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Abstract  Correlation of the clinical history and histopathol-
ogy are typically sufficient for accurate diagnosis in derma-
topathology. However, in cases where this alone is 
insufficient, immunohistochemistry can further characterize 
lesions in the differential diagnosis. As with all immunohis-
tochemical markers, none of those used in dermatopathology 
are completely sensitive and specific, therefore appropriate 
selection of a panel of antibodies maximizes the likelihood 
of making an accurate diagnosis.

The majority of studies evaluating immunohistochemical 
antibodies are limited to small numbers of cases with variable 
antibody sources, antigen retrieval methods, and definition of 
reactivity resulting in inconsistent results. The following 
chapter summarizes the general trends reported for several of 
the common conundrums in cutaneous pathology including 
differentiating spitzoid melanocytic lesions, small blue cell 
tumors, spindle cell lesions of the skin, sclerosing epithelial 
neoplasms, and lesions with pagetoid intraepidermal scatter.

	1.	 Summary of applications and limitations of useful mark-
ers (Table 35.1)

	2.	 Markers for primary cutaneous melanoma (Table 35.2)
	3.	 Markers for Merkel cell carcinoma (Table 35.3)
	4.	 Markers for atypical fibroxanthoma (Table 35.4)
	5.	 Markers for cutaneous spindle cell squamous cell carci-

noma (Table 35.5)
	6.	 Markers of smooth muscle (Table 35.6)
	7.	 Markers for cellular neurothekeoma (Table 35.7)

Markers for Differential Diagnosis

	 8.	 Markers for cutaneous spindle cell neoplasms (atypical 
fibroxanthoma, spindle cell melanoma, spindle cell 
squamous cell carcinoma, leiomyosarcoma) (Table 35.8)

	 9.	 Markers for cutaneous small blue cell tumors (Merkel 
cell carcinoma, melanoma, metastatic small cell lung 
carcinoma) (Table 35.9)

	10.	 Markers for intraepidermal or pagetoid scatter (extrama-
mmary Paget’s disease, squamous cell carcinoma in situ, 
melanoma in situ) (Table 35.10)

	11.	 Markers for sclerosing epithelial neoplasms (morphea-
form basal cell carcinoma, desmoplastic trichoepitheli-
oma, microcystic adnexal carcinoma) (Table 35.11)

	12.	 Basal cell carcinoma versus squamous cell carcinoma 
versus sebaceous carcinoma (Table 35.12)

	13.	 Nevus versus melanoma (Table 35.13)
	14.	 Nodal nevus versus metastatic melanoma (Table 35.14)
	15.	 Dermatofibroma versus dermatofibrosarcoma protuber-

ans (Table 35.15)
	16.	 Markers for histiocytic processes of skin (Langerhans 

cell histiocytosis, xanthogranuloma, reticulohistiocy-
toma, Rosai-Dorfman disease) (Table 35.16)

	17.	 Atypical vascular lesion versus secondary angiosarcoma 
(Table 35.17)

	18.	 Primary cutaneous malignant adnexal tumors vs. meta-
static adenocarcinoma to the skin (Table 35.18)

	19.	 Identification of unknown primary (Table 35.19)
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Table 35.1  Summary of applications and limitations of useful markers

Antibodies
Staining 
pattern Function Key applications and pitfalls

AE1/AE3 C Epithelial marker; cocktail of high and 
low molecular weight cytokeratins (CK 
1–6, 8, 10, 14–16, 19)

Useful in the differential of cutaneous spindle cell neoplasm but 
does not stain all sSCCs (see Fig. 35.17)

CK7 C Epithelial marker Positive in Paget’s, EMPD (see Fig. 35.27), metastatic breast and 
lung carcinoma; Usually negative in MCC

CK20 C Marker of intestinal epithelium, 
urothelium, and Merkel cells

Positive in metastatic colon carcinoma; Positive in MCC (see 
Fig. 35.13)

CK903(34BE12) C High molecular weight cytokeratin (CK1, 
5, 10, 14); expressed in suprabasal 
keratinocytes and adnexal epithelium

Positive in many poorly differentiated or sSCCs

CK5/6 C High molecular weight cytokeratin; 
expressed in suprabasal keratinocytes 
and adnexal epithelium

Positive in many poorly differentiated or spindle cell SCCs; usually 
positive in primary cutaneous adnexal tumors while negative in 
most metastatic adenocarcinomas to the skin

CAM5.2 C Low molecular weight cytokeratins (CK8, 
18, 19); expressed in secretory portion 
of eccrine and apocrine glands

Useful to differentiate EMPD from SCCis

EMA M+C Epithelial marker; one of human milk fat 
globule proteins

Marks sebaceous and sweat glands and their neoplasms; positive in 
sclerosing perineuroma and rudimentary meningocele; labels 
plasma cells but not a problem distinguishing cytologically

CEA C Expressed in secretory portion of eccrine 
and apocrine glands and eccrine ducts

Marks sweat glands and their neoplasms as well as various 
adenocarcinomas

Ber-EP4 M+C Epithelial marker; marks all epithelial 
cells except the superficial layers of 
epidermis

Positive in BCC but negative in SCC

AR N Transcriptional regulator; expressed in 
mammary secretory cells, follicular 
infundibulum, apocrine glands, and 
sebaceous glands

Helpful in differentiating sebaceous carcinoma from BCC and SCC; 
positive in metastatic breast carcinoma and mammary and EMPD

Adipophilin M Protein on the surface of intracellular 
lipid droplets

Membranovesicular pattern in sebaceous lesions (Fig. 35.1), 
xanthomatous lesions, and metastatic RCC but negative or focal 
and granular in clear cell BCC or SCC (Fig. 35.2)

MSH2, MSH6, 
MLH1, PMS2

N Mismatch repair genes; MSH2 and 
MSH6 form a heterodimer; loss or 
dysfunction is associated with 
microsatellite instability as seen in 
Lynch and MTS

Loss of normal expression in sebaceous tumors may be a screening 
tool for MTS

p63 N A p53 homolog required for epidermal 
development and stem cell 
maintenance

Expressed in normal basal and suprabasal epidermal layers and basal 
cells of sebaceous and sweat glands, as well as myoepithelial 
cells; positive in primary cutaneous adnexal tumors (see 
Fig. 35.45) but negative in metastatic adenocarcinoma (see 
Fig. 35.46) and EMPD; present in sSCC (see Fig. 35.18) but 
absent in most AFX

p40 N One of the p63 isoforms Similar sensitivity and possibly more specificity for poorly 
differentiated SCC than p63

Desmin C Intermediate filament in skeletal and 
smooth muscle except vascular smooth 
muscle

Useful in differential of spindle cell neoplasms of the skin; may 
weakly and focally stain myofibroblasts but usually not 
myoepithelial cells

SMA C+M Alpha-smooth muscle isoform of actin in 
smooth muscle, including vascular 
smooth muscle

Stains myofibroblasts, myoepithelial cells, pericytes, and glomus 
cells; myofibroblasts tend to have a parallel “tram-track” pattern 
(Fig. 35.3) in contrast to the diffuse cytoplasmic staining in 
smooth muscle cells

SMMS C Structural protein of contractile apparatus 
of smooth muscle cells

Also expressed in myoepithelial cells but does not consistently stain 
myofibroblasts

h-caldesmon C Cytoskeletal protein that regulates 
contraction in muscle cells; high 
molecular weight form is expressed in 
smooth muscle cells

Expressed in normal myoepithelial cells but not myofibroblasts thus 
useful to differentiate smooth muscle tumors from myofibroblastic 
lesions like nodular fasciitis
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Table 35.1  (continued)

Antibodies
Staining 
pattern Function Key applications and pitfalls

calponin C Binds with actin in smooth muscle cells, 
myofibroblasts, glomus, and 
myoepithelial cells

Positive in glomus tumor and lesions composed of myofibroblasts 
and myoepithelial cells

CD34 M+C Endothelial and hematopoietic progenitor 
cell marker; highlights dendritic dermal 
fibroblasts

Stains many vascular tumors and fibrohistiocytic tumors including 
DFSP (see Fig. 35.41), solitary fibrous tumor, superficial acral 
fibromyxoma, sclerotic fibroma, but also neurofibroma, spindle 
cell lipoma and others; absent in DF; positive in tumors with ORS 
differentiation such as trichilemmoma; loss of interstitial staining 
of the dermis is noted in morphea (Fig. 35.4)

Factor XIIIa C Dermal dendrocyte marker Positive in DFs (see Fig. 35.42)
CD31 M Endothelial marker More specific vascular marker than CD34; can stain macrophages
ERG N Endothelial marker Positive in vascular tumors, prostate adenocarcinoma, and Ewing 

sarcoma
FLI1 N Endothelial marker Positive in vascular tumors and Ewing sarcoma
D2-40 

(podoplanin)
C Lymphatic endothelial marker Can help identify lymphatic invasion (Fig. 35.5) particularly in 

melanoma; positive in some vascular lesions including Kaposi 
sarcoma, targetoid hemosiderotic hemangioma, and a subset of 
angiosarcomas; reactivity in cutaneous adnexal tumors helps 
differentiate them from metastatic adenocarcinoma; expression 
noted in CNTs, DFs, and myoepithelial cells

c-MYC N MYC amplification is noted in post-
radiation associated angiosarcomas

Positive in post-radiation angiosarcomas of the breast (see 
Fig. 35.44) but negative in AVLs of the breast; majority of 
primary angiosarcomas from other sites do not show expression 
and thus is not diagnostic of angiosarcoma

WT1 C Proliferating endothelial cells Reported in proliferative endothelial lesions such as infantile 
hemangioma, RICH, NICH, tufted angioma, pyogenic granuloma, 
cherry hemangioma but usually lacking in lymphatic and venous 
vascular malformations

GLUT1 C+M Major glucose transporter at the blood 
brain barrier

Reactive in all phases of infantile hemangioma but absent in 
vascular malformations; neither RICH nor NICH express GLUT1; 
care is required in interpretation as there is normal reactivity in 
erythrocytes; perineural cells and perineuriomas are positive

Vimentin C Mesenchymal marker, including 
endothelial cells, all fibroblastic cells, 
macrophages, adipocytes, melanocytes, 
smooth muscle, and lymphocytes; 
found in all types of sarcoma and 
lymphoma

In the appropriate panel, positivity excludes most carcinomas

S100 N+C Neural crest marker; highlights 
melanocytes, Langerhans cells, sweat 
glands, nerves, Schwann cells, 
lipocytes, myoepithelial cells

Sensitive melanoma marker, especially for sMM/dMM (see 
Fig. 35.24), but not specific; S100 may be weak or negative in 
benign and malignant junctional melanocytes of the nail matrix 
but is important in identifying invasive melanoma in this area; 
positive in granular cell tumor and RDD; negative in CNT (see 
Fig. 35.20) in contrast to nerve sheath myxoma

SOX-10 N Nuclear transcription factor crucial for 
differentiation of Schwann cells and 
melanocytes; highlights melanocytes, 
Schwann cells, myoepithelial cells, and 
the secretory cells of the eccrine coil

Expressed in all types of nevi and melanoma (see Fig. 35.25); high 
specificity with reactivity in only a few other tumors including 
granular cell tumor, schwannoma, neurofibroma, myoepithelioma, 
and some ductal breast carcinomas; negative in RDD, CNT, and 
LCH; useful in junctional melanocytic proliferations due to the 
nuclear staining and in SLNs due to lack of background staining 
of follicular dendritic cells seen with S100

HMB-45 C Recognizes the antigen gp100 expressed 
on stages 1–3 melanosomes (organelle, 
rather than lineage specific marker); 
indicates active melanosome formation, 
not present in resting adult melanocytes

Reveals a gradient with decreased staining in the deeper dermal 
component of benign nevi (see Fig. 35.31), with the exception of 
uniform staining in blue nevi (Fig. 35.33); not reliable in 
desmoplastic or spindled melanoma; negative in nodal nevi; 
positive in PEComas

(continued)
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Table 35.1  (continued)

Antibodies
Staining 
pattern Function Key applications and pitfalls

MART1/Melan-A C Melanocytic marker More specific melanocytic marker than S100 but less sensitive, 
especially for sMM/dMM (see Fig. 35.23); two antibodies detect 
the same protein at two different antigenic sites: A-103 (Melan-A) 
and MART1; Melan-A stains adrenocortical cells and steroid 
producing cells of the ovary and testis that MART1 does not; 
macrophages may aberrantly label with some antigen retrieval 
techniques, however, the staining is weak and granular; positive in 
most PEComas; beware staining of pseudomelanocytic nests in 
interface processes mimicking a melanocytic proliferation

MITF N Transcription factor involved in the 
development of melanocytes and 
regulation of melanin synthesis; 
melanocytic and Schwann cell marker

Nuclear staining avoids distraction of cytoplasmic staining of 
dendritic, overlapping melanocytes when evaluating junctional 
melanocytic proliferations; not reliable in dMM/sMM; positive in 
most PEComas and can stain histiocytes, lymphocytes, mast cells, 
and smooth muscle cells

S100A6 
(calcyclin)

N+C Belongs to family of S100 calcium 
binding proteins

Strongly and diffusely positive in Spitz nevi but weak, patchy, or 
negative in melanoma; stains fibrohistiocytic lesions such as AFX 
(see Fig. 35.15)

p16 N Tumor suppressor protein encoded by 
CDKN2A; prevents progression into S 
phase of cell cycle

Surrogate marker for oncogenic HPV but not well studied in skin, 
however increased expression is typical in Bowen disease; 
complete loss of staining correlates with CDKN2A silencing 
mutations (homozygous loss of 9p21) and thus is potentially 
helpful in identifying this subset of melanomas; positive in many 
histiocytic and fibrohistiocytic lesions

VE1 C Detects BRAFV600E mutations Approximately half of melanomas have BRAF mutations and over 
90% of these are in V600E; high concordance of staining with 
DNA based detection of this mutation; useful screening tool for 
BRAF inhibitor therapy eligibility especially in cases with low 
tumor content; does not identify other less common BRAF 
genotypes such as V600K

BAP1 N Tumor suppressor Presence of multiple BAP1 negative epithelioid melanocytic lesions 
suggests a familial cancer syndrome associated with uveal 
melanoma and mesothelioma; loss of nuclear staining in the 
epithelioid cells of the melanocytic lesion (Fig. 35.6) is a potential 
screen for BAP1 mutation and should be followed by 
confirmatory genetic testing

ALK C ALK gene rearrangements have been 
identified in a diverse array of 
neoplasms including ALK positive 
anaplastic large cell lymphoma, 
epithelioid histiocytoma, and some 
spitzoid neoplasms

Intersecting fascicles of amelanotic fusiform melanocytes are typical 
of ALK positive spitzoid lesions which can be benign or 
malignant

panTRK C Identifies tumors with NTRK gene 
fusions

Spitzoid tumors with NTRK1fusions have filigree-like, elongated, 
thin, and branched rete ridges and dermal melanocytes arranged 
in a rosette-like configuration; TRK expression correlating to 
NTRK fusions can be seen in melanoma

β-catenin N Protein coded by the CTNNB1 gene Nuclear expression is noted in nearly half of DPNs but not blue nevi, 
Spitz nevi, and pigmented epithelioid melanocytomas

PRAME N Tumor associated antigen with low or no 
expression in normal tissues except for 
in testis and ovary

Data suggests that expression may be useful in suspected diagnosis 
of melanoma (Fig. 35.37, 35.39, and 35.40); rare isolated 
junctional melanocytes are also seen in solar lentigines and 
benign nonlesional skin

NSE C Neural and neuroendocrine marker If neoplastic cells co-express keratin and NSE, neuroendocrine 
differentiation is probable; positive in MCC

NFP C Cytoskeletal element in nerve axons and 
dendrites

Positive in MCC, particularly MCPyV-positive MCCs, often in a 
paranuclear dot pattern; useful in differentiating from non-
cutaneous small-cell neuroendocrine carcinomas

CD68/KP1 M+C Expressed in monocytes, macrophages, 
myeloid precursors, neutrophils, mast 
cells; more specific to lysosomes than 
lineage specific

Less specific than CD163 for monocytes and macrophages; stains 
XG, AFX, and LCH

T. Ferringer
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Table 35.1  (continued)

Antibodies
Staining 
pattern Function Key applications and pitfalls

CD163 M+C Expressed in monocytes and macrophages Negative in mast cells and Langerhans cells
CD1a M T cell surface antigen on antigen 

presenting cells
Positive in Langerhans cells and indeterminant cells; MTB1 clone 

reported to stain amastigotes of leishmania in some cases, 
particularly old world disease

Langerin (CD207) M+C Role in formation of Birbeck granules Surrogate for identification of Birbeck granules of Langerhans cells 
without electron microscopy; indeterminant cells are CD1a 
positive but lack langerin

Tryptase C Secretory granule-derived proteinase 
contained in mast cells.

Useful mast cell marker

CD117 (c-Kit) M+C Stem cell factor important in mast cell 
and melanocyte functioning; expressed 
in sweat gland secretory cells

Expression reportedly helpful in differentiating porocarcinoma from 
lack of staining in SCC; expression associated with MCPyV-
negative MCCs; Kit mutations are common in acral and mucosal 
melanoma

CD123 C Stains plasmacytoid dendritic cells Quantity and distribution vary in different inflammatory and 
neoplastic conditions; increased numbers and clusters of PDCs 
are seen in lupus (Fig. 35.7)

Mib-1 (Ki-67) N Nuclear proliferation marker; expressed 
in cells in the G1, M, G2, and S phase 
of the cell cycle (i.e., all phases except 
the resting G0 phase)

Useful in determining proliferation index in dermal component of 
melanocytic lesions and other tumors of uncertain malignant 
potential; not lineage specific so also stains proliferating 
lymphocytes requiring distinction by cytology or dual staining 
(see Figs. 35.34 and 35.35)

PHH3 Mitotic Histone H3 is phosphorylated during 
mitotic chromatin condensation in late 
G2 and M phase of the cell cycle

Distinguishes mitotic figures (Fig. 35.8) from apoptotic, 
hyperchromatic, and pyknotic nuclei; not lineage specific; helpful 
in identifying the mitotic “hot spot”

Collagen IV Collagen type in basement membrane Detected more commonly above the subepidermal blisters than 
below in EBA and bullous SLE, unlike BP

Note: C cytoplasmic staining, M membranous staining, N nuclear staining, SMA smooth muscle actin, EMA epithelial membrane antigen, ORS 
outer root sheath, DF dermatofibroma, AFX atypical fibroxanthoma, CNT cellular neurothekeoma, CEA carcinoembryonic antigen, PHH3 
phosphor-Histone H3, SCC squamous cell carcinoma, BCC basal cell carcinoma, DFSP dermatofibrosarcoma protuberans, ERG Ets-related gene, 
FLI-1 Friend leukemia integration-1, NSE neuron specific enolase, MART1 melanoma antigen recognized by T-cells, MITF microphthalmia tran-
scription factor, GLUT1 glucose transporter, PEComas perivascular epithelioid cell tumors, RICH rapidly involuting congenital hemangioma, 
NICH non-involuting congenital hemangioma, MCC Merkel cell carcinoma, AR androgen receptor, EMPD extramammary Paget disease, MTS 
Muir Torre syndrome, SMMS smooth muscle myosin, WT1 Wilms tumor 1, BAP1 BRCA-1 associated protein-1, ALK anaplastic lymphoma kinase, 
NTRK neurotrophin receptor tyrosine kinase, PRAME preferentially expressed antigen in melanoma, EBA epidermolysis bullosa acquisita, BP 
bullous pemphigoid, NFP neurofilament protein, DPN deep penetrating nevus, AVL atypical vascular lesion, SLN sentinel lymph node, SCCis 
squamous cell carcinoma in situ, CK cytokeratin, RDD Rosai-Dorfman disease, sMM spindle cell malignant melanoma, dMM desmoplastic malig-
nant melanoma, sSCC spindle cell squamous cell carcinoma, RCC renal cell carcinoma, LCH Langerhans cell histiocytosis, HPV human papilloma 
virus, DNA deoxyribonucleic acid, XG xanthogranuloma, SLE systemic lupus erythematosus

References: [1–91]

Fig. 35.1  Membranous and vesicular staining with adipophilin in 
sebaceous carcinoma

Fig. 35.2  Focal granular staining of adipophilin in a clear cell SCCs
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Fig. 35.3  Tram-track SMA in myofibroma

Fig. 35.4  Loss of interstitial staining with CD34 in morphea

Fig. 35.5  Melanoma with dual MART1 (Fast red) and D2-40 (DAB) 
staining showing intravascular invasion

Fig. 35.6  Loss of nuclear BAP1 staining in the epithelioid melano-
cytes in a melanocytic lesion from a patient with BAP1 germline 
mutation

Fig. 35.7  Clusters of CD123 positive cells in lupus erythematosus

T. Ferringer
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Fig. 35.8  PHH3 highlights mitotic figures in a spitzoid melanoma

Table 35.2  Markers for primary cutaneous melanoma
Antibodies Literature GML, %(N)
S100 +^ 93.4% (91)
HMB-45 + 75% (88)
MART1 + 88.8% (89)
MITF + 79.8% (89)
Tyrosinase +^ 94.3% (88)
NKI-C3 +^ 95.5% (88)
MUM-1 + 75.6% (86)
SOX-10 +^ NA
VE1 +/- NA
PRAME + NA

GML% Geisinger Medical Laboratories data, percentage of melano-
mas tested with greater than 25% reactivity of tumor cells, N number 
studied, NA not available

^: greater than 90% of cases are positive

Immunohistochemical markers are virtually never com-
pletely specific and sensitive. The published literature on 
immunohistochemistry of melanoma often is limited to small 
numbers of cases, and the types of melanoma tested (nodu-
lar, metastatic, spindle, desmoplastic) vary between studies. 
The definition of positive reactivity, the antibody source, 
antigen retrieval methods, and concentrations vary from 
study to study often resulting in inconsistent results.

While the great majority of melanomas are S100 positive, 
this marker lacks specificity and stains other tissue. 
Therefore, other antibodies are needed to confirm the mela-
nocytic nature of a S100 positive neoplasm. SOX-10 is at 
least as sensitive as, and is more specific than S100. 
Tyrosinase has decreased sensitivity with increasing stage 
and in metastatic lesions. NKI-C3 has poor specificity.

Reactivity with melanocytic markers may be less in meta-
static melanoma. SMM/dMM is often negative for HMB-45 
and other specific melanocytic markers, including MART1. 
S100 and SOX-10 are the most sensitive markers for sMM/
dMM.

MITF, MUM-1, and SOX-10 are nuclear markers. This 
avoids the overlapping cytoplasmic staining of dendritic mela-
nocytes when evaluating junctional melanocytic proliferations 
(Fig. 35.9). MUM-1 is primarily used in the workup of hema-
tologic malignancies and is not in routine use for melanoma.

Mib-1 highlights the nuclei of proliferating cells, including 
melanocytes. Combining the cytoplasmic MART1 and nuclear 
Mib-1 using contrasting chromogens can ensure that the pro-
liferating cells are indeed melanocytic (see Fig. 35.34). There 
is increased expression from benign to malignant melanocytic 
lesions, particularly in the deeper dermal component.

PHH3 (see Fig. 35.8) improves reproducibility of mitotic 
counts, but similar to Mib-1, it is not lineage specific. pHH3 
determined mitotic counts are often higher than those per-
formed on standard sections.

Pigmented melanocytes can be difficult to distinguish 
from pigmented keratinocytes and melanophages. The brown 
diethylaminobenzidine (DAB) chromogen can be difficult to 
identify in a background of dense melanin (Fig.  35.10). 
Alternatives include the following:

Fig. 35.9  Nuclear staining of melanocytes in MMIS with SOX-10

Fig. 35.10  Junctional dysplastic nevus stained with MART1 using 
DAB brown chromogen in background of heavy melanin pigmentation 
of the basal layer keratinocytes

35  Skin
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Fig. 35.11  Same heavily pigmented junctional dysplastic nevus as in 
Fig.  35.10 stained with MART1 using DAB brown chromogen and 
azure B counterstain. The melanin is now green-blue and contrasts eas-
ily with the DAB brown chromogen

	1.	 Use of aminoethyl carbazole (AEC) resulting in a red 
product which is slightly easier to distinguish but can lack 
the longevity of DAB

	2.	 Melanin bleaching may result in loss of antigenicity, 
incomplete melanin removal, or loss of cytologic detail

	3.	 Kamino et  al. were the first to report replacement of 
hematoxylin by azure B, which stains the melanin green-
blue providing contrast from DAB staining of melano-
cytes (Fig. 35.11)

Rarely melanomas can exhibit aberrant expression includ-
ing smooth muscle actin, CD138, MDM-2, GFAP (glial 
fibrillary acidic protein), CD30, and EMA. CEA reactivity 
can be seen in melanoma with the polyclonal antibody. Over 
half of melanomas express CD68. Cytokeratin expression 
occurs in up to 4% of melanomas with staining tending to be 
focal and sparse. CAM5.2 is the most frequently positive. 
There is increased aberrant expression of epithelial-
associated markers in metastases.

The VE1 antibody reliably identifies melanomas with 
mutations in BRAF V600E. Patients with positive staining 
tumor cells are eligible for BRAF inhibitor therapy. Non-
specific staining of histiocytes should be disregarded. Those 
with negative staining tumor cells should be further tested 
with DNA based techniques to identify the much less com-
mon other BRAF mutations, such as BRAF V600K. BRAF 
mutations are common in benign nevi and thus expression of 
VE1 is not diagnostic of melanoma.

Diffuse nuclear reactivity with PRAME was found in 
87% of metastatic and 83.2% of primary melanomas. While 
true in most melanoma subtypes, only a third of dMM 
showed expression. Absence of staining in over 80% of nevi 

suggests potential benefit in the diagnostic armamentarium. 
Further study with additional cases is required as rare iso-
lated junctional melanocyte immunoreactivity has been seen 
in solar lentigines and benign nonlesional skin.

References: [17, 23, 24, 31, 37, 51, 61–66, 72, 74, 80–83, 
92–136].

MCC, also known as primary cutaneous neuroendocrine 
carcinoma of the skin, expresses neuroendocrine markers as 
well as low molecular weight epithelial markers. The small 
blue cell appearance of MCC results in a histologic differen-
tial diagnosis including metastatic small cell carcinoma from 
a primary in the lung or other site, lymphoma, and small cell 
melanoma. TTF-1 is a nuclear marker expressed in thyroid 
and pulmonary neoplasms, including small cell carcinoma of 
the lung and is only very rarely identified in MCC. Melanoma 
can be distinguished by S100 and lymphomas by CD45. The 
overlapping reactivity of MCC and some hematologic malig-
nancies with ALK, CD99, TdT, PAX-5, CD56, Bcl-2, and 
CD117 can complicate diagnosis of these small blue cell 
neoplasms. ALK positivity in MCC ranges from 12% to 94% 
but does not correlate with ALK rearrangements. The etiol-
ogy of expression is uncertain but tends to correspond with 
MCPyV positivity. Inclusion of epithelial and neuroendo-
crine markers in the immunohistochemical panel should 
avoid confusion.

Table 35.3  Markers for Merkel cell carcinoma
Antibodies Literature
NSE +^
Chromogranin +/−
Synaptophysin +/−
CK20 +^
TTF-1 −
Ber-EP4 +
CD56 +^
LCA −
S100 −/+
CD99 +/−
NFP +/−
CK7 −/+
FLI1 −/+
PAX-5 −/+
Bcl-2 +
TdT −/+
CD117 +/−
MCPyV +
ALK +/−
p63 −/+
p53 −/+
EMA +
CK5/6 −

MCPyV Merkel cell polyomavirus, TTF-1 thyroid transcription factor, 
LCA leukocyte common antigen (CD45), CD56=NCAM (neural cell 
adhesion molecule)

T. Ferringer
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Ewing’s sarcoma/primitive neuroectodermal tumor 
(EWS/PNET) and neuroblastoma are very rare in the skin 
but have a similar histologic appearance. It is important to 
recognize that CD99 and FLI1, markers of EWS/PNET, can 
be positive in MCC. Ber-EP4 and Bcl-2 reactivity in MCC 
can be a pitfall if BCC is considered in the histologic differ-
ential diagnosis, as both are positive in BCC (Fig. 35.12).

CK20 is expressed in most MCCs but despite the typical 
CK20+/CK7− pattern, CK20−/CK7+ MCCs have been 
reported. It is important to be aware of the staining pattern of 
the primary tumor when evaluating SLNs. CK20 typically 
highlights aggregates of keratin near the nucleus in a charac-
teristic paranuclear dot pattern (Fig. 35.13). However, in 
some cases of MCC, diffuse cytoplasmic staining predomi-
nates. NFP also often has a dot-like pattern in MCC.

Oncogenic MCPyV integration has been detected in 80% 
of MCCs and can be identified immunohistochemically. The 
remaining virus negative MCC cases are associated with 
high mutational load and are most likely caused by ultravio-
let radiation. Other non-MCC skin neoplasms have shown 
MCV DNA by polymerase chain reaction (PCR) based tech-
niques, but the viral load is considerably less and may not be 
detected by immunohistochemistry. Classic MCCs (CK20+, 
NFP+, chromogranin+, TTF-1-, CK7−) are usually MCPyV 
positive. NFP is less frequent, while CK7 and TTF-1 are 
more frequent in MCPyV negative MCCs.

p53, a tumor-suppressor essential in apoptosis, is usually 
undetectable in normal cells but mutations of this gene result 
in expression in 23–43% of all MCCs with such nuclear 
expression associated with low viral load. P63 positivity has 
been noted in 17–49% of MCCs. A recent meta-analysis 
found p63 expression correlates with a poor prognosis.

The protooncogene, c-kit, encoding the tyrosine kinase 
receptor KIT/CD117 is expressed in a variety of processes 
including acute myeloid leukemia, mast cell disease, mela-

noma, small cell lung cancer, gastrointestinal stromal tumors, 
and most MCCs.

References: [6, 11, 12, 30, 31, 41, 118, 137–178].
AFX is a pleomorphic spindle cell tumor that must be 

distinguished histologically from sMM/dMM, sSCC, and 

Fig. 35.12  MCC staining with Ber-EP4 can be a potential pitfall if 
BCC is considered in the differential diagnosis

Fig. 35.13  MCC with the typical paranuclear dot pattern with CK20

Table 35.4  Markers for atypical fibroxanthoma
Antibodies Literature GML, %(N)
SMA −/+ 28% (35)

Vimentin +^ 100% (38)
S100 − 0% (35)

AE1/AE3 − 0% (36)

CK5/6 − 3% (36)

p63 −/+ 24% (37)

Desmin − 0% (33)

FLI1 −/+ NA

D2-40 −/+ 0% (34)

CD31 −/+ NA

CD34 − NA

ERG − NA

S100A6 + 74% (34)
CD10 + 85% (34)
Procollagen (PC-1) + 79% (38)
CD68 +/− 72% (36)

CD99 +/− 14% (36)

CD163 +/− NA

A1AT +/− NA

A1ACT +/− NA

NKI-C3 +/− NA

EMA −/+ NA

Factor XIIIa −/+ 44% (34)

Calponin −/+ NA

p40 − NA

CK903(34BE12) − NA

GML% Geisinger Medical Laboratories data, percentage of AFXs 
tested with greater than 25% reactivity of tumor cells, A1AT alpha-1 
antitrypsin, A1ACT alpha-1 antichymotrypsin
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leiomyosarcoma (LMS). While there are immunohisto-
chemical stains that support the later diagnoses, the diagno-
sis of AFX is generally one of exclusion. A variety of 
markers have shown reactivity in AFX, including CD10 
(Fig. 35.14), PC-1, and S100A6 (Fig. 35.15), but these anti-
bodies often stain a variety of other neoplasms and are not 
specific. For example: CD10, S100A6, and PC-1 also high-
light dermatofibromas. Rather than relying on one of these 
antibodies in isolation, a panel of markers is required to 
exclude the potential mimics (see Table 35.8). Therefore, 
AFXs have been defined in the past by the absence of S100 
(Fig. 35.16), cytokeratins, and desmin. S100A6 (calcyclin) 
is a calcium-binding protein in the S100 family. While it is 
present in melanocytes, Schwann cells, and Langerhans 
cells, it is also positive in dermal dendrocytes supporting a 
fibrohistiocytic origin for AFX.

Focal or weak expression of myogenic markers, indica-
tive of myofibroblastic differentiation, can be seen in 
AFX.  Caution is required in interpreting S100 in atypical 
spindle cell neoplasms of the skin. There are often scattered 
S100 positive dendritic cells colonizing AFXs (possibly 
Langerhans cells) but the neoplastic cells are generally S100 
negative (see Fig. 35.16).

CD117 reactivity has been reported in AFX; however, it 
typically highlights a small percentage of dendritic cells that 
are not highly atypical and many believe represent coloniz-
ing cells such as mast cells or Langerhans cells. Therefore, 
this is not a reliable marker for AFX.

Angiosarcoma at times needs to be differentiated from 
AFX with pseudoangiomatous features and this may be 
complicated by occasional expression of D2-40, FLI1, and 
CD31 in AFX. Reactivity to ERG is more sensitive in 
differentiation.

References: [32, 55, 166, 179–207].
sSCCs often fail to have an obvious origin from the epi-

dermis or show evidence of keratinization. Due to similari-

Fig. 35.14  AFX staining with CD10

Fig. 35.15  AFX staining with S100A6

Fig. 35.16  In contrast to the diffuse S100A6 staining in Fig.  35.15, 
there is an absence of staining with S100 in AFX

Table 35.5  Markers for cutaneous spindle cell squamous 
cell carcinoma
Antibodies Literature
AE1/AE3 +
CAM5.2 +/−
CK903(34BE12) +
CK5/6 +
MNF116 +^
p63 +
p40 +^
S100 −
Desmin −
CD99 −/+
D2-40 +/−
CD10 −/+
PC-1 −/+

MNF116: Antibody to cytokeratins 5, 6, 8, 17, and 19

T. Ferringer



931

ties with AFX, sMM/dMM, and LMS immunohistochemical 
confirmation may be required.

sSCCs are often negative or only focally positive with 
routine cytokeratin stains, including AE1/AE3 (Fig. 35.17) 
and may express only high molecular weight cytokeratins 
like CK903 and CK5/6.

While vimentin is a mesenchymal marker, co-expression 
with keratins can be seen in some epithelial tumors including 
sSCCs, possibly due to reduced cell-to-cell contact.

p63, a member of the p53 gene family, is a transcription 
factor involved in the proliferative capacity of epidermal stem 
cells. It is normally expressed in keratinocytes of the basal and 
lower spinous layers but is generally not expressed in mesen-
chymal cells and their neoplasms. This nuclear marker is use-
ful for sSCC but is not completely specific (Fig. 35.18). P40 is 
one of the p63 isoforms that may have better specificity.

References: [32, 42, 54, 180, 181, 199–201, 208–210].

In the skin, smooth muscle is found in association with 
vessels, in genital skin (vulva, areola, dartos) and as arrector 
pili muscles. Smooth muscle tumors can occur in any of 
these sites. Immunohistochemistry can be helpful in identifi-
cation but many of the markers are also expressed in myofi-
broblasts and or myoepithelial cells.

Unlike SMA and calponin, h-caldesmon can be helpful in 
differentiating smooth muscle from myofibroblasts in which it 
is negative, as in nodular fasciitis. While SMA is positive in 
myofibroblasts, it tends to show a parallel subplasmalemmal 
pattern of expression in a “tram-track” pattern unlike the diffuse 
cytoplasmic staining of smooth muscle cells (see Fig. 35.3).

Fig. 35.18  Nuclear staining with p63 in sSCC

Fig. 35.17  sSCC focally staining with AE1/AE3

Table 35.7  Markers for cellular neurothekeoma
Antibodies Literature
S100 −
S100A6 +^
MART1 −
SOX-10 −
SMA −/+
MSA −/+
CD68 +/−
CD163 −
CD10 +^
HMB-45 −
NKI-C3 (CD63) +^
MITF +
PGP9.5 +/−
D2-40 (podoplanin) +^
NSE +
CD99 +
p63 −/+
Desmin −
Calponin −/+
CD34 −
Vimentin +^
CD117 −
GFAP −
NFP −

Table 35.6  Markers of smooth muscle
Smooth 
muscle

Skeletal 
muscle Myofibroblasts

Myoepithelial 
cells

MSA + + + +
Desmin + except 

vascular
+ −/+ −

SMMS + − −/+ +
h-caldesmon + − − Normal 

myoepithelial 
cells

SMA + − +
Tram track

+

Calponin + − + +

MSA muscle specific actin
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Fig. 35.19  Hematoxylin and eosin–stained sections of a CNT

Fig. 35.21  Diffuse S100A6 reactivity in CNT

Fig. 35.20  In contrast to the diffuse S100A6 staining in Fig.  35.21 
there is an absence of staining with S100 in CNT

Desmin is an intermediate filament found in skeletal, car-
diac, and smooth muscle cells but does not reliably stain vas-
cular smooth muscle. It is usually negative in myopericytes, 
myoepithelial cells and only focal or weakly reactive in myo-
fibroblastic lesions.

Calponin and SMA are commonly used to identify myoepi-
thelial cells. Immunoreactivity for both these antibodies has been 
reported in some neurothekeomas and atypical fibroxanthoma.

Myogenin and MyoD1, transcription factors involved in 
striated muscle differentiation, are negative in smooth mus-
cle tumors. If focal staining is present, it likely is due to 
entrapped or regenerating skeletal muscle fibers.

References: [30, 31, 211–217].
There are three subtypes of neurothekeoma: myxoid, cel-

lular (Fig. 35.19), and mixed. While myxoid neurothekeoma 
(nerve sheath myxoma) is S100 positive, CNTs are negative, 
suggesting that they are not of peripheral nerve sheath or 
melanocytic histogenesis; however, the true lineage is uncer-
tain. The absence of S100 is important in differentiating 
CNT from a melanocytic lesion (Fig. 35.20). Typical mela-
nocytic markers, including S100, SOX-10, HMB-45, and 
MART1, are negative in CNT, while other less specific mela-
nocytic markers like MITF and NKI-C3 have been identi-
fied. Most CNTs express NKI-C3 but expression has also 
been seen in nevi, melanomas, granular cell tumors, and 
some fibrohistiocytic lesions. PGP9.5 also suffers from low 

specificity, also showing variable expression in nerve sheath 
tumors including granular cell tumor; fibrohistiocytic lesions, 
including XG; vascular tumors and other tumors like leio-
myoma. In contrast to S100, CNTs are S100A6 positive (Fig. 
35.21) but so are nevi and other melanocytic lesions. Similar 
to S100A6, CD10 and D2-40 have been expressed in the 
great majority of those studied; however, none of these mark-
ers are specific for CNT.

References: [31, 214, 218–229].
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�Markers for Differential Diagnosis

Antibodies
AE1:AE3
CK903
p63
S100

P75/NGFR
SOX-10
desmin

h-caldesmon
calponin
SMA
vimentin
S100A6
PC-1
CD163
CD10
CD99
p40
MITF
MART1

CK903(34BE12)
CK5/6
CD68
ERG
CD31
CD34

HMB-45

AFX
–
–
–/+
–
–
–
–
–
–/+
–/+
+^
+
+
+/–
+
+/–
–
+
–
–
–
+/–
–
–
–
–

sMM/dMM
–
–
–
+^
+^
+^
–

NA
–
–
+^
+^
–/+
–/+
–/+
–/+
–
–/+
–/+
–

NA
–

NA
NA
–
–/+

sSCC
+
+
+
–
–/+
–
–
NA
–
–
–/+
+^
–/+
–
–/+
–/+
+^
–/+
–
+
+
–
–
NA
–
–

LMS
–/+
–
–/+
–/+
–
NA
+
+
+
+^
+^
+
+
–/+
–/+
NA
NA
NA
–
–
NA
–
–
–
–
–

Angiosarc
+/–
NA
–/+–
–
NA
NA
–
NA
NA
–
+
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
–
+^
+
+
–

Table 35.8  Markers for 
cutaneous spindle cell 
neoplasms

The differential diagnosis of atypical spindle cell neoplasms 
on sun-damaged skin includes AFX, sMM or dMM, sSCC, 
LMS, and if hemorrhagic, possibly angiosarcoma. Due to 
potential overlapping reactivity and rare anomalous expres-
sion, a panel prevents misdiagnosis.

Some melanocytic markers, including HMB-45 and 
MART1, are often negative in spindle/desmoplastic melano-
mas (Figs. 35.22 and 35.23). S100 (Fig. 35.24) and SOX-10 
(Fig. 35.25) are the most sensitive markers for sMM/
dMM. MART1 and Weak HMB-45 expression in the multinu-
cleate giant cells of AFX can be another pitfall in diagnosis.

Desmoplastic melanoma may require differentiation from 
scar tissue, especially in the context of a re-excision specimen 
or possible recurrence. Based on the high sensitivity, S100 is 
often used in this context. Care is required in interpretation as 
scars often contain S100 positive spindle cells but unlike in 
melanoma, are focal and predominantly in a horizontal pat-
tern (Fig. 35.26). SOX-10 positive spindled cells, possibly 
regenerating schwannian cells, and histiocytes have also been 
reported in scars unrelated to melanocytic neoplasms.

P75, also known as nerve growth factor receptor (NGFR), 
expression is strongest in dMM with less consistent reactiv-
ity in other types of melanoma. However, p75 is not specific 
to dMM and is seen in other malignant spindle cell tumors

P40 has similar sensitivity and possibly more specificity 
for poorly differentiated SCC than p63. Most LMS are posi-
tive with SMA and calponin but these markers can also be 

positive in AFX. Desmin and h-caldesmon are less consistent 
in LMS but negative in AFX.

Some combination of S100 and SOX-10 for sMM or 
dMM, high molecular weight keratin and p63 or p40 for 
sSCC, desmin for LMS, and if hemorrhagic ERG for angio-
sarcoma can be refined in the setting of atypical spindle cell 
neoplasms of the skin. AFX is the diagnosis of exclusion.

References: [30–35, 42, 53–55, 63, 71, 72, 80, 125, 180–
185, 187–193, 199, 200, 202–205, 207–210, 230–246].

Small blue cell tumors are composed of round closely 
packed cells with a high nuclear-cytoplasmic ratio. The his-
tologic differential diagnosis includes neoplasms of vastly 
different lineages. The most common small blue cell tumor 
involving sun-damaged skin is MCC. In addition to neuroen-
docrine markers like NSE, MCCs are typically positive with 
CK20 in a paranuclear dot and/or cytoplasmic pattern while 
CK7 is only rarely identified.

Other neoplasms that can have similar cytology include 
MM, metastatic SCCL, lymphoma, and less commonly 
involving the skin; Ewing sarcoma/primitive neuroectoder-
mal tumor (EWS/PNET), metastatic neuroblastoma, and 
rhabdomyosarcoma.

Desmin and myogenin identify rhabdomyosarcoma. 
Lymphoma can be distinguished by lymphoid markers: 
CD79a, CD3, CD19, and leukocyte common antigen (CD45). 
EWS/PNET can express S100, NSE, chromogranin, and syn-
aptophysin. CD99 is a marker for EWS/PNET but is not spe-
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Fig. 35.22  Hematoxylin and eosin–stained sections of dMM Fig. 35.25  dMM staining with SOX-10

Fig. 35.23  dMM is often negative with MART1

Fig. 35.24  dMM staining with S100

Fig. 35.26  S100 highlighting sparse horizontally oriented spindle cells 
within a scar. This should not be confused with dMM

Antibodies

S100
NSE
CK20
TTF-1
NFP
FLI1
CK7

MCPyV

MCC

–/+
+^
+^
–

+/–
–/+
–/+
+

MM

+^
–/+
–
–
–

–/+
–
–

Mets SCCL

–
+/–
–

+^
–

–/+
+
–

Table 35.9  Markers for cutaneous small blue cell tumors

MM malignant melanoma, Mets SCCL metastatic small cell carci-
noma of the lung

cific and is also seen in lymphoblastic lymphoma, select 
rhabdomyosarcomas, and small numbers of MCC and 
MM.  FLI1 antibody is a useful nuclear marker for EWS/
PNET, as well as an endothelial marker, but is also expressed 
in a subset of lymphoma, MCC, SCCL, and MM.  Keratin 
reactivity, particularly CK20, is usually absent in EWS/

T. Ferringer
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PNET.  Currently EMS/PNET is confirmed through cytoge-
netic identification of the t(11;22) translocation involving 
EWS and FLI1 genes. Neuroblastoma can express NSE, NFP, 
synaptophysin, and chromogranin but is usually negative with 
CD99, CD45, S100, keratins, and skeletal muscle markers.

The presence of TTF-1 reactivity is not completely spe-
cific to SCCL and can be seen in metastatic small cell carci-
noma of extra-pulmonary sites; however, it is negative in 
most MCCs. CK7 expression supports a diagnosis of SCCL 
but rare CK20−/CK7+ MCCs have been reported.

Ber-EP4 and bcl-2 reactivity in MCC can be a pitfall if 
BCC is considered in the histologic differential diagnosis 
(see Fig. 35.12) and on occasion, BCC can express chromo-
granin and synaptophysin. BCCs are negative with S100, 
CK20, and TTF-1.

Insulinoma-associated protein 1 (INSM1) is a sensitive 
nuclear marker of neuroendocrine differentiation found in 
most MCCs but is also positive in extracutaneous neuroen-
docrine carcinomas.

References: [11, 12, 30, 31, 35, 41, 54, 102, 118, 141, 
145, 146, 148, 149, 153, 157–159, 167, 171, 173–176, 221, 
247–255].

EMPD, SCCis, and MMIS are the most common causes 
of an atypical intraepidermal pagetoid pattern. Typically, the 
correct diagnosis can be made on morphology alone. 
However, in some cases a panel of immunohistochemical 
markers is required. The presence of CEA or Ber-EP4 favors 
EMPD.  The percentage of reactivity varies between poly-
clonal and monoclonal CEA and between EMPD and Paget’s 
disease of the nipple. EMPD is rarely S100 positive but 
expression has been reported in Paget’s disease of the 
nipple.

Positivity with CK7 supports a diagnosis of EMPD (Fig. 
35.27); however, CK7 positive SCCis has been reported. In 
addition, CK7+ Toker cells and occasionally CK7+ Merkel 
cells can be seen in the normal epidermis complicating 
interpretation.

Nuclear p63 staining is reported in pagetoid SCCis but 
not EMPD. Isolated studies have reported CD23 and CD5 
reactivity in EMPD, in contrast to absent expression in both 
MMIS and SCCis.

EMPD is a heterogeneous entity that encompasses cases 
that are limited to the skin and others that are associated with 
underlying malignancy. This can result in variations in 
immunohistochemical expression. CK20 is negative in the 
majority of primary cutaneous EMPD but can be positive in 
cases with underlying regional malignancy. Similarly, 
CDX-2 expression suggests an association with underlying 
rectal carcinoma. Like Paget disease of the nipple, not all 
cases of primary cutaneous EMPD are positive with GCDFP 
(gross cystic disease fluid protein). Positive expression can 
help differentiate EMPD or Paget disease from SCCis, which 
has not shown reactivity with GCDFP.

Other processes with an intraepithelial component that 
can mimic those discussed above include mycosis fungoides 
(MF), LCH, adnexal carcinomas (sebaceous, eccrine, and 
apocrine) and MCC. While intra-epidermal involvement of 
MCC and sebaceous carcinoma (especially on the eyelid) are 
not uncommon, isolated in situ disease is rare. CK20 is use-
ful in suspected MCC and membranovesicular staining with 
adipophilin can be helpful in identification of sebaceous car-
cinoma. However, be cautious of the pattern of immunoreac-
tivity as granular adipophilin is not uncommon in SCCis. 
Another pitfall is coexistence of SCCis and MCC in the same 
biopsy. The Pautrier microabscesses of MF express pan T 
cell markers like CD3 while CD1a and langerin are charac-
teristic of LCH.  It is important to recognize that both the 
cells of interest in MF and LCH are CD4 positive.

Differentiation of a clonal seborrheic keratosis from SCCis 
is a common challenge for dermatopathologists. Morphology 
remains the gold standard but immunohistochemical aids 
have been studied. Increased Ki-67 positive cells and pres-
ence of over 75% p16 positive cells favors SCCis while CK10 
negative clonal nests favor seborrheic keratosis.

References: [27, 31, 35, 36, 43, 67, 256–277].

Fig. 35.27  EMPD stained with CK7

Sebaceous
Carcinoma 

MCC

–/+ –
NA –/+
+ –/+
+^ +
+ +

–/+ +
+ –/+
+^ NA
+^

(vesicular)
– +^

NA NA
NA NA

–

SCCis

–
–

–/+
+/–
–/+
–
+
–

–/+
(granular)

–
–
–

MMIS

–
+^
–
–
–
–
–
–

–
+^
+

NA

Antibodies

CEA
S100
CK7
EMA

CAM5.2
Ber-EP4

p63
AR

CK20
MART1
HMB-45

adipophilin

EMPD

+^
–

+^
+^
+
+
–

+/–

–
–
–

NA

Table 35.10  Markers for intraepidermal or pagetoid 
scatter

MMIS malignant melanoma in situ
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MAC
NA
+/–
–/+

–/+ (neoplasm)
–

–+
Centrally in islands

–
<5%

–
+/–
+

–/+
+ 

Centrally in islands
+/–
–/+
–/+
+

Scattered cells at 
periphery of islands, 

especially deep
–

NA

Antibodies
FAP(peritumoral stroma)

PHLDA1
P75/NGFR

CD10
CD34 (stroma)

CK20 *
Mib-1 rate

AR
CK15
SMA

Stromelysin-3
(stroma)
Ber-EP4

EMA
p53
CEA

MYB

p63

Bcl-2

CK7

mBCC
+
–
–

Neoplasm
–/+

–
20–40%

+/–
–

+/–

+^

–
+
–
+

Diffuse

+

+

+

–/+

DTE
–
+
+

Stroma, if at all
+
+

Periphery of islands
+^ 

0–13%
–

+^
–

+/–

–/+
–
–
+

Diffuse 

–/+

–

–

Table 35.11  Markers for 
sclerosing epithelial 
neoplasms

mBCC morpheaform basal cell carcinoma, DTE desmoplastic trichoepithelioma, MAC microcystic 
adnexal carcinoma, FAP fibroblast activation protein

* CK20 highlights sparse Merkel cells colonizing DTE (Fig. 35.28), not the stroma or basaloid neoplastic 
cells. Merkel cells associated with pre-existing vellus follicles must be excluded and multiple sections may 
be required for identification. Merkel cells are not typically identified colonizing mBCC (Fig.  35.29) or 
MACs

Partial samples of sclerosing epithelial neoplasm can be dif-
ficult to classify. Differentiation is not only of academic interest 
but is paramount to clinical management. Numerous markers 
have been evaluated in this context, but the great majority eval-
uated very small numbers of tumors in this differential. 
Although trends have been identified, the clinical and histo-
pathologic features remain the current gold standard.

When present, CEA positive ductal lumina strongly favor 
MAC over DTE or mBCC. The pathologist must distinguish 
expression within the tumor from expression in background 
sweat ducts.

The pattern of reactivity of bcl-2 differs between DTE 
and mBCC. The tumor islands are diffusely positive in BCC 
whereas, typically only the periphery of the basaloid islands 
is positive in DTE. However, the small basaloid islands typi-
cal of these tumors may make distinction difficult. Focal 
positivity with bcl-2 has been reported in MAC.

Stromelysin-3 is a member of the metalloproteinase fam-
ily, which is expressed in the stroma of carcinomas. Positivity 
is highest in the stroma of morpheaform and deeply invasive 
BCCs. SMA reactivity is greatest in the epithelial compo-
nent of the more aggressive forms of BCC, including mor-
pheaform, micronodular and infiltrative subtypes.

Although there is conflicting data, CD10 staining of the 
basaloid cells favors mBCC over DTE, while expression in 
the peritumoral stroma favors DTE.

CD34 stains the stroma of most DTEs differentiating 
them from the negative stroma of mBCC and MAC.  In 
contrast, the peritumoral stroma of several epithelial can-
cers is positive for FAP, as in mBCC, but not DTE. FAP is 
a glycoprotein present in granulation tissue of healing 
wounds.

AR expression typically is lacking in DTEs, distinguish-
ing them from the positively staining mBCCS, but conven-
tional trichoepitheliomas may also show reactivity.

MBCCs tend to lack or only show focal and weak p75, in 
contrast to the strong expression in DTEs. However, this will 
not assist in differentiating from partially sampled MACs 
that are strongly positive in nearly half of cases. The hair fol-
licle stem cell marker, PHLDA1, is not surprising positive in 
most tumor cells of the follicular derived DTE but is absent 
or minimally reactive in mBCCs.

References: [31, 35, 43, 49, 138, 273, 278–309].
Ber-EP4, in conjunction with EMA can be useful to dif-

ferentiate BCC (EMA-/BerEP4+) from SCC (EMA+/Ber−
EP4−). However, sebaceous carcinoma can show the same 
pattern as SCC.  Unfortunately, poorly differentiated SCC 
and sebaceous carcinoma can show only focal expression 
with EMA complicating interpretation. In addition, BCCs 
can show squamoid areas that stain like SCC. EMA alone is 
only helpful in differentiating BCC, which is negative, from 
sebaceous carcinoma and SCC.

T. Ferringer
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35.2) only show granular if any staining. Attention to the pat-
tern of staining is paramount to differentiation.

While most sebaceous carcinomas are isolated tumors, 
like other sebaceous neoplasms, they can be harbingers of 
MTS. MTS is most commonly caused by germline mutations 
in MSH2, followed by MLH1 and MSH6. Albeit imperfect, 
immunohistochemistry can serve as a screening tool for 
these mutations. The positive predictive value of loss of nor-
mal nuclear expression varies from 33% to 88% for MHL1, 
55% to 66% for MSH2, and 67% for MSH6. Since MSH2 
and MSH6 form a heterodimer, loss of both does not increase 
the positive predictive value. In other words, retained normal 
expression of all mismatch repair genes is reassuring but lack 
of expression should be followed by evaluation for addi-
tional similar lesions and family and personal history of 
associated malignancies. Genetic testing is required to con-
firm the immunohistