
Uday Kamath
John Liu

Explainable
Artificial
Intelligence: An
Introduction
to Interpretable
Machine Learning

Explainable Artificial Intelligence: An Introduction
to Interpretable Machine Learning

Uday Kamath • John Liu

Explainable Artificial
Intelligence: An Introduction
to Interpretable Machine
Learning

123

Uday Kamath
Ashburn
VA, USA

John Liu
Nashville
TN, USA

ISBN 978-3-030-83355-8 ISBN 978-3-030-83356-5 (eBook)
https://doi.org/10.1007/978-3-030-83356-5

© The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerland
AG 2021
This work is subject to copyright. All rights are solely and exclusively licensed by the Publisher, whether
the whole or part of the material is concerned, specifically the rights of translation, reprinting, reuse
of illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way, and
transmission or information storage and retrieval, electronic adaptation, computer software, or by similar
or dissimilar methodology now known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors, and the editors are safe to assume that the advice and information in this book
are believed to be true and accurate at the date of publication. Neither the publisher nor the authors or
the editors give a warranty, expressed or implied, with respect to the material contained herein or for any
errors or omissions that may have been made. The publisher remains neutral with regard to jurisdictional
claims in published maps and institutional affiliations.

This Springer imprint is published by the registered company Springer Nature Switzerland AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

https://doi.org/10.1007/978-3-030-83356-5

To my parents Krishna and Bharathi, my wife
Pratibha, the kids Aaroh and Brandy, my
family and friends for their support.

–Uday Kamath

To my wife Catherine and daughter Gabrielle
Kaili-May and my parents for their
encouragement and patience.

–John Liu

Foreword

The extraordinarily rapid integration of AI into many (if not most) aspects of life,
entertainment, and business is transforming and disrupting the processes that power
the flow of human experience. The pace of AI adoption everywhere is intense,
accompanied by both immense benefits and immense risks. While many of the
risks reside in the human, legal, social, and political dimensions of AI applications,
the primary source of risk remains in the technical implementations of AI. Most
importantly and significantly, the current technical risk landscape is populated
by concerns around a taxonomy of AI issues: understandability, explainability,
transparency, interpretability, trustworthiness, and more.

In this comprehensive book on explainable AI (XAI) by John Liu and Uday
Kamath, we find a valuable and thorough handbook for the AI/ML community,
including early learners, experienced practitioners, and researchers. The book
covers the various dimensions of the AI technical risk taxonomy, including methods
and applications. The result of the authors’ extensive work is an in-depth coverage of
many XAI techniques, with real-world practical examples including code, libraries,
algorithms, foundational mathematics, and thorough explanations (the essence of
XAI).

The XAI techniques presented in-depth here range from traditional white-
box (explainable) models (e.g., regression, rule-based, graphs, network models)
to advanced black-box models (e.g., neural networks). In the first case, XAI is
addressed through statistical and visualization techniques, feature exploration and
engineering, and exploratory data analysis. In the latter case, XAI is addressed
through a remarkably powerful and rich set of methods, including feature sensitivity
testing through dependence, perturbation, difference, and gradient analyses. Extra
attention is given to three special cases for XAI: natural language processing (NLP),
computer vision (CV), and time series.

The book aims (and succeeds) to bring the reader up to date with the most modern
advances in the XAI field, while also giving significant coverage to the history and
complete details of traditional methods. In all the examples, use cases, techniques,
and applications, the consistent theme of the book is to provide a comprehensive
overview of XAI as perhaps the most critical requirement in AI/ML both for

vii

viii Foreword

now and in the future, from both technical and compliance perspectives. In that
regard, the forward-looking discussions at the end of the book give us a glimpse
of emerging XAI research areas that will advance our AI risk-compliance posture,
including human-machine collaboration (as in assisted and augmented intelligence
applications), causal ML, explainable security, responsible AI, and multidisciplinary
research into explainable and interpretable intelligence technologies as they impact
humanity.

I expect that this book will be an essential textbook, guidebook, reference book,
and how-to book in XAI design discussions, operational implementations, risk and
compliance monitoring applications, and essential conversations with technically
informed AI end-users, stakeholders, and regulators.

Kirk Borne, Ph.D., Data Scientist, Astrophysicist, Top Influencer, and Chief
Science Officer at DataPrime.ai

Preface

Why This Book?

The field of explainable AI addresses one of the most significant shortcomings of
machine learning and deep learning algorithms today: the interpretability of models.
As algorithms become more powerful and make predictions with better accuracy, it
becomes increasingly important to understand how and why a prediction is made.
Without interpretability and explainability, it would be difficult for the users to trust
the predictions of real-life applications of AI. Interpretable machine learning and
explainability is of critical importance for the following reasons:

• We need interpretability to explain the model’s working from both the diagnosis
and debugging perspective.

• We need explanations for the end-user to explain the decisions made by the model
and the rationale behind the decisions.

• Most datasets or models have been shown to have biases, and investigating
these biases is imperative for model deployment. Explainability is one way of
uncovering these biases in the model.

• Many industries such as finance and healthcare have legal requirements on
transparency, trust, explainability, and faithfulness of models, thus making inter-
pretability of models a prerequisite. In the European Union, some interpretations
of the GDPR regulations claim that AI solutions must supply explanations for
their conclusions. (Other interpretations say people need only be informed that
automated processes are involved in decisions that may affect them.)

There is also a constant flux of new tools that fall in various categories such
as application specific toolkits, visualization frameworks, and algorithm libraries.
Python is currently the lingua-franca of data scientists and researchers to perform
research in the area of interpretability and explainability. There are many libraries
that have evolved in Python for interpretable machine learning and explainable AI
in the last few years. We found a need for a single resource that gives concrete
form to traditional as well as modern techniques in explainable AI through the

ix

x Preface

use of existing tools and libraries for real-world applications. The work aims to
be a comprehensive “go to” resource presenting the most important methods of
explainability, insights to help put the techniques to use, and real-world examples
with code for a hands-on experience.

This book offers its readers a collection of techniques and case studies that should
serve as an accessible introduction for those just entering the field or as a handy
guide for others ready to create explainable solutions in any domain. Here are some
highlights:

• Comprehensive coverage of XAI techniques as a ready reference to the architec-
tures, algorithms with essential mathematical insights, and meaningful interpre-
tations.

• Thorough discussion on exploratory data analysis, data visualization, feature
engineering, and selection necessary from a pre-hoc perspective for wide vari-
eties of datasets such as tabular, text, time series, and images.

• Model validation and estimation techniques, visualization of model performance
and selection for classification, regression, and clustering problems are discussed
with examples.

• 25+ interpretable machine learning techniques, or white-box techniques, ranging
from traditional to modern, state-of-the-art.

• 20+ post-hoc techniques, covering diverse areas such as visualization, feature
importance, and example-based explanation techniques.

• 20+ explainable deep learning techniques which can be used in a generic or
architecture-specific way for model diagnosis and explanations.

• XAI techniques from traditional to advanced in different areas such as time series
forecasting, natural language processing, and computer vision.

• 20+ XAI tools and Python-based libraries bundled together in the context
of real-world case studies and Google Colaboratory-based notebooks for the
practitioners to get hands-on experience. The book’s primary purpose is to
be the single resource that addresses the theory and the practical aspects of
interpretability and explainability using the case studies with code, experiments,
and analysis to support.

Who This Book Is For

This book is an ideal text for AI practitioners wishing to learn methods that enable
them to interpret and explain model predictions. This book addresses a large market
as the interpretability problem is significant in healthcare, finance, and many other
industries. Current AI/ML researchers will also find this book helpful as they
integrate explainability into their research and innovation.

As it is infeasible to cover every topic fully in a single book, we present the key
concepts regarding explainable AI. In particular, we focus on the overlap of these
areas, leveraging different frameworks and libraries to explore modern research and

Preface xi

the application. This book is written to introduce interpretability and explainable
techniques with an emphasis on application and practical experience.

What This Book Covers

This book takes an in-depth approach to present the fundamentals of explainable AI
through mathematical theory and practical use cases. The content is split into four
parts: (1) pre-hoc techniques, (2) intrinsic and interpretable methods, (3) model-
agnostic methods, and (4) explainable deep learning methods. Finally, a chapter is
dedicated for the survey of interpretable and explainable methods applied to time
series, natural language processing, and computer vision.

A brief description of each chapter is given below.

• In the Introduction to Interpretability and Explainability Chap. 1, we intro-
duce the readers to the field of explainable AI by presenting a brief history,
its goals, societal impact, types of explanations, and taxonomy. We provide the
readers with different resources ranging from books to courses to aid the readers
in their practical journey.

• Pre-model Interpretability and Explainability Chap. 2 focuses on how to
summarize, visualize, and explore the data using graphical and non-graphical
techniques as well as provide insights into feature engineering. Since time
series, natural language processing, and computer vision need special handling
regarding data analysis, each of these topics is covered further in detail.

• Model Visualization Techniques and Traditional Interpretable Algorithms
Chap. 3 is a refresher of basic theories and practical concepts that are important in
model validation, evaluation, and performance visualization for both supervised
and unsupervised learning. Traditional interpretable algorithms such as linear
regression, logistic regression, generalized linear models, generalized additive
models, Bayesian techniques, decision trees, and rule inductions are discussed
from an interpretability perspective with examples.

• Model Interpretability: Advances in Interpretable Machine Learning Algo-
rithms Chap. 4 guides the readers to the latest advances made in the area of
interpretable algorithms in the last few years overcoming various computational
challenges while retaining the advantage of being transparent. The chapter covers
most of the glass-box-based methods, decision tree-based techniques, rule-based
algorithms, and risk-scoring systems successfully adopted in research and real-
world scenarios.

• Post-hoc Interpretability and Explanations Chap. 5 covers a vast collection
of explainable methods created to specifically address the black-box model
problem. The chapter organizes the post-hoc methods into three categories: visual
explanations-based, feature-importance-based, and examples-based techniques.
Each technique in the category is not only summarized but also implemented on
real-world dataset to give a practical view of the explanations.

xii Preface

• Explainable Deep Learning Chap. 6 presents a collection of explanation
approaches that are specifically developed for neural networks by leveraging
architecture or learning method from the perspective of model validation,
debugging, and exploration. Various intrinsic, perturbation, and gradient-based
methods are covered in-depth with real examples and visualizations.

• Explainability in Time Series Forecasting, Natural Language Processing and
Computer Vision Chap. 7 discusses everything from traditional to modern tech-
niques and various advances in the respective domains in terms of interpretability
and explainability. In addition, each topic presents a case study to compare,
contrast, and explore from the point-of-view of a real-world practitioner.

• XAI: Challenges and Future Chap. 8 highlights the paramount importance
of formalizing, quantifying, measuring, and comparing different explanation
techniques as well as some of the recent work in the area. Finally, we present
some essential topics that need to be addressed and directions that will change
XAI in the immediate future.

Next, we want to list topics we will not cover in this book. The book does not
cover topics related to ethics, bias, and fairness and their relationships with XAI
from a data and modeling perspective. XAI can both be hacked and also be used for
hacking. XAI and its implications to security are not covered in this work. Causal
interpretability is gaining popularity among researchers and practitioners to address
the “why” part of decisions. Since this is a relatively new and evolving area, we
have not covered causal machine learning from an interpretability viewpoint.

Ashburn, VA, USA Uday Kamath

Nashville, TN, USA John Liu

Acknowledgments

The construction of this book would not have been possible without the tremendous
efforts of many people. Firstly, we want to thank Springer, especially our editor,
Paul Drougas, and coordinator Shina Harshvardhan, for working very closely
with us and see this to fruition. We would specifically like to first thank (alphabetical
order) Gabrielle Kaili-May Liu (Junior, MIT, Cambridge), Mitch Naylor (Senior
Data Scientist, Smarsh, Nashville), and Vedant Vajre (Senior, Stone Bridge High
School, Ashburn) for their help in explainable AI libraries integration and validating
experiments for many chapters described in the book. We would also like to
thank (alphabetical order) Krishna Choppella (Solutions Architect, BAE Systems,
Toronto), Bruce Glassford (Sr. Data Scientist, Smarsh, New York), Kevin Keenan
(Sr.Director, Smarsh, Belfast), Joe Porter (Researcher, Nashville), and Prerna
Subramanian (PhD Scholar, Queens University, Canada) for providing support and
expertise in case studies, chapter reviews, and content feedback. We would also
like to thank Dr. Kirk Borne, Anusha Dandapani, and Dr. Andrey Sharapov for
graciously accepting our proposal to formally review the book and provide their
perspectives as a foreword and reviews.

xiii

Contents

1 Introduction to Interpretability and Explainability . 1
1.1 Black-Box problem . 2
1.2 Goals . 2
1.3 Brief History . 4

1.3.1 Porphyrian Tree . 4
1.3.2 Expert Systems . 5
1.3.3 Case-Based Reasoning. 5
1.3.4 Bayesian Networks . 6
1.3.5 Neural Networks . 7

1.4 Purpose . 7
1.5 Societal Impact . 10
1.6 Types of Explanations . 12
1.7 Trade-offs . 13
1.8 Taxonomy . 15

1.8.1 Scope . 16
1.8.2 Stage . 16

1.9 Flowchart for Interpretable and Explainable Techniques 17
1.10 Resources for Researchers and Practitioners . 19

1.10.1 Books . 19
1.10.2 Relevant University Courses and Classes 19
1.10.3 Online Resources . 20
1.10.4 Survey Papers . 20

1.11 Book Layout and Details . 20
1.11.1 Structure: Explainable Algorithm . 21

References . 23

2 Pre-model Interpretability and Explainability . 27
2.1 Data Science Process and EDA . 27
2.2 Exploratory Data Analysis . 28

2.2.1 EDA Challenges for Explainability . 28
2.2.2 EDA: Taxonomy . 29

xv

xvi Contents

2.2.3 Role of EDA in Explainability . 29
2.2.4 Non-graphical: Summary Statistics and Analysis 30
2.2.5 Graphical: Univariate and Multivariate Analysis 36
2.2.6 EDA and Time Series . 52
2.2.7 EDA and NLP . 56
2.2.8 EDA and Computer Vision . 61

2.3 Feature Engineering . 66
2.3.1 Feature Engineering and Explainability . 67
2.3.2 Feature Engineering Taxonomy and Tools. 67

References . 75

3 Model Visualization Techniques and Traditional Interpretable
Algorithms . 79
3.1 Model Validation, Evaluation, and Hyperparameters 79

3.1.1 Tools and Libraries. 80
3.2 Model Selection and Visualization. 81

3.2.1 Validation Curve . 81
3.2.2 Learning Curve. 82

3.3 Classification Model Visualization . 83
3.3.1 Confusion Matrix and Classification Report. 84
3.3.2 ROC and AUC . 86
3.3.3 PRC . 87
3.3.4 Discrimination Thresholds . 88

3.4 Regression Model Visualization . 89
3.4.1 Residual Plots . 89
3.4.2 Prediction Error Plots . 91
3.4.3 Alpha Selection Plots . 91
3.4.4 Cook’s Distance . 92

3.5 Clustering Model Visualization . 93
3.5.1 Elbow Method. 94
3.5.2 Silhouette Coefficient Visualizer . 95
3.5.3 Intercluster Distance Maps . 97

3.6 Interpretable Machine Learning Properties. 98
3.7 Traditional Interpretable Algorithms . 98

3.7.1 Tools and Libraries. 98
3.7.2 Linear Regression . 98
3.7.3 Logistic Regression . 104
3.7.4 Generalized Linear Models . 105
3.7.5 Generalized Additive Models . 109
3.7.6 Naive Bayes . 111
3.7.7 Bayesian Networks . 113
3.7.8 Decision Trees . 115
3.7.9 Rule Induction. 116

References . 119

Contents xvii

4 Model Interpretability: Advances in Interpretable Machine Learning 121
4.1 Interpretable vs. Explainable Algorithms. 121
4.2 Tools and Libraries . 122
4.3 Ensemble-Based . 122

4.3.1 Boosted Rulesets . 123
4.3.2 Explainable Boosting Machines (EBM) . 126
4.3.3 RuleFit . 129
4.3.4 Skope-Rules . 131
4.3.5 Iterative Random Forests (iRF). 133

4.4 Decision Tree-Based. 136
4.4.1 Optimal Classification Trees . 138
4.4.2 Optimal Decision Trees . 140

4.5 Rule-Based Techniques. 147
4.5.1 Bayesian Or’s of And’s (BOA) . 148
4.5.2 Bayesian Case Model . 150
4.5.3 Certifiably Optimal RulE ListS (CORELS) 152
4.5.4 Bayesian Rule Lists . 158

4.6 Scoring System . 160
4.6.1 Supersparse Linear Integer Models . 160

References . 163

5 Post-Hoc Interpretability and Explanations . 167
5.1 Tools and Libraries . 167
5.2 Visual Explanation. 167

5.2.1 Partial Dependence Plots . 168
5.2.2 Individual Conditional Expectation Plots 172
5.2.3 Ceteris Paribus Plots . 175
5.2.4 Accumulated Local Effects Plots. 176
5.2.5 Breakdown Plots . 180
5.2.6 Interaction Breakdown Plots . 182

5.3 Feature Importance . 184
5.3.1 Feature Interaction . 184
5.3.2 Permutation Feature Importance . 187
5.3.3 Ablations: Leave-One-Covariate-Out . 189
5.3.4 Shapley Values . 191
5.3.5 SHAP . 192
5.3.6 KernelSHAP . 193
5.3.7 Anchors . 196
5.3.8 Global Surrogate . 198
5.3.9 LIME . 200

5.4 Example-Based . 203
5.4.1 Contrastive Explanation . 203
5.4.2 kNN. 206
5.4.3 Trust Scores . 208
5.4.4 Counterfactuals. 209

xviii Contents

5.4.5 Prototypes/Criticisms . 211
5.4.6 Influential Instances . 214

References . 216

6 Explainable Deep Learning . 217
6.1 Applications. 217
6.2 Tools and Libraries . 218
6.3 Intrinsic. 218

6.3.1 Attention. 219
6.3.2 Joint Training. 221

6.4 Perturbation . 222
6.4.1 LIME . 223
6.4.2 Occlusion . 225
6.4.3 RISE . 226
6.4.4 Prediction Difference Analysis . 228
6.4.5 Meaningful Perturbation . 230

6.5 Gradient/Backpropagation . 232
6.5.1 Activation Maximization . 232
6.5.2 Class Model Visualization . 234
6.5.3 Saliency Maps . 235
6.5.4 DeepLIFT . 237
6.5.5 DeepSHAP . 240
6.5.6 Deconvolution . 242
6.5.7 Guided Backpropagation . 244
6.5.8 Integrated Gradients . 246
6.5.9 Layer-Wise Relevance Propagation . 248
6.5.10 Excitation Backpropagation . 251
6.5.11 CAM.. 253
6.5.12 Gradient-Weighted CAM .. 254
6.5.13 Testing with Concept Activation Vectors 256

References . 259

7 Explainability in Time Series Forecasting, Natural Language
Processing, and Computer Vision . 261
7.1 Time Series Forecasting . 261

7.1.1 Tools and Libraries. 262
7.1.2 Model Validation and Evaluation . 262
7.1.3 Model Metrics . 263
7.1.4 Statistical Time Series Models . 265
7.1.5 Prophet: Scalable and Interpretable Machine

Learning Approach . 274
7.1.6 Deep Learning and Interpretable Time Series Forecasting. 275

7.2 Natural Language Processing . 279
7.2.1 Explainability, Operationalization, and

Visualization Techniques . 280
7.2.2 Explanation Quality Evaluation . 283

Contents xix

7.2.3 Tools and Libraries. 283
7.2.4 Case Study . 283

7.3 Computer Vision . 287
7.3.1 Generating Iconic Examples. 289
7.3.2 Attribution . 291
7.3.3 Semantic Identification . 292
7.3.4 Understanding the Networks . 293
7.3.5 Tools and Libraries. 293
7.3.6 Case Study . 294

References . 299

8 XAI: Challenges and Future . 303
8.1 XAI: Challenges . 303

8.1.1 Properties of Explanation . 304
8.1.2 Categories of Explanation . 304
8.1.3 Taxonomy of Explanation Evaluation. 305

8.2 Future. 307
8.2.1 Formalization of Explanation Techniques

and Evaluations . 307
8.2.2 Adoption of Interpretable Techniques . 307
8.2.3 Human-Machine Collaboration . 308
8.2.4 Collective Intelligence from Multiple Disciplines. 308
8.2.5 Responsible AI (RAI). 308
8.2.6 XAI and Security. 308
8.2.7 Causality and XAI . 309

8.3 Closing Remarks. 309
References . 309

Notation1

Calculus

≈ Approximately equal to
|A| L1 norm of matrix A
‖A‖ L2 norm of matrix A
da
db

Derivative of a with respect to b
∂a
∂b

Partial derivative of a with respect to b
∇xY Gradient of Y with respect to x

∇XY Matrix of derivatives of Y with respect to X

Datasets

D Dataset, a set of examples and corresponding targets, {(x1, y1), (x2, y2), . . . ,
(xn, yn)}

X Space of all possible inputs
Y Space of all possible outputs
yi Target label for example i

ŷi Predicted label for example i

L Log-likelihood loss
Ω Learned parameters

1Most of the chapters unless and otherwise specified assumes the notations given above.

xxi

xxii Notation

Functions

f : A→ B A function f that maps a value in the set A to set B
f (x; θ) A function of x parameterized by θ . This is frequently reduced to

f (x) for notational clarity.
log x Natural log of x

σ(a) Logistic sigmoid, 1
1+exp−a

�a �= b� A function that yields a 1 if the condition contained is true,
otherwise it yields 0

argminx f (x) Set of arguments that minimize f (x), argminx f (x) = {x |
f (x) = minx′ f (x′)}

argmaxx f (x) Set of arguments that maximize f (x), argmaxx f (x) = {x |
f (x) = maxx′ f (x′)}

Variables

a Scalar value (integer or real)⎡
⎢⎣

a1
...

an

⎤
⎥⎦ Vector containing elements a1 to an

⎡
⎢⎣

a1,1 · · · a1,n
...

. . .
...

am,1 · · · am,n

⎤
⎥⎦ A matrix with m rows and n columns

Ai,j Value of matrix A at row i and column j

a Vector (dimensions implied by context)
A Matrix (dimensions implied by context)
Aᵀ Transpose of matrix A
A−1 Inverse of matrix A
I Identity matrix (dimensionality implied by context)
A · B Dot product of matrices A and B
A× B Cross product of matrices A and B
A ◦ B Element-wise (Hadamard) product
A⊗ B Kronecker product of matrices A and B
a;b Concatenation of vectors a and b

Notation xxiii

Probability

E Expected value
P(A) Probability of event A
X ∼ N (μ, σ 2) Random variable X sampled from a Gaussian (Normal) distribu-

tion with μ mean and σ 2 variance.

Sets

A A set
R Set of real numbers
C Set of complex numbers
∅ Empty set
{a, b} Set containing the elements a and b.
{1, 2, . . . n} Set containing all integers from 1 to n

{a1, a2, . . . an} Set containing n elements
a ∈ A Value a is a member of the set A
[a, b] Set of real values from a to b, including a and b

[a, b) Set of real values from a to b, including a but excluding b

a1:m Set of elements {a1, a2, . . . , am} (used for notational convenience)
Most of the chapters unless and otherwise specified assumes the notations given
above.

Chapter 1
Introduction to Interpretability and
Explainability

In recent years, we have seen gains in adoption of machine learning and artificial
intelligence applications. However, continued adoption is being constrained by
several limitations. The field of Explainable AI addresses one of the largest
shortcomings of machine learning and deep learning algorithms today: the inter-
pretability and explainability of models. As algorithms become more powerful and
are better able to predict with better accuracy, it becomes increasingly important
to understand how and why a prediction is made. Without interpretability and
explainability, it would be difficult for us to trust the predictions of real-life
applications of AI. Human-understandable explanations will encourage trust and
continued adoption of machine learning systems as well as increasing system safety.
As an emerging field, explainable AI will be vital for researchers and practitioners
in the coming years.

This book takes an in-depth approach to presenting the fundamentals of explain-
able AI through mathematical theory and practical use cases. The content is split
into four parts: pre-model methods, intrinsic methods, post-hoc methods, and deep-
learning methods. The first part introduces pre-model techniques for Explainable
AI (XAI). Part Two presents classical and modern intrinsic model interpretability
methods, while Part Three details the collection of post-hoc methods. Part Four
dives into methods tailored specifically for deep learning models. All concepts are
presented with numerous examples to build practical knowledge. This book makes
an assumption that readers have some background in elementary machine learning
and deep learning models. Knowledge of the python programming language and its
associated packages is helpful, but not a requirement.

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2021
U. Kamath, J. Liu, Explainable Artificial Intelligence: An Introduction to
Interpretable Machine Learning, https://doi.org/10.1007/978-3-030-83356-5_1

1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-83356-5_1&domain=pdf
https://doi.org/10.1007/978-3-030-83356-5_1

2 1 Introduction to Interpretability and Explainability

1.1 Black-Box problem

Innovation in machine learning algorithms has led to great advances in prediction
power and accuracy. However, they have increasingly become more complex. This
is an unfortunate trade-off between improved quality and transparency. We may
be able to observe the set of outputs for a given set of inputs to a model, without
knowledge or understanding of its internal workings. Unlike mathematical models
that have inherent structure, machine learning models can learn the mapping of
inputs to outputs directly from the data. For some models like decision trees, this
mapping is easily discernible. For others like random forests or deep learning
models, it becomes next to impossible to understand how predictions are made.
Many machine learning and deep learning models are essentially “black-boxes” that
do not reveal the internal mechanisms and nuances to their predictions (Fig. 1.1).

Fig. 1.1 Black-Box
algorithm lacks transparency

X
INPUT

Y
OUTPUT

Black Box
Model

This lack of transparency and understanding can have serious consequences to
our trust and adoption of these models. For instance, how do we know if the model
predictions may be wrong? This is especially important in high-stakes domains such
as healthcare. Would a doctor or patient trust a cancer prediction if a trained model
has an accuracy of 99 percent? What if, unknown to us, the model misses the most-
malignant cases? What if the high accuracy was due to data-leakage in the test data,
such that out-of-sample performance was much worse? This is why explainable AI
is a vital to our adoption of machine learning. For high-stakes decisions such as
credit loans, discriminating bail and parole applications, medical diagnosis, etc., it
becomes imperative for the machine learning models to be explainable [Kle+18,
Lak+19].

1.2 Goals

Explainable AI (XAI) seeks provide us insight on the decision-making ability of
an AI system. It helps us to understand how, when, and why predictions are made.
Consequently, it can build greater trust and improve the safety of our use of AI
models, encouraging their greater adoption in our society. We begin our exploration
of XAI by defining several inter-related goals: understandability, comprehensibility,
interpretability, and transparency. Each of these concepts is closely tied to model
complexity. While many of these may vary or overlap across different domains, they
are distinct in their desired outcomes, characteristics, and/or approaches (Fig. 1.2).

1.2 Goals 3

Explainability

Understandability

Comprehensibility

Transparency

Interpretability

Fig. 1.2 Goals of XAI

1. Understandability: Understandability is the notion that, to be useful, the
underlying function of an AI model must be understandable to humans. The
concept of understandability, also known as intelligibility, is the property of the
overall model to be understandable without any need for details and explanation
of its internal algorithmic structure used by the model. For instance, the function
of autoencoders is easy to understand, even without intimate knowledge of how
autoencoders compress and uncompress inputs [RHW86].

2. Comprehensibility: Pertaining to ML models, comprehensibility refers to the
ability of a model to represent and convey its learned knowledge in a human-
understandable fashion. In general, measuring how well humans can understand
explanations is difficult in a nominal sense, but somewhat easier from a relative
perspective. For instance, it is hard to quantify how much the principal compo-
nents derived in PCA are human understandable, but we can likely say factors
derived in factor analysis are generally more comprehensible [Shl14].

3. Interpretability: Interpretability, often used interchangeably with explainability,
is the ability to explain or provide meaning to model predictions. In particular,
the goal of interpretability is to describe the structure of a model in a fashion
easily understandable by humans. That is, for a model to be interpretable, it must

4 1 Introduction to Interpretability and Explainability

be describable in simple terms for a human to understand. As interpretability is
a subjective notion, it often depends on the audience and context.

4. Transparency: A model is transparent if its internal structure (structural trans-
parency) and algorithm (algorithmic transparency) by which it makes predictions
is understandable. Transparency helps us comprehend the basis of a model and
addresses the question of why a model works the way it does. It is worth noting
that a model can have different degrees of understandability.

1.3 Brief History

The field of machine learning modeling has evolved rapidly over the past century.
Many computational models were created to model real-life biological and cognitive
processes, and the advent of the computer launched an explosion of new algorithms
that previously were constrained by computation power. This trend continues
to today, with the increasing adoption of High-Performance-Computing (HPC)
clusters that can perform at 4 peta-FLOPS, or 4,000,000,000,000,000 floating point
operations per second (for reference, there are only about 86,000,000,000 neurons
in the human brain) [Zha19]. Our notion of machine learning has evolved over the
past few decades as computation power increased, from the early expert systems
to the current deep learning algorithms. This evolution generally achieved greater
accuracy at the expense of complexity and explainability.

1.3.1 Porphyrian Tree

Explainable models have existed for a long time before the modern invention of
the computer with its data processing capability. One of the earliest examples is the
decision tree, a prediction and classification algorithm with intrinsic explainability.
The decision tree algorithm is based on the notion of recursively partitioning
data using their characteristics to segregate into groups with similar target values
(Fig. 1.3).

Perhaps the earliest documented implementation of the decision tree is attributed
to Porphyry of Tyre, an influential Phoenician neoplatonic philosopher known for
his work “Introduction to Categories” which incorporated Aristotle’s logic into
Neoplatonism [Bar03]. The Porphyrian tree, as shown in the figure below, was
created by Porphyry as a visual means to classify genera into species [Dar17].

As the figure illustrates, the intrinsic interpretability of decision tree predictions
is readily evident in its visual, hierarchical structure. More recently, the decision tree
model was alluded to by Fisher in 1936 [Fis36] and characterized by Belson in 1959
[Bel59]. It was not until 1963 and 1972 that the first regression tree was invented
by Morgan and Sonquist and the classification tree was invented by Messenger and
Mandell, respectively [MS63, MM72].

1.3 Brief History 5

Fig. 1.3 Tree of Porphyry

1.3.2 Expert Systems

Beginning in the 1970s, computer scientists sought to develop models that could
emulate the decision-making of human experts in a variety of fields. These expert
systems were designed to be able to solve complex problems using logic and
reasoning. An important consideration of these systems was that decisions were
explainable, as the rules that defined the expert system were intuitive and could be
easily understood (Fig. 1.4).

Unfortunately, expert systems had significant limitations in what they could
achieve. Among other things, they were slow, dificult to train, and unable to deal
with in changing environments. These limitations led them to fall out of favor in the
late 1980s and precipitate a period known as the second AI winter [Nil09].

1.3.3 Case-Based Reasoning

As interest in expert systems declined, attention turned toward case-based reasoning
models that could solve new problems by using solutions of similar problems
learned in the past [WM94]. These models had a clear advantage in that their deci-
sions were implicitly explainable as well as generalizable beyond previously seen

6 1 Introduction to Interpretability and Explainability

Fig. 1.4 XCON expert
system

data. Their main criticism is that there are no guarantees that such generalizations
are correct if data is scarce or imbalanced.

1.3.4 Bayesian Networks

In 1985, a new approach to probabilistic reasoning was presented by Judea Pearl
[Pea85]. He presented Bayesian networks as a type of probabilistic graphical model
comprised of nodes and directed edges. Bayesian network models use mathematical
graphs to capture conditionally dependent and independent relationships between
independent and target variables. Models can be created by experts or learned from
data and then used for inference to estimate the probabilities for subsequent events.
Bayesian models intrinsically have explanatory power, since they capture and are
able to express the conditional relationships between variables. They have led to
significant work in modeling real-world causal relationships, but popularity remains
muted by the tremendous computational load needed to process large networks or
datasets (Fig. 1.5).

1.4 Purpose 7

Age Gender

SmokingToxins

Cancer
Lung

Tumor

Fig. 1.5 Bayesian network example

1.3.5 Neural Networks

Alongside Bayesian networks, neural networks have taken off over the past decade
with several monumental breakthroughs in deep learning and computation at scale.
Neural networks can now achieve superhuman capability in many tasks in domains
such as computer vision [He+15], natural language processing [Wan+20], and
game-play [Mni+13]. However, deep learning algorithms tend to suffer from limited
scope and it remains to be proven that they can generalize well in the real-world.
Their frequent complaint and limitation are that they lack transparency and it is very
difficult for practitioners to entrust them for inference (“the black-box problem”).

1.4 Purpose

AI presents a number of significant issues that encompass practical, ethical,
philosophical, and equitable considerations. Explainable AI methods can address
and mitigate these issues in many ways, and the success of AI applications will be
likely driven by explainable AI methods going forward (Fig. 1.6).

1. Informativeness: AI models in practice exist for the intent of augmenting
decision-making in the real world. AI models are designed to achieve specific
quantitative objectives, but sometimes these objectives may not match their
original intent. When this happens, the consequences could be catastrophic. We
rely on explainable AI to inform us of the inner relations of a model, which
allow us to evaluate if or when objectives may be misaligned, misguided, or
counterproductive toward our decision-making intents.

2. Trustworthiness: According to NIST [Phi+20], the trustworthiness of an AI
application is ultimately derived by its explainability. We attribute greater
trust to AI algorithms that are relevant, easy to understand, and not prone to

8 1 Introduction to Interpretability and Explainability

Informa�veness

Trustworthiness

Fairness

Transparency

Causality

Transferability

Reliability

Accessibility

Privacy

Explainable
AI

Fig. 1.6 Purpose of explainable AI

misrepresentation. An increased level of trust directly leads to better adoption
by humans. For instance, our trust with autonomous vehicles may be limited
as the methods driving the steering algorithms under the hood (literally) are not
transparent to riders. As time progresses, and we gather more information on how
autonomous vehicles behave in normal and rare situations, our level of trust will
rise in conjunction with our level of understanding of its algorithms. Lakkaraju
et al. show how user trust can be manipulated by explanations in the black-box
models by creating a framework for understanding and generating misleading
explanations that can be verified by experts [LB20].

Maister, Green, and Galford [MGG01] devised the trust equation as guiding
principle for how humans perceive trust with each other. It has application in how
we perceive trust with AI applications, such as how safe we feel when interacting
with them and whether we believe their focus is aligned with our best interests
(Fig. 1.7).

Fig. 1.7 Trust equation

Trust

Credibility Reliability Int imacy

Self-orienta�on

While one purpose of an explainable AI model is increased trustworthiness,
there is a trade-off between building trust and model explainability. Under-
standing that a model is reliable and will always act in our interests does not

1.4 Purpose 9

automatically imply high fidelity of explanations. Trust is difficult to quantify,
and we sometimes equate trust to our confidence that the model will act as
intended. There is also a distinction between trusting an AI model and the
trustworthiness of an AI model. The first is an expression of human attitudes,
while the second is a measure of the extent to which a model can reliably
serve its intended purpose. For example, we generally attribute greater trust to
news stories on social media platforms than we should, even while some are
untrustworthy and false. At the same time, we generally trust scientific journals
far less than justified, even while their trustworthiness is high due to the peer-
review process.

3. Fairness: Fairness is defined the impartial and just treatment or behavior in
absence of any favoritism or discrimination. In the past few years, fairness
in AI has come to the forefront, with important research in both data bias
[Beg+20, Nto+20] and algorithmic bias [GSC18]. Our societal obligation to
address fairness makes it an important goal in AI, as explainability permits us
to identify if/when bias exists in the model. Explainable AI offers us the capacity
to achieve and guarantee fairness in real-world AI applications (Fig. 1.8).

Fig. 1.8 Bias and
explainable AI Real-World

Bias

Data Bias

Algorithmic
Bias

Explainable
AI

is reflected in

is encoded inis uncovered by

is used to
mi�gate

4. Transparency: It is often said that transparent AI is explainable AI. Model and
algorithmic transparency helps us understand how particular decisions are made
and is an essential part in how we build trustworthiness. However, transparency
does not necessarily imply fairness or explainability. Consider an AI algorithm
used to predict creditworthiness of potential borrowers. Transparency allows us
to identify which features (e.g., income, education level) influence the underlying
decision process, but it does mean the model is fair toward minority populations
absent in the training data [Meh+19]. Nor does it actually explain why a borrower
is creditworthy or not (e.g., what if they made slightly more vs having a high
education degree).

10 1 Introduction to Interpretability and Explainability

5. Causality: One of the fundamental limitations of machine learning and AI
today is the lack of causation inherent in modeling. Modeling techniques
inherently leverage correlation, but ignore time or causal flow. Explainable AI
is increasingly being purposed toward identifying causal relationships in the
data [JMB20, Hol+19]. While significant domain and background knowledge is
generally required to prove causality, explainability can be used to explore cause
and effect. There is tremendous opportunity for explainable AI to tackle causal
effects.

6. Transferability: Transfer learning is the notion that a model trained on one
task can be generalized and used as a starting point for other tasks. We like
to build models that are transferable since it allows us to leverage the pre-
existing knowledge learned in previous tasks. Not every model is transferable,
and understanding the limitations of when/how models can transfer to other tasks
is an important purpose. Explainable AI allows us to understand the internal
structure and learning process of a model which facilitates our ability to apply the
model to other tasks. It also allows us to identify and understand what boundaries
and limitations may exist in a model that affects its transferability [Rai19].

7. Reliability: As stated earlier, the trustworthiness of a model depends on how
reliable and confident we feel in its decision-making process. Reliability and
stability are desirable characteristics in an AI model so that we can expect it
to make the same decision in the same circumstances. Similarly, robustness is
equally desirable in our expectation for an AI model to make similar decisions
in similar circumstances. Explainable AI can provide us insight into how reliable
or robust a model will operate under various conditions.

8. Accessibility: The accessibility of AI applications by non-technical folks plays
an important role in increasing popularity and adoption. Explainable AI can
facilitate the knowledge and understanding of complex AI models and thereby
reduce the burden by ordinary people when dealing with them [WR20].

9. Privacy: With privacy and security growing in importance with AI applications,
one of the benefits enabled by explainable AI is the ability to assess privacy.
With model explainability, we can more readily evaluate whether or not privacy
is breached in encrypted representations or algorithms [VM20]. Differential
privacy, another growing sub-field, seeks to maintain privacy at the origin
throughout computation (e.g., adding two numbers without ever knowing what
the actual numbers). Explainable AI can play an important role to ensure the
integrity of differentially private models and algorithms without knowledge of
the data.

1.5 Societal Impact

AI applications can have great societal impact, improving our societies and building
a better world. Explainable AI can facilitate our greater adoption of AI applications

1.5 Societal Impact 11

by empowering us to address important issues like fairness, bias, verifiability, safety,
and accountability.

1. Fairness and Bias: As adoption of AI models to support human life is increasing
exponentially, explainable AI will be a valuable tool to uncover unfair or
unethical algorithms. There are many famous cases to underscore the importance
of fairness in AI systems. We have seen the deleterious effects of algorithms
that exhibit gender bias [Lea18, Lea+20, FP21] and racial bias [IG20, Tho19].
COMPAS, the recidivism prediction algorithm, is a prominent example of
how bias in the data was compounded by a lack of algorithmic transparency
resulting in an algorithm that explicitly encoded racial and gender prejudices
[RWC20, KH19]. Recently, OpenAI released the GPT-3 model, consisting of 175
billion parameters trained on Open Crawl [Bro+20] and Wikipedia. Researchers
quickly observed the model exhibited serious biases, including gender, race, and
religion [AFZ21, Bro+20].

Recently, many approaches have been introduced to approach fairness in
AI, including bias detection, bias mitigation, bias explainability, and simulation
frameworks to understand long-term impact of algorithmic behavior [Fer+20].
With the increase in the underlying explainability of these algorithms, it becomes
much easier to track down the biases and make necessary interventions to ensure
fairness.

As AI research evolves, it is becoming increasingly important to develop not
just more accurate systems but also fair ones.

2. Safety: As we seek greater adoption of AI models, we must ensure they do
not inadvertently or maliciously make decisions or take actions that are unsafe
to humans. For any task, we start with a set of desired goals (e.g., shortest
path traversing from here to destination) and create a system design (e.g.,
autonomous-driving algorithm). How do we ensure the behavior of this system
design does not harm humans (e.g., strike the bicyclist in our path)? AI Safety
deals with designing systems to avoid unintended and harmful behavior that may
emerge from poorly designed AI systems in the real-world [JSB20, Amo+16].
A model is never completely testable in the real-world as one cannot create a
complete list of scenarios in which a model might see. Explainable AI becomes
a necessary prerequisite to help identify fail states in the model. For instance,
it allows us to identify potential blind-spots in vision-based autonomous-driving
systems, or where an AI system to predict cancer treatments maymake dangerous
recommendations that can harm patient health.

3. Verifiability: Verification is a set of powerful mathematical techniques that
guarantee the correctness of an AI model, such as ensuring that certain properties
are met. Importantly, it allows us to identify cases where a model may fail, or not
have an explanation. Rigorous testing and training help build robust machine
learning systems, but no amount of testing will formally guarantee that a system
behaves as intended. In real world situations, enumerating all possible outputs
for a given set of inputs is an impossible task. Verification in AI allows us to
compute bounds for an AI model output that can be helpful in designing a more

12 1 Introduction to Interpretability and Explainability

resilient AI system, or a safer one [Bru+20]. Explainability is a key ingredient
in verification, as it allows us to formulate verification as a computationally
tractable optimization problem.

4. Accountability: Accountability is the ability to acknowledge and attribute
responsibility for decisions and actions made by AI systems. It is an important
aspect of the trustworthiness of AI models, and is closely related to transparency
in these models. We may find a model to be unfair or unsafe, but we need
accountability to understand why the model exhibits such behavior. Explainable
AI gives us the ability to account for why individual inputs lead to such
predictions, or why the overall model tends to behave in a certain way. We should
note that increased transparency does not always improve accountability. Just
because we have perfect clarity into the algorithm and weights of a convolutional
neural network does not necessarily allow us to attribute responsibility into its
behavior.

In a broader sense, accountability in AI can serve as a tool that allows
us to hold companies and organizations accountable for the performance of
their AI applications in real life [Dos+19]. From the perspective of equity, AI
accountability enabled by explainable AI is essential for algorithmic justice.

1.6 Types of Explanations

Explainable AI methods can provide different types of explanations to help us
interpret complex systems. We list five types of explanations enabled by explainable
AI to aid our understanding (Fig. 1.9).

1. Global Explanations: The most common question we tend to have is “how does
a model work?” Global explanations serve to explain how models arrived at their
predictions and can be in the form of visual charts, mathematical formulae, or
model graphs. Global explanations are holistic, with the goal of providing us the
ability to develop a top-down mental representation of the behavior of the model.

2. Local Explanations: Once we answer the question of how, we tend to ask the
question why. Local explanations are bottom-up and seek to answer the question
of why a model arrives at a prediction for a given input. They can attribute a
prediction to specific features of the data or model algorithm.

3. Contrastive Explanations: Contrastive explanations help us by understanding
why a model makes a certain prediction instead of another for a given input.
They answer the question of “why-not” or “why X and not Y” and are often
used jointly with “why” explanations to understand a model’s prediction and
its expected behavior. They are especially useful in determining what minimal
changes in inputs or model parameters are required to cause the model to make
a different prediction.

4. What-if Explanations: As in the classic sense, sensitivity analysis are what-
if explanations of the changes in model output as we tweak inputs and model

1.7 Trade-offs 13

Fig. 1.9 Types of
explanations

Types of
Explanations

Counterfactual
Expalantions

Global
Explanations

Example-based
Explanations

Contrastive
Explanations

What-If
Explanations

Local
Explanations

parameters. They are very useful for helping us to understand the relationships
between model predictions and model features.

5. Counterfactual Explanations: Counterfactual explanations tell us the hypothet-
ical changes to the input or parameters of a model that would lead the model to
make a specific different input. They answer the question of “how to” arrive at
a desired outcome by describing the smallest changes to the model that can be
made, without needing to understand the model internal structure.

6. Example-based Explanations: Sometimes, it is easier to explain the behavior
of a model or underlying data distribution simply by highlighting particular
instances of the data. This is known as explanation by example. Common practice
is to present similar input instances from which the model will predict similar
outputs.

1.7 Trade-offs

According to the No-Free Lunch Theorem, every algorithm performs equally well
when their performance is averaged across all possible problems. This does not
mean all is lost, as knowledge of the underlying problem, data, and environment can
help inform more optimal approaches. But because of the theorem, model selection
will come with trade-offs.

14 1 Introduction to Interpretability and Explainability

Similarly, while explainable AI contributes many benefits, it does not do so
without trade-offs. It is important to understand the limitations of different XAI
methods in order to recognize when one set of methods may be more relevant or
accurate over others. We discuss here the broad scope of these trade-offs, and will
delve deeper into the characteristics of individual XAI methods in later chapters
(Table 1.1).

Table 1.1 Trade-offs in
explainable AI

Property Trade-off

Completeness Interpretability

Efficacy Privacy

Human explanations Accuracy

1. Completeness vs Interpretability: A handful of methods such as generalized
linear models and decision trees are inherently interpretable in that they are
self-explanatory by construction and can provide useful explanations directly by
inspection. However, these methods apply well to a very limited set of problems
in the real-world. On the other hand, the Universal Approximation Theorem
states that deep neural networks are able to approximate any continuous non-
linear function (provided we can train them to learn the function). Unfortunately,
these deep models are usually not transparent or easily interpretable. This
is a common trade-off that we see with explainable AI methods—the more
interpretable they are, the less likely they provide complete explanations of the
AI system. Stated another way, a trade-off exists between accuracy of model
prediction (“the what”) and model interpretation (“the why”). It is hard to achieve
both interpretability and completeness at the same time except in a handful of
cases. The most accurate explanations are not easily interpretable by humans and
the most interpretable explanations usually do not have complete coverage. The
challenge in explainable AI is to generate explanations that are both complete
and interpretable.

2. Efficacy vs Privacy: Increasingly, government regulatory frameworks such as
GDPR are enforcing data privacy as an inherent consideration in real-world
systems. This requirement for privacy can adversely limit explainability in
these systems. The trade-off between explanation efficacy and model privacy
is complex, as models are generally trained on a mixture of private and non-
private data. Consider a model trained on a mix of public and private data.
Without intervention, private data easily leak into model explanations. Adjusting
explanations to filter out private data can be a complex task and lead to
incomplete explanations that sacrifice accuracy.

Recent research has aimed to reduce or eliminate this trade-off using encryp-
tion and/or novel privacy-preserving machine learning methods. These methods
generally come with an additional computational burden, though advances in
computational power have and continue to mitigate this cost.

1.8 Taxonomy 15

3. Human Explanations vs Accuracy: Even in the case where a model exhibits
perfect transparency and we can easily observe the features that influence its
decision-making ability, it does not mean that the model is easily understandable
to humans. A trade-off exists in between the ability for a model to provide
comprehensible explanations and the accuracy of the model. For instance,
humans have a difficult time understanding and interpreting non-linear functions.
Certain XAI techniques allow us to assume linearity for a small bounded region
of a function (e.g., all continuous functions are linear if you look close enough),
providing us with sensitivity analysis that is easily understood. Other XAI
methods allow us to use surrogate models that can capture model behavior.

1.8 Taxonomy

Explainable AI methods has proliferated significantly in the past few years.
Figure 1.10 represents a taxonomy of the family of methods based on their approach
and characteristics. As new methods are being developed every day, we expect this
taxonomy to increase over time.

Fig. 1.10 Taxonomy of explainable AI

16 1 Introduction to Interpretability and Explainability

1.8.1 Scope

Explainable AI methods can be either global or local in scope. Some methods can
extend to both. Global methods are useful what we want to interpret the macro
behavior of models, whereas local methods are handy when we want to understand
behavior at the micro level.

1. Global Methods: Global methods seek to explain the predictions of the overall
model from a comprehensive, top-down approach. As a result, explanations
provide an understanding of how the structures and parameters of the model lead
it make predictions. This allows us to comprehend the entire model all at once
by providing an understanding of how the model maps input data to features to
outputs. In doing so, we gain transparency into the inner mechanisms of a black-
box model.

2. Local Methods: Local methods, as the name implies, seek to explain how a
specific sample is mapped to its output by providing us an understanding of
how the model arrived at its prediction. This explains to us the rationale via
the contribution of features for a specific prediction from an input, and can
accomplished by approximating a model in a small region of interest using a
simpler model. For instance, a local method for an image classification model
can help identify the specific portions of the image that contribute to the model
class prediction.

1.8.2 Stage

XAI methods can categorized based on stage—whether they are applied before,
during, or after a model makes its prediction. We describe the characteristics of
each below (Fig. 1.11).

1. Pre-Model: Pre-model interpretability techniques are independent of the model,
as they are only applicable to the data itself. Data visualization is critical for
pre-model interpretability, consisting of exploratory data analysis techniques.

Pre-model interpretability usually happens before model selection, as it is also
important to explore and have a good understanding of the data before thinking
of the model. Meaningful intuitive features and sparsity (low number of features)
are some properties that help to achieve pre-model data interpretability.

We cover pre-model methods in Chap. 2 by delving into its relationship with
EDA, feature engineering, and data/feature visualization.

2. Intrinsic: Intrinsic interpretability methods refer to self-explanatory models
that leverage internal structure to provide natural explainability. The family of
intrinsic models include basic methods such as decision trees, generalized linear,
logistic, and clustering models. Natural explainability comes at a cost, however,
in terms of model accuracy.

1.9 Flowchart for Interpretable and Explainable Techniques 17

ModelData
Explainable

AI

Data Explainable
Model

ModelData Explainable
AI

Pre

Intrinsic

Post-Hoc

Fig. 1.11 Explainable AI categories by stage

In Chap. 3, we cover traditional intrinsic explainability methods and investi-
gate more advanced intrinsic methods in Chap. 4.

3. Post-Hoc: Post-hoc (post model) interpretability methods represent a collection
of techniques that are applicable to any trained black-box models, without the
need for understanding their internal structures. They provide explanations of
the global or local behavior of models by resolving relationships between input
samples and their predictions. Post-hoc methods are applicable even to intrinsic
models.

In Chap. 5, we discuss the wide range of post-hoc explainability methods
available. We subdivide them by their approach to explanation, including visual,
feature relevance, surrogate, and example-based explanations.

4. Model Agnostic vs Specific: Most pre- and post-hoc explainability methods
are model-agnostic in that they are applicable to a wide collection of models.
Some, especially with regard to deep neural networks, are model specific and
apply only to a specific set of models (e.g., convolutional neural networks).
Model-specific methods provide advantages over model-agnostic methods as
they leverage specific characteristics or architecture of the model to provide
improved explainability that may not be possible with model-agnostic methods.

In Chap. 6, we delve in to model-agnostic and model-specific methods deep
for neural networks. Finally, in Chap. 7, we examine explainable AI methods in
practice and apply them to a variety of case studies in different domains.

1.9 Flowchart for Interpretable and Explainable Techniques

Figure 1.12 provides a flowchart for exploring the XAI methods discussed in this
book.

18 1 Introduction to Interpretability and Explainability

F
ig
.1

.1
2

E
xp

la
in
ab
le
A
I
flo

w
ch
ar
t

1.10 Resources for Researchers and Practitioners 19

1.10 Resources for Researchers and Practitioners

There is a myriad of resources in the form of GitHub pages, survey research papers,
books, and courses on the topic of XAI. Though it is difficult to list everything, we
will highlight some which we have found to be very useful.

1.10.1 Books

Here we recognize various books that touch multiple areas of XAI that we think
will be useful for the readers. Many of these books are available free online, and we
have provided the links.

1. An Introduction to Machine Learning Interpretability by Patrick Hall and
Navdeep Gill.

2. Interpretable Machine Learning by Christoph Molnar. https://christophm.github.
io/interpretable-ml-book/

3. Fairness and Machine Learning by Solon Barocas, Moritz Hardt, and Arvind
Narayanan. https://fairmlbook.org/

4. Explanatory Model Analysis by Przemyslaw Biecek and Tomasz Burzykowski.
https://ema.drwhy.ai/

5. Responsible Machine Learning by Patrick Hall, Navdeep Gill and Benjamin.
https://www.h2o.ai/resources/ebook/responsible-machine-learning/

6. Explainable AI: Interpreting, Explaining, and Visualizing Deep Learning by
Wojciech Samek, Grégoire Montavon, Andrea Vedaldi, Lars Kai Hansen and
Klaus-Robert Müller.

7. Explanatory Model Analysis: Explore, Explain, and Examine Predictive Models
by Przemyslaw Biecek, Tomasz Burzykowski.

1.10.2 Relevant University Courses and Classes

Some relevant courses and classes with many helpful videos and lecture notes that
discuss XAI topics are listed below:

1. Interpretability and Explainability in Machine Learning https://www.hbs.edu/
faculty/Pages/item.aspx?teaching=266

2. Introduction to Responsible Machine Learning https://jphall663.github.io/
GWU_rml/

3. Trustworthy Deep Learning https://berkeley-deep-learning.github.io/cs294-131-
s19/

4. Data Ethics https://ethics.fast.ai/syllabus/

https://christophm.github.io/interpretable-ml-book/
https://christophm.github.io/interpretable-ml-book/
https://fairmlbook.org/
https://ema.drwhy.ai/
https://www.h2o.ai/resources/ebook/responsible-machine-learning/
https://www.hbs.edu/faculty/Pages/item.aspx?teaching=266
https://www.hbs.edu/faculty/Pages/item.aspx?teaching=266
https://jphall663.github.io/GWU_rml/
https://jphall663.github.io/GWU_rml/
https://berkeley-deep-learning.github.io/cs294-131-s19/
https://berkeley-deep-learning.github.io/cs294-131-s19/
https://ethics.fast.ai/syllabus/

20 1 Introduction to Interpretability and Explainability

5. Methods of explainable AI https://human-centered.ai/methods-of-explainable-
ai/

6. Interpretability and Explainability in Machine Learning https://interpretable-ml-
class.github.io/

7. AI Interpretability and Fairness https://cs81si.stanford.edu/
8. Explainable AI https://www.cis.upenn.edu/~ungar/CIS700/

1.10.3 Online Resources

There are excellent online resources with a collection of articles, books, tools,
datasets, etc., all assembled in one place. Some of the links are:

1. https://github.com/jphall663/awesome-machine-learning-interpretability
2. https://github.com/lopusz/awesome-interpretable-machine-learning
3. https://github.com/pbiecek/xai_resources
4. https://github.com/h2oai/mli-resources
5. https://github.com/andreysharapov/xaience

1.10.4 Survey Papers

Following is the list of survey papers which the readers can find very helpful to get
an overview and the current trends,

1. Opportunities and Challenges in Explainable Artificial Intelligence (XAI): A
Survey by Das and Rad [DR20].

2. Peeking Inside the Black-Box: A Survey on Explainable Artificial Intelligence
(XAI) by Adadi et al. [AB18].

3. Explainable Artificial Intelligence (XAI): Concepts, taxonomies, opportunities,
and challenges toward responsible AI by Arrietta et al. [Arr+20a].

4. Explainable Artificial Intelligence Approaches: A Survey by Islam et al. [Isl+21].
5. Interpretable machine learning: definitions, methods, and applications by Mur-

doch, W. James, et al. [Mur+19].
6. Interpretable Machine Learning—A Brief History, State of the Art and Chal-

lenges by Molnar et al. [MCB20a].

1.11 Book Layout and Details

To understand the interpretability and explainability techniques throughout the
book, we have used following datasets, and here are the details.

https://human-centered.ai/methods-of-explainable-ai/
https://human-centered.ai/methods-of-explainable-ai/
https://interpretable-ml-class.github.io/
https://interpretable-ml-class.github.io/
https://cs81si.stanford.edu/
https://www.cis.upenn.edu/~ungar/CIS700/
https://github.com/jphall663/awesome-machine-learning-interpretability
https://github.com/lopusz/awesome-interpretable-machine-learning
https://github.com/pbiecek/xai_resources
https://github.com/h2oai/mli-resources
https://github.com/andreysharapov/xaience

1.11 Book Layout and Details 21

1. Classification: Pima Indian Diabetes dataset is originally from the National
Institute of Diabetes and Digestive and Kidney Diseases [Smi+88]. The clas-
sification dataset intends to diagnostically predict whether or not a patient has
diabetes based on specific symptomatic measurements incorporated as features
in the dataset. The datasets consist of several medical predictor features which
are numeric such as SkinThickness, BMI, Pregnancies, Insulin, Glucose, Age,
BloodPressure, DiabetesPedigreeFunction and one target Outcome classifying
the patient as diabetic or non-diabetic.

2. Regression: The medical claims dataset created for the book—Machine Learn-
ing with R by Brett Lantz—uses demographic statistics from the US Census
Bureau, reflecting real-world conditions [Lan13]. The dataset has instances of
beneficiaries currently enrolled in the insurance plan with features indicating
characteristics of the patient, such as age, sex, bmi, children, smoker, Region
and the total medical expenses charged to the plan for the calendar year as the
target charges.

3. Time series: Mauna Loa time series dataset has one of the longest continuous
series since 1958, and measuring the mean carbon dioxide as parts per million
(ppm) every month at Mauna Loa Observatory, Hawaii [Tan+09]. We use this for
our univariate time series analysis through different interpretable and explainable
techniques.

4. Computer Vision: Fashion-MNIST is a dataset of Zalando’s article images,
where each image is a 28 × 28 grayscale images, associated with a label from
10 classes—T-shirt/top, Trouser, Pullover, Dress, Coat, Sandal, Shirt, Sneaker,
Bag, and Ankle Boot [XRV17].

5. NLP and Text: LitCovid is a curated dataset providing central access to
a large number of relevant articles in PubMed that can be categorized into
eight categories—General, Forecasting, Transmission, Case Report, Mechanism,
Diagnosis, Treatment, and Prevention [CAL20b, CAL20a]. We will use subset
of this dataset for pre-hoc exploration and post-hoc NLP-based explainability
techniques.

1.11.1 Structure: Explainable Algorithm

Throughout the book we have tried to keep a consistent format for describing
the pre-model, intrinsically interpretable algorithms and post-hoc explainable tech-
niques. Each technique is described sufficiently with references and equations, plots
and outputs from the algorithms when applied to the datasets, how to interpret
the plots and the observations. An example with a simple linear regression model
applied to the insurance dataset with just one feature is described below.

22 1 Introduction to Interpretability and Explainability

1.11.1.1 Linear Regression

Linear regression is one of the oldest techniques that predicts the target using
weights on the input features learned from the training data [KK62a]. The inter-
pretation of the model becomes straightforward as the target is a linear combination
of weights on the features. Thus linear regression model can be described as a linear
combination of input x and a weight parameter w (that is learned during training
process). In a d-dimensional input (x = [x1, x2, . . . , xd]), we introduce another
dimension called the bias term, x0, with value 1. Thus the input can be seen as
x ∈ {1} × R

d , and the weights to be learned are w ∈ R
d+1. The label or the output

y which is a quantitative or numeric value is defined by

y =
d∑

i=0
wixi (1.1)

Interpreting linear regression model can be summarized as below

• Increasing the continuous feature by one unit changes the estimated
outcome by its weight.

• Intercept or the constant is the output when all the continuous features
are at value 0 and the categories are in the reference default (e.g., 0).
Understanding intercept value becomes meaningful for interpretation when
the data is scaled with mean value 0 as it represents the default weight for
an instance with mean values.

