
Chapter 1
Introduction to Interpretability and
Explainability

In recent years, we have seen gains in adoption of machine learning and artificial
intelligence applications. However, continued adoption is being constrained by
several limitations. The field of Explainable AI addresses one of the largest
shortcomings of machine learning and deep learning algorithms today: the inter-
pretability and explainability of models. As algorithms become more powerful and
are better able to predict with better accuracy, it becomes increasingly important
to understand how and why a prediction is made. Without interpretability and
explainability, it would be difficult for us to trust the predictions of real-life
applications of AI. Human-understandable explanations will encourage trust and
continued adoption of machine learning systems as well as increasing system safety.
As an emerging field, explainable AI will be vital for researchers and practitioners
in the coming years.

This book takes an in-depth approach to presenting the fundamentals of explain-
able AI through mathematical theory and practical use cases. The content is split
into four parts: pre-model methods, intrinsic methods, post-hoc methods, and deep-
learning methods. The first part introduces pre-model techniques for Explainable
AI (XAI). Part Two presents classical and modern intrinsic model interpretability
methods, while Part Three details the collection of post-hoc methods. Part Four
dives into methods tailored specifically for deep learning models. All concepts are
presented with numerous examples to build practical knowledge. This book makes
an assumption that readers have some background in elementary machine learning
and deep learning models. Knowledge of the python programming language and its
associated packages is helpful, but not a requirement.
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1.1 Black-Box problem

Innovation in machine learning algorithms has led to great advances in prediction
power and accuracy. However, they have increasingly become more complex. This
is an unfortunate trade-off between improved quality and transparency. We may
be able to observe the set of outputs for a given set of inputs to a model, without
knowledge or understanding of its internal workings. Unlike mathematical models
that have inherent structure, machine learning models can learn the mapping of
inputs to outputs directly from the data. For some models like decision trees, this
mapping is easily discernible. For others like random forests or deep learning
models, it becomes next to impossible to understand how predictions are made.
Many machine learning and deep learning models are essentially “black-boxes” that
do not reveal the internal mechanisms and nuances to their predictions (Fig. 1.1).
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This lack of transparency and understanding can have serious consequences to
our trust and adoption of these models. For instance, how do we know if the model
predictions may be wrong? This is especially important in high-stakes domains such
as healthcare. Would a doctor or patient trust a cancer prediction if a trained model
has an accuracy of 99 percent? What if, unknown to us, the model misses the most-
malignant cases? What if the high accuracy was due to data-leakage in the test data,
such that out-of-sample performance was much worse? This is why explainable AI
is a vital to our adoption of machine learning. For high-stakes decisions such as
credit loans, discriminating bail and parole applications, medical diagnosis, etc., it
becomes imperative for the machine learning models to be explainable [Kle+18,
Lak+19].

1.2 Goals

Explainable AI (XAI) seeks provide us insight on the decision-making ability of
an AI system. It helps us to understand how, when, and why predictions are made.
Consequently, it can build greater trust and improve the safety of our use of AI
models, encouraging their greater adoption in our society. We begin our exploration
of XAI by defining several inter-related goals: understandability, comprehensibility,
interpretability, and transparency. Each of these concepts is closely tied to model
complexity. While many of these may vary or overlap across different domains, they
are distinct in their desired outcomes, characteristics, and/or approaches (Fig. 1.2).
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1. Understandability: Understandability is the notion that, to be useful, the
underlying function of an AI model must be understandable to humans. The
concept of understandability, also known as intelligibility, is the property of the
overall model to be understandable without any need for details and explanation
of its internal algorithmic structure used by the model. For instance, the function
of autoencoders is easy to understand, even without intimate knowledge of how
autoencoders compress and uncompress inputs [RHW86].

2. Comprehensibility: Pertaining to ML models, comprehensibility refers to the
ability of a model to represent and convey its learned knowledge in a human-
understandable fashion. In general, measuring how well humans can understand
explanations is difficult in a nominal sense, but somewhat easier from a relative
perspective. For instance, it is hard to quantify how much the principal compo-
nents derived in PCA are human understandable, but we can likely say factors
derived in factor analysis are generally more comprehensible [Shl14].

3. Interpretability: Interpretability, often used interchangeably with explainability,
is the ability to explain or provide meaning to model predictions. In particular,
the goal of interpretability is to describe the structure of a model in a fashion
easily understandable by humans. That is, for a model to be interpretable, it must
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be describable in simple terms for a human to understand. As interpretability is
a subjective notion, it often depends on the audience and context.

4. Transparency: A model is transparent if its internal structure (structural trans-
parency) and algorithm (algorithmic transparency) by which it makes predictions
is understandable. Transparency helps us comprehend the basis of a model and
addresses the question of why a model works the way it does. It is worth noting
that a model can have different degrees of understandability.

1.3 Brief History

The field of machine learning modeling has evolved rapidly over the past century.
Many computational models were created to model real-life biological and cognitive
processes, and the advent of the computer launched an explosion of new algorithms
that previously were constrained by computation power. This trend continues
to today, with the increasing adoption of High-Performance-Computing (HPC)
clusters that can perform at 4 peta-FLOPS, or 4,000,000,000,000,000 floating point
operations per second (for reference, there are only about 86,000,000,000 neurons
in the human brain) [Zha19]. Our notion of machine learning has evolved over the
past few decades as computation power increased, from the early expert systems
to the current deep learning algorithms. This evolution generally achieved greater
accuracy at the expense of complexity and explainability.

1.3.1 Porphyrian Tree

Explainable models have existed for a long time before the modern invention of
the computer with its data processing capability. One of the earliest examples is the
decision tree, a prediction and classification algorithm with intrinsic explainability.
The decision tree algorithm is based on the notion of recursively partitioning
data using their characteristics to segregate into groups with similar target values
(Fig. 1.3).

Perhaps the earliest documented implementation of the decision tree is attributed
to Porphyry of Tyre, an influential Phoenician neoplatonic philosopher known for
his work “Introduction to Categories” which incorporated Aristotle’s logic into
Neoplatonism [Bar03]. The Porphyrian tree, as shown in the figure below, was
created by Porphyry as a visual means to classify genera into species [Dar17].

As the figure illustrates, the intrinsic interpretability of decision tree predictions
is readily evident in its visual, hierarchical structure. More recently, the decision tree
model was alluded to by Fisher in 1936 [Fis36] and characterized by Belson in 1959
[Bel59]. It was not until 1963 and 1972 that the first regression tree was invented
by Morgan and Sonquist and the classification tree was invented by Messenger and
Mandell, respectively [MS63, MM72].
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Fig. 1.3 Tree of Porphyry

1.3.2 Expert Systems

Beginning in the 1970s, computer scientists sought to develop models that could
emulate the decision-making of human experts in a variety of fields. These expert
systems were designed to be able to solve complex problems using logic and
reasoning. An important consideration of these systems was that decisions were
explainable, as the rules that defined the expert system were intuitive and could be
easily understood (Fig. 1.4).

Unfortunately, expert systems had significant limitations in what they could
achieve. Among other things, they were slow, dificult to train, and unable to deal
with in changing environments. These limitations led them to fall out of favor in the
late 1980s and precipitate a period known as the second AI winter [Nil09].

1.3.3 Case-Based Reasoning

As interest in expert systems declined, attention turned toward case-based reasoning
models that could solve new problems by using solutions of similar problems
learned in the past [WM94]. These models had a clear advantage in that their deci-
sions were implicitly explainable as well as generalizable beyond previously seen
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Fig. 1.4 XCON expert
system

data. Their main criticism is that there are no guarantees that such generalizations
are correct if data is scarce or imbalanced.

1.3.4 Bayesian Networks

In 1985, a new approach to probabilistic reasoning was presented by Judea Pearl
[Pea85]. He presented Bayesian networks as a type of probabilistic graphical model
comprised of nodes and directed edges. Bayesian network models use mathematical
graphs to capture conditionally dependent and independent relationships between
independent and target variables. Models can be created by experts or learned from
data and then used for inference to estimate the probabilities for subsequent events.
Bayesian models intrinsically have explanatory power, since they capture and are
able to express the conditional relationships between variables. They have led to
significant work in modeling real-world causal relationships, but popularity remains
muted by the tremendous computational load needed to process large networks or
datasets (Fig. 1.5).
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Fig. 1.5 Bayesian network example

1.3.5 Neural Networks

Alongside Bayesian networks, neural networks have taken off over the past decade
with several monumental breakthroughs in deep learning and computation at scale.
Neural networks can now achieve superhuman capability in many tasks in domains
such as computer vision [He+15], natural language processing [Wan+20], and
game-play [Mni+13]. However, deep learning algorithms tend to suffer from limited
scope and it remains to be proven that they can generalize well in the real-world.
Their frequent complaint and limitation are that they lack transparency and it is very
difficult for practitioners to entrust them for inference (“the black-box problem”).

1.4 Purpose

AI presents a number of significant issues that encompass practical, ethical,
philosophical, and equitable considerations. Explainable AI methods can address
and mitigate these issues in many ways, and the success of AI applications will be
likely driven by explainable AI methods going forward (Fig. 1.6).

1. Informativeness: AI models in practice exist for the intent of augmenting
decision-making in the real world. AI models are designed to achieve specific
quantitative objectives, but sometimes these objectives may not match their
original intent. When this happens, the consequences could be catastrophic. We
rely on explainable AI to inform us of the inner relations of a model, which
allow us to evaluate if or when objectives may be misaligned, misguided, or
counterproductive toward our decision-making intents.

2. Trustworthiness: According to NIST [Phi+20], the trustworthiness of an AI
application is ultimately derived by its explainability. We attribute greater
trust to AI algorithms that are relevant, easy to understand, and not prone to



8 1 Introduction to Interpretability and Explainability

Informa�veness

Trustworthiness

Fairness

Transparency

Causality

Transferability

Reliability

Accessibility

Privacy

Explainable
AI

Fig. 1.6 Purpose of explainable AI

misrepresentation. An increased level of trust directly leads to better adoption
by humans. For instance, our trust with autonomous vehicles may be limited
as the methods driving the steering algorithms under the hood (literally) are not
transparent to riders. As time progresses, and we gather more information on how
autonomous vehicles behave in normal and rare situations, our level of trust will
rise in conjunction with our level of understanding of its algorithms. Lakkaraju
et al. show how user trust can be manipulated by explanations in the black-box
models by creating a framework for understanding and generating misleading
explanations that can be verified by experts [LB20].

Maister, Green, and Galford [MGG01] devised the trust equation as guiding
principle for how humans perceive trust with each other. It has application in how
we perceive trust with AI applications, such as how safe we feel when interacting
with them and whether we believe their focus is aligned with our best interests
(Fig. 1.7).

Fig. 1.7 Trust equation
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While one purpose of an explainable AI model is increased trustworthiness,
there is a trade-off between building trust and model explainability. Under-
standing that a model is reliable and will always act in our interests does not
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automatically imply high fidelity of explanations. Trust is difficult to quantify,
and we sometimes equate trust to our confidence that the model will act as
intended. There is also a distinction between trusting an AI model and the
trustworthiness of an AI model. The first is an expression of human attitudes,
while the second is a measure of the extent to which a model can reliably
serve its intended purpose. For example, we generally attribute greater trust to
news stories on social media platforms than we should, even while some are
untrustworthy and false. At the same time, we generally trust scientific journals
far less than justified, even while their trustworthiness is high due to the peer-
review process.

3. Fairness: Fairness is defined the impartial and just treatment or behavior in
absence of any favoritism or discrimination. In the past few years, fairness
in AI has come to the forefront, with important research in both data bias
[Beg+20, Nto+20] and algorithmic bias [GSC18]. Our societal obligation to
address fairness makes it an important goal in AI, as explainability permits us
to identify if/when bias exists in the model. Explainable AI offers us the capacity
to achieve and guarantee fairness in real-world AI applications (Fig. 1.8).

Fig. 1.8 Bias and
explainable AI Real-World
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4. Transparency: It is often said that transparent AI is explainable AI. Model and
algorithmic transparency helps us understand how particular decisions are made
and is an essential part in how we build trustworthiness. However, transparency
does not necessarily imply fairness or explainability. Consider an AI algorithm
used to predict creditworthiness of potential borrowers. Transparency allows us
to identify which features (e.g., income, education level) influence the underlying
decision process, but it does mean the model is fair toward minority populations
absent in the training data [Meh+19]. Nor does it actually explain why a borrower
is creditworthy or not (e.g., what if they made slightly more vs having a high
education degree).
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5. Causality: One of the fundamental limitations of machine learning and AI
today is the lack of causation inherent in modeling. Modeling techniques
inherently leverage correlation, but ignore time or causal flow. Explainable AI
is increasingly being purposed toward identifying causal relationships in the
data [JMB20, Hol+19]. While significant domain and background knowledge is
generally required to prove causality, explainability can be used to explore cause
and effect. There is tremendous opportunity for explainable AI to tackle causal
effects.

6. Transferability: Transfer learning is the notion that a model trained on one
task can be generalized and used as a starting point for other tasks. We like
to build models that are transferable since it allows us to leverage the pre-
existing knowledge learned in previous tasks. Not every model is transferable,
and understanding the limitations of when/how models can transfer to other tasks
is an important purpose. Explainable AI allows us to understand the internal
structure and learning process of a model which facilitates our ability to apply the
model to other tasks. It also allows us to identify and understand what boundaries
and limitations may exist in a model that affects its transferability [Rai19].

7. Reliability: As stated earlier, the trustworthiness of a model depends on how
reliable and confident we feel in its decision-making process. Reliability and
stability are desirable characteristics in an AI model so that we can expect it
to make the same decision in the same circumstances. Similarly, robustness is
equally desirable in our expectation for an AI model to make similar decisions
in similar circumstances. Explainable AI can provide us insight into how reliable
or robust a model will operate under various conditions.

8. Accessibility: The accessibility of AI applications by non-technical folks plays
an important role in increasing popularity and adoption. Explainable AI can
facilitate the knowledge and understanding of complex AI models and thereby
reduce the burden by ordinary people when dealing with them [WR20].

9. Privacy: With privacy and security growing in importance with AI applications,
one of the benefits enabled by explainable AI is the ability to assess privacy.
With model explainability, we can more readily evaluate whether or not privacy
is breached in encrypted representations or algorithms [VM20]. Differential
privacy, another growing sub-field, seeks to maintain privacy at the origin
throughout computation (e.g., adding two numbers without ever knowing what
the actual numbers). Explainable AI can play an important role to ensure the
integrity of differentially private models and algorithms without knowledge of
the data.

1.5 Societal Impact

AI applications can have great societal impact, improving our societies and building
a better world. Explainable AI can facilitate our greater adoption of AI applications
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by empowering us to address important issues like fairness, bias, verifiability, safety,
and accountability.

1. Fairness and Bias: As adoption of AI models to support human life is increasing
exponentially, explainable AI will be a valuable tool to uncover unfair or
unethical algorithms. There are many famous cases to underscore the importance
of fairness in AI systems. We have seen the deleterious effects of algorithms
that exhibit gender bias [Lea18, Lea+20, FP21] and racial bias [IG20, Tho19].
COMPAS, the recidivism prediction algorithm, is a prominent example of
how bias in the data was compounded by a lack of algorithmic transparency
resulting in an algorithm that explicitly encoded racial and gender prejudices
[RWC20, KH19]. Recently, OpenAI released the GPT-3 model, consisting of 175
billion parameters trained on Open Crawl [Bro+20] and Wikipedia. Researchers
quickly observed the model exhibited serious biases, including gender, race, and
religion [AFZ21, Bro+20].

Recently, many approaches have been introduced to approach fairness in
AI, including bias detection, bias mitigation, bias explainability, and simulation
frameworks to understand long-term impact of algorithmic behavior [Fer+20].
With the increase in the underlying explainability of these algorithms, it becomes
much easier to track down the biases and make necessary interventions to ensure
fairness.

As AI research evolves, it is becoming increasingly important to develop not
just more accurate systems but also fair ones.

2. Safety: As we seek greater adoption of AI models, we must ensure they do
not inadvertently or maliciously make decisions or take actions that are unsafe
to humans. For any task, we start with a set of desired goals (e.g., shortest
path traversing from here to destination) and create a system design (e.g.,
autonomous-driving algorithm). How do we ensure the behavior of this system
design does not harm humans (e.g., strike the bicyclist in our path)? AI Safety
deals with designing systems to avoid unintended and harmful behavior that may
emerge from poorly designed AI systems in the real-world [JSB20, Amo+16].
A model is never completely testable in the real-world as one cannot create a
complete list of scenarios in which a model might see. Explainable AI becomes
a necessary prerequisite to help identify fail states in the model. For instance,
it allows us to identify potential blind-spots in vision-based autonomous-driving
systems, or where an AI system to predict cancer treatments maymake dangerous
recommendations that can harm patient health.

3. Verifiability: Verification is a set of powerful mathematical techniques that
guarantee the correctness of an AI model, such as ensuring that certain properties
are met. Importantly, it allows us to identify cases where a model may fail, or not
have an explanation. Rigorous testing and training help build robust machine
learning systems, but no amount of testing will formally guarantee that a system
behaves as intended. In real world situations, enumerating all possible outputs
for a given set of inputs is an impossible task. Verification in AI allows us to
compute bounds for an AI model output that can be helpful in designing a more
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resilient AI system, or a safer one [Bru+20]. Explainability is a key ingredient
in verification, as it allows us to formulate verification as a computationally
tractable optimization problem.

4. Accountability: Accountability is the ability to acknowledge and attribute
responsibility for decisions and actions made by AI systems. It is an important
aspect of the trustworthiness of AI models, and is closely related to transparency
in these models. We may find a model to be unfair or unsafe, but we need
accountability to understand why the model exhibits such behavior. Explainable
AI gives us the ability to account for why individual inputs lead to such
predictions, or why the overall model tends to behave in a certain way. We should
note that increased transparency does not always improve accountability. Just
because we have perfect clarity into the algorithm and weights of a convolutional
neural network does not necessarily allow us to attribute responsibility into its
behavior.

In a broader sense, accountability in AI can serve as a tool that allows
us to hold companies and organizations accountable for the performance of
their AI applications in real life [Dos+19]. From the perspective of equity, AI
accountability enabled by explainable AI is essential for algorithmic justice.

1.6 Types of Explanations

Explainable AI methods can provide different types of explanations to help us
interpret complex systems. We list five types of explanations enabled by explainable
AI to aid our understanding (Fig. 1.9).

1. Global Explanations: The most common question we tend to have is “how does
a model work?” Global explanations serve to explain how models arrived at their
predictions and can be in the form of visual charts, mathematical formulae, or
model graphs. Global explanations are holistic, with the goal of providing us the
ability to develop a top-down mental representation of the behavior of the model.

2. Local Explanations: Once we answer the question of how, we tend to ask the
question why. Local explanations are bottom-up and seek to answer the question
of why a model arrives at a prediction for a given input. They can attribute a
prediction to specific features of the data or model algorithm.

3. Contrastive Explanations: Contrastive explanations help us by understanding
why a model makes a certain prediction instead of another for a given input.
They answer the question of “why-not” or “why X and not Y” and are often
used jointly with “why” explanations to understand a model’s prediction and
its expected behavior. They are especially useful in determining what minimal
changes in inputs or model parameters are required to cause the model to make
a different prediction.

4. What-if Explanations: As in the classic sense, sensitivity analysis are what-
if explanations of the changes in model output as we tweak inputs and model



1.7 Trade-offs 13
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parameters. They are very useful for helping us to understand the relationships
between model predictions and model features.

5. Counterfactual Explanations: Counterfactual explanations tell us the hypothet-
ical changes to the input or parameters of a model that would lead the model to
make a specific different input. They answer the question of “how to” arrive at
a desired outcome by describing the smallest changes to the model that can be
made, without needing to understand the model internal structure.

6. Example-based Explanations: Sometimes, it is easier to explain the behavior
of a model or underlying data distribution simply by highlighting particular
instances of the data. This is known as explanation by example. Common practice
is to present similar input instances from which the model will predict similar
outputs.

1.7 Trade-offs

According to the No-Free Lunch Theorem, every algorithm performs equally well
when their performance is averaged across all possible problems. This does not
mean all is lost, as knowledge of the underlying problem, data, and environment can
help inform more optimal approaches. But because of the theorem, model selection
will come with trade-offs.
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Similarly, while explainable AI contributes many benefits, it does not do so
without trade-offs. It is important to understand the limitations of different XAI
methods in order to recognize when one set of methods may be more relevant or
accurate over others. We discuss here the broad scope of these trade-offs, and will
delve deeper into the characteristics of individual XAI methods in later chapters
(Table 1.1).

Table 1.1 Trade-offs in
explainable AI

Property Trade-off

Completeness Interpretability

Efficacy Privacy

Human explanations Accuracy

1. Completeness vs Interpretability: A handful of methods such as generalized
linear models and decision trees are inherently interpretable in that they are
self-explanatory by construction and can provide useful explanations directly by
inspection. However, these methods apply well to a very limited set of problems
in the real-world. On the other hand, the Universal Approximation Theorem
states that deep neural networks are able to approximate any continuous non-
linear function (provided we can train them to learn the function). Unfortunately,
these deep models are usually not transparent or easily interpretable. This
is a common trade-off that we see with explainable AI methods—the more
interpretable they are, the less likely they provide complete explanations of the
AI system. Stated another way, a trade-off exists between accuracy of model
prediction (“the what”) and model interpretation (“the why”). It is hard to achieve
both interpretability and completeness at the same time except in a handful of
cases. The most accurate explanations are not easily interpretable by humans and
the most interpretable explanations usually do not have complete coverage. The
challenge in explainable AI is to generate explanations that are both complete
and interpretable.

2. Efficacy vs Privacy: Increasingly, government regulatory frameworks such as
GDPR are enforcing data privacy as an inherent consideration in real-world
systems. This requirement for privacy can adversely limit explainability in
these systems. The trade-off between explanation efficacy and model privacy
is complex, as models are generally trained on a mixture of private and non-
private data. Consider a model trained on a mix of public and private data.
Without intervention, private data easily leak into model explanations. Adjusting
explanations to filter out private data can be a complex task and lead to
incomplete explanations that sacrifice accuracy.

Recent research has aimed to reduce or eliminate this trade-off using encryp-
tion and/or novel privacy-preserving machine learning methods. These methods
generally come with an additional computational burden, though advances in
computational power have and continue to mitigate this cost.
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3. Human Explanations vs Accuracy: Even in the case where a model exhibits
perfect transparency and we can easily observe the features that influence its
decision-making ability, it does not mean that the model is easily understandable
to humans. A trade-off exists in between the ability for a model to provide
comprehensible explanations and the accuracy of the model. For instance,
humans have a difficult time understanding and interpreting non-linear functions.
Certain XAI techniques allow us to assume linearity for a small bounded region
of a function (e.g., all continuous functions are linear if you look close enough),
providing us with sensitivity analysis that is easily understood. Other XAI
methods allow us to use surrogate models that can capture model behavior.

1.8 Taxonomy

Explainable AI methods has proliferated significantly in the past few years.
Figure 1.10 represents a taxonomy of the family of methods based on their approach
and characteristics. As new methods are being developed every day, we expect this
taxonomy to increase over time.

Fig. 1.10 Taxonomy of explainable AI
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1.8.1 Scope

Explainable AI methods can be either global or local in scope. Some methods can
extend to both. Global methods are useful what we want to interpret the macro
behavior of models, whereas local methods are handy when we want to understand
behavior at the micro level.

1. Global Methods: Global methods seek to explain the predictions of the overall
model from a comprehensive, top-down approach. As a result, explanations
provide an understanding of how the structures and parameters of the model lead
it make predictions. This allows us to comprehend the entire model all at once
by providing an understanding of how the model maps input data to features to
outputs. In doing so, we gain transparency into the inner mechanisms of a black-
box model.

2. Local Methods: Local methods, as the name implies, seek to explain how a
specific sample is mapped to its output by providing us an understanding of
how the model arrived at its prediction. This explains to us the rationale via
the contribution of features for a specific prediction from an input, and can
accomplished by approximating a model in a small region of interest using a
simpler model. For instance, a local method for an image classification model
can help identify the specific portions of the image that contribute to the model
class prediction.

1.8.2 Stage

XAI methods can categorized based on stage—whether they are applied before,
during, or after a model makes its prediction. We describe the characteristics of
each below (Fig. 1.11).

1. Pre-Model: Pre-model interpretability techniques are independent of the model,
as they are only applicable to the data itself. Data visualization is critical for
pre-model interpretability, consisting of exploratory data analysis techniques.

Pre-model interpretability usually happens before model selection, as it is also
important to explore and have a good understanding of the data before thinking
of the model. Meaningful intuitive features and sparsity (low number of features)
are some properties that help to achieve pre-model data interpretability.

We cover pre-model methods in Chap. 2 by delving into its relationship with
EDA, feature engineering, and data/feature visualization.

2. Intrinsic: Intrinsic interpretability methods refer to self-explanatory models
that leverage internal structure to provide natural explainability. The family of
intrinsic models include basic methods such as decision trees, generalized linear,
logistic, and clustering models. Natural explainability comes at a cost, however,
in terms of model accuracy.



1.9 Flowchart for Interpretable and Explainable Techniques 17

ModelData
Explainable

AI

Data Explainable
Model

ModelData Explainable
AI

Pre

Intrinsic

Post-Hoc

Fig. 1.11 Explainable AI categories by stage

In Chap. 3, we cover traditional intrinsic explainability methods and investi-
gate more advanced intrinsic methods in Chap. 4.

3. Post-Hoc: Post-hoc (post model) interpretability methods represent a collection
of techniques that are applicable to any trained black-box models, without the
need for understanding their internal structures. They provide explanations of
the global or local behavior of models by resolving relationships between input
samples and their predictions. Post-hoc methods are applicable even to intrinsic
models.

In Chap. 5, we discuss the wide range of post-hoc explainability methods
available. We subdivide them by their approach to explanation, including visual,
feature relevance, surrogate, and example-based explanations.

4. Model Agnostic vs Specific: Most pre- and post-hoc explainability methods
are model-agnostic in that they are applicable to a wide collection of models.
Some, especially with regard to deep neural networks, are model specific and
apply only to a specific set of models (e.g., convolutional neural networks).
Model-specific methods provide advantages over model-agnostic methods as
they leverage specific characteristics or architecture of the model to provide
improved explainability that may not be possible with model-agnostic methods.

In Chap. 6, we delve in to model-agnostic and model-specific methods deep
for neural networks. Finally, in Chap. 7, we examine explainable AI methods in
practice and apply them to a variety of case studies in different domains.

1.9 Flowchart for Interpretable and Explainable Techniques

Figure 1.12 provides a flowchart for exploring the XAI methods discussed in this
book.
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1.10 Resources for Researchers and Practitioners

There is a myriad of resources in the form of GitHub pages, survey research papers,
books, and courses on the topic of XAI. Though it is difficult to list everything, we
will highlight some which we have found to be very useful.

1.10.1 Books

Here we recognize various books that touch multiple areas of XAI that we think
will be useful for the readers. Many of these books are available free online, and we
have provided the links.

1. An Introduction to Machine Learning Interpretability by Patrick Hall and
Navdeep Gill.

2. Interpretable Machine Learning by Christoph Molnar. https://christophm.github.
io/interpretable-ml-book/

3. Fairness and Machine Learning by Solon Barocas, Moritz Hardt, and Arvind
Narayanan. https://fairmlbook.org/

4. Explanatory Model Analysis by Przemyslaw Biecek and Tomasz Burzykowski.
https://ema.drwhy.ai/

5. Responsible Machine Learning by Patrick Hall, Navdeep Gill and Benjamin.
https://www.h2o.ai/resources/ebook/responsible-machine-learning/

6. Explainable AI: Interpreting, Explaining, and Visualizing Deep Learning by
Wojciech Samek, Grégoire Montavon, Andrea Vedaldi, Lars Kai Hansen and
Klaus-Robert Müller.

7. Explanatory Model Analysis: Explore, Explain, and Examine Predictive Models
by Przemyslaw Biecek, Tomasz Burzykowski.

1.10.2 Relevant University Courses and Classes

Some relevant courses and classes with many helpful videos and lecture notes that
discuss XAI topics are listed below:

1. Interpretability and Explainability in Machine Learning https://www.hbs.edu/
faculty/Pages/item.aspx?teaching=266

2. Introduction to Responsible Machine Learning https://jphall663.github.io/
GWU_rml/

3. Trustworthy Deep Learning https://berkeley-deep-learning.github.io/cs294-131-
s19/

4. Data Ethics https://ethics.fast.ai/syllabus/

https://christophm.github.io/interpretable-ml-book/
https://christophm.github.io/interpretable-ml-book/
https://fairmlbook.org/
https://ema.drwhy.ai/
https://www.h2o.ai/resources/ebook/responsible-machine-learning/
https://www.hbs.edu/faculty/Pages/item.aspx?teaching=266
https://www.hbs.edu/faculty/Pages/item.aspx?teaching=266
https://jphall663.github.io/GWU_rml/
https://jphall663.github.io/GWU_rml/
https://berkeley-deep-learning.github.io/cs294-131-s19/
https://berkeley-deep-learning.github.io/cs294-131-s19/
https://ethics.fast.ai/syllabus/
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5. Methods of explainable AI https://human-centered.ai/methods-of-explainable-
ai/

6. Interpretability and Explainability in Machine Learning https://interpretable-ml-
class.github.io/

7. AI Interpretability and Fairness https://cs81si.stanford.edu/
8. Explainable AI https://www.cis.upenn.edu/~ungar/CIS700/

1.10.3 Online Resources

There are excellent online resources with a collection of articles, books, tools,
datasets, etc., all assembled in one place. Some of the links are:

1. https://github.com/jphall663/awesome-machine-learning-interpretability
2. https://github.com/lopusz/awesome-interpretable-machine-learning
3. https://github.com/pbiecek/xai_resources
4. https://github.com/h2oai/mli-resources
5. https://github.com/andreysharapov/xaience

1.10.4 Survey Papers

Following is the list of survey papers which the readers can find very helpful to get
an overview and the current trends,

1. Opportunities and Challenges in Explainable Artificial Intelligence (XAI): A
Survey by Das and Rad [DR20].

2. Peeking Inside the Black-Box: A Survey on Explainable Artificial Intelligence
(XAI) by Adadi et al. [AB18].

3. Explainable Artificial Intelligence (XAI): Concepts, taxonomies, opportunities,
and challenges toward responsible AI by Arrietta et al. [Arr+20a].

4. Explainable Artificial Intelligence Approaches: A Survey by Islam et al. [Isl+21].
5. Interpretable machine learning: definitions, methods, and applications by Mur-

doch, W. James, et al. [Mur+19].
6. Interpretable Machine Learning—A Brief History, State of the Art and Chal-

lenges by Molnar et al. [MCB20a].

1.11 Book Layout and Details

To understand the interpretability and explainability techniques throughout the
book, we have used following datasets, and here are the details.

https://human-centered.ai/methods-of-explainable-ai/
https://human-centered.ai/methods-of-explainable-ai/
https://interpretable-ml-class.github.io/
https://interpretable-ml-class.github.io/
https://cs81si.stanford.edu/
https://www.cis.upenn.edu/~ungar/CIS700/
https://github.com/jphall663/awesome-machine-learning-interpretability
https://github.com/lopusz/awesome-interpretable-machine-learning
https://github.com/pbiecek/xai_resources
https://github.com/h2oai/mli-resources
https://github.com/andreysharapov/xaience
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1. Classification: Pima Indian Diabetes dataset is originally from the National
Institute of Diabetes and Digestive and Kidney Diseases [Smi+88]. The clas-
sification dataset intends to diagnostically predict whether or not a patient has
diabetes based on specific symptomatic measurements incorporated as features
in the dataset. The datasets consist of several medical predictor features which
are numeric such as SkinThickness, BMI, Pregnancies, Insulin, Glucose, Age,
BloodPressure, DiabetesPedigreeFunction and one target Outcome classifying
the patient as diabetic or non-diabetic.

2. Regression: The medical claims dataset created for the book—Machine Learn-
ing with R by Brett Lantz—uses demographic statistics from the US Census
Bureau, reflecting real-world conditions [Lan13]. The dataset has instances of
beneficiaries currently enrolled in the insurance plan with features indicating
characteristics of the patient, such as age, sex, bmi, children, smoker, Region
and the total medical expenses charged to the plan for the calendar year as the
target charges.

3. Time series: Mauna Loa time series dataset has one of the longest continuous
series since 1958, and measuring the mean carbon dioxide as parts per million
(ppm) every month at Mauna Loa Observatory, Hawaii [Tan+09]. We use this for
our univariate time series analysis through different interpretable and explainable
techniques.

4. Computer Vision: Fashion-MNIST is a dataset of Zalando’s article images,
where each image is a 28 × 28 grayscale images, associated with a label from
10 classes—T-shirt/top, Trouser, Pullover, Dress, Coat, Sandal, Shirt, Sneaker,
Bag, and Ankle Boot [XRV17].

5. NLP and Text: LitCovid is a curated dataset providing central access to
a large number of relevant articles in PubMed that can be categorized into
eight categories—General, Forecasting, Transmission, Case Report,Mechanism,
Diagnosis, Treatment, and Prevention [CAL20b, CAL20a]. We will use subset
of this dataset for pre-hoc exploration and post-hoc NLP-based explainability
techniques.

1.11.1 Structure: Explainable Algorithm

Throughout the book we have tried to keep a consistent format for describing
the pre-model, intrinsically interpretable algorithms and post-hoc explainable tech-
niques. Each technique is described sufficiently with references and equations, plots
and outputs from the algorithms when applied to the datasets, how to interpret
the plots and the observations. An example with a simple linear regression model
applied to the insurance dataset with just one feature is described below.
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1.11.1.1 Linear Regression

Linear regression is one of the oldest techniques that predicts the target using
weights on the input features learned from the training data [KK62a]. The inter-
pretation of the model becomes straightforward as the target is a linear combination
of weights on the features. Thus linear regression model can be described as a linear
combination of input x and a weight parameter w (that is learned during training
process). In a d-dimensional input (x = [x1, x2, . . . , xd ]), we introduce another
dimension called the bias term, x0, with value 1. Thus the input can be seen as
x ∈ {1} × R

d , and the weights to be learned are w ∈ R
d+1. The label or the output

y which is a quantitative or numeric value is defined by

y =
d∑

i=0

wixi (1.1)

Interpreting linear regression model can be summarized as below

• Increasing the continuous feature by one unit changes the estimated
outcome by its weight.

• Intercept or the constant is the output when all the continuous features
are at value 0 and the categories are in the reference default (e.g., 0).
Understanding intercept value becomes meaningful for interpretation when
the data is scaled with mean value 0 as it represents the default weight for
an instance with mean values.

Fig. 1.13 Linear regression model with just one feature—age
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Table 1.2 Explainable
Properties of Linear
Regression

Properties Values

Local or global Global

Linear or non-linear Linear

Monotonic or non-monotonic Monotonic

Feature interactions captured No

Model complexity Low

Observations:

• Fig. 1.13 shows that features age has a linear relationship with charges with
a positive trend, i.e., as the age increases the charges increase.

• The bias or the intercept is −3882.86 while the weight for age feature
is +238.37, indicating a huge positive influence of age on the insurance
charges.

Explainable properties of linear regression are shown in Table 1.2.
We have made all the datasets and Python-based Google Colab notebooks

available for the readers to experiment on https://github.com/SpringerXAI.
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