear decision tree model is
superior to both Gaussian Naive Bayes and Logistic Regression.
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Fig. 3.6 Comparing classification reports for two models. (a) GaussianNB. (b) Logistic regression

3.3.2 ROC and AUC

The Receiver Operating Characteristic (ROC) curve measures a classifier’s predic-
tive quality, comparing and visualizing the trade-off between the model’s sensitivity
and specificity. Sensitivity measures how often a model correctly generates a
positive for the data that is labeled as a positive (also known as the true positive
rate). Specificity measures how often a model correctly generates a negative for
the data that is labeled as a negative (also known as the true negative rate). The
ROC curve generates another metric computing the area under the curve (AUC) and
captures the relationship between false positives and true positives [GV18].

The higher the AUC, the better the model’s generalization capability is. The
ROC curve’s steepness is also crucial as it describes the maximization of the
true positive rate while minimizing the false positive rate. The closer the ROC
curve is to the top left corner, the better the model’s quality is overall. The
closer the curve comes to the center diagonal line, the closer the model is to a
random guesser.

Observations:

* Figure 3.7a and b show that the AUC for Gaussian Naive Bayes and Decision
Tree for both classes are almost identical, with a value of 0.89.

* Based on the steepness of the curve and closeness to the top left corner,
Decision Tree seems to be a slightly better choice than Gaussian Naive
Bayes
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Fig. 3.7 Comparing ROC curves for two models. (a) GaussianNB ROC curve. (b) Decision tree
ROC curve

3.3.3 PRC

Precision-Recall curve measures the trade-off between the two metrics—precision
and recall. Precision, measured as a ratio of true positives to the sum of true
positives and false positives, is a measure of exactness or efficiency [DGO06]. Recall,
measured as a ratio of true positives to the sum of true positives and false negatives,
is a measure of completeness or effectiveness. Average precision represents the
precision-recall curve as a single metric and is computed as the weighted average of
precision achieved at each threshold, where the weights are the differences in recall
from the previous thresholds.

The larger the area in the Precision-Recall curve, the better is the classifier,
especially when there is a huge imbalance between the classes. Higher
Average Precision is normally considered a good single metric by which to
select the classifier in an imbalanced dataset.

Observations:

* Figure 3.8a and b show the area under PRC for Logistic Regression is higher
than that of Gaussian Naive Bayes.

» The average precision for Logistic Regression is more than that of Gaussian
Naive Bayes. Hence, in a severely imbalanced dataset, selecting Logistic
regression over Gaussian Naive Bayes may seem the right choice.
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Fig. 3.8 Comparing ROC curves for two classifiers. (a) GaussianNB. (b) Logistic regression

3.3.4 Discrimination Thresholds

Most classifiers assign a probability for class membership to the instance to
be classified. The default is to assume that a probability greater than or equal
to 0.5 is for one class and below 0.5 for the other in binary classification. In
classification problems with imbalanced data, the default threshold can result
in suboptimal performance metrics [Che+05, Pro]. One technique to improve a
classifier’s performance on imbalanced data is to tune the threshold used to map
probabilities to class labels. The discrimination threshold in binary classification,
sometimes called classification or decision threshold, is the probability value above
which one class is predicted and below which it is the other class.

» Using the training data and creating multiple train/test sets, we run the
model multiple times in order to account for the variability in the data.
Then the different curves are plotted, showing median and range. The
discrimination threshold is the one that achieves the best evaluation metrics
in the multiple runs.

e Discrimination threshold tuning is not a hyperparameter tuning but a
decision based on the trade-off between false positives and false negatives
on the basis of the classifier’s probability outputs.

* Tuning the discrimination threshold gives a better trade-off between
precision and recall in the precision-recall curves.
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Fig. 3.9 Discrimination thresholds for two classifiers on the diabetes dataset. (a) GaussianNB. (b)
Logistic regression

Observations:

* Figure 3.9a and b show the optimal thresholds for Gaussian Naive Bayes
and Logistic Regression are 0.29 and 0.13, respectively.

* Gaussian Naive Bayes shows relatively large variance around the mean for
the queue rate, F1, and recall while Logistic Regression around precision.

3.4 Regression Model Visualization

Regression model results need to be validated and visualized in a continuous space
as compared to classification models. There are various aspects of regression models
such as predictions, errors, and sensitivity to hyperparameters that can be used
for diagnostics or explainability. In this section, we will discuss some common
techniques employed in regression analysis.

3.4.1 Residual Plots

In regression, residual plots plot the difference between the predicted and the
observed values for the target. Similar to validation curves and learning curves,
residual plots are used for various diagnostics [Bel+80]. The plots can be used to
understand the impact of several aspects, for example, outliers, non-linearity of the
data, the assumption that the errors are independent and normally distributed and
heteroscedasticity.
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A good regression residual plot has a high-density of points close to 0 and
scattered low density around the axis without a pattern, thus confirming the
errors’ independence and normal random distribution.

Observations:

* Figure 3.10 shows the residuals for both training and testing data with a good
overlap and thus there is no sample bias.

* The errors have multimodal distribution and violate the normal distribution
assumption.

* There are patterns around the distribution, especially around 41000 and
—1000 value, indicating independence assumption violations.

» The negative spread of errors is more than the positive, showing presence of
outliers and long tail.
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Fig. 3.10 Residual plots for linear regression
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3.4.2 Prediction Error Plots

Prediction error plots show the actual values against the predicted values. It also
shows the plot with comparison of 45° line.

Prediction error plots are used for understanding errors caused by variance
in the regression model. The comparison with 45° line shows if the model is
underestimating or overestimating.

Observations:
Figure 3.11 shows errors are not constant across values, thus variances are not
constant and this violates the homoskedasticity assumption.

3.4.3 Alpha Selection Plots

Most regression algorithms employ some form of regularization to constrain the
complexity of the model. The alpha values control the complexity of the model and
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Fig. 3.11 Prediction error plots for linear regression
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Fig. 3.12 Alpha selection based on errors. (a) Ridge regression. (b) Lasso regression

cross-validation is used to select the values [HTFO9b]. In Fig.3.12a and b, alpha
values that give the lowest error for Ridge Regression and Lasso Regression using
cross-validation technique are plotted for the insurance dataset.

If the alpha values are high, model complexity is reduced, thus reducing the
error caused by variance, resulting in an overfit model. If the alpha values are
too high, the error due to bias increases, resulting in an underfit model

Observations:

Ridge regression has the lowest error at alpha value of 0.195 and Lasso has
lowest error at alpha value of 10.0. Lasso with high alpha values indicates an
underfit model with error introduced by the bias.

3.4.4 Cook’s Distance

Cook’s distance measures an instance’s influence on the regression. The larger the
influence of an instance, the higher is the likelihood of an outlier, thus influencing
the regression model negatively [Cooll]. Visualizing stem plot for all training
instances by their Cook’s distance score and handling instances with a score more
significant than a threshold by removal or imputation is a standard best practice.
Cook’s distance for ith instance from n observations is given by D;

Y105 = Fi@)?
D = = - 3.1)
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Fig. 3.13 Cook’s distance for insurance data

Any instance with score over 4/n, where n is the number of observations is the
threshold for distance scores.

Any instances with Cook’s distance greater than 0.5 or three times the mean
score need to be closely examined for their influence.

Figure 3.13 shows the plot of Cook’s distance score for the entire insurance
training data.

Observations:

There are no instances with distance score greater than 0.5 in the entire dataset.
Using just the threshold based on 4/n, around 7.28% of training data are
identified as highly influential based on the Cook’s distance scores. Simply
removing those instances improves the training R” scores from 0.734 to 0.834
as shown in Fig. 3.14a and b, respectively.

3.5 Clustering Model Visualization

Unsupervised learning techniques such as clustering are even more difficult to
diagnose or explain as compared to supervised learning since “ground truth” is
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OLS Regression Results
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Fig. 3.14 Impact of removing outliers identified from cook’s distance. (a) Model before. (b)
Model after

often undefined. This section will discuss some techniques employed to visualize,
validate, and diagnose clustering models.

One of the difficult choices in many clustering algorithms such as K-means,
X-means, Expectation-Maximization, etc. is selecting number of clusters, usually
symbolized by k. The choice depends on many factors such as the size of the data,
dimensionality, end user’s desire and prior knowledge. The optimal choice of k is
a trade-off between maximum compression of the data and maximum separation
between the unseen classes or the categories.

3.5.1 Elbow Method

For the elbow method, a clustering technique is run on the dataset for a range of
values for k (say from 1-10). Then for each value of k, it computes an average
distortion score for all the clusters. There are many ways to compute the distortion
score; acommon technique calculates the sum of square distances from each point to
its assigned center. The plot of k and the average distortion score in a plot resembles
the arm, then the £ around the elbow, the point of inflection, is chosen as an optimum
k. The elbow or the knee point is detected through an algorithm that finds the point
of maximum curvature in the plot.

The Calinski-Harabasz score, also known as the Variance Ratio score, is the ratio
of the sum of between-clusters dispersion and intercluster dispersion. The higher
the Calinski-Harabasz score, the better is the clustering performance.
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Fig. 3.15 Elbow Method for visualizing the optimum k for k-means clustering on the diabetes
classification data. (a) Distortion scores. (b) Calinski-Harabasz score

Figure 3.15a and b show elbow detection using distortion and the Calinski-
Harabasz method to find optimum k in the k-means for the diabetes classification

data.
Observations:
Though the diabetes dataset has two labeled classes, both the distortion score
and the Calinski-Harabasz score indicate that k = 3 is the optimum cluster size.

3.5.2  Silhouette Coefficient Visualizer

The Silhouette Coefficient is an estimate of the density of the clusters. It is computed

for each instance based on two different scores as
The mean distance between that instance and all other instances in the same

L]
cluster: a
The mean distance between that instance and all other instances in the next

nearest cluster: b
b—
a 3.2)

§ = —

max(b — a)
The Silhouette visualizer displays the silhouette coefficient for each instance on a
per-cluster basis, visualizing the clusters and their density. Different plots for each

value of k are shown in Fig. 3.16a, b, ¢, and d.
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Fig. 3.16 Silhouette coefficients for k ranging from 2 to 5. (a) Silhouette coefficients for k = 2. (b)
Silhouette coefficients for k = 3. (¢) Silhouette coefficients for k = 4. (d) Silhouette coefficients
fork =5

The Silhouette Coefficient has a best value of 1 and worst value of —1. Values
near 0 indicate overlapping clusters. Negative values generally indicate that
instances have the wrong cluster assignment.

Observations:

Based on the average Silhouette coefficient scores (indicated by red dotted line)
for the diabetes dataset, the best k is 2 where the average score is high and there
are no negative scores. The split between the two classes also seems to be in
the same proportion as the original labeled class distribution.
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Fig. 3.17 Intercluster distance maps for different values of k. (a) k = 2. (b) k = 3. (¢c) k = 4. (d)

k=5

3.5.3 Intercluster Distance Maps

Intercluster distance maps visualize an embedding space in the lower dimensions of
the cluster centers. Various projection techniques such as multidimensional scaling
(mds), stochastic neighbor embedding (t-sne), etc. can be used for mapping from
high dimensions to two dimensions. The clusters’ memberships and sizes can be
determined by a scoring method such as the number of instances belonging to each
cluster and gives the clusters’ relative importance (Fig. 3.17).

Observations:

Intercluster distance maps for various k using mds shows that for k = 3, based
on the size, distribution and no overlaps indicate an ideal cluster size for the

data.
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3.6 Interpretable Machine Learning Properties

This section will detail some of the properties on which most algorithms can be
compared from an interpretability standpoint.

1. Local or Global: Does the model provide interpretability at a single instance or
local level or across the entire data space?

2. Linearity: Is the model capable of capturing non-linear relationships between
the features?

3. Monotonicity Does the relationship between the feature and the target go in the
same direction over the entire feature domain?