Fig. 1.13 Linear regression model with just one feature—age

References 23

Table 1.2 Explainable
Properties of Linear
Regression

Properties Values

Local or global Global

Linear or non-linear Linear

Monotonic or non-monotonic Monotonic

Feature interactions captured No

Model complexity Low

Observations:

• Fig. 1.13 shows that features age has a linear relationship with charges with
a positive trend, i.e., as the age increases the charges increase.

• The bias or the intercept is −3882.86 while the weight for age feature
is +238.37, indicating a huge positive influence of age on the insurance
charges.

Explainable properties of linear regression are shown in Table 1.2.
We have made all the datasets and Python-based Google Colab notebooks

available for the readers to experiment on https://github.com/SpringerXAI.

References

[AFZ21] A. Abid, M. Farooqi, J. Zou, Persistent antiMuslim bias in large language models
(2021). arXiv:2101.05783 [cs.CL]

[AB18] A. Adadi, M. Berrada, Peeking inside the blackbox: a survey on explainable artificial
intelligence (XAI). IEEE Access 6, 52138–52160 (2018)

[Amo+16] D. Amodei et al., Concrete problems in AI safety (2016). arXiv:1606.06565 [cs.AI]
[Arr+20a] A.B. Arrieta et al., Explainable Artificial Intelligence (XAI): Concepts, taxonomies,

opportunities and challenges toward responsible AI. Information Fusion 58, 82–115
(2020)

[Arr+19] A.B. Arrieta et al., Explainable Artificial Intelligence (XAI): Concepts, taxonomies,
opportunities and challenges toward responsible AI (2019)

[Bar03] J. Barnes, Porphyry: Introduction. Oxford University Press UK (2003)
[Beg+20] T. Begley et al., Explainability for fair machine learning (2020)
[Bel59] W.A. Belson, Matching and Prediction on the Principle of Biological Classification. J.

Roy. Stat. Soc. Ser. C 8(2), 65–75 (1959)
[Bro+20] T.B. Brown et al., Language models are few-shot learners (2020). arXiv:2005.14165

[cs.CL]
[Bru+20] M. Brundage et al., Toward trustworthy AI development: Mechanisms for supporting

verifiable claims (2020)
[CPC19] D.V. Carvalho, E.M. Pereira, J.S. Cardoso, Machine learning interpretability: A survey

on methods and metrics. Electronics 8(8), 832 (2019)
[Che+20] L. Chen et al., Counterfactual samples synthesizing for robust visual question answer-

ing (2020)

https://github.com/SpringerXAI

24 1 Introduction to Interpretability and Explainability

[CAL20a] Q. Chen, A. Allot, Z. Lu, Keep up with the latest coronavirus research.
Nature 579(7798), 193 (2020). ISSN: 1476-4687 (Electronic) 0028-0836 (Linking).
https://doi.org/10.1038/d41586-020-00694-1. https://www.ncbi.nlm.nih.gov/pubmed/
32157233.

[CAL20b] Q. Chen, A. Allot, Z. Lu, LitCovid: an open database of COVID-19 literature. Nucl.
Acids Res. 49(D1), D1534–D1540 (2020)

[Dar17] A. Dardagan, Neoplatonic “Tree of Life” (Arbor Porphyriana: A diagram of
logic and mystical theology) (Mar. 2017). https://doi.org/10.31235/osf.io/g2qxe.
osf.io/preprints/socarxiv/g2qxe

[DR20a] A. Das, P. Rad, Opportunities and challenges in explainable artificial intelligence (xai):
A survey. Preprint (2020). arXiv:2006.11371

[DR20] A. Das, P. Rad, Opportunities and Challenges in Explainable Artificial Intelligence
(XAI): A Survey. CoRR (2020). arXiv:abs/2006.11371. http://dblp.uni-trier.de/db/
journals/corr/corr2006.html#abs-2006-11371

[DK17] F. Doshi-Velez, B. Kim, Towards a rigorous science of interpretable machine learning
(2017)

[Dos+19] F. Doshi-Velez et al., Accountability of AI under the law: The role of explanation
(2019). arXiv:1711.01134 [cs.AI]

[DLH18] M. Du, N. Liu, X. Hu, Techniques for interpretable machine learning. CoRR
(2018). arXiv:abs/1808.00033. http://dblp.uni-trier.de/db/journals/corr/corr1808.html#
abs-1808-00033

[FP21] T. Feldman, A. Peake, On the basis of sex: A review of gender bias in machine learning
applications (2021)

[Fer+20] X. Ferrer et al., Bias and discrimination in AI: A cross-disciplinary perspective (2020)
[Fis36] R.A. Fisher, The use of multiple measurements in taxonomic problems. Ann. Eugenics

7(7), 179–188 (1936)
[GSC18] J. Garcia-Gathright, A. Springer, H. Cramer, Assessing and addressing algorithmic bias

- But before we get there (2018)
[Gil+19] L.H. Gilpin et al., Explaining explanations: An overview of interpretability of machine

learning (2019)
[He+15] K. He et al., Delving deep into rectifiers: Surpassing HumanLevel performance on

ImageNet classification (2015). arXiv:1502.01852 [cs.CV]
[Hol+19] A. Holzinger et al., Causability and explainability of artificial intelligence in medicine.

WIREs Data Mining Knowl. Discovery 9(4), e1312 (2019). https://doi.org/10.1002/
widm.1312

[IG20] C. Intahchomphoo, O.E. Gundersen, Artificial intelligence and race: A systematic
review. Legal Inf. Manag. 20(2), 74–84 (2020)

[Isl+21] S.R. Islam et al., Explainable artificial intelligence approaches: A survey (2021)
[Isl+21b] S.R. Islam et al., Explainable artificial intelligence approaches: A survey. Preprint

(2021). arXiv:2101.09429
[JMB20] D. Janzing, L. Minorics, P. Bloebaum, Feature relevance quantification in explainable

AI: A causal problem, in Proceedings of the Twenty Third International Conference
on Artificial Intelligence and Statistics, ed. by S. Chiappa, R. Calandra, vol. 108.
Proceedings of Machine Learning Research (PMLR, 2020), pp. 2907–2916

[JSB20] M. Juric, A. Sandic, M. Brcic, AI safety: state of the field through quantitative lens
(2020). arXiv:2002.05671 [cs.CY]

[KK62a] J.F. Kenney, E.S. Keeping, Mathematics of statistics (Princeton, 1962), pp. 252–285
[KH19] A. Khademi, V. Honavar, Algorithmic bias in recidivism prediction: A causal perspec-

tive (2019)
[Kle+18] J. Kleinberg et al., Human decisions and machine predictions. Q. J. Econ. 133(1), 237–

293 (2018)
[LB20] H. Lakkaraju, O. Bastani, How do I fool you? Manipulating user trust via misleading

black box explanations, in Proceedings of the AAAI/ACM Conference on AI, Ethics,
and Society (2020), pp. 79–85

https://doi.org/10.1038/d41586-020-00694-1
https://www.ncbi.nlm.nih.gov/pubmed/32157233
https://www.ncbi.nlm.nih.gov/pubmed/32157233
https://doi.org/10.31235/osf.io/g2qxe
http://dblp.uni-trier.de/db/journals/corr/corr2006.html{#}abs-2006-11371
http://dblp.uni-trier.de/db/journals/corr/corr2006.html{#}abs-2006-11371
http://dblp.uni-trier.de/db/journals/corr/corr1808.html{#}abs-1808-00033
http://dblp.uni-trier.de/db/journals/corr/corr1808.html{#}abs-1808-00033
https://doi.org/10.1002/widm.1312
https://doi.org/10.1002/widm.1312

References 25

[Lak+19] H. Lakkaraju et al., Faithful and customizable explanations of black box models, in
Proceedings of the 2019 AAAI/ACM Conference on AI, Ethics, and Society (2019), pp.
131–138

[Lan13] B. Lantz, Machine learning with R. Packt Publishing Ltd (2013)
[Lea18] S. Leavy, Gender bias in artificial intelligence: The need for diversity and gender theory

in machine learning, in GE ’18 (Association for Computing Machinery, Gothenburg,
Sweden, 2018), pp. 14–16. ISBN: 978-1-45-03573-88

[Lea+20] S. Leavy et al., Mitigating gender bias in machine learning data sets (2020)
[MGG01] D.H. Maister, C.H. Green, R.M. Galford, The trusted advisor. A Touchstone book (Free

Press, 2001). ISBN: 978-0-74-32123-42
[Meh+19] N. Mehrabi et al., A survey on bias and fairness in machine learning (2019).

arXiv:1908.09635 [cs.LG]
[MM72] R. Messenger, L. Mandell, A modal search technique for predictive nominal scale

multivariate analysis. J. Am. Stat. Assoc. 67(340), 768–772 (1972)
[MHS17] T. Miller, P. Howe, L. Sonenberg, Explainable AI: Beware of inmates running the

asylum Or: How i learnt to stop worrying and love the social and behavioural sciences
(2017)

[Mni+13] V. Mnih et al., Playing Atari with deep reinforcement learning (2013). arXiv:1312.5602
[cs.LG]

[MZR20] S. Mohseni, N. Zarei, E.D. Ragan, A multidisciplinary survey and framework for design
and evaluation of explainable AI systems (2020)

[Mol19] C. Molnar, Interpretable machine learning A guide for making black box models
explainable (2019)

[MCB20a] C. Molnar, G. Casalicchio, B. Bischl, Interpretable machine learning – A brief history
state-of-the-art and challenges (2020)

[MCB20b] C. Molnar, G. Casalicchio, B. Bischl, Interpretable machine learning—A brief history,
state-of-the-art and challenges. Preprint (2020). arXiv:2010.09337

[MS21] M. Moradi, M. Samwald, Post-hoc explanation of blackbox classifiers using confident
itemsets. Expert Syst. Appl. 165, 113941 (2021)

[MS63] J. Morgan, J. Sonquist, Problems in the analysis of survey data, and a proposal. J. Am.
Stat. Assoc. 58, 415–434 (1963)

[Mur+19] W.J. Murdoch et al., Interpretable machine learning: definitions, methods, and applica-
tions. Preprint (2019). arXiv:1901.04592

[Nil09] N.J. Nilsson, The Quest for Artificial Intelligence, 1st. (Cambridge University Press,
USA, 2009). ISBN: 978-0-52-11229-37

[Nto+20] E. Ntoutsi et al., Bias in data-driven AI systems – An introductory survey (2020)
[Pea85] J. Pearl, A constraint - Propagation approach to probabilistic reasoning, in Proceedings

of the First Conference on Uncertainty in Artificial Intelligence, UAI’85 (AUAI Press,
Los Angeles, CA, 1985), pp. 31–42. ISBN: 978-0-44-40058-7

[Pea94] J. Pearl, A probabilistic calculus of actions, in Proceedings of the Tenth International
Conference on Uncertainty in Artificial Intelligence (Morgan Kaufmann Publishers,
Seattle, WA, 1994), pp. 454–462. ISBN: 978-1-55-86033-28

[Phi+20] P. Phillips et al., Four principles of explainable artificial intelligence (draft) (2020)
[Pra+20] M. Prabhushankar et al., Contrastive explanations in neural networks (2020)
[Rai19] A. Rai, Explainable AI: From black box to glass box. J. Acad. Market. Sci. 48, 137–141

(2019). https://doi.org/10.1007/s11747-019-00710-5
[RWC20] C. Rudin, C. Wang, B. Coker, The age of secrecy and unfairness in recidivism

prediction. Harvard Data Sci. Rev. 2(1), (2020). https://hdsr.mitpress.mit.edu/pub/
7z10o269

[RHW86] D.E. Rumelhart, G.E. Hinton, R.J. Williams, Learning internal representations by error
propagation, in ed. by D.E. Rumelhart, J.L. Mcclelland (MIT Press, 1986), pp. 318–362

[SSS20] S.A. Seshia, D. Sadigh, S. Shankar Sastry, Towards verified artificial intelligence
(2020)

[Shl14] J. Shlens, A tutorial on principal component analysis (2014). arXiv:1404.1100 [cs.LG]

https://doi.org/10.1007/s11747-019-00710-5
https://hdsr.mitpress.mit.edu/pub/7z10o269
https://hdsr.mitpress.mit.edu/pub/7z10o269

26 1 Introduction to Interpretability and Explainability

[Smi+88] J.W. Smith et al., Using the ADAP learning algorithm to forecast the onset of diabetes
mellitus, in Proceedings of the Annual Symposium on Computer Application in Medical
Care (American Medical Informatics Association, 1988), p. 261

[Tan+09] P. Tans et al., Trends in atmospheric carbon dioxide-Mauna Loa. Retrieved December
12(2009), 2009 (2009)

[Tho19] T. Davidson, D. Bhattacharya, I. Weber, Racial bias in hate speech and abusive language
detection datasets, in Proceedings of the Third Workshop on Abusive Language Online
(Association for Computational Linguistics, Florence, Italy, 2019), pp. 25–35

[Tur95] A.M. Turing, Computers & amp; thought (MIT Press, 1995), pp. 11–35. Chap.
Computing Machinery and Intelligence

[VDH20] S. Verma, J. Dickerson, K. Hines, Counterfactual explanations for machine learning:
A review (2020)

[VM20] L. Vigano, D. Magazzeni, Explainable security, in 2020 IEEE European Symposium on
Security and Privacy Workshops (EuroS&PW) (IEEE, 2020), pp. 293–300

[WMR18] S. Wachter, B. Mittelstadt, C. Russell, Counterfactual explanations without opening the
black box: Automated decisions and the GDPR (2018)

[Wan+20] A. Wang et al., SuperGLUE: A stickier benchmark for general-purpose language
understanding systems (2020). arXiv:1905.00537 [cs.CL]

[WM94] I. Watson, F. Marir, Case-based reasoning: A review. Knowl. Eng. Rev. 9(4), 327–354
(1994)

[WR20] C. Wolf, K. Ringland, Designing accessible, explainable AI (XAI) experiences.
ACM SIGACCESS Accessibil. Comput., 1–1 (2020). https://doi.org/10.1145/3386296.
3386302

[XRV17] H. Xiao, K. Rasul, R. Vollgraf, Fashion-MNIST: A novel image dataset for benchmark-
ing machine learning algorithms (2017). arXiv:cs.LG/1708.07747 [cs.LG]

[Yua+21] H. Yuan et al., Explainability in graph neural networks: A taxonomic survey (2021)
[Zha19] J. Zhang, Basic neural units of the brain: Neurons, synapses and action potential

(2019). arXiv:1906.01703 [q-bio.NC]

https://doi.org/10.1145/3386296.3386302
https://doi.org/10.1145/3386296.3386302

Chapter 2
Pre-model Interpretability and
Explainability

This chapter discusses various ways of using pre-modeling explainability: a set of
techniques aimed at gaining insights into a dataset to help build more effective
models. Since any machine learning model is built from the data, understanding
the content on which the model is based is imperative for explainability and
interpretability. Many of these techniques that summarize, visualize, and explore
data have existed for a long time. There have been some recent additions to
improve the methods, especially with respect to scaling and performance. We will
present exploratory data analysis with some well-known univariate and multivariate
techniques to visualize the data. Time series data needs different transformations,
visualizations, and analysis than structured data. Some of the common time series
visualizations and data exploration techniques will be discussed next. Similarly,
exploratory data analysis on unstructured data such as text needs special handling as
compared to structured data. This will entail a discussion on some of the well-known
EDA techniques common to many NLP tasks. We will then discuss some of the
feature engineering techniques that help us get more insights for explainability. For
our discussions, we will be using the diabetes dataset for structured data: LitCovid
(for NLP data), Mauna Loa CO2 dataset (for time series data), and Fashion MNIST
(for computer vision).

2.1 Data Science Process and EDA

Figure 2.1 shows a detailed view in the exploratory data analysis part of the
data science process where univariate and multivariate analysis, visualizations,
and feature engineering give insights into the data [Tuf11]. In real-world model
development, this process of data cleansing, visualization, feature engineering, and
modeling happens multiple times until the final model(s) meets the business criteria.
From an explainability perspective, whether for diagnostics or interpretability,

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2021
U. Kamath, J. Liu, Explainable Artificial Intelligence: An Introduction to
Interpretable Machine Learning, https://doi.org/10.1007/978-3-030-83356-5_2

27

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-83356-5_2&domain=pdf
https://doi.org/10.1007/978-3-030-83356-5_2

28 2 Pre-model Interpretability and Explainability

Fig. 2.1 Exploratory data analysis showing various techniques employed to convert data into
insights

understanding the pre-model building process in a white-box manner is essential.
This chapter will discuss exploratory data analysis and feature engineering in detail
from an explainability standpoint.

2.2 Exploratory Data Analysis

Exploratory Data Analysis (EDA) can be defined as a collection of statistical tech-
niques and visualization representations to get more insights from the data [Tuf11,
Gho+18]. EDA was pioneered by J. Tukey in 1970s with the goal of diagnosis,
hypothesis-free analysis, and laying the foundation stone to understand the whole
story around the data [Tuk77]. EDA helps us understand the data distribution, the
data quality, and the relationships that may exist between various features in the
data. EDA helps in understanding the irregularities in the data and bias in the model,
to some extent. Since data exist in various forms—images, texts, tabular, voice,
graph, etc.—there are specific techniques for the specialized data formats.

2.2.1 EDA Challenges for Explainability

Some of the challenges posed by real-world data for interpretability while perform-
ing EDA are listed below.

2.2 Exploratory Data Analysis 29

1. Dimensionality: Many real-world datasets have very high-dimensionality or a
large number of attributes or features [Liu et al., 2017a)]. One basic challenge
this high-dimensionality poses is the increase in the computation cost to analyze
and visualize proportionally. As the dimensionality grows, the visualization
techniques that rely on capturing variations or projecting the data into lower
dimensions become arduous due to the loss of the information [JT09].

2. Mixed-Types or Heterogeneity: In many industrial datasets, there will be features
of different types such as categorical, continuous, ordinal, etc. Performing sta-
tistical analysis, especially on categorical features or doing exploration through
sorting, results in performance challenges [JT09, Tuf11].

3. Missing Values and Outliers: Most real-world datasets typically show incom-
pleteness with many missing or irregular values. Another common problem is
the data having an outlier or atypical values caused by errors. Handling the
missing values and outliers is a topic by itself and greatly impacts the model
outputs [CBK09].

4. Anonymity and Privacy: Many features or attributes may contain classified or
sensitive information that may not be accessible to every person unless their role
in an organization permits it. Addressing privacy-based concerns is fast evolving
as a critical topic in machine learning [Cri20].

5. Volume: Most contemporary datasets are large in size, often containing billions
of data points, posing problems for traditional techniques that are memory-
based. Thus, exploration techniques must rely on adopting methods such as
approximation, sampling, or various aggregations [Bik19].

2.2.2 EDA: Taxonomy

There are many ways to categorize EDA, but we will go with the simplest one
employed in the literature [Sel]. One feature at a time—univariate analysis–and
multiple features together—multivariate analysis—form the first differentiating
method to explore the data. Using graphical versus non-graphical approaches forms
the second distinguishing method. The table below highlights all the four categories
with some well-known techniques for each that will be explored in the concerned
sections (Table 2.1).

2.2.3 Role of EDA in Explainability

These are some of the roles EDA plays in explainability and interpretability [Sel]:

• Identify characteristics such as the spread of the data, ranges, and missing values
using univariate statistics.

30 2 Pre-model Interpretability and Explainability

Table 2.1 Taxonomy of
Common EDA techniques

Graphical Non-graphical

Univariate Boxplots, density
plots, violin Plots,
etc.

Summary statistics

Multivariate Pair plots,
heatmaps, biplots,
joint plots, radial
charts, projection
plots (T-SNE,
MDS, etc.),
and parallel
coordinates plots

Correlation analysis

• Overcome issues of outliers in modeling using outlier and distribution analy-
sis [CBK09].

• Help gain insights and impute missing values [Gra09].
• Help project the data in lower dimensions for ease of visualization and provide

insights into local and global data patterns using multivariate visualization
techniques.

• Enable understanding of relationships between one or more features and their
correlations which are useful for local and global pattern analysis.

• Validate hypothesis of a scenario by an expert.
• Validate a new feature constructed using one or more existing features by looking

at its local and global interactions.

2.2.4 Non-graphical: Summary Statistics and Analysis

One of the necessary steps in any data science process, especially for explainability,
is getting summary statistics from raw or transformed data. The summary statistics
generally includes details for every raw feature such as data type, unique values,
missing values, duplicate rows, and most frequent values, among others. Working
with the domain expert and mapping these features onto categorical (nominal),
continuous (numeric), temporal, etc. is a crucial step before modeling. Analyzing
the data through statistical measures such as ranges, quartiles, standard deviations,
kurtosis, and skewness can further our understanding of the distribution and bias.

The goal of univariate summary statistics is to explain each feature’s sample
distribution and thus extrapolate it for the population distribution. A domain
or subject matter expert can validate this information for sampling bias and
other types of errors.

2.2 Exploratory Data Analysis 31

2.2.4.1 Tools and Libraries

There are many Python libraries with different capabilities for performing EDA.
Some of them are statsmodel, Holoviews, lens, pandas-summary, pandas-profiling,
and SweetViz [SP10, Ste+19, tea20, Bru19, Ber19]. Most of these packages provide
necessary statistical analysis detailed in Sect. 2.2.4. In this chapter we will use
pandas and SweetViz as our EDA tool to analyze the Pima Indian diabetes dataset
discussed in Chap. 1.

2.2.4.2 Summary Statistics and Analysis

The summary statistics from basic pandas describe is given in Fig. 2.2 with counts
and distribution statistics. For a given dataset {xi}Ni=1, the following statistical
measures for feature characteristics can be defined:

the k-th central moment:

μk �
1

N

N∑
i=1

(xi − μi)
k (2.1)

Mean:

μ1 �
1

N

N∑
i=1

xi (2.2)

Variance:

μ2 �
1

N

N∑
i=1

(xi − μi)
2 (2.3)

Standard Deviation:

μ2 = √μ2 (2.4)

Skew:

γ = μ3

σ 3
(2.5)

32 2 Pre-model Interpretability and Explainability

Kurtosis:

κ = μ4

σ 4 (2.6)

Excess Kurtosis:

κe = κ − 3 (2.7)

Tailing:

τ = μ5

σ 5 (2.8)

Figure 2.3 shows the skew statistics for all the features.

The skew statistics showing features with large positive and negative skew
indicates the potential need for some normalization techniques such as
standardization or min–max scaling based on the modeling algorithm.

The summary statistics, as shown in Fig. 2.4, give a detailed report for the
diabetes dataset in terms of duplicates present in the data and the number of
categorical, continuous, and other features such as text present. The report provides
essential statistical measurements such as unique values, missing values, and
duplicates for all the features. For every continuous feature, it further reports
statistical properties that measure centrality and spread like mean, median, inter-
quartile ranges, and variance, to name a few, as shown in Fig. 2.4. Categorical
features are best statistically represented with frequency by category.

Fig. 2.2 Descriptive statistics using pandas

Fig. 2.3 Measuring skew of
the distribution for all the
features using pandas

2.2 Exploratory Data Analysis 33

Many summary statistics provide correlation analysis such as Pearson’s correla-
tion for a feature with all other features, including the target. This helps to explain
inter-dependencies between the features at a very basic level. Figure 2.5 shows a
detailed association analysis for the feature SkinThickness. Multivariate analysis is
used to compute statistics that show the interaction between features or between
a feature and the target [And94, MKB79]. Pairwise covariances and correlations
across continuous features in the form of either cross-tabulation or matrix are a
common non-graphical analysis. A similar correlation/covariance analysis is also
visualized using heatmaps and will be discussed in the next section.

Correlation and association analysis helps in explaining the interdependence
among the features. This can help in either simplifying the feature space
(removing the redundant features) or improving the interpretability of the
machine learning model.

A pivot table is a descriptive summary statistics technique that enables the user
to analyze statistics such as sums, means, standard deviations, etc. by groups for
diagnostics or analysis. In machine learning scenarios, one employs the pivot with

Fig. 2.4 Snapshot report generated by SweetViz EDA analysis on the diabetes dataset. It gives
statistics about the entire dataset and for each feature such as Pregnancies, Glucose, and
BloodPressure the distributions

34 2 Pre-model Interpretability and Explainability

Fig. 2.5 The feature SkinThickness analysis for the statistical metrics, associations with other
features and with the outcome. It shows a high correlation with BMI and a low correlation with
Pregnancies

either the labels or interesting categorical features that can easily partition the data
into groups for further analysis.

In Fig. 2.6, the class or the label Outcome is used as the pivot with mean values
for each feature in the data as a measure of the distribution; the larger the difference,
the higher is the chance of the feature being a discriminative one.

Cross-tabulation, also known as contingency table analysis, is another technique
used for understanding the relationship between the features mapped as discrete
factors or between the features and the label. The most common way of using
cross-tabulation is converting hypothesis into discrete factors (mostly per feature)
to visualize the impact on the subpopulations per factor or the label [Hab72].

Figure 2.7 shows one such analysis on how domain-specific factors, e.g., in the
medical-based instance, indicators such as being obese (BMI > 30), high insulin
(Insulin > 166), high glucose (Glucose ≥ 140), high skin thickness (SkinThickness
≥ 27), and considered young (Age < 30), can be used to partition the data

2.2 Exploratory Data Analysis 35

Fig. 2.6 Pivot table showing mean for each feature by class

Fig. 2.7 Cross tabulation

and understand the risk impact [Gri18]. Cross-tabulation also helps in validating
hypothesis and explainability from the data perspective. Often, such factors, e.g.,
obesity or high glucose, can be added as new features for capturing explicit impact
from the subject matter expert perspective while modeling.

Observations:

• Figure 2.2 shows that features BloodPressure for measuring diastolic BP,
SkinThickness for triceps skin fold thickness, Insulin for 2 h serum insulin,
and BMI for BMI have many 0 values, which is not biologically possible,
and hence represent missing or aberrant values.

• Further analysis shows that the 25th percentile of the features Insulin and
SkinThickness is 0. This means that at least a quarter of the data points are
missing these features, so we need some form of missing value imputation
technique to be employed for modeling.

• The skew statistics in Fig. 2.3 shows negative skew for features BloodPres-
sure and BMI, while it shows positive skew for features Insulin, Age, and
DiabetesPedigreeFunction.

36 2 Pre-model Interpretability and Explainability

• The pivot table as in Fig. 2.6 of the features against label shows meaningful
differences in the mean values indicating that these features can be useful
in discriminating the class; however, missing values coded as zero can
artificially create these differences in the means and need to be verified again
after the imputation process.

• The cross-tabulation results validate many of the medical hypotheses that
in younger women (age < 30) the risk of diabetes almost doubles from 41
to 81% with high glucose (glucose ≥ 140) and stays high with other risk
factors such as high skin thickness (SkinThickness ≥27). Similarly, in older
women (age> 30), the risk with high skin thickness and high glucose almost
triples the chances of diabetes from 24 to 70%.

2.2.5 Graphical: Univariate and Multivariate Analysis

Graphical techniques complement the non-graphical methods in giving visual and
qualitative explanations to the sample distribution, local or global interactions, and
inter-relationships between the features.

2.2.5.1 Tools and Libraries

Some well-known open-source Python libraries that are useful for univariate and
multivariate analysis are Matplotlib, Plotly, Seaborn, and Bokeh [Hun07, Wt20,
Bok20, Inc15].

2.2.5.2 Univariate Analysis

Univariate visualization is one of the essential steps in the EDA process. Univariate
visualization mostly helps explain and understand the dataset when there are low to
medium features (less than 20). This section highlights some well-known univariate
visualization methods used in EDA to explain, debug, and validate the data or the
models.

Boxplots

Boxplots and many of its variants are excellent tools to visualize the central tendency
(median), symmetry (location of median and whisker length), and the outliers
(outside the IQR range) as shown in Fig. 2.8

2.2 Exploratory Data Analysis 37

Fig. 2.8 Boxplot capturing distributions for all the features in the diabetes dataset

Boxplots use robust statistics (median and IQR) and give useful and reliable
statistics based on the sample. The location of median/mean in the box is a
measure of skewness. The length of the boxplot measures the spread, while
the length of the whiskers measures the tail length of the distribution. The
way to determine which data points are the real outliers and how to treat
them is a complex matter and has real implications on the model [Agg16].
A disadvantage of boxplots is that they do not show multimodality in the
distribution.

Distribution Plots

Distribution plots show combined information in the histograms: kernel density
estimation (KDE) and the rug plot. Histograms show the distribution of the sample
based on a discrete number of bins and frequency of data in them, while KDE does
the smoothing based on the Gaussian kernel. The accuracy of histograms depends
on the parameter choice of the number of bins while that of KDE depends on the
bandwidth parameter. Histograms and KDE give a good visual explanation of the
distribution, especially the central tendency, skew, and multimodality (Fig. 2.9). One
has to observe caution, especially when there are discrete features or natural bounds
associated with features (e.g., the number of pregnancies in the diabetes dataset).

For histograms, if x0 is the origin, and the length of a bin is h, then a binBj (x0, h)

is given by

Bj (x0, h) = [x0 + (j − 1)h, x0 + jh), j ∈ Z] (2.9)

38 2 Pre-model Interpretability and Explainability

If for a given i.i.d. dataset {xi}ni=1 with density f , the histogram is defined as

f̂h(x) = n−1h−1
∑
j∈Z

n∑
i=1

I{xi ∈ Bj (x0, h)}I{x ∈ Bj (x0, h)} (2.10)

where I{xi ∈ Bj (x0, h)} is the count of data instances in the bin Bj (x0, h) and
I{x ∈ Bj (x0, h) represents localization of counts around x. The optimal value of h

is generally h = (24
√

π/n)1/3.
By supposing x to be the center of the bin, the histogram can be rewritten as

f̂h(x) = n−1h−1
n∑

i=1
I
(
|x − xi | ≤ h

2

)
(2.11)

If we set K(u) = I(|u| ≤ 1
2), then the above equation can be rewritten as

f̂h(x) = n−1h−1
n∑

i=1
K

(
x − xi

h

)
(2.12)

Equation 2.12 is the general form of kernel estimator. Different kernels create
different shapes of the estimated density. A Gaussian kernel is given by

K(u) = 1√
2π

exp

(−u2

2

)
(2.13)

Distribution plots can guide many probabilistic classifiers over estimators’
choice for the probability distribution of the feature. Distribution plots also
help in validating the assumptions made of modality in the classifiers. Modes
are the peaks in the histograms. Distribution plots can also be used for
imputing the missing values for the features.

Violin Plots

Violin plots combine many aspects of boxplots and distribution plots and have the
joint advantage of both of them in one plot. Figure 2.10 shows violin plots for all
the features in the diabetes dataset.

2.2 Exploratory Data Analysis 39

Fig. 2.9 Distribution of two features Glucose and BloodPressure in the dataset using distribution
plot. (a) Feature Glucose distribution. (b) Feature BloodPressure distribution

Observations:

• Figure 2.8 shows many features such as Glucose, BloodPressure, Insulin,
and SkinThickness containing quite a few outliers.

• The Insulin feature shows clear asymmetry in the distribution with a large
left skew.

40 2 Pre-model Interpretability and Explainability

• Figure 2.10 reveals that the Insulin feature has asymmetry in the distribution
with a large left skew.

• Figure 2.10 highlights that features such as Glucose and BMI have different
mean and distribution for diabetes and non-diabetes.

• Figure 2.10 shows that both SkinThickness and BloodPressure are lower in
the people who are not diabetic as compared to diabetic people.

• Figure 2.9a and b highlight the distributional differences between Glucose
and BloodPressure features for diabetic and non-diabetic people. The
estimation of missing values conditioned on the outcome would be a better
choice. This form of imputation is often used for supervised learning where
the feature distributions are different for each class.

2.2.5.3 Multivariate Analysis

When there are many features and the interaction between features needs to
be analyzed, multivariate analysis provides the necessary insights by using the
techniques highlighted in the section. The challenge with most multivariate analysis
is projecting the data in the two or three dimensions for the analysis, resulting
in some information loss. Multivariate analysis helps in explaining both local
interactions and global relationships based on the technique.

Fig. 2.10 Violin plots capturing distributions for all the features

2.2 Exploratory Data Analysis 41

Joint Distribution Plots

The bivariate plots, as shown in Fig. 2.11a and b, are useful to see the interac-
tions and coupling between two continuous features. Not only does it help in
confirming the assumptions for modeling, but also in identifying the outliers and
providing explanations for the interactions between the features. Joint distribution
plots are good for explaining local interactions and behaviors but not global
properties.

The joint behavior of two features X and Y is fully captured in the joint
probability distribution. For a continuous distribution,

E[XmYm] =
∫ ∫ ∞

−∞
xmymfXY (x, y)dxdy (2.14)

For discrete distribution,

E[XmYm] =
∑
x∈Sx

∑
y∈Sy

xmymP (x, y) (2.15)

Observations:

• Figure 2.11a and b plots bivariate distribution for two features for only
one class, i.e., only diabetic samples. This helps to understand the sam-
pling bias as well as the explanation for relationship between these
features.

• Most diabetic people between the Ages 25 and 60 had BMI between 25 and
45. That is, the relationship of an overweight condition or obesity to age
group can be explained through this joint plot.

• Most diabetic people between the Ages 20 and 60 had BloodPressure
between 50 and 90.

Heatmaps

A heatmap is a visualization of data in which the association between the features
is colored based on correlations. One should avoid highly correlated variables
when creating models because they capture the same occurrence and create “noise”
or inaccuracy. Heatmap visualization is a great tool to aid the analyst when
there is a large volume dataset that is not high-dimensional (less than 10). As
shown in Fig. 2.12, both positive and negative correlations between every pair of
features (including labels) give a quick summary of strong associations. Correlation

42 2 Pre-model Interpretability and Explainability

Fig. 2.11 Joint distribution plots for diabetic patients only. (a) Joint plot for Age and BMI. (b)
Joint plot for BloodPressure and Age

2.2 Exploratory Data Analysis 43

Pregnanices

Glucose

BloodPressure

SkinThickness

Insulin

EMI

DiabetesPedigree
Function

Age

Outcome

0.13

0.21 0.23 0.2 0.07 0.29 –0.0014 0.33 0.17

0.30.130.110.2 0.57

0.57

0.54

0.5

0.49

0.20.230.089

0.059

0.024 0.24 0.29 0.24 0.15 0.028 0.32

0.170.0340.150.150.11-0.00140.14-0.034

0.27 0.33 0.13 0.12 0.028 0.034 0.24

0.240.170.320.380.30.170.22

P
re
gn

an
ci
es

G
lu
co

se

B
lo
od

P
re
ss

ur
e

S
ki
nT

hi
ck

ne
ss

In
su

lin

E
M
I

D
ia
be

te
sP

ed
ig
re
e

F
un

ct
io
n

A
ge

O
ut
co

m
e

0.07 0.2 0.24 0.15 0.12 0.38

1

1

1

1

1

1

1

1

0.23 0.23 0.49 0.24 0.14 0.27

1 0.13 0.21 0.089 0.059 0.024 –0.034 0.22

1.0

0.8

0.6

0.4

0.2

0.0

0.54

0.5

Fig. 2.12 Heatmap capturing distributions for all the features

analysis assumes that all the observations are independent of one another and the
linear relationships between them may affect the analysis. Heatmaps are good for
explaining local interactions and behaviors but not global properties.

Covariance between two features X and Y is given by

Cov(XY) = 1

n− 1

n∑
i=1

(xi − x̄)(yi − ȳ) (2.16)

44 2 Pre-model Interpretability and Explainability

Variance is given by

V ar(X) = 1

n− 1

n∑
i=1

(xi − x̄)2 (2.17)

Pearson’s correlation coefficient is given by

ρp = Cov(X, Y)√
V ar(X)V ar(Y)

(2.18)

Spearman’s rank correlation is a nonparametric measure of the correlation that
uses the rank of observations in its calculation.

ρs = 1−
∑

d2
i

n(n2 − 1)
(2.19)

where di is the difference in the ranked observation for xi − yi .

Covariance and correlation are measures of linear dependence. Zero covari-
ance or correlation does not imply independence. Negative or positive
covariance or correlation is implied through slopes of scatter plots. Fisher’s
Z-transform helps us in testing hypotheses on correlation.

It is important to note that various conditions, such as outliers, unequal
variances, nonnormality, heteroscedasticity, and nonlinearities can dispropor-
tionately impact the Pearson correlation coefficient and the analysis. As a
result of these problems, the Spearman correlation coefficient, based on the
data ranks rather than the actual data, is possibly a better choice for examining
the relationships between variables [Scho+2018].

Observations:

• Glucose, Age, BMI, and Insulin are the most correlated with the label
Outcome.

• BloodPressure and DiabetesPedigreeFunction have a small correlation with
the label Outcome.

• BloodPressure and Insulin have very little correlation with the label Out-
come.

• The following features show a good correlation: Age and Pregnancies, BMI
and SkinThickness, and Glucose and Insulin.

2.2 Exploratory Data Analysis 45

Fig. 2.13 Pair plots capturing distributions for all the features

Pair Plots

Pair plots, similar to heatmaps, capture the interaction between two continuous
features but show scatter plots and density estimations between the features as
shown in Fig. 2.13. Pair plots are good for explaining local interactions and
behaviors but not global properties.

46 2 Pre-model Interpretability and Explainability

Observations:

• As seen in Fig. 2.13, feature pairs BMI and SkinThickness, Pregnancies and
Age, and Glucose and Insulin seem to have positive linear relationships.

Parallel Coordinate Plots

Parallel coordinate visualization visualizes high-dimensional data in two-
dimensional space. Vertical axes parallel to each other represent the features and
the data element as a single line traversing through all the vertical axes. This
two-dimensional visualization of a high-dimensional data is the primary advantage
of the parallel coordinate plots. It becomes easy to understand the trend shown,
especially when the label for each data is different [Eds03].

The order of the axes in the parallel coordinates plot can impact the way
one analyzes the data. The main reason for this is that the relationships
between adjacent features are easier to observe than non-adjacent features.
One disadvantage of the parallel coordinates plots is that they can become
over-cluttered and indecipherable in a large dataset. There are techniques
such as “brushing” that isolate sections by filtering out the noise [Eds03].
Outliers are visible as outlying polygon curves. Various parameters such as
normalization techniques to get all the features in the same range also impact
the visualizations.

Observations:

• Figure 2.14 shows parallel coordinate plots for all the features and datasets
with two different normalization techniques. Figure 2.14a uses standard-
ization method to scale the features, while Fig. 2.14b uses l2 technique
of weighting the features between 0 and 1. We see that the method of
normalization has an impact on the plots and analysis.

• Figure 2.14a with the standardization form of preprocessing shows the
overly cluttered plot and not much can be made out of it.

2.2 Exploratory Data Analysis 47

Fig. 2.14 Parallel coordinates plots with different normalization methods. (a) Parallel coor-
dinates plot using standardization preprocessing. (b) Parallel coordinates plot using l2 as
preprocessing

• Figure 2.14b with l2 normalization is clearer and shows some patterns of
how instances having Glucose, BloodPressure, and Insulin are clustered
together for diabetes and non-diabetes evident from the blue and green
braids.

Projection Plots

Many well-known techniques project high-dimensional data in 2D or 3D plots
useful for understanding local and global interactions. This section will discuss
a few of the useful ones, especially from the explainability standpoint. Principal
Component Analysis (PCA) is a statistical technique used to reduce the features
by creating new features from important features that capture the most information
about the dataset [SGM10]. The new features, known as the principal components,
are the linear combinations of the existing features. The linear combination that
captures the highest variance is the first principal component, the combination that
captures the second highest variance is considered the second principal component,
and so on.

If X is an n × p data matrix with n instances and p features, such that sample
mean for the features is zero, the PCA transformation reduces the size to l from p

through weights w = (w1, . . . , wp)(k), such that each row vector xi maps to a new
principal component matrix Tl = XWl and element-wise is given by

tk(i) = x(i) · w(k) f or i = 1, . . . , n and k = 1, . . . , l (2.20)

48 2 Pre-model Interpretability and Explainability

The principal component matrix T has columns that form an orthogonal basis for
the l features that have been decorrelated. This can be achieved by an objective that
preserves the maximum variances in the original data while minimizing the error
||TWT − TlWT

l ||22.

PCA removes the correlations among the features and becomes an efficient
tool for modeling techniques that rely on this feature. PCA also helps project
the high dimension data in the lower dimension and captures many global and
local interactions. There is a loss of interpretability in the data visualization
concerning the original features as PCA has transformed the data into a new
space. PCA is not scale invariant and the choice of scaling technique will have
an impact on visualization and analysis.

A biplot is a combination of PCA and loading plot. Loading plot shows how
the feature vectors influence the principal components in their magnitude and
direction [Gab71].

The visualization of loading plots, especially the feature vectors’ angles,
gives an insight into the correlation characteristics. If two vectors are close,
forming a small angle, they represent the two features positively correlated.
If they are at 90, there is little to no correlation between them. When they
diverge and form a large angle (close to 180), they are most negatively
correlated.

The t-SNE algorithm has become a widespread technique in machine learning as
it creates compelling two-dimensional projections for the data with a large number
of features (hundreds or even thousands) [MH08]. The t-SNE algorithm is a non-
linear transformation from an input space to a feature space.

The t-SNE algorithm maps the distance between two instances to the conditional
probabilities representing similarities. Thus the conditional probability pj |i repre-
sents the probability of a data instance xi picking another instance xj as its neighbor
with density measured by a Gaussian centered at xi and is given by

p(j |i) = exp(−||xi − xj ||2/2σ 2
i)∑

k �=i exp(−||xk − xj ||2/2σ 2
i)

(2.21)

2.2 Exploratory Data Analysis 49

In the transformed space, the new conditional probability qj |i is given by

q(j |i) = exp(−||yi − yj ||2)∑
k �=i exp(−||yk − yj ||2) (2.22)

Using stochastic gradient descent over y elements, the divergence between the
two distributions can be minimized using the cost function C given by

C =
∑
i,j

p(j |i)
p(j |i)
q(j |i)

(2.23)

The t-SNE algorithm has a tunable parameter known as “perplexity,” enabling the
user to balance the data’s local and global aspects. The perplexity parameter is an
approximation of the number of close neighbors each data element has. The learning
rate and the number of iterations to train on the data impact the visualization. The t-
SNE algorithm’s concept of distance gets mapped to the regional density variations
in the dataset. Thus, it generally expands the dense clusters in the data and contracts
the sparse ones. Another fundamental aspect of the t-SNE plot is that the distances
between well-separated clusters may not mean anything. The presence of clusters
based on the perplexity parameter is what one should aim to see. The practical aspect
is to plot t-SNE for various perplexities and observe the shapes and clusters for local
and global interactions.

Isometric mapping (Isomap) is a non-linear dimensionality reduction method
based on the spectral theory. Isomap maps the data from higher dimension to lower
dimensions by preserving geodesic distances [TSL00]. The geodesic distances
between two points use the graph distance between them, and hence it correctly
approximates the close points as neighbors. Geodesic distances are better than the
Euclidean distances in non-linear manifolds. Isomap uses the geodesic distance to
create a similarity matrix for eigenvalue decomposition.

Isomap uses local information (geodesic distances from neighborhoods) to
create a global similarity matrix. Isomap captures both the global and the
local structure of the dataset in the low-dimensional projections.

50 2 Pre-model Interpretability and Explainability

Observations:

• Figure 2.15 with PCA does not show a good separation of diabetes and
non-diabetes data. This may indicate that linear mapping in the modeling
may not be able to separate the classes. However, the vectors for features
BMI, SkinThickness, and Insulin are closer indicating correlations between
them. Also, the features Age and Pregnancies indicate correlation by virtue
of having angle less than 90.

• Figure 2.16 shows t-SNE plots for various values of perplexities. At
perplexity 5 or 30, there is a good separation of the data into 4 clusters of
diabetes and non-diabetes. This shows that a non-linear mapping of features
can yield a better classification.

• Figure 2.17 shows Isomap projections of the features in 2D with good
separation between diabetes and non-diabetes samples.

Fig. 2.15 Biplot capturing distributions for all the features

Fig. 2.16 t-SNE showing different plots for different values of perplexities. (a) t-SNE with
perplexity = 5. (b) t-SNE with perplexity = 30. (c) t-SNE with perplexity = 40. (d) t-SNE with
perplexity = 50

Fig. 2.17 Isomap projection of two features: Glucose and BloodPressure in the dataset

52 2 Pre-model Interpretability and Explainability

2.2.6 EDA and Time Series

In this section, we will describe techniques involving univariate time series data.
Many traditional statistical forecasting methods such as Error Trend Seasonal
(ETS), ARIMA, and SARIMA have high interpretability and explain the time series
behavior based on the parameters and results [HM82, BD96, HA18b]. The time
series EDA helps understand the data and guides in the choice of these interpretable
models. Below are some of the advantages of performing EDA on time series data
especially around interpretability.

1. It helps in identifying the missing values so that they can be either dropped
or replaced by imputation. Imputing the missing values for time series is
generally done using the forward fill or the backward fill or other interpolation
techniques.

2. Analyzing the trend, seasonality, and cyclic behavior in the time series
will help modeling strategy, especially the Error Trend Seasonal (ETS)
models.

3. Many time series modeling algorithms like ARIMA are not robust to outliers.
Seasonality may sometimes introduce outliers in time series, and hence careful
treatment of outliers becomes imperative. Outlier analysis also influences model
performance metrics. Root Mean Squared Error (RMSE) is not robust to outliers
as compared to Mean Absolute Percentage Error (MAPE) [Jon80, BD91].

4. Statistical stationarity in the time series should have a constant mean, variance,
and little autocorrelation at all lags (correlation with past values). The stationarity
analysis guides the model choice as specific models, e.g., non-stationary time
series, cannot be modeled using ARIMA but with ETS.

5. Structural breaks or shifts are abrupt changes in the trend that persists for a more
extended period than outliers. The presence of such breaks and understanding
them will be useful in modeling choices.

2.2.6.1 Resampling

Resampling the time series data refers to increasing or decreasing the frequency
of the observations to explore the underlying behavior. Upsampling to a higher
frequency involves interpolating new observations from existing ones, while down-
sampling involves aggregating higher frequency observations. Resampling becomes
inevitable if the prediction time frequencies are more or less frequent than the
observations or the training data.

2.2 Exploratory Data Analysis 53

Fig. 2.18 Resampling plots for Mauna Loa CO2 levels. (a) CO2 level sampled at monthly rate.
(b) Resampling CO2 at different frequencies

Observations:

• Figure 2.18b indicates the resampling done using a year start as the fre-
quency, as compared to monthly, completely removes the periodic behavior
and captures the upward trend.

• There is a similarity between 3-year resampling and yearly sampling,
indicating that 1-year observation frequency captures the trend.

2.2.6.2 Seasonality and Trend Analysis

The decomposition process is fundamental for studying time series data and explor-
ing historical changes over time. Decomposition helps visualize the systematic and
non-systematic components, i.e., the components to model and the noise part that
cannot be modeled. Time series decomposition involves splitting a series into a
combination of level, trend, seasonality, and noise components.

• The level is the mean or the average value in the time series.
• The trend is the rate of increasing (or decreasing) value in the time series (Tt).
• The seasonality is the short-term cyclic changes that happen (St).
• The noise or the residuals are randomness that is not possible to model (Rt).

Additive decomposition of the time series data yt can be written as

yt = Tt + St + Rt (2.24)

54 2 Pre-model Interpretability and Explainability

Alternatively, a multiplicative decomposition would be written as

yt = Tt × St × Rt (2.25)

The additive decomposition is relevant when the seasonal variations or variations
around the trends do not vary with the time series level. When seasonal variations
or variations around the trends are proportional to the time series level, then
multiplicative decomposition is more appropriate.

Observations:

• Figure 2.19 highlights that the central part of the series is the upward trend
of the moving average and periodic seasonal pattern every year. The noise
or the residual part is minimal, and we can neglect it in the modeling.

Fig. 2.19 Decomposition using additive method showing the trend, seasonal, and residual parts

2.2 Exploratory Data Analysis 55

2.2.6.3 Autocorrelation, Stationarity, and Differencing

Autocorrelation measures linear relationships between the lagged values in the
time series (Fig. 2.20). High autocorrelation means that the observation point is
more dependent or explained by another point (default is to measure consecutive
observations or with a lag of 1).

A time series that has a trend (increasing or decreasing) or seasonality is not
stationary. The presence of short-lived cycles may make it look non-stationary, but
if the cycles have predictable patterns, it can be stationary.

Another reason for EDA to understand stationarity is that many sample
statistics such as means, variances, and covariances are useful as descriptors
of future behavior only if the series is stationary.

If the time series shows a trend, it may be possible to stationarize it by de-
trending, i.e., by fitting a trend line and subtracting it out before fitting a model. Such
a time series is said to be trend-stationary. If the mean, variance, and autocorrelations
of the time series are changing in time even after de-trending, it may imply that the
variations between periods or between seasons may remain constant. Such a time
series is said to be difference-stationary.

Transformations such as differencing (first difference) that computes the dif-
ference between two consecutive observations in the time series can make non-
stationary time series stationary and hence enable interpretable models like ARIMA.

Fig. 2.20 Autocorrelations using both statsmodels (small value lags) and pandas (large value
lags). (a) Autocorrelation using statsmodels. (b) Autocorrelation using pandas

56 2 Pre-model Interpretability and Explainability

Fig. 2.21 First difference plot for Mauna Loa data

Observations:

• Figure 2.21 shows that de-trending or first differencing removes the trend
completely and there is periodicity.

• Figure 2.22a and b shows that autocorrelation with differencing has clear
yearly periodicity, i.e., every 12 months.

2.2.7 EDA and NLP

In this section, we will explore typical exploratory data analysis performed on
text corpus during various NLP tasks such as classification, categorization, and
summarization, among others. Exploratory data analysis involves text statistics
visualization such as word or phrase frequencies, sentence length distribution

2.2 Exploratory Data Analysis 57

Fig. 2.22 Autocorrelations using both statsmodels (small value lags) and pandas (large value
lags). (a) Autocorrelation after first differencing using statsmodels. (b) Autocorrelation after first
differencing using pandas

Fig. 2.23 Text Corpus statistics for LitCovid dataset. (a) Word distribution. (b) Average word
length distribution

analysis, and topic analysis with relevant words defining it through unsupervised
techniques [KLW19a].

2.2.7.1 Text Corpus Statistics

Many machine learning models are biased by the length of the sentences as well
as the words distribution in the training data. Analyzing the lengths of sentences,
word distribution, and character distribution in the corpus acts as the fundamental
way of understanding the text data for both supervised and unsupervised learning

58 2 Pre-model Interpretability and Explainability

Fig. 2.24 N-grams frequency analysis. (a) Top 30 1-grams. (b) Top 30 2-grams

from explainability and diagnostic perspective. Figure 2.23a shows data exploration
at a word level, specifically histogram plot showing the number of words appearing
in each document. Figure 2.23b shows distribution of average word length in each
sentence.

2.2.7.2 N-Grams Analysis

N-grams analysis involves studying the most frequent n-grams used in the corpus
either in a supervised or in an unsupervised manner. This analysis helps to under-
stand better the context in which the word gets used in the NLP task. These n-grams
are generally the features extracted from the text for traditional machine learning
models, and hence understanding the dominant phrases becomes imperative from
an explainability outlook. In the real world, frequency analysis of one to three n-
grams at the word level is the most common practice. Figure 2.24a and b shows
1-gram and 2-gram analysis for the LitCovid dataset.

2.2.7.3 Word Cloud

Word cloud is a technique for visualizing the most frequent words in a corpus where
the color and size of the words in the image represents their frequency. The word
cloud can be used for the entire corpus or in the labeled dataset for a particular class
to visualize the words that dominate. Word cloud is also used as a diagnostic tool
to identify and eliminate corpus specific stop words, decision for lemmatization,
handling of diacritics, etc. Figure 2.25 shows the word cloud for the LitCovid
dataset.

2.2 Exploratory Data Analysis 59

Fig. 2.25 Word cloud for the LitCovid dataset

2.2.7.4 Topic Modeling

Topic models are unsupervised statistical language models used for revealing the
latent structures and categories in the corpus. The basis of topic modeling is that
each document has a probability distribution over topics, and each topic is associated
with a distribution over terms. Topic modeling methods such as Latent Semantic
Analysis (LSA), Probabilistic Latent Semantic Analysis (PLSA), Non-negative
Matrix Factorization (NMF), and Latent Dirichlet Analysis (LDA) are some of
the well-known techniques used to find the topics and term distributions in the
corpus [AA15]. Latent Dirichlet Allocation is one of the most practical and effective
traditional methods for topic modeling. Feature extraction and selection can also use
topic modeling for identifying important terms, categories, and even cleaning the
corpus of irrelevant data in a large text corpus. Figure 2.26 shows topics and word
distributions using LDA.

2.2.7.5 Corpus Visualization

Corpus visualization using dimensionality reduction and visualization techniques
such as Principal Component Analysis (PCA), t-distributed Stochastic Neighbor
Embedding(t-SNE), and UniformManifold Approximation and Projection (UMAP)
are well suited to visualize the documents with labels as a scatter plot. Some of
these techniques are very effective in visualizing the clusters along with relative
proximities and overlap between them.

60 2 Pre-model Interpretability and Explainability

Fig. 2.26 Topic modeling on LitCovid dataset using LDA and pyLDA visualization

Fig. 2.27 Topic modeling on LitCovid dataset using non-negative matrix factorization

Observations:

• Figure 2.23a shows that most abstracts are around 250-300 words and the
range is as high as around 600 words for some documents.

• Figure 2.23b shows that most sentences are of length 6, but there are some
long sentences with 18 words.

2.2 Exploratory Data Analysis 61

Fig. 2.28 Corpus visualization. (a) UMAP. (b) t-SNE

• Figure 2.25 which highlights the most frequent words in the corpus not only
captures the theme or the topics around Covid-19 but also indicates the need
for preprocessing like lemmatization. For example, the noun virus and its
plural form viruses appear in the top hits and needs handling.

• Figure 2.24a shows top words in the corpus, highlighting the words such as
coronavirus, cov, and covidmay be all synonyms and need domain-specific
preprocessing for modeling.

• Figures 2.26 and 2.27 show topic modeling results using LDA and NMF,
respectively. The NMF results are very interesting as it surfaces many latent
topics, for example, Topic 10 as comorbidities and procedures with words
such as cancer, breast, oncology, radiation, radiotherapy, chemotherapy, etc.,
similarly, Topic 4 as origin with words such as China, confirmed, Wuhan,
January, etc.

• Figure 2.28b shows corpus that visualization with t-SNE is better than
UMAP and shows separation between clusters with class labels 2, 4, and
7, i.e., Forecasting, Mechanism, and Treatment.

2.2.8 EDA and Computer Vision

This section will cover techniques that are specific to computer vision, especially
image classification.

62 2 Pre-model Interpretability and Explainability

2.2.8.1 Distributional Analysis

In image recognition and image classification, analyzing the data from the spatial
average pixel intensity and aggregate distributional differences help understand how
the classes relate. We can show how dark or bright images are by averaging the 28×
28 pixel values over each image. Values closer to 1 will have higher intensity, i.e., it
has some objects filling in the space, while values closer to 0 will have fewer pixels
shaded (or uniformly low-intensity pixels). Figures 2.29 and 2.30 show distribution
per class through histograms and boxplots.

By performing an average of pixel values, we can see a “prototypical” version of
each category in the training dataset. The analysis helps one to understand if types or
classes are close to each other spatially and need more discriminating examples or
changes in modeling techniques to categorize them. Figure 2.31 shows images per
class for the training data in the Fashion MNIST dataset. We can also approximate
how symmetric an image is by taking the absolute value of the difference between
a horizontally flipped image and the original (Fig. 2.32). For more asymmetric
images, there will be more highlighted pixels in the difference, so averaging the
absolute difference will give us a rough quantification of the symmetry of each
image.

Fig. 2.29 Average pixel intensity per class for fashion MNIST dataset

2.2 Exploratory Data Analysis 63

Fig. 2.30 Boxplot of pixel intensity per class for fashion MNIST dataset

Fig. 2.31 Average pixel intensity per class to understand the prototypes in fashion MNIST dataset

64 2 Pre-model Interpretability and Explainability

Fig. 2.32 Boxplot capturing symmetry distribution for fashion MNIST dataset

2.2.8.2 2D Projections

Visualizing the image vectors in two-dimensional space using projection techniques
such as Principal Component Analysis (PCA) and/or manifold learning techniques
such as Uniform Manifold Approximation and Projection (UMAP) helps us see the
spread and the overlaps. Figures 2.33 and 2.34 show the plots for PCA and UMAP
on the Fashion MNIST dataset.

Observations:

• In Fig. 2.29, we can see that sandals and sneakers tend to skew darker, while
pullovers and t-shirt/top have similarly shaped lighter distributions. Shirts
have an interesting distribution as well.

• Figure 2.30 highlights the fact that trousers, sneakers, and sandals have many
outliers and a long tail.

• In Fig. 2.31, we can identify some features that make up each class: we can
see the sleeves of a coat, the trouser legs, and the handle of the bag. We
can also see that there is quite a bit of variety in sandals and that shirts and
dresses may or may not have sleeves.

2.2 Exploratory Data Analysis 65

• Comparing the linear PCA and the non-linear UMAP in Figs. 2.33 and 2.34,
we can say that non-linear dimensionality reduction isolates certain classes
better, such as trousers and bags, and aligns with intuition since these classes
are each entirely dissimilar from the other categories. UMAP also highlights
the relative similarities between specific clusters: the group containing
footwear (sneakers, sandals, and ankle boots) is close together, with each
class somewhat contained into its subgroup (i.e., relatively little overlap
between groups). On the other hand, another cluster includes tops, shirts,
coats, pullovers, and dresses; the intra-cluster spread and overlap between
classes could indicate some degree of difficulty for our classification task.

Fig. 2.33 PCA for fashion MNIST dataset

66 2 Pre-model Interpretability and Explainability

Fig. 2.34 UMAP for fashion MNIST dataset

2.3 Feature Engineering

Feature engineering is a generic term used in machine learning to define multiple
processes such as feature construction, feature selection, feature importance, dimen-
sionality reduction, and explanations [DL18]. As the number of features increases,
feature selection and reduction become critical for the model’s performance, like
document or text classification and other NLP tasks. Selecting a subset of k features
typically involves searching, evaluating, and even building models with 2k − 1 sets.
These features influence the machine learning models and play a massive role in
explainability. This section will discuss the traditional feature selection methods
that influence interpretability and explainability of the models mostly in a model-
agnostic manner. Model-specific feature selection is described in the next two
chapters.

2.3 Feature Engineering 67

2.3.1 Feature Engineering and Explainability

How does traditional feature engineering help in explainability?

1. It helps in reducing complexity of the models and hence increasing the inter-
pretability. Any feature selection or reduction technique that removes features
helps make the model simpler because of fewer interactions, removing noise
caused by inter-relationships, and better predictability of the output.

2. It generally helps make models cheaper with respect to storage, faster in
computation, and facilitates better interpretable models. The automated model
building across parameters, hyperparameters, and model choices becomes more
manageable with smaller feature sets.

3. One of the critical aspects of feature engineering is that it helps in reducing
overfitting. Overfitting is the prime cause of the model’s poor performance on
unseen data, and feature analysis plays an important role here. Understanding
the distribution difference between the features present in the training data and
the prediction data explains poor performance of many models.

