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ROC Receiver operating characteristic
ROI Regions of interest
TIFF Tagged Image File Format
WSI Whole slide image

 Introduction

Converging waves of increasingly sophisticated machine learning (ML), whole 
slide images (WSIs), and computing power have artificial intelligence (AI) (Fig. 1) 
poised to transform the practice of pathology. The ongoing collaboration of research-
ers from computer vision, AI, and pathology domains is driving this revolution. A 
recent explosion of ML models for the analysis of WSIs has produced state-of-the- 
art biomarker discoveries and impressive disease recognition capabilities [1]. ML 
has the potential to address the worsening global undersupply of pathologists [2] 
and the thorny issue of interpathologist variability [3]. Additionally, ML can be used 
to optimize the diagnostic pathologist’s workflow via (1) attention direction to 
regions of interest (ROI)  and (2) automated quantification of time-intensive tasks 
(e.g., mitotic indices). From the discovery perspective, ML can identify novel fea-
tures of WSIs with prognostic and therapeutic significance in a variety of neoplastic 
and metabolic conditions [4, 5].

ML can be unsupervised or supervised. Unsupervised models do not introduce 
labeling bias when learning patterns in data. Rather, the model identifies distinct pat-
terns in the data and forms clusters with unique patterns. Unsupervised learning is 
useful in an exploratory analysis in which ground truth is unknown. In comparison, 
supervised learning utilizes manually assigned labels from ground truth that identify 
relevant features of the dataset. Supervised models are conducive to iterative improve-
ment, as the presence of labels helps optimize the model. The performance of the 
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Artificial Intelligence (AI)
Techniques and methods that enable
computers to emulate or exceed human
intelligence.

Machine Learning (ML)
The ability of computers to learn patterns in
data without being explicity programmed.

Deep Learning (DL)
Algorithms that enable computers to extract
representative features and perform various
tasks based on these features.

Convolutional Neural Network (CNN)
A sequence of layers that use the principle
of convolution, a mathematical operation,
commonly applied to analyse images.

Fig. 1 The hierarchical relationship of different artificial intelligence concepts
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supervised model depends on the (1) features, (2) labels, and (3) core algorithm used 
in training.

Deep learning (DL) is a subcategory of ML (Fig.  1) known for its ability to 
achieve high performance from complex visual inputs, such as WSIs [6]. DL algo-
rithms utilize networks several layers in depth, progressively extracting higher level 
features from the raw input with each additional layer. DL algorithms iteratively 
improve by maximizing the separation between classes. With each iteration, data 
are propagated through the network to determine the corresponding output. The 
machine-predicted output is then compared to the actual output, and a penalty score 
is assigned so that the algorithm can learn to map the sample output to the correct 
class. Once the algorithm determines the discriminant features for each class, it is 
often able to generalize to unseen data without the need to handcraft additional 
features.

The convolutional neural network (CNN) is typically a supervised method under 
the DL umbrella (Fig. 1) that has recently been applied to digital pathology. CNNs 
are generally used to analyze images, where they assign weights to different regions 
and structures to model and classify groups. CNNs use the principle of convolution, 
in which a mathematical operation on two functions is used to produce a third that 
highlights essential structures (i.e., changes in signal or an underlying smoothness). 
CNNs are composed of three main types of layers: convolution layers, pooling lay-
ers, and fully connected layers. Stacking these layers forms a CNN architecture. 
The more layers added, the “deeper” the network becomes, hence the name deep 
convolutional neural networks (DNNs).

In this chapter, we highlight challenges in implementing CNNs in digital pathol-
ogy (section “Challenges in Implementing Convolutional Neural Networks in 
Digital Pathology”), discuss data quality and transformation (section “Data Quality 
and Transformation”), inform annotation and labeling (section “Annotation and 
Labeling”), demystify CNNs (section “Convolutional Neural Networks”), explore 
fine-tuning CNNs (section “Further Steps for Fine-Tuning the CNN”), and list mod-
ern applications for AI in digital pathology (section “Applications of AI in WSI”).