4. Feature Interactions: Some models capture interactions between the features
while some assume independence. If captured in the right way, features interac-
tions can increase the quality but simultaneously increase the complexity as well,
thus reducing the interpretability.

5. Best-suited Complexity: Based on the hypothesis space of the model, what
kinds of problem complexity is the algorithm best suited for?

3.7 Traditional Interpretable Algorithms

3.7.1 Tools and Libraries

Well-known open-source python packages like statsmodels and sklearn along
with different data and plotting libraries were used for linear regression, logistic
regression, Gaussian Naive Bayes, and Decision Tree. pgmpy is used for modeling
Bayesian Network and Orange for Rule Induction.

3.7.2 Linear Regression

Linear regression is one of the oldest techniques that predicts the target using
weights on the input features learned from the training data [KK62b]. The inter-
pretation of the model becomes straightforward as the target is a linear combination
of weights on the features. Thus linear regression model can be described as a linear
combination of input x and a weight parameter w (that is learned during training
process). In a d-dimensional input (x = [x1, X2, ..., Xg]), we introduce another
dimension called the bias term, xp, with value 1. Thus the input can be seen as
x € {1} x R?, and the weights to be learned are w € R4+,

In matrix notation, the input can be represented as a data matrix X € RV*(@+D
whose rows are examples from the data (e.g., X;), and the output is represented
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as a column vector y € RV, The process of learning via linear regression can be
analytically represented as minimizing the squared error between the hypothesis
function i (x,) and the target real values y,, as

d

1
Errain(hx W) = =3~ (W' = )’ (3.3)
i=0

Since the data x is given, we will write the equation in terms of weights w
1 2
Etrain(w) = NII(XW -yl (3.4)

where ||(Xw — y)?| is the Euclidean norm of a vector.
This is an optimization problem that requires finding the weights w,, that
minimize the training error E;yqiy,.

Wopr = argmin Etrqin (W) (3.5)
weRd+1

The solution for the weights is given by
-1
Wopr = (XTX) " XTy (3.6)

Linear regression makes the following assumptions that are important for model
validation and interpretability

* Linearity: Linear regression assumes a linear relationship between the features
and the label. In many real-world datasets this assumption may not hold true.

* Homoscedasticity: Linear regression assumes the error in the prediction will have
a constant variance. This can be easily verified by plotting the results and looking
at the scatter of the predictions from the linear hyperplane.

e Multicollinearity: If there is correlation between the features, the estimation of
weights using linear regression is not accurate as the impact of the feature and its
independence from others is lost.

Interpreting linear regression model can be summarized as below

e Increasing the continuous feature by one unit changes the estimated
outcome by its weight.

» The categorical features should be transformed into multiple features. Each
is encoded as a binary, 0 being the reference default and 1 is the presence
of the feature. The interpretation for binary or categorical in such case

(continued)
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is—changing the modified feature from the reference default to the other,
changes the estimated outcome by the feature’s weight.

* Intercept or the constant is the output when all the continuous features
are at value O and the categories are in the reference default (e.g., 0).
Understanding intercept value becomes meaningful for interpretation when
the data is scaled with mean value O as it represents the default weight for
an instance with mean values.

* Various regression methods such as Ordinary Least Squares (OLS) give
not only the weights or the coefficients per feature but also standard
error(std err), t-test(t), p-value(p) and the confidence intervals. The lower
the standard error, the better is the accuracy of that coefficient and p-values
less than a threshold alpha level indicate a statistically significant impact
of that feature on the outcome.

* The R-squared value (also known as the coefficient of determination)
provides a measure of how well the regression model explains the output
value it is modeling. The closer the value is to 1.0, the better the model
correctly describes the data.

Figure 3.18 gives the results of fitting a linear regression model on the claims
insurance dataset.

There are various visualization techniques available for diagnosing or whitebox-
ing the regression. Figure 3.19 shows some of the known ways to analyze a feature
age regressing with the output charges. Plot (a) which is the “Y and Fitted vs. X”
graph plots the dependent variable against the predicted values with a confidence
interval. Plot (b) shows the residuals of the model versus the chosen feature age.
Each point in the plot is an observed value; the line represents the mean of those
observed values. Plot (c) is the partial regression plot showing the relationship
between the charges and the feature age conditional on the other independent
features. The Component-Component plus Residual (CCPR) plot is an extension
to the partial regression plot, a way to view the impact of one feature on the label by
taking into account the effects of the other features. Thus it is Res + w;X; versus X;
where Res is the residual of the whole model.

Explainable properties of linear regression are shown in Table 3.1.

3.7.2.1 Regularization

Regularization is a common technique employed in many weight-based learning
methods to overcome the overfitting problem. There are many regularization
techniques, of which we will highlight three of the most effective ones [HTF09b,
HKO00a].
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OLS Regression Results

Dep. Variable: charges R-squared: 0.737
Model: oLS Adj. R-squared: 0.735
Method: Least Squares F-statistic: =~ 371.7
Date: Wed, 14 Apr 2021 Prob (F-statistic): 1.85e-301
Time: 21:23:04 Log-Likelihood: -10851.
No. Observations: 1070 AlC: 2.172e+04
Df Residuals: 1061 BIC: 2.177e+04
Df Model: 8

Covariance Type: nonrobust
coef std err t P>itl  [0.025 0.975]
age 253.7005 13.530 18.751 0.000227.152 280.249
bmi 335.9628 32.228 10.424 0.000 272.724 399.201
children 436.9101 156.5842.790 0.005129.661 744.159
region_northeast 380.4127 384.6910.989 0.323-374.430 1135.255
region_northwest 120.2800 376.8090.319 0.750-619.096 859.656
region_southeast -532.8661 436.403-1.221 0.222-1389.177 323.445
region_southwest -381.5360 391.071-0.976 0.329 -1148.897 385.825
sex_female  -199.1229 471.328-0.422 0.673-1123.964 725.718
sex_male -214.5866 477.395-0.449 0.653-1151.332 722.159
smoker_no -1.201e+04 478.235 -25.112 0.000 -1.29e+04 -1.11e+04
smoker_yes 1.16e+04 510.457 22.716 0.000 1.06e+04 1.26e+04
Omnibus: 256.825 Durbin-Watson: 1.994
Prob(Omnibus): 0.000 Jarque-Bera (JB): 620.044
Skew: 1.279 Prob(JB): 2.29e-135
Kurtosis: 5.715 Cond. No. 4.39%+17

Fig. 3.18 Output of linear regression model on insurance dataset

Ridge regression or weight decay or L, norm is a regularization technique where
less relevant features get weights close to O [HKOOb]. The modified solution for
regression can be written as

Wopr = arg min (Etrain (w) + )\WTW) 3.7

weRd+!1

'XTy (3.8)

Wopr = (XTX +AI)~
where the regularization parameter A is a hyperparameter and is generally a small
value close to 0.