2.3.2 Feature Engineering Taxonomy and Tools

There are many ways to select a subset of features or rank them based on their
importance. We will enumerate some of the most practical categories and techniques
here.

Python packagesmlxtend and scikit-feature along with scikit-learn are used
for our analysis and have comprehensive coverage for most filter, wrapper,
search, unsupervised, and embedded methods.

2.3.2.1 Filter-Based

The general approach taken here is to employ any search-based technique and
evaluate the importance of the feature(s) using some statistical measure until it
reaches a stopping criterion (based on some heuristic). It can be fundamental,
like removing constant (zero variance) features or features having variance above
a user-defined threshold. Information theoretic techniques such as information
gain measure the increase in entropy due to the feature’s presence and hence its
importance as a score. Statistical techniques using F-score-based methods such as
selecting k-best features with high F-scores are common. Statistical methods such
as the chi-squared test measure the dependence between the categorical feature and
the categorical label. ANOVA is often used in the case of continuous features.

68 2 Pre-model Interpretability and Explainability

Similarity-Based

Similarity-based techniques work on an underlying principle that the data from the
same class are closer in high-dimensional space.

Given a data matrix X ∈ R
n×m, with n instances and m features, the features are

given by f = f1, . . . , fm and feature vectors are f ∈ R
n. The general framework of

similarity-based techniques is to find S ∈ R
n×m such that

max
S

U(S) = maxS

∑
f∈S

U(f) = maxS

∑
f∈S

f̂′Ŝf̂ (2.26)

where U(S) is the utility of the feature subset, U(f) is the utility of the feature, f̂ is
the transformation of feature vector, and Ŝ is the transformation of similarity matrix.
Based on the transformations f̂ and Ŝ, there are different selection algorithms.

He et al. proposed Laplacian Score technique to select features such that
they maintain sample locality specified by the similarity matrix S. Given S, its
corresponding diagonal matrix D, and Laplacian matrix L, the Laplacian score is
given by

scoreLS(fi) = f̃i
T
Lf̃i

f̃i
T
Df̃i

, where f̃i = fi − f̃i
T
D1

1̃TD1
(2.27)

The score has a numerator that captures the consistency of features on the similarity
matrix; the smaller, the better, and denominator feature variance, the higher, the
better. Thus, the smaller the score, the better it is for the selected feature.

Zhau and Liu’s Spectral Feature Selection is an extension of Laplacian Score
technique, where eigenvectors of similarity matrix are used to represent the data
distribution with the assumption that eigenvectors of similar data are of the same
affiliations. Higher scores are preferred in the technique.

scoreSPEC(fi) =
n∑

j=1
λj

(
εTj fi

) = fTi Sfi (2.28)

Given the class labels y = y1, . . . , yn, Duda et al. proposed using the Fischer
score for selecting features within the class (Sw) and between classes (Sb) by
defining the local and global similarity matrices, respectively, as:

Sw
i,j =

{
1/nl if yi = yj = l

0 otherwise
(2.29)

Sb
i,j =

{
1/n− 1/nl if yi = yj = l

1/n otherwise
(2.30)

2.3 Feature Engineering 69

If Lw and Lb are the Laplacian matrices from Sw and Sb, respectively, the Fischer
score is given by

scoreFS(fi) = f̃i
T
Lb f̃i

f̃i
T
Lw f̃i

(2.31)

The larger the Fischer score, the better is the selected feature.
Relief (and its multiclass extension ReliefF) weighs features based on the

difference between distance to nearest data points with the same class label and
distance to nearest data points with different class labels. It is given by:

scoreR(fi) = 1

2

p∑
t=1

d(ft,i − fNM(xt),i)− d(ft,i − fNH(xt),i) (2.32)

where ft,i is the value of instance xt for the feature fi ,fNM(xt),i , fNH(xt),i denote
the values on the i-th feature of the nearest points to xt with the same and different
class labels, respectively, and d(·) is a distance metric.

Similarity-based feature selection techniques are simple and easy to calculate,
and the selected features help in subsequent learning tasks. One of the
disadvantages is that most techniques do not handle feature redundancy.

Figure 2.35 compares the Fischer score and ReliefF for the diabetes dataset.

Fig. 2.35 Similarity-based methods for feature importance comparison. (a) Fischer scores. (b)
ReliefF scores

70 2 Pre-model Interpretability and Explainability

Information Theoretic-Based

Feature selection by maximizing the mutual information between the selected
features and the label forms the basis for many information theoretic approaches.
Information gain between X and Y is given by

I (X;Y) = H(X)−H(Y) =
∑
xi∈X

∑
yj∈Y

P (xi, yj)log

(
P(xi, yj)

P (xi)P (yj)

)
(2.33)

Similarly, conditional information gain is given by

I (X;Y |Z) = H(X|Z)−H(X|Y,Z)

=
∑
zk∈Z

P (zk)
∑
xi∈X

∑
yj∈Y

P (xi, yj |zk)log

(
P(xi, yj |zk)

P (xi |zk)P (yj |zk)

)

(2.34)

Searching for the best feature subset is an NP-hard problem, and most methods
employ forward/backward sequential search heuristics to find the best subset. The
general goal is to maximize correlation between feature fi and the class label Y

given by I (fi;Y), minimize the redundancy between the selected features in the
subset S given by

∑
fj∈S I (fj ; fk), and maximize the complementary information

with respect to selected features and given by
∑

fj∈S I (fj ; fk|Y). The generalized
scoring can thus be written as

score(fk) = I (fk;Y)+
∑
fj∈S

g[I (fj ; fk), I (fj ; fk|Y)] (2.35)

where g(·) is generally a linear function and can be further decomposed as

score(fk) = I (fk;Y)− β
∑
fj∈S

(fj ; fk)+ λ
∑
fj∈S

I (fj ; fk|Y)] (2.36)

where β and λ have values between 0 and 1.
Information gain only measures the feature importance by its correlation with

class labels and can be considered a special case of the above with β = λ = 0 and
is given by

scoreIG(fk) = I (fk;Y) (2.37)

Mutual information overcomes the shortcoming by considering the redundancy in
features too as given by

2.3 Feature Engineering 71

Fig. 2.36 Information
theoretic-based mutual
information for feature
importance

scoreMI (fk) = I (fk;Y)− β
∑
fj∈S

(fj ; fk) (2.38)

and can be considered as a special case with λ = 0 (Fig. 2.36).
Peng et al. devisedMinimumRedundancyMaximumRelevance (mRMR), which

is accomplished by adjusting the β in the Information gain by the norm of the
similarity matrix as given below:

scoremRMR(fk) = I (fk;Y)− 1

|S|
∑
fj∈S

(fj ; fk) (2.39)

The information theoretic-based feature selection techniques in addition to
carrying all the advantages of similarity-based methods also handle both
feature relevance and redundancy. Information theoretic techniques work
mostly on supervised data and need discretization for continuous features.
They can capture any statistical dependency, but being nonparametric requires
more data samples.

72 2 Pre-model Interpretability and Explainability

Statistical-Based

Statistical measures can be used to measure the importance of the features. t-Test
compares the means between the two groups to see if the feature makes the means
of samples from two classes statistically significant.

scorettest (fi) = |(μ1 − μ2)|√
σ 2
1

n1
+ σ 2

2
n2

(2.40)

where μ1, μ2 and σ1, σ2 are the means and standard deviations of two binary
classes. The higher the t-test score, the more important the feature is.

ANOVA or F-value scoring can be used for selecting importance of continuous
features with respect to the target or the label by computing the sum of squares
between the group (SSG) and the sum of squares within the group (SSE) and their
respective degrees of freedom as given below:

scoreF = SSE/dfG

SSG/dfE

(2.41)

Chi-squared test uses independence test to assess whether the feature is indepen-
dent of the target and scores the relative importance of the feature based on that.
Given a feature with r values

scorechi(fi) =
r∑

j=1

c∑
s=1

(njs − μjs)
2

μjs

where μjs = n∗snj∗
n

(2.42)

njs are instances with j -th feature value in class c, n∗s is the number of instances of
class c, and nj∗ is the number of instances with j -th feature value.

Figure 2.37 shows two statistical methods used for feature importance on the
diabetes dataset.

The F-value methods such as ANOVA estimate the degree of linear depen-
dency between two random variables and have assumptions about the
feature’s distribution. Many statistical measures are not very effective in high-
dimensional data. Most measures cannot handle redundancy.

Filter-based techniques have the advantage of being model-agnostic and
relatively faster than the wrapper-based approach.

2.3 Feature Engineering 73

Fig. 2.37 Statistical methods-based feature importance comparison. (a) ANOVA F-statistic
scores. (b) Chi-squared statistics score

Fig. 2.38 Wrapper-based
approach using kNN with
forward and backward search

2.3.2.2 Wrapper-Based

In contrast to the filter-based techniques, the wrapper-based approach uses one or
more machine learning algorithms to evaluate features. The wrapper approach can
use the same algorithm that the modeling step uses or can use a completely different
algorithm based on speed, performance, and interpretability. Since the features are
evaluated based on the model performance, it is imperative to select the right metrics
such as F-score, precision, recall, accuracy, etc. for the model and therefore the
feature selection.

2.3.2.3 Unsupervised

As discussed in the multivariate visualization, unsupervised linear techniques such
as PCA, MDS, t-SNE, Isomap etc. can be used as feature reduction, selection,

74 2 Pre-model Interpretability and Explainability

Fig. 2.39 Unsupervised techniques for feature importance comparison. (a) MCFS for feature
importance. (b) NDFS for feature importance

and feature generation techniques. Some of the methods such as Multi-Cluster
Feature Selection (MCFS), Nonnegative Discriminative Feature Selection (NDFS),
and Norm Regularized Discriminative Feature Selection can be used for analyzing
features and their importance [CZH10, Li+12, Yan+11]. Figure 2.39 compares and
contrasts MCFS and NDFS on the diabetes dataset.

2.3.2.4 Embedded

Many machine learning algorithms such as Linear Regression, Logistic Regression,
Decision Trees, Random Forest, Boosting, and many others have feature selection
as a component in the modeling. Regularization techniques such as L1 and L2 also
play the role of feature selection in many of these algorithms. This will be discussed
in detail in the next chapter.

Observations:

• The two statistical-based feature selection algorithms ANOVA and chi-
squared are shown in Fig. 2.37a and b, respectively. ANOVA ranks Glucose,
BMI, and Age as the top three features, while chi-squared ranks Insulin,
Glucose, and Age at the top. Pregnancies and BloodPressure both show
relatively low scores in both the techniques.

• The information theoretic-based mutual information method ranks Glucose,
BMI, and Age as the top three features similar to ANOVA.

References 75

• Both the similarity-based methods, as seen in Fig. 2.35, show different high
scores for many features. The Fischer score suggests Glucose, BMI, and Age
as the top feature, while ReliefF shows Glucose, Insulin, and Age as the most
discriminating.

• The wrapper-based feature selection as shown in Fig. 2.38 gives different
accuracies with the same classifier (K-nearest neighbors) by choosing a
different combination of features. The forward search results in feature set
of Pregnancies, Glucose, BloodPressure, BMI, and DiabetesPedigreeFunc-
tion with a classification accuracy of 80.35. The backward search shows
features Pregnancies,Glucose, SkinThickness, BMI, and Age as the chosen
set resulting in a higher classification accuracy of 82.1.

• The unsupervised feature selection methods MCFS and NDFS show com-
pletely different scores for the features as shown in Fig. 2.39. The MCFS
method shows DiabetesPedigreeFunction and BloodPressure as the top
feature, while NDFS indicates BMI and Insulin as the most important
features.

References

[Agg16] C.C. Aggarwal, Outlier Analysis. 2nd edn. (Springer Publishing Company, Incorpo-
rated, Berlin, 2016). ISBN: 3319475770

[AA15] R. Alghamdi, K. Alfalqi, A survey of topic modeling in text mining. Int. J. Adv.
Comput. Sci. Appl. 6(1) (2015). https://doi.org/10.14569/IJACSA.2015.060121

[And94] T.W. Anderson, An Introduction to Multivariate Statistical Analysis (Wiley, Hobo-
ken, 1994)

[Ber19] F. Bertrand, SweetViz: Exploratory Data Analysis for Python https://github.com/
fbdesignpro/sweetviz.2019

[Bik19] N. Bikakis, Big data visualization tools, in Encyclopedia of Big Data Technologies,
ed. by S. Sakr, A.Y. Zomaya (Springer International Publishing, Cham, 2019), pp.
336–340. ISBN: 978-3-319-77525-8. https://doi.org/10.1007/978-3-319-77525-8_
109

[Bok20] Bokeh Development Team. Bokeh: Python Library for Interactive Visualization
(2020). https://bokeh.org/

[BD91] P.J. Brockwell, R.A. Davis, Time Series: Theory and Methods, 2nd edn. (Springer,
Berlin, 1991)

[BD96] P.J. Brockwell, R.A. Davis, Introduction to Time Series and Forecasting (Springer,
New York, 1996)

[Bru19] S. Brugman, Pandas-Profiling: Exploratory Data Analysis for Python (2019) https://
github.com/pandas-profiling/pandas-profiling

[CZH10] D. Cai, C. Zhang, X. He, Unsupervised feature selection for multi-cluster data, in
Proceedings of the 16th ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining. KDD ’10 (Association for Computing Machinery,
Washington, 2010), pp. 333–342. ISBN: 9781450300551. https://doi.org/10.1145/
1835804.1835848

https://doi.org/10.14569/IJACSA.2015.060121
https://github.com/fbdesignpro/sweetviz.2019
https://github.com/fbdesignpro/sweetviz.2019
https://doi.org/10.1007/978-3-319-77525-8_109
https://doi.org/10.1007/978-3-319-77525-8_109
https://bokeh.org/
https://github.com/pandas-profiling/pandas-profiling
https://github.com/pandas-profiling/pandas-profiling
https://doi.org/10.1145/1835804.1835848
https://doi.org/10.1145/1835804.1835848

76 2 Pre-model Interpretability and Explainability

[CBK09] V. Chandola, A. Banerjee, V. Kumar, Anomaly detection: a survey. ACM Comput.
Surv. 41(3), 15:1–15:58 (2009). https://doi.org/10.1145/1541880.1541882

[Cri20] E. De Cristofaro, An Overview of Privacy in Machine Learning (2020). arXiv:
2005.08679 [cs.LG]

[DL18] G. Dong, H. Liu, Feature Engineering for Machine Learning and Data Analytics, 1st
edn. (CRC Press, Boca Raton, 2018). ISBN: 1-13874-438-7

[Eds03] R.M. Edsall, The parallel coordinate plot in action: design and use for geographic
visualization. Comput. Stat. Data Anal. 43(4), 605–619 (2003). https://doi.org/10.
1016/S0167-9473(02)00295-5

[Gab71] K.R. Gabriel, The biplot graphical display of matrices with applications to principal
component analysis. Biometrika 58 , 453–467 (1971)

[Gho+18] A. Ghosh, et al. A comprehensive review of tools for exploratory analysis of tabular
industrial datasets. Vis. Inf. 2(4), 235–253 (2018) https://doi.org/10.1016/j.visinf.
2018.12.004

[Gra09] J.W. Graham, Missing data analysis: making it work in the real world. Ann. Rev.
Psychol. 60, 549–576 (2009)

[Gri18] B. Griner, Decoding Health with Data Science and Machine Learning (2018). https://
briangriner.github.io/decoding-health-risk-factors-pre-diabetes-ML-3.5.18.html

[Hab72] S.J. Haberman, Log-linear fit for contingency tables—Algorithm AS51. Appl.
Statist. 21, 218–225 (1972)

[HM82] A.C. Harvey, C.R. McKenzie, Algorithm AS182. An algorithm for finite sample
prediction from ARIMA processes. Appl. Statist. 31, 180–187 (1982)

[Hun07] J.D. Hunter, Matplotlib: a 2D graphics environment. Comput. Sci. Eng. 9(3), 90–95
((2007)). https://doi.org/10.1109/MCSE.2007.55

[HA18b] R.J. Hyndman, G. Athanasopoulos, Forecasting: Principles and Practice, English.
2nd edn. (OTexts, Melbourne, 2018)

[Inc15] Plotly Technologies Inc. Collaborative Data Science (2015). https://plot.ly
[JT09] I.M. Johnstone, D.M. Titterington, Statistical challenges of high dimensional data.

Philosoph. Trans. Roy. Soc. London Ser. A 367(1906), 4237–4253 (2009). https://
doi.org/10.1098/rsta.2009.0159

[Jon80] R.H. Jones, Maximum likelihood fitting of ARMA models to time series with
missing observations. Technometrics 22, 389– 395 (1980)

[KLW19a] U. Kamath, J. Liu, J. Whitaker, Deep Learning for NLP and Speech Recognition
(Springer, Berlin, 2019). ISBN: 978-3-030-14595-8. https://doi.org/10.1007/978-3-
030-14596-5

[Li+12] Z. Li, et al., Unsupervised feature selection using nonnegative spectral analysis, in
Proceedings of the National Conference on Artificial Intelligence, vol. 2 (2012), pp.
1026–1032

[MH08] L. van der Maaten, G. Hinton, Visualizing data using t-SNE. J. Mach. Learn. Res. 9,
2579–2605 (2008). http://www.jmlr.org/papers/v9/vandermaaten08a.html

[MKB79] K.V. Mardia, J.T. Kent, J.M. Bibby, Multivariate Analysis (Academic, London, 1979)
[Scho+2018] P. Schober, C. Boer, L.A. Schwarte, Correlation coefficients: appropriate use and

interpretation, in Anesthesia & Analgesia, vol. 126, (Wolters Kluwer, 2018), pp.
1763–1768

[SP10] S. Seabold, J. Perktold, Statsmodels: Econometric and statistical modeling with
python, in 9th Python in Science Conference (2010)

[Sel] H.J. Seltman, Experimental Design and Analysis, EPUB (Carnegie Mellon Univer-
sity, Pittsburgh, PA, 2018). http://www.stat.cmu.edu/~hseltman/309/Book/Book.pdf

https://doi.org/10.1145/1541880.1541882
https://doi.org/10.1016/S0167-9473(02)00295-5
https://doi.org/10.1016/S0167-9473(02)00295-5
https://doi.org/10.1016/j.visinf.2018.12.004
https://doi.org/10.1016/j.visinf.2018.12.004
https://briangriner.github.io/decoding-health-risk-factors-pre-diabetes-ML-3.5.18.html
https://briangriner.github.io/decoding-health-risk-factors-pre-diabetes-ML-3.5.18.html
https://doi.org/10.1109/MCSE.2007.55
https://plot.ly
https://doi.org/10.1098/rsta.2009.0159
https://doi.org/10.1098/rsta.2009.0159
https://doi.org/10.1007/978-3-030-14596-5
https://doi.org/10.1007/978-3-030-14596-5
http://www.jmlr.org/papers/v9/vandermaaten08a.html
http://www.stat.cmu.edu/~hseltman/309/Book/Book.pdf

References 77

[SGM10] F. Song, Z. Guo, D. Mei, Feature selection using principal component analysis,
in 2010 International Conference on System Science Engineering Design and
Manufacturing Informatization, vol. 1 (2010), pp. 27–30

[Ste+19] J.-L. Stevens, et al., pyviz/holoviews: Version 1.12.5. Version v1.12.5 (2019). https://
doi.org/10.5281/zenodo.3368625

[tea20] The pandas development team. pandas-dev/pandas: Pandas Version lat- est. (2020).
https://doi.org/10.5281/zenodo.3509134

[TSL00] J.B. Tenenbaum, V. de Silva, J.C. Langford, A global geometric framework for non-
linear dimensionality reduction. Science 290(5500), 2319–2323 (2000). ISBN: 0036-
8075. https://science.sciencemag.org/content/29/550/2319.full.pdf. https://science.
sciencemag.org/content/290/5500/2319

[Tuf11] S. Tuffery, Data Mining and Statistics for Decision Making. Wiley Series in
Computational Statistics (Wiley, Hoboken, 2011). ISBN: 9780470979280. https://
books.google.com/books?id=5MTBlxZUKiIC

[Tuk77] J.W. Tukey, Exploratory Data Analysis (Addison-Wesley, Reading, 1977)
[Wt20] Michael Waskom and the seaborn development team. mwaskom/seaborn Version

latest. (2020). https://doi.org/10.5281/zenodo.592845
[Yan+11] Y. Yang, et al., L2,1-norm regularized discriminative feature selection for unsuper-

vised learning, in Proceedings of the Twenty-Second International Joint Conference
on Artificial Intelligence Volume Two. IJCAI’11 (AAAI Press, Barcelona, 2011), pp.
1589–1594. ISBN: 9781577355144

https://doi.org/10.5281/zenodo.3368625
https://doi.org/10.5281/zenodo.3368625
https://doi.org/10.5281/zenodo.3509134
https://science.sciencemag.org/content/29/550/2319.full.pdf
https://science.sciencemag.org/content/290/5500/2319
https://science.sciencemag.org/content/290/5500/2319
https://books.google.com/books?id=5MTBlxZUKiIC
https://books.google.com/books?id=5MTBlxZUKiIC
https://doi.org/10.5281/zenodo.592845

Chapter 3
Model Visualization Techniques and
Traditional Interpretable Algorithms

One of the easiest ways to build explainable models is by having the machine
learning algorithm be intrinsically interpretable. Gaining an understanding of how
well a model performs from looking at the results of model evaluation is another
important way to enhance model explainability. We discuss several techniques to
visualize model evaluation including precision-recall curves, ROC curves, residual
plots, silhouette coefficients, and others to give a comprehensive overview of
classification, regression, and clustering techniques. Next, we start understanding
interpretability of some of the traditional machine learning models used in clas-
sification, regression, and clustering. The Pima Indian diabetes dataset is used to
perform supervised and unsupervised classification. The insurance claims dataset is
used for regression model analysis.

3.1 Model Validation, Evaluation, and Hyperparameters

The key to creating great models is to make sure that the model generalizes well
on unseen data. Figure 3.1 gives the most well-established process that ensures
models do not overfit (or underfit) and generalize well for classification and
regression [HTF09a]. The labeled dataset can be divided into training, validation,
and test sets from the original data. Primarily, the test set should be representative of
the unseen real-world data in terms of quality, distribution, class balance, etc. If it is
representative, running the model and evaluating the metrics on the test data gives an
estimate close to what real-world model performance will be. Most algorithms have
various parameters or options that have to be set for optimal performance. Generally,
a separate validation set is used for evaluating model performance on different
parameter values. In the absence of a separate validation set, splitting training data
into train and validation sets is a choice and depends on the amount of labeled data
and the model capacity (VC dimensions). Validation techniques like k-fold cross-

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2021
U. Kamath, J. Liu, Explainable Artificial Intelligence: An Introduction to
Interpretable Machine Learning, https://doi.org/10.1007/978-3-030-83356-5_3

79

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-83356-5_3&domain=pdf
https://doi.org/10.1007/978-3-030-83356-5_3

80 3 Model Visualization Techniques and Traditional Interpretable Algorithms

Fig. 3.1 Training, validation, and test sets for model tuning and evaluation

validation are employed when separate validation sets are not a possibility [CT10].
The validation process plays a vital role in tuning or selecting the model parameters.
The choice of these parameters affects the model performance, and hence explicitly
understanding the options is critical from an explainability standpoint.

To compare and contrast machine learning models it is necessary to use the
same split of train, validation, and test sets to evaluate all the models (with
parameters) using the same performance metric(s). Interpretability is also one
of the aspects that one should focus on along with other metrics.

3.1.1 Tools and Libraries

For all the tasks related to model performance analysis and visualization of results,
we will use the YellowBrick package along with sklearn on the Pima Indian
diabetes dataset (classification) and the insurance claims dataset (regression).

3.2 Model Selection and Visualization 81

Fig. 3.2 Validation curves for classifiers with AUC—area under ROC curve. (a) Decision tree. (b)
Logistic regression

3.2 Model Selection and Visualization

Most machine learning algorithms have parameters that need to be tuned for optimal
performance on a given dataset. For example, a decision tree can have different
values of “max depth” and the models corresponding to each such value can exhibit
a range of performance values, measured as accuracy or precision, for example. A
validation set or cross-validation technique is used to tune these parameters.

3.2.1 Validation Curve

Validation curve is a plot of performance metrics such as a score with respect to
different values of the parameters of the model [Bra97].

Observations:

• The validation curve as in Fig. 3.2a for Decision Tree shows that at “max
depth” of 4, the classifier stabilizes to give optimumAUC of around 0.88. As
the number of nodes increases, the validation score remains almost constant
while the training score increases indicating overfitting.

• The validation curve as in Fig. 3.2b for Logistic Regression shows best
performance for the parameter C at 0.1 with AUC value around 0.77. As
the C value increases the validation score drops indicating the region of
overfitting.

• The variance in validation and training scores is very high in Logistic
Regression as compared to Decision Tree.

82 3 Model Visualization Techniques and Traditional Interpretable Algorithms

3.2.2 Learning Curve

A learning curve explains the relationship between a performance metric, such as
accuracy for a classifier, and the number of training samples [Per10]. The learning
curve provides various diagnostic insights into the classifier such as

1. How many training samples does the classifier/regressor need for an optimum
performance score in training and validation?

2. Are the samples representative of the domain?
3. Does the bias or the variance introduce error in the classifier/regressor?
4. Does the model have any overfitting or underfitting issues?

The training and validation learning curves are plotted together so we can look at the
relative metrics to get the overall diagnosis for decision trees and logistic regression
as shown in Fig. 3.3a and b.

• A flat training and validation learning curve indicates a high chance of
underfitting as it might signify no improvement and hence no learning.

• A training learning curve indicating a continuous decrease right from the
start is also indicative of underfitting.

• High variability in the validation learning curve, especially with cross-
validation, but not in the training learning curve indicates error due to
variance rather than bias.

• High variability in the training learning curve indicates error due to bias.
• A large gap between the training and validation learning curve diverging

after a point in the curve indicates the ideal split and marks the beginning
of overfitting.

Observations:

• The learning curves in Fig. 3.3a for Decision Tree show that training and
validation curves are separated. At about 600 samples, the validation curve
trends downwards. There is a large variance in the cross-validation as
compared to training indicating variance errors in predictions rather than
bias errors.

3.3 Classification Model Visualization 83

Fig. 3.3 Learning curves for classifiers with AUC—area under ROC curve. (a) Decision tree. (b)
Logistic regression

• The learning curves in Fig. 3.3b for Logistic Regression show both training
and validation curves following similar trends and at about 600 samples,
showing divergence. Similar to the Decision tree, logistic regression also
indicates variance error.

• The training learning curve for Logistic Regression also shows variability
and this indicates the bias error. When compared with decision tree, it can
be concluded that the non-linear decision tree algorithm performs better
indicating the presence of non-linear boundaries.

• The variance in logistic regression is more than that of decision tree.

3.3 Classification Model Visualization

As discussed in the last section, model selection happens based on the agreed
metrics that vary based on the domain and the nature of the application [Ras20]. For
example, in some compliance-based domains in financial services, false negatives
have to be minimized (recall-centric), while in other applications such as fraud
detection where there are fewer resources to investigate the positive hits, false
positive minimization becomes imperative (precision-centric).

Many model governance teams consider model metrics and evaluation
results along with the actual model as an artifact that needs to be documented
and reported. From a diagnostic and white-boxing perspective, understanding
how the model performs in various scenarios is critical. This section will

84 3 Model Visualization Techniques and Traditional Interpretable Algorithms

discuss some well-known model metrics and how they impact selection, especially
of the classification models.

3.3.1 Confusion Matrix and Classification Report

As shown in Fig. 3.4, the confusion matrix is a common way to visualize the
classification results on the test dataset. It acts both as a quantitative metrics
provider for making decisions such as how well the model generalizes and
also as a diagnostics tool to understand the model’s behavior on individual
classes.

Classification report is another view of the confusion matrix but with various
metrics that highlight model behavior from an efficiency and effectiveness stand-
point. As shown in Fig. 3.5, various metrics such as precision, recall, F1, and support
per-class basis are given in the classification report as color-coded heatmaps for
Decision Tree model.

Fig. 3.4 Confusion matrix for decision tree model on diabetes classification dataset

3.3 Classification Model Visualization 85

Fig. 3.5 Classification report for decision tree model on diabetes classification dataset

By visualizing classification reports for various models on the same evaluation
dataset, model behaviors can be understood in a comparative sense, as shown in
Fig. 3.6a and b for Gaussian Naive Bayes and Logistic regression, respectively.

Observations:

• Figure 3.6a shows precision for the diabetic class for the Gaussian Naive
Bayes model (68.9) is slightly higher than that of Logistic Regression (68.3).
The precision for the non-diabetic class for the Gaussian Naive Bayes model
(85.3) is higher than that of Logistic Regression (83.2). Thus if precision is
the metric, then Gaussian Naive Bayes is the model one should select.

• Figure 3.6b shows recall for the diabetic class for the Gaussian Naive Bayes
model (66) is higher than that of Logistic Regression (59.6). But the recall
for the non-diabetic class for Logistic Regression (87.9) is slightly higher
than that of Gaussian Naive Bayes (86.9). The choice of the model then
depends on the skew of the dataset and the bias towards the predictions of a
particular class.

• The F1 score for Gaussian Naive Bayes for both diabetic and non-diabetic
is higher than that of Logistic Regression.

• Comparing Figs. 3.5, 3.6a, and b, one can clearly see that for all the metrics
such as precision, recall, and F1, the non-linear decision tree model is
superior to both Gaussian Naive Bayes and Logistic Regression.

86 3 Model Visualization Techniques and Traditional Interpretable Algorithms

Fig. 3.6 Comparing classification reports for two models. (a) GaussianNB. (b) Logistic regression

3.3.2 ROC and AUC

The Receiver Operating Characteristic (ROC) curve measures a classifier’s predic-
tive quality, comparing and visualizing the trade-off between the model’s sensitivity
and specificity. Sensitivity measures how often a model correctly generates a
positive for the data that is labeled as a positive (also known as the true positive
rate). Specificity measures how often a model correctly generates a negative for
the data that is labeled as a negative (also known as the true negative rate). The
ROC curve generates another metric computing the area under the curve (AUC) and
captures the relationship between false positives and true positives [GV18].

The higher the AUC, the better the model’s generalization capability is. The
ROC curve’s steepness is also crucial as it describes the maximization of the
true positive rate while minimizing the false positive rate. The closer the ROC
curve is to the top left corner, the better the model’s quality is overall. The
closer the curve comes to the center diagonal line, the closer the model is to a
random guesser.

Observations:

• Figure 3.7a and b show that the AUC for Gaussian Naive Bayes and Decision
Tree for both classes are almost identical, with a value of 0.89.

• Based on the steepness of the curve and closeness to the top left corner,
Decision Tree seems to be a slightly better choice than Gaussian Naive
Bayes

3.3 Classification Model Visualization 87

Fig. 3.7 Comparing ROC curves for two models. (a) GaussianNB ROC curve. (b) Decision tree
ROC curve

3.3.3 PRC

Precision-Recall curve measures the trade-off between the two metrics—precision
and recall. Precision, measured as a ratio of true positives to the sum of true
positives and false positives, is a measure of exactness or efficiency [DG06]. Recall,
measured as a ratio of true positives to the sum of true positives and false negatives,
is a measure of completeness or effectiveness. Average precision represents the
precision-recall curve as a single metric and is computed as the weighted average of
precision achieved at each threshold, where the weights are the differences in recall
from the previous thresholds.

The larger the area in the Precision-Recall curve, the better is the classifier,
especially when there is a huge imbalance between the classes. Higher
Average Precision is normally considered a good single metric by which to
select the classifier in an imbalanced dataset.

Observations:

• Figure 3.8a and b show the area under PRC for Logistic Regression is higher
than that of Gaussian Naive Bayes.

• The average precision for Logistic Regression is more than that of Gaussian
Naive Bayes. Hence, in a severely imbalanced dataset, selecting Logistic
regression over Gaussian Naive Bayes may seem the right choice.

88 3 Model Visualization Techniques and Traditional Interpretable Algorithms

Fig. 3.8 Comparing ROC curves for two classifiers. (a) GaussianNB. (b) Logistic regression

3.3.4 Discrimination Thresholds

Most classifiers assign a probability for class membership to the instance to
be classified. The default is to assume that a probability greater than or equal
to 0.5 is for one class and below 0.5 for the other in binary classification. In
classification problems with imbalanced data, the default threshold can result
in suboptimal performance metrics [Che+05, Pro]. One technique to improve a
classifier’s performance on imbalanced data is to tune the threshold used to map
probabilities to class labels. The discrimination threshold in binary classification,
sometimes called classification or decision threshold, is the probability value above
which one class is predicted and below which it is the other class.

• Using the training data and creating multiple train/test sets, we run the
model multiple times in order to account for the variability in the data.
Then the different curves are plotted, showing median and range. The
discrimination threshold is the one that achieves the best evaluation metrics
in the multiple runs.

• Discrimination threshold tuning is not a hyperparameter tuning but a
decision based on the trade-off between false positives and false negatives
on the basis of the classifier’s probability outputs.

• Tuning the discrimination threshold gives a better trade-off between
precision and recall in the precision-recall curves.

3.4 Regression Model Visualization 89

Fig. 3.9 Discrimination thresholds for two classifiers on the diabetes dataset. (a) GaussianNB. (b)
Logistic regression

Observations:

• Figure 3.9a and b show the optimal thresholds for Gaussian Naive Bayes
and Logistic Regression are 0.29 and 0.13, respectively.

• Gaussian Naive Bayes shows relatively large variance around the mean for
the queue rate, F1, and recall while Logistic Regression around precision.

3.4 Regression Model Visualization

Regression model results need to be validated and visualized in a continuous space
as compared to classification models. There are various aspects of regression models
such as predictions, errors, and sensitivity to hyperparameters that can be used
for diagnostics or explainability. In this section, we will discuss some common
techniques employed in regression analysis.

3.4.1 Residual Plots

In regression, residual plots plot the difference between the predicted and the
observed values for the target. Similar to validation curves and learning curves,
residual plots are used for various diagnostics [Bel+80]. The plots can be used to
understand the impact of several aspects, for example, outliers, non-linearity of the
data, the assumption that the errors are independent and normally distributed and
heteroscedasticity.

90 3 Model Visualization Techniques and Traditional Interpretable Algorithms

A good regression residual plot has a high-density of points close to 0 and
scattered low density around the axis without a pattern, thus confirming the
errors’ independence and normal random distribution.

Observations:

• Figure 3.10 shows the residuals for both training and testing data with a good
overlap and thus there is no sample bias.

• The errors have multimodal distribution and violate the normal distribution
assumption.

• There are patterns around the distribution, especially around +1000 and
−1000 value, indicating independence assumption violations.

• The negative spread of errors is more than the positive, showing presence of
outliers and long tail.

Fig. 3.10 Residual plots for linear regression

3.4 Regression Model Visualization 91

3.4.2 Prediction Error Plots

Prediction error plots show the actual values against the predicted values. It also
shows the plot with comparison of 45◦ line.

Prediction error plots are used for understanding errors caused by variance
in the regression model. The comparison with 45◦ line shows if the model is
underestimating or overestimating.

Observations:
Figure 3.11 shows errors are not constant across values, thus variances are not
constant and this violates the homoskedasticity assumption.

3.4.3 Alpha Selection Plots

Most regression algorithms employ some form of regularization to constrain the
complexity of the model. The alpha values control the complexity of the model and

Fig. 3.11 Prediction error plots for linear regression

92 3 Model Visualization Techniques and Traditional Interpretable Algorithms

Fig. 3.12 Alpha selection based on errors. (a) Ridge regression. (b) Lasso regression

cross-validation is used to select the values [HTF09b]. In Fig. 3.12a and b, alpha
values that give the lowest error for Ridge Regression and Lasso Regression using
cross-validation technique are plotted for the insurance dataset.

If the alpha values are high, model complexity is reduced, thus reducing the
error caused by variance, resulting in an overfit model. If the alpha values are
too high, the error due to bias increases, resulting in an underfit model

Observations:
Ridge regression has the lowest error at alpha value of 0.195 and Lasso has
lowest error at alpha value of 10.0. Lasso with high alpha values indicates an
underfit model with error introduced by the bias.

3.4.4 Cook’s Distance

Cook’s distance measures an instance’s influence on the regression. The larger the
influence of an instance, the higher is the likelihood of an outlier, thus influencing
the regression model negatively [Coo11]. Visualizing stem plot for all training
instances by their Cook’s distance score and handling instances with a score more
significant than a threshold by removal or imputation is a standard best practice.
Cook’s distance for ith instance from n observations is given by Di

Di =
∑n

j=1(ŷj − ŷj (i))
2

ps2
(3.1)

3.5 Clustering Model Visualization 93

Fig. 3.13 Cook’s distance for insurance data

Any instance with score over 4/n, where n is the number of observations is the
threshold for distance scores.

Any instances with Cook’s distance greater than 0.5 or three times the mean
score need to be closely examined for their influence.

Figure 3.13 shows the plot of Cook’s distance score for the entire insurance
training data.

Observations:
There are no instances with distance score greater than 0.5 in the entire dataset.
Using just the threshold based on 4/n, around 7.28% of training data are
identified as highly influential based on the Cook’s distance scores. Simply
removing those instances improves the training R2 scores from 0.734 to 0.834
as shown in Fig. 3.14a and b, respectively.

3.5 Clustering Model Visualization

Unsupervised learning techniques such as clustering are even more difficult to
diagnose or explain as compared to supervised learning since “ground truth” is

94 3 Model Visualization Techniques and Traditional Interpretable Algorithms

Fig. 3.14 Impact of removing outliers identified from cook’s distance. (a) Model before. (b)
Model after

often undefined. This section will discuss some techniques employed to visualize,
validate, and diagnose clustering models.

One of the difficult choices in many clustering algorithms such as K-means,
X-means, Expectation-Maximization, etc. is selecting number of clusters, usually
symbolized by k. The choice depends on many factors such as the size of the data,
dimensionality, end user’s desire and prior knowledge. The optimal choice of k is
a trade-off between maximum compression of the data and maximum separation
between the unseen classes or the categories.

3.5.1 Elbow Method

For the elbow method, a clustering technique is run on the dataset for a range of
values for k (say from 1–10). Then for each value of k, it computes an average
distortion score for all the clusters. There are many ways to compute the distortion
score; a common technique calculates the sum of square distances from each point to
its assigned center. The plot of k and the average distortion score in a plot resembles
the arm, then the k around the elbow, the point of inflection, is chosen as an optimum
k. The elbow or the knee point is detected through an algorithm that finds the point
of maximum curvature in the plot.

The Calinski-Harabasz score, also known as the Variance Ratio score, is the ratio
of the sum of between-clusters dispersion and intercluster dispersion. The higher
the Calinski-Harabasz score, the better is the clustering performance.

3.5 Clustering Model Visualization 95

Fig. 3.15 Elbow Method for visualizing the optimum k for k-means clustering on the diabetes
classification data. (a) Distortion scores. (b) Calinski-Harabasz score

Figure 3.15a and b show elbow detection using distortion and the Calinski-
Harabasz method to find optimum k in the k-means for the diabetes classification
data.

Observations:
Though the diabetes dataset has two labeled classes, both the distortion score
and the Calinski-Harabasz score indicate that k = 3 is the optimum cluster size.

3.5.2 Silhouette Coefficient Visualizer

The Silhouette Coefficient is an estimate of the density of the clusters. It is computed
for each instance based on two different scores as

• The mean distance between that instance and all other instances in the same
cluster: a

• The mean distance between that instance and all other instances in the next
nearest cluster: b

s = b − a

max(b − a)
(3.2)

The Silhouette visualizer displays the silhouette coefficient for each instance on a
per-cluster basis, visualizing the clusters and their density. Different plots for each
value of k are shown in Fig. 3.16a, b, c, and d.

96 3 Model Visualization Techniques and Traditional Interpretable Algorithms

Fig. 3.16 Silhouette coefficients for k ranging from 2 to 5. (a) Silhouette coefficients for k = 2. (b)
Silhouette coefficients for k = 3. (c) Silhouette coefficients for k = 4. (d) Silhouette coefficients
for k = 5

The Silhouette Coefficient has a best value of 1 and worst value of−1. Values
near 0 indicate overlapping clusters. Negative values generally indicate that
instances have the wrong cluster assignment.

Observations:
Based on the average Silhouette coefficient scores (indicated by red dotted line)
for the diabetes dataset, the best k is 2 where the average score is high and there
are no negative scores. The split between the two classes also seems to be in
the same proportion as the original labeled class distribution.

3.5 Clustering Model Visualization 97

Fig. 3.17 Intercluster distance maps for different values of k. (a) k = 2. (b) k = 3. (c) k = 4. (d)
k = 5

3.5.3 Intercluster Distance Maps

Intercluster distance maps visualize an embedding space in the lower dimensions of
the cluster centers. Various projection techniques such as multidimensional scaling
(mds), stochastic neighbor embedding (t-sne), etc. can be used for mapping from
high dimensions to two dimensions. The clusters’ memberships and sizes can be
determined by a scoring method such as the number of instances belonging to each
cluster and gives the clusters’ relative importance (Fig. 3.17).

Observations:
Intercluster distance maps for various k using mds shows that for k = 3, based
on the size, distribution and no overlaps indicate an ideal cluster size for the
data.

98 3 Model Visualization Techniques and Traditional Interpretable Algorithms

3.6 Interpretable Machine Learning Properties

This section will detail some of the properties on which most algorithms can be
compared from an interpretability standpoint.

1. Local or Global: Does the model provide interpretability at a single instance or
local level or across the entire data space?

2. Linearity: Is the model capable of capturing non-linear relationships between
the features?

3. Monotonicity Does the relationship between the feature and the target go in the
same direction over the entire feature domain?

4. Feature Interactions: Some models capture interactions between the features
while some assume independence. If captured in the right way, features interac-
tions can increase the quality but simultaneously increase the complexity as well,
thus reducing the interpretability.

5. Best-suited Complexity: Based on the hypothesis space of the model, what
kinds of problem complexity is the algorithm best suited for?

3.7 Traditional Interpretable Algorithms

3.7.1 Tools and Libraries

Well-known open-source python packages like statsmodels and sklearn along
with different data and plotting libraries were used for linear regression, logistic
regression, Gaussian Naive Bayes, and Decision Tree. pgmpy is used for modeling
Bayesian Network and Orange for Rule Induction.

3.7.2 Linear Regression

Linear regression is one of the oldest techniques that predicts the target using
weights on the input features learned from the training data [KK62b]. The inter-
pretation of the model becomes straightforward as the target is a linear combination
of weights on the features. Thus linear regression model can be described as a linear
combination of input x and a weight parameter w (that is learned during training
process). In a d-dimensional input (x = [x1, x2, . . . , xd]), we introduce another
dimension called the bias term, x0, with value 1. Thus the input can be seen as
x ∈ {1} × R

d , and the weights to be learned are w ∈ R
d+1.

In matrix notation, the input can be represented as a data matrix X ∈ R
N×(d+1),

whose rows are examples from the data (e.g., xn), and the output is represented

3.7 Traditional Interpretable Algorithms 99

as a column vector y ∈ R
N . The process of learning via linear regression can be

analytically represented as minimizing the squared error between the hypothesis
function h(xn) and the target real values yn, as

Etrain(h(x,w)) = 1

N

d∑
i=0

(
wTxn − yn

)2 (3.3)

Since the data x is given, we will write the equation in terms of weights w

Etrain(w) = 1

N
‖(Xw− y)2‖ (3.4)

where ‖(Xw− y)2‖ is the Euclidean norm of a vector.
This is an optimization problem that requires finding the weights wopt that

minimize the training error Etrain.

wopt = argmin
w∈Rd+1

Etrain(w) (3.5)

The solution for the weights is given by

wopt =
(
XTX

)−1XTy (3.6)

Linear regression makes the following assumptions that are important for model
validation and interpretability

• Linearity: Linear regression assumes a linear relationship between the features
and the label. In many real-world datasets this assumption may not hold true.

• Homoscedasticity: Linear regression assumes the error in the prediction will have
a constant variance. This can be easily verified by plotting the results and looking
at the scatter of the predictions from the linear hyperplane.

• Multicollinearity: If there is correlation between the features, the estimation of
weights using linear regression is not accurate as the impact of the feature and its
independence from others is lost.

Interpreting linear regression model can be summarized as below

• Increasing the continuous feature by one unit changes the estimated
outcome by its weight.

• The categorical features should be transformed into multiple features. Each
is encoded as a binary, 0 being the reference default and 1 is the presence
of the feature. The interpretation for binary or categorical in such case

(continued)

100 3 Model Visualization Techniques and Traditional Interpretable Algorithms

is—changing the modified feature from the reference default to the other,
changes the estimated outcome by the feature’s weight.

• Intercept or the constant is the output when all the continuous features
are at value 0 and the categories are in the reference default (e.g., 0).
Understanding intercept value becomes meaningful for interpretation when
the data is scaled with mean value 0 as it represents the default weight for
an instance with mean values.

• Various regression methods such as Ordinary Least Squares (OLS) give
not only the weights or the coefficients per feature but also standard
error(std err), t-test(t), p-value(p) and the confidence intervals. The lower
the standard error, the better is the accuracy of that coefficient and p-values
less than a threshold alpha level indicate a statistically significant impact
of that feature on the outcome.

• The R-squared value (also known as the coefficient of determination)
provides a measure of how well the regression model explains the output
value it is modeling. The closer the value is to 1.0, the better the model
correctly describes the data.

Figure 3.18 gives the results of fitting a linear regression model on the claims
insurance dataset.

There are various visualization techniques available for diagnosing or whitebox-
ing the regression. Figure 3.19 shows some of the known ways to analyze a feature
age regressing with the output charges. Plot (a) which is the “Y and Fitted vs. X”
graph plots the dependent variable against the predicted values with a confidence
interval. Plot (b) shows the residuals of the model versus the chosen feature age.
Each point in the plot is an observed value; the line represents the mean of those
observed values. Plot (c) is the partial regression plot showing the relationship
between the charges and the feature age conditional on the other independent
features. The Component-Component plus Residual (CCPR) plot is an extension
to the partial regression plot, a way to view the impact of one feature on the label by
taking into account the effects of the other features. Thus it is Res +wixi versus xi

where Res is the residual of the whole model.
Explainable properties of linear regression are shown in Table 3.1.

3.7.2.1 Regularization

Regularization is a common technique employed in many weight-based learning
methods to overcome the overfitting problem. There are many regularization
techniques, of which we will highlight three of the most effective ones [HTF09b,
HK00a].

3.7 Traditional Interpretable Algorithms 101

Fig. 3.18 Output of linear regression model on insurance dataset

Ridge regression or weight decay orL2 norm is a regularization technique where
less relevant features get weights close to 0 [HK00b]. The modified solution for
regression can be written as

wopt = argmin
w∈Rd+1

(
Etrain(w)+ λwTw

)
(3.7)

wopt =
(
XTX+ λI

)−1XTy (3.8)

where the regularization parameter λ is a hyperparameter and is generally a small
value close to 0.

Lasso regression or L1 norm is another popular regularization used in weight-
based algorithms [HTF09b]. The modified equation for L1 norm is

102 3 Model Visualization Techniques and Traditional Interpretable Algorithms

Fig. 3.19 Four different plots for feature age. (a) Regression plot showing fitted versus actual
charges. (b) Residuals w.r.t age. (c) Partial regression plot and (d) CCPR plot

Table 3.1 Explainable
properties of Linear
regression

Properties Values

Local or global Global

Linear or non-linear Linear

Monotonic or non-monotonic Monotonic

Feature interactions captured No

Model complexity Low

wopt = argmin
w∈Rd+1

(Etrain(w)+ λ|w|) (3.9)

The absolute function in the above equation does not yield a closed-form solution
and is represented as a constrained optimization problem as given below:

argmin
w∈Rd+1

(
XTXw− XTy

)
s.t. w < η (3.10)

3.7 Traditional Interpretable Algorithms 103

Table 3.2 Coefficients of features with basic OLS Regression, Lasso, Ridge and Elastic Net
regularization

Features LR LR with Lasso LR with Ridge LR with ElasticNet

Age 253.70 253.70 252.17 256.53

Bmi 335.96 335.95 330.3 303.743

Children 436.91 436.86 439.24 411.71

Region_northeast 380.41 499.03 366.67 −6145.23
Region_northwest 120.28 238.98 98.59 −6410.03
Region_southeast −532.86 −413.85 −464.24 −6917.32
Region_southwest −381.53 −262.43 −395.66 −6862.1
Sex_female −199.12 7.98 −203.56 −1.02
Sex_male −214.58 −7.384 −191.08 −2.64
Smoker_no −12, 010.0 −12, 335.45 −11, 645.20 −4829.02
Smoker_yes 11, 600.0 11, 270.25 11, 250.55 18, 764.06

where the hyperparameter η is inversely related to the regularization parameter λ.
Elastic Net combines both Lasso and Ridge regression [ZH03]. The modified

equation is given by

wopt = argmin
w∈Rd+1

(
Etrain(w)+ λ1|w| + λ2wTw

)
(3.11)

Both L2 and L1 regularization can be seen as an implicit feature selection
where the weights generally get reduced based on the relevance to the
outcome but L1 results in more feature weights being set to zero and thus
a more sparse representation.

Table 3.2 shows how the feature weights change with different regularization
techniques.

Observations:

• Figure 3.18 shows that features age, bmi, and smoker_yes, smoker_no all
have p-values less than 0.005, indicating that they are statistically significant
and thus their importance in predicting the insurance charges.

• Figure 3.18 also shows that the features sex_male, sex_female and various
region have high p-values and can be considered not as significant and may
be dropped for building models in an iterative way.

104 3 Model Visualization Techniques and Traditional Interpretable Algorithms

• Figure 3.18 highlights that the adjusted R-squared value is 0.735, and hence
we can interpret it as: the model explains nearly 73.5% of the variation and
can be considered a good fit.

• Figure 3.19 shows a linear relationship between age and charges with a
positive trend, i.e., as the age increases the charges increase.

• Table 3.2 shows how every feature weight gets reduced with the introduction
of regularization.

3.7.3 Logistic Regression

Linear regression is not practical on classification problems where the need is for
the probability of the data belonging to a particular class rather than the linear
interpolation between points. Logistic regression is a transformation θ applied on
the linear combination xTw employed in the Linear Regression allowing a classifier
to return a probability score [WD67].

h(x) = θ
(
wTx

)
(3.12)

A logistic function (also known as a sigmoid or softmax function) θ(wTx), shown
below, is generally used for the transformation.

h(x) = expwTx
1+ expwTx

(3.13)

For a binary classification, where y ∈ {−1,+1}, the hypothesis can be seen
as a likelihood of predicting y = +1, i.e., P(y = +1|x). Thus, the equation can
be rewritten as an odds ratio, and weights are learned to maximize the conditional
likelihood given the inputs.

P(y = +1|x)
P (y = −1|x) = exp

(
wTx

)
(3.14)

Interpretation of a logistic regression model can be summarized as below

• Increasing the continuous feature by one unit changes estimated odds by a
factor of exp(wixi).

(continued)

3.7 Traditional Interpretable Algorithms 105

• Similar to linear regression, the categorical features should be transformed
into multiple features, with each encoded as a binary (0 being the reference
default and 1 is the presence of that category) before modeling as a prepro-
cessing step. Thus the interpretation is—when the categorical feature is
changed from the reference category to the other category, the estimated
odds change by a factor of exp(wixi).

• The Intercept or the constant is the output when all the continuous
features are at value 0 and the categories are at the reference default
(e.g., 0). Thus, when all the continuous features have value 0, and the
categorical features are in the default category, the intercept value gives the
estimated odds.

Observations:

• Figure 3.20 shows weights or the coefficients for each feature. The value of
0.0311 for Glucose in the coef column means that for each unit increase in
the value of Glucose, the log-odds of being classified as diabetic increases
by a value of 0.0311. Also, higher glucose concentrations are positively
associated with the diagnosis of diabetes.

• All the features except BloodPressure are positively associated with diagno-
sis of diabetes; as they increase, the log-odds of being classified as diabetic
increases by the value in the coef column.

• The P> |z| column with alpha level of 0.05 shows features that are statis-
tically significant in the classification. Features Glucose, BMI,Pregnancies,
and Insulin can be considered statistically significant.

Explainable properties of logistic regression are shown in Table 3.3.

3.7.4 Generalized Linear Models

In Linear regression the continuous output is modeled as

y = w0 + w1x1 + · · · + wdxd (3.15)

with the assumption that the output y is normally distributed (y ∼ N) and the
equation gives the expectation of the mean E(y) and with error/noise ε in N (0, σ 2).

106 3 Model Visualization Techniques and Traditional Interpretable Algorithms

Fig. 3.20 Logistic regression on the diabetes dataset

Table 3.3 Explainable
properties of Logistic
Regression

Properties Values

Local or global Global

Linear or non-linear Linear

Monotonic or non-monotonic Monotonic

Feature interactions captured No

Model complexity Medium

Generalized Linear Models (GLMs) have three basic components and relax the
constraints or assumptions and generalize as the name suggests [MN89]. The three
components are

1. The distribution component, which had an assumption of being normally
distributed in the linear regression case, can be relaxed to be from any exponential
family. Thus it can model skewed distributions.

2. The linear predictor is similar to linear regression and is linear in the weights
trying to model the covariates.

3. The link function is the connection between the linear predictor and the mean of
the distribution of the output or the label. In linear regression model the mean was
equal to the linear predictor. In GLMs there can be a variety of link functions,

3.7 Traditional Interpretable Algorithms 107

e.g., log of the means as the link function in the Poisson distribution or logit of
the means for binomial logistic regression.

g(E(y|x)) = w0 + w1x1 + · · · + wdxd (3.16)

where g is the link function. Thus, GLM with Poisson distribution and log link
function

ln(E(y|x)) = w0 + w1x1 + · · · + wdxd (3.17)

Interpreting GLM can be summarized below:

• The distribution, along with the link function, suggests how to interpret the
estimated feature weights. For example, in GLM with Poisson distribution
and log as the link function, the output estimation is

ln(E(y|x)) = w0 + w1x1 + · · · + wdxd (3.18)

and can be rewritten as

E(y|x) = exp(w0 + w1x1 + · · · + wdxd) (3.19)

So each feature contributes to the outcome (E(y)) an exponential factor
defined by the weight or the coefficient (exp(wi)) multiplied by the
exponential value of the feature (exp(xi)).

• The positive or negative sign shows the increase or decrease in the
exponential factor given the rest.

• The z and the P> |z| values give the test statistic and p-value, respectively,
for the null hypothesis that a feature’s regression coefficient is zero given
that the rest of the features are in the model.

Observations:

• Figure 3.21 shows weights or the coefficients for each feature with Poisson
Regression in GLM Model. The age coefficient of 0.02 is the Poisson
regression estimate for a one unit increase in age, given the other features
are held constant in the model. The interpretation is—if age were to increase
by one unit, the difference in the log of expected value would be expected to
increase by 0.02 unit, while holding the other features in the model constant.

108 3 Model Visualization Techniques and Traditional Interpretable Algorithms

Fig. 3.21 Generalized linear model on the insurance dataset

• The positive coefficients for age, bmi, children, region_* smoker_* and
sex_* indicate the increase in the expected value of the charges with
increase. The feature smoker_yes has the highest coefficient indicating the
relevance of that feature in the regression model.

• All the features have 0.0 in the P> |z| column, thus all of them are
statistically significant.

Explainable properties of GLM are shown in Table 3.4.

3.7 Traditional Interpretable Algorithms 109

Table 3.4 Explainable
properties of GLM

Properties Values

Local or global Global

Linear or non-linear Linear

Monotonic or non-monotonic Monotonic

Feature interactions captured No

Model complexity Low to medium

3.7.5 Generalized Additive Models

The assumption in all linear models is that the increase or decrease defined
by the coefficient for that feature will be the same irrespective of the values.
This assumption may not be true for many real-world applications where at the
feature level, one may need a non-linear interaction. Generalized Additive Models
(GAMs) are one of the ways to model the non-linear relationships by modifying
GLMs [HT90a]. It is given by

g(E(y|x)) = w0 + f1(x1)+ · · · + fd(xd) (3.20)

The equation generalizes the GLM equation where the generic function fi(xi)

replaces the linear term wixi . It gives the flexibility for non-linear interaction
between the feature xi and the output but still uses summation to capture overall
feature impact. One easy way is to model the interactions as higher order polyno-
mials at the feature level to capture non-linear relationship. Splines are piecewise
polynomial curves, joining two or more polynomial curves, and can be generally
used as the non-linear functions. A smoothing spline adds a constraint to the
minimization problem such that the function f (xi) is twice differentiable and has
a smoothing parameter λ that is like a penalty or regularization and the general
equation for minimization is given as

MSE = 1

N

n∑
i=0

(yi − f (xi))
2 + λ

∫
f ′′(x)

2
dx (3.21)

The output from a GAM is less interpretable as it does not have coefficients
like others but λ values for different feature fits as shown in Fig. 3.22.
Normally, partial dependence plot (which is graphical), where the output is
plotted against the fitted function for a feature as shown in Fig. 3.23, is used to
understand individual feature mappings to the non-linear or linear functions.

110 3 Model Visualization Techniques and Traditional Interpretable Algorithms

Fig. 3.22 Linear generalized additive models on the insurance dataset

Fig. 3.23 Linear generalized additive partial dependence plots for features age, bmi, children and
smoker with mean and 95% confidence interval bounds

Observations:

• The preprocessed dataset is reduced to only four features –
age, bmi, children, smoker_yes.

• Linear GAM with 10 splines is chosen after doing a grid search for various
linear, splines, and factor terms.

• Figure 3.22 shows fitting various functions for each feature and their
statistical significance in the Sig. Code column. Every feature function is
statistically significant.

• The partial dependence plot as shown in Fig. 3.23 show how splines actually
capture the non-linear relationships in a smooth way especially for children.
It also shows how the age, children, and bmi have positive correlation to the
insurance charges and thus provides the needed explainability.

Explainable properties of GAM are shown in Table 3.5.

3.7 Traditional Interpretable Algorithms 111

Table 3.5 Explainable
properties of GAM

Properties Values

Local or global Global

Linear or non-linear Non-linear

Monotonic or non-monotonic Monotonic

Feature interactions captured No

Model complexity Low to medium

3.7.6 Naive Bayes

Naive Bayes is one of the simplest algorithms based on the Bayes theorem [RN09].
There are many advantages to Naive Bayes, such as simplicity, explainability, speed,
and ability to learn from few examples. The hypothesis in general Bayes equation
for a binary classification yi ∈ (0, 1) is given by

hBayes(x) = argmax
y∈(0,1)

P (X = x|Y = y)P (Y = y) (3.22)

In Naive Bayes, there is an assumption of independence between the features.
So, for d dimensions, the equation simplifies as

hBayes(x) = argmax
y∈(0,1)

P (Y = y)

d∏
j=1

P(Xj = xi |Y = y) (3.23)

As a result, training and estimating parameters of Naive Bayes just measures two
quantities, the priors for the class P(Y = y) and the conditional for each feature
P(Xj = xj |Y = y) given the class or the label.

A dataset that has continuous features can be discretized using many known tech-
niques [Gar+12]. Also, many implementations also assume a Gaussian distribution
and the probability distribution is given by

P(X = x|Y = y) = 1√
2πσI k

2
e

(x−μik)2

σi k
2 (3.24)

Figure 3.24 shows output of Gaussian Naive Bayes for the diabetes dataset,
where the mean and standard deviations for each class are estimated from the
training data for each feature and class.

The independence assumption in Naive Bayes contributes to its simplicity and
interpretability.