 Challenges in Implementing Convolutional Neural Networks 
in Digital Pathology

Computational modeling of WSIs poses many unique challenges. CNNs are data- 
driven and require large datasets for training, validating, and testing. The develop-
ment of large, high-quality datasets is impeded by several barriers to entry in digital 
pathology, including cost, expertise, and resistance to change. There are multiple 
steps in data pre-processing with the goal of maintaining data quality and optimiz-
ing data transformation. A compatible image format is imperative for downstream 
analysis, and investigators should consider the entire pipeline before selecting the 
image format. Different scanners can use propriety data formats for both image 
generation and annotation, which can add unique challenges for pre-processing and 
analysis. Investigators can choose from a variety of color spaces, transformations, 
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and contrasts to suit their purpose. The images must then be tiled and filtered with 
care to maintain the representation of all structures of interest. Normalization is 
required to counteract batch effects, which can increase image variability due to 
disparate sample handling. The challenge of isolating distinct morphologic features 
can be overcome via stain deconvolution, a powerful computational technique for 
isolating the relative contributions of hematoxylin and eosin staining.

After image pre-processing, pathologist expertise is required to annotate key fea-
tures for training. Pathology is a highly specialized field, and different organs and 
diseases require pathologists with a variety of specializations in order to generate 
accurate annotations. Furthermore, image annotation is time-consuming and 
requires multiple pathologists to reach a consensus [7]. For any computational mod-
eling endeavor to be executed successfully in the histology domain, the modeling 
approach must be designed with the input of an expert pathologist at every stage. 
Hence, each modeling effort should begin with the well-understood integration of 
pathologists. Pathologist expertise to annotate data, construct models, and verify 
results is of utmost importance to ensure usability and adoption of AI in pathology.

Ultimately, careful consideration of the parameters for the modeling algorithms, 
the feature sets, and the neural network architecture are all essential pieces in the 
overall success of a digital pathology modeling experiment. From the size of the tiles 
(must contain enough of the relevant tissue substructures but not so much as to add 
unnecessary variation and noise) to the complexity of the ML model (less training 
data with more complex models leads to overfitting), all decisions impact the results 
and should be made after careful consideration and comprehensive validation [8].

 Data Quality and Transformation

 Sample Size

In computer-aided pathology, the size of the dataset is a crucial factor underlying 
model performance. The more data fed into the algorithm, the more accurately it 
will be able to model the full range of the disease of interest. Variation in the form 
of disease presentation and processing techniques must be captured in training to 
ensure robust results.

 Image Format

Digital pathology relies on scanning hardware to convert glass slides into specific 
image formats with high resolutions. Automated image processors use existing 
standard formats or unique proprietary formats with associated tools and viewers 
[9]. Generally, the difference between formats stems from different metadata tags 
used, as well as the file compression type. Investigators should be aware that down-
stream analysis depends on how well computational tools handle the chosen image 
format. For example, fast rendering in the viewer, ease of annotations, and data 
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management are dependent on the file format. Converting from a scanner-specific 
format to a standard format may be possible. However, lossy compression methods 
that degrade the data may be required to achieve a smaller size that is capable of 
easy viewing.

A standard image format for WSIs is the TIFF (Tagged Image File Format) with 
lossless compression to maintain image details via storage as multi-resolution (or 
“pyramidal”) representations [10]. Scanner-specific formats include SVS (based on 
TIFF) from Aperio scanners [11] and MRXS from the Zeiss MIRAX series [12] and 
3DHISTECH Pannoramic series [13]. These files typically contain multiple images 
that range from full-resolution to a low-resolution thumbnail [14]. Any or all these 
images can be extracted, and the investigator’s choice will depend on the resolution 
needed for analysis.

 Color Space, Transformation, and Contrast

Many downstream analyses, such as segmentation and object counting, are based on 
native color space. Thus, transformation of an image to a different color space 
affects the results of these endeavors. Different color spaces focus on distinct image 
quality characteristics. To illustrate, RGB (red, blue, green) and HSV (hue, satura-
tion, value) are shown in Fig. 2. The number of possible color spaces is too vast to 
list here, and an investigator’s selection will be informed by their objective. A 
straightforward and commonly used transformation is color to grayscale. This trans-
formation has one feature per pixel: color intensity. Standard ML enables edge 
detection and segmentation using color intensity and can facilitate precise homoge-
neous region identification [15]. Similarly, a change in the contrast of an image can 
enable the detection of larger, more apparent objects. A change in contrast essen-
tially changes the difference in luminance between objects in the image. In a gray-
scale image, darker objects become darker and lighter objects become lighter, in 
some cases rendering subtle details more apparent [16].