Lasso regression or L norm is another popular regularization used in weight-
based algorithms [HTF09b]. The modified equation for L; norm is
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Regression Plots for age
(a) (b)

Y and Fitted vs. X Residuals versus age
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Fig. 3.19 Four different plots for feature age. (a) Regression plot showing fitted versus actual
charges. (b) Residuals w.r.t age. (c) Partial regression plot and (d) CCPR plot

Table 3.1 Explainable

Properties Values
properties of Linear P
regression Local or global Global
Linear or non-linear Linear

Monotonic or non-monotonic | Monotonic

Feature interactions captured | No

Model complexity Low

Wopr = arg min (Etrqin (W) + A[W) (3.9)

weRd+1

The absolute function in the above equation does not yield a closed-form solution
and is represented as a constrained optimization problem as given below:

argmin (X"Xw — X'y) s.t.w < (3.10)

weRd+!1
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Table 3.2 Coefficients of features with basic OLS Regression, Lasso, Ridge and Elastic Net
regularization

Features LR LR with Lasso | LR with Ridge | LR with ElasticNet
Age 253.70 253.70 252.17 256.53
Bmi 335.96 335.95 330.3 303.743
Children 436.91 436.86 439.24 411.71
Region_northeast 380.41 499.03 366.67 —6145.23
Region_northwest 120.28 238.98 98.59 —6410.03
Region_southeast —532.86 —413.85 —464.24 —6917.32
Region_southwest —381.53 —262.43 —395.66 —6862.1
Sex_female —199.12 7.98 —203.56 —1.02
Sex_male —214.58 —7.384 —191.08 —2.64
Smoker_no —12,010.0 —12,335.45 —11,645.20 —4829.02
Smoker_yes 11, 600.0 11,270.25 11,250.55 18, 764.06

where the hyperparameter 7 is inversely related to the regularization parameter A.
Elastic Net combines both Lasso and Ridge regression [ZH03]. The modified
equation is given by

Wopr = argmin (Errain (W) + A1 W] + ow' w) 3.11)

weRd+!1

Both L, and L; regularization can be seen as an implicit feature selection
where the weights generally get reduced based on the relevance to the
outcome but L; results in more feature weights being set to zero and thus
a more sparse representation.

Table 3.2 shows how the feature weights change with different regularization
techniques.

Observations:

* Figure 3.18 shows that features age, bmi, and smoker_yes, smoker_no all
have p-values less than 0.005, indicating that they are statistically significant
and thus their importance in predicting the insurance charges.

* Figure 3.18 also shows that the features sex_male, sex_female and various
region have high p-values and can be considered not as significant and may
be dropped for building models in an iterative way.
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» Figure 3.18 highlights that the adjusted R-squared value is 0.735, and hence
we can interpret it as: the model explains nearly 73.5% of the variation and
can be considered a good fit.

* Figure 3.19 shows a linear relationship between age and charges with a
positive trend, i.e., as the age increases the charges increase.

» Table 3.2 shows how every feature weight gets reduced with the introduction
of regularization.

3.7.3 Logistic Regression

Linear regression is not practical on classification problems where the need is for
the probability of the data belonging to a particular class rather than the linear
interpolation between points. Logistic regression is a transformation 6 applied on
the linear combination x w employed in the Linear Regression allowing a classifier
to return a probability score [WD67].

h(x) = 0(w'x) (3.12)

A logistic function (also known as a sigmoid or softmax function) 8(w'x), shown
below, is generally used for the transformation.

expwix

h(x) (3.13)

T+ expwTx

For a binary classification, where y € {—1, +1}, the hypothesis can be seen
as a likelihood of predicting y = +1, i.e., P(y = +1|x). Thus, the equation can
be rewritten as an odds ratio, and weights are learned to maximize the conditional
likelihood given the inputs.

P(y = +1]x)

_ T
Piy=—1p) = exp (W X) 3.14)

Interpretation of a logistic regression model can be summarized as below

* Increasing the continuous feature by one unit changes estimated odds by a
factor of exp(w;x;).

(continued)
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» Similar to linear regression, the categorical features should be transformed
into multiple features, with each encoded as a binary (0 being the reference
default and 1 is the presence of that category) before modeling as a prepro-
cessing step. Thus the interpretation is—when the categorical feature is
changed from the reference category to the other category, the estimated
odds change by a factor of exp(w;x;).

e The Intercept or the constant is the output when all the continuous
features are at value O and the categories are at the reference default
(e.g., 0). Thus, when all the continuous features have value 0, and the
categorical features are in the default category, the intercept value gives the
estimated odds.

Observations:

» Figure 3.20 shows weights or the coefficients for each feature. The value of
0.0311 for Glucose in the coef column means that for each unit increase in
the value of Glucose, the log-odds of being classified as diabetic increases
by a value of 0.0311. Also, higher glucose concentrations are positively
associated with the diagnosis of diabetes.

* All the features except BloodPressure are positively associated with diagno-
sis of diabetes; as they increase, the log-odds of being classified as diabetic
increases by the value in the coef column.

e The P> |z| column with alpha level of 0.05 shows features that are statis-
tically significant in the classification. Features Glucose, BMI,Pregnancies,
and Insulin can be considered statistically significant.

Explainable properties of logistic regression are shown in Table 3.3.