112 3 Model Visualization Techniques and Traditional Interpretable Algorithms

Fig. 3.24 Gaussian Naive Bayes on diabetes dataset

Interpreting Naive Bayes model can be summarized as below

• The means and standard deviations for each class per feature can be used
to compute the probabilities for that class and feature. For example, if we
want to see predictions for an instance with {Pregnancies = 2, Glucose =
120.2, BloodPressure = 75.38, SkinThickness = 25.18, Insulin =
121.75, DiabetesPedigreeFunction = 0.75, Age = 34}, we will compute
the posterior for each feature per class. The probability for feature Glucose
for each class is computed by plugging in the values from Fig. 3.24 as

P(X = 120.02|Y = 0) = 1√
2π601.762

e
(120.0−110.49)2

601.762 (3.25)

and

P(X = 120.02|Y = 1) = 1√
2π854.762

e
(120.0−141.62)2

854.762 (3.26)

All the probabilities are then multiplied and the class is selected based on
the maximum value.

• Thus the output of Naive Bayes and how each feature contributes to the
prediction based on the probability values is easily interpretable.

Explainable properties of Naive Bayes are shown in Table 3.6.

3.7 Traditional Interpretable Algorithms 113

Table 3.6 Explainable
properties of Naive Bayes

Properties Values

Local or global global

Linear or non-linear Non-linear

Monotonic or non-monotonic Monotonic

Feature interactions captured No

Model complexity Low to medium

3.7.7 Bayesian Networks

In traditional machine learning, encoding an expert’s knowledge requires labor-
intensive feature engineering. Understanding causality from how a feature influ-
ences the outcome and the ability to map model outputs to capture uncertainty, both
require rigorous analysis and, most often, surrogate methods are used.

Bayesian networks are probabilistic graphical models (PGM) that use Bayesian
inference to model an expert’s knowledge and uncertainty from the data. Bayesian
networks aim to model conditional dependence between the features and, therefore,
can capture causality [Pea88, CY95, FGG97]. Bayesian networks satisfy the local
Markov property, i.e., a node is conditionally independent of its non-descendants
given its parents. Bayesian networks has

• a set of nodes (features observed or unobserved),
• a directed, acyclic graph (edges between nodes are “direct influences”İ), and
• a conditional distribution for each node given its parents

Thus, the joint distribution for a Bayesian network is equal to the product of
P(node|parents(node)) for all nodes, stated below:

P(X1, · · · , Xn) =
n∏

i=1
P(Xi |X1, · · · , Xi−1) =

n∏
i=1

P(Xi |Parents(Xi))

(3.27)
There are many algorithms to perform inferencing in Bayesian networks. Exact

methods like variable elimination take advantage of the fact that each factor only
involves a small number of features and work very efficiently for a small number of
features. As the number of features increase it becomes computationally infeasible
to perform inferencing through direct methods and approximate methods like
Markov Chain Monte Carlo (MCMC) are used [KF09].

In classification problems, data is either discretized to calculate the conditional
probabilities or parameterized distributions such as Gaussians are used for continu-
ous features.

For the diabetes dataset, the Bayesian network is constructed with domain
knowledge of how certain features influence others and the outcome [GBH12].

114 3 Model Visualization Techniques and Traditional Interpretable Algorithms

Fig. 3.25 Bayesian network for diabetes dataset

Fig. 3.26 Bayesian prediction results on the test set

Observations:

• Figure 3.25 indicates how features Pregnancies, Age, DiabetesPedigree-
Function directly influence the outcome diabetes. The research modeled an
unobserved variable “overweight” that influences SkinThickness, BMI, and
outcome [GBH12]. But we changed the graph by mapping the feature BMI
directly to the overweight variable and influencing SkinThickness and the
outcome.

• Instead of assuming any parameterized distribution such as Gaussian, we
use binning and discretize all the continuous features.

• Figure 3.26 shows the performance of the model on test data sampled
from the data and has relatively good precision/recall as compared to other
methods with the advantage of high interpretability.

Explainable properties of Bayesian Networks are shown in Table 3.7.

3.7 Traditional Interpretable Algorithms 115

Table 3.7 Explainable
properties of Bayesian
Networks

Properties Values

Local or global Global and local

Linear or non-linear Non-linear

Monotonic or non-monotonic Non-monotonic

Feature interactions captured Yes

Model complexity Medium

3.7.8 Decision Trees

Decision Trees are the most popular interpretable algorithm for classification and
regression. The general idea is to construct a binary tree with a decision point on
the feature’s value as a cut-off where the tree branches and splits the data. Based on
how to choose features at the splitting, different ways to split the feature based on
values, how deep to grow, how to reduce the tree’s size, etc., there are many decision
trees variants.

Classification and Regression Trees (CART) is one of the most popular decision
tree algorithms which employs the Gini index metric to decide which feature to
split the tree on [Bre+84]. Gini index is a measure of impurity and for k classes is
measured as

Gini = 1−
∑
j

pj
2 (3.28)

There are a number of other techniques such as entropy, classification error, etc. that
have been employed successfully.

Interpreting Decision Tree model can be summarized as below

• As shown in Fig. 3.27, every decision tree node has the splitting feature and
threshold (e.g., Insulin ≤ 121.0), splitting metric value (e.g., Gini value of
0.461 at the root), and population in each class ([393, 221]).

• As discussed, Gini score quantifies the purity of the node/leaf. A Gini score
greater than zero implies that samples contained within that node belong
to different classes. A Gini score of zero means that the node is pure, i.e.,
that node consists of representatives from only one class.

• Starting from the root node and traversing all the way to leaves, vari-
ous human-interpretable rules can be derived. For example, Insulin ≤
121.0ANDGlucose ≤ 151.5ANDPregnancies ≤ 14.0 is a predictor of
non-diabetes with 302 samples and resulting in only 15 errors (diabetes).

• The decreasing Gini score at each node level shows why the node/leaf is
getting purer, and the rules are generalized.

Explainable properties of CART are shown in Table 3.8.

116 3 Model Visualization Techniques and Traditional Interpretable Algorithms

Fig. 3.27 Decision Tree which is constrained to be three-level deep for the diabetes classification
data

Table 3.8 Explainable
properties of CART

Properties Values

Local or global Global

Linear or non-linear Non-linear

Monotonic or non-monotonic Some monotonicity

Feature interactions captured Yes

Model complexity Medium to high

3.7.9 Rule Induction

Rule induction is another popular traditional white-box technique in machine
learning. Instead of starting from decision trees and converting them into rules, rule
induction induces rules in the form of “IF <conditions >then class.” As compared
to decision trees, which use the “divide-and-conquer” strategy, rule induction works
through the “separate-and-conquer” approach [BGH89, CG91, Mic83a].

The general algorithm is to learn “one rule” at a time that “covers” positive
instances in the dataset, remove those, and iteratively learn new rules until all
positives are covered. The technique is also known as “sequential covering.”
Creating conditions for the “if” requires searching for feature-value combinations,
and there are various search techniques such as exhaustive, greedy/heuristic-based
such as beam search, genetic algorithms, etc. There are multiple metrics to evaluate
while learning a rule, such as accuracy, weighted accuracy, precision, information
gain, etc., thus resulting in many variants. Similarly, there are multiple ways to
arrange the rules during the inference. One can order the rules in the same way
that it learned, metrics-based (accuracy, etc.), or some strategy-based for unordered
execution. Often, the rules, like decision trees, can overfit to the training data.
Two general approaches to overcome overfitting are pre-pruning and post-pruning.
In pre-pruning, the rules stop at a certain point before it classifies or covers the
instances perfectly, thus introducing some errors. In post-pruning, the training data
is further split into growing and pruning sets; rule learning happens on the growing
set to overfit the data, and post-pruning prunes these rules and uses the pruning set
as validation data.

3.7 Traditional Interpretable Algorithms 117

Fig. 3.28 Building CN2 rule induction using orange

The most popular rule induction algorithms used in many applications are CN2,
M5Rules, and RIPPER [CN89, Coh95a, HHF99, Qui92]. We use the Orange library
to model the diabetes dataset as shown in Fig. 3.28.

Interpretation of CN2 Rules:

• CN2 output has a sequence of ordered rules. Each rule has an “If condition”
part that has at minimum a triplet of feature, operator, and value, e.g.,
Glucose ≥ 158.0 or combinations of these triplets with “AND” operator,
e.g., Glucose ≥ 158.0 AND SkinThickness ≥ 44.0.

• The rule also has the “THEN clause” that implies a class that the rule
captures (positive or negative in binary classification) and the distribution
of positives and negatives the rule captures.

• The negatives captured in the positive class are the false positives, and the
positives captured in the negative class are the false negatives.

Observations:

• We constrained the CN2 algorithm to have maximum rule length of 5,
i.e., not more than 5 feature-operator-value are in conjunction. We also
constrain that a rule should at least capture 8 examples in the dataset. These
hyperparameters were manually searched. The maximum rule length and
minimum examples act as a regularizer and prevent overfitting.

118 3 Model Visualization Techniques and Traditional Interpretable Algorithms

Fig. 3.29 Rules covering positive class in the diabetes dataset

Table 3.9 Explainable
properties of CN2 Rules

Properties Values

Local or global Global and local

Linear or non-linear Non-linear

Monotonic or non-monotonic Some monotonicity

Feature interactions captured Yes

Model complexity Medium to high

• Figure 3.29 shows only the rules for the positive class, i.e., outcome = 1.
• The CN2 Rule Induction algorithm generates 55 rules on the dataset, 22 for

the positive class.
• Only 4 rules out of 22 generate false positives, showing a good recall on the

training data.
• There are interesting domain-specific rules such as “Age ≤ 31 AND

Glucose ≥ 155.0” and “Age ≤ 29 AND Glucose ≥ 171.0”which captures
young population with high glucose.

• There are some interesting ranges of certain features and relationship with
other features captured such as the rule “Insulin≥ 70 AND Insulin≤ 193.0
AND BMI ≥ 34.2 AND BloodPressure ≥ 60.0” with 14 true positives with
no false positives.

Explainable properties of CN2 rules are shown in Table 3.9.

References 119

References

[Bel+80] D.A. Belsley, et al., Regression Diagnostics: Identifying Influential Data and Sources
of Collinearity. Wiley Series in Probability and Statistics - Applied Probability and
Statistics Section Series (Wiley, Hoboken, 1980). ISBN: 9780471058564

[BGH89] L.B. Booker, D.E. Goldberg, J.H. Holland, Classifier systems and genetic algorithms.
Artif. Intell. 40(1–3), 235–282 (1989)

[Bra97] A.P. Bradley, The use of the area under the ROC curve in the evaluation of machine
learning algorithms. Pattern Recog. 30(7), 1145–1159 (1997)

[Bre+84] L. Breiman et al., Classification and Regression Trees (Wadsworth and Brooks,
Monterey, 1984)

[CT10] G.C. Cawley, N.L.C. Talbot, On over-fitting in model selection and subsequent
selection bias in performance evaluation. J. Mach. Learn. Res. 11, 2079–2107 (2010)

[CG91] C.-C. Chan, J.W. Grzymala-Busse, On the attribute redundancy and the learning
programs ID3, PRISM, and LEM2. Department of Computer Science, University of
Kansas. Technical Report TR-91- 14, December 1991 (1991)

[Che+05] J. Chen et al., The Use of Decision Threshold Adjustment in Classification for
cancer Prediction (National Center for Toxicological Research Food and Drug
Administration, Jefferson, Arkansas, 2015). http://www.ams.sunysb.edu/~hahn/psfile/
papthres.pdf

[CN89] P. Clark, T. Niblett, The CN2 induction algorithm. Mach. Learn. 3(4), 261–283 (1989)
[Coh95a] W.W. Cohen, Fast effective rule induction, in Machine Learning Proceedings 1995

(Elsevier, Amsterdam, 1995), pp. 115–123
[Coo11] R.D. Cook, Cook’s distance, in International Encyclopedia of Statistical Science

(Springer, Berlin, 2011), pp. 301–302. ISBN: 978-3-642-04898-2
[CY95] G.F. Cooper, C. Yoo, Causal discovery from a mixture of experimental and obser-

vational data, in UAI ’99: Proceedings of the Fifteenth Annual Conference on
Uncertainty in Artificial Intelligence (Morgan Kaufmann, Burlington, 1995), pp. 116–
125

[DG06] J. Davis, M. Goadrich, The relationship between precision- recall and ROC curves, in
ICML ’06: Proceedings of the 23rd International Conference on Machine Learning
(Association for Computing Machinery, New York, 2006), pp. 233–240. ISBN: 1-
59593-383-2

[FGG97] N. Friedman, D. Geiger, M. Goldszmidt, Bayesian network classifiers. Mach. Learn.
29(2–3), 131–163 (1997)

[Gar+12] S. Garcia, et al., A survey of discretization techniques: Taxonomy and empirical
analysis in supervised learning. IEEE Trans. Knowl. Data Eng. 25(4), 734–750 (2012)

[GV18] T. Gneiting, P. Vogel, Receiver Operating Characteristic (ROC) Curves (2018). arXiv:
1809.04808 [stat.ME]

[GBH12] Y. Guo, G. Bai, Y. Hu, Using bayes network for prediction of type-2 diabetes, in 2012
International Conference for Internet Technology and Secured Transactions (IEEE,
Piscataway, 2012), pp. 471– 472

[HT90a] T.J. Hastie, R.J. Tibshirani, Generalized Additive Models, vol. 43 (CRC Press, Boca
Raton, 1990)

[HTF09b] T. Hastie, R. Tibshirani, Generalized additive models: some applications. J. Amer.
Statist. Assoc. 82(398), 371–386 (1987)

[HTF09a] T. Hastie, R. Tibshirani, J. Friedman, The Elements of Statistical Learning. Springer
Series in Statistics, Chap. 15 (Springer, Berlin, 2009)

[HK00a] A.E. Hoerl, R.W. Kennard, Ridge regression: biased estimation for nonorthogonal
problems. Technometrics 42(1), 80–86 (2000). ISSN: 0040-1706. http://doi.org/10.
2307/1271436

[HK00b] M. Hollander, D.A. Wolfe, Nonparametric Statistical Methods (Wiley, New York,
1973)

http://www.ams.sunysb.edu/~hahn/psfile/papthres.pdf
http://www.ams.sunysb.edu/~hahn/psfile/papthres.pdf
http://doi.org/10.2307/1271436
http://doi.org/10.2307/1271436

120 3 Model Visualization Techniques and Traditional Interpretable Algorithms

[HHF99] G. Holmes, M. Hall, E. Frank, Generating rule sets from model trees, in Twelfth
Australian Joint Conference on Artificial Intelligence (Springer, Berlin, 1999), pp.
1–12

[KK62b] J.F. Kenney, E.S. Keeping, Mathematics of Statistics. (van Nostrand, Princeton, 1962),
pp. 252–285

[KF09] D. Koller, N. Friedman, Probabilistic Graphical Models: Principles and Techniques
(MIT Press, Cambridge, 2009)

[MN89] P. McCullagh, J.A. Nelder, Generalized Linear Models. Chapman and Hall/CRC
Monographs on Statistics and Ap- plied Probability Series, 2nd edn. (Chapman
& Hall, London, 1989). ISBN: 9780412317606. http://books.google.com/books?id=
h9kFH2%5C_FfBkC

[Mic83a] R.S. Michalski, A theory and methodology of inductive learning, in Machine Learning
(Elsevier, Amsterdam, 1983), pp. 83–134

[Pea88] J. Pearl, Probabilistic Reasoning in Intelligent Systems: Networks of Plausible
Inference (Morgan Kaufmann, Burlington, 1988)

[Per10] C. Perlich, Learning curves in machine learning, in Encyclopedia of Machine Learn-
ing (Springer US, Berlin, 2010). ISBN: 978-0-387-30164-8

[Pro] F. Provost, Machine Learning from Imbalanced Data Sets 101 (Technical Report WS-
00-05, AAAI, Menlo Park, CA, 2000), pp. 1–3

[Qui92] R.J. Quinlan, Learning with continuous classes, in 5th Australian Joint Conference on
Artificial Intelligence (World Scientific, Singapore, 1992), pp. 343–348

[Ras20] S. Raschka, Model Evaluation, Model Selection, and Algorithm Selection in Machine
Learning (2020). arXiv: 1811.12808 [cs.LG]

[RN09] S.J. Russell, P. Norvig, Artificial Intelligence: A Modern Approach, 3rd edn. (Pearson,
London, 2009)

[WD67] S.H. Walker, D.B. Duncan, Estimation of the probability of an event as a function of
several independent variables. Biometrika 54, 167–179 (1967)

[ZH03] H. Zou, T. Hastie, Regularization and variable selection via the elastic net. J. Roy.
Statist. Soc. Ser. B (Statist. Methodol.) 67(2), 301–320 (2003)

http://books.google.com/books?id=h9kFH2{%}5C_FfBkC
http://books.google.com/books?id=h9kFH2{%}5C_FfBkC

Chapter 4
Model Interpretability: Advances in
Interpretable Machine Learning

This chapter expands on intrinsic model interpretability discussed in the last
chapter to include many modern techniques that are both interpretable and accurate
on many real-world problems. The chapter starts with differentiating between
interpretable and explainable models and why, in specific domains where high
stakes decisions need to be made, interpretable models should be a natural choice.
The chapter covers some state-of-the-art interpretable models that are ensemble-
based, decision tree-based, rules-based, and scoring system based. We describe each
algorithm in sufficient detail and then use the diabetes classification or insurance
claims regression dataset to practically demonstrate the output of each, along with
interpretations and observations.

4.1 Interpretable vs. Explainable Algorithms

In the paper Stop Explaining Black-Box Machine Learning Models for High Stakes
Decisions and Use Interpretable Models Instead, Cynthia Rudin differentiates
between the explainable and interpretable models [Rud19b]. The paper cites exam-
ples in real-world domains such as unfair credit loan rejection, discriminating bail
and parole rejection, wrong medical diagnosis, etc. caused by black-box machine
learning models. Many techniques have evolved that enhance the explainability of
black-box machine learning models rather than making models more interpretable.
The paper makes the case that building post-hoc techniques can have a lasting
negative impact on the widespread use of machine learning models, especially in
high stakes decisions and model troubleshooting. Next, we discuss some of the
issues with explainable methods on black-box models, as discussed by Rudin.

1. The trade-off between accuracy and interpretability is a myth and the demon-
stration of various interpretable algorithms by comparing them with black-box
models for accuracy in different domains confirms this [Rud19c]. By using

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2021
U. Kamath, J. Liu, Explainable Artificial Intelligence: An Introduction to
Interpretable Machine Learning, https://doi.org/10.1007/978-3-030-83356-5_4

121

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-83356-5_4&domain=pdf
https://doi.org/10.1007/978-3-030-83356-5_4

122 4 Model Interpretability: Advances in Interpretable Machine Learning

interpretable models instead of explainable models, you can understand the
issues with the data and model more effectively which can then be corrected
by following the iterative KDD or CRISP-DM methods [AS08].

2. Explanation methods as a post-hoc on black-box models are not 100% faithful
to the original, and hence the approximations can cause trust issues. Using
explanation techniques outside the original black-box results in two logical
models that one relies on instead of just the original model. If the explanation
methods are 90% accurate, that leads to at least 10% inaccurate cases and may
prove costly, especially in a high stakes decision.

3. Explanation methods often do not provide enough detail to understand how the
black-box models are predicting. For example, saliency maps are explainable
techniques used in computer vision that indicate what part of the image is being
omitted or seen by the classifier, but that does not provide any information about
what the model is doing [Ade+18].

4. Sometimes, other factors outside the data on which the model is based need to
be considered, for example, circumstances of the crime in criminal justice rather
than just the crime-related data that models bails and paroles. Not having an
interpretable or transparent model makes this a difficult task.

5. Explainable methods can give rise to a complex decision pathway to explain the
black-box model, leading to more human errors.

On the other hand, constructing interpretable models requires solving complex
statistical hurdles such as creating optimal global trees, solving hard constraint
optimization problems, and implementing systemic software enhancements such as
caching and data structures for improved performance. We have broadly classified
the algorithms into the following areas, viz. (1) Ensemble-based, (2) Rules or
decision list, (3) Decision tree-based, and (4) Scoring systems-based. The rest of
the chapter expands on each of these areas.

4.2 Tools and Libraries

Table 4.1 provides details of all the libraries used for various models in the chapter.

4.3 Ensemble-Based

One of the ensemble-based techniques is to build models that combine the outputs
given by a collection of trees, as opposed to a single one, such as Random
Forests and Gradient Boosting Machines [Bre01, Fri00]. Boosting is a sequential
ensemble process where you combine the classifiers by putting more weight
on the observations misclassified in the previous step [FSA99]. Bayesian model
averaging is another ensemble approach where the set of tree models have prior

4.3 Ensemble-Based 123

Table 4.1 Models and implementations

Model/algorithm Library

Boosted rulesets https://github.com/csinva/imodels

Explainable
boosting
machine

https://github.com/interpretml/interpret

RuleFit https://github.com/csinva/imodels

Skope-Rules https://github.com/csinva/imodels

Iterative
ran-
dom
forest

https://github.com/Yu-Group/iterative-
Random-Forest

Optimal classification trees https://github.com/pan5431333/pyoptree

Optimal decision trees (branch and bound) https://github.com/aia-uclouvain/pydl8.5

Optimal sparse decision trees https://github.com/xiyanghu/OSDT

Generalized and scalable optimal decision
tree

https://github.com/Jimmy-Lin/
GeneralizedOptimalSparseDecisionTrees

Bayesian ors of ands https://github.com/wangtongada/BOA

Bayesian case model https://users.cs.duke.edu/~cynthia/code.html

Certifiably optimal RulE ListS https://github.com/corels/corels

Sparse linear integer models https://github.com/csinva/imodels

Risk-calibrated supersparse linear integer
model

https://github.com/ustunb/risk-slim

distributions, and some stochastic search techniques find the good tree models
from them [Was+00, CGM+10]. Many of these ensemble-based techniques are
uninterpretable and rely on explainable methods such as variable importance and
partial dependence plots for explanation.

4.3.1 Boosted Rulesets

One of the common ways to build interpretable classifiers using ensemble tech-
niques is to combine a weak classifier such as a decision stump and use the
AdaBoost algorithm [FS97]. The weak learning algorithm A iteratively produces
a collection of weak classifiers, and a linear combination of these results in a
strong classifier. AdaBoost produces a discrete probability distribution over the
instances. The harder to classify instances in every iteration, i.e., those previously
misclassified, get higher weight using an exponential weighting scheme. The
algorithm can be summarized below as:

https://github.com/csinva/imodels
https://github.com/interpretml/interpret
https://github.com/csinva/imodels
https://github.com/csinva/imodels
https://github.com/Yu-Group/iterative-Random-Forest
https://github.com/Yu-Group/iterative-Random-Forest
https://github.com/pan5431333/pyoptree
https://github.com/aia-uclouvain/pydl8.5
https://github.com/xiyanghu/OSDT
https://github.com/Jimmy-Lin/GeneralizedOptimalSparseDecisionTrees
https://github.com/Jimmy-Lin/GeneralizedOptimalSparseDecisionTrees
https://github.com/wangtongada/BOA
https://users.cs.duke.edu/~cynthia/code.html
https://github.com/corels/corels
https://github.com/csinva/imodels
https://github.com/ustunb/risk-slim

124 4 Model Interpretability: Advances in Interpretable Machine Learning

Algorithm 1: AdaBoost
Data: training data S = {xi , yi}mi=1, where yi ∈ {−1, 1}
Initialize d1,i = 1/m f or i = 1, · · · ,m

for t = 1, · · · , T do
Train Weak learner, producing h(t) : X −→ {−1, 1}
Calculate error εt = Pi∼dt [h(t)(xi) �= yi]
Calculate coefficients αt = 1

2

(
1−εt

εt

)

Update weights dt+1,i = dt,i

Zt
e−yiαt h(t)xi

return H = sign

(
T∑

t=1
αth(t)

)

Interpretation of AdaBoost with decision stump: AdaBoost outputs various
decision rules where each rule will be of type (f eature condition value),
the condition will be {≤,<,=,>,≥} for continuous features and {=, �=}
for categorical features. The value will be a continuous value or a specific
category based on continuous and categorical features.

Observations:

• Figures 4.1 and 4.2 show most features Insulin, Glucose, Age, SkinThick-
ness, BMI, BloodPressure are discriminating and have some meaningful
thresholds in tree of size 1 and 2.

• Figures 4.3 and 4.4 showing the precision-recall curve at various thresholds
indicate that the rules generated with simple size 1 are more generic and
have better metrics.

Explainable properties of Boosted Rulesets are shown in Table 4.2.

Table 4.2 Explainable properties of boosted rulesets

Properties Values

Local or global Global and local

Linear or non-linear Non-linear (can be axis parallel)

Monotonic or non-monotonic non-monotonic

Feature interactions captured Yes

Model complexity Medium to high

4.3 Ensemble-Based 125

Fig. 4.1 Boosted rules with
depth of tree 1

Fig. 4.2 Boosted rules with depth of tree 2

126 4 Model Interpretability: Advances in Interpretable Machine Learning

Fig. 4.3 Precision-recall curves for boosted rules with depth of tree 1

Fig. 4.4 Precision-recall curves for boosted rules with depth of tree 2

4.3.2 Explainable Boosting Machines (EBM)

Explainable Boosting Machine (EBM) is an interpretable algorithm developed by
Nori et al. to not sacrifice accuracy for interpretability [Nor+19]. EBM is an
extension of GAM where in one single iteration, a small tree is built from a single
feature, then through boosting the residuals are updated, and the next feature is used
to construct the tree; this is repeated for all the features [HT90b]. Thus, a round-
robin pass is done through all the features with a low learning rate to remove the
dependency on features’ order. In the next iteration, another round-robin process is
started similarly and the process iterates for a large number of iterations (around
10,000).

g(E(y|x)) = w0 + f1(x1)+ · · · + fd(xd) (4.1)

In the end, as shown in Fig. 4.5, each feature fd(xd) is summarized as a function
from all the iterations. This function thus becomes the representation that gets
additively combined for all features to give the final model.

Interpretation of EBM: EBM outputs global explanation in terms of variable
importance for each feature, score output for each feature that explains the
odds and the evaluations like ROC curves. EBM also gives local explanation

(continued)

4.3 Ensemble-Based 127

for an instance with predicted and actual values along with explanation on
which features contributed for the decision.

Fig. 4.5 Training process for EBM

Fig. 4.6 Global variable importance

128 4 Model Interpretability: Advances in Interpretable Machine Learning

Fig. 4.7 Scores for the feature -age

Fig. 4.8 Local predictions for a (a) positive and (b) negative instance

Observations:

• Figure 4.6 shows features Insulin, Glucose, and Age are the most discrimi-
nant features while BloodPressure is the least important one.

4.3 Ensemble-Based 129

Table 4.3 Explainable
properties of EBM

Properties Values

Local or global Global and local

Linear or non-linear Non-linear

Monotonic or non-monotonic Monotonic

Feature interactions captured Yes

Model complexity High

• Figure 4.7 shows the score output for Age that shows the pattern where at
a younger age (Age ≤ 30) the odds of being diabetic are low and then it
increases, stays constant till middle age (Age≤ 60) and finally reduces back.
Ability to visualize and interpret each feature score makes the method a
complete whitebox one.

• The local outputs for the positive and the negative instances as shown in
Fig 4.8a and b show which features contribute to classifying the instances.

Explainable properties of EBM are shown in Table 4.3.

4.3.3 RuleFit

RuleFit algorithm combines the accuracy of tree ensembles and a linear model’s
interpretability to give a robust, interpretable regression model [FP+08]. The
structural form for the ensembles is given by

F(x) = a0 +
M∑

m=1
amfm(x) (4.2)

where M is the size of the ensemble, fm(x) are the ensemble base learners, and am
M
0

are the linear weights used to combine them to form the ensemble. The base learners
in the RuleFit algorithm are simple rules which take a conjunctive form given by

rm(x) =
n∏

j=1
I (xj ∈ sjm) (4.3)

where Sj is the set of all possible values for the feature xj , xj ∈ Sj and sjm is the
specified subset of those values, sjm ⊂ Sj and I (·) is the indicator that is true for
the condition. For continuous features, subsets are taken to be contiguous intervals

sjm = (tjm, ujm) (4.4)

130 4 Model Interpretability: Advances in Interpretable Machine Learning

defined by the upper and the lower bound, tjm ≤ xjm ≤ ujm. Total number of rules
created from M ensemble with tm terminal nodes is

K =
M∑

m=1
2(tm − 1) (4.5)

The predictive model thus becomes

F(x) = â0 +
K∑

k=1
âkrk(x) (4.6)

and the weights can be solved by

{âk}K0 = argmin
{âk}K0

N∑
i=1

L

(
yi, a0 +

K∑
k=1

akrk(xi)

)
+ λ ·

K∑
k=1

|ak| (4.7)

where the first term measures the prediction risk on the training sample and
second one is the “lasso” regularization penalty for the coefficient of the base
learners.

Interpretation of RuleFit: RuleFit algorithm has similar interpretation to a
linear model, except that the features can be decision rules with combinations
connected through conjunctions instead of just the features. The interpretation
will be—if the feature is true (since a decision rule is Boolean, it is when the
rule applies) and increases by one unit, the predicted outcome changes by
the corresponding feature weight. Most RuleFit algorithm implementations
also output the relative importance of each decision rule as a feature and the
support (fraction of the training data matching the rule) to further whitebox
the algorithm.

Fig. 4.9 RuleFit algorithm output with decision rules, coefficients, importance, and support for
the insurance claim regression data

4.3 Ensemble-Based 131

Observations:

• Many features such as region, sex, etc. play no role in any decision rules in
Fig. 4.9 indicating that their importance is relatively low in the dataset.

• The first rule, bmi > 28.5 AND smoker > 0.5 AND bmi > 30 can
be interpreted as bmi > 28.5 AND smoker! = 0, thus capturing the
combination of obesity and smoking that is an indicator of the high charge
due to largest positive coefficient (12529.64) and importance (3964.53).

• The ability of the algorithms to combine features like age and smoker
(age < 58.5 AND smoker < 0.5) with a negative coefficient (−2008.45)
and a large support (0.74) explains for most of the lower charges of how age
and not smoking helps in lowering the cost.

• Rules such as children <= 3.5 AND smoker <= 0.5 with a negative
coefficient (−1571.66) and a large support (0.78) give an explanation for
most of the lower charges of how fewer children and not smoking helps in
lowering the cost.

Explainable properties of RuleFit are shown in Table 4.4.

4.3.4 Skope-Rules

Skope-Rules are very similar to the RuleFit algorithm discussed before. Skope-
Rules first create simple trees by fitting classification and regression trees to
sub-samples [Gar+17]. Rules are then extracted from the tree ensembles and
evaluated out of the bag, and only those above a certain precision are selected
and merged. The rules are then further simplified by removing duplicates or those

Table 4.4 Explainable
properties of RuleFit

Properties Values

Local or global Global and local

Linear or non-linear Non-linear

Monotonic or non-monotonic Non-monotonic

Feature interactions captured Yes

Model complexity Medium to high

132 4 Model Interpretability: Advances in Interpretable Machine Learning

Fig. 4.10 How are Skope-Rules derived from the data?

that are too similar to others based on features, conditions, and on a similarity
threshold of their supports. The weights in Skope-Rules are not optimized as an
L1-regularized optimization problem, but weights are simply proportional to the
rules’ out-of-the-box affiliated precision. Figure 4.10 shows the entire process as a
schematic.

Interpretation of Skope-Rules:

For training data (xi, yi)
n
i=1 where the xi ∈ X are the features, and yi are

the labels (binary), the Rules are of the form
constant ::= digit | digit constant

digit ::= 0|1|2|3|4|5|6|7|8|9
boolean_operator ::=< | > | ≤ | ≥
variable ::= xi where i ∈ 1, d
boolean_condition ::= variable boolean_operator constant

rule := boolean_condition | rule AND boolean_condition �⇒ yi

Figure 4.11 shows rules generated by running it on the diabetes training dataset.

4.3 Ensemble-Based 133

Fig. 4.11 Skope results on diabetes dataset

Table 4.5 Explainable
properties of Skope-Rules

Properties Values

Local or global Global and local

Linear or non-linear Non-linear

Monotonic or non-monotonic Non-monotonic

Feature interactions captured Yes

Model complexity Medium to high

Observations:

• Figure 4.11 shows six independent rules each with conditions on features
and ordered by performance metrics of precision and recall associated with
those rules estimated on the training data. The first rule has highest precision
and recall and so on.

• Many features such as Pregnancies, DiabetesPedigreeFunction, and BMI
play no role in any rules indicating that their importance is relatively
low in the dataset for this model. Most rules are centered around Insulin,
Age, SkinThickness, and Glucose, indicating their relative importance in the
model.

• All the rules are generally easily interpretable by the experts. For example,
the rule SkinThickness > 16.0 and Insulin > 121.0 and Age > 27.5 gives a
very simple combination of three factors and their thresholds for classifying
patients as diabetic with high precision and recall.

Explainable properties of Skopes-Rules are shown in Table 4.5.

4.3.5 Iterative Random Forests (iRF)

Random Forest (RF) is an ensemble technique that leverages the high-order interac-
tions between the features to obtain the state-of-the-art performance. However, one

134 4 Model Interpretability: Advances in Interpretable Machine Learning

of the biggest challenges with RF is in interpreting these interactions in the ensemble
model. Random Forests also suffer from instability when there is a change in the
training dataset; it generates trees with different splits and different decision paths.
Iterative Random Forest (iRF) algorithm addresses most of these issues by building
on the RFs that searches for stable, high-order interactions [Bas+18]. The iterative
random forest algorithm sequentially develops feature-weighted RFs to perform soft
dimension reduction of the feature space and stabilizes decision paths. Then the
fitted RFs are decoded using a generalization of the Random Intersection Trees
algorithm (RIT). This procedure enables finding high-order feature combinations
that are common on the RF decision paths. Let us consider the binary classification
setting with training data D in the form {(xi , yi)}ni=1 with continuous or categorical
d features x = (x1, ..., xd), and a binary label y ∈ 0, 1. The entire algorithm can be
summarized as

1. Iteratively re-weighted RF: Breiman’s original RF assigns uniform weights
to all the features RF(1/p, . . . , 1/p). The iRF algorithm iteratively grows K

feature-weighted RFs RF(w(k)), k = 1, . . . , K on the data D. The first iteration
of iRF (k = 1) starts similar to RF with w(1) := (1/d, . . . , 1/d) and it stores
the feature importance (mean decrease in Gini impurity) of the d features as
v(1) = (v

(1)
1 , . . . , v

(1)
p). For iterations k = 2, . . . , K , the iRF builds a weighted

RF with weights set equal to the RF feature importance from the previous
iteration, i.e., w(k) = v(k−1).

2. Generalized RIT The RIT process is designed to help find subsets S ⊂ 1, . . . , d
of features that not only make the two classes separable but are also found more
in one class C ∈ 0, 1 relative to the other. For each tree t = 1, . . . , T in the
output tree ensemble of the last step of feature-weighted RF, all leaf nodes are
collected and indexed as jt = 1, . . . , J (t). Every feature-label pair (xi , yi) has
a representation to a tree t by (Iit , Zit), where (Iit is the set of unique feature
indices falling on the path of the leaf node containing (xi , yi) in the t th tree.
Hence, each (xi , yi) produces T index set and label pairs corresponding to the T

trees. Next step is to aggregate these pairs across all the training data and trees as

R = (Iit , Zit) : xi f alls in leaf node it of tree t (4.8)

Collection of higher order interactions as a subset S is done based on

Pn(S|Z = C) :=
∑n

i=1 1(S ⊆ Ii)∑n
i=1 1(S ⊆ C)

(4.9)

where Pn is the empirical probability distribution and 1(·) is the indicator
function. For given thresholds 0 ≤ θ0 < θ1 ≤ 1 RIT performs a randomized
search for interactions S satisfying

Pn(S|Z = 1) ≥ θ1, Pn(S|Z = 0) ≤ θ0 (4.10)

4.3 Ensemble-Based 135

3. Bagged stability scores: Another bagging process is carried out after finding the
subset of recovered interactions S. Next is to generate bootstrap samples of the
data D(b), b = 1, . . . , B, fit RF(w(K)) on each bootstrap sample D(b), and use the
generalized RIT to identify interactions S(b) across each bootstrap sample. The
stability score of an interaction S ∈ ⋃B

b=1 S(b) is

stability(S) = 1

B

B∑
b=1

1{S ∈ S(b)} (4.11)

representing the proportion of times (out of B bootstrap samples) an interaction
appears as an output of RIT.

Interpreting Iterative Random Forest: As shown in Figs. 4.12 and 4.13, the
output will have multiple decision trees and every decision tree node has
the splitting feature and threshold, splitting metric value and population in
each class. The Gini score quantifies the purity of the node/leaf. A Gini score
greater than zero implies that samples contained within that node belong to
different classes. A Gini score of zero means that the node is pure, i.e., that
node consists of representatives from only one class.

Observations:

• Figure 4.12 shows an interesting condition combining Insulin and BMI
capturing a non-diabetic population (303 samples) with Insulin ≤
121.0 AND BMI ≤ 50.0.

• Figure 4.13 shows another interesting condition combining Glucose and
Age capturing a non-diabetic population (218 samples) with Glucose ≤
144.5 AND Age ≤ 28.5 with low glucose at young age.

• Figures 4.12 and 4.13 show high glucose and high insulin impact on diabetes
through conditions Insulin > 121.0 AND Glucose > 157.5 and Glucose >

162.5, respectively.

Explainable properties of Iterative Random Forests are shown in Table 4.6.

136 4 Model Interpretability: Advances in Interpretable Machine Learning

Fig. 4.12 A weighted decision tree from iRF on the diabetes dataset

Table 4.6 Explainable
properties of Iterative
Random Forest

Properties Values

Local or global Global and local

Linear or non-linear Non-linear

Monotonic or non-monotonic Non-monotonic

Feature interactions captured Yes

Model complexity Medium to high

4.4 Decision Tree-Based

Most decision tree methods such as CART, ID3, and C4.5 take a top-down approach
in tree building. At each step of the partitioning process, the algorithms attempt
to find the best split to partition the current data using some heuristics, such
as minimizing the data’s impurity through entropy metrics, as an example. This
recursive process continues top-down till it achieves the stopping criteria and is
known as the growth phase. Most algorithms then follow a pruning procedure
bottom-up to remove branches that are redundant or weak in discrimination.
This approach often leads to suboptimal trees that are locally optimal and have
inefficiencies such as weak splits in the initial part of the tree that cannot be

4.4 Decision Tree-Based 137

Fig. 4.13 A weighted decision tree from iRF on the diabetes dataset

undone. Finding optimal sparse decision trees is a NP hard problem as it leads
to combinatorial explosion based on the number of features [Rud19a]. The efforts
towards overcoming these issues were started by the machine learning community
and statisticians. Kristin Bennett’s seminal work was on global tree optimization
using an iterative linear programming algorithm and variants to generate a globally
optimum tree instead of a greedy approach [BB96]. Norouzi et al. took the
direction of optimizing the convex-concave upper bound of the empirical loss
using Stochastic Gradient Descent instead of optimizing the tree model’s empirical
loss itself and thus achieved a solution for the multiclass problem instead of just
binary classification [Nor+15]. Many researchers also worked on improvements in
the splitting criteria using various statistical techniques such contingency tables,
hypothesis testing, removing biases, using unbiased variable selection, etc. [LV88,
LS97, KL01, HHZ06, HS07]. Segal was among the first to extend decision tree
algorithms like CART to longitudinal data by using as node impurity a function of
the likelihood of an autoregressive model [Seg92]. Various techniques in avoiding
covariance estimation and reducing the dimensionality by fitting trajectories to
the spline curves were employed [YL99, LS04]. Sela and Simonoff introduced an
expectation maximization based method which fits a model consisting of the sum of
a random-effects term and a tree-structured term [SS12].

138 4 Model Interpretability: Advances in Interpretable Machine Learning

4.4.1 Optimal Classification Trees

Optimal Classification Trees (OCT) and their variants build a complete optimal tree
given the depth constraint using Mixed-Integer Optimization (MIO) [BD17]. MIO
helps in formulating an Optimal Decision Tree by finding answers to two critical
questions: (1) Decisions: Which features to split on and which label to predict for
the splits? (2) Outcomes: Which region a data instance ends up in and whether that
instance is correctly classified. Given the training data (xi , yi), i = 1, . . . , n the
goal is to build a tree T such that

minRxy + α|T |
s.tNx(l) ≥ Nmin∀l ∈ leaves(T)

(4.12)

where Rxy is classification error to minimize of the tree T , α is the complexity
parameter, |T | is the number of branch nodes in the tree T , and Nx(l) is the is
the number of training instances in the leaf node l. Note that this solves the tree
optimally in one-shot as compared to recursive process of growing and pruning.
Now to formulate the problem in terms of MIO, we consider a univariate tree as
shown in Fig. 4.14 which has branches B = {1, 2, 3} and leaves L = {4, 5, 6, 7}.
Variables at , bt define the split at each branch node t ∈ B. Elements of at are
binary, i.e., at ∈ 0, 1 and at a given time one has the value of 1, i.e.,

∑d
j=1 aj t = 1,

so that one feature is considered for the split parallel to the axis. Making the choices
discrete, the data instance has to be assigned to the leaf l with a binary variable
zit = 1 if point i is assigned to leaf t , 0 otherwise such that

∑
t∈L = 1 to ensure

each instance is assigned to a leaf. Enforcing the splitting rules,

aT
mxi + ε ≤ bt +M1(1− zit) i = 1, . . . , n ∀m ∈ AL(t) (4.13)

aT
mxi ≥ bt +M2(1− zit) i = 1, . . . , n ∀m ∈ AR(t) (4.14)

where AL(t) and AR(t) are the left-branch and right-branch ancestors of t . MIO
solvers cannot handle strict inequality like < and hence a small a small constantε is
added to the left-hand side of Eq. 4.13. The largest possible value for aT

t (xi+ε)−bt

is 1 + εmax where εmax = maxj {εj }. Therefore M1 can be set as M1 = 1 + εmax

and since largest possible value of bt − aT
t xi is 1, M2 can be set to 1. The objective

is to minimize the misclassification error, so an incorrect label prediction has cost 1,
and a correct label prediction has cost 0. Thus we can define

Yik =
{
+1, if yi = k

−1, otherwise
k = 1, . . . , K, i = 1, . . . , n (4.15)

4.4 Decision Tree-Based 139

For each leaf node, the best class to assign is the most common label among the
instances assigned to that node. If Nkt is the number of instances of label k in node
t , and Nt is the total number of instances in node t , then

Nkt = 1

2

n∑
i=1

(1+ Yik)zit ∀k = 1, . . . , K, t ∈ TL (4.16)

Nt =
n∑

i=1
zit ∀t ∈ TL (4.17)

The misclassification error in each node Lt is going to be equal to the number of
instances in the node less the number of instances of the most common label and
given by

Lt = Nt − max
k=1,...,K{Nkt } = min

k=1,...,K{Nt −Nkt } (4.18)

This loss can be used in the Eq. 4.12 with MIO solves to get optimal trees in
one-shot. Other enhancements are done to the base algorithms such as hyperplane
splits instead of axis parallel splits, search optimizations, etc. to further improve the
effectiveness.

Fig. 4.14 Optimal classification trees

140 4 Model Interpretability: Advances in Interpretable Machine Learning

Fig. 4.15 Optimal classification tree for diabetes dataset

Table 4.7 Explainable
properties of Optimal
Classification Trees

Properties Values

Local or global Global and local

Linear or non-linear Non-linear

Monotonic or non-monotonic Non-monotonic

Feature interactions captured Yes

Model complexity Medium to high

Observations:
Figure 4.15 shows the optimal tree obtained on the diabetes training data. Rules
such as Glucose < 128 AND Age < 28.5 AND BMI > 45.35 �⇒
class = diabetes and Glucose < 128 AND Age < 28.5 AND Insulin >

140 �⇒ class = diabetes clearly captures how high BMI or Insulin
in young women can lead to diabetes. Also, the right tree with Glucose >

167 AND BMI > 30.25 �⇒ class = diabetes captures the general high
glucose and obesity relationship with diabetes.

Explainable properties of Optimal Classification Trees are shown in Table 4.7.

4.4.2 Optimal Decision Trees

Decision tree optimization is notably complex from a computational perspective
but crucial for interpretable machine learning. Recently, optimization breakthroughs
have allowed practical algorithms to find optimal decision trees for a reasonable
number of features. This section describes some of the breakthroughs and innova-
tions resulting in optimal and interpretable decision trees.

4.4 Decision Tree-Based 141

4.4.2.1 Optimal Sparse Decision Trees

Optimal sparse decision tree (OSDT) is a decision tree algorithm equivalent
to Certifiably Optimal RulE ListS (CORELS) [HRS19]. OSDT overcomes the
optimality issues of greedy decision tree algorithms like CART and C4.5 by building
a globally optimal tree using analytical bounds to narrow the search space, improved
data structures and caching techniques. Let {(xn, yn)}Nn=1 represent the training
data, where xn ∈ {0, 1}M are binary features and yn ∈ {0, 1} are the labels. Let
x = {xn}Nn=1 and y = {yn}Nn=1 and thus xn,m denote the m-th feature of xn. For a
tree d, the optimization objective can be written as

R(d, x, y) = l(d, x, y)+ λHd. (4.19)

where R(d, x, y) is the regularized empirical risk, l(d, x, y) is the misclassification
error of d, Hd is the number of leaves in the tree d, and λ is the regularization term.
A λ value of 0.01 indicates adding a penalty of 1% in misclassification by adding
one extra leaf to the tree. The optimization process depends on various theorems
that reduce the trees from growing and thus narrowing the search space. Next, we
will give a high level overview of these theorems from their utility perspective in
reducing the size of the trees. For the interested readers, the paper proves each of
these in a formal way.

1. Equivalent points bound: We will classify at least the minority label of the
data wrong for every set of equivalent points. If multiple instances have identical
feature values but opposite labels, we know that any model will make an error.

2. Hierarchical objective lower bound: Lower bounds of parent tree holds for
every child of that parent.

3. One-step look-ahead lower bound: Give the number of leaves, if a tree does
not achieve the given accuracy, then all children of that tree can be pruned.

4. Apriori bound on the number of leaves: Every optimal decision tree has an a
priori upper bound on the maximum number of leaves.

5. Lower bound on node support: For an optimal decision tree, the support
traversing through each internal node must be at least 2λ

6. Lower bound on incremental classification accuracy: Each split of the node
in the tree should result in a sufficient reduction in the loss. If the loss reduction
is less than or equal to the regularization, then there exists at least one more split
in the new child leaf nodes.

7. Leaf permutation bound: If there is a less accurate permutation of a leaf, it
cannot be extended further.

8. Leaf accuracy bound: For each leaf in an optimal decision tree, the accuracy
must be above a threshold.

Further, data structure enhancements such as storing the bounds, intermediate
metrics of accuracy, labels of the leaf, etc. for the entire tree and the individual leaves
facilitates the incremental computation of the lower bound and the objective. Using
priority queues, where each entry is a tree and removing an entry results in more

142 4 Model Interpretability: Advances in Interpretable Machine Learning

child trees, further enhances the incremental computation and speedup. Bit-vector
of data instances as features described by leaves and permutation maps caching the
structures gives the algorithm further edge in incremental computations.

Fig. 4.16 OSDT tree for diabetes dataset

Fig. 4.17 Impact of regularization on leaf nodes and accuracy. (a) Leaf nodes. (b) Accuracy

4.4 Decision Tree-Based 143

Table 4.8 Explainable
properties of optimal sparse
decision trees

Properties Values

Local or global Global and local

Linear or non-linear Non-linear

Monotonic or non-monotonic Non-monotonic

Feature interactions captured Yes

Model complexity Medium to high

Observations:

• Since the inputs are itemset based, we discretized the diabetes data and then
binarized it to have 0/1 values.

• Figure 4.17a and b show the correlation between number of leaf nodes in
the tree, accuracy and regularization parameter λ. At λ = 0.01 the validation
accuracy is highest and is around 77.5 and the tree has 7 leaf nodes as shown
in Fig. 4.16.

• Figure 4.16 is the output of OSDT with 7 leaf nodes and many of the nodes
have domain-specific interpretation. For example, the leaf node 5 which pre-
dicts non-diabetes excludes high glucose (>159.2), young age (<27) AND
healthy BMI (≥20.13and≤26.84). Adding just DiabetesPedigreeFunction
in any range except low then becomes an indicator of diabetes, especially in
young people as given in the leaf node 6.

Explainable properties of Optimal Sparse Decision Trees are shown in Table 4.8.

4.4.2.2 DL8.5

DL8.5 algorithm is another decision tree learning algorithm using itemset rules and
branch and bound techniques to generate optimal decision trees [ANS20]. All of
the following concepts contribute to the novelty of DL8.5 in generating optimal
decision trees.

• The use of itemset mining to represent possible paths.
• Using maximum depth to limit as soon as itemsets go above a threshold and not

using an attribute for branching below minimum support.
• The use of the cache to store intermediate results (including partial trees).
• The use of upper bound on quality to recursively find branches or prune the space

if cannot reach the quality.
• The ability to use heuristics during the search such as information gain of the

feature to during the search to increase the speed of finding good trees.

144 4 Model Interpretability: Advances in Interpretable Machine Learning

Interpretation of DL8.5: DL8.5 generates a tree of given length with each node
being a binary feature (0/1) branching to left and right recursively till the leaf
node is reached with class label and misclassification errors.

Fig. 4.18 DL8.5 with depth 2

Fig. 4.19 Dl8.5 with depth 3

4.4 Decision Tree-Based 145

Observations:

• Continuous features are discretized using Fayyad and Irani MDL method
and then binarized so that each feature is 0/1.

• Figures 4.18 and 4.19 are two trees with depth constraints of 2 and 3,
respectively.

• When the size of the tree is increased from 2 to 3, the whole tree of size 2
is seen as a sub-tree of size 3, indicating the robust nature of the splits and
tree.

• From classification performance, the testing error slightly increases from the
tree of size 2–3 but the training error reduces indicating overfitting with size
3.

• The trees are completely interpretable and can generate rules to debug or
whitebox the models, for example, Fig. 4.18 a rule can be extracted like (1)
If 159.2 < Glucose ≤ 179.1 AND 63 < AGE ≤ 69 �⇒ diabetes

Explainable properties of DL8.5 are shown in Table 4.9.

Table 4.9 Explainable
properties of DL8.5

Properties Values

Local or global Global and local

Linear or non-linear Non-linear

Monotonic or non-monotonic Non-monotonic

Feature interactions captured Yes

Model complexity Medium to high

4.4.2.3 Generalized and Scalable Optimal Sparse Decision Trees
(GOSDT)

The GOSDT algorithm improved over previous OSDT with the following main
changes (1) optimal decision trees cover various objectives such as F-score, AUC,
and partial area under the ROC convex hull (2) training data with both continuous
features along with binary features supported (3) novel dynamic programming with
bounds algorithm to enable parallelism and reduce the run-time and memory usage
of decision trees during the optimization/search. Let {(xn, yn)}Nn=1 represent the
training data, where xn ∈ {0, 1}M are binary features and yn ∈ {0, 1} are the labels.
Let x = {xn}Nn=1 and y = {yn}Nn=1 and thus xn,m denote the m-th feature of xn. A
tree d has leaf set d = (l1, . . . , lHd

) containing Hd distinct leaves, where li is the

classification rule of the leaf i and ŷ
leaf
i is the label prediction for all data in leaf i.

For a tree d, the optimization objective can be written as

146 4 Model Interpretability: Advances in Interpretable Machine Learning

R(d, x, y) = l(d, x, y)+ λHd (4.20)

where R(d, x, y) is the regularized empirical risk, l(d, x, y) is the loss function of d,
Hd is the number of leaves in the tree d, and λ is the regularization term. A λ value
of 0.01 indicates adding a penalty of 1% in misclassification by adding one extra leaf
to the tree. The loss function l(d, x, y) can be monotonic such as accuracy-based or
rank statistics such as area under curve.

Some OSDT algorithm bounds have extensions to the objectives in GOSDT,
particularly the Upper Bound on Number of Leaves and Leaf Permutation
Bound. GOSDT introduces different bounds such as the Hierarchical Objective
Lower Bound, Incremental Progress Bound to Determine Splitting, Lower
Bound on Incremental Progress, Equivalent Points Bound, Similar Support
Bound, Incremental Similar Support Bound, and a Subset Bound to search
efficiently by reducing the search space. Dynamic programming starts with a
full dataset and a naive label, iteratively splitting the dataset using each feature,
consolidating the duplicates, and stopping when subsets cannot be split further. Each
subset decides the best feature to split at, and at the end the optimal tree emerges as
a DAG of the best features through the subsets.

Interpretation of GOSDT: GOSDT generates a if-then-else patterns containing
literals with features and values in conjunctions. Each pattern is an indepen-
dent rule that results in a positive or negative class.

Fig. 4.20 GOSDT

4.5 Rule-Based Techniques 147

Table 4.10 Explainable
properties of GOSDT

Properties Values

Local or global Global and local

Linear or non-linear Non-linear

Monotonic or non-monotonic Non-monotonic

Feature interactions captured Yes

Model complexity Medium to high

Observations:

• Continuous features are discretized using Fayyad and Irani MDL method.
This results in around 79 categorical features.

• Figure 4.20 shows only one rule that captures range of feature Glucose
(≥144) for diabetes and if not then no diabetes is quite interpretable.
However, interactions with other features and more complex rules are not
seen through this technique.
Note: This rule took 1 h to run with hardware of 32 cores and 208GB RAM
with “precision limit” set high.

Explainable properties of GOSDT are shown in Table 4.10.

4.5 Rule-Based Techniques

A general inductive rule learning algorithm aims to learn a ruleset from a given
training data covering the positive class. Most algorithms differ in how they learn
individual rules; most of them employ a separate-and-conquer or covering strategy
for combining rules into a rule set [Mic83b, Für99, Coh95b]. We can divide the
separate-and-conquer rule learning into two main steps: First, create a single rule
from the training data (the conquer step) and then remove all the examples covered
by that rule (the separate step). The process is iterative and finishes only when there
are no more positive instances left. This process ensures that every positive instance
is covered at least by one rule (completeness), and no negative instance is included
(consistency).

Various pruning heuristics or a stopping criterion have been introduced to
improve the accuracy and speed up the performance [CB91, Coh95b, Für99]. The
search space of decision trees of a given depth is much larger than the search
space of rule lists of that same depth [Lar+18]. Exploring the search space to build
optimal trees or rules using Bayesian techniques is common in decision tree methods
and rule-based methods [DMS98, CGM02, CGM+10, Let+15]. Disjunctive normal

148 4 Model Interpretability: Advances in Interpretable Machine Learning

form (DNF) models using tight bounds to guide the search space in rule induction
are common in the literature [FW98].

4.5.1 Bayesian Or’s of And’s (BOA)

Bayesian ors of ands (BOA) is a classifier built with association rule patterns to
cover positive classes maximally from the training data while keeping the model
interpretable [Wan+15]. Let {xn, yn} represent the data, where xn is a data vector
of continuous or categorical features and yn ∈ {0, 1} is the label. A literal is a
feature-value pair (e.g., x1=’blue’), denoted as r . A pattern is a conjunction of
literals (e.g., x1=’blue’ AND x2=’<5’), denoted as a. Thus, rules have a form
a = r1 ∧ . . . , rn where ∧ denotes the AND operation. A pattern set is a disjunction
of patterns, denoted as A, and has the form A = a1 ∨ . . . , am, where ∨ denotes
the OR operation. Consider a boolean function h(xn, a) that evaluates if pattern a

applies to the instance xn, then a classifier built from the pattern set A can be define
as fA

fA(xn) =
{
1 ∃a ∈ A, h(xn, a) = 1

0 otherwise
(4.21)

As shown in Fig. 4.21, the BOA methodology entails finding patterns that maximize
the positive class coverage with minimal negative class coverage. BOA employs
generative approach to the construction of these patterns set using two probabilistic
approaches, viz. one with a Beta-Binomial prior, and the other with Poisson priors.
In the Beta-Binomial model, the pattern length L is pre-determined, and the model
uses L beta priors to control the probabilities of selecting patterns. In a Poisson
model, the “shape” of a pattern set, which includes the number of patterns and
lengths of patterns, is decided by drawing from Poisson distributions parameterized
with user-defined values. The generative process is about filling in with literals by
first randomly selecting the features and then randomly selecting values correspond-
ing to each feature. Inference in the BOA model has computational challenges as
it involves a search over exponentially many possible sets of patterns. Since each
pattern is a conjunction of literals, the number of patterns increases exponentially
with number of literals and size of the set of the patterns. Stochastic local search
using simulated annealing that either adds/removes/changes literals or the patterns
is used as the heuristic in building the classifier.

Interpretation of BOA: BOA generates a pattern set, with each pattern
containing literals with features and values in conjunctions. Each pattern is
an independent rule that results in a positive class.

4.5 Rule-Based Techniques 149

Table 4.11 Explainable
properties of BOA

Properties Values

Local or global Global and local

Linear or non-linear Non-linear

Monotonic or non-monotonic Non-monotonic

Feature interactions captured Yes

Model complexity Medium to high

Observations:

• Continuous features are discretized using Fayyad and Irani MDL method
and then binarized so that each feature is 0/1. This results in around 79
binary features.

• In Fig. 4.22, the first rule captures interaction between age (≥27), BMI
range (20.13–26.84) and glucose range (79.6–99.5) for diabetes and is quite
interpretable.

• The second rule captures various intervals of single feature, i.e., Glucose
whose absence determines the class diabetes.

Explainable properties of BOA are shown in Table 4.11.

Fig. 4.21 Bayesian ors of ands

150 4 Model Interpretability: Advances in Interpretable Machine Learning

Fig. 4.22 BOA results on diabetes dataset

Fig. 4.23 Bayesian case model

4.5.2 Bayesian Case Model

Bayesian Case Model (BCM) provides a general framework using Case-based
reasoning, prototype classification, and clustering to give accurate and interpretable
models [KRS14]. Let the training data be represented as x = {x1, . . . , xN } for N
instances. Each instance xi can be represented as a random mixture over clusters in
a discrete mixture model representation. Assuming there are S clusters, an a priori
assumption, the graphical model representation is shown in Fig. 4.23. The vector πi

represents the mixture weights over the S clusters for the ith instance xi , πi ∈ R
S .

Each instance has P features, and we denote the j th feature of the ith observation
as xij . Each feature j of the instance xi is associated with one of the clusters, the

4.5 Rule-Based Techniques 151

index of the cluster for xij is given by zij and the full set of cluster assignments for
instance-feature pairs is denoted by z. Each zij takes on the value of a cluster index
between 1 and S. The mixture weights πi are generated according to a Dirichlet
distribution, parameterized by hyperparameter α.

πi ∼ Dirichlet (α) ∀i (4.22)

The cluster index zij is obtained for each xij , by sampling from a multinomial
distribution with parameters πi as

zij ∼ Multinomial(πi) ∀i, j (4.23)

Each feature for an instance xij is sampled from the feature distribution of the
assigned subspace cluster (φzij

)

xij ∼ Multinomial(φzij
) ∀i, j (4.24)

The interpretability of BCM comes from the prototype-based cluster characteriza-
tion instead of some predefined parametric distribution assumption in the standard
mixture models. BCM identifies each cluster by a prototype, ps , and a subspace
feature indicator, ωs . The prototype ps for cluster s is defined as one instance
in x that maximizes p(ps |ωs, z, x). The prototype ps is chosen randomly using a
uniform distribution

ps ∼ Unif orm(1, N) ∀s (4.25)

The subspace feature indicator given by ωs ∈ {0, 1}P can be seen is as an indicator
that “turns on" the important features for characterizing cluster s and selecting
the prototype ps . The feature indicator (ωsj) is generated according to a Bernoulli
distribution with the hyperparameter q.