RGB

HSV HUE VALUESATURATION

RED GREEN BLUE

Fig. 2 RGB vs. HSV color spaces and their individual channels for a digital image of breast cancer
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 Tiling and Filtering the Image

In most cases, the whole image should be tiled for faster processing, meaning the 
whole image is segmented into smaller, rectangular regions or tiles, and irrelevant 
parts of the image should be filtered. The size of the tiles needs to be appropriate for 
the analysis being performed. Since the tile analyses are done in lieu of analyzing 
the entire WSI, the tiles need to be representative of the structures present in the 
whole tissue. Thus, the location, size, and magnification should facilitate each tile 
containing relevant structures [17].

Images can be filtered  in multiple ways. We can filter artifacts (e.g., white space) 
or biological entities that do not pertain to the question (e.g., non-tumor region). 
The easiest way to perform filtration is to compute a measure per tile, which denotes 
whether the tile is useful or not. For example, if we aimed to analyze any areas 
which were not predominantly white space, we could average the RGB values of all 
pixels in each tile and use a threshold to demarcate the tiles to be included in the 
analysis. An alternative method is to extract specific ROIs from each tile and discard 
the rest of the image.

 Normalization

A standard  step in any data modeling protocol is data normalization, and computa-
tional modeling of WSIs is no different. Normalization is required whenever a set of 
images is to be analyzed together. This step is imperative as WSIs exhibit consider-
able variation and are highly prone to batch effects. Sources of variability include 
histology lab personnel, staining procedures, lab instruments, scanners, and digiti-
zation protocols [18]. Most normalization techniques transform all slides in the 
dataset to mimic a preselected reference slide [19]. The reference slide needs to be 
an accurate representation of the staining and structures across all slides. Hence, 
choosing a reference slide poses a challenge. Normalization techniques include 
pixel-wise standardization of image colors, brightness, and contrast. There are mul-
tiple proposed computational methods to perform normalization, and newer, more 
sophisticated methods are being developed using neural networks [20]. Approaches 
include color space transformation in the RGB space and color deconvolution that 
isolates the contribution of the two stain vectors, hematoxylin and eosin.

 Stain Deconvolution

Since hematoxylin and eosin dyes adhere to different tissue components, an impor-
tant step of many analysis protocols is to separate these two dyes in the image. This 
results in two grayscale images, one of each stain (Fig. 3). For some downstream 
analyses, such as counting nuclei, distinguishing epithelium and stroma, and assess-
ing the nuclear to cytoplasmic ratio, single-channel grayscale is a powerful technique.
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There are a variety of methods for stain deconvolution [21]. Most use a stain 
matrix, which, when multiplied with the color space channels, will produce a stain 
channel. These channels are specific to each image (or a set of images if they are 
normalized) and can be transformed into a grayscale image that represents stain 
intensity.

 Annotation and Labeling

 Annotation

Pathologists evaluate various structural, textural, and morphological markers to find 
evidence of disease. This expertise is achieved through years of training. Similarly, 
CNNs must be trained to identify diagnostic features and to ignore irrelevant noise 
and artifacts. This is accomplished via annotation of key morphological features. 
The specific features that are labeled depend on the problem to be addressed. For 
example, annotation of mitotic cells can inform a model predicting tumor grade in 
breast cancer [22].

Ideally, annotation protocols are determined at the inception of the computa-
tional modeling project with consideration of the clinical question/problem. 
Depending on the task, various implementations may be suitable, such as point 
annotations (that identify the centroid of the pathology marker), shape annotations 
(that define a bounding pre-defined shape around the pathology marker), or granu-
lar outline annotations (that precisely segment out the pathology marker). A cate-
gorical label needs to be assigned to each annotation. An annotation tool that 
allows for viewing the WSI, efficient annotation, and exportation is required. 
Annotation tools and software are commercially available with some provided by 
the image scanner manufacturers [23]. There are several open-source tools that 
support WSIs in a variety of formats, including QuPath, HistomicsTK, and 
ASAP. The annotations are exported in easily interpretable text formats such as 
JSON and XML [24]. Some annotation tools provide options for automated analy-
sis, image normalization, and segmentation to aid in more efficient annotation of 
many images.

Original image Hematoxylin Eosin

Fig. 3 An example of applying color deconvolution on a digital image of breast cancer
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Recent crowdsourcing initiatives for histology annotation have been successful 
in aggregating labels for large datasets [25]. This has helped to address limitations 
in dataset sample size. Such initiatives facilitate computational modeling solutions 
that could be benchmarked and repurposed by computational pathologists to better 
understand and model in-house data [22].

 Clinical and Histopathologic Labels

In contrast to annotation, which assigns labels to specific morphologic features, 
each WSI may be assigned a diagnostic label for training. Labels are shared by 
all the tiles emanating from the WSI. Examples of diagnostic labels include dis-
ease subtype, grade, sequencing data, drugs administered, and survival. These 
labels are extracted from patient records or derived by a subject matter expert 
who reviews the data before processing. Using labeling for sequencing data, 
we can identify recurring patterns that characterize genetic subtypes of the dis-
ease [26].

 Convolutional Neural Networks

Prior to DL, traditional classification approaches required researchers to manually 
harvest domain-specific features. This process of extracting handcrafted features 
required extensive tuning to accommodate the variability of the data, and applicabil-
ity to other problems (i.e., analyzing different diseases) was limited. Addressing this 
challenge, DL follows a domain agnostic approach, combining the process of auto-
mated feature extraction with the identification of discriminating markers. Thus, the 
process of harvesting discriminatory features becomes automated.

Deep convolutional neural networks (DNNs) (Fig. 4) have a dominant learning 
ability due to multiple feature extraction stages that allow them to learn representa-
tive features of the data. This powerful capability has earned DNNs steady popular-
ity in analyzing large, high-resolution WSIs across a variety of cancer subtypes 
[27], as well as many other conditions, such as Alzheimer’s disease [28].

Input Image Sequence of Convolutional
and Pooling layers Fully Connected layers

Prediction/
Classification

Fig. 4 The common structure of DNN models. An image is passed through a series of convolu-
tional and pooling layers. These layers extract representative features that are used in the fully 
connected layers to classify the input image
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 Anatomy of a CNN

Neurons, the basic building block of the neural network, are assigned to one of three 
possible layers: input, hidden, or output. If every input neuron is connected to every 
output neuron and vice versa, the layers are considered fully connected. The input 
layer receives a pre-processed image as a matrix and passes it to the first hidden 
layer. The hidden layers perform mathematical computations to extract relevant 
image features. Lastly, the output layer returns the predicted value for the input 
image based on the features identified in the hidden layers.

Each connection between neurons is associated with a weight that prescribes the 
importance of the value from a neuron in the preceding layer. These are called the 
model’s parameters. At the beginning of the training process, these weights are 
assigned randomly. Throughout the learning process, the model adjusts these 
weights based on how accurately it predicts the actual outputs. A loss function is 
used to evaluate the learning ability of the model. Ideally, the generated loss func-
tion is close to zero, which means the labels generated by the model are highly cor-
related with the actual labels.

 Hidden Layers

The convolutional layer is the first layer to extract features from an input image. It 
preserves the dimensions of the input. It is based on a mathematical operation that 
takes two inputs, such as an image and a filter, and produces a convolved feature 
output. Applying different types of filters can generate the following transforma-
tions: edge detection, smoothing, and sharpening the input image.

The pooling layer is used to reduce the dimensionality of the input image to 
shorten training time and combat overfitting. There are different types of special 
pooling: max pooling, average pooling, and sum pooling.

The activation layer operates to minimize a loss function. This layer is to clas-
sify the output into different classes. The choice of activation function is dependent 
on the desired output. For example, sigmoid is preferred for binary classification 
while softmax is typically used for multiple classes [29].

 Further Steps for Fine-Tuning the CNN

 Feature Identification

A feature is defined as any measurable property of the WSI that is characteristic of 
the phenomenon being observed. For example, features can define a cell nucleus, 
inflammatory cells, extracellular matrix, etc. Choosing discriminative, informative, 
and independent features is a crucial component of developing a powerful CNN. The 
inherent statistics of the feature set, such as variation and distance between data 
points in the feature space (e.g., Euclidean space), will be used by the CNN to 
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predict the most appropriate label (supervised models) or grouping (unsupervised 
models) for individual data points.

 Validation and Performance

For model validation, common measurements like accuracy, precision, recall, 
F-score, and mean squared error evaluate correctness in different contexts. To assess 
the performance of a model, one can utilize K-fold validation, randomization of the 
input data, or titration with noise to compare the penultimate results. Techniques 
such as the receiver operating characteristic (ROC) curves make these measures and 
the changes easy to interpret and contextualize.