3.7.4 Generalized Linear Models

In Linear regression the continuous output is modeled as
y=wo+wix;+ -+ WgXy (3.15)

with the assumption that the output y is normally distributed (y ~ A ) and the
equation gives the expectation of the mean E(y) and with error/noise € in A((0, o).
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Optimization terminated successfully.
Current function value: 0.465382
Iterations 6

Logit Regression Results

Dep. Variable: OQutcome No. Observations: 614
Model: Logit Df Residuals: 605
Method: MLE Df Model: 8
Date: Wed, 14 Apr 2021 Pseudo R-squ.: 0.2877
Time: 22:09:19 Log-Likelihood: -285.74
converged: True LL-Null: -401.18
Covariance Type: nonrobust LLR p-value: 1.946e-45
coef stderr z P>lzl [0.025 0.975]
const -8.72450.891 -9.7890.000-10.471-6.978
Pregnancies 0.0891 0.034 2.597 0.0090.022 0.156
Glucose 0.0311 0.004 7.173 0.0000.023 0.040
BloodPressure -0.0098 0.010 -1.0030.316-0.029 0.009
SkinThickness 0.0284 0.015 1.875 0.061-0.001 0.058
Insulin 0.0044 0.002 2.829 0.0050.001 0.007
BMI 0.0646 0.020 3.276 0.0010.026 0.103
DiabetesPedigreeFunction 0.7444 0.334 2.231 0.026 0.090 1.398
Age 0.0177 0.010 1.694 0.090-0.003 0.038

Fig. 3.20 Logistic regression on the diabetes dataset

Table 3.3 Explainable

Hties of Logisti Properties Values

roperties of Logistic

PRegF;eSSion ¢ Local or global Global
Linear or non-linear Linear

Monotonic or non-monotonic | Monotonic
Feature interactions captured | No
Model complexity Medium

Generalized Linear Models (GLMs) have three basic components and relax the
constraints or assumptions and generalize as the name suggests [MN89]. The three
components are

1. The distribution component, which had an assumption of being normally
distributed in the linear regression case, can be relaxed to be from any exponential
family. Thus it can model skewed distributions.

2. The linear predictor is similar to linear regression and is linear in the weights
trying to model the covariates.

3. The link function is the connection between the linear predictor and the mean of
the distribution of the output or the label. In linear regression model the mean was
equal to the linear predictor. In GLMs there can be a variety of link functions,
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e.g., log of the means as the link function in the Poisson distribution or logit of
the means for binomial logistic regression.

gEYIX) =wo +Wix| + -+ WgXg (3.16)

where g is the link function. Thus, GLM with Poisson distribution and log link
function

In(E(y|X)) = wo + WiX] + - -+ + WgXg (3.17)

Interpreting GLM can be summarized below:

* The distribution, along with the link function, suggests how to interpret the
estimated feature weights. For example, in GLM with Poisson distribution
and log as the link function, the output estimation is

In(E(y|X)) = Wo + WiX] + - - - + WaXg (3.18)
and can be rewritten as
E(y|x) = exp(Wo + WiX] + - - - + WgX4) (3.19)

So each feature contributes to the outcome (E(y)) an exponential factor
defined by the weight or the coefficient (exp(w;)) multiplied by the
exponential value of the feature (exp(x;)).

e The positive or negative sign shows the increase or decrease in the
exponential factor given the rest.

e The z and the P> |z| values give the test statistic and p-value, respectively,
for the null hypothesis that a feature’s regression coefficient is zero given
that the rest of the features are in the model.

Observations:

» Figure 3.21 shows weights or the coefficients for each feature with Poisson
Regression in GLM Model. The age coefficient of 0.02 is the Poisson
regression estimate for a one unit increase in age, given the other features
are held constant in the model. The interpretation is—if age were to increase
by one unit, the difference in the log of expected value would be expected to
increase by 0.02 unit, while holding the other features in the model constant.




108 3 Model Visualization Techniques and Traditional Interpretable Algorithms

Generalized Linear Model Regression Results

Dep. Variable: charges No. Observations: 1070
Model: GLM Df Residuals: 1061
Model Family: Poisson Df Model: 8
Link Function: log Scale: 1.0000
Method: IRLS Log-Likelihood: -1.3395e+06
Date: Fri, 11 Jun 2021 Deviance: 2.6673e+06
Time: 19:58:18 Pearson chi2: 3.37e+06

No. Iterations: 5
Covariance Type: nonrobust

coef stderr z P>lzl [0.025 0.975]

age 0.0201 1.95e-05 1033.017 0.000 0.020 0.020

bmi 0.0261 4.43e-05 590.165 0.000 0.026 0.026
children 0.04000.000 181.126 0.000 0.040 0.040
region_northeast 1.6552 0.001 3034.622 0.000 1.654 1.656
region_northwest 1.6151 0.001  2934.801 0.000 1.614 1.616
region_southeast 1.55750.001  2537.661 0.000 1.556 1.559
region_southwest 1.5943 0.001  2754.425 0.000 1.593 1.595
sex_female 3.21330.001  4657.996 0.000 3.212 3.215
sex_male 3.2088 0.001  4563.059 0.000 3.207 3.210
smoker_no 25294 0.001 3536.0120.000 2.528 2.531
smoker_yes 3.89270.001 5739.569 0.000 3.891 3.894

Fig. 3.21 Generalized linear model on the insurance dataset

* The positive coefficients for age, bmi, children, region_* smoker_* and
sex_* indicate the increase in the expected value of the charges with
increase. The feature smoker_yes has the highest coefficient indicating the
relevance of that feature in the regression model.

e All the features have 0.0 in the P> |z| column, thus all of them are
statistically significant.

Explainable properties of GLM are shown in Table 3.4.
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Table 3.4 Explainable

) Properties Values
properties of GLM

Local or global Global

Linear or non-linear Linear

Monotonic or non-monotonic | Monotonic
Feature interactions captured | No
Model complexity Low to medium

3.7.5 Generalized Additive Models

The assumption in all linear models is that the increase or decrease defined
by the coefficient for that feature will be the same irrespective of the values.
This assumption may not be true for many real-world applications where at the
feature level, one may need a non-linear interaction. Generalized Additive Models
(GAMs) are one of the ways to model the non-linear relationships by modifying
GLMs [HT90a]. It is given by

gEQIX) =wo+ fix) + -+ fa(Xa) (3.20)

The equation generalizes the GLM equation where the generic function f;(x;)
replaces the linear term w;x;. It gives the flexibility for non-linear interaction
between the feature x; and the output but still uses summation to capture overall
feature impact. One easy way is to model the interactions as higher order polyno-
mials at the feature level to capture non-linear relationship. Splines are piecewise
polynomial curves, joining two or more polynomial curves, and can be generally
used as the non-linear functions. A smoothing spline adds a constraint to the
minimization problem such that the function f(x;) is twice differentiable and has
a smoothing parameter XA that is like a penalty or regularization and the general
equation for minimization is given as

_ 1 = L 2 " 2
MSE = ng(y, F@i)? + A / f/(x) dx (3:21)

The output from a GAM is less interpretable as it does not have coefficients
like others but A values for different feature fits as shown in Fig.3.22.
Normally, partial dependence plot (which is graphical), where the output is
plotted against the fitted function for a feature as shown in Fig. 3.23, is used to
understand individual feature mappings to the non-linear or linear functions.
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LinearGAM

Distribution: NormalDist Effective DoF: 29.0

Link Function: IdentityLink Log Likelihood: -19629.2742

Humber of Samples: 1070 AIC: 39318.5484
AICc: 39320.3386
GCV: 3BBE2924.9935
Scale: 36950717.0651
Pseudo R-Squared: 0.749

Feature Function Lambda Rank EDoF P>x Sig. Code

s(0) [0} 10 10.0 1.11e-16 wew

s(1) [0} 10 9.0 1.11e-16 o

5(2) [0} 10 5.0 1.11e-16 e

8(3) [0] 10 1.0 1l.1le-16 bl

s(4) ()] 10 1.0 1.11e-16 wnw

8(5) 0] 10 1.0 1.11e-16 wew

s(6) [0} 10 0.0 1.11e-16 e

s(7) 0] 10 1.0 1.11e-16 waw

s(8) [0} 10 0.0 1.11e-16 e

5(9) [0} 10 0.9 1.11e-16 wew

s(10) (0] 10 0.0 1.11e-16 wan

intercept 1 0.0 3.62e-04 wahR

Significance codes: 0 "#**' 0.001 '*+' 0.01 '*' 0.05 '.' 0.1 " ' 1

Fig. 3.22 Linear generalized additive models on the insurance dataset

age bm children smoker_yes

Fig. 3.23 Linear generalized additive partial dependence plots for features age, bmi, children and
smoker with mean and 95% confidence interval bounds

Observations:

e The preprocessed dataset is reduced to only four features -
age, bmi, children, smoker_yes.

* Linear GAM with 10 splines is chosen after doing a grid search for various
linear, splines, and factor terms.

e Figure 3.22 shows fitting various functions for each feature and their
statistical significance in the Sig. Code column. Every feature function is
statistically significant.

* The partial dependence plot as shown in Fig. 3.23 show how splines actually
capture the non-linear relationships in a smooth way especially for children.
It also shows how the age, children, and bmi have positive correlation to the
insurance charges and thus provides the needed explainability.

Explainable properties of GAM are shown in Table 3.5.
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Table 3.5 Explainable

) Properties Values
properties of GAM
Local or global Global
Linear or non-linear Non-linear

Monotonic or non-monotonic | Monotonic
Feature interactions captured | No
Model complexity Low to medium

3.7.6 Naive Bayes

Naive Bayes is one of the simplest algorithms based on the Bayes theorem [RN09].
There are many advantages to Naive Bayes, such as simplicity, explainability, speed,
and ability to learn from few examples. The hypothesis in general Bayes equation
for a binary classification y; € (0, 1) is given by

hBayes(X) = argmax P(X =x|Y =y)P(Y =y) (3.22)
y€(0,1)

In Naive Bayes, there is an assumption of independence between the features.
So, for d dimensions, the equation simplifies as

d

hBayes (%) = argmax P(Y = y) [ P(X; = xi|¥ = ) (3.23)
y€(0,1)

j=1
As a result, training and estimating parameters of Naive Bayes just measures two
quantities, the priors for the class P(Y = y) and the conditional for each feature
P(X; =xj|Y = y) given the class or the label.

A dataset that has continuous features can be discretized using many known tech-
niques [Gar+12]. Also, many implementations also assume a Gaussian distribution
and the probability distribution is given by

1 ;)%
PX=x]Y =y)= ———¢ it (3.24)

V2mork?

Figure 3.24 shows output of Gaussian Naive Bayes for the diabetes dataset,
where the mean and standard deviations for each class are estimated from the
training data for each feature and class.

The independence assumption in Naive Bayes contributes to its simplicity and
interpretability.
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Feature Diabetic Variances Diabetic Means MNon-Diabetic Means Non-Diabetic Variances

0 Pregnancies 14.922021 4.764706 3.374046 9.409716
1 Glucose 854.767314 141.628959 110.493639 601.768507
2 BloodPressure 152.052198 75.110860 71.231552 134.529089
3 SkinThickness 78.039647 32.357466 27.394402 71.994583
4 Insulin 8746.455363 186.805430 119.050891 6410.156452
5 EMI 44, 746775 35.566063 30.940967 43.563088
6 DiabetesPedigreeFunction 0.141134 0.538986 0.4256892 0.089203
7 Age 123.166815 37.420814 31.442748 143.091514

Fig. 3.24 Gaussian Naive Bayes on diabetes dataset

Interpreting Naive Bayes model can be summarized as below

* The means and standard deviations for each class per feature can be used
to compute the probabilities for that class and feature. For example, if we
want to see predictions for an instance with {Pregnancies = 2, Glucose =
120.2, BloodPressure = 75.38, SkinThickness = 25.18, Insulin =
121.75, DiabetesPedigreeFunction = 0.75, Age = 34}, we will compute
the posterior for each feature per class. The probability for feature Glucose
for each class is computed by plugging in the values from Fig. 3.24 as

1 (120.0-110.49)
P(X =120.02]Y =0) = ————¢ 601767 (3.25)
V27601.767
and
1 (120.0—141.62)2
P(X =120.021Y = 1) = ————e¢ 84762 (3.26)

V27854.76

All the probabilities are then multiplied and the class is selected based on
the maximum value.

* Thus the output of Naive Bayes and how each feature contributes to the
prediction based on the probability values is easily interpretable.

Explainable properties of Naive Bayes are shown in Table 3.6.
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Table 3.6 Explainable

) ¢ Properties Values
properties of Naive Bayes
Local or global global
Linear or non-linear Non-linear

Monotonic or non-monotonic | Monotonic
Feature interactions captured | No
Model complexity Low to medium

3.7.7 Bayesian Networks

In traditional machine learning, encoding an expert’s knowledge requires labor-
intensive feature engineering. Understanding causality from how a feature influ-
ences the outcome and the ability to map model outputs to capture uncertainty, both
require rigorous analysis and, most often, surrogate methods are used.

Bayesian networks are probabilistic graphical models (PGM) that use Bayesian
inference to model an expert’s knowledge and uncertainty from the data. Bayesian
networks aim to model conditional dependence between the features and, therefore,
can capture causality [Pea88, CY95, FGG97]. Bayesian networks satisfy the local
Markov property, i.e., a node is conditionally independent of its non-descendants
given its parents. Bayesian networks has

¢ aset of nodes (features observed or unobserved),
* adirected, acyclic graph (edges between nodes are “direct influences”]), and
* a conditional distribution for each node given its parents

Thus, the joint distribution for a Bayesian network is equal to the product of
P(nodelparents(node)) for all nodes, stated below:

n n
P(X1. -+ Xo) = [[PXilX1. - Xi) = [ [ P(Xi| Parents(X:)
i=1 i=1
l l (3.27)

There are many algorithms to perform inferencing in Bayesian networks. Exact
methods like variable elimination take advantage of the fact that each factor only
involves a small number of features and work very efficiently for a small number of
features. As the number of features increase it becomes computationally infeasible
to perform inferencing through direct methods and approximate methods like
Markov Chain Monte Carlo (MCMC) are used [KF09].

In classification problems, data is either discretized to calculate the conditional
probabilities or parameterized distributions such as Gaussians are used for continu-
ous features.

For the diabetes dataset, the Bayesian network is constructed with domain
knowledge of how certain features influence others and the outcome [GBH12].
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Pregnancies Age DiabetesPedigreeFunction BMI

Outcome’ SkinThickne$s

)

Fig. 3.25 Bayesian network for diabetes dataset

Glucose Insulin BloodP re

precision recall fl-score support

0 0.780 0.868 0.821 53

1 0.611 0.458 0.524 24

accuracy 0.740 717
macro avg 0.695 0.663 0.673 717
weighted avg 0.727 0.740 0.729 717

Fig. 3.26 Bayesian prediction results on the test set

Observations:

* Figure 3.25 indicates how features Pregnancies, Age, DiabetesPedigree-
Function directly influence the outcome diabetes. The research modeled an
unobserved variable “overweight” that influences SkinThickness, BMI, and
outcome [GBHI12]. But we changed the graph by mapping the feature BMI
directly to the overweight variable and influencing SkinThickness and the
outcome.

* Instead of assuming any parameterized distribution such as Gaussian, we
use binning and discretize all the continuous features.

* Figure 3.26 shows the performance of the model on test data sampled
from the data and has relatively good precision/recall as compared to other
methods with the advantage of high interpretability.

Explainable properties of Bayesian Networks are shown in Table 3.7.
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Table 3.7 Explainable

) ‘ Properties Values
properties of Bayesian
Networks Local or global Global and local
Linear or non-linear Non-linear

Monotonic or non-monotonic | Non-monotonic
Feature interactions captured | Yes
Model complexity Medium

3.7.8 Decision Trees

Decision Trees are the most popular interpretable algorithm for classification and
regression. The general idea is to construct a binary tree with a decision point on
the feature’s value as a cut-off where the tree branches and splits the data. Based on
how to choose features at the splitting, different ways to split the feature based on
values, how deep to grow, how to reduce the tree’s size, etc., there are many decision
trees variants.

Classification and Regression Trees (CART) is one of the most popular decision
tree algorithms which employs the Gini index metric to decide which feature to
split the tree on [Bre+84]. Gini index is a measure of impurity and for k classes is
measured as

Gini=1-Y " p;? (3.28)
j

There are a number of other techniques such as entropy, classification error, etc. that
have been employed successfully.

Interpreting Decision Tree model can be summarized as below

* Asshown in Fig. 3.27, every decision tree node has the splitting feature and
threshold (e.g., Insulin < 121.0), splitting metric value (e.g., Gini value of
0.461 at the root), and population in each class ([393, 221]).

» Asdiscussed, Gini score quantifies the purity of the node/leaf. A Gini score
greater than zero implies that samples contained within that node belong
to different classes. A Gini score of zero means that the node is pure, i.e.,
that node consists of representatives from only one class.

» Starting from the root node and traversing all the way to leaves, vari-
ous human-interpretable rules can be derived. For example, Insulin <
121.0AN DGlucose < 151.5AN DPregnancies < 14.0 is a predictor of
non-diabetes with 302 samples and resulting in only 15 errors (diabetes).

* The decreasing Gini score at each node level shows why the node/leaf is
getting purer, and the rules are generalized.

Explainable properties of CART are shown in Table 3.8.
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value = [53, 41]

T
((SkinThickness <= 315
| class = mndumhas

ni = 0.482
‘ ; X

Fig. 3.27 Decision Tree which is constrained to be three-level deep for the diabetes classification

data

Table 3.8 Explainable

ties of CART Properties Values
properties © Local or global Global
Linear or non-linear Non-linear

Monotonic or non-monotonic | Some monotonicity

Feature interactions captured | Yes

Model complexity Medium to high

3.7.9 Rule Induction

Rule induction is another popular traditional white-box technique in machine
learning. Instead of starting from decision trees and converting them into rules, rule
induction induces rules in the form of “IF <conditions >then class.” As compared
to decision trees, which use the “divide-and-conquer” strategy, rule induction works
through the “separate-and-conquer” approach [BGH89, CG91, Mic83a].

The general algorithm is to learn “one rule” at a time that “covers” positive
instances in the dataset, remove those, and iteratively learn new rules until all
positives are covered. The technique is also known as “sequential covering.”
Creating conditions for the “if”” requires searching for feature-value combinations,
and there are various search techniques such as exhaustive, greedy/heuristic-based
such as beam search, genetic algorithms, etc. There are multiple metrics to evaluate
while learning a rule, such as accuracy, weighted accuracy, precision, information
gain, etc., thus resulting in many variants. Similarly, there are multiple ways to
arrange the rules during the inference. One can order the rules in the same way
that it learned, metrics-based (accuracy, etc.), or some strategy-based for unordered
execution. Often, the rules, like decision trees, can overfit to the training data.
Two general approaches to overcome overfitting are pre-pruning and post-pruning.
In pre-pruning, the rules stop at a certain point before it classifies or covers the
instances perfectly, thus introducing some errors. In post-pruning, the training data
is further split into growing and pruning sets; rule learning happens on the growing
set to overfit the data, and post-pruning prunes these rules and uses the pruning set
as validation data.
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Fig. 3.28 Building CN2 rule induction using orange

The most popular rule induction algorithms used in many applications are CN2,
M>5Rules, and RIPPER [CN89, Coh95a, HHF99, Qui92]. We use the Orange library
to model the diabetes dataset as shown in Fig. 3.28.

Interpretation of CN2 Rules:

* (N2 output has a sequence of ordered rules. Each rule has an “If condition”
part that has at minimum a triplet of feature, operator, and value, e.g.,

Glucose > 158.0 or combinations of these triplets with “AND” operator,

e.g., Glucose > 158.0 AN D SkinThickness > 44.0.

The rule also has the “THEN clause” that implies a class that the rule

captures (positive or negative in binary classification) and the distribution

of positives and negatives the rule captures.

The negatives captured in the positive class are the false positives, and the

positives captured in the negative class are the false negatives.

Observations:

e We constrained the CN2 algorithm to have maximum rule length of 5,
i.e., not more than 5 feature-operator-value are in conjunction. We also
constrain that a rule should at least capture 8 examples in the dataset. These
hyperparameters were manually searched. The maximum rule length and
minimum examples act as a regularizer and prevent overfitting.
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IF conditions THEN class Distribution
Glucose=158.0 AND SkinThickness=44.0 = Outcome=1 __ [0, 8]
Age=20.0 AND Glucose=171.0 = Outcome=1 [0, 13]
BMI=45.4 AND .0 AND SkinThick 360 -+ On 1 [0, 9]
7.0 AND Gl 155.0 AND Gl 181.0 =+ Outcome=1 [0, 12]
30.0 AND 131.0 -+ Outcome=1 0, 8]
Insulinz205.0 AND Pregnanciesz8.0 AND Agez36.0 - Outcome=1 0, 8]
D digreaF i 731 AND el i 0 AND Agezda2.0 = Outcomes1 0, 8]
Pregnancies=7.0 AND Ages33.0 AND Blood| 0 =+ O 1 0, 9|
Glucose=155.0 AND Age=31.0 = Outcome=1 _ [1,12]
lood P 0 AND Diab. gy it 674 AND GI 137.0 =+ Outcome=1 0, |g]
DiabetesPedigreeFunction=0.855 AND BMI=40.0 AND .0 AND Gl 108.0 = Outcome=1 [0, 11]
BMI=31.6 AND BMIs33.1 AND Glucose=144.0 - Outcome=1 [0, 9]
Age=43.0 AND BloodP 80.0 AND i 0 AND Glucoses154.0 AND Di gl i 0.257 =+ Ou i 0, B]
Insulinz70.0 AND Insulins193.0 AND BMIz34.2 AND 0.0 -+ Ou 1 [0, 14]
DiabetesPedigreeFunctionz0.484 AND BloodPressurez70.0 AND Glucosez116.0 - Outcomes? 0, 9]
Glucosez158.0 =+ Outcomes1 12 9|
D gt { 0,28 AND 123.0 AND Di adig { 205 AND B S5 700 =+ On 1 0, Bl
I 112.0 AND Gl 117.0 AND 0 =+ On ;| [0, 8]
Age=22.0 AND BloodPressure=74.0 AND Age=32.0 AMD Di ig { 258 =+ On 1 [0, 8]
SkinThi 36.0 AND Di ig ion=0.337 AND Age=22.0 - Outcome=1 = 1, 8]
Age=24.0 AND Di; gy i 0.243 -+ Ou 1 [1.71
Agez24.0 AND 0 -+ Ou 1 [1.71
Fig. 3.29 Rules covering positive class in the diabetes dataset
Tablert,’.) 9 ];:chlllazugb}e Properties Values
roperties o ules
prop Local or global Global and local
Linear or non-linear Non-linear

Monotonic or non-monotonic | Some monotonicity

Feature interactions captured | Yes

Model complexity Medium to high

» Figure 3.29 shows only the rules for the positive class, i.e., outcome = 1.

e The CN2 Rule Induction algorithm generates 55 rules on the dataset, 22 for
the positive class.

¢ Only 4 rules out of 22 generate false positives, showing a good recall on the
training data.

e There are interesting domain-specific rules such as “Age < 31 AND
Glucose > 155.0” and “Age < 29 AN D Glucose > 171.0”which captures
young population with high glucose.

e There are some interesting ranges of certain features and relationship with
other features captured such as the rule “Insulin > 70 AN D Insulin < 193.0
AND BMI > 34.2 AN D BloodPressure > 60.0” with 14 true positives with
no false positives.

Explainable properties of CN2 rules are shown in Table 3.9.
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