ωsj ∼ Bernoulli(q) ∀s, j (4.26)

The φs is a data structure where each row φsj is a discrete probability distribution
of possible outcomes for feature j . Let us consider θ as a vector of the possible
outcomes of feature j (e.g., for feature ’gender’, θ = [male, female]), where θ

represents a particular outcome for that feature (e.g., θv = male). φsj generates in a
way that it mostly takes outcomes from the prototype ps for the cluster’s important
features. The g function characterizes—(1) when the feature j of cluster s is an
important feature (wsj = 1) and (2) when the value of the feature is identical to
the value of the prototype of cluster s given by (psj = θv) then (c, λ) the constant
hyperparameters indicate how much copy of the prototype will be done in order to
generate the instances.

152 4 Model Interpretability: Advances in Interpretable Machine Learning

gpsj ,ωsj ,λ(v) = λ(1+ c1[ωsj=1 andpsj=θv]) (4.27)

The distribution of feature outcomes will be determined by g through

φsj ∼ Dirichlet (gpsj
, ωsj , λ) (4.28)

BCM uses collapsed Gibbs sampling for inference.

Interpretation of BCM: BCM can be interpreted using the prototypes selected,
the feature space representation, and the classifier built from the π matrix.
Heatmap of features selected in the prototypes is one way of highlighting
the importance of the features in the subspace. Visualizing the top features in
subspace by deviation from global averages can help provide some interesting
insight to the subspace groups. Finally, classifiers such as decision trees or
other interpretable models using πn × S matrix where S is used as features
give more interpretability at the classifier level.

Observations:

• Continuous features are discretized using Fayyad and Irani MDL method
and then binarized so that each feature is 0/1. This results in around 79
binary features.

• Figure 4.24 is the heatmap for all the binarized features in the 7 prototype
subspaces and Fig. 4.25 gives information on each prototype based on top
features in that subspace.

• Figure 4.26 provides a decision tree view using π matrix.

Explainable properties of BCM are shown in Table 4.12.

4.5.3 Certifiably Optimal RulE ListS (CORELS)

Certifiably Optimal RulE ListS (CORELS) produces rule lists that are not only
several times faster but guarantee optimality over the input categorical feature space.
It leverages several efficiencies such as algorithmic bounds, effective data structures,
and computational reuse to reduce the search space and increase the training
speed [Lar+18]. Let {(xn, yn)}Nn=1 represent the training data, where xn ∈ {0, 1}J are
binary features and yn ∈ {0, 1} are the labels. Let x = {xn}Nn=1 and y = {yn}Nn=1 and
thus xn,j denote the j -th feature of xn. A general representation of rule list is given

4.5 Rule-Based Techniques 153

F
ig
.4

.2
4

Fe
at
ur
e
di
st
ri
bu
tio

n
by

su
bs
pa
ce
s
us
in
g
B
C
M

on
bi
na
ri
ze
d
di
ab
et
es

da
ta
se
t

154 4 Model Interpretability: Advances in Interpretable Machine Learning

Fig. 4.25 Prototypes and their feature representation with BCM on binarized diabetes dataset

Fig. 4.26 Decision tree using BCM on binarized diabetes dataset

4.5 Rule-Based Techniques 155

Table 4.12 Explainable
properties of BCM

Properties Values

Local or global Global and local

Linear or non-linear Non-linear

Monotonic or non-monotonic Non-monotonic

Feature interactions captured Yes

Model complexity Medium to high

by d = (r1, r2, . . . , rK, r0) where K ≥ 0 is the length of the list. Thus the rule list
consists of (K+1)-tuple with K distinct association rules given by rk = pk −→ qk ,
for k = 1, . . . , K followed by a default rule r0. The paper introduces alternate rule
list representation given by d = (dp, δp, q0,K), where dp = (p1, . . . , pK) are
d’s prefix, δp = (q1, . . . , qK) ∈ 0, 1K gives the label predictions associated with
dp, and q0 ∈ 0, 1 is the default label prediction. The objective function that the
algorithm optimizes for a rule list d = (dp, δp, q0,K) can be written as

R(d, x, y) = l(d, x, y)+ λK (4.29)

where l(d, x, y) is the loss function measuring misclassification error and λ is the
regularization parameter to control the size of the tree. A λ value of 0.01 indicates
adding a penalty of 1% in misclassification by adding one association rule to the list.
The entire optimization process depends on various theorems that reduce the trees
from growing, reducing the search space and thus making the problem tractable.
Next, we will give state these theorems from their utility perspective in reducing the
size of the trees.

1. Support bound: If a rule’s support is less than λ, that rule cannot be in the
optimal rule list.

2. Accuracy bound: If a rule in the list does not classify at least λ fraction of data
instances in the training set, that rule cannot be in an optimal rule list.

3. Length bound: The length of an optimal rule list is bounded by a function of λ,
in short, rule lists cannot be too long.

4. One-step look-ahead bound: If a prefix’s lower bound is within λ of the best
current value of the objective, adding any rules to the list will add to a non-
optimal rule list.

5. Equivalent points bound: We will classify at least the minority label of the
data wrong for every set of equivalent points. If multiple instances have identical
feature values but opposite labels, we know that any model will make an error.

6. Permutation bound: Only an optimal permutation of a set of rules can be
extended to form an optimal rule list. If there exists a less accurate permutation
of a rule, then it cannot be extended further.

CORELS performs systematized computations of these lower bound calculations
and the objective values by efficient and within the context using an incremental

156 4 Model Interpretability: Advances in Interpretable Machine Learning

branch and bound algorithm. Incremental computations using prefix trees (tries),
pruning using a symmetry-aware map, and a priority queue to explore the search
space further give the algorithm performance improvements.

Algorithm 2: CORELS
Data: Objective R(d, x, y), lower_bound b(dp, x, y), set of antecedents

S = {sm}Mm=1, training data (x, y) = {(n, yn)}Nn=1 and regularization
parameter λ

Result: Provably optimal rule list d∗ with minimum objective R∗
Mine all rules with sufficient support;
Start with rule_list of size 1;
initialize the priority queue;
while queue of rule lists is not empty do

for each of the children of current prefix do
//test each of the theorems for lower bounds;
current_best, current_objective= checkSupportBound();
current_best,current_objective= checkAccuracyBound();
current_best,current_objective= check(LengthBound();
current_best,current_objective= checkOneStepLooakaheadBound();
current_best,current_objective= checkEquivalentPointsBound();
current_best,current_objective= checkPermutationBound();

//check for bounds;
if lower_bound > current_best then

discard(prefix);
else

addToQueue();

// check for objective;
if current_objective < current_best_objective then

update(rule_list);
else

discard();

return rule_list

Interpretation of CORELS: CORELS generates optimal rules with If, elseIf
and else with antecedents having features with condition(s) equal = or not
equals! = with binary (0, 1) values.

4.5 Rule-Based Techniques 157

Fig. 4.27 Output of CORELS on diabetes dataset

158 4 Model Interpretability: Advances in Interpretable Machine Learning

Table 4.13 Explainable
properties of CORELS

Properties Values

Local or global Global and local

Linear or non-linear Non-linear

Monotonic or non-monotonic Non-monotonic

Feature interactions captured Yes

Model complexity Medium to high

Observations:

• Continuous features are discretized using Fayyad and Irani MDL method
and then binarized so that each feature is 0/1.

• There are 86 rules mined initially and then the optimal rule are simple
conditions on high Glucose ranges (Fig. 4.27).

Explainable properties of CORELS are shown in Table 4.13.

4.5.4 Bayesian Rule Lists

Bayesian Rule Lists (BRL) is a classification algorithm based on association rule
mining and sampling to build compact decision list that is interpretable [Let+15].
Association rule mining has two steps—(a) finding frequent itemsets from the
data and (b) generating strong association rules from the frequent itemsets. Many
techniques generate frequent itemsets, such as Apriori and Frequent-Pattern Growth
(FP-Growth). BRL uses FP-Growth. Finding the frequent pattern through the
association rule mining is first finding the support for the pattern, given by

Support (xj = value) = 1

n

n∑
i=1

I (x
(i)
j = value) (4.30)

where xj is the feature having a categorical value value and I is the indicator
function that returns 1 when the instance i has the feature xj = value. Continuous
features are first converted to categorical using algorithms such as Fayyad and
Irani’s MDL method. Based on the thresholds on the minimum support that user
defines, many patterns can be discarded. BRL algorithm intends to find lists with
few rules and short conditions. BRL approaches this goal by defining a distribution
of decision lists with prior distributions for the length of conditions (preference
for shorter rules) and the number of rules (preference for a shorter list). BRL uses
posterior distribution to achieve this goal and is given by

4.5 Rule-Based Techniques 159

p(d|x, y,A, α, λ, η)︸ ︷︷ ︸
posterior

∝ p(y|x, d, α)︸ ︷︷ ︸
likelihood

·p(d|A, λ, η)︸ ︷︷ ︸
prior

(4.31)

Where d is a decision list, x are the features, y is the label, A is the set of pre-
mined conditions, λ is the prior expected length of the decision lists, η is the prior
expected number of conditions in a rule, and α is the prior pseudo-count for the
positive and negative classes. The p(d|x, y,A, α, λ, η) is the posterior distribution
on the decision list given the data, the labels, and the constraints. The p(y|x, d, α)

is the likelihood of the observed y labels, given the data, decision list, and the prior
assumptions. One of the assumptions in BRL is that the labels y are generated
through the Dirichlet-Multinomial distribution. The p(d|A, λ, η) quantifies the
prior distribution of the decision lists given the parameters (λ, η) which are truncated
Poisson distributions. Estimation of the statistics is done by modifying the initial
random generated list to create more samples using the Markov chain Monte Carlo
(MCMC) method.

Interpretation of BRL:
If a training data (xi, yi)

n
i=1 where the xi ∈ X are the features, and yi are

the labels (binary), a Bayesian decision list has the following form
if x obeys a1 then y ∼ Binomial(θ1), θ1 ∼ Beta(α1 + N1)

else if x obeys a2 then y ∼ Binomial(θ2), θ2 ∼ Beta(α2 + N2)
...

else if x obeys am then y ∼ Binomial(θm), θm ∼ Beta(αm + Nm)

else y ∼ Binomial(θ0), θ0 ∼ Beta(α0 + N0)

The antecedents am
j=1 are the boolean conditions on the features; the vector

α = [α1, α0] has a prior parameter for each of the two labels, and values α1
and α0 are prior parameters.

Nj is the vector of counts, where Nj,l is the number of observations xi

that satisfy condition aj but none of the previous conditions a1, . . . , aj−1 and
label yi=l , l is either 1 or 0 in binary classification.

Fig. 4.28 Rules generated from Bayesian rule lists for the diabetes dataset

160 4 Model Interpretability: Advances in Interpretable Machine Learning

Table 4.14 Explainable
properties of BRL

Properties Values

Local or global Global and local

Linear or non-linear Non-linear

Monotonic or non-monotonic Non-monotonic

Feature interactions captured Yes

Model complexity Medium to high

Observations:

• The numerical data is discretized into categories using Fayyad and
Irani MDL method. Each category, for example, (BMI -inf_to_26.45-
inf_to_26.45) can be read as the range for the condition − inf ≤ BMI ≤
26.45.

• Figure 4.28 The THEN part captures the probability of the label (diabetes)
and the ranges.

• Interesting to see how high glucose (glucose ≥ 154.5) and the combination
of higher BMI (BMI ≥ 26.45) and being older Age (Age ≥ 28.5) results
in higher probability of diabetes in an interpretable manner for any subject
matter expert.

Explainable properties of BRL are shown in Table 4.14.

4.6 Scoring System

Many applications such as healthcare, criminal justice systems, finance, to name
some, need scoring systems where features are assigned weights that are integers
and contribute to the overall scores or help classify. The typical approach is to have
a panel of experts set weights and use the data for validating the results. Another
standard methodology is to perform feature selection and logistic regression with
sparsity constraints, do manual scaling and rounding of the coefficients.

4.6.1 Supersparse Linear Integer Models

One of the ways to address this is to have the objective defined with constraints on
accuracy, sparsity, and the coefficients being integers [UR15].

4.6 Scoring System 161

argmin
λ∈L

1

N

N∑
i=1

1[yiλ
T xi ≤ 0]

︸ ︷︷ ︸
Accuracy

+ C0||λ||0︸ ︷︷ ︸
Sparsity constraint

+ C1||λ||1︸ ︷︷ ︸
Co-prime Coefficients constraints

(4.32)
where λ ∈ L �⇒ ∀j λj = {−10,−9, . . . , 0, . . . , 9, 10}. The second L1 term
does not introduce sparsity but for small values of ε makes the integer coefficients
co-prime without impacting either the accuracy or sparsity. These equations are
then given to linear programming solvers who find the solutions. Risk-Calibrated
Supersparse Linear Integer Models (Risk-SLIM) go even further and not only
generate scores with sparse integer based coefficients like SLIM but also make the
loss calibrated [UR19].

min
λ∈L log(1+ e−yixiλ)

︸ ︷︷ ︸
Logistic Loss

+ C||λ||0︸ ︷︷ ︸
Model Size

(4.33)

where λ ∈ L �⇒ ∀j λj = {−10,−9, . . . , 0, . . . , 9, 10}. This objective makes
the problem even harder as it is mixed-integer non-linear optimization problem
and there is no known solver that solves it reasonably well in a given time. As
shown in Fig. 4.29, even with convex objective like the logistic loss, a coefficient
through cutting plane approximation can result in a non-integer value, e.g., λ = 4.8.
To address the non-integer coefficients caused by the cutting planes, the objective
function is further sub-divided into two problems with bounds between the value,
i.e., (λ ≤ 4, λ ≥ 5) for solution leading into a new algorithm—Lattice Cutting
Plane Algorithm (LCPA). To further improve the performance of LCPA, various
techniques such as Polishing, SequentialRounding, and Discrete coordinate descent
(DCD) are applied to reach an optimal solution referred to as 1-opt solution. Figure
4.30 illustrates the iterative process of SequentialRounding, where one non-integer
coefficient is rounded either to an upper bound or a lower bound at a time to see
the performance impact (loss reducing) and then leading to the discrete coordinate
descent. The integer coefficients from SequentialRounding further go through an
iterative process to vary one coefficient at a time to reduce the loss the most. The
process stops when there is no further change to any coefficients and leading to an
optimal solution known as 1-opt solution.

Interpretation of SLIM: SLIM and Risk-SLIM both output features and their
coefficients as points between the given range, for, e.g., (−5, 5). The positive
coefficient and the value have the impact of increasing the logistic score and
inverse for the negative coefficients.

162 4 Model Interpretability: Advances in Interpretable Machine Learning

Fig. 4.29 Cutting plane algorithms with bounds for non-convex stalling issues

Fig. 4.30 Iterative process of sequential rounding and discrete coordinate descent to reach the
1-opt solution

Fig. 4.31 Scoring the features of diabetes dataset using Risk-SLIM technique

References 163

Table 4.15 Explainable
properties of Risk-SLIM

Properties Values

Local or global Global

Linear or non-linear Linear

Monotonic or non-monotonic Monotonic

Feature interactions captured Yes

Model complexity Medium to high

Observations:

• Figure 4.31 shows the features Glucose, DiabetesPedigreeFunction, Age and
BMI are the top contributors to the diabetes scoring.

• The numerical data is discretized into categories using Fayyad and Irani
MDL method and then binarized to have value (0/1).

• High Glucose (159.5–179.2) and having a pedigree with diabetes Pedigree-
DiabetesFunction increase the score by 2 and 1 points, respectively.

• Similarly, being young (Age < 27), lower Glucose (79.6–99.5), and BMI in
the healthy range (20.13–26.84)) result in lowering the risk score by 1, 2 and
2 points, respectively.

Explainable properties of Risk-SLIM are shown in Table 4.15.

References

[Ade+18] J. Adebayo, et al., Sanity checks for saliency maps. Adv. Neural Inf. Proc. Syst. 31,
9505–9515 (2018)

[ANS20] G. Aglin, S. Nijssen, P. Schaus, Learning optimal decision trees using caching branch-
and-bound search, in Proceedings of the AAAI Conference on Artificial Intelligence,
vol. 34, No. 04 (2020), pp. 3146–3153

[AS08] A.I.R.L. Azevedo, M.F. Santos, KDD, SEMMA and CRISP-DM: a parallel overview,
in IADS-DM (2008)

[Bas+18] S. Basu, et al., Iterative random forests to discover predictive and stable high-order
interactions. Proc. Nat. Acad. Sci. 115(8), 1943–1948 (2018)

[BB96] K.P. Bennett, J.A. Blue, Optimal decision trees. Rensselaer Polytechnic Institute Math.
Rep. 214, 24 (1996)

[BD17] D. Bertsimas, J. Dunn, Optimal classification trees. Mach. Learn. 106(7), 1039–1082
(2017)

[Bre01] L. Breiman, Mach. Learn. 45(1), 5–32 (2001). ISSN: 0885-6125
[CGM02] H.A. Chipman, E.I. George, R.E. McCulloch, Bayesian treed models. Mach. Learn.

48(1–3), 299–320 (2002)
[CGM+10] H.A. Chipman, E.I. George, R.E. McCulloch, et al., BART: Bayesian additive regres-

sion trees. Ann. Appl. Statist. 4(1), 266–298 (2010)
[CB91] P. Clark, R. Boswell, Rule induction with CN2: Some recent improvements, in

European Working Session on Learning (Springer, Berlin, 1991), pp. 151–163

164 4 Model Interpretability: Advances in Interpretable Machine Learning

[Coh95b] W.W. Cohen, Fast effective rule induction, in Machine Learning Proceedings 1995
(Elsevier, Amsterdam, 1995), pp. 115–123

[DMS98] D.G.T. Denison, B.K. Mallick, A.F.M. Smith, A Bayesian cart algorithm. Biometrika
85(2), 363–377 (1998)

[FW98] E. Frank, I.H. Witten, Generating accurate rule sets without global optimization, in
Proceedings of the Fifteenth International Conference on Machine Learning, (1998),
pp. 144–151

[FS97] Y. Freund, R.E. Schapire, A decision-theoretic generalization of on-line learning and
an application to boosting. J. Comput. Syst. Sci. 55(1), 119–139 (1997)

[FSA99] Y. Freund, R. Schapire, N. Abe, A short introduction to boosting. J. Jpn. Soc. Artif.
Intell. 14(771–780), 1612 (1999)

[Fri00] J.H. Friedman, Greedy function approximation: a gradient boosting machine. Ann.
Statist. 29, 1189–1232 (2000)

[FP+08] J.H. Friedman, B.E. Popescu, et al., Predictive learning via rule ensembles. Ann. Appl.
Statist. 2(3), 916–954 (2008)

[Für99] J. Fürnkranz, Separate-and-conquer rule learning. Artif. Intell. Rev. 13(1), 3–54 (1999)
[Gar+17] F. Gardin, et al., skope-rules (2017). https://github.com/scikit-learn-contrib/skope-rules
[HT90b] T.J. Hastie, R.J. Tibshirani, Generalized Additive Models, vol. 43 (CRC Press, Boca

Raton, 1990)
[HHZ06] T. Hothorn, K. Hornik, A. Zeileis, Unbiased recursive partitioning: a conditional

inference framework. J. Comput. Graph. Statist. 15(3), 651–674 (2006)
[HS07] W.-C. Hsiao, Y.-S. Shih, Splitting variable selection for multivariate regression trees.

Statist. Probab. Lett. 77(3), 265–271 (2007)
[HRS19] X. Hu, C. Rudin, M. Seltzer, Optimal sparse decision trees, in Advances in Neural

Information Processing Systems (2019), pp. 7267–7275
[KRS14] B. Kim, C. Rudin, J. Shah, The Bayesian case model: A generative approach for case-

based reasoning and prototype classification, in Proceedings of the 27th International
Conference on Neural Information Processing Systems - Volume 2. NIPS’14 (MIT
Press, Cambridge, 2014), pp. 1952–1960

[KL01] H. Kim, W.-Y. Loh, Classification trees with unbiased multiway splits. J. Amer. Statist.
Assoc. 96(454), 589–604 (2001)

[LS04] D.R. Larsen, P.L. Speckman, Multivariate regression trees for analysis of abundance
data. Biometrics 60(2), 543–549 (2004)

[Lar+18] N. Larus-Stone, et al., Systems optimizations for learning certifiably optimal rule lists,
in SysML Conference (2018)

[Let+15] B. Letham, et al., Interpretable classifiers using rules and Bayesian analysis: building a
better stroke prediction model. Ann. Appl. Statist. 9(3), 1350–1371 (2015)

[LS97] W.-Y. Loh, Y.-S. Shih, Split selection methods for classification trees. Statist. Sinica 7,
815–840 (1997)

[LV88] W.-Y. Loh, N. Vanichsetakul, Tree-structured classification via generalized discrimi-
nant analysis. J. Amer. Statist. Assoc. 83(403), 715–725 (1988)

[Mic83b] R.S. Michalski, A theory and methodology of inductive learning, in Machine Learning
(Elsevier, Amsterdam, 1983), pp. 83–134

[Nor+19] H. Nori, et al., InterpretML: a unified framework for machine learning interpretability
(2019). Preprint arXiv:1909.09223

[Nor+15] M. Norouzi, et al., Efficient non-greedy optimization of decision trees, in Advances in
Neural Information Processing Systems (2015), pp. 1729–1737

[Rud19c] R.J. Quinlan, Learning with continuous classes, in 5th Australian Joint Conference on
Artificial Intelligence (World Scientific, Singapore, 1992), pp. 343–348

[Rud19a] C. Rudin, Do simpler models exist and how can we find them? in KDD (2019), pp. 1–2
[Rud19b] C. Rudin, Stop explaining black box machine learning models for high stakes decisions

and use interpretable models instead. Nat. Mach. Intell. 1(5), 206–215 (2019)
[Seg92] M. Robert Segal, Tree-structured methods for longitudinal data. J. Amer. Statist. Assoc.

87(418), 407–418 (1992)

https://github.com/scikit-learn-contrib/skope-rules

References 165

[SS12] R.J. Sela, J.S. Simonoff, RE-EM trees: a data mining approach for longitudinal and
clustered data. Mach. Learn. 86(2), 169–207 (2012)

[UR15] B. Ustun, C. Rudin, Supersparse linear integer models for optimized medical scoring
systems. Mach. Learn. 102(3), 349–391 (2015)

[UR19] B. Ustun, C. Rudin, Learning optimized risk scores. J. Mach. Learn. Res. 20(150), 1–75
(2019). http://jmlr.org/papers/v20/18-615.html

[Wan+15] T. Wang, et al., Or’s of And’s for Interpretable Classification, with Application to
Context-Aware Recommender Systems (2015). arXiv: 1504.07614 [cs.LG]

[Was+00] L. Wasserman, et al., Bayesian model selection and model aver-aging. J. Math. Psychol.
44(1), 92–107 (2000)

[YL99] Y. Yu, D. Lambert, Fitting trees to functional data, with an application to time-of-day
patterns. J. Computat. Graph. Statist. 8(4), 749–762 (1999)

http://jmlr.org/papers/v20/18-615.html

Chapter 5
Post-Hoc Interpretability and
Explanations

Post-hoc techniques represent a vast collection of methods created to specifically
address the black-box problem, where we do not have access to the internal feature
representations or model structure. There are considerable advantages to using post-
hoc methods. They can work for a wide variety of model algorithms. They allow for
different representations to be used for internal modeling and explanation. They can
also provide different types of explanations for the same model. However, there is a
trade-off between the fidelity and comprehensibility of explanations.

We divide post-hoc methods into three separate categories. Visual explanations
use figures to express and interpret relationships between model features and predic-
tions in a human readable fashion. Feature importance methods allow us to quantify
these relationships in a more precise manner, whether they be local explanations
on specific instances or global explanations on the overall model. Example-based
explanations seek to explain models using the prediction of individual instances of
the model. They can provide insight on nuances in the data distribution that could
be missed by other methods. Applying a collection of these methods together can
provide meaningful, intuitive explanations for even the most complex models.

5.1 Tools and Libraries

Table 5.1 provides details of all the libraries used for various models in the chapter.

5.2 Visual Explanation

Visual explanation encompasses a set of methods that allow us to visually inspect the
relationships between inputs and outputs or with other input features. This allows

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2021
U. Kamath, J. Liu, Explainable Artificial Intelligence: An Introduction to
Interpretable Machine Learning, https://doi.org/10.1007/978-3-030-83356-5_5

167

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-83356-5_5&domain=pdf
https://doi.org/10.1007/978-3-030-83356-5_5

168 5 Post-Hoc Interpretability and Explanations

Table 5.1 Models and
implementations

Model/algorithm Library

Partial dependence Scikit-Learn

Individual conditional dependence Scikit-Learn

Ceteris paribus pyCeterisParibus

Accumulated local effects ALEPython

Breakdown dalex

iBreakdown dalex

Feature interaction Scikit-Learn

Permutation feature importance Scikit-Learn

Ablations LOCO lofo-importance

Kernel SHAP shap 0.39.0

Anchors alibi

Global surrogate Scikit-Learn

LIME lime-0.2.0.1

Contrastive explanations alibi

kNN Scikit-Learn

Trust scores alibi

Counterfactuals alibi

Prototypes/criticisms MMD-critic

Influential instances Scikit-Learn

us to better understand their influence and contribution to the predicted response.
Visual explanations have the advantage in that they are relatively easy to interpret,
especially for models with a small set of features. They can provide global or local
explanations, depending on the method. However, they can become unwieldy with
a larger feature set and may not properly capture or visualize correlations between
features, resulting in erroneous attributions. They may also extrapolate poorly for
regions not well covered by the training data. We describe and discuss six visual
explanation methods below.

5.2.1 Partial Dependence Plots

The partial dependence (PD) plot is commonly used as a visual explanation of
feature effects. It is a global method and can explain the overall model behavior by
showing the relationships between input features and output. PD plots visualize the
partial dependence function which measures the effect of a feature by marginalizing
over other features. For instance, given a model with two features, f (x1, x2), the
partial dependence function of feature x1 is given by averaging over the marginal
distribution of feature x2:

PD (x1) = Ex2[f (x1, x2)] =
∫

p (x2) f (x1, x2) dx2 (5.1)

5.2 Visual Explanation 169

where p (x2) represents the marginal distribution of feature x2. In practice, we can
replace the expectation with an average over n data samples where we replace the
first feature by x1:

PD (x1) = 1

n

n∑
j=1

f
(
x1, x2,j

)
(5.2)

For a model with a set of d features x1, x2, . . . , xd , the PD function for x1 would be
computed as

PD (x1) = 1

n

n∑
j=1

f
(
x1, x2,j , . . . , xd,j

)
(5.3)

As seen above, marginalizing over the other features allows the PD function to
capture interactions of other features. It shows on average how feature x1 influences
the model output. The PD plot shows the PD function for all possible values of
feature x1.

We can extend PD plots to show the partial dependence of two or more features
at the same time. Let the features to be plotted be defined as the subset C ⊆
{x1, x2, . . . , xd}, and let C be the other features of the model such that C ∪ C =
{x1, x2, . . . , xd}. The PD function for subset C is written as

PD(C) = EC

[
f (C,C)

]
(5.4)

= 1

n

n∑
j=1

f (C,Cj) (5.5)

where Cj are the other feature values for data sample j . When there are two features
of interest, they can be plotted in two dimensions as a two-dimensional PD plot. For
more than two features, visualizing a multidimensional plot is more difficult.

PD plots have many advantages. They provide a clear and understandable
explanation of how the output of a model varies with changes to a particular feature.
They are easy and quick to compute. PD plots also illuminate the causal relationship
between the PD feature and the model output, as they are based on the actual
model output for given values of the PD feature. They can also display the partial
dependence of two features concurrently as a two-dimensional plot.

Interpretation of Partial Dependence Plots: PD plots are a simple way to
visualize the individual effects of features on the prediction outcome. They
average over features based on the marginal distribution. They can be used

(continued)

170 5 Post-Hoc Interpretability and Explanations

to visualize the partial dependence and interaction of two features on model
prediction. They implicitly assume independence between the PD feature/s
and the other model features.

Unfortunately, PD plots inherently assume that the PD feature is uncorre-
lated with the other features. Any co-dependence between features x1 and x2
is unaccounted for and PD plots will be biased and depict unrealistic out-of-
sample instances when the features are correlated. This problem worsens with more
correlated features. PD plots also do not provide information about the distribution
of features, which can be detrimental when the distribution is imbalanced. Due to

Fig. 5.1 PD plots on Pima Indian diabetes dataset

5.2 Visual Explanation 171

the averaging, marginal effects are smoothed and any heterogeneous effects in the
data (where subgroups of data samples behave differently) can be overlooked.

Explainable properties of Partial Dependence Plots are shown in Table 5.2.

Observations:

• Figure 5.1 shows that Glucose and BMI have a direct effect on model
outcome, with less effect by Age and little effect by BloodPressure. Higher
Glucose and BMI indicate higher probability of diabetes.

• Figure 5.2 indicates a positive interaction effect of BMI and Glucose on
model prediction for diabetes.

• Figure 5.3 shows the positive interaction effect of Insulin and Glucose on
model prediction as a surface plot.

Fig. 5.2 2D PD plot on Pima Indian diabetes dataset

Table 5.2 Explainable
properties of partial
dependence plots

Properties Values

Local or global Global

Linear or non-linear Linear

Monotonic or non-monotonic Monotonic

Feature interactions captured No

Model complexity Low

172 5 Post-Hoc Interpretability and Explanations

Fig. 5.3 3D PD plot on Pima Indian diabetes dataset

5.2.2 Individual Conditional Expectation Plots

The PD plot shows the average overall effect, but there are times that we want to
see the effect on each data sample. The Individual Conditional Expectation (ICE)
plot is analogous to the PD plot in that it visualizes the relationship of the output
on a feature but plots a separate line for each instance. In similar fashion, the ICE
plot for feature x1 is computed by replacing the first feature while keeping all other
features the same:

ICE (x1) = f
(
x1, x2,j , . . . , xd,j

) |j=1,...,n (5.6)

Whereas partial dependence plots average out and obscure possible hetero-
geneous effects in the data samples, ICE plots can clearly show when distinct
subgroups behave differently. Furthermore, ICE plots can show when correlations
exist between the plotted feature and the remaining features. If such interactions
exist, the ICE plot will be significantly more insightful.

One downside of ICE plots is that for large data samples, they appear crowded.
This is exacerbated when the lines start at different output prediction values.
Centering is one way to reduce the noise, by translating the lines for the data samples

5.2 Visual Explanation 173

such that they start at the same value and plotting only the differences in model
output beyond this point.

Interpretation of Individual Conditional Expectation Plots: ICE plots show the
partial dependence of model prediction on a feature for every data instance
in the dataset as an individual line. The mean of these lines is the partial
dependence function. ICE plots can reveal heterogeneous behavior of subsets
of data. They also assume independence between the feature plotted and the
remaining model features.

While more intuitive than PD plots to understand, ICE plots can only show a
single feature at a time. A two-dimensional ICE plot would be extremely difficult to
comprehend unless the data sample size were very small. Furthermore, even though
ICE plots can be helpful in discerning possible correlations between the plotted
feature and other features, they still suffer from the same bias as PD plots in which
points may depict unrealistic out-of-sample instances.

Explainable properties of Individual Conditional Expectation Plots are shown in
Table 5.3.

Fig. 5.4 ICE plot on Pima Indian diabetes dataset

174 5 Post-Hoc Interpretability and Explanations

Observations:

• Figure 5.4a shows the ICE plot for Glucose. The PDP line is the average of
all lines.

• Heterogeneous effects can be observed in SkinThickness in Fig. 5.4b, where
the individual ICE lines are distributed more densely below vs. above the
PDP average.

• By centering the ICE lines in Fig. 5.5, heterogeneous effects are more easily
observable.

Fig. 5.5 Centered ICE plot on Pima Indian diabetes dataset

Table 5.3 Explainable
properties of individual
conditional expectation plots

Properties Values

Local or global Local

Linear or non-linear Linear

Monotonic or non-monotonic Monotonic

Feature interactions captured No

Model complexity Low

5.2 Visual Explanation 175

5.2.3 Ceteris Paribus Plots

The Ceteris Paribus (CP) plot is named after the Latin phrase “ceteris paribus”
meaning “all other things being equal.” Like the PD and ICE plots, it is useful for
explaining the influence of the features of a model on its output. Specifically, the CP
plot shows the relationship between the change in model prediction and the changes
in feature values for a single data instance. This is in contrast to PD and ICE plots,
which show the change in individual features across all data instances.

Given a model f (x) with d features, the one-dimensional CP plot for feature i at
point of interest x∗ is given by

CPi(z)|x∗ = f
(
x∗1 , x∗2 , . . . , x∗i + z, . . . , x∗d

)
(5.7)

Thus, the CP plot describes the influence on the model prediction by the value of
the i-th feature at the specific instance x∗, with all other features held constant.
In practice, CPi(z) is plotted over the entire range of observed values of the i-th
feature, and it is easier to visualize a set of features on a single CP plot.

CP plots are particularly useful for evaluating model sensitivity and model
comparison. Comparing CP plots for two or more instances can reveal the sensitivity
of the model. By overlaying plots for twomodels, the differences in feature influence
between the models become apparent.

Interpretation of Ceteris Paribus Plots: CP plots are useful for explaining
the feature influence on model prediction for a specific data instance. They
assume independence between the feature plotted and the remaining model
features.

Unfortunately, CP plots make the same underlying assumption as PD plots in
that little to no correlation exists between model features. For dependent features,
a change in one will occur with a change in another, which is not captured by CP
plots.

Explainable properties of Ceteris Paribus Plots are shown in Table 5.4.

Observations:

• Figure 5.6 reveals that Glucose and BMI have the largest influence on
diabetes prediction, whereas SkinThickness has the least influence.

• The CP plots also indicate that BloodPressure and Insulin levels have an
inverse relationship with model outcome, such that higher levels of either
lead to lower diabetes prediction.

176 5 Post-Hoc Interpretability and Explanations

Fig. 5.6 Ceteris Paribus plot on Pima Indian diabetes dataset

Table 5.4 Explainable
properties of Ceteris Paribus
plots

Properties Values

Local or global Local

Linear or non-linear Linear

Monotonic or non-monotonic Monotonic

Feature interactions captured No

Model complexity Low

5.2.4 Accumulated Local Effects Plots

Accumulated local effects (ALE) plots are similar to PD plots in that they visualize
the average relationship between features and the output of a machine learning
model. However, PD plots are biased when correlations between features are
significant. ALE plots are an alternative that can account for potential correlations
and feature interactions. Given a model f with two features, the ALE function for
feature x1 is given by

ALE (x1) =
∫ x1

min (x1)

E [f (x1, x2)|x1 = z] dz− C (5.8)

=
∫ x1

min (x1)

∫
p(x2|z)∂f (z, x2)

∂z
dx2dz− C (5.9)

where C is a constant chosen to vertically center the plot such that the mean effect
is zero:

C = E [ALE(x1)] (5.10)

As seen in this equation, ALE averages over the features using the conditional
distribution p (x2|x1) rather of the marginal distribution p (x2) as in PD, which

5.2 Visual Explanation 177

avoids the extrapolation of data to unrealistic combinations of feature values as in
PD plots. Instead of averaging model predictions, ALE averages over the change
in model predictions ∂f (x1, x2)/∂x1, which represents the local effect of x1 on
f (x1, x2). This effectively blocks and offsets possible correlations that might exist
between feature x1 and other features. These local effects are averaged across all
possible values of feature x2. The integral accumulates the local effects over values
of z up to the value of x1, hence the name “accumulated local effects.”

Method Distribution Average over
PD Marginal Model predictions
ALE Conditional Changes in model predictions

In practice, we split feature x1 into a set of K segments that end at values
x1,1, x1,2, . . . , x1,K and average over n data samples while using finite differences
to calculate the change in model prediction:

ALE (x1) =
K∑

k=1

1

n(k)

n(k)∑
i=1

[
f (x1,k, x2,i)− f (x1,k−1, x2,i)

]− C (5.11)

where n(k) is the number of data samples that lie within the k-th segment of x1 and
x2,i is the value of the second feature for the i-th data sample that lies within the
k-th segment. The constant C is given by

C = 1

n

n∑
i=1

ALE (x1) (5.12)

Thus, given a feature value, the relative effect of changing the ALE feature on model
output can be directly read from the ALE plot. The ALE value at each point is
interpreted as the difference from the average output prediction.

ALE plots have significant computational advantages over PD plots. For a set
of N features, K segments, and n data samples, ALE plots require 2N × n model
predictions, whereas PD plots require KN × n predictions. Since the computation
of ALE plots does not depend on K , the number of computations scales linearly as
the number of samples n increases.

The equivalent of ICE plots to PD plots does not exist for ALE plots. This is
because each interval used to calculate ALE plots uses only samples that fall within
the interval. Additionally, ALE plots average the difference in effects between
samples, and it would be impossible to plot a curve for each sample.

Although ALE plots can account for correlated features, it can still be difficult to
interpret them when the features are strongly correlated. In such cases, it is better
to either plot only the dominant feature or plot the joint changes in the correlated
features together. Furthermore, as the number of intervals K increases and fewer

178 5 Post-Hoc Interpretability and Explanations

data points lie within each interval, ALE plots can become noisy in appearance.
Careful consideration should be taken in the selection of K .

Interpretation of Accumulated Local Effects Plots: ALE is useful for visual-
izing the relationship between one or two features and model output. They
take into account feature interactions since they average using conditional
distributions and are much faster to compute in comparison to PD plots.

Analogous to two-dimensional PD plots, 2D ALE plots can be used to show the
interaction of two features at once. For a model f (x1, x2, . . . , xd) on d features, the
2D ALE function is given by

ALE (x1, x2) =
∫ x1

min (x1)

∫ x2

min (x2)

E [f (x1, x2, . . . , xd)|x1 = z, x2 = q] dzdq − C

(5.13)
where the constant C is chosen to doubly center the ALE function such that the
mean effect of features x1 and x2 is zero:

C = 1

n

n∑
i=1

ALE (x1, x2) (5.14)

It is important to note that 2D ALE plots explicitly show the second-order effects of
the two features on model prediction. If no such interaction exists, the 2D ALE plot
will be close to zero. This is very different from the PD plot as 1D and 2D PD plots
always show the total effect.

Explainable properties of Accumulated Local Effects Plots are shown in
Table 5.5.

Observations:

• Figure 5.7 shows the direct relationship of Glucose levels and inverse
relationship of Insulin levels on diabetes prediction, which states that higher
Glucose or lower Insulin leads to higher probability of diabetes.

• We can observe the second-order interaction effects of Glucose and Insulin
together in Fig. 5.8, where concurrently lower levels of both have less
interaction effect than concurrently higher levels.

5.2 Visual Explanation 179

Fig. 5.7 ALE plot on Pima Indian diabetes dataset

Fig. 5.8 2D ALE plot on Pima Indian diabetes dataset

180 5 Post-Hoc Interpretability and Explanations

Table 5.5 Explainable
properties of accumulated
local effects plots

Properties Values

Local or global Global

Linear or non-linear Non-linear

Monotonic or non-monotonic Non-monotonic

Feature interactions captured Yes

Model complexity Low

5.2.5 Breakdown Plots

Breakdown plots visualize the influence of model features on the model prediction
by decomposing the prediction into individual attributions of each feature for a
specific data instance. It is a local method that explains which features have the
strongest influence on a particular prediction.

Breakdown plots measure the change in model output for a change in each feature
while holding the values of other features constant. Given a model with d features,
the approach quantifies the attribution vi(x) of feature i at instance x = x∗ relative
to the mean model prediction f (x):

f (x∗) = f (x)+
d∑

i=1
vi(x

∗) (5.15)

with

vi(x
∗) = f (x∗)− E

[
f (x∗)|x∗i = Xi

]
(5.16)

and the expectation taken over the random variable Xi . We call vi(x
∗) the variable-

importance measure for feature i evaluated at sample x∗. For linear additive models
of the form

f (x) = α +
d∑

i=1
βixi (5.17)

the expectation of a function is the function of an expectation. We can then replace
the expectation with the sample mean:

vi(x
∗) = f (x∗)− f

(
1

n

n∑
i=1

xi

)
(5.18)

= βi

(
x∗i − xi

)
(5.19)

5.2 Visual Explanation 181

Interpretation of Breakdown Plots: breakdown plots explain a model predic-
tion on a particular instance by quantifying feature attribution. Individual
feature attributions are calculated by holding the values of other features
constant. Changing order in which feature attributions are calculated can
significantly change explanations if feature interactions exist.

In general, breakdown plots provide order-specific explanations of feature
attributions. For linear additive models, the order in which breakdown plots select
and evaluate variable-importance measures does not matter. However, for non-
linear models, in which feature interactions exist, differences in order can lead to
significantly different explanations for the same instance.

Explainable properties of Breakdown Plots are shown in Table 5.6.

Fig. 5.9 Breakdown plot on Pima Indian diabetes dataset

182 5 Post-Hoc Interpretability and Explanations

Table 5.6 Explainable
properties of breakdown plots

Properties Values

Local or global Local

Linear or non-linear Linear

Monotonic or non-monotonic Monotonic

Feature interactions captured No

Model complexity Low

Observations:

• Fig. 5.9 quantifies the feature attribution for the prediction of a particular
instance. We see that 3 features contribute positively and 4 negatively toward
diabetes prediction.

• Age had the most significant effect in reducing diabetes prediction.
• Taken together, the features lead to a 0.245 prediction probability for

diabetes.

5.2.6 Interaction Breakdown Plots

When feature interactions exist, breakdown plots are not suitable and lead to widely
varying, biased explanations. Interaction Breakdown plots (iBreakdown) capture
feature interactions while generating explanations for feature contributions. To do
so, iBreakdown bootstraps data samples to a baseline model with fixed parameters
and uses breakdown plots to generate a set of breakdown explanations. The variation
in these explanations serves a proxy to model level uncertainty. It also permutes
feature order in the breakdown plots, where the variation of feature contribution
values is a measure of the feature explanation uncertainty. A greater variability of
contribution implies interaction with other features.

For a model f (x), let the individual contribution Δi for feature i at instance x∗
be given by

Δi = E
[
f (x)|xi = x∗i

]− E [f (x)] (5.20)

For each pair of features (xi, xj), their joint contribution is given by

Δij = E

[
f (x)|xi = x∗i , xj = x∗j

]
− E [f (x)] (5.21)

The interaction contribution ΔI
ij for each pair of features (xi, xj) is given by

ΔI
ij = Δij −Δi −Δj (5.22)

5.2 Visual Explanation 183

This interaction contribution will be zero if no interaction exists between the pair of
features. By using the individual contributions Δi and interactive contributions Δij

to rank and sequentially order the features, breakdown variable-importance scores
can be applied to compute feature attribution.

Explainable properties of iBreakdown Plots are shown in Table 5.7.

Interpretation of iBreakdown Plots: iBreakdown is an improvement upon
breakdown plots to handle the effects of feature interactions. It provides
ranking and ordering of both individual features and interaction effects for
breakdown plots.

Observations:

• Fig. 5.10 shows feature attributions for the same instance as in Fig. 5.9,
except that feature interactions are also incorporated.

• The figure indicates that BMI, DiabetesPedigreeFunction, Insulin, and
SkinThickness contributed positively to diabetes prediction.

• It can be seen that the interaction effect of BloodPressure and Glucose had
the strongest negative contribution to diabetes prediction.

Fig. 5.10 iBreakdown plot on Pima Indian diabetes dataset

184 5 Post-Hoc Interpretability and Explanations

Table 5.7 Explainable
properties of iBreakdown
plots

Properties Values

Local or global Local

Linear or non-linear Non-linear

Monotonic or non-monotonic Non-monotonic

Feature interactions captured Yes

Model complexity Medium

5.3 Feature Importance

Analogous to visual explanation methods, feature importance methods seek to
quantify the contribution of features on model prediction. They do so while
considering additional factors such as the type, robustness, comprehensibility, or
quality of explanations. Explanations may explain the global behavior of a model,
or they may be local and explain the prediction of individual instances. Each method
has its advantages and trade-offs, and some are model-specific or optimized to
particular model methods. We explore a variety of these methods below.

5.3.1 Feature Interaction

When the features of a model are not independent, they will interact with each other
to influence the model prediction. We can subtract the total effect of all features
f (x∗) from the sum of the effects of each individual feature f (xi) to find the feature
interaction effect f∗(x):

f∗(x) =
d∑

i=1
f (xi)− f (x∗) (5.23)

Let the partial dependence function of two features (x1, x2) be given by

PD(x1, x2) = 1

n

n∑
k=1

f (x1, x2, x3,k, . . . , xd,k) (5.24)

where the summation is over the data and xd,k is the k-th data instance value of the
d-th feature. If the two features have no interaction, this PD function decomposes
to the sum of individual PD functions:

PD(x1, x2) = PD(x1)+ PD(x2) (5.25)

Hence, another way to measure the interaction effect PD∗(x1, x2) between these
features is given by

5.3 Feature Importance 185

PD∗(x1, x2) = PD(x1, x2)− PD(x1)− PD(x2) (5.26)

The two-way H statistic proposed by [FP08] is a measure of feature interaction
based on the variance of the interaction effect between two features xj and xk:

H 2
jk =

∑n
i=1

[
PD(xj,i , xk,i)− PD(xj,i)− PD(xk,i)

]2
∑n

i=1 PD2(xj,i , xk,i)
(5.27)

where the summation is once again over the data and PD(xj,i) is the partial
dependence function of the j -th feature at the i-th data instance value. It can be
interpreted as the share of variance explained by the interaction effect between two
features. A variation of the H statistic is based on the variance of the interaction
effect between the j -th feature and all of the remaining features j :

H 2
j =

∑n
i=1

[
f (xi)− PD(xj,i)− PD(xj,i)

]2
∑n

i=1 f 2(xi)
(5.28)

This is termed the interaction H statistic.
We can calculate the interaction H statistic for each feature in a model to

measure their interaction effect with the other model features and then explore the
relationships using the two-way H statistic.

Interpretation of Feature Interaction: H statistic plots can allow us to measure
the interaction effect between a feature and the model output or between two
features. It can be interpreted as the contribution to variance by the interaction
effect. It is computationally expensive and cannot explain the nature of the
interaction.

The H statistic has meaningful interpretation as the contribution to variance by
the interaction effect. Because it ranges between zero and one depending on the
strength of interaction between features xj and xk or of the j -th feature and the
remaining features, it is useful for comparison across varying feature types and
models. The trade-off is that the H statistic is very computationally expensive, as
the PD function for every pair of features must be computed over n data samples.
Also, the H statistic can measure the strength but not the type of interaction. They
cannot be used to relate the change in model prediction from changes in the input
features.

Explainable properties of Feature Interaction are shown in Table 5.8.

186 5 Post-Hoc Interpretability and Explanations

Observations:

• Figure 5.11 shows the ranked interaction H statistic between the features and
diabetes prediction.

• Glucose is seen to have the highest interaction, whereas BloodPressure has
the lowest interaction.

• The two-way H statistic between pairs of features is shown in Fig. 5.12.
• It is not unexpected that Pregnancies and Age have the strongest relation-

ship.
• What is somewhat surprising is that BloodPressure and SkinThickness have

such a strong a relationship.

Fig. 5.11 Interaction H statistic ranked on Pima Indian diabetes dataset

Table 5.8 Explainable
properties of feature
interaction

Properties Values

Local or global Global

Linear or non-linear Non-linear

Monotonic or non-monotonic Non-monotonic

Feature interactions captured Yes

Model complexity High

5.3 Feature Importance 187

Fig. 5.12 Two-way H statistic for Pima Indian diabetes dataset

5.3.2 Permutation Feature Importance

Permutation feature importance (PFI) was proposed as a global explanation method.
It is based on the notion that the importance of a feature is related to the rise in model
prediction error when the values of the feature are shuffled. The greater the error,
the stronger the relationship between the feature and the model prediction.

Consider a model f with d features. Given two features (xi, xj), if we permute
the values of feature xi and observe the model error rises relative to when we
permute the values of feature xj , we conclude that xi is more important. For linear
additive models, this implies the magnitude of the weight of feature xi is larger than
for xj . For non-linear models, the interpretation of feature permutation is less clear,
since interaction effects between features are included and cannot be isolated when
applying PFI.

The interpretation of PFI is easy to understand and quick to compute since it does
not require models to be retrained. PFI can be calculated as an absolute difference
in model error (e.g., difference in mean squared error) or as a ratio of model errors.
Using a ratio allows PFI to be applied across a variety of models. However, PFI
requires the true predictions to be known in order to calculate the model error.

188 5 Post-Hoc Interpretability and Explanations

Interpretation of Permutation Feature Importance: PFI is based on the notion
that shuffling the values of unimportant features does not increase model error.
It is computationally efficient since no models are retrained. In general, PFI
should be calculated on test set data. PFI is biased when features are strongly
correlated.

It is important to note that permuting features can often lead to unrealistic, invalid
data instances. In general, PFI should be computed on test data rather than training
data, since the model may be overfit and computing PFI on training data may
lead to erroneous conclusions about which features are most important. However,
computing on test data ignores the training instances, resulting in greater variance.
PFI can be combined with cross-validation to reduce variance, but computing on the
folds means that PFI would not be computed using all the data on the final model.
Because PFI includes all feature interaction effects, feature importance may be
underestimated when two or more features are strongly correlated. This is because
importance can be diluted across the correlated features.

Fig. 5.13 Permutation feature importance on Pima Indian diabetes dataset

5.3 Feature Importance 189

Table 5.9 Explainable
properties of permutation
feature importance

Properties Values

Local or global Global

Linear or non-Linear Non-linear

Monotonic or non-monotonic Non-monotonic

Feature interactions captured Yes

Model complexity Low

Explainable properties of Permutation Feature Importance are shown in
Table 5.9.

Observations:

• Figure 5.13 shows that Glucose, BMI, and Age have the highest importance,
whereas BloodPressure, SkinThickness, and Insulin have the lowest.

• Because Glucose and Insulin may be strongly negatively correlated, the
importances of both may be biased and Insulin may be underestimated
whereas Glucose overestimated.

5.3.3 Ablations: Leave-One-Covariate-Out

Ablation is a group of methods that sequentially remove features and evaluate the
change in model prediction error to determine feature relevance. One of the simplest
methods is called Leave-One-Covariate-Out (LOCO), also known as Leave-One-
Feature-Out (LOFO). As its name implies, the idea is to sequentially drop each
feature, retrain the model, and compare the subsequent model error with respect to
the baseline model that includes all features. This comparison can be in the form
of the difference in prediction error (e.g., mean squared error) or the ratio of model
errors.

For a model f with d features and n data samples, LOCO as a ratio for the j -th
feature is given by

LOCOj =
∑n

i=1
∣∣yi − f (x1,i , x2,i , . . . , xj−1,i , xj+1,i , . . . , xd,i)

∣∣2
∑n

i=1
∣∣yi − f (x1,i , x2,i , . . . , xd,i)

∣∣2 (5.29)

where yi is the true value of the i-th data instance and xj,i is the j -th feature for
the i-th data instance. Like permutation feature importance, LOCO needs access to
the true outputs for computation. Because LOCO requires the model with d features
to be retrained d times, computational costs can be huge when the feature space is
large.

190 5 Post-Hoc Interpretability and Explanations

Interpretation of Leave-One-Covariate-Out: LOCO has simple and easily
understandable interpretation, but it is computationally expensive since it
requires a model to be trained as many times as there are features. Feature
interaction effects are also ignored.

The results of LOCO are simple to understand and interpret. LOCO is applicable
across a variety of feature and model types. However, as LOCO only drops a single
feature at a time, it ignores feature interaction effects when two or more features
are correlated. If interaction effects are significant, LOCO will return incorrect or
biased results.

Explainable properties of Leave-One-Covariate-Out are shown in Table
Table 5.10.

Observations:

• Figure 5.14 shows that Glucose is the single most significant feature for
diabetes prediction, whereas Pregnancies is the least important.

• LOCO is fairly certain that Glucose is the most significant, while it is quite
uncertain that Age is the third most significant feature.

Fig. 5.14 Leave-One-Covariate-Out ranked on Pima Indian diabetes dataset

5.3 Feature Importance 191

Table 5.10 Explainable
properties of
Leave-One-Covariate-Out

Properties Values

Local or global Global

Linear or non-linear Non-linear

Monotonic or non-monotonic Non-monotonic

Feature interactions captured No

Model complexity Medium

5.3.4 Shapley Values

Shapley values have game theoretic foundations and are another useful method for
measuring feature relevance. They are based on the notion of distributing feature
importance between participating features by applying cooperative game theory.
Each feature is a player in a game whose goal is to distribute payouts fairly
among players based on their contribution to the total payout. A coalition is a
group of players cooperating together in the game. The Shapley value is defined
as the marginal contribution of each feature averaged across the set of all possible
coalitions of features. It was shown by its namesake Shapley [Sha53] in 1953 to be
efficient, symmetric, dummy, and additive, which implies a fair distribution.

Given a model f with d features X = {x1, x2, . . . , xd}, the Shapley value φj for
the j -th feature is given by

φj (f) =
∑

S∈P(X\{xj })
|S|!(d − |S| − 1)!

d!
[
f

(
S ∪ {

xj

})− f (S)
]

(5.30)

where the summation is over the power set of all possible feature coalitions S ∈
P

(
X \ {

xj

})
that do not contain the j -th feature, and |S| is the number of elements

(features) in coalition S. Here, f
(
S ∪ {

xj

})
and f (S) are models trained with

feature xj present and absent, respectively. The Shapley value can be written as

φj (f) = 1

d

∑

S∈P(X\{xj })
f

(
S ∪ {

xj

})− f (S)(
d − 1

|S|
) (5.31)

It can be seen from this equation that the Shapley value is the average marginal
contribution of adding feature xj to all possible coalitions excluding xj . The model
prediction can thus be expressed as a summation of the Shapley values and the mean
model prediction:

f (x) =
d∑

j=1
φj (f)+ E [f (x)] (5.32)

192 5 Post-Hoc Interpretability and Explanations

In this fashion, Shapley values explain the difference between the model prediction
and the global average prediction. Shapley values possess several useful properties,
including local accuracy (where the explanation model matches the original model
for the instance to be explained), missingness (where the explanation will be zero
for an irrelevant feature), and consistency (where the explanation will not decrease
if a feature’s contribution does not decrease). These properties imply that there is a
unique additive feature attribution method based on Shapley values.

Unfortunately, Shapley values do not adequately handle feature interactions.
Furthermore, with a large feature space, Shapley values have high computation cost
since the number of coalitions increases exponentially.

Interpretation of Shapley Values: use Shapley values to explain feature
contributions for specific instances. Note that they do not handle feature
interactions well and are difficult to compute exactly.

5.3.5 SHAP

One of the difficulties in calculating Shapley values is the exponential computational
cost. For practical considerations, SHAP (Shapley Additive Explanations) was
proposed by [LL17b] to explain a particular data instance as a unified measure of
feature importance. It provides a unique, additive feature importance explanation
for individual data instances.

Recall that the marginal contribution C
(
xj |S

)
of a feature xj to a coalition S is

given by

C
(
xj |S

) = f
(
S ∪ {

xj

})− f (S) (5.33)

SHAP computes Shapley values of a conditional expectation function of the model
over a dataset:

f (X) = E [f (X)|S] (5.34)

where the model features are given by X = S ∪ (X \S). As it is expensive to retrain
a large set of models on subsets of features, SHAP applies the observed marginal
expectation to calculate model predictions:

f (S) = E
[
f (X)|S = S∗

]
(5.35)

where S∗ are the feature values of the data instance to be explained. The expectation
is taken over a background dataset, which requires a sufficient number of samples
of both S and X \ S to achieve accurate results.

5.3 Feature Importance 193

As computation of the conditional expectation is challenging, several methods
have been proposed to approximate the calculation of SHAP values. We discuss one
of these in the next section.

5.3.6 KernelSHAP

KernelSHAP is an algorithm that computes approximate Shapley values in the local
region around a reference data instance X∗ by

1. sampling over all possible coalitions and
2. applying a linear additive model approximation to f .

Because of a linear model assumption, the features are uncorrelated and the SHAP
conditional expectation can be approximated by

f (S) = E
[
f

(
S∗ ∪ (X \ S)

)]
(5.36)

This is significantly computationally cheaper to calculate and implies we can
compute model predictions by fixing the feature values of S to those of the sample
to be explained X∗ and sampling the values of the features not in S from the
background dataset.

Computing KernelSHAP is equivalent to fitting a linear model by minimizing the
objective function J:

J = min
φi ,...,φM

⎧⎪⎨
⎪⎩

∑

S∈P(X\{xj })

⎡
⎣f (S)−

∑
xj∈S

φj

⎤
⎦
2

π(S)

⎫⎪⎬
⎪⎭

(5.37)

where the kernel π(S) is given by

π(S) = d − 1(
d

|S|
)
|S| (d − |S|)

(5.38)

Since f is assumed to be linear, and J is a square loss function, least squares
regression can be used. It can be seen that the kernel represents a weighting function
that assigns higher weight to the smallest and largest coalitions. This is because they
tend to be most informative in determining a feature importance, and a coalition with
one feature is as informative as a coalition with all but one feature.

194 5 Post-Hoc Interpretability and Explanations

In practice, we calculate Shapley values using KernelSHAP and average across
the entire dataset:

Φj =
n∑

i=1

∣∣∣φi
j

∣∣∣ (5.39)

Interpretation of SHAP: SHAP provides an efficient way to calculate Shapley
values to help explain the feature contributions for a specific data instance.
KernelSHAP is one model-agnostic implementation of SHAP. KernelSHAP
computes approximate Shapley values and does not account for feature
interactions.

Shapley values predicted by KernelSHAP are approximate. Furthermore, due to
its linear model assumption, KernelSHAP does not account for feature interactions.
However, we can apply KernelSHAP concepts to calculate the Shapley interaction
effect, given by

φi,j =
∑

S∈P(X\{xi ,xj })
|S|!(d − |S| − 2)!

2(d − 1)! δij (S) (5.40)

Fig. 5.15 SHAP on Pima Indian diabetes dataset

5.3 Feature Importance 195

where i �= j and the interaction contribution is given by

δij (S) = f (S ∪ {xi, xj })− f (S ∪ {xi})− f (S ∪ {xj })+ f (S) (5.41)

This relation isolates the interaction effect by removing the individual effects for
features xi and xj .

Explainable properties of KernelSHAP are shown in Table 5.11.

Observations:

• Figure 5.15 indicates that Age and Glucose have the greatest negative
influence on the instance prediction, while DiabetesPedigreeFunction and
BMI have the greatest positive influence.

• Figure 5.16 shows the distribution of the Shapley values over all instances,
from which we see that Glucose and BMI have the largest average impact
on the prediction of diabetes.

Fig. 5.16 Shapley values predicted by KernelSHAP for all data instances in Pima Indian diabetes
dataset

196 5 Post-Hoc Interpretability and Explanations

Table 5.11 Explainable
properties of KernelSHAP

Properties Values

Local or global Local

Linear or non-linear Linear

Monotonic or non-monotonic Monotonic

Feature interactions captured No

Model complexity Medium

5.3.7 Anchors

Precision is a key factor in interpretability, as humans prefer explanations with high
precision and fidelity. Anchors are a high-precision method for generating local
explanations by extracting a set of if-then rules. These rules have the property in
that they serve as “anchors” for a set of features such that changes in other features
will not change the model output. Anchor explanations thus represent local, high-
confidence, sufficient conditions for predictions. They are explicitly clear in their
explanation since they apply only when all of their rules are met. Anchors do not
assume local linearity as in KernelSHAP or LIME and are therefore more precise in
handling unseen data instances.

With complex models, explaining individual predictions can make the explana-
tion more comprehensible. Local explanations commonly generate perturbation-
based explanations that measure the change in model output for small changes to
the data instances. Let D represent a known distribution of perturbations. Given a
model f , instance x, and precision threshold τ , an anchor A is given by

ED(z|A)

[
1f (x)=f (z)

] ≥ τ, A(x) = 1 (5.42)

where z is a sample drawn from the conditional distribution when rule A applies
D(z|A). In other words, an anchor is a set of feature predicates on x that achieves a
precision ρ(A) ≥ τ . In general, anchors are expected with high probability to meet
this precision threshold for some arbitrarily small /delta:

Pr [ρ(A) ≥ τ] ≥ 1− δ (5.43)

It may be that several anchors meet this criterion. In this case, preference is given to
the anchors with the highest coverage C(A), defined as

C(A) = ED(z) [A(z)] (5.44)

If we define A′ to be the set of anchors that satisfy (5.43), generation of anchors can
be achieved by solving the combinatorial optimization problem:

max
A∈A′

C(A) (5.45)

Note that the anchor search space is exponential.

5.3 Feature Importance 197

In practice, a bottom-up anchor construction approach is taken that starts with
an empty rule set and generates a set of candidate rules by iteratively extending an
anchor by one additional feature predicate. The anchor is replaced with the rule with
the highest estimated precision at each step. Once the precision threshold is met, the
anchor is added to the set of anchors for the model. This is a greedy search approach
that will identify anchors with the fewest rules and not necessarily the highest
coverage, but such anchors are easier to understand and generally have higher
coverage. Beam search improves upon the greedy search method by maintaining
a candidate set of rules during the iterative search process.

Interpretation of Anchors: Anchors are local, high-confidence, rules-based
explanations for specific instances that explicitly specify their coverage. A
set of anchors with high coverage over the dataset can help us understand
global model behavior.

Anchors overcome limitations of other local explanation methods that model
local behavior using linear approximations. For complex models and data spaces,
this linear approximation may be invalid and lead to inaccurate results. Furthermore,
the region applicable to a local linear model is unclear, whereas anchors explicitly
specify their coverage. However, anchor rules may sometimes be complex and
provide low coverage. They also do not provide as much insight beyond identifying
instances near decision boundaries. A set of generated anchors may have overlap-
ping coverage and/or omit a portion of the input space. Lastly, anchors require
a perturbation distribution that should be realistic, interpretable, and expressive
enough to uncover model behavior.

Explainable properties of Anchors are shown in Table 5.12.

Observations:

• Figure 5.17 lists four anchors (two for positive and two for negative diabetes
prediction) generated from the dataset.

• The first anchor states that if Glucose >139 and BMI >32.35 and Age >40,
diabetes is predicted with 98% percent precision.

• The two negative anchors are based on lower values of Glucose and BMI
and have significant overlap. In general, we prefer to use the second anchor,
which has higher coverage (16.9 vs 9.3%).

• The second positive anchor is very specific and incorporates criteria for six
features but suffers from very low coverage (0.16%).

198 5 Post-Hoc Interpretability and Explanations

Table 5.12 Explainable
properties of anchors

Properties Values

Local or global Local

Linear or non-linear Non-linear

Monotonic or non-monotonic Non-monotonic

Feature interactions captured Yes

Model complexity High

Fig. 5.17 Anchors on Pima Indian diabetes dataset

5.3.8 Global Surrogate

Global surrogate methods attempt to approximate the predictions of a black-box
model by using a simpler, more interpretable model in order to explain model
behavior. This simpler model is termed the surrogate model and is fitted to emulate
the input–output mapping of the black-box model. Explanations of the surrogate
model can then serve to explain the global behavior of the black-box model.

Consider a black-box model f , a data instance x, and a surrogate model h. Fitting
the global surrogate model is equivalent to the optimization problem:

argmin
h

Ex

[
Ef (x) [L(h(x), f (x))] |x]

(5.46)

where L is a specified loss function over the joint distribution of the black-box
model inputs and outputs. If the loss function is mean squared error, the fidelity of
the surrogate model to the black-box model can be measured by R-squared (R2):

R2 = 1−
∑n

i=1 [h(xi)− f (xi)]2∑n
i=1

[
h− f (xi)

]2 (5.47)

where the summation is over a dataset of n samples, h(xi) and f (xi) are the
surrogate model and black-box model predictions on the i-th sample, respectively,
and where h is the mean surrogate model prediction given by

h = 1

n

n∑
i=1

h(xi) (5.48)

This R2 is a measure of how well the black-box model variance is explained by the
surrogate model, and a value close to 1 indicates a good fit.

5.3 Feature Importance 199

Applying global surrogate methods in practice generally follows the following
steps:

1. Select an interpretable model (e.g., linear/logistic regression, decision tree, Naive
Bayes, etc.).

2. Create a dataset from the inputs and black-box model outputs.
3. Train the interpretable model on the dataset.
4. Use the interpretable model explanations to understand black-box model behav-

ior.

Interpretation of Global Surrogate Models: global surrogates aim to explain
complex models by fitting simpler, interpretable models to the complex model
predictions. The simpler model can then be used to explain the global behavior
of the more complex model.

Global surrogate models generally exhibit a complexity vs precision trade-off.
While they are easier to compute and interpret, they may lack sufficient power to
accurately capture complex models or data distributions. A global surrogate model
trained on one data sample may make wildly divergent predictions for another data
sample. Furthermore, applying different interpretable models may result in different
explanations for the same black-box model. Global surrogate models generally
cannot make accurate predictions on individual data instances. Even if the surrogate
model predictions perfectly mirror the black-box model, there is no guarantee that
the black-box model predictions match the real world. Surrogate models would
provide only an illusion of interpretability.

Explainable properties of Global Surrogates are shown in Table 5.14.

Fig. 5.18 Prediction histogram of logistic regression (global surrogate model) vs random forest
model for diabetes classification on Pima dataset (R-squared= 0.70)

200 5 Post-Hoc Interpretability and Explanations

Table 5.13 Feature weights
of global surrogate (logistic
regression) model

Feature Weight

Pregnancies 0.11307387

Glucose 1.25676028

BloodPressure −0.28624197
SkinThickness −0.05920553
Insulin −0.06240799
BMI 0.87315981

DiabetesPedigreeFunction 0.29223447

Age 0.3340456

Table 5.14 Explainable
properties of global
surrogates

Properties Values

Local or global Global

Linear or non-linear Both

Monotonic or non-monotonic Both

Feature interactions captured Yes

Model complexity Low

Observations:

• Figure 5.18 on the left shows prediction histogram of surrogate model
(logistic regression) fitted to the predictions of a black-box model (random
forest). The right side shows the prediction histogram of the black-box
model.

• A comparison of the histograms indicates that the model predictions are
comparable, though the surrogate model is more sure of its prediction with
a greater number of predictions toward the ends. The two models exhibited
an R-squared of 0.70 and a correlation of 84%.

• We can use the feature weights of the surrogate model to explain black-box
model prediction. As seen in Table 5.13, Glucose and BMI have the great
influence on diabetes prediction.

5.3.9 LIME

Local surrogate models aim to explain the predictions of a black-box model on
individual data instances rather than on the entire model. They exhibit a property
called local fidelity, which means that they are good approximations to how a black-
box model behaves in the vicinity of the instance to be predicted. In 2016, Local
Interpretable Model-Agnostic Explanations (LIME) was proposed [RSG16a] as a

5.3 Feature Importance 201

model-agnostic approach to generate interpretable explanations of the individual
prediction of any model in the region around the prediction. Specifically, LIME is
based on

• using interpretable representations of data instances that are human understand-
able,

• approximating the black-box model in the neighborhood of a data instance with
an interpretable (linear) model,

• perturbing the data instance of interest to generate new samples weighted by their
proximity to the instance of interest,

• fitting the interpretable model to the new samples and using it to provide
explanations of the black-box model.

Formally, for a black-box model f , data instance of interest x, and an explanation
model h, the problem of identifying a local surrogate model is equivalent to
optimizing for the objective ζ(x):

ζ(x) = argmin
h∈H

L (f, h, πx(z))+Ω(h) (5.49)

where πx is a kernel function that weighs a sample z based on its distance to the
instance of interest x, L is a loss function, and Omega is a complexity penalty.
The explanation model h is selected from a class H of interpretable models such
as linear, logistic, or decision tree models. The complexity term Ω(h) is selected
to constrain the number of model parameters or tree depth by including a cost for
greater complexity. The loss function L represents a measure of how poorly the
explanation model approximates the black-box model in the locality of instance x.

In practice, the loss L is approximated by applying random perturbations to the
instance of interest to generate a set of new samples z. These samples are weighted
by the kernel function πx(z) that penalizes the distance between x and z. This kernel
weighting allows LIME to be fairly robust to sampling noise.

An important element of LIME is the mapping of data instances to interpretable
representations that are easily understandable to humans, such as the use of binary
vectors to represent the presence or absence of a feature or a set of features. For
example, each element of a binary vector can represent a value, a word, or a
patch of pixels, and a value of 0 or 1 would indicate the absence or the presence,
respectively, within the data instance to be mapped. Interpretable representations
have drawbacks. Information may be lost when transforming the data instances, they
may lack sufficient representation power, or they may constrain the interpretable
model.

Interpretation of Local Interpretable Model-Agnostic Explanations: LIME
provides human-interpretable feature relevance explanations for individual

(continued)

202 5 Post-Hoc Interpretability and Explanations

instances. It does so by randomly perturbing instances and training a local
surrogate model on these perturbations which is most often a linear model.
As a model-agnostic method, LIME is very flexible and applicable across
different domains and data types.

LIME is very flexible and generates simple, easy to understand models. However,
it may not reveal the complete explanation if the behavior of the black-box model is
highly non-linear near the instance of interest. Sampling by random perturbation
may not provide sufficient coverage, and it is possible to generate completely
different explanations for two data instances that are near each other. For high
dimensionality, the notion of distance between any two points becomes less well
defined and care must be taken in defining the kernel weighting function within
LIME as well as pre-scaling across dimensions. Lastly, recent work by [Sla+20] has
shown that LIME, SHAP, and other input perturbation-based explanation methods
can make (and be fooled into providing) innocuous explanations for black-box
models with hidden biases.

Explainable properties of LIME are shown in Table 5.15.

Observations:

• Figure 5.19 depicts the LIME explanations for one instance with a high
probability (79%) prediction of diabetes.

• Glucose and BMI can be seen to be the most influential features contributing
to the positive prediction.

• BloodPressure was the sole negative contribution.

Fig. 5.19 LIME applied to classification on Pima dataset

5.4 Example-Based 203

Table 5.15 Explainable
properties of LIME

Properties Values

Local or global Local

Linear or non-linear Both

Monotonic or non-monotonic Both

Feature interactions captured Yes

Model complexity Medium

5.4 Example-Based

Example-based explanations are a set of model-agnostic methods that attempt to
explain global or local behavior of a model or its underlying data distribution
by selecting particular data instances. Unlike previous methods, example-based
methods do not explain models through feature importance or interactions. Instead,
they help humans construct compact mental models of the black-box model or of
the data distribution.

5.4.1 Contrastive Explanation

The contrastive explanation method (CEM), also known as differential explanations,
does not explain a specific prediction but instead aims to explain why a prediction
was made in contrast to another. It generates local explanations for the prediction of
black-box classifier models on individual instances. CEM is based on the notion of
pertinent positives (PPs) and pertinent negatives (PNs). Whereas pertinent positives
are the minimal set of relevant features that must be present in order to justify the
prediction, pertinent negatives are the minimum set of features that must be absent
in order to assert the prediction of the instance of interest. Taken together, PP and PN
constitute a complete explanation and evidence in support of the model prediction.

Given a black-box model f , a dataset D, an instance of interest x with d features,
its associated prediction t = f (x), and a scoring function ζ(x) that returns a set of
confidence scores over all classes, the CEM method identifies pertinent positives by
optimizing over the perturbation function δpos in the expression:

204 5 Post-Hoc Interpretability and Explanations

δpos ←argmin
δ∈Δpp

αmax

⎡
⎢⎢⎢⎣max

i �=t
[ζ(x + δ)]i

︸ ︷︷ ︸
next likely class

− [ζ(x + δ)]t︸ ︷︷ ︸
predicted class

,−κ

⎤
⎥⎥⎥⎦

︸ ︷︷ ︸
hinge loss function

+ β ||x + δ − b||1︸ ︷︷ ︸
L1 term

+ ||x + δ − b||22︸ ︷︷ ︸
L2 term︸ ︷︷ ︸

elastic net regularizer

− γp(x + δ)︸ ︷︷ ︸
distribution term

(5.50)

where α, β, and γ are non-negative parameters used to regularize the loss function,
L1 term, and distribution term, respectively. The hinge loss function includes a
parameter κ , which controls the gap between the predicted class and the next most
likely class based on the scoring function. The distribution term is estimated from
the data and penalizes for points outside the feasible data space. The perturbation
δpos is constrained to the space

Δpp : |x + δ + b| � |x − b| (5.51)

where the � implies element-wise inequality and b = [b1, b2, . . . , bd] are the base
values associated with each feature in x.

CEM identifies pertinent negatives by optimizing over the perturbation function
δneg in the expression:

δneg ←argmin
δ∈Δpn

αmax

⎡
⎢⎢⎢⎣max

i �=t
[ζ(x + δ)]t

︸ ︷︷ ︸
next likely class

− [ζ(x + δ)]i︸ ︷︷ ︸
predicted class

,−κ

⎤
⎥⎥⎥⎦

︸ ︷︷ ︸
hinge loss function

+ β ||δ||1︸︷︷︸
L1 term

+ ||δ||22︸︷︷︸
L2 term︸ ︷︷ ︸

elastic net regularizer

− γp(x + δ)︸ ︷︷ ︸
distribution term

(5.52)

where the perturbation δneg is constrained to the space

Δpn : |x + δ + b| |x − b| (5.53)

This is equivalent to find the minimum set of features in δ ∈ δpn such that their
absence in the instance of interest x will lead to a different prediction (the closest
different class).

5.4 Example-Based 205

Interpretation of Contrastive Explanations: aligned with human reasoning,
CEM is based on sets of pertinent positive and pertinent negative features
that together constitute a local explanation of a model prediction. CEM is
applicable to high-dimensional sparse data and captures feature interactions.

In practice, CEM provides easily interpretable explanations that are suitable and
useful for high-dimensional sparse data, especially since the sparsity implies that
there are many feature values that may contain no information for a model predic-
tion. These explanations tend to be persuasive as they are intuitive and analogous
to human decision-making processes. CEM also handles feature interactions, but it
can be sensitive to noise in data and require significant computation costs.

Explainable properties of Contrastive Explanations are shown in Table 5.16.

Fig. 5.20 CEM applied to the Pima Diabetes dataset

206 5 Post-Hoc Interpretability and Explanations

Table 5.16 Explainable
properties of contrastive
explanations

Properties Values

Local or global Local

Linear or non-linear Both

Monotonic or non-monotonic Both

Feature interactions captured Yes

Model complexity Medium

Observations:

• Figure 5.20 shows pair plots of the model features with the explained
instance highlighted in orange, a PP instance in dark green, and a PN
instance in light green.

• The PP instance typically lies close to the center of mass of the instances
with the same prediction class as the explained instance.

• The PN instance typically lies away from the center of mass and sometimes
as an outlier.

5.4.2 kNN

The k-nearest neighbor (kNN) model can be used as an explanatory model to
provide local explanations for black-box classifier predictions by assigning the most
common class of the k data samples in closest proximity to the data instance of
interest. For regression, kNN can be used by assigning the mean output of the k

nearest data samples. We are able to draw conclusions as to why the black-box
model made its prediction by examining the nearest neighbors. Common measures
of proximity used in kNN include cosine, Euclidean, and Minkowski, Manhattan,
Mahalanobis, and chi-squared distances.

Because kNN makes no assumptions about the data or black-box model, it can
handle non-linear datasets and complex interactions. To do so, however, sufficient
data is required, and data sparsity can lead to an insufficient number of instances that
are near enough to make accurate predictions. Thus, the choice of k is a parameter
that is dependent on the model and dataset. As the kNN algorithm must iterate
through all data instances, it suffers from a heavy computational and memory cost,
especially for large high-dimensional datasets. Dimension-reduction techniques like
PCA are often used beforehand to reduce the computational burden.

Explainable properties of kNN are shown in Table 5.17.

5.4 Example-Based 207

Interpretation of k-Nearest Neighbor Explanations: as a local explanation
method, kNN maps an instance to its k-nearest neighbors and allows us to
draw conclusions based on the predictions of these neighbors. kNN can handle
complex data and models but is computationally expensive and requires
sufficient data to be useful. For high-dimensional data, PCA preprocessing
is almost a necessity.

Observations:

• Figure 5.21 shows the kNN prediction boundary for two features: Glucose
and BloodPressure, for levels of k ∈ 5, 10, 15, 20 relative to the dataset.

• For higher k, outliers have less effect on model prediction.
• kNN can capture complex decision boundaries, though higher k values

provide a smoothing effect.

Fig. 5.21 kNN applied Pima Diabetes dataset

208 5 Post-Hoc Interpretability and Explanations

Table 5.17 Explainable
properties of kNN

Properties Values

Local or global Local

Linear or non-linear Both

Monotonic or non-monotonic Both

Feature interactions captured Yes

Model complexity High

5.4.3 Trust Scores

The trust score method (TSM) aims to measure the confidence of a black-box
classifier model in making a local prediction. It is based on using a modified
nearest neighbor classifier to measure the trust score T of an instance of interest
x. This score is defined as the ratio between the distance from x to the nearest class
that is distinct from the predicted class and the distance from x to the predicted
class. Higher trust scores correspond to higher confidence and greater trust in the
prediction. While TSM can provide a measure of our trust in a prediction, it does
not provide an explanation of the prediction.

In practice, TSM is used in conjunction with other explanation techniques to
provide local and global explanations. Data instances with high trust scores have
high confidence predictions and likely lie far from the decision boundary. Low
trust scores imply ambiguity in predictions, and combining TSM with contrastive
explanations or anchors can be more effective in this region.

TSM requires building separate k-d trees for each prediction class trained on the
dataset. At inference time, TSM measures the distance of an instance to each of the
trees and calculates the ratio of distances from the best next class to the predicted
class to generate trust scores. Feature scaling is important to standardize and remove
data scale effects.

Interpretation Trust Scores: TSM provides a measure of the confidence of a
model in making a prediction for an instance of interest. This score is a ratio
of the distance between the instance to the predicted class and the next nearest
class (or other class for binary prediction). TSM is computationally expensive
for high-dimensional data, where preprocessing with dimensionality reduc-
tion methods like PCA may be required.

Like kNN, TSM is sensitive to noise in data and outliers. These issues can
be mitigated by filtering out instance outliers during k-d training or outlying
instances at inference time. TSM also suffers from large computational costs on
large, high-dimensional datasets, and commonly datasets can be preprocessed with
dimensionality reduction techniques to improve computational tractability.

5.4 Example-Based 209

Fig. 5.22 Trust scores applied to Pima Diabetes dataset

Observations:

• Figure 5.22 shows both the trust score and the logistic prediction probability
(model confidence) for a Logistic Regression classifier model predicted over
a test set.

• We can see from this plot that the logistic regression model tends to
overestimate prediction probabilities until 85th percentile, above which the
model underestimates the prediction probability.

• Using the trust score allows us to conclude that the model may be more
accurate for highly probable predictions.

5.4.4 Counterfactuals

Counterfactuals are defined as thinking about what did not happen but could have
happened. It turns out that humans are very adept at applying counterfactual thinking
(e.g., “what could be done differently to achieve a different result”). Based on this
concept, the counterfactual explanations (CEs) method was proposed. CF generates
local explanations by detailing the changes to an input instance that would cause

210 5 Post-Hoc Interpretability and Explanations

the prediction of a model f to change. Due to their counterfactual nature, CF
explanations are intuitive and highly human-interpretable.

Given an instance to be explained x, a counterfactual x′, and a desired outcome
y′, CF is equivalent to the optimization problem on L(x′|x):

min
x′

L(x′|x) = (
f (x′)− y′

)2
︸ ︷︷ ︸

loss term

+λ d(x, x′)︸ ︷︷ ︸
distance term

(5.54)

where d(x, x′) is a distance measure (e.g., L1) chosen to ensure that the counter-
factual will be in the proximity of the instance to be explained. The parameter
λ balances the contribution between the loss term and the distance term. A large
value of λ generates counterfactuals with very similar features to the instance to
be explained, while a small value generates counterfactuals with predictions close
to the desired outcome. Note that the instances are synthetic and do not represent
actual instances in the dataset. The parameter λ can be learned as well:

min
x′

max
λ

L(x′|x) with |f (x)− y′| ≤ ε (5.55)

where ε is a tolerance parameter.

Interpretation of Counterfactual Explanations: CF methods apply the “what
if” principle to generate local explanations. They create nearby synthetic
instances with the smallest changes in features that change the model predic-
tion. CF explanations are easy to understand and interpret, though sometimes
multiple conflicting explanations may arise.

A limitation of CF is that it can generate many counterfactual explanations all at
once. These explanations may be very different or conflict with one another, known
as the “Rashomon” effect [FRD19]. When this happens, it would be difficult to
select the optimal explanation without additional criteria.

Explainable properties of Counterfactuals are shown in Table 5.18.

Observations:

• Figure 5.23 plots an instance of interest and a generated counterfactual along
two features: Glucose and BloodPressure.

• Note that the counterfactual is a synthetic instance and does not map to an
actual instance in a dataset.

• The counterfactual is very near to the explained instance along the Glucose
axis, while further away along the BloodPressure axis.

5.4 Example-Based 211

Fig. 5.23 Counterfactuals on the Pima Diabetes dataset

Table 5.18 Explainable
properties of counterfactuals

Properties Values

Local or global Local

Linear or non-linear Both

Monotonic or non-monotonic Both

Feature interactions captured Yes

Model complexity Medium

5.4.5 Prototypes/Criticisms

Prototypes/Criticisms (PC) is a method that seeks to identify instances in the
data that are either very representative or very non-representative of the entire
dataset, respectively. Studies have shown that the use of prototypes is universally
effective for human learning. However, example-based learning can lead to over-
generalization or biased predictions. The use of anti-prototypical examples, called
criticisms, can help us build better mental models of the data and predictions.

212 5 Post-Hoc Interpretability and Explanations

As a practical implementation of PC, the Mean Maximum Discrepancy (MMD)-
critic algorithm was proposed. MMD is a measure of the difference between two
distributions and is used to measure the similarity of the prototypes to the data
distribution. Given a set of n samples from the dataset D, PC identifies an m∗ set of
prototypes S ⊆ D as a normalized discrete optimization problem:

max
S∈2n,|S|<m∗

2

n|S|
n∑

i,j=1
k(xi, xj)−MMD2 (5.56)

where MMD is given by

MMD2 = 1

n2

n∑
i,j=1

k(xi, xj)− 2

nm

n,m∑
i,j=1

k(xi, zj)+ 1

m2

m∑
i,j=1

k(zi, zj) (5.57)

The kernel function k(x, x′) measures the similarity between two points and is
commonly chosen to be the radial basis function:

k(x, x′) = exp−λ||x−x′||2 (5.58)

A set of c∗ criticisms C is identified by the optimization:

min
C⊆[n],|C|<c∗

L(x)+ R(x) (5.59)

where L(x) is called the witness function:

L(x) = 1

n

n∑
i=1

k(x, xi)− 1

m

m∑
j=1

k(x, zj) (5.60)

and R(x) is an optional regularization term. The witness function measures the
magnitude of dissimilarity between a set of prototypes and the dataset, and
criticisms are the set of points with the largest witness function values.

The prototypes and criticisms method is flexible with inherent benefits in helping
us to better understand the distribution of data. It is applicable to all types of data and
can be used to generate both local and global explanations for a black-box model.
The processes of identifying prototypes and criticisms are independent of each other
and can be calculated in parallel.

5.4 Example-Based 213

Interpretation of Prototypes and Criticisms: the PC method identifies two sets
of instances in the data: a set of most and a set of least representative instances
within the entire dataset. A comparison of these two sets helps explain global
model behavior. The MMD-critic algorithm can be used to identify these sets,
though it is unclear how to determine the optimal number of prototypes and
criticisms in a dataset.

It is unclear how to optimally determine the optimal number of prototypes
and criticisms. In general, prototypes will be located in areas with high data
density, whereas criticisms are located in areas of low data density. With high-
dimensional sparse data, the number of prototypes may need to be high relative
to low-dimensional dense data. The number of criticisms is directly related to the
number of outliers existing in the data as well.

Explainable properties of Prototypes/Criticisms are shown in Table 5.19.

Observations:

• Figure 5.24 depicts a sample of the prototypes and criticisms generated from
the Fashion MNIST dataset using the MMD-critic algorithm.

• The left-side image shows the prototypes associated with the category “t-
shirt.” They are all recognizable as prototypical instances of t-shirts.

• The right-side image shows the criticisms associated with the category “t-
shirt.” These rather unusual designs are least representative of the dataset.

Fig. 5.24 Prototypes and criticisms on Fashion MNIST dataset

214 5 Post-Hoc Interpretability and Explanations

Table 5.19 Explainable
properties of
prototypes/criticisms

Properties Values

Local or global Global

Linear or non-linear Non-linear

Monotonic or non-monotonic Non-monotonic

Feature interactions captured Yes

Model complexity Medium

5.4.6 Influential Instances

When training a model, there are data instances that lie close the decision boundary.
These instances have a substantial influence on the prediction or parameter determi-
nation of the model. There may also be outlier instances that may have an oversized
effect on model training. Influential instances are the set of training data instances
that influence the model such that their presence or absence can significantly change
the model.

Influential instances can be identified by ablation. If removing an instance
changes the model parameters or prediction, it is influential. Instead of focusing
on how the features of an instance affect the model, we are focusing on how certain
instances affect the model. Identifying influential instances can give us information
about the robustness of a model or understanding of the data distribution.

A simple measure of influence I−i on model prediction by the removal of data
instance i is given by the modified Cook’s distance (see Eq. (3.25)):

Di =
n∑

j=1
(ŷj − ŷj (i))

2 (5.61)

which measures the influence of an instance on the model prediction. Influential
instances can also be identified using influence functions. Let θ be a model
parameter vector and θ̂ε,z be the vector by increasing the weight of an instance of
interest z by a small amount ε:

θ̂ε,z = argmin
θ∈Θ

(1− ε)
1

n

n∑
i=1

L(zi, θ)+ εL(z, θ) (5.62)

Here, L(zi, θ) is the loss function for the model trained over a dataset D of n

samples. The influence function of the model parameters is given by

Iup,params(z) = dθ̂ε,z

dε

∣∣∣∣∣
ε=0

(5.63)

and the influence function on the model prediction is given by

5.4 Example-Based 215

Fig. 5.25 Influential instances plotted along two features (Glucose and BloodPressure) in the
Pima Diabetes dataset

Iup,loss(z, ztest) = dL(ztest , θ̂ε,z)

dε

∣∣∣∣∣
ε=0

(5.64)

where ztest is the test data instances on which we evaluate the model.

Interpretation of Influential Instances: similar to LOCO for influential fea-
tures, this method identifies the instances in the dataset that have the most
impact on model prediction by deleting them from the training set and
measuring changes in model error. These influential instances typically lie
close to the decision boundary and help explain the global behavior of a
model. Because the model will be retrained as many times as instances in
the dataset, this method is computationally very expensive.

The influential instance method is simple, based on sample deletion, and is
model-agnostic. It can provide useful local and global explanations. However, it
is only applicable to models with differentiable parameters. Since it requires model

216 5 Post-Hoc Interpretability and Explanations

Table 5.20 Explainable
properties of influential
instances

Properties Values

Local or global Global

Linear or non-linear Non-linear

Monotonic or non-monotonic Non-monotonic

Feature interactions captured Yes

Model complexity High

retraining, it can be computationally expensive. Furthermore, as it is based on single
sample deletion, sample group interaction is not properly accounted.

Explainable properties of Influential Instances are shown in Table 5.20.

Observations:

• Figure 5.25 plots the most influential instances along two features: Glucose
and BloodPressure.

• The non-linear placement of the influential instances illustrates the complex
decision boundary of the model.

• Each influential instance is seen to lie near or on a decision boundary
between two groups of opposite predictions.

References

[FRD19] A. Fisher, C. Rudin, F. Dominici, All models are wrong, but many are useful: learning
a variable’s importance by studying an entire class of prediction models simultaneously
(2019). arXiv:1801.01489 [stat.ME]

[FP08] J.H. Friedman, B.E. Popescu, Predictive learning via rule ensembles. Ann. Appl. Stat.
2(3) (2008). ISSN: 1932-6157. http://dx.doi.org/10.1214/07-AOAS148

[LL17b] S. Lundberg, S.-I. Lee, A unified approach to interpreting model predictions (2017).
arXiv:1705.07874 [cs.AI].

[RSG16a] M.T. Ribeiro, S. Singh, C. Guestrin, “Why should I trust you?”: explaining the
predictions of any classifier (2016). arXiv:1602.04938 [cs.LG]

[Sha53] L.S. Shapley, A value for n-person games, in Contributions to the Theory of Games (AM-
28), Volume II, ed. by H.W. Kuhn, A.W. Tucker (Princeton University Press, Princeton,
1953). ISBN: 978-1-40088-197-0

[Sla+20] D. Slack et al., Fooling LIME and SHAP: adversarial attacks on post hoc explanation
methods (2020). arXiv:1911.02508 [cs.LG]

[SN19] M. Sundararajan, A. Najmi, The many Shapley values for model explanation (2019).
arxiv:1908.08474, Comment: 9 pages

http://dx.doi.org/10.1214/07-AOAS148

Chapter 6
Explainable Deep Learning

Recent advances in deep learning have made tremendous progress in the adoption
of neural network models for tasks from resource utilization to autonomous driving.
Most deep learning models are opaque black-box models that are not easily
explainable. Unlike linear models, the weights of a neural network are not inherently
interpretable to humans. The need for explainable deep learning has led to the
development of a variety of methods that can help us better understand the decisions
and decision-making process of neural network models. We note that many of the
general post-hoc model-agnostic methods presented in Chap. 5 are applicable to
deep learning models. This chapter presents a collection of explanation approaches
that are specifically developed for neural networks by leveraging architecture or
learning method.

6.1 Applications

The need for explainable deep learning is being driven by many real-world needs
and applications. We discuss three broad categories: model validation, debugging,
and exploration.

1. Model Validation: Model validation is the task of assessing how well a
model behaves as intended in the real world. By doing so, we can assess the
effectiveness and accuracy of a model. Explainable AI techniques can help us
understand when errors in prediction occur and why they occur.

2. Model Debugging: Sometimes, a model may behave as intended but possess
hidden biases. In recent years, we have seen real-life consequences of data and
model biases. Our understanding of the weaknesses and limitations of deep
learning models is vital for their adoption. Model debugging through explainable
AI can help us uncover these deficiencies and provide insights into solutions to
overcome them.

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2021
U. Kamath, J. Liu, Explainable Artificial Intelligence: An Introduction to
Interpretable Machine Learning, https://doi.org/10.1007/978-3-030-83356-5_6

217

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-83356-5_6&domain=pdf
https://doi.org/10.1007/978-3-030-83356-5_6

218 6 Explainable Deep Learning

3. Model Exploration: With the exponential growth in complexity of recent deep
learning models (for instance, GPT-3 consists of 96 layers and 175 billion
parameters), we have arrived at a point where we are unsure of what hidden
abilities these models possess. Model exploration is the task of assessing the
performance of a model on tasks beyond what it was originally intended.
Explainable AI has become essential in order for us to understand the capabilities
of these deep models through model exploration.

6.2 Tools and Libraries

Table 6.1 provides details of all the libraries used for various models in the chapter.

Table 6.1 Models and
implementations

Model/Algorithm Library

Attention (NMT) TensorFlow

Attention (image captioning) TensorFlow

LIME Captum (PyTorch)

Occlusion Captum (PyTorch)

RISE Keras

Activation Maximization tf-keras-vis

Saliency map Captum (PyTorch)

DeepLIFT Captum (PyTorch)

DeepSHAP Captum (PyTorch)

Deconvolution Captum (PyTorch)

Guided Backprop Captum (PyTorch)

Integrated Gradients Captum (PyTorch)

Layer-wise relevance propagation Captum-0.4.0 (PyTorch)

Excitation backpropagation excitationbp (PyTorch)

GradCAM Captum (PyTorch)

TCAV Captum (PyTorch)

6.3 Intrinsic

Intrinsic explainable deep learning methods leverage inherent model architecture to
provide explanations of model predictions. Intrinsic methods encompass two types:
attention-based and jointly trained multi-task models. One distinction between
intrinsic and post-hoc explainable deep learning methods is that they can provide
explanations even during training.

6.3 Intrinsic 219

6.3.1 Attention

Attention-based neural networks mimic cognitive attention processes and can
implicitly provide explanations of their output directly from the weights of their
attention mechanism. The weights of the attention layer are learned during training.
These weights inform which parts of the input feature space are “attended to” and
influence the prediction. They provide a measure of feature importance and can be
visualized via heatmaps, such as Fig. 6.1 for a word model or Fig. 6.2 for a visual
classifier.

Attention mechanisms can provide useful feature-based explanations, but they
are limited by the scope of the input space. Furthermore, they are interpretable
only if the inputs are themselves interpretable. For intermediate representations in
higher layers of a deep neural network, interpretability may be difficult. Serrato and
Smith [SS19] have shown that attention weights may not necessarily correspond to
importance or represent optimal explanations.

Fig. 6.1 Attention-based heatmap for word modeling

220 6 Explainable Deep Learning

Interpretation of Attention Mechanisms: The attention weights of an
attention-based model provide an intrinsic explanation to feature relevance on
model predictions, but these weights may not provide optimal or interpretable
explanations.

Attention-based neural networks are useful for tasks in NLP (RNNs and LSTMs),
computer vision (CNNs), classification, and others.

Explainable properties of Attention-based methods are shown in Table 6.2.

Fig. 6.2 Attention-based heatmap for visual classifier

Observations:

• Fig. 6.1 is a visualization of the attention weights for a TensorFlow Neural
Machine Translation (NMT) model based on Bahdanau attention. The bi-
LSTM model was trained on the Anki Spanish-to-English dataset for 5
epochs. Lighter colors indicate stronger weights. Word alignment (e.g.,
movie ⇔ pelicula, seen ⇔ visto) explanations are directly observable from
the attention weights.

• Fig. 6.2 shows a sequence of blended attention masks for a neural image
captioning system with a visual attention mechanism that shows what parts
of the image the model focuses on as it generates a caption. The TensorFlow
CNN with soft attention model was trained on the MS-COCO dataset for
just 10 epochs. Note that the visual attention mechanism correctly attended
to “man,” but incorrectly attended to “snowboard.”

6.3 Intrinsic 221

Table 6.2 Explainable
properties of attention-based
methods

Properties Values

Local or global Local

Linear or non-Linear Non-linear

Monotonic or non-monotonic Non-monotonic

Feature interactions captured Yes

Model complexity Low

6.3.2 Joint Training

Another intrinsic method is to adopt a multi-task approach where an additional
task is jointly trained to provide model explanations. This task can be trained
to provide text-based justifications [LYW19, Zel+19], heatmaps over the feature
[LBJ16, Iye+18] or concept space [AJ18, Don+17], or model prototypes [Li+17,
Che+19]. Figure 6.3 illustrates an example of how a DNN architecture can be
augmented with an explanation task that is jointly trained.

Joint training is a flexible method that enables high quality explanations at
the cost of computational complexity due to changes in model architecture. The
explanation task often comes a greater need for more data, and it may require
explanation annotations in the training data in order to be trained with supervision.

Explainable properties of Joint-Training methods are shown in Table 6.3.

Interpretation of Joint Training Tasks: Augmenting network architecture to
jointly train an explanation task is very flexible and can provide high quality
explanations but can impose a heavy computational burden and requires
training data with explanation annotations.

Observations:

• High quality explanations can be generated by jointly training a classifier
against a gold set of explanations, but it can add significant complexity and
computational cost.

• Explanation quality can be evaluated by calculating an explanation factor
based on the explanation classifier output and target model output.

222 6 Explainable Deep Learning

Fig. 6.3 Joint training for explanations

Table 6.3 Explainable
properties of joint-training
methods

Properties Values

Local or global Both

Linear or non-Linear Both

Monotonic or non-monotonic Both

Feature interactions captured Yes

Model complexity High

6.4 Perturbation

Perturbation methods attempt to explain feature relevance by measuring changes
in prediction score as features are altered. Perturbations at a feature level include
replacing, omitting individual features or groups, and learning attribution masks
that can explain the contributions of features.

6.4 Perturbation 223

6.4.1 LIME

As noted in Chap. 5, surrogate explanation methods replace complex models with
simpler models that approximate the predictions of the original model. For neural
networks, this process is known as “model distillation” where the knowledge
encoded in a neural net is distilled into an interpretable machine learning model
that can mimic its behavior [HVD15]. Explanation of the original neural network is
provided through this interpretable model.

Local Interpretable Model-agnostic Explanations (LIME) is a useful method for
generating local explanations of a model for specific instances. As LIME is model-
agnostic, it is applicable to a variety of neural networks. LIME maps input data to an
interpretable representation x → z = g(x), which is typically a binary vector used
to represent the presence or absence of specific features in the input. For images or
text, this could be the presence or absence of a patch of pixels or a set of words,
respectively. It seeks to learn an interpretable model h(z) by optimizing with the
objective

argmin
g∈G

L (f, g, πx)+Ω(g) (6.1)

where πx is a distance penalty between samples z and x, L is a measure of the
unfaithfulness of g in imitating f in the local region defined by πx , and Ω is
a complexity penalty that ensures the learned model is not too complex. As an
example, we can generate local explanations for a neural network image classifier
by applying the following:

h(z) =aT
g x

πx(z) = exp
(
−||x − z||2/σ 2

)

L (f, g, πx) =
∑
z,z′

πx(z)
(
f (z)− h(z′)

)2

Ω(h(z)) =||ag||

As previously noted, LIME explanations require a large number of randomly
perturbed samples to compute accurate local explanations of a complex model.
The class of each of these samples must be first predicted by a forward pass of
the complex model, which could add computational burden when explaining large
neural networks.

Explainable properties of LIME are shown in Table 6.4.

224 6 Explainable Deep Learning

Fig. 6.4 LIME explanations on Fashion MNIST

Observations:

• The left side of Fig. 6.4 shows the model prediction from a PyTorch CNN
model with three convolutional layers and two fully connected layers trained
on Fashion MNIST for 2 epochs.

• LIME provides local explanations for image classification by computing the
effect of the presence or absence of superpixels on the classification.

• The right side shows the importance of the superpixels (of a single color) on
the prediction category 3 (Dress).

Table 6.4 Explainable
properties of LIME

Properties Values

Local or global Local

Linear or non-linear Both

Monotonic or non-monotonic Both

Feature interactions captured Yes

Model complexity Medium

6.4 Perturbation 225

6.4.2 Occlusion

Perhaps one of the easiest ways to perturb an instance, occlusion (also named feature
ablation) is a local method by which the input features of an instance are sequentially
replaced with a constant (commonly zero). In 2013, [ZF13] proposed occlusion
sensitivity as an explanation method for image classification by systematically
occluding different portions of the input image with a gray patch sliding window.
Feature relevance is measured by the change in prediction accuracy of the correct
class or feature activation magnitude of the last neural network layer. This approach
is applicable to other machine learning tasks as well. In 2017, [LMJ17] proposed an
occlusion method for natural language-related tasks termed representation erasure,
where input words are systematically erased to determine their contribution to
prediction accuracy.

Interpretation of Occlusion: Occlusion methods are local explanations similar
to ablation methods in Chap. 5, where input features are systematically
replaced with a constant. The more prediction accuracy drops, the more
significant the occluded features. Occlusion methods are computationally
efficient but do not capture feature interaction well.

Like the feature ablation methods of Chap. 5, occlusion has limited ability to
capture feature interaction effects. If interaction effects are significant, occlusion
will likely return incorrect results. Unlike LOCO, occlusion is a local method that
is easy to compute and does not require model retraining.

Explainable properties of Occlusion are shown in Table 6.5.

Observations:

• The left side of Fig. 6.5 shows two category 9 (shoe) classifier predictions
by a PyTorch 3-convolutional layer CNN model trained on Fashion MNIST.

• The right side of Fig. 6.5 shows the occlusion importance maps generated by
sliding a black 3x3 pixel mask across the image and measuring the resulting
change in prediction probability.

• For both images, the importance maps indicate the diagonal area which most
influence the classifier prediction for category 9.

226 6 Explainable Deep Learning

Fig. 6.5 Occlusion-based importance map on Fashion MNIST

Table 6.5 Explainable
properties of occlusion

Properties Values

Local or global Local

Linear or non-linear Non-linear

Monotonic or non-monotonic Non-monotonic

Feature interactions captured No

Model complexity Low

6.4.3 RISE

In 2018, [PDS18a] proposed the Random Input Sampling for Explanations (RISE)
method as generalized version of occlusion by probing a model with randomly
masked portions of the input instance. Given a random mask M , an input instance

6.4 Perturbation 227

x, and a model f (x), the feature importance of xj (the j -th feature of x) is given by

Sf (xj) = EM

[
f (x � M)|M(xj) = 1

]
(6.2)

where � denotes element-wise multiplication. Thus, RISE computes the importance
map as the weighted average of random masks.

In practice, Monte Carlo sampling is used to generate random masks to compute
RISE. As binary masks suffer when feature interactions exist, [PDS18a] proposed
a soft version that up-samples a small binary mask using bilinear interpolation. The
resulting mask values are continuous across [0, 1].

Explainable properties of RISE are shown in Table 6.6.

Interpretation of RISE: As a Monte Carlo sampled occlusion method, RISE is
useful for generating importance map explanations of specific instances. By
incorporating bilinear interpolation of smaller binary patches, RISE can take
feature interactions into account.

Fig. 6.6 RISE importance map on Fashion MNIST

228 6 Explainable Deep Learning

Observations:

• The left image in Fig. 6.6 was classified as category 9 (shoe) by a 2-layer
Keras CNN model trained on Fashion MNIST.

• The RISE importance map on the right side was computed using 2000Monte
Carlo generated random pixel maps.

• The right image shows higher importance around the ankle and toe area of
the shoe image, while little to no importance with the rest of the image.

• RISE provides better importance maps than occlusion but at higher compu-
tation cost.

Table 6.6 Explainable
properties of RISE

Properties Values

Local or global Local

Linear or non-linear Non-linear

Monotonic or non-monotonic Non-monotonic

Feature interactions captured Yes

Model complexity Medium

6.4.4 Prediction Difference Analysis

Prediction Difference Analysis (PDA) was proposed by [Zin+17] as a classifier
explanation method to assign a relevance value to each input feature with respect
to each class. It estimates this relevance by measuring how prediction changes if a
feature value is unknown. Since for neural networks it is impractical to either label a
feature as unknown or retrain the model with the feature left out (e.g., LOCO), PDA
simulates the absence of the feature by marginalizing over it. Given a class c and an
input instance x with j -th feature xj , the class probability with unknown feature xj

is given by

p(c|x−j) =
∑
xj

p(xj |x−j)p(c|x−j , xj) (6.3)

where x−j is the set of all features in x except the j -th feature and the summation
is taken over all possible values of xj . For large feature spaces, computational
efficiency can be gained by assuming feature xj is uncorrelated with the other
features x−j , and the class probability becomes

6.4 Perturbation 229

p()c|x−j) ≈
∑
xj

p(xj)p(c|x−j , xj) (6.4)

where p(xj) can be approximated by its empirical distribution. PDA compares the
class probability with all features present p(c|x) with p(c|x−j) to determine feature
relevance by defining a weight-of-evidence function:

WEj(c|x) = log2 (odds(c|x))− log2
(
odds(c|x−j)

)
(6.5)

where

odds(c|x) = p(c|x)

1− p(c|x)
odds(c|x−j) = p(c|x−j)

1− p(c|x−j)
(6.6)

To account for zero probabilities, [Zin+17] proposed using a Laplace correction to
the class probability:

p(c|x) ← p(c|x)n+ 1

n+ k
(6.7)

where N is the number of training instances and k is the number of classes. The
magnitude of the evidence function WEj indicates the significance of the j -th
feature on class c prediction. A positive value of WEj implies that feature xj

contributed positively to the evidence for class c, and removing it would reduce
confidence in prediction for the class. A negative value implies evidence against the
class.

When feature interactions exist, PDA can be adjusted to account for neighbor
interactions. Instead of assuming feature xj is uncorrelated with every other feature
and replacing the conditional probability p(xj |x−j) with p(xj), [Zin+17] proposed
using conditional sampling where a neighborhood patch of features around and
including xj is marginalized:

p(xj |x−j) ≈ p(xj |x̂−j) (6.8)

Here, x̂−j is the set of all features except for the patch of features around and
including xj .

PDA is also applicable for visualizing neuron contributions to hidden layer
activations. Given a hidden layer H with neuron values h and the i-th neuron in
the subsequent layer that depends on H with value zi(h), the activation function g

when the j -th neuron value in H is unknown is given by

g(zj |h−j) =
∑
hj

p(hj |h−j)zi(h−j , hj) (6.9)

and the activation differenceADj is a measure of the contribution of the j -th neuron
in hidden layer H to the i-th neuron in the subsequent layer:

230 6 Explainable Deep Learning

ADj(zi |h) = g(zi |h)− g(zi |h−j) (6.10)

In practice, PDA is fairly computationally intensive, especially if conditional
sampling is used to capture neighbor feature interactions.

Explainable properties of Prediction Difference Analysis are shown in Table 6.7.

Interpretation of Prediction Difference Analysis: PDA is a local method
that measures feature relevance by taking the class prediction probability
differences while marginalizing over a feature or a patch of features. It can
account for feature interactions but comes with a larger computation cost.

Table 6.7 Explainable
properties of prediction
difference analysis

Properties Values

Local or global Local

Linear or non-linear Non-linear

Monotonic or non-monotonic Non-monotonic

Feature interactions captured Yes

Model complexity Medium

6.4.5 Meaningful Perturbation

Meaningful perturbation (MP) [FV17] is a local explanation method based on a
framework of meta-predictors to explain predictions for neural classifiers. These
meta-predictors are trained to predict the presence or absence of input features.
Their prediction error is a measure of the faithfulness of the explanation.

For a given instance x0, the method applies a set of meaningful, local perturba-
tions given by

[Φ(x0,m)] =

⎧⎪⎪⎨
⎪⎪⎩

m(u)x0(u)+ (1−m(u))μ0, constant

m(u)x0(u)+ (1−m(u))η(u) noise∫
gσ0m(u)(v − u)x0(v)dv blur

(6.11)

where μ0 is the average color, η(u) are i.i.d. Gaussian noise samples, and σ0 is the
standard deviation of the Gaussian blur kernel gσ . The method plays a “deletion
game,” which seeks to find the smallest deletion mask m∗ that causes the classifier
score fc for class c to drop fc(Φ(x0,m)) < f c(x0) by optimizing:

m∗ = argmin
m∈[0,1]d

λ||1−m||1 + fc(Φ(x0,m)) (6.12)

6.4 Perturbation 231

where d is the total number of features and ε is a hyperparameter. A symmetric
“preservation game” can also be played, which seeks to find the smallest subset
of the image that must be retained to preserve the classifier score fc(Φ(x0,m)) ≥
f c(x0) by optimizing:

m∗ = argmin
m∈[0,1]d

λ||m||1 + fc(Φ(x0,m)) (6.13)

The deletion game tries to remove just enough evidence to prevent the model from
recognizing the class, while the preservation game ties to keep just enough evidence.
Both of these optimizations can be solved by gradient descent.

To mitigate the effects of artifacts that might exist in the trained neural network,
meaningful perturbations propose a modified deletion game where the learned mask
is regularized:

m∗ = min
m∈[0,1]d

λ1||1−m||1 + λ2
∑
u

||∇m(u)||ββ + Eτ [fc(Φ(x0(· − τ),m))]

(6.14)
This optimization can be solved with stochastic gradient descent.

Interpretation of Meaningful Perturbations: MP is a global method that learns
where a neural classifier looks by discovering features that most affect its class
prediction output score when locally perturbed. It learns a feature mask that
explains the classification result as an optimization problem.

In practice, the algorithm learns the smallest, low-resolution, sparse set of masks,
which, when up-sampled and added to the input instance, causes the target class
prediction to drop.

Fig. 6.7 Meaningful perturbations mask on Fashion MNIST

232 6 Explainable Deep Learning

Explainable properties of Meaningful Perturbation are shown in Table 6.8.

Observations:

• The left image in Fig. 6.7 shows the category predictions of a PyTorch 3-
layer CNN model trained on Fashion MNIST.

• The right image shows the meaningful perturbations heatmap for the
prediction of category 7 (Sneaker).

Table 6.8 Explainable
properties of meaningful
perturbation

Properties Values

Local or global Local

Linear or non-linear Non-linear

Monotonic or non-monotonic Non-monotonic

Feature interactions captured Yes

Model complexity Medium

6.5 Gradient/Backpropagation

Whereas perturbation-based explanation methods leverage variations in input fea-
tures to explain feature relevance, gradient methods leverage the flow of information
during backpropagation to explain the relationship between input features and
network output. Gradient-based methods typically provide visual explanations
through heatmaps of neuron or feature attributions.

6.5.1 Activation Maximization

Visual explanations provide an efficient and human-interpretable method to under-
stand deep neural network predictions. One of the earliest global explanation
methods is the Activation Maximization method [ECB10], which visually identifies
the input features that can create the greatest response in the output of specific
neurons.

Given a neural network with parameters θ , an input sample x, and the i-th neuron
in the j -th layer with activation hij (θ, x), the goal of is to find a hypothetical
x∗ that can maximize the activation of this neuron. This can be expressed as the
optimization

x∗ = argmax
x

hij (θ, x) (6.15)

which can be solved using gradient ascent in the input space. It is similar to the
backpropagation method, except instead of adjusting network parameters θ , the

6.5 Gradient/Backpropagation 233

optimization is over the input space while the network parameters are held constant.
The synthetic instance x∗ can be visualized and will represent the input feature
pattern that will maximize the activation of a specific neuron in the network.

Interpretation of Activation Maximization: AM is a global method that finds
the input pattern that can generate the highest activation in the response of a
specific neuron in a deep neural network.

Given the non-linear activations, there are no guarantees that gradient ascent will
identify a unique global optimum x∗, but in practice using multiple random starting
points and either averaging or selecting the maximum activation has been shown to
be effective.

Fig. 6.8 Activation maximization map on Fashion MNIST

234 6 Explainable Deep Learning

Explainable properties of Activation Maximization are shown in Table 6.9.

Observations:

• Fig. 6.8 shows the activation maximization maps for 4 neurons at the output
layer of a Keras 2-layer CNN model trained on Fashion MNIST. These
neurons correspond to 4 classification categories.

• Note that it is difficult to determine the original classification category from
the activation maps (1=Trouser, 2=Pullover, 3=Dress, 5=Sandal).

Table 6.9 Explainable
properties of activation
maximization

Properties Values

Local or global Global

Linear or non-Linear Non-linear

Monotonic or non-monotonic Non-monotonic

Feature interactions captured Yes

Model complexity Low

6.5.2 Class Model Visualization

Activation maximization is the basis of class model visualizations. Given a neural
network classifier with scoring function Sc(x) for an output class c and input x, it is
possible to learn an instance x′ that is most representative of the class by optimizing
the equation

x′ ← argmax
x

Sc(x)− λ||x||2 (6.16)

where λ is a regularization parameter. The generated instances for each class are
learned representations by the neural network and can be very visually entertaining.

Interpretation of Class Model Visualization: this global explanation method
learns the input patterns that generate the greatest activation for a specific
model class. When visualized, these patterns can provide colorful explana-
tions of what the model has learned.

Class model visualizations have recently gained widespread attention for pio-
neering a new branch of deep learning-generated art called “deep dream” and
“Inceptionism” based on the colorful visualizations of model classes.

Explainable properties of Class Model Visualization are shown in Table 6.10.

6.5 Gradient/Backpropagation 235

Fig. 6.9 Class model visualization on Fashion MNIST

Observations:

• Fig. 6.9 shows the model visualizations for category 1 (Trouser) and
category 4 (Coat) from a PyTorch 3-layer CNN model trained on Fashion
MNIST.

• When viewed at a distance, the left image hints at a pair of trousers, while
the right image gives the semblance of a coat.

Table 6.10 Explainable
properties of class model
visualization

Properties Values

Local or global Global

Linear or non-linear Non-linear

Monotonic or non-monotonic Non-monotonic

Feature interactions captured Yes

Model complexity Low

6.5.3 Saliency Maps

Saliency maps [SVZ14a] provide local explanations for specific instances. Given an
instance of interest x0, we can approximate the non-linear scoring function Sc(x) by

236 6 Explainable Deep Learning

a Taylor series expansion around this instance:

Sc(x) ≈ wT x + b (6.17)

where w are the saliency weights

w = ∂Sc

∂x

∣∣∣∣
x=x0

(6.18)

The saliency map Mj for the j -th feature is given by

Mj = |wj | (6.19)

Interpretation of Instance-Specific Saliency Maps: Instance-specific saliency
maps are a local explanation method that takes the partial derivative of
the scoring function with respect to each feature as a measure of feature
importance. They are very quick to calculate but require the scoring function
to be differentiable.

Instance-specific class saliency maps are extremely quick to compute and do not
require any additional annotation to provide explanations. They do, however, require
the scoring function to be differentiable.

Explainable properties of Saliency Maps are shown in Table 6.11.

Observations:

• The left side of Fig. 6.10 shows the category predictions of a PyTorch 3-layer
CNN model trained on Fashion MNIST.

• The right side shows the saliency maps for an image of category 0 (t-shirt)
and category 7 (sandal).

Table 6.11 Explainable
properties of saliency maps

Properties Values

Local or global Local

Linear or non-linear Linear

Monotonic or non-monotonic Monotonic

Feature interactions captured No

Model complexity Low

6.5 Gradient/Backpropagation 237

Fig. 6.10 Saliency maps for instances of Fashion MNIST

6.5.4 DeepLIFT

Deep Learning Important Features (DeepLIFT) [SGK19] is a recursive, local
explanation method that decomposes a neural network model prediction for a
specific instance by backpropagating the contributions of the neurons through the
network. DeepLIFT is based on the difference between the activation of each neuron
and its “reference activation” in order to compute contribution scores. This reference
activation represents a default or a neutral input.

Consider a neuron of interest with activation f (x) and with a set of input neurons
x1, x2, . . . , xn. If f (x′) represents the reference activation of the neuron of interest

238 6 Explainable Deep Learning

for a reference input x′, the difference in neural activation is given by

Δt = f (x)− f (x′) =
n∑

i=1
CΔxiΔt (6.20)

where n is the total number of input neurons necessary to compute f (x) and Δx =
x − x′. This is termed the “summation-to-delta” property. The contribution score
CΔxiΔt relates how changes in input Δx affect changes in neuron activation Δt . If
we divide this contribution score by Δx, we can define a multiplier analogous to a
partial derivative:

mΔxΔt = CΔxΔt

Δx
(6.21)

This multiplier follows a useful chain rule:

mΔxiΔt =
∑
j

mΔxiΔyj
mΔyj Δt (6.22)

This chain rule allows for the contribution scores to be backpropagated layer-by-
layer through the network and is analogous to how gradients are backpropagated.
By using the difference from reference approach, DeepLIFT allows contribution
scores to propagate even when the gradient is zero.

DeepLIFT proposes three contribution scoring functions: a linear rule applicable
to dense and convolutional layers, a rescale rule that can account for saturation and
thresholding problems, and a reveal-cancel rule that treats positive and negative
contributions separately.

The choice of a reference input x′ is an important consideration, as it determines
what relevance scores are computed against. For instance, the use of an all zero
reference may not be as useful if noise is present in the background.

Interpretation of DeepLIFT: as a local explanation method, DeepLIFT calcu-
lates input importance relative to a reference by backpropagating contribution
scores through the network. It is very computationally efficient and provides
an approximation to Shapley values. The choice of scoring function and
reference input should be carefully considered.

DeepLIFT scores can be efficiently computed with a single backward pass. They
are connected to Shapely values, which measure the marginal contribution of each
feature averaged across the set of all possible coalitions of features. If excluding a
feature is equivalent to setting it to its reference value, DeepLIFT can be thought of
as a fast approximation of the Shapely values.

Explainable properties of DeepLIFT are shown in Table 6.12.

6.5 Gradient/Backpropagation 239

Fig. 6.11 DeepLIFT contribution scores on Fashion MNIST

Observations:

• The left side of Fig. 6.11 shows the category predictions of a PyTorch 3-layer
CNN model trained on Fashion MNIST.

• The right side shows the DeepLIFT importance map based on the linear-rule
and black baseline reference.

• Note that DeepLIFT provides better visual explanations in comparison to
saliency maps.

240 6 Explainable Deep Learning

Table 6.12 Explainable
properties of DeepLIFT

Properties Values

Local or global Local

Linear or non-linear Non-linear

Monotonic or non-monotonic Non-monotonic

Feature interactions captured Yes

Model complexity Low

6.5.5 DeepSHAP

DeepSHAP [CLL19] is an extension of the KernelSHAP method of Chap. 5 by
leveraging the compositional architecture of deep neural networks to improve
computational efficiency. As previously mentioned, the per node attribution rules
in DeepLIFT can approximate the Shapley values [SGK19]. DeepSHAP leverages
this approximation as well as DeepLIFT’s multiplier chain rule. In DeepSHAP, the
multipliers are expressed in terms of SHAP values φi :

mxj ,fj
= φi(fj , x)

xj − E
[
xj

] (6.23)

and follow the chain rule:

mxj ,fj
=

∑
j

mxj ,yj
myj ,fj

(6.24)

DeepSHAP calculates SHAP values for large networks by starting with Shapley
values for simple network components and backpropagating them using this rule.

Rather than setting the reference input x′ as in DeepLIFT, DeepSHAP approx-
imates the reference value by averaging over background dataset instances. It can
estimate approximate SHAP values such that they sum up to the difference between
the expected model output on background instances and the current model output
f (x)− E [f (x)].

Interpretation of DeepSHAP: as a local explanation method, DeepSHAP
is an extension of DeepLIFT to backpropagate Shapley values through the
network. DeepSHAP computes an input reference as the expectation over
background data instances. It is very computationally efficient and provides a
quick approximation to Shapley values, which may be biased when features
are strongly correlated.

DeepSHAP is computationally very efficient. Instead of depending on
DeepLIFT’s contribution rules to linearize each node in the network, DeepSHAP
effectively linearizes the network by computing SHAP values using the chain rule.

6.5 Gradient/Backpropagation 241

As such, they are approximations to the true Shapley values and will be biased when
strong feature interactions exist.

Explainable properties of DeepSHAP are shown in Table 6.13.

Observations:

• The left side of Fig. 6.12 shows the predictions of a PyTorch 3-layer CNN
model trained on Fashion MNIST.

• The right side shows the DeepSHAP importance map based on a baseline
reference consisting of a random sample of 10 images from the training set.

• Note that DeepSHAP provides slightly worse visual explanations in com-
parison to DeepLIFT but is more computationally efficient.

Fig. 6.12 DeepSHAP importance map on Fashion MNIST

242 6 Explainable Deep Learning

Table 6.13 Explainable
properties of DeepSHAP

Properties Values

Local or global Local

Linear or non-linear Linear

Monotonic or non-monotonic Monotonic

Feature interactions captured No

Model complexity Low

6.5.6 Deconvolution

Deconvolution [ZF13] is an explanation method proposed for visualizing the feature
contributions of CNN architectures (convnets). It takes the output of the CNN and
runs the CNN in reverse. The guiding notion is to determine which portions of an
input instance are most discriminative for a single neuron.

Given a CNN neural network of J layers, the output of the j -th layer Cj is given
by

Aj = Cj−1 ∗Kj + bj (6.25)

Bj = ReLU(Aj) = max
(
Aj , 0

)
(6.26)

Cj = maxpool
(
Bj

)
(6.27)

sj = switch
(
Bj

)
(6.28)

whereKj and bj are the learned filter and bias for the j -th layer, respectively. ReLU
is the rectified linear operator, and the switch variable sj records the indices of the
maximum values in the pooling operation for the deconvolution step.

A deconvolution network (deconvnet) is attached to the original convnet to map
feature activations back to the input space. Each layer in this deconvnet inverts
the corresponding layer of the original convnet. To examine each convnet neuron
activation, the activation is set to zero for all other neurons in the layer, and the
feature maps are fed as input to the deconvnet layer, which sequentially applies
unpooling, rectification, and filtering operations.

Ĉj = unpool
(
Cj , sj

)
(6.29)

B̂j = ReLU(Ĉj) = max
(
Ĉj , 0

)
(6.30)

Âj =
(
B̂j − bj

)
∗KjT (6.31)

6.5 Gradient/Backpropagation 243

where KjT is the transpose of Kj . Together, the set of deconvolution operations
is called transpose convolution. While the max pooling operation is not invertible,
unpooling can be performed if switch variables are recorded during the forward
propagation of the convnet. The ReLU ensures feature maps are non-negative, and
the filtering operation up-weights and up-scales the feature representation in each
layer.

Interpretation of Deconvolution: deconvolution explains learned feature maps
in CNN-based models by propagating them through an inverted convolutional
network called a deconvnet.

The deconvolution method is specific to CNN architectures, though the process is
applicable to dense layers as well and other non-linearities beyond ReLU. In order
to operate effectively, deconvolution requires a forward pass through the original
convnet in order to calculate and store the switch variables to allow the deconvnet
to reverse the max pooling operations. As a result, visualizations derived from
deconvolution are conditioned on the instance used to calculate the switch variables
and do not directly visualize the learned features [Spr+15b].

Explainable properties of Deconvolution are shown in Table 6.14.

Fig. 6.13 Deconvolution visualizations on Fashion MNIST

244 6 Explainable Deep Learning

Observations:

• The left side of Fig. 6.13 shows the input image and category prediction of
a PyTorch 3-layer CNN model trained on Fashion MNIST.

• The right side shows the deconvolution feature importance map conditioned
on the input image instance.

6.5.7 Guided Backpropagation

Guided backpropagation [Spr+15b] is another explanation method for feature
attribution on CNN-based architectures. It is similar to deconvolution, except it
removes the unpooling operation and adopts a modified operation for the ReLU
non-linearity.

Table 6.14 Explainable
properties of deconvolution

Properties Values

Local or global Global

Linear or non-linear Non-linear

Monotonic or non-monotonic Non-monotonic

Feature interactions captured Yes

Model complexity Medium

In deconvolution, only positive gradients are backpropagated. In vanilla back-
propagation, the gradients for only positive inputs are kept for each layer. Guided
backpropagation incorporates both of these methods such that only positive gra-
dients associated with positive input values are backpropagated. This stops the
backward flow of negative gradients through the inverse network.

Let f
j
i and R

j
i be the i-th neuron input to and feature map of the j -th layer,

respectively. Then for guided backpropagation, we have during the backward pass

R
j
i = (f

j
i > 0)(Rj+1

i > 0) R
j+1
i (6.32)

This is in contrast to deconvolution, where the backward pass applies the operation
after unpooling:

R
j
i = (R

j+1
i > 0) R

j+1
i (6.33)

Because of the additional guidance signal in guided backpropagation, unpooling
is unnecessary and does not require an initial forward pass through the convnet to

6.5 Gradient/Backpropagation 245

compute and store switch variables. As a result, it is more computationally efficient.
Explanations via guided backpropagation are not conditioned on any single instance
as in deconvolution and provide more accurate explanations of feature activations.

Explainable properties of Guided Backpropagation are shown in Table 6.15.

Interpretation of Guided Backpropagation: guided backprop is an improve-
ment upon deconvolution to explain learned feature maps in CNN-based
models. It replaces unpooling and ReLU operations with an operation allow
only positive gradients associated with positive inputs to be backpropagated.

Fig. 6.14 Guided backpropagation visualizations on Fashion MNIST

Observations:

• The left side of Fig. 6.14 shows the category prediction of a PyTorch 3-layer
CNN model trained on Fashion MNIST.

• The right side shows the guided backprop feature importance map without
the need for a forward pass for conditioning as in deconvolution.

• Note the improvement over deconvolution in visual explanation.

246 6 Explainable Deep Learning

Table 6.15 Explainable
properties of guided
backpropagation

Properties Values

Local or global Global

Linear or non-linear Non-linear

Monotonic or non-monotonic Non-monotonic

Feature interactions captured Yes

Model complexity Medium

6.5.8 Integrated Gradients

Integrated gradients [SN19] is an explanation method that does not require modifi-
cation of the original network and takes an axiomatic approach to generate feature
attributions for specific instances. Ideally, an attribution method should obey the
axiom of sensitivity, which states that if two inputs x and x′ differ by a single feature
and have different prediction values f (x) �= f (x′), then the feature should be
given non-zero attribution. Unfortunately, many gradient-based attribution methods
violate this sensitivity axiom, including DeepLIFT, deconvolution, and guided
backpropagation.

An attribution method should also obey the axiom of implementation invariance,
which states that two neural networks, even with vastly different implementations,
are functionally equivalent if they map the same inputs to the same outputs.
Attributions are identical across two functionally equivalent neural networks.

The integrated gradients method satisfies both of these axioms. Given a neural
network model f , an input instance x, and a baseline reference x′, one can traverse
along the direct path from reference to input x′ → x while accumulating gradients.
The integrated gradient along the j -th feature is given by

IGj (x) = (xj − x′j)
∫ 1

α=0
∂f

(
x′ + α

[
x − x′

])
∂xj

∂α (6.34)

Integrated gradients satisfy the axiom of completeness, which states that the sum of
the attributions is equal to f (x)− f (x′).

A key consideration with integrated gradients is selecting a baseline, similar to
DeepLIFT. Ensuring that the baseline reference has near-zero score is important to
ensure the attributions are derived from the input rather than the baseline.

In practice, the path integral is calculated using a Riemann summation approxi-
mation:

IGj (x) ≈ (xj − x′j)
M

M∑
i=1

∂f

(
x′ + i

M
(x − x′)

)

∂xj

(6.35)

where the parameter M is the number of steps in the Riemann summation.

6.5 Gradient/Backpropagation 247

Interpretation of Integrated Gradients: IG takes an axiomatic approach to
computing feature attributions by accumulating gradients along the direct path
between a baseline reference and an instance of interest. They are simple and
quick to compute.

The integrated gradients method is not limited to CNNs and can be applied to a
wide variety of deep neural networks. They are computationally efficient and simple
to compute.

Explainable properties of Integrated Gradients are shown in Table 6.16.

Fig. 6.15 Integrated gradients attributions on Fashion MNIST

248 6 Explainable Deep Learning

Observations:

• The left side of Fig. 6.15 shows the category prediction of a PyTorch 3-layer
CNN model trained on Fashion MNIST.

• The right side shows the integrated gradients importance map using a zero
baseline and 50-step Riemann approximation.

• Note the quality of the visual explanations in comparison to DeepLIFT.

Table 6.16 Explainable
properties of integrated
gradients

Properties Values

Local or global Local

Linear or non-linear Non-linear

Monotonic or non-monotonic Non-monotonic

Feature interactions captured Yes

Model complexity Medium

6.5.9 Layer-Wise Relevance Propagation

Layer-wise relevance propagation (LRP) [Bac+15a] is an explanation method that
computes feature attributions by backpropagating relevance scores through the
network layers from output to input. Relevance scores measure the connection
strength between any two neurons.

LRP follows the law of relevance conservation, which states that the relevance of
any neuron is equal to the sum of its relevance maps in the previous layer. That is, if
the relevance score for the i-th neuron in layer j is given by R

j
i , then conservation

states that

f (x) =
∑

k

R
j+1
k =

∑
i

R
j
i = . . . =

∑
m

R1
m (6.36)

where f (x) is the neural network prediction for input x. The total relevance is
preserved across layers.

LRP starts with a forward pass on an instance of interest and the class prediction
of a single neuron in the top layer with all other neurons at zero value. The relevance
is set equal to this class prediction and is backpropagated through the network with
the propagation rule:

6.5 Gradient/Backpropagation 249

Rj =
∑

k

ajwjk∑j

0 ajwjk

Rk (6.37)

where neurons j and k are in consecutive layers, aj is the activation for the
neuron in layer j , and wjk is the connection weight between these two neurons.
Relevance scores can thus be recursively calculated back to the input and then
visualized as a heatmap to explain input feature attribution. Note that other
propagation rules can be used for specific applications, and different rules can
be used for different layers (Table 6.17) so long as the law of conservation is
followed [Mon+19].

Explainable properties of Integrated Gradients are shown in Table 6.18.

Interpretation of Layer-wise Relevance Propagation: LRP provides visual
explanations of individual instances by backpropagating relevance scores
from the neural network top layer down to the input. By construction, the
total relevance is conserved across layers. The choice of propagation rule is a
design consideration.

Table 6.17 List of
commonly used LRP rules

Rule Layer

Rj = ∑
k

aj wjk∑
0,j aj wjk

Rk Upper

Rj = ∑
k

aj wjk

ε+∑
0,j aj wjk

Rk Middle

Rj = ∑
k

aj

(
wjk+γw+jk

)

∑
0,j aj

(
wjk+γw+jk

)Rk Lower

Rj = ∑
k

(
α

(aj wjk)
+

∑
0,j (aj wjk)

+ − β
(aj wjk)

−
∑

0,j (aj wjk)
−

)
Rk Lower

Rj = ∑
k

1∑
j 1

Rk Lower

Rj = ∑
j

w2
ij∑

i w2
ij

Rj First

Ri = ∑
j

xiwij−liw
+
ij−hiw

−
ij∑

i xiwij−liw
+
ij−hiw

−
ij

Rj First

250 6 Explainable Deep Learning

Fig. 6.16 Layer-wise relevance propagation heatmap on Fashion MNIST

Observations:

• Fig. 6.16 shows the category prediction of a PyTorch 3-layer CNN model
trained on Fashion MNIST.

• The right side shows the layer-wise relevance propagation heatmap using a
zero baseline and 50-step Riemann approximation.

• Note the quality of the visual explanations in comparison to DeepLIFT.

6.5 Gradient/Backpropagation 251

Table 6.18 Explainable
properties of layer-wise
relevance propagation

Properties Values

Local or global Local

Linear or non-linear Non-linear

Monotonic or non-monotonic Non-monotonic

Feature interactions captured Yes

Model complexity Medium

6.5.10 Excitation Backpropagation

Excitation backpropagation (EBP) [Zha+16] is an explanation method that aims
to visualize neuron activations by applying a winner-take-all (WTA) approach to
backpropagating through excitatory connections between neurons for classification
tasks. It backpropagates only positive weights while keeping gradients normalized.

For a neuron ai in the i-th layer, the conditional winning probability P(aj |ai) of
each neuron aj in the preceding layer connected to it is

P(aj |ai) =
{

Ziâjwji wji ≥ 0

0 otherwise
(6.38)

where âj is the input neuron’s response and the normalization factor Zi is given by

Zi =

⎧⎪⎨
⎪⎩
0

∑
j :wji≥0 âjwji = 0

1∑
j :wji≥0 âjwji

otherwise
(6.39)

In the winner-take-all approach, if ai is a winning neuron, the next winning
neuron will be sampled based on P(aj |ai). The weight wji reflects the top-down
feature expectation and âj captures the bottom-up feature strength. Applying this
recursively allows EBP to compute marginal winning probability maps which can
serve as soft attention maps.

Interpretation of Excitation Backpropagation: EBP learns soft attention maps
by applying a probabilistic winner-take-all process to backpropagate activa-
tions top-down through the network. It can also learn contrastive attention
maps that improve discriminative ability. EBP is restricted to neural classifi-
cation tasks.

In practice, EBP is often used to propagate a pair of contrastive top-down
signals by backpropagating both a positive and a negative neural activations top-
down through the network. As marginal winning probability maps are linear

252 6 Explainable Deep Learning

functions of the top-down signal, the sum of these two activations can be computed
simultaneously during a single backward pass. The resulting contrastive marginal
winning probability map can amplify discriminative excitations.

Explainable properties of Excitation Backpropagation are shown in Table 6.19.

Fig. 6.17 Excitation backpropagation heatmap on Fashion MNIST

Observations:

• Fig. 6.17 shows the input image to a 3-layer MLP model trained on Fashion
MNIST.

• The right side shows the excitation backpropagation soft attention map.

Table 6.19 Explainable
properties of excitation
backpropagation

Properties Values

Local or global Local

Linear or non-linear Non-linear

Monotonic or non-monotonic Non-monotonic

Feature interactions captured Yes

Model complexity Medium

6.5 Gradient/Backpropagation 253

6.5.11 CAM

Class activation maps (CAM) [Zho+15a] is an explanation method applicable
to specific CNN architectures. It has been shown that CNNs can be used for
object localization if the max pooling operation is replaced with global average
pooling [Zho+15b]. By adding a global average pooling operation between the
last convolutional layer and the output layer of a CNN, the discriminative image
regions associated with a prediction for a particular class can be visualized as a
class activation map.

Let fk(x, y) represent the activation of the k-th neuron in the last convolutional
layer of a CNN at spatial location (x, y). Then the output Pc for class c is given by

Pc = exp(Sc)∑
c exp(Sc)

(6.40)

Sc =
∑

k

wc
kFk (6.41)

Fk =
∑
x,y

fk(x, y) (6.42)

where wc
k is the weight corresponding to class c for the k-th neuron, Sc is the input

to the softmax neuron for class c, and Fk is the global average pooled output at the
k-th neuron. The weights wc

k can be interpreted as a measure of the importance of
Fk for class c.

The class activation map Mc(x, y) is defined as

Mc(x, y) =
∑

k

wc
kfk(x, y) (6.43)

Note that the class c softmax input can be written as

Sc =
∑
x,y

∑
k

wc
kfk(x, y) =

∑
x,y

Mc(x, y) (6.44)

and the class activation map can be interpreted as a measure of importance of the
activation at spatial location (x, y) for class c prediction. By up-sampling the class
activation map to the size of the input image and applying thresholding, a heatmap
is generated that identifies the regions of the input image most relevant to class c.

While CAM is computationally efficient as it requires a forward pass and a partial
backward pass. Unfortunately, it is restricted to a set of specific CNN architectures
that exclude fully connected layers.

Explainable properties of CAM are shown in Table 6.20.

254 6 Explainable Deep Learning

Interpretation of Class Activation Maps: CAMs are useful for a specific set of
CNN models by using global max pooling to visualize the regions of an input
image most relevant to a class prediction. It exploits the spatial information
that is preserved through convolutional layers.

Table 6.20 Explainable
properties of CAM

Properties Values

Local or global Local

Linear or non-linear Non-linear

Monotonic or non-monotonic Non-monotonic

Feature interactions captured Yes

Model complexity Medium

6.5.12 Gradient-Weighted CAM

Gradient-weighed CAM (GradCAM) [Sel+19] is a generalization of CAM to allow
for more flexible CNN architectures. Instead of relying on a global average pooling
after the last convolutional layer, it allows for any architecture as long as layers are
differentiable. GradCAM assigns importance values to each neuron by utilizing the
gradient information that flows into the last convolutional layer of the CNN.

Let yc be the score for class c, and let Ak
xy be the feature map activations of

a convolutional layer neuron at location (x, y). GradCAM calculates the neuron
importance weights αc

k by global average pooling the gradients:

αc
k =

1

Z

∑
x,y

∂yc

∂Ak
xy︸ ︷︷ ︸

gradient

(6.45)

where Z is a proportionality constant that can be disregarded since it is normalized
out during visualization. With these alpha weights, a GradCAM localization
heatmap Lc for class c is calculated by

Lc = ReLU

(∑
k

αc
kA

k

)
(6.46)

The ReLU operation is to ensure only positive importance values are emphasized.
In effect, GradCAM takes the weighted sum of the feature map activations of the

6.5 Gradient/Backpropagation 255

convolutional layer to generate gradient-weighted class activation maps. These class
activation maps are up-sampled to the size of the input image to generate heatmaps
of importance values.

Interpretation of Gradient-Weighted Class Activation Maps: GradCAM is
a generalization of CAM to a broader range of CNN architectures. It can
efficiently generate localization heatmap explanations for specific instances.

Like CAM, GradCAM is computationally efficient and requires a single forward
pass and a partial backward pass. Unlike CAM, it is applicable to a much broader
range of CNN-based architectures.

Explainable properties of GradCAM are shown in Table 6.21.

Fig. 6.18 Up-sampled localization heatmap on Fashion MNIST

Observations:

• Fig. 6.18 shows the input image to a PyTorch 3-layer CNN model trained on
Fashion MNIST.

• The right side shows the up-sampled GradCAM heatmap for the conv3 layer
(the last convolutional layer)

• GradCAM identifies the sleeve areas as important features to the prediction
of category 4 (Coat).

256 6 Explainable Deep Learning

Table 6.21 Explainable
properties of GradCAM

Properties Values

Local or global Local

Linear or non-linear Non-linear

Monotonic or non-monotonic Non-monotonic

Feature interactions captured Yes

Model complexity Medium

6.5.13 Testing with Concept Activation Vectors

One of the challenges of neural explanation methods is that they may not gener-
ate human-interpretable explanations. Feature importance heatmaps may identify
regions of the input instance that influence output prediction, but these do not
correspond to human-relatable concepts. Furthermore, hidden layer activations are
seldom comprehensible. Concept activation vectors (CAVs) [Kim+18] map data and
latent representations to human-interpretable concepts.

Let Em represent the vector space of basis vectors em that span the input features
and neural activations and Eh represent the vector space of human-interpretable
concepts. A concept activation vector is a mapping from Em to Eh and is learned
by training a binary linear classifier f on the layer activations with a set of hand-
selected positive examples that contain the concept, as well as a set of random
negative instances:

f (x) =
{
1 wT x + b ≥ threshold

0 wT x + b < threshold
(6.47)

where w and b are the weights and bias of the binary linear classifier. The CAV vc
j

is the normal vector to the learned hyperplane decision boundary in the direction
toward the concept in the j -th layer, vc

j = w.
Testing with Concept Activation Vectors (TCAV) is an explanation method that

can quantify the class sensitivity of a trained neural network with respect to a
concept in a neural network layer. Let the scoring function Sc

k,j be defined as the
sensitivity of the neural activation at the j -th layer to class k for a given instance x:

Sc
k,j = ∇hk,j (fj (x))vc

j (6.48)

where fj (x) maps the input x to the activation vector of layer j and hk,j maps the
activation vector of layer j to the output activation (logit) of class k. The directional
derivative is taken toward the concept activation vector vc

j for layer j . This scalar
represents the influence of concept c in influencing the model to predict x as class
k. A positive value encourages while a negative value discourages the model toward
class k.

TCAV measures the class sensitivity across inputs of an entire class at layer j by
computing

6.5 Gradient/Backpropagation 257

T CAV c
k,j =

∣∣∣x ∈ Xk : Sc
k,j > 0

∣∣∣
|Xk| (6.49)

where Xk is the set of input instances labeled as class k. This represents the fraction
of instances with activation vectors at layer j positively influenced by concept c. It
neither considers the magnitude of the influence nor negative influences.

TCAV has a distinct advantage in that concept activation vectors for user-
defined concepts can be learned by providing examples from external datasets.
Thus, it is possible to quantify the influence of semantic concepts that are much
more human-comprehensible. However, not all concept activation vectors may be
meaningful, since even a set of randomly selected instances can still produce a
CAV. Furthermore, the CAVs learned for semantically opposing concepts may
significantly overlap, resulting in less discriminative ability of the influence of
related concepts.

Interpretation of Testing with Concept Activation Vectors: concept activation
vectors are effective representations of human-interpretable concepts in the
activations of a neural network layer. These vectors can be used to test
class sensitivity to particular concepts that generate meaningful and human-
understandable explanations.

In practice, learned CAVs should be validated. One method is to retrain the CAV
and calculate TCAV on multiple runs using different random negative instances. A
meaningful CAV should result in consistent TCAV scores across these iterations,
which can be evaluated using a t-test. Another way to validate CAVs is to visualize
the patterns that activate each CAV by applying the activation maximization method.
A further way to validate CAVs is to visualize the set of instances most and least
similar to the CAV in terms of cosine distance.

Explainable properties of TCAV are shown in Table 6.22.

Observations:

• Fig. 6.19 shows the input image (category 9: ankle boot) and individual layer
activations of a PyTorch 3-layer CNN model trained on Fashion MNIST.

• TCAV values were calculated using an SGD classifier for a “sneaker”
concept trained on 100 positive samples with 100 random negative samples
extracted from the test set.

• The TCAV values indicate that class 9 (ankle boot) is fairly sensitive to
the concept “sneaker.” From a human perspective, they share a semantic
relationship as both are types of shoes.

258 6 Explainable Deep Learning

Fig. 6.19 TCAV on Fashion MNIST

Table 6.22 Explainable
properties of TCAV

Properties Values

Local or global Global

Linear or non-linear Linear

Monotonic or non-monotonic Monotonic

Feature interactions captured Yes

Model complexity High

References 259

References

[AJ18] D. Alvarez-Melis, T.S. Jaakkola, Towards robust interpretability with self-explaining
neural networks (2018). arXiv:1806.07538 [cs.LG]

[Bac+15a] S. Bach et al., On pixel-wise explanations for non-linear classifier decisions by
layerwise relevance propagation. PLOS ONE 10(7), 1–46 (2015). https://doi.org/10.
1371/journal.pone.0130140.9

[Bin+16] A. Binder et al., Layer-wise relevance propagation for deep neural network archi-
tectures, in Information Science and Applications (ICISA) 2016, ed. by K.J. Kim,
N. Joukov, vol. 376. Lecture Notes in Electrical Engineering (Springer Singapore,
Singapore, 2016), pp. 913–922. ISBN:978-981-10-0557-2

[Che+19] C. Chen et al., This looks like that: Deep learning for interpretable image recognition
(2019). arXiv:1806.10574 [cs.LG]

[CLL19] H. Chen, S. Lundberg, S.-I. Lee, Explaining models by propagating Shapley values of
local components (2019). arXiv:1911.11888 [cs.LG]

[Don+17] Y. Dong et al., Improving interpretability of deep neural networks with semantic
information (2017). arXiv:1703.04096 [cs.CV]

[ECB10] D. Erhan, A. Courville, Y. Bengio, Understanding Representations Learned in Deep
Architectures. Tech. rep. 1355. Université de Montréal/DIRO (Oct. 2010)

[FV17] R.C. Fong, A. Vedaldi, Interpretable explanations of black boxes by
meaningful perturbation, in 2017 IEEE International Conference on
Computer Vision (ICCV) (Oct. 2017). https://doi.org/10.1109/iccv.2017.371.
http://dx.doi.org/10.1109/ICCV.2017.371

[Goy+20] Y. Goyal et al., Explaining classifiers with causal concept effect (CaCE) (2020).
arXiv:1907.07165 [cs.LG]

[HVD15] G. Hinton, O. Vinyals, J. Dean, Distilling the knowledge in a neural network (2015).
arXiv:1503.02531 [stat.ML]

[Iye+18] R. Iyer et al., Transparency and explanation in deep reinforcement learning neural
networks (2018). arXiv:1809.06061 [cs.LG]

[Kim+18] B. Kim et al., Interpretability beyond feature attribution: Quantitative testing with
concept activation vectors (TCAV), in ICML, ed. by J.G. Dy, A. Krause, vol. 80.
Proceedings of Machine Learning Research (PMLR, 2018), pp. 2673–2682

[LBJ16] T. Lei, R. Barzilay, T. Jaakkola, Rationalizing neural predictions. In Proceedings of the
2016 Conference on Empirical Methods in Natural Language Processing (Association
for Computational Linguistics, Austin, Texas, 2016), pp. 107–117. https://doi.org/10.
18653/v1/D16-1011. https://www.aclweb.org/anthology/D16-1011

[LMJ17] J. Li, W. Monroe, D. Jurafsky, Understanding neural networks through representation
erasure (2017). arXiv:1612.08220 [cs.CL]

[Li+17] O. Li et al., Deep learning for case-based reasoning through prototypes: a neural
network that explains its predictions (2017). arXiv:1710.04806 [cs.AI]

[LYW19] H. Liu, Q. Yin, W.Y. Wang, Towards explainable NLP: A generative explanation
framework for text classification (2019). arXiv:1811.00196 [cs.CL]

[Mon+19] G. Montavon et al., Layer-wise relevance propagation: An overview. Explainable AI
(2019)

[PDS18a] V. Petsiuk, A. Das, K. Saenko, RISE: Randomized input sampling for explanation of
black-box models (2018). arXiv:1806.07421 [cs.CV]

[Sel+19] R.R. Selvaraju et al., Grad-CAM: Visual explanations from deep networks via
gradient-based localization. Int. J. Comput. Vis. 128(2), 336–359 (2019). ISSN: 1573-
1405. http://doi.org/10.1007/s11263-019-01228-7

[SS19] S. Serrano, N.A. Smith, Is attention interpretable? (2019). arXiv:1906.03731 [cs.CL]

https://doi.org/10.1371/journal.pone.0130140.9
https://doi.org/10.1371/journal.pone.0130140.9
https://doi.org/10.1109/iccv.2017.371
https://doi.org/10.18653/v1/D16-1011
https://doi.org/10.18653/v1/D16-1011
https://www.aclweb.org/anthology/D16-1011
http://doi.org/10.1007/s11263-019-01228-7

260 6 Explainable Deep Learning

[SGK19] A. Shrikumar, P. Greenside, A. Kundaje, Learning important features through propa-
gating activation differences (2019). arXiv:1704.02685 [cs.CV]

[SVZ14a] K. Simonyan, A. Vedaldi, A. Zisserman, Deep inside convolutional networks: Visual-
ising image classification models and saliency maps (2014). arXiv:1312.6034 [cs.CV]

[Spr+15b] J.T. Springenberg et al., Striving for simplicity: The all convolutional net (2015).
arXiv:1412.6806 [cs.LG]

[STY17] M. Sundararajan, A. Taly, Q. Yan, Axiomatic attribution for deep networks (2017).
arXiv:1703.01365 [cs.LG]

[Tur95] A.M. Turing, Computers & amp; thought (MIT Press, 1995), pp. 11–35. Chap.
Computing Machinery and Intelligence

[ZTF11] M.D. Zeiler, G.W. Taylor, R. Fergus, Adaptive deconvolutional networks for mid and
high level feature learning, in 2011 International Conference on Computer Vision
(2011), pp. 2018–2025. https://doi.org/10.1109/ICCV.2011.6126474

[ZF13] M.D. Zeiler, R. Fergus, Visualizing and understanding convolutional networks (2013).
arXiv:1311.2901 [cs.CV]

[Zel+19] R. Zellers et al., From recognition to cognition: Visual commonsense reasoning, in
2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR),
June 2019, pp. 6713–6724. https://doi.org/10.1109/CVPR.2019.00688

[Zha+16] J. Zhang et al., Top-down neural attention by excitation backprop (2016).
arXiv:1608.00507 [cs.CV]

[Zho+15a] B. Zhou et al., Learning deep features for discriminative localization (2015).
arXiv:1512.04150 [cs.CV]

[Zho+15b] B. Zhou et al., Object detectors emerge in deep scene CNNs (2015). arXiv:1412.6856
[cs.CV]

[Zin+17] L.M. Zintgraf et al., Visualizing deep neural network decisions: Prediction difference
analysis (2017). arXiv:1702.04595 [cs.CV]

https://doi.org/10.1109/ICCV.2011.6126474
https://doi.org/10.1109/CVPR.2019.00688

Chapter 7
Explainability in Time Series
Forecasting, Natural Language
Processing, and Computer Vision

Various domains such as computer vision, natural language processing, and time
series analysis have extensively applied machine learning algorithms in recent years.
This chapter will discuss the research and applications of the interpretable and
explainable algorithms in this domain. We will start with a time series algorithm
survey, starting from traditional interpretable statistical models to modern deep
learning algorithms. Next, we discuss NLP applications and the role of interpretabil-
ity. Finally, we cover computer vision and how explainability has been a focus of
considerable research. We will present a case study in each domain where the reader
can get practical and real-world insights.

7.1 Time Series Forecasting

Forecasting, based on historical data, is one of the most critical applications of time
series. There is a particular class of much easier problems, such as predicting daily
temperature based on the last few days, while specific issues such as predicting
volatility in the foreign exchange rates may be trickier. Understanding the factors,
how they impact the target, seasonality, trend, etc., contribute to forecasting model
quality. Time series modeling and forecasting have many parallels to the general
machine learning process of training and predicting out-of-sample. This section
will discuss the similarity and highlight the differences for time series modeling,
especially from the explainability standpoint.

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2021
U. Kamath, J. Liu, Explainable Artificial Intelligence: An Introduction to
Interpretable Machine Learning, https://doi.org/10.1007/978-3-030-83356-5_7

261

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-83356-5_7&domain=pdf
https://doi.org/10.1007/978-3-030-83356-5_7

262 7 Explainability in Time Series Forecasting, Natural Language Processing, and. . .

Table 7.1 Tools and libraries for time series forecasting

Tools and libraries Description

statsmodels https://github.com/
statsmodels/statsmodels

Implementations for most of the statistical time
series models like ARIMA, SARIMA, VAR,
exponential smoothing, etc.

pysf https://github.com/alan-turing-
institute/pysf

Supervised forecasting for time series

sktime https://github.com/alan-turing-
institute/sktime

Support for time series algorithms and scikit-learn
compatible tools to build, tune and validate time
series models for classification, regression, and
forecasting.

DeepSeries https://github.com/
EvilPsyCHo/Deep-Time-Series-
Prediction

Deep Learning Models for time series prediction

Prophet https://facebook.github.io/
prophet/

Scalable time series forecasting package

N-Beats https://github.com/philipperemy/
n-beats

Neural basis expansion analysis for interpretable
time series forecasting

7.1.1 Tools and Libraries

The following are some of the known tools and libraries that can be used for time
series forecasting from a statistical, machine learning, and deep learning perspective
(Table 7.1).

7.1.2 Model Validation and Evaluation

In generic machine learning, we divide the dataset into training, validation, and
testing for modeling, hyperparameter selection, and estimations, respectively. We
follow a similar process in time series with a few modifications. We cannot take
random samples from the dataset to create the training/validation/test subsets, which
assumes each instance in the dataset is independent. There is a dependence between
the instances in time series as compared to normal tabular data, and the temporal
order has to be maintained when creating the splits. The splits also need to consider
the seasonality, trend, and other factors evident from the EDA process. Generally,
the two most prevalent techniques are single and multiple train-validation-test split
that respect the observations’ temporal order. In certain cases where the predictions
become less accurate over time, it is common to re-train the model with new
data as and when available for further predictions; this is called walk-forward
validation [HA18a].

https://github.com/statsmodels/statsmodels
https://github.com/statsmodels/statsmodels
https://github.com/alan-turing-institute/pysf
https://github.com/alan-turing-institute/pysf
https://github.com/alan-turing-institute/sktime
https://github.com/alan-turing-institute/sktime
https://github.com/EvilPsyCHo/Deep-Time-Series-Prediction
https://github.com/EvilPsyCHo/Deep-Time-Series-Prediction
https://github.com/EvilPsyCHo/Deep-Time-Series-Prediction
https://facebook.github.io/prophet/
https://facebook.github.io/prophet/
https://github.com/philipperemy/n-beats
https://github.com/philipperemy/n-beats

7.1 Time Series Forecasting 263

7.1.3 Model Metrics

Time series forecasting commonly focuses on predicting real values and has a direct
mapping to regression problems. In this section, we will focus on methods for
evaluating real-valued predictions in time series.

Given a length-H forecast horizon a length-T training data series history
[y1, . . . , yT] ∈ R

T , the task is to predict the future values y ∈ R
H =

[yT+1, . . . , yT+H]. The predictions are given by ŷ ∈ R
H = [yT+1, . . . , yT+H]

1. Forecast Error (Residual Forecast error) The forecast error is the difference
between the expected value and the predicted value. It is given by

eT+h = yt+h − ŷt+h (7.1)

The units of the forecast error are the same as the units of the prediction. It is
important to note the difference between the residuals and the forecast errors. We
calculate the residuals on the training set while forecast errors are calculated on
the test set. Also, residuals are based on one-step forecasts, while forecast errors
can involve multi-step forecasts.

2. Mean Forecast error (Forecast Bias) Mean forecast error (MFE), also known as
the forecast bias, is the average of the forecast error values. It is given by

MFE = 1

H

H∑
h=1

yt+h − ŷt+h (7.2)

A mean forecast error value other than zero suggests the model’s tendency to
over forecast (negative error) or under forecast (positive error). A forecast error
with a value of zero or close to zero indicates an unbiased model.

3. Mean Absolute Error The mean absolute error, or MAE, is the forecast error
values’ average, with absolute values used for all forecast predictions. When
comparing forecast models applied to a single or multiple time series with the
same units, the MAE is a popular metric as it is easy to understand and compute.

MFE = 1

H

H∑
h=1
|yt+h − ŷt+h| (7.3)

4. Mean Squared Error (MSE) and Root Mean Squared Error (RMSE) The mean
squared error, or MSE, is the average of the squared forecast error values.
Squaring the forecast error values forces them to be positive. The side effect
is that very large or outlier forecast errors get squared, which results in a larger
mean squared error. Root mean squared error (RMSE) is measured by taking the
square root of MSE.

264 7 Explainability in Time Series Forecasting, Natural Language Processing, and. . .

MSE = 1

H

H∑
h=1

(yt+h − ŷt+h)
2 (7.4)

RMSE =
√√√√ 1

H

H∑
h=1

(yt+h − ŷt+h)2 (7.5)

5. Mean Absolute Percentage Error and Scaled Mean Absolute Percentage Error
Mean Absolute Percentage Error (MAPE) is given by

MAPE = 100

H

H∑
h=1

|yt+h − ŷt+h|
|yt+h| (7.6)

It is unit-free and can be used to compare across datasets. One of the limitations
of MAPE is that when the yt is closer to 0 it causes a higher penalty on the
negative errors than positives. Symmetric MAPE (sMAPE) overcomes these
limitations of MAPE, but Hyndman et al. recommend against using sMAPE.

sMAPE = 200

H

H∑
h=1

|yt+h − ŷt+h|
|yt+h| + |ŷt+h| (7.7)

6. Mean Absolute Scaled Error Scaling the metric with the data is another common
technique to make it independent of the units and recommended by Hyndman et
al. as an alternative to using percentage errors when comparing forecast accuracy.
For non-seasonal the Mean Absolute Scaled Error (MASE) is given by

MASE = 1

H

H∑
h=1

|yt+h − ŷt+h|
1

T−1
∑T

t=2|yt − yt−1|
(7.8)

and seasonal metric scales by the average error of the naive predictor that simply
copies the observation measured m periods in the past, to account for seasonality.

MASE(seasonal) = 1

H

H∑
h=1

|yt+h − ŷt+h|
1

T−m

∑T
t=m+1|yt − yt−1|

(7.9)

7.1 Time Series Forecasting 265

7.1.4 Statistical Time Series Models

7.1.4.1 ARIMA Models

AutoRegressive Integrated Moving Average (ARIMA) usually refers to a class of
statistical models for time series forecast and analysis. Box and Jenkins formulated
a detailed process for identifying, estimating, and reviewing models for a time
series dataset [Box+15]. ARIMA, the acronym, captures different components of
time series modeling and is represented in literature as ARIMA(p, d, q) . The
components are:

• Autoregression(AR): The model’s ability to capture the dependent relationship
between an observation and a fixed number of lagged observations of itself. The
parameter p represents the lag or number of the observations included.

yt = φ0 + φ1yt−1 + · · · + φpyt−p (7.10)

The equation captures linear relationship between current value regressed with p

lagged values and the coefficients φ are regression coefficients.
• Integrated(I): The ability to make the model stationary by differencing the raw

observations from observations at the previous time steps. The parameter d

represents the degree of first differencing. The backward shift operator B has
an effect of shifting data back one period. Thus, applying B shifts the data back
as given by

Byt = yt−1 (7.11)

The first difference or lag can be defined as

y′t = yt − yt−1 = yt − Byt = (1− B)yt (7.12)

Thus the d-th order difference can be written as (1− B)dyt

• Moving Average(MA): The ability to use past forecast errors from moving
average in a regression-like model. The parameter q represents the moving
average window’s size, also called the order of moving average.

yt = c + εt + θ1εt−1 + · · · + θqεt−q (7.13)

The equation captures the linear relationship between the forecast variable and
the past forecast errors given by εt .

If we combine all the components,

y′t = c + φ1y
′
t−1 + · · · + φpy′t−p + εt + θ1εt−1 + · · · + θqεt−q (7.14)

266 7 Explainability in Time Series Forecasting, Natural Language Processing, and. . .

Table 7.2 ARIMA models Models Arima(p,d,q)

White noise Arima(0,0,0)

Random walk Arima(0,1,0) no constant

Random walk with drift Arima(0,1,0) with constant

Autoregression Arima(p,0,0)

Moving Average Arima(0,0,q)

The equation can be rewritten using the backshift operator as

(1− φ1B − · · · − φpBp)︸ ︷︷ ︸
AR(p)

(1− B)dyt︸ ︷︷ ︸
d diff erences

= c + (1+ θ1B + · · · + θqBq)εt︸ ︷︷ ︸
MA(q)

(7.15)
Many non-seasonal models can be just represented as special cases of
ARIMA(p, d, q) as given in Table 7.2.

A seasonal ARIMA model (SARIMA) is formed by including additional sea-
sonal terms in the ARIMA model. It is represented as:

ARIMA (p, d, q)︸ ︷︷ ︸
non-seasonal

(P ,D,Q)m︸ ︷︷ ︸
seasonal

(7.16)

where (P,D,Q) capture the seasonal part and m is the number of observations per
year.

For a given model parameters Arima(p, d, q)(P,DQ)m, maximum
likelihood estimation (MLE) is used to estimate the values
for(c, φ1, . . . , φp, θ1, . . . , θq). Step-wise search is usually performed to
find the best parameters p, d, q, P,D,Q,m and minimizing Akaike’s
Information Criterion (AIC) is used to select the best parameters.

AIC for ARIMA is given as

AIC = −log(L)+ 2(p + q + k + 1) (7.17)

We use the Mauna Loa CO2 dataset for ARIMA analysis. The data is resampled as
monthly and 1958–2009, i.e., 610 months, are used for training. 2009–2017, i.e., 98
months, are used for testing and forecasting. The package pmdarima is used for
performing the parameter selection and the output is given in Fig. 7.1.

7.1 Time Series Forecasting 267

Fig. 7.1 Auto ARIMA selecting parameters for minimal AIC

Interpretation of ARIMA Models:

1. Log-Likelihood, AIC, BIC, and HQIC are different measures that assess
the quality of the models. Lower the value, better is the model.

2. Different model coefficients like autoregression (ar.L.p), moving average
(ma.L.q) and seasonal (mas.S.L.m) along with standard errors, z-value,
p-value and confidence intervals (25–75%) the actual regression value and
the significance. The interpretation is: increasing the coefficient by one unit
changes the estimated outcome by its weight value.

3. The Ljung-Box test output is a diagnosis test for autocorrelation. The
null hypothesis being the data is independently distributed, and there
is no autocorrelation, while the alternate hypothesis is that data is not
independently distributed and there is serial correlation. The p-value
(Prob(Q)) less than p < 0.05 is generally for significance testing and
rejecting the null hypothesis

4. The Jarque-Bera is a diagnosis test and is a type of Lagrange multiplier
test for normality with the null hypothesis being the data is normally
distributed and the alternate hypothesis not normally distributed. The p-
value (Prob(JB)) less than p < 0.05 is generally for significance testing
and rejecting the null hypothesis.

5. The heteroskedasticity is a test for heteroskedasticity of standardized
residuals, null hypothesis is there being no heteroskedasticity and the

(continued)

268 7 Explainability in Time Series Forecasting, Natural Language Processing, and. . .

alternate being presence of heteroskedasticity. The p-value (Prob(H)) less
than p < 0.05 is generally for significance testing and rejecting the null
hypothesis.

6. Diagnosis plots also help interpret the ARIMA models. Residual plot is
a plot of standardized residuals against time. If the plot shows a scatter
around the zero levels, it indicates that the specified model adequately
captures variations. The KDE curve should be very similar to the normal
distribution, indicating the errors are normally distributed. A normal Q-Q
plot of the residuals is a graphical check for normal errors. If the Q-Q plot
resembles a straight line, then the assumption that the errors are normally
distributed is valid. Correlogram captures the correlation.

Observations:

• Figure 7.1 shows how the auto ARIMA process finds the best parameters
Arima(1, 1, 1)(0, 1, 1)[12] for the dataset.

• Figure 7.2 shows all coefficients being significant and having values in 25–
75% confidence intervals.

• The p-value is 0.67 and is >0.05 for the Ljung-Box test, which means we
cannot reject the null hypothesis. It means that the residuals are independent
which further indicates that the model provides an adequate fit to the data
(Fig. 7.3).

• The p-value is 0 and is <0.05 for the Jarque-Bera test for normality,
indicating we can reject the null hypothesis that the data is normally
distributed.

• The p-value is 0.02 and is <0.05 for the heteroskedasticity, indicating we
can reject the null hypothesis and that the variance of the residuals is not
constant.

• Figure 7.4 residual plots show residuals are scattered around zero level and
have no pattern, indicating the model’s ability to regress well on the data.

• Figure 7.4 normal Q-Q plot shows the points not on the straight line. This
indicates not normal distribution or having a fat tail.

7.1.4.2 Exponential Smoothing Models

Exponential smoothing is one of the most successful forecasting methods and
has driven many applications [Bro59, Hol04, Win60]. In exponential smoothing
methods, forecasts are weighted averages of past observations, with the weights

7.1 Time Series Forecasting 269

Fig. 7.2 ARIMA model on CO2 data

Fig. 7.3 ARIMA model on
CO2 data

270 7 Explainability in Time Series Forecasting, Natural Language Processing, and. . .

Fig. 7.4 Diagnostics plots for the ARIMA model

decaying exponentially as the observations get more distant from the forecasting
period.

Holt-Winters’ method is a popular exponential smoothing technique that captures
different aspects of past observations (level), trend, and seasonality in the time
series. This method has two variations based on how the seasonal components
get applied. The additive method is used when the seasonal variations are almost
constant, while the multiplicative method is preferred when the seasonal variations
change proportionally to the series’ level.

The additive method of forecasting yt is given in terms of the level equation lt ,
the trend equation bt and the seasonality equation st .

ŷt+h|t = lt + hbt + st+h−m(k+1) (7.18)

where m is a seasonal component and k = h−1
m

. The level equation given below
is linear weighted average between the seasonally adjusted observation (yt − st−m)

and the non-seasonal part (lt−1 + bt−1) using the parameter α

7.1 Time Series Forecasting 271

lt = α(yt − st−m)+ (1− α)(lt−1 + bt−1) (7.19)

bt denotes an estimate of the trend (slope) of the series at time t and is measured a
weighted average between (lt−lt−1) and bt−1. The reason β∗ which has relationship
β = αβ∗ is used for simplification.

bt = β∗(lt − lt−1)+ (1− β∗)bt−1 (7.20)

The seasonal component st is expressed in terms of the weighting between level lt−1
and the trend bt−1 and the previous seasonal components st−m

st = γ (yt − lt−1 − bt−1)+ (1− γ)st−m (7.21)

The Holt-Winters’ multiplicative method expresses the seasonal component in
relative terms by dividing through by the seasonal component as given below:

ŷt+h|t = (lt + hbt)st+h−m(k+1) (7.22)

lt = α
yt

st−m

st−m + (1− α)(lt−1 + bt−1) (7.23)

bt = β∗(lt − lt−1)+ (1− β∗)bt−1 (7.24)

st = γ
yt

(lt−1 − bt−1)
+ (1− γ)st−m (7.25)

We can write many known exponential smoothing methods as below by analyzing
variations in the combinations of trend and seasonal components (Table 7.3). If
the time series shows different variations at different levels of the series, then
transformations such as wt = log(yt), wt = √

yt , etc. is used. Box-Cox
transformation which represents a family of transformations based on the value of
λ given below is a very known technique to apply with exponential smoothing.

Table 7.3 Variations and methods corresponding to each exponential smoothing method

Seasonal

Trends None (N) Additive (A) Multiplicative (M)

None (N) (N,N) Simple
exponential smoothing

(N, A) (N, M)

Additive (A) (A, N) Holt’s linear
method

(A, A) Additive
Holt-Winters’ method

(A, M) Multiplicative
Holt-Winters method

Additive
damped (Ad)

(Ad , N) Additive damped
method

(Ad , N) (Ad , M)
Holt-Winters’
damped method

272 7 Explainability in Time Series Forecasting, Natural Language Processing, and. . .

wt =
{

log(yt) if λ = 0

(yλ
t − 1) λ �= 0

(7.26)

Interpretation of Holt-Winters’ Model: The values of α, β, and γ which
should be between (0, 1) can be used to interpret the impact of level, trend,
and seasonality. The value of α indicates how much the estimate of the level
at the current time is based upon both recent observations and observations
in the more distant past; larger the value, larger is the dependency. The value
of β indicates the estimate of the slope b of the trend component, larger the
value, faster is the rate of trend. The value of γ indicates how the estimate
of the seasonal component at the current time point based upon very recent
observations, higher the estimate, larger is the dependency.

Observations:

• We model Holt-Winters’s on the training dataset using “Additive” for the
trend part and “Multiplicative” for the seasonal part. We model one with the
Box-Cox transformation and one without to show the impact.

• Figure 7.5 shows the outputs for both models with and without Box-
Cox transformation. With the Box-Cox transformation, the α and the β

are relatively lower as compared to without the transformations showing
how the transformation reduces the smoothing effect further. The γ value
being higher in the Box-Cox transformation than without indicates how
the seasonal dependencies get more pronounced with the transformation
compared to without.

• Figure 7.6 shows forecasts made with two Holt-Winters’ models, one with
Box-Cox transformation and one without. Clearly, the one with Box-Cox
shows it is better in estimating and tracks the actual very closely.

• Table 7.4 shows different metrics for each method discussed. Holt-Winters’
exponential smoothing with Box-Cox transformation yields the lowest error
across each metrics and confirming the forecasts plots.

7.1 Time Series Forecasting 273

Fig. 7.5 Exponential smoothing and impact of Box-Cox transformation. (a) Forecasts with Box-
Cox. (b) Forecasts without Box-Cox

Fig. 7.6 Exponential smoothing and impact of Box-Cox transformation. (a) Forecasts with Box-
Cox. (b) Forecasts without Box-Cox

274 7 Explainability in Time Series Forecasting, Natural Language Processing, and. . .

Table 7.4 Various metrics
for three exponential
smoothing methods

Methods MAPE MAE MFE RMSE

SARIMAX 0.5 1.9 1.9 2.3

Holt-Winters’
without Box-Cox

0.5 2.0 1.9 2.4

Holt-Winters’
with Box-Cox

0.2 0.7 0.6 0.9

7.1.5 Prophet: Scalable and Interpretable Machine Learning
Approach

Prophet is an open-source time series forecasting algorithm from Facebook.
Prophet’s objective is to provide a solution for forecasting “at scale” that combines
configurable models with analyst-in-the-loop [TL18]. Many statistical time series
models such as ARIMA and Exponential Smoothing rely on experts to interpret,
analyze, and adjust the parameters to model the time series. One of the critical
design considerations in Prophet is to have intuitive parameters for the end-users,
which one can modify without knowing the details of the underlying algorithms.

We can map the working of Prophet to Generalized Additive Model (GAM) with
time as a regressor as given below:

y(t) = g(t)+ s(t)+ h(t)+ ε(t) (7.27)

The function g(t) is the trend function that models non-periodic changes, the
function s(t) models the seasonality or periodic changes, the function h(t) captures
the irregular holiday season and ε(t) is for idiosyncratic changes that are not
accommodated by the model.

The trend function can be modeled as a non-linear or linear function. The
simplified non-linear trend function is given by

g(t) = C

1+ exp (−k(t −m))
(7.28)

where C is the carrying capacity similar to people with internet access, k is the
growth rate and m is the offset parameter. This can be made more dynamic by
making both carrying capacity and growth rate as a function of time as given in the
paper. The linear trend model is a simple piecewise linear function with a constant
rate of growth.

The seasonality and periodic effects with smoothing effects is modeled in a
flexible way using Fourier series as given below:

s(t) =
N∑

n=1

(
an cos

(
2πnt

P

)
+ bn sin

(
2πnt

P

))
(7.29)

7.1 Time Series Forecasting 275

The 2N parameters are estimated by constructing a matrix of seasonality vectors
X(t) for each t and the seasonal component then becomes

s(t) = X(t)β (7.30)

where β ∼ Normal(0, σ 2) for smooth priors.
Holidays can be customized per country/region by the users. For each holiday

i, if Di is the set of past and future dates around that, then an indicator function
represents whether time t is during holiday i. Each holiday is assigned a parameter
κi corresponding to a change in the forecast.

Z(t) = [1(t ∈ D1), · · · , 1(t ∈ DL)] (7.31)

h(t) = Z(t)κ (7.32)

Similar to seasonality κ ∼ Normal(0, ν2)

Interpretation of Prophet Model: For each forecast instance, prophet outputs
various parameters that contribute to the level, trend, and seasonality. The
overall equation from interpretability standpoint is given as

ŷ = trend ∗ (1+multiplicative_terms)+ additive_terms (7.33)

where the multiplicative_terms and additive_terms both are combina-
tions of seasonal and regressor factors.

Observations:

• Figure 7.7 shows trend part with upper and lower bounds, the predicted
target as ŷ, and multiplicative terms for the last 10 months.

• Figure 7.8 shows the seasonal part with columns for sine and cosine
elements for the last 10 months for the Eq. (7.29).

7.1.6 Deep Learning and Interpretable Time Series
Forecasting

Though deep learning models have become standard architectures for many natural
language processing, speech recognition, and computer vision tasks, they struggle

276 7 Explainability in Time Series Forecasting, Natural Language Processing, and. . .

Fig. 7.7 Trend with multiplicative terms

Fig. 7.8 Trend with seasonal
sine and cosine terms

in the domain of time series forecasting [MSA18, Mak+82]. In the recent M4
competition, less than 10% approaches used “pure” machine learning or deep
learning, and also the top-performing algorithms were hybrids of classical statistical
time series algorithms and deep learning techniques [Mak+82].

Oreshkin et al.’s neural basis expansion analysis for interpretable time series
forecasting (N-BEATS) is the first pure deep learning-based approach that outper-
forms well-established statistical methods and has interpretable outputs similar to
the traditional statistical techniques that practitioners want [Rem20].

7.1 Time Series Forecasting 277

Fig. 7.9 N-BEATS neural architecture

Given a length-H forecast horizon, a length-T training data series history
[y1, . . . , yT] ∈ R

T , the predictions given by ŷ ∈ R
H = [yT+1, . . . , yT+H], the

forecast and the ability to lookback for a time window t < T serves as the model
input, given by x ∈ R

T = [yT−t+1, . . . , yT].
Figure 7.9 gives the detailed architecture of N-BEATS and we will start with the

lth block. Each block accepts input xl and outputs the forecast ŷl and the backcast x̂l

(block’s best estimate of its input xl). The block has four layers of fully connected
networks and the final output is given by

hl,4 = FCl,4(FCl,3(FCl,2(FCl,1(xl)))) (7.34)

where each FC layer is a standard fully connected layer with ReLU non-linearity,
for example, the first layer can be expanded as

FCl,1 = RELU(Wl,1xl + bl,1) (7.35)

The basic building block then forks into two parts, the first being a fully connected,
one for the forward expansion coefficients (θf

l = LINEAR
f
l (hl,4)) and another

for the backward expansion coefficients (θb
l = LINEARb

l (hl,4)) using linear

278 7 Explainability in Time Series Forecasting, Natural Language Processing, and. . .

projections. The second part of the network maps expansion coefficients to the
outputs via the basis functions, i.e., ŷl = g

f
l (θ

f
l) and x̂l = gb

l (θb
l).

Next, the residual networks connect k such blocks. The standard residual network
architecture adds the input to its output before passing the result to the next, proven
to be very useful in training. N-BEATS has two residual branches, one for the
backcast prediction and the other one for the forecast branch (Fig. 7.10), and is
given by

xl = xl−1 − x̂l−1, ŷ =
∑

l

ŷl (7.36)

Each block outputs partial forecast ŷl that is then aggregated to get the overall
forecast ŷ. Interpretability is added to the model by adding structure to the basis
layer at the stack level for capturing trend and seasonality. Trend is modeled by
constraining gb

s,l and g
f
s,l to be a polynomial function of a degree p and function of

window t such that:

ŷs,l =
p∑

i=0
θ

f
s,l,i t

i (7.37)

where t = [0, 1, 2, . . . , H − 2,H − 1]T /H is the time vector forecasting H steps.
Similarly, seasonality is modeled as periodic function and is given by the Fourier
series:

ŷs,l =
#H/2−1$∑

i=0
θ

f
s,l,i cos(2πit)+ θ

f
s,l,i sin(2πit) (7.38)

Fig. 7.10 N-BEATS on Mauna Loa CO2 dataset. (a) N-BEATS training. (b) N-BEATS forecast-
ing

7.2 Natural Language Processing 279

Fig. 7.11 N-BEATS interpretable model output

Figure 7.11 shows the output of interpretable model.

Observations:
Figure 7.11 highlights the smoothed trend over the input series, as seen in
the first few entries in the validation set. Figure 7.10b shows that N-BEATS
captures both trend and seasonality in the forecasting.

7.2 Natural Language Processing

Traditional Natural Language Processing (NLP) employed algorithms and meth-
ods that were more or less interpretable or explainable. Most techniques were
explicit text features based on tokens or words, n-grams, part of speech, etc.,
for text classification, categorization, topic mining, question answering, entity
recognition, summarization, etc. Employing standard feature relevancy techniques
and interpretable algorithms such as logistic regression, decision trees, hidden
Markov model, etc. made many tasks white box. In recent years, by achieving
the state-of-the-art results, deep learning-based techniques have become standard
implementation choices for most NLP tasks [KLW19b]. Since, by nature, most
of the deep learning techniques are a black box, various techniques have evolved

280 7 Explainability in Time Series Forecasting, Natural Language Processing, and. . .

that focus on surrogate methods or some way of understanding the deep learning
architectures in the context of NLP tasks. XAI has become a standard track in many
NLP conferences attracting many research papers, libraries, and tools. Mapping
XAI to NLP tasks and various related techniques have been presented in surveys and
tutorials [Dan+20, AB18]. In this section, we will highlight some of the explanation
methods and visualization techniques and their categorization.

7.2.1 Explainability, Operationalization, and Visualization
Techniques

In most surveys and tutorials, XAI is presented through explainability, operations
that enable explainability, and visualization techniques that assists in post-hoc or
are intrinsic to the task as local or global explanations. We will combine these
together under explainability techniques and give relevant operationalization and
visualization methods that helps in enabling.

7.2.1.1 Feature Importance

Scoring text features (raw input texts or n-grams or latent features from layers of
deep learning) in terms of relevancy to the NLP tasks is one of the fundamental
explainable techniques [Vos+15, God+18]. One can apply various feature relevancy
and scoring techniques discussed in Chap. 2 for traditional model pipelines. For
deep learning techniques, understanding the latent feature representations, attention
mechanisms and first-derivative saliency are the standard techniques used for feature
importance [LWM19, Xie+17, BCB14].

In many sequence to sequence tasks such as machine translation, text summariza-
tion, question answering, etc., attention mechanism provides a way to score latent
features over the decoded token. The weight distribution of these latent features that
map directly or indirectly to input tokens for a given output helps identify essential
features and visualize them from the input/output perspective.

Gradient-based explanations measure the importance of input towards output
by computing the partial derivative of output with respect to input. The first-
derivative saliency is effective as all modern deep learning frameworks provide
auto-differentiation and can compute for any layers of deep learning architecture.

7.2.1.2 Surrogate Model

As discussed in the post-hoc model explainability chapter, surrogate techniques use
interpretable models as a proxy to explain the original black-box model’s behavior
with the same inputs given to the black-box model and outputs from it.

7.2 Natural Language Processing 281

Many techniques, such as LIME, SHAP, taxonomy through network embeddings,
are broadly used as surrogate models [RSG16a, LL17a]. As discussed in Chap.
5, LIME provides an excellent local explanation and visualization by scoring the
features that contribute to the model prediction. LIME can be used with any
classifier models ranging from traditional Logistic regression to modern BERT-
based classifiers. LIME explainer can help understand how the text features (raw
tokens or mapped through embeddings) influence the outcome in text classification.

It has been found that by using different sampling around the same local
instances, LIME explanation results can be entirely different and can therefore
result in instability [Mol19]. LIME creates linear local models, and for many high-
dimensional non-linear problems in NLP, this can be an issue.

As discussed in Chap. 5, SHAP uses cooperative game theory and Shapley values
to model each feature’s contribution to the final prediction. SHAP overcomes all of
the disadvantages of LIME and is a more accepted explaining technique in practice,
especially for text classification.

Liu et al. proposed interpreting network embeddings as a surrogate model
technique for various machine learning problems, including NLP [Liu+18]. This
surrogate model derives global explanation, unlike LIME and SHAP. The first task
is to convert documents to vectors (e.g., tf-idf) and then use similarity techniques
(e.g., cosine similarity) to create a network. Performing iterative clustering induces
a taxonomy from the network embedding that is interpretable.

7.2.1.3 Example Driven

As the name suggests, these techniques take input and find examples from training
data similar to the input and use the prediction and similarity for the explanation.
This approach is very similar to the K-nearest neighbor approach and can be
employed as the implementation technique to find similar examples from training
as an explanation method [Dud76].

Croce et al. use the layer-wise relevance propagation technique in a kernel deep
learning architecture to output prediction and examples that they call “landmarks”
similar in semantic and linguistic properties as the input [CRB19]. The effectiveness
of this technique is demonstrated in two NLP tasks, viz. question classification and
semantic role labeling.

7.2.1.4 Provenance-Based

Provenance-based techniques work by demonstrating a series of reasoning steps
that lead to the final prediction for a given instance. Many question-answering tasks
use this technique along with knowledge bases. Provenance-based systems help
diagnose when things go wrong and provide a hint as to how to reformulate the
questions in question-answering tasks.

282 7 Explainability in Time Series Forecasting, Natural Language Processing, and. . .

Abujabal et al. proposed Quint, a live system for explaining question answering
using DBpedia. Quint shows how it understood the question by using entity linking
and relation linking [Abu+17]. The entity linking extracts and disambiguates all the
entities from the question and associates them with the knowledge base entities.
Similarly, relation linking identifies and disambiguates relations from the question
and matches it to knowledge base predicates. The derivation sequence shows how
the entity, the relation mappings, and the SPARQL query lead to the final answer.
The SPARQL queries are learned from the query templates based on structurally
similar phrases.

Zhou et al. address the same explainability in question-answering tasks but on
more complex questions with multiple relations than just one [ZHZ18]. The research
builds an Interpretable Reasoning Network (IRN) that breaks down the knowledge
base question answering (KBQA) into multi-hop reasoning steps, and in each step,
the entities and their relations are disambiguated and predicted. An interesting
aspect of this work is that it facilitates correction and disambiguation by humans.

7.2.1.5 Declarative Induction

Creating declarative specifications that are human-readable such as rules, trees, and
programs to provide local or global explanations falls under a category known as
declarative induction.

Jiang et al., in their research, showed how reasoning trees could connect and
explore information from multiple sentences and documents to answer questions
in the reading comprehension task [Jia+19]. The reasoning tree constructs many
root-to-leaf paths representing the possible answer to the question. Based on the
aggregation across different paths, a final answer is derived, and the path serves as
an explanation for the choice and alternatives for diagnosing issues.

Entity resolution tasks (ER or record linking) in NLP have seen much success
with various post-hoc explanation techniques, especially with declarative induction
methods. ExplainER by Ebaid et al. uses Bayesian Rule List (BRL) to output
declarative rules explaining the entity resolutions for global explanations [Eba+19].

Pezeshkpour et al. proposed declarative rules using adversarial modifications
(e.g., removing facts) for link prediction tasks in knowledge graphs (KG). The
method identifies KG nodes/facts that are most likely to influence the link prediction
and then aggregates the extracted set of rules operating at the whole KG level for
global explanations based on the frequent pattern of rules and the link [PTS19].

Sen et al. use linguistic rules to explain sentence classifications to the respective
domains. The model is a neuro-symbolic, i.e., neural model to learn the rules model,
where the rules not only perform classification but provide an explanation [Sen+19].
The rules are based on predicates, which depend on features resulting from syntactic
and semantic parsing of the input sentence. The system provides flexibility to use
a domain-specific dictionary, generalize better, and allows experts to interact and
provide inputs.

7.2 Natural Language Processing 283

7.2.2 Explanation Quality Evaluation

Evaluating the quality of metrics for NLP model explanations is similar to general
XAI metrics and is an evolving field. We can broadly classify the techniques into
the following two categories.

7.2.2.1 Comparison to the Ground Truth

The use of specific metrics depends on the particular NLP task but gives the
advantage of automation. Carton et al. use deep adversarial networks for extracting
explanations in classification and employ precision, recall, and F1 scores as quality
metrics for the explanations [CMR18]. Rajani et al. use BLEU scores as metrics
in their Commonsense Auto-Generated Explanation (CAGE) for CommonsenseQA
task [Raj+19]. Quantitative metrics have an advantage over subjective qualifications,
but they suffer from a disadvantage when there are alternate explanations or when
the ground truth quality itself is in question. A couple of strategies such as—(a)
Having multiple annotators to evaluate the explanation and using inter-annotator
agreement for matching the ground truth. (b) Evaluating the explanations at different
granularities are two different ways to overcome the disadvantages.

7.2.2.2 Human Evaluation

One natural but manual evaluation process is to use one or many experts to appraise
the explanation. This technique avoids the assumption of the availability of only
one reasonable explanation for the ground truth. This technique also needs to take
into account inter-annotator disagreements and variances across them. Based on
how many humans evaluate (single vs. multiple) and choice of single approach
or multiple combined explanations, there has been much exciting research in the
area [Mul+18, SPR19, Don+19].

7.2.3 Tools and Libraries

Table 7.5 provides details of the libraries used for NLP model explanations in the
chapter.

7.2.4 Case Study

We will explore different tools and libraries to understand different classifier models
and predictions for the LitCovid dataset. We will use LIT as a general tool to

284 7 Explainability in Time Series Forecasting, Natural Language Processing, and. . .

Table 7.5

Tools and libraries Description

exBERT https://exbert.net/ Visual Analysis of Transformer Models

ElI5 https://github.com/TeamHG-
Memex/eli5

Generic toolbox implementing various black-box,
local, and global explanation methods

Alibi https://github.com/SeldonIO/alibi Implementations of black-box, white-box, local and
global explanation methods for classification and
regression models.

LIT https://github.com/PAIR-code/lit The Language Interpretability Tool (LIT) is a
visual, interactive model-understanding tool for
NLP models.

explore data with KimCNN classifier, understand logistic regression with ELI5
explainers, and transformers-interpret package, which wraps CAPTUM for BERT
model explainability.

The Language Interpretability Tool (LIT) is a workbench for diagnosing and
improving trained classification and extraction models. LIT is a toolkit and has
a modular library—many of the processing and visualization modules can be
customized or extended. LIT runs as a server that caches predictions and other data
for visualization. The actual visualization modules are written in TypeScript and run
in a browser, as shown in Fig. 7.12. A small amount of code must adapt a model to
use within LIT, load data, and run the models. LitCovid is an eight-class multi-label
dataset with documents drawn from published research studies regarding Covid-19.
The eight available classes for each document are as follows:General, Forecasting,
Transmission,Case Report,Mechanism,Diagnosis, Treatment, and Prevention.
We only show the predictions for Forecasting and Transmission to simplify the
view for illustration with KimCNN classifier.

Figure 7.12 shows the data table and datapoint editor views on the left side from
the Main workspace in LIT. The data table shows available examples with their
labels and allows the user to select one or more samples for review or analysis.
The datapoint editor window allows the user to modify examples. The Embeddings
widget shows a three-dimensional projection of the embeddings for each data
sample using UMAP. The current samples selected in the data table get highlighted
and accentuated. Selecting a sample or hovering over a sample shows the text (or
label) for that point. The projected points get color assigned according to their
predicted labels (eight different colors). Individual label predictions or error cases
could also be selected. The Group workspace in LIT has many options for working
with groups of samples. The default views include scores for the whole dataset and
selected samples and a configurable confusion matrix to look at different criteria
over different subsets of the data, as shown in Fig. 7.12 at the bottom.

Other group functions in the UI allow for the analysis of individual samples
for diagnosis. For example, consider one sample labeled as Forecasting, but the
model prediction isGeneral. We can use the predictions tab to view the distribution

https://exbert.net/
https://github.com/TeamHG-Memex/eli5
https://github.com/TeamHG-Memex/eli5
https://github.com/SeldonIO/alibi
https://github.com/PAIR-code/lit

7.2 Natural Language Processing 285

F
ig
.7

.1
2

L
IT

vi
su
al
iz
at
io
n
of

su
m
m
ar
y
sh
ow

in
g
da
ta
(U

M
A
P)
,e
di
to
r,
co
nf
us
io
n
m
at
ri
x
an
d
m
od
el
ou
tp
ut
s

286 7 Explainability in Time Series Forecasting, Natural Language Processing, and. . .

Fig. 7.13 Visualization of model thresholds for individual example and its relative score

of confidence scores for Forecasting predictions over the dataset. As with the
embedding view, the predictions view dims the samples that are not selected, so
we can see that the selected sample scores very low for Forecasting, and is rather
predicted as General as shown in Fig. 7.13.

The Explanations tab provides the ability to use LIME interpretation to assess
the weights assigned to individual tokens in the sample. The blue-tinted tokens
contribute positive weights, and the red-tinted tokens contribute negative weights
as shown in Fig. 7.13.

ELI5 allows to visualize the weights (linear models), the trees, and predictions
across wide range of models from scikit-learn, Keras, XGBoost, etc. in a consistent
and unified way. The logistic regression model explanation by visualizing weights
for features contributing for each class using ELI5 is shown in Fig. 7.14 on the
LitCovid dataset.

The transformers-interpret package is a wrapper around Captum, a library
developed by the PyTorch team which implements several different explainability
techniques. As a result, its visualization methods are a little easier to customize—
particularly in displaying multiple records together. In Fig. 7.16 we show LayerGra-
dientXActivation explainability technique on the BERT model for examples.

Observations:

• In Fig. 7.15 it appears that the excerpt is mainly about the sponsorship of
the work and does not have sufficient content to determine that the article
pertains to the label Forecasting and hence misclassified. Figure 7.13 also
shows why the confidence of the model for the example is low in prediction.
Such explanations help in diagnosing and correcting the data or the model.

• Figure 7.14 shows weights with green-tint and red-tint for how they impact
the scoring in positive and negative way, respectively, for each class. It is
interesting to see the label Prevention having features such as us, many,
said, says, etc., as the top features indicating the need to better preprocess
and clean the dataset using stopwords and lemmatization.

7.3 Computer Vision 287

• Figure 7.16 shows similar visualizations on BERT model with Captum
explaining the predictions with green-tint and red-tint for positive and neg-
ative contributions. The attribution scores and the highlights are interesting
from both, explanation and diagnosis, perspectives. For example, the first
example with high attribution score is correctly mapped to the class Case
Report with a score of 0.97 and features such as transmission, numerical,
reports, method, etc. contribute positively. This gives a good explanation of
why the model predicted a certain class. Similarly, the last example though
correctly classified as Treatment with a low score of 0.41, clearly lacks
many positive features that can attribute for its prediction helps in diagnosis.

7.3 Computer Vision

Most state-of-the-art models in various computer vision tasks such as image recog-
nition, object detection, semantic segmentation, instance segmentation, etc. use deep
learning architectures. There has been a constant push in the direction of explainabil-
ity and interpretability in the last several years, especially for computer vision with
deep learning. There is a special track in CVPR with experts sharing information
and tutorials and presenting exciting research—https://interpretablevision.github.
io/. This section will summarize some of the research and explainability techniques,
but since it is a vast domain, we shall not cover everything and instead, refer to
an excellent book as a resource on the topic [Sam+19]. We will categorize the
explainability topics based on the taxonomy presented by Andrea Vedaldi and Ruth
Fong based on answering the questions below:

• How to understand the relationship between the input and the output?
• What and how do the deep learning architectures learn?
• How can we improve the deep learning architectures to make them transparent?

For most of the discussion in the topic, our notation will be: The entire input
image, represented as x ∈ R

m and the output of the final layer (or any intermediate
layer), denoted as y ∈ R

n, then the Φ can be the mapping function that corresponds
to the entire network, such that:

min
x
||Φ(x)−Φ(x0)||2 (7.39)

https://interpretablevision.github.io/
https://interpretablevision.github.io/

288 7 Explainability in Time Series Forecasting, Natural Language Processing, and. . .

F
ig
.7

.1
4

L
og

is
tic

re
gr
es
si
on

w
ei
gh

ts
vi
su
al
iz
ed

us
in
g
E
L
I5

on
th
e
L
itC

ov
id

da
ta
se
t

7.3 Computer Vision 289

Fig. 7.15 Visualization of features in text that contribute to the classification. Forecasting example
is misclassified as there are few features in the excerpt that contribute to the label

7.3.1 Generating Iconic Examples

One way to examine this is by understanding how much of x can be reconstructed
by y? Mapping input to outputs through phi is a many to one problem as many input
data x will map to the same y or the labels. Reverse mapping the outputs to a set
of inputs, known as pre-images, such that they form an equivalence class with the
inputs given the network [MV15].

Sampling the input space, starting from a random initialization, and finding the
x using stochastic gradient descent that minimizes the objective can be one easy
technique. Since the network is trained on natural images, starting from random
initialization can lead to images that map to the same y but having no characteristics
of the natural image that it is trying to reconstruct. Constraining the input to be only
in the space of natural images or pseudo-natural images makes the inversion much
closer to the desired inputs. Mahendran and Vedaldi approached the problem of
inverse representation by adding a “total variation” (TV-norm) regularizer [MV15].
It is given by

min
x
||Φ(x)−Φ(x0)||2 +R(x) (7.40)

Nguyen et al. used an approach to model the distribution and using posterior
probability to generate samples [Ngu+17]. This can be represented as:

p(x|y) = δ(Φ(x)− y) · p(x) (7.41)

Ulyanov et al. employ constrained optimization to search the pseudo-natural image
space for generation [UVL18]. Thus the equation becomes

min
x∈Rpm

||Φ(x)−Φ(x0)||2 (7.42)

290 7 Explainability in Time Series Forecasting, Natural Language Processing, and. . .

F
ig
.7

.1
6

C
ap
tu
m

vi
su
al
iz
at
io
n
of

sa
m
pl
es

ac
ro
ss

di
ff
er
en
t
la
be
ls
w
ith

hi
gh

lig
ht
s
on

fe
at
ur
es

co
nt
ri
bu
tin

g
to

th
e
la
be
ls
us
in
g
th
e
L
ay
er
G
ra
di
en
tX

A
ct
iv
at
io
n

te
ch
ni
qu
e

7.3 Computer Vision 291

Activation Maximization is a technique to visualize inputs to the deep learn-
ing networks by maximizing the activation of specific neurons [Erh+09, ZF14a,
SVZ14a, MOT15]. For classification, it is iteratively finding parts of the input that
the neuron (say in the final output layer) associates with a particular class. This can
be written as:

x∗ = argmin
x

(l(Φ(x),Φ0)+ Rθ(x)) (7.43)

where l(Φ(x),Φ0) is the loss function between the input Φ(x) and the target Φ0
(which can be the weights of features of a particular layer or the final vector of the
target class).

There has also been research in building a conditional deep generator network Ψ

that takes input y and recreates an input x in a fast feed-forward way, minimizing
the reconstruction error over large dataset such as ImageNet. That can be written as:

min
Ψ

1

N

N∑
i=1
||Ψ (Φ(xi))− xi ||2 (7.44)

Some variations of this where the goal is to improve the quality of the reconstruc-
tion, i.e., a very good prior, replacing the L2 loss with x0 = x (perception loss),
Φ(x0) = Φ(x) (inversion loss) and p(x0) = p(x) (GAN loss) [DB15, DB16,
Ngu+16, Ngu+17].

7.3.2 Attribution

These techniques try to find essential features or the salient attributes of the image
responsible for the output. One of the earliest and the simplest technique is to
do sensitivity analysis of the target output neuron (class) to the input pixels by
backward propagation and visualizing them as heatmaps [SVZ14b]. Other variants
of gradient backpropagation include deconvolution and guided backpropagation.
It has been shown that essentially all the techniques are the same except for
minor difference on how ReLU is reversed [SVZ14a, ZF14a, Spr+15a]. It was
observed that these saliency-based techniques lack channel specificity. A slight
modification such as GRAD-CAM, where the backpropagation stops much earlier
in the network (typically the first fully connected layer), leads to better channel
specificity [Sel+17].

Layer-Wise Relevance Propagation (LRP) and Excitation Backprop are also
variants of backpropagation by specifying various rules that define how convo-
lution layers’ activations and weights can be combined with the back-propagated
signal [Bac+15b, Zha+18]. DeepLIFT approaches the explanation by framing it as

292 7 Explainability in Time Series Forecasting, Natural Language Processing, and. . .

the question of importance in terms of differences from a “reference” state. The
reference state depends on the task. For example, the reference state for the input
can be the presence/absence of a property like a specific object in the image, and
the output corresponding to that would be the reference output [SGK17]. Integrated
gradients are generalizations of DeepLIFT where the original gradient is used for
the non-linearities instead of the average gradient value, preserving the chain rule’s
validity and thus the implementation invariance [STY17a].

Perturbation-based approaches, in which the inputs are modified and the impacts
on outputs are measured, have been considered more principled in interpreting the
network than the gradient-based methods. Zeller and Fergus used an occlusion
approach where a fixed-size, gray-color occluding square was slid over the input
image and the corresponding changes in the feature activation magnitude and/or
classification score was observed [ZF14a]. RISE is an extension of the base
occlusion where multiple random binary masks slide over the input, and the impact
of combining these linearly on the target class/outputs is visualized [PDS18b]. Fong
and Vedaldi introduced a meaningful perturbations approach where a minimal mask
that perturbs the input to maximize output is learned through optimization [FV19].
Fong et al. extended the technique in their recent work where they compute extremal
perturbations which includes a new area constraint along with a parametric family
of smooth perturbations, simplifying the optimization problem [FPV19].

LIME is another local explainability method where the image is divided into
segments, and then the dataset is sampled with random perturbation like filling
with a gray color. The prediction value determines the target of the sample for the
accordingly altered input. A weighted regression model is learned, and the weight
values on each segment give their importance [RSG16a]. Kernel SHAP combines
the concepts of local linear approximations of LIME and Shapley values to explain
predictions in superpixel segmented image [LL17a].

7.3.3 Semantic Identification

One general technique is to study the filter-concept overlap, i.e., how the filters and
semantic concepts are related through relationships based on the activated patches
on the input. Net2Vec learns the concept vectors that describe how a concept is
encoded across multiple channels. This method works by probing the network with
a concept dataset and learning to perform new tasks using channel activations at a
given layer [FV18]. Net2Vec also allows vector arithmetic being performed on the
learned concept weights where each dimension is aligned to a filter.

7.3 Computer Vision 293

Table 7.6 Tools and Libraries for XAI in CV

Tools and libraries Description

AIX360 https://aix360.mybluemix.net/ The AI Explainability 360 Python package includes
a comprehensive set of algorithms for many
domains including CV.

ToolTorch https://github.com/
TooTouch/tootorch

Implementation XAI in Computer Vision (PyTorch)
for various attribution, ensemble, and attention
methods.

Alibi https://github.com/SeldonIO/alibi The library provides implementations of various
black-box, white-box, local and global explanation
methods for classification and regression models.

Captum AI https://captum.ai/ PyTorch based and supports interpretability of
models across modalities including vision, text,
audio, etc.

7.3.4 Understanding the Networks

To understand what and how the deep networks are learning, one can inspect,
analyze, and visualize the networks. Exploring the network can be per layer, per
channel, per filter, a combination of single or multiple neurons, etc. Olah et al. in
their work introduced methods to understand networks by looking at them as 3d
tensors at the individual neuron level, grouped neuron level, from spatial activation
level and channel activation level [Ola+18]. The work demonstrated that pairing
neuron activation with visualization of that neuron, sorted by the magnitude, brought
interpretability to the deep network’s hidden layers.

Another way to analyze the role of layers is to use them in transfer learning
as feature generators combined with classifiers for different domains and tasks.
Razavian et al. use the output of internal layers from the deep learning network with
SVM for various tasks such as classification of scenes, attribute detection, and object
localization [Sha+14]. Bau et al. introduced “Network Dissection” for quantifying
interpretability by estimating the alignment between individual hidden units and a
collection of semantic concepts [Bau+17].

7.3.5 Tools and Libraries

Table 7.6 provides important list of tools and libraries that provide implementation
for most of the techniques discussed in the sections above.

https://aix360.mybluemix.net
https://github.com/TooTouch/tootorch
https://github.com/TooTouch/tootorch
https://github.com/SeldonIO/alibi
https://captum.ai/

294 7 Explainability in Time Series Forecasting, Natural Language Processing, and. . .

7.3.6 Case Study

We will explore different explainability techniques using the Fashion MNIST
dataset described in Chap. 1. We build a simple convolutional neural network with
two convolutional layers as our model. This CNN model reaches the validation
accuracy of approx. 92% in 10 epochs.

We use different global and local techniques with the alibi package to understand
the reasons for correct classification and fail state analysis. We will use the Alibi
package for implementing various XAI techniques.

We can quantify the linearity of each layer in a model using the L measure.
Higher the L measure, more is the non-linearity present for a given layer. Similarly,
we can aggregate and quantify the non-linearity for each class separately. Lmeasure
allows us to understand the degree of complexity required to capture each class
adequately (Fig. 7.17).

Fig. 7.17 Non-linearity per layer and per class. (a) L measure per layer. (b) Non-linearity per
class

Integrated gradients can be used to understand important features that help
in classifying certain class of images and in diagnosing issues for incorrect
predictions. Figure 7.18 shows integrated gradient methods showing positive and
negative attributions for sample images. Figure 7.19 shows attributions for incorrect
predictions.

The counterfactual method finds the minimal amount of distortion required to
make the model arbitrarily confident in a different prediction, helping us understand
the model’s representation of the problem. Figure 7.20 shows how the model
prediction changes with small distortion to the original trouser image.

Anchoring is a method that, similarly to integrated gradients, highlights the most
informative features in an image. We need to define a few things to prepare for
image anchoring. Figure 7.21 shows superpixels and anchors for both correct and
incorrect predictions.

7.3 Computer Vision 295

Fig. 7.18 Integrated Gradient explanation for correct predictions

The contrastive explanation method (CEM) attempts to explain the minimally
necessary features that influence a prediction. It does this in two ways: pertinent
positives and pertinent negatives—the former highlights the pixels that must be
present to provide the specified prediction, and the latter highlights those that must
be omitted. An autoencoder model is used to generate examples for analyzing CEM
techniques. Figure 7.22 shows the original pullover image and the pertinent negative
prediction for shirt.

Figure 7.23 shows counterfactuals by prototypes method where the nearest
prototype class is used to guide the counterfactual search.

296 7 Explainability in Time Series Forecasting, Natural Language Processing, and. . .

Fig. 7.19 Integrated Gradient explanation for incorrect predictions

Fig. 7.20 Counterfactual explanations

7.3 Computer Vision 297

Fig. 7.21 Local explanations using anchors for correct prediction of sandals and incorrect
prediction of T-shirt. (a) Sandals super pixels. (b) Sandals anchors. (c) T-shirt super pixels. (d)
T-shirt anchors

298 7 Explainability in Time Series Forecasting, Natural Language Processing, and. . .

Fig. 7.22 Contrastive explanation

Fig. 7.23 Counterfactuals by prototypes

References 299

Observations:

• The L measure plots for different layers in Fig. 7.17 show how the second
convolution layer and the first dense layer have high non-linearities. Also,
non-linearity by class shows the class pullovers followed by t-shirts and
sneakers have more in them.

• Figure 7.18 highlights the first coat’s hood and chest, the sneaker’s tongue
and upper, and the second coat’s zipper as an important region in the correct
predictions.

• Figure 7.19 brings out regions that are strongly positive and that contribute to
the incorrect predictions. For the first image, the model keys on the buttons
and predicts a coat instead of a shirt. The second image is a sandal, but the
heel’s intensity seems to influence the model toward predicting the bag. The
third image shows that the model focuses on the hem and zipper, but the
zipper’s negative attributions were not strong enough to move it toward a
coat.

• Figure 7.21 highlights that the intensity of the sandal’s strap is the anchor
point for predicting it correctly and that the shoulder of this garment is the
region confusing the model into classifying it as a t-shirt instead of a shirt.
Thus the anchors help diagnose the issues like needing more examples of
certain classes with particular features or complexity in the model to capture
the regions.

• Figure 7.20 shows how we can trick the model into classifying this pair of
trousers like a dress simply by adding a diagonal line of pixels toward the
bottom of the garment.

• Figure 7.22 highlights the CEM explanation through the pertinent negative
features. We can see that slight changes in pixel intensity around the sleeve
could change the prediction from pullover to shirt.

• Figure 7.23 shows how the distortion/blur, when applied to the outline of the
shirt, changes the prediction from a pullover to a coat.

References

[Abu+17] A. Abujabal et al., Quint: interpretable question answering over knowledge bases,
in Proceedings of the 2017 Conference on Empirical Methods in Natural Language
Processing: System Demonstrations (2017), pp. 61–66

[AB18] A. Adadi, M. Berrada, Peeking inside the black-box: a survey on explainable artificial
intelligence (XAI). IEEE Access 6, 52138–52160 (2018)

[Bac+15b] S. Bach et al., On pixel-wise explanations for non-linear classifier decisions by
layerwise relevance propagation. PLoS ONE 10, 1–46 (2015). https://doi.org/10.1371/
journal.pone.0130140

https://doi.org/10.1371/journal.pone.0130140
https://doi.org/10.1371/journal.pone.0130140

300 7 Explainability in Time Series Forecasting, Natural Language Processing, and. . .

[BCB14] D. Bahdanau, K. Cho, Y. Bengio, Neural machine translation by jointly learning to
align and translate (2014). Preprint, arXiv:1409.0473

[Bau+17] D. Bau et al., Network dissection: quantifying interpretability of deep visual repre-
sentations, in Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition (2017), pp. 6541–6549

[Box+15] G.E.P. Box et al., Time Series Analysis: Forecasting and Control (Wiley, Hoboken,
2015)

[Bro59] R.G. Brown, Statistical Forecasting for Inventory Control (McGraw/Hill, New York,
1959)

[CMR18] S. Carton, Q. Mei, P. Resnick, Extractive adversarial networks: high-recall expla-
nations for identifying personal attacks in social media posts (2018). Preprint,
arXiv:1809.01499

[CRB19] D. Croce, D. Rossini, R. Basili, Auditing deep learning processes through kernel-based
explanatory models, in Proceedings of the 2019 Conference on Empirical Methods in
Natural Language Processing and the 9th International Joint Conference on Natural
Language Processing (EMNLP-IJCNLP) (2019), pp. 4028–4037

[Dan+20] M. Danilevsky et al., A survey of the state of explainable AI for natural language
processing (2020). Preprint, arXiv:2010.00711

[Don+19] Y. Dong et al., EditNTS: a neural programmer-interpreter model for sentence simplifi-
cation through explicit editing (2019). Preprint, arXiv:1906.08104

[DB15] A. Dosovitskiy, T. Brox, Inverting convolutional networks with convolutional networks
(2015). Preprint, arXiv:1506.02753

[DB16] A. Dosovitskiy, T. Brox, Generating images with perceptual similarity metrics based
on deep networks, in Advances in Neural Information Processing Systems, vol. 29, ed.
by D. Lee et al. (Curran Associates, Red Hook, 2016)

[Dud76] S.A. Dudani, The distance-weighted k-nearest-neighbor rule. IEEE Trans. Syst. Man
Cybern. 4, 325–327 (1976)

[Eba+19] A. Ebaid et al., Explainer: entity resolution explanations, in 2019 IEEE 35th Inter-
national Conference on Data Engineering (ICDE) (IEEE, Piscataway, 2019), pp.
2000–2003

[Erh+09] D. Erhan et al., Visualizing higher-layer features of a deep network. Univ. Montreal
1341(3), 1 (2009)

[FPV19] R. Fong, M. Patrick, A. Vedaldi, Understanding deep networks via extremal perturba-
tions and smooth masks, in Proceedings of the IEEE/CVF International Conference on
Computer Vision (ICCV), Oct 2019

[FV18] R. Fong, A. Vedaldi, Net2vec: quantifying and explaining how concepts are encoded
by filters in deep neural networks, in Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition (2018), pp. 8730–8738

[FV19] R. Fong, A. Vedaldi, Explanations for attributing deep neural network predictions,
in Explainable AI: Interpreting Explaining and Visualizing Deep Learning (Springer,
Berlin, 2019), pp. 149–167

[God+18] F. Godin et al., Explaining character-aware neural networks for word-level prediction:
do they discover linguistic rules? (2018). Preprint, arXiv:1808.09551

[Hol04] C.C. Holt, Forecasting seasonals and trends by exponentially weighted moving aver-
ages. Int. J. Forecast. 20(1), 5–10 (2004)

[HA18a] R.J. Hyndman, G. Athanasopoulos, Forecasting: Principles and Practice (OTexts,
Melbourne, 2018)

[Jia+19] Y. Jiang et al., Explore, propose, and assemble: an interpretable model for multi-hop
reading comprehension (2019). Preprint, arXiv:1906.05210

[KLW19b] U. Kamath, J. Liu, J. Whitaker, Deep Learning for NLP and Speech Recognition, vol.
84 (Springer, Berlin, 2019)

[LWM19] Q. Li, B. Wang, M. Melucci, CNM: an inter pretable complex-valued network for
matching (2019). Preprint, arXiv:1904.05298

References 301

[Liu+18] N. Liu et al., On interpretation of network embedding via taxonomy induction, in
Proceedings of the 24th ACM SIGKDD International Conference on Knowledge
Discovery & Data Mining (2018), pp. 1812–1820

[LL17a] S.M. Lundberg, S.-I. Lee, A unified approach to interpreting model predictions, in
Advances in Neural Information Processing Systems, vol. 30, ed. by I. Guyon et
al. (Curran Associates, Red Hook, 2017), pp. 4765–4774. http://papers.nips.cc/paper/
7062-a-unified-approach-to-interpreting-model-predictions.pdf

[MV15] A. Mahendran, A. Vedaldi, Understanding deep image representations by inverting
them, in Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition (2015), pp. 5188–5196

[MSA18] S. Makridakis, E. Spiliotis, V. Assimakopoulos, Statistical and machine learning
forecasting methods: concerns and ways forward. PLoS ONE 13(3), e0194889 (2018)

[Mak+82] S. Makridakis et al., The accuracy of extrapolation (time series) methods: results of a
forecasting competition. J. Forecast. 1(2), 111–153 (1982)

[Mol19] C. Molnar, Interpretable machine learning a guide for making black box models
explainable (2019). https://christophm.github.io/interpretablemlbook

[MOT15] A. Mordvintsev, C. Olah, M. Tyka, Inceptionism: going deeper into neural networks
(2015)

[Mul+18] J. Mullenbach et al., Explainable prediction of medical codes from clinical text (2018).
Preprint, arXiv:1802.05695

[Ngu+16] A. Nguyen et al., Synthesizing the preferred inputs for neurons in neural networks via
deep generator networks, in Advances in Neural Information Processing Systems, vol.
29, ed. by D. Lee et al. (Curran Associates, Red Hook, 2016)

[Ngu+17] A. Nguyen et al., Plug & play generative networks: conditional iterative generation of
images in latent space, in Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition (2017), pp. 4467–4477

[Ola+18] C. Olah et al., The building blocks of interpretability. Distill 3(3), e10 (2018)
[PDS18b] V. Petsiuk, A. Das, K. Saenko, RISE: randomized input sampling for explanation

of black-box models, in British Machine Vision Conference (BMVC) (2018). http://
bmvc2018.org/contents/papers/1064.pdf

[PTS19] P. Pezeshkpour, Y. Tian, S. Singh, Investigating robustness and interpretability of link
prediction via adversarial modifications (2019). Preprint, arXiv:1905.00563

[Raj+19] N.F. Rajani et al., Explain yourself! leveraging language models for commonsense
reasoning (2019). Preprint, arXiv:1906.02361

[Rem20] P. Remy, N-BEATS: neural basis expansion analysis for interpretable time series
forecasting (2020). https://github.com/philipperemy/nbeats

[RSG16a] M.T. Ribeiro, S. Singh, C. Guestrin, “Why should I trust you?” Explaining the
predictions of any classifier, in Proceedings of the 22nd ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining (2016), pp. 1135–1144

[Sam+19] W. Samek et al. (eds.), Explainable AI: Interpreting, Explaining and Visualizing Deep
Learning (Springer, Berlin, 2019)

[Sel+17] R.R. Selvaraju et al., Grad-CAM: visual explanations from deep networks via gradient-
based localization, in Proceedings of the IEEE International Conference on Computer
Vision (2017), pp. 618–626

[Sen+19] P. Sen et al., HEIDL: learning linguistic expressions with deep learning and human-
in-the-loop, in Proceedings of the 57th Annual Meeting of the Association for
Computational Linguistics: System Demonstrations (2019), pp. 135–140

[Sha+14] A.S. Razavian et al., CNN features off-the-shelf: an astounding baseline for recog-
nition, in Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition Workshops (2014), pp. 806–813

[SGK17] A. Shrikumar, P. Greenside, A. Kundaje, Learning important features through propa-
gating activation differences, in International Conference on Machine Learning, PMLR
(2017), pp. 3145–3153

[SVZ14a] K. Simonyan, A. Vedaldi, A. Zisserman, Deep inside convolutional networks: visualis-
ing image classification models and saliency maps (2013). Preprint, arXiv:1312.6034

http://papers.nips.cc/paper/7062-a-unified-approach-to-interpreting-model-predictions.pdf
http://papers.nips.cc/paper/7062-a-unified-approach-to-interpreting-model-predictions.pdf
https://christophm.github.io/interpretablemlbook
http://bmvc2018.org/contents/papers/1064.pdf
http://bmvc2018.org/contents/papers/1064.pdf
https://github.com/philipperemy/nbeats

302 7 Explainability in Time Series Forecasting, Natural Language Processing, and. . .

[SVZ14b] K. Simonyan, A. Vedaldi, A. Zisserman, Deep inside convolutional networks: visualis-
ing image classification models and saliency maps (2014)

[Spr+15a] J.T. Springenberg et al., Striving for simplicity: the all convolutional net, in
ICLR (Workshop Track) (2015). http://lmb.informatik.uni-freiburg.de/Publications/
2015/DB15a

[STY17a] M. Sundararajan, A. Taly, Q. Yan, Axiomatic attribution for deep networks, in
Proceedings of the 34th International Conference on Machine Learning - Volume 7,
0. ICML’17. Sydney NSW Australia: JMLR.org (2017), pp. 3319–3328

[SPR19] A. Sydorova, N. Poerner, B. Roth, Interpretable question answering on knowledge
bases and text (2019). Preprint, arXiv:1906.10924

[TL18] S.J. Taylor, B. Letham, Forecasting at scale. Am. Stat. 72(1), 37–45 (2018)
[UVL18] D. Ulyanov, A. Vedaldi, V. Lempitsky, Deep image prior, in Proceedings of the IEEE

Conference on Computer Vision and Pattern Recognition (2018), pp. 9446–9454
[Vos+15] N. Voskarides et al., Learning to explain entity relationships in knowledge graphs,

in Proceedings of the 53rd Annual Meeting of the Association for Computational
Linguistics and the 7th International Joint Conference on Natural Language Processing
(Volume 1: Long Papers) (2015), pp. 564–574

[Win60] P.R. Winters, Forecasting sales by exponentially weighted moving averages. Manag.
Sci. 6(3), 324–342 (1960)

[Xie+17] Q. Xie et al., An interpretable knowledge transfer model for knowledge base comple-
tion (2017). Preprint, arXiv:1704.05908

[ZF14a] M.D. Zeiler, R. Fergus, Visualizing and understanding convolutional networks, in
European Conference on Computer Vision (Springer, Berlin, 2014), pp. 818–833

[Zha+18] J. Zhang et al., Top-down neural attention by excitation backprop. Int. J. Comput. Vis.
126(10), 1084–1102 (2018)

[ZHZ18] M. Zhou, M. Huang, X. Zhu, An interpretable reasoning network for multi-relation
question answering (2018). Preprint, arXiv:1801.04726

http://lmb.informatik.uni-freiburg.de/Publications/2015/DB15a
http://lmb.informatik.uni-freiburg.de/Publications/2015/DB15a

Chapter 8
XAI: Challenges and Future

One of the biggest challenges the XAI field faces is formalizing, quantifying,
measuring, and comparing different explanation techniques in a unified way. The
evaluation of explanations is an interdisciplinary research covering broad areas of
human-computer interaction, machine learning, psychology, cognitive science, and
visualization, to name a few. This chapter first highlights some of the recent works
in research to categorize and analyze the metrics in a common framework. Finally,
we give some predictions on the future based on current trajectories, commercial
and open-source trends, and innovations in the field.

8.1 XAI: Challenges

The last few years saw a rapid growth in interpretable and explainable machine
learning techniques, discussed in depth in previous chapters. Open issues with
explainable methods are formalism for the explanations, assessing the quality of
explanations and effective methods to measure them. To evaluate the quality of
explanations, we need first to define the attributes of explanations and then map
different techniques to these properties. In the last couple of years, significant
research has been completed to understand the properties and define metrics
qualitatively and quantitatively [Zho+21]. This section will discuss the properties
of explanations, categories of explanations, the taxonomy of evaluation and how
different explanation techniques map to the properties of explainable systems.

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2021
U. Kamath, J. Liu, Explainable Artificial Intelligence: An Introduction to
Interpretable Machine Learning, https://doi.org/10.1007/978-3-030-83356-5_8

303

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-83356-5_8&domain=pdf
https://doi.org/10.1007/978-3-030-83356-5_8

304 8 XAI: Challenges and Future

8.1.1 Properties of Explanation

Explainable techniques and interpretable models should provide clarity, simplicity,
broadness, completeness, and soundness as critical properties [MKR20, Zho+21].
Clarity means the explanation is unambiguous, i.e., it gives a single reason to similar
occurrences and examples. Parsimony implies the explanation is in simple and
compact form. Broadness indicates the same explanation applies to a broader range
of observations. Completeness of an explanation is assessed through the ability
to provide adequate information to compute the output for a given input. Finally,
soundness is an indicator of how truthful and correct the explanation is.

8.1.2 Categories of Explanation

Based on the work of the Information Commissioner’s Office (ICO) and Webb
et al., the explanation itself can be further classified into six categories [KK20,
Web+20].

1. Rationale explanation. This answers the “why” part of ML in making decisions.
The explanation allows the system user to explain why the decision is flawed or
reasons to support the decision.

2. Responsibility explanation. This answers “who” is involved in decisions at
various steps of the ML process, i.e., from data to modeling. This type of
explanation brings in accountability and traceability.

3. Data explanation. Data plays a vital role in decision-making. This type of
explanation focuses on what data is used for training, validating, and testing the
model(s).

4. Fairness explanation. This explanation type focuses on ensuring there is no bias
and discrimination at various ML decision-making processes. This is a critical
area for increasing the trust in AI and ML systems.

5. Safety and performance explanation. This explanation type focuses on ensuring
maximum reliability, robustness, and accuracy in decision-making steps.

6. Impact explanation. This type of explanation highlights the impact of the ML
systems and decisions at various levels, from individuals to society.

Zhou et al. further classify responsibility and fairness as ethical explanations;
the impact explanation is based on the use, but the rest of them are directly related
to ML explainabilities [Zho+21]. Finally, they map the explanation types to the
different explanation categories. We have made our small changes as given below
(Table 8.1):

8.1 XAI: Challenges 305

Table 8.1 Explanation types and categories

Explanation types Explanation categories

Data explanation Summary statistics and analysis

Data visualization (univariate and multivariate)

Feature relevance and selection

Prototypical algorithms

Safety and performance explanation Model selection, validation, and visualization techniques

Restricted neural network architecture

Rationale explanation Attribution-based

Provenance-based

Surrogate model-based

Declarative induction-based

Deep learning and neural visualization techniques

8.1.3 Taxonomy of Explanation Evaluation

Doshi-Velez and Kim divided evaluation approaches into three categories and is a
widely accepted taxonomy in explainability evaluation [DK18].

• Application-grounded evaluation (experiments with end-users). In this approach,
the subject matter experts or the end-users of the ML system assess how well
explanations assist them in decision-making.

• Human-grounded evaluation (experiments with lay humans). In contrast to
the application-grounded evaluation, a large group of lay humans instead of
domain experts assess the explanation quality in human-grounded evaluation.
This approach is more cost-effective but can suffer from significant variance
based on the size and type of task.

• Functionality-grounded evaluation (proxies based on a formal definition of
interpretability). In this type of evaluation, some quantifiable metric acts as a
proxy for the explanation evaluation.

Application-grounded and human-grounded evaluations use human experiments to
assess the evaluations, base it on factors such as local-global explanations, the
severity of incompleteness in data or models or specifications, time spent by users
to understand explanations, and users experience level mapped to the explanations.

Evaluation by humans can be subjective or objective metrics-based. Subjective
metrics use questionnaires based on tasks and explanations to create a score based
on user trust, confidence, and preference. On the other hand, objective metrics may
use physiological and behavioral indicators when subjected to the explanations
or use task-related metrics such as time and performance to assess the quality of
explanations.

Markus et al. categorized the functionality-grounded evaluation metrics into
three categories, viz., model-based, attribution-based, and example-based expla-
nations [MKR20]. Interpretable techniques such as decision trees, Bayesian rule

306 8 XAI: Challenges and Future

lists, optimal decision trees, etc. discussed in Chaps. 3 and 4, fall under the
model-based explanations category. Visualization, feature relevance, and post-
hoc attribution techniques such as LIME, SHAP, saliency-based, etc. discussed
in Chaps. 5 and 6, apply to attribution-based explanations. Counterfactuals or
data-driven explanations, discussed in Chaps. 5 and 6, are part of example-based
explanations.

Table 8.2 summarizes the mapping between the functionality-grounded eval-
uation metrics for measuring the quality of three types of explanation methods

Table 8.2 Explanation types, metrics, and mapping to desired explanation properties

Explanation
types

Quantitative metrics Clarity Broadness Simplicity Completeness Soundness

Model-based
explanations

Model size [Gui+18,
MCB20b]

Y

Runtime operation
counts [Sla+19]

Y

Interaction
strengths [MKR20,
MCB20b]

Y

Main effect com-
plexity [MCB20b]

Y

Level of disagree-
ment [Lak+17]

Y Y

Attribution-based
explanations

Monotonicity
[NM20]

Y

Sensitivity [Yeh+19,
STY17b, NM20]

Y

Effective
complexity [NM20]

Y Y

Remove and
retrain [Hoo+18]

Y

Recall of important
features [RSG16b]

Y

Implementation
invariance
[STY17b]

Y

Selectivity [MSM18] Y

Continuity [MSM18] Y

Sensitivity-
n [Anc+17]

Y

Mutual informa-
tion [MCB20b]

Y Y Y

Example-based
explanations

Non-
representativeness
[MCB20b]

Y Y

Diversity [MCB20b] Y

8.2 Future 307

with desired properties sought in explanations given by Zhou et al. with some
modifications. We use the letter Y to illustrate that the metric successfully helps
in quantifying the respective property.

8.2 Future

The future is AI-driven computing, and there is little doubt that the explainability
of the models will play a significant role in shaping it. Based on the current trends
in the academic, commercial, and open-source community, we identify some of the
possible changes and directions XAI will take in the next few years.

8.2.1 Formalization of Explanation Techniques and
Evaluations

The lack of formalism in explanation techniques and customized explanation for
different users in different domains has posed severe challenges in evaluating
and comparing explanation techniques in AI. Nevertheless, there has been some
progress at the domain level or in the particular sub-field of machine learning. For
example, Hardt et al. propose a generalized framework for quantifying and reducing
discrimination in supervised learning settings for tabular-based data [HPS16]. Islam
et al. show how to leverage domain knowledge and infuse this into black-box models
for better explainability in finance and cybersecurity domains [Isl+19b, Isl+19a].
However, a generic framework that addresses measuring, quantifying, compre-
hensibility, etc. will make the techniques and evaluation more formal. Datasets,
benchmarks, and competitions will further fuel innovation and standardization.

8.2.2 Adoption of Interpretable Techniques

In her work “Stop Explaining Black-BoxMachine Learning Models for High Stakes
Decisions and Use Interpretable Models Instead,” Rudin makes a case for broader
adoption of interpretable machine learning models as opposed to explainable
techniques [Rud19d]. The Rashomon set argument is: If there is a large set of
models with relatively reasonable accuracy, there has to be an interpretable model
which is both accurate and interpretable. This argument might be true for most
classes of problems in different domains. In Chaps. 3 and 4, we covered most of the
techniques in interpretable machine learning, demonstrating its usefulness and some
of the challenges on classification and regression problems. Applying interpretable
machine learning techniques based on optimality for high-dimensional data such as

308 8 XAI: Challenges and Future

NLP can be challenging due to the search space. Nonetheless, if the open-source
community, policy-makers, and subject-matter experts all push to embrace the path
of interpretable models, there will be more adoption and deployments in various
industries.

8.2.3 Human-Machine Collaboration

Most explanations have to be comprehensible and understood by the users who may
have a different level of expertise. In addition, depending on their backgrounds,
there may be more questions or feedback that the user might provide for assessing
the explanations. The experts from the community of Human-Computer Interaction
(HCI) need to play an essential role in capturing these user-explanation interactions.
In the future, the system has to capture these interactions, automate the process, and
gather the learnings to improve the model and explanations rather than the siloed
process that exists today [Rab+21].

8.2.4 Collective Intelligence from Multiple Disciplines

Islam et al., in their survey, point out that explanations and interpretations touch
different disciplines such as philosophy, psychology, sociology, cognitive science,
etc., and the need of the hour is the multidisciplinary research that can further
advance XAI [Rab+21].

8.2.5 Responsible AI (RAI)

Responsible AI (RAI) is an emerging field that combines many aspects of explain-
ability, interpretability, trust, ethics, fairness, privacy, and security to overcome the
issues facing the current machine learning-based operations [Arr+20b, Sch+20].
Many industries, especially healthcare and finance, are making a conscious move
to adopt the RAI framework from policy perspective. Many AI companies like
Microsoft, Google, Amazon, Facebook are investing in developing policies, toolkits,
and libraries to support RAI.

8.2.6 XAI and Security

Vigano and Magazzeni’s position paper on explainable security (XSec) discusses
every aspect of how explainable AI can contribute and benefit the security commu-

References 309

nity from users to applications such as threat modeling and preventing exploiting
vulnerabilities [VM20b]. As more and more companies leverage machine learn-
ing and explainable AI, there is also a threat of attacks on these explainable
AI and interpretable machine learning models, as discussed by Kuppa and Le-
Khac [Kup+19]. XAI and its impact on security will be critical for the research
community, government, and the commercial world in the coming years.

8.2.7 Causality and XAI

One can view interpretable machine learning as a method focusing on the asso-
ciation between data and outcome instead of causality. On the other hand, causal
machine learning and inference using many causality-oriented methods focus on
causality and play a significant role in interpretable machine learning [Mor+20].
Causal ML is an emerging field from both machine learning and interpretability
viewpoint and will play an essential role in the future.

8.3 Closing Remarks

We hope that the readers found the content both informative and helpful. We hope
we have enabled the readers to get an understanding of various techniques in XAI
with practical examples and case studies using open-source libraries.

References

[Anc+17] M. Ancona et al., Towards better understanding of gradient-based attribution methods
for deep neural networks (2017). Preprint, arXiv:1711.06104

[Arr+20b] A.B. Arrieta et al., Explainable Artificial Intelligence (XAI): concepts, taxonomies,
opportunities and challenges toward responsible AI. Inf. Fusion 58, 82–115 (2020)

[DK18] F. Doshi-Velez, B. Kim, Considerations for evaluation and generalization in inter-
pretable machine learning, in Explainable and Interpretable Models in Computer
Vision and Machine Learning (Springer, Berlin, 2018), pp. 3–17

[Gui+18] R. Guidotti et al., A survey of methods for explaining black box models. ACM
Comput. Surv. 51(5), 1–42 (2018)

[HPS16] M. Hardt, E. Price, N. Srebro, Equality of opportunity in supervised learning (2016).
Preprint, arXiv:1610.02413

[Hoo+18] S. Hooker et al., A benchmark for interpretability methods in deep neural networks
(2018). Preprint, arXiv:1806.10758

[Isl+19a] S.R. Islam et al., Domain knowledge aided explainable artificial intelligence for
intrusion detection and response (2019). Preprint, arXiv:1911.09853

[Isl+19b] S.R. Islam et al., Infusing domain knowledge in ai-based “black box” models
for better explainability with application in bankruptcy prediction (2019). Preprint,
arXiv:1905.11474

310 8 XAI: Challenges and Future

[KK20] E. Kazim, A. Koshiyama, Explaining decisions made with AI: a review of the co-
badged guidance by the ICO and the Turing Institute (2020). Available at SSRN
3656269

[Kup+19] A. Kuppa et al., Black box attacks on deep anomaly detectors, in Proceedings of the
14th International Conference on Availability, Reliability and Security (2019), pp. 1–
10

[Lak+17] H. Lakkaraju et al., Interpretable & explorable approximations of black box models
(2017). Preprint, arXiv:1707.01154

[MKR20] A.F. Markus, J.A. Kors, P.R. Rijnbeek, The role of explainability in creating trustwor-
thy artificial intelligence for health care: a comprehensive survey of the terminology,
design choices, and evaluation strategies. J. Biomed. Inf. 113, 103655 (2020)

[MCB20b] C. Molnar, G. Casalicchio, B. Bischl, Interpretable machine learning–a brief history,
state-of-the-art and challenges (2020). Preprint, arXiv:2010.09337

[MSM18] G. Montavon, W. Samek, K.-R. Müller, Methods for interpreting and understanding
deep neural networks. Digit. Signal Process. 73, 1–15 (2018)

[Mor+20] R. Moraffah et al., Causal interpretability for machine learning problems, methods
and evaluation. ACM SIGKDD Explor. Newslett. 22(1), 18–33 (2020)

[NM20] A.-p. Nguyen, M.R. Martínez, On quantitative aspects of model interpretability
(2020). Preprint, arXiv:2007.07584

[Rab+21] S.R. Islam et al., Explainable artificial intelligence approaches: a survey (2021). e-
Prints, arXiv–2101

[RSG16b] M.T. Ribeiro, S. Singh, C. Guestrin, “Why should I trust you?” Explaining the
predictions of any classifier, in Proceedings of the 22nd ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining (2016), pp. 1135–1144

[Rud19d] C. Rudin, Stop explaining black box machine learning models for high stakes
decisions and use interpretable models instead. Nat. Mach. Intell. 1(5), 206–215
(2019)

[Sch+20] D. Schiff et al., Principles to practices for responsible AI: closing the gap (2020).
Preprint, arXiv:2006.04707

[Sla+19] D. Slack et al., Assessing the local interpretability of machine learning models (2019).
Preprint, arXiv:1902.03501

[STY17b] M. Sundararajan, A. Taly, Q. Yan, Axiomatic attribution for deep networks, in
International Conference on Machine Learning, PMLR (2017), pp. 3319–3328

[VM20b] L. Vigano, D. Magazzeni, Explainable security, in 2020 IEEE European Symposium
on Security and Privacy Workshops (EuroS&PW) (IEEE, Piscataway, 2020), pp. 293–
300

[Web+20] M.E. Webb et al., Machine learning for human learners: opportunities, issues, tensions
and threats, in Educational Technology Research and Development (2020), pp. 1–22

[Yeh+19] C.-K. Yeh et al., On the (in) fidelity and sensitivity for explanations (2019). Preprint,
arXiv:1901.09392

[Zho+21] J. Zhou et al., Evaluating the quality of machine learning explanations: a survey on
methods and metrics. Electronics 10(5), 593 (2021)

	Foreword
	Preface
	Why This Book?
	Who This Book Is For
	What This Book Covers

	Acknowledgments
	Contents
	Notation
	Calculus
	Datasets
	Functions
	Variables
	Probability
	Sets

	1 Introduction to Interpretability and Explainability
	1.1 Black-Box problem
	1.2 Goals
	1.3 Brief History
	1.3.1 Porphyrian Tree
	1.3.2 Expert Systems
	1.3.3 Case-Based Reasoning
	1.3.4 Bayesian Networks
	1.3.5 Neural Networks

	1.4 Purpose
	1.5 Societal Impact
	1.6 Types of Explanations
	1.7 Trade-offs
	1.8 Taxonomy
	1.8.1 Scope
	1.8.2 Stage

	1.9 Flowchart for Interpretable and Explainable Techniques
	1.10 Resources for Researchers and Practitioners
	1.10.1 Books
	1.10.2 Relevant University Courses and Classes
	1.10.3 Online Resources
	1.10.4 Survey Papers

	1.11 Book Layout and Details
	1.11.1 Structure: Explainable Algorithm
	1.11.1.1 Linear Regression

	References

	2 Pre-model Interpretability and Explainability
	2.1 Data Science Process and EDA
	2.2 Exploratory Data Analysis
	2.2.1 EDA Challenges for Explainability
	2.2.2 EDA: Taxonomy
	2.2.3 Role of EDA in Explainability
	2.2.4 Non-graphical: Summary Statistics and Analysis
	2.2.4.1 Tools and Libraries
	2.2.4.2 Summary Statistics and Analysis

	2.2.5 Graphical: Univariate and Multivariate Analysis
	2.2.5.1 Tools and Libraries
	2.2.5.2 Univariate Analysis
	2.2.5.3 Multivariate Analysis

	2.2.6 EDA and Time Series
	2.2.6.1 Resampling
	2.2.6.2 Seasonality and Trend Analysis
	2.2.6.3 Autocorrelation, Stationarity, and Differencing

	2.2.7 EDA and NLP
	2.2.7.1 Text Corpus Statistics
	2.2.7.2 N-Grams Analysis
	2.2.7.3 Word Cloud
	2.2.7.4 Topic Modeling
	2.2.7.5 Corpus Visualization

	2.2.8 EDA and Computer Vision
	2.2.8.1 Distributional Analysis
	2.2.8.2 2D Projections

	2.3 Feature Engineering
	2.3.1 Feature Engineering and Explainability
	2.3.2 Feature Engineering Taxonomy and Tools
	2.3.2.1 Filter-Based
	2.3.2.2 Wrapper-Based
	2.3.2.3 Unsupervised
	2.3.2.4 Embedded

	References

	3 Model Visualization Techniques and Traditional Interpretable Algorithms
	3.1 Model Validation, Evaluation, and Hyperparameters
	3.1.1 Tools and Libraries

	3.2 Model Selection and Visualization
	3.2.1 Validation Curve
	3.2.2 Learning Curve

	3.3 Classification Model Visualization
	3.3.1 Confusion Matrix and Classification Report
	3.3.2 ROC and AUC
	3.3.3 PRC
	3.3.4 Discrimination Thresholds

	3.4 Regression Model Visualization
	3.4.1 Residual Plots
	3.4.2 Prediction Error Plots
	3.4.3 Alpha Selection Plots
	3.4.4 Cook's Distance

	3.5 Clustering Model Visualization
	3.5.1 Elbow Method
	3.5.2 Silhouette Coefficient Visualizer
	3.5.3 Intercluster Distance Maps

	3.6 Interpretable Machine Learning Properties
	3.7 Traditional Interpretable Algorithms
	3.7.1 Tools and Libraries
	3.7.2 Linear Regression
	3.7.2.1 Regularization

	3.7.3 Logistic Regression
	3.7.4 Generalized Linear Models
	3.7.5 Generalized Additive Models
	3.7.6 Naive Bayes
	3.7.7 Bayesian Networks
	3.7.8 Decision Trees
	3.7.9 Rule Induction

	References

	4 Model Interpretability: Advances in Interpretable Machine Learning
	4.1 Interpretable vs. Explainable Algorithms
	4.2 Tools and Libraries
	4.3 Ensemble-Based
	4.3.1 Boosted Rulesets
	4.3.2 Explainable Boosting Machines (EBM)
	4.3.3 RuleFit
	4.3.4 Skope-Rules
	4.3.5 Iterative Random Forests (iRF)

	4.4 Decision Tree-Based
	4.4.1 Optimal Classification Trees
	4.4.2 Optimal Decision Trees
	4.4.2.1 Optimal Sparse Decision Trees
	4.4.2.2 DL8.5
	4.4.2.3 Generalized and Scalable Optimal Sparse Decision Trees (GOSDT)

	4.5 Rule-Based Techniques
	4.5.1 Bayesian Or's of And's (BOA)
	4.5.2 Bayesian Case Model
	4.5.3 Certifiably Optimal RulE ListS (CORELS)
	4.5.4 Bayesian Rule Lists

	4.6 Scoring System
	4.6.1 Supersparse Linear Integer Models

	References

	5 Post-Hoc Interpretability and Explanations
	5.1 Tools and Libraries
	5.2 Visual Explanation
	5.2.1 Partial Dependence Plots
	5.2.2 Individual Conditional Expectation Plots
	5.2.3 Ceteris Paribus Plots
	5.2.4 Accumulated Local Effects Plots
	5.2.5 Breakdown Plots
	5.2.6 Interaction Breakdown Plots

	5.3 Feature Importance
	5.3.1 Feature Interaction
	5.3.2 Permutation Feature Importance
	5.3.3 Ablations: Leave-One-Covariate-Out
	5.3.4 Shapley Values
	5.3.5 SHAP
	5.3.6 KernelSHAP
	5.3.7 Anchors
	5.3.8 Global Surrogate
	5.3.9 LIME

	5.4 Example-Based
	5.4.1 Contrastive Explanation
	5.4.2 kNN
	5.4.3 Trust Scores
	5.4.4 Counterfactuals
	5.4.5 Prototypes/Criticisms
	5.4.6 Influential Instances

	References

	6 Explainable Deep Learning
	6.1 Applications
	6.2 Tools and Libraries
	6.3 Intrinsic
	6.3.1 Attention
	6.3.2 Joint Training

	6.4 Perturbation
	6.4.1 LIME
	6.4.2 Occlusion
	6.4.3 RISE
	6.4.4 Prediction Difference Analysis
	6.4.5 Meaningful Perturbation

	6.5 Gradient/Backpropagation
	6.5.1 Activation Maximization
	6.5.2 Class Model Visualization
	6.5.3 Saliency Maps
	6.5.4 DeepLIFT
	6.5.5 DeepSHAP
	6.5.6 Deconvolution
	6.5.7 Guided Backpropagation
	6.5.8 Integrated Gradients
	6.5.9 Layer-Wise Relevance Propagation
	6.5.10 Excitation Backpropagation
	6.5.11 CAM
	6.5.12 Gradient-Weighted CAM
	6.5.13 Testing with Concept Activation Vectors

	References

	7 Explainability in Time Series Forecasting, Natural Language Processing, and Computer Vision
	7.1 Time Series Forecasting
	7.1.1 Tools and Libraries
	7.1.2 Model Validation and Evaluation
	7.1.3 Model Metrics
	7.1.4 Statistical Time Series Models
	7.1.4.1 ARIMA Models
	7.1.4.2 Exponential Smoothing Models

	7.1.5 Prophet: Scalable and Interpretable Machine Learning Approach
	7.1.6 Deep Learning and Interpretable Time Series Forecasting

	7.2 Natural Language Processing
	7.2.1 Explainability, Operationalization, and Visualization Techniques
	7.2.1.1 Feature Importance
	7.2.1.2 Surrogate Model
	7.2.1.3 Example Driven
	7.2.1.4 Provenance-Based
	7.2.1.5 Declarative Induction

	7.2.2 Explanation Quality Evaluation
	7.2.2.1 Comparison to the Ground Truth
	7.2.2.2 Human Evaluation

	7.2.3 Tools and Libraries
	7.2.4 Case Study

	7.3 Computer Vision
	7.3.1 Generating Iconic Examples
	7.3.2 Attribution
	7.3.3 Semantic Identification
	7.3.4 Understanding the Networks
	7.3.5 Tools and Libraries
	7.3.6 Case Study

	References

	8 XAI: Challenges and Future
	8.1 XAI: Challenges
	8.1.1 Properties of Explanation
	8.1.2 Categories of Explanation
	8.1.3 Taxonomy of Explanation Evaluation

	8.2 Future
	8.2.1 Formalization of Explanation Techniquesand Evaluations
	8.2.2 Adoption of Interpretable Techniques
	8.2.3 Human-Machine Collaboration
	8.2.4 Collective Intelligence from Multiple Disciplines
	8.2.5 Responsible AI (RAI)
	8.2.6 XAI and Security
	8.2.7 Causality and XAI

	8.3 Closing Remarks
	References