 Applications of AI in WSI

 Detection and Segmentation

CNNs facilitate the detection of disease-relevant structures and the subsequent seg-
mentation of ROIs with high probability. This capability allows CNNs to be used as 
pre-screening and augmentation tools during histopathologic diagnosis of digitized 
slides. The CNN-guided discovery focuses the pathologist’s attention on ROIs, 
thereby optimizing the pathologist’s workflow. Moreover, identification and quanti-
fication of disease markers become standardized, thus reducing interpathologist 
variability.

The nucleus has been the target of many early studies in CNN segmentation. 
Investigators have successfully used several unique approaches and architectures to 
identify nuclear ROIs. For example, a PMap approach using CNNs gauges the prob-
ability of each pixel’s proximity, according to its intensity, to cell nuclei to deter-
mine nuclei locations [30]. Alternatively, Mask R-CNN utilizes a region proposal 
network, first zeroing in on the areas that may contain nuclei and iteratively finding 
their exact boundaries for nuclei detection [31].

In addition to cellular features, detection of unique cellular phenomena, such as 
mitoses, is enabled by CNN segmentation. A standard method for quantifying 
mitotic figures is the mitotic count. Counting mitoses requires the pathologist to (1) 
identify the tumor region with highest mitotic activity, (2) differentiate mitoses from 
nuclear pyknosis, and (3) count mitotic events in at least ten representative, non- 
overlapping high-power fields. Each of these challenges is both time-consuming 
and highly prone to interobserver variability. DL networks that use spatial context 
to identify mitosis using a max pooling CNN have achieved significant success in 
mitosis identification [32]. A CNN feature set combined with domain-specific hand-
crafted features gave rise to a computationally economical model which success-
fully identified mitosis [27].

CNNs have also been used to identify broad areas that contain multiple ROIs. 
For instance, to recognize tissue alternations of nonalcoholic fatty liver disease, a 
CNN model attained almost 95% accuracy, paving the way for more feasible and 
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rapid diagnosis [33]. A CNN trained on patch annotations to identify ROIs and post- 
process the segmentation with a fully connected conditional random field can be 
used to build a generalizable method for identifying regions of diagnostic relevance 
in histology images [34].

 Artifact Discovery

There are a variety of artifacts in histology slides that can impede accurate compu-
tational diagnosis and hamper experts when using digitized WSIs. To address this 
challenge, CNNs can be used as quality control and correction tools. For example, 
a tool trained on different amounts of blurry histology and immunohistochemistry 
images can reliably identify artifactual ROIs. Tools such as these may soon be inte-
grated with scanners to automatically re-scan artifactual ROIs and optimize the 
preparation process prior to pathologist interpretation [35].

 Classification (Diagnosis and Grading)

Diagnosis and grading are classification tasks conducted by the pathologist in daily 
practice. There are many examples of CNNs achieving success in this domain, 
showcasing the potential to reduce interpathologist discordance and hasten accurate 
diagnosis. For example, a CNN-based method presented an accuracy of 98% when 
using confidence-based scoring from a deep network to classify histology tissue of 
skin cancer into four main classes [36]. Another model, performing predictions on 
patches of WSIs using CNNs and subsequently aggregating these, was able to 
deliver whole slide classification close to pathologist decisions for subtypes of can-
cers [37]. Extending the classification paradigm, tumor grades can be identified 
using CNNs, as is evidenced by studies in the kidney [38], brain [39], and prostate 
[40]. A CNN training framework with the relevant labeled images can go a step 
further and directly prognosticate using WSIs from cancer [41].

 Summary

This is an exciting time in pathology diagnostics. CNNs are powerful tools for com-
plex image analysis, making them ideal for digital pathology applications. The 
workflow of CNN development on WSIs has several challenges, and the perspective 
of the pathologist is welcome at every stage of model development. As it is widely 
deployed and adopted in clinical settings, WSI technology will allow pathologists to 
rapidly access and share images easily. Once well integrated with clinical work-
flows, WSI will be increasingly used in CNNs and AI applications for feature selec-
tion, tumor diagnosis, tumor grading, and developing image-based prognostic 
assays. Progress in CNN- and AI-based tool development will be further accelerated 
as overall WSI adoption for primary diagnosis and other clinical applications moves 
forward.
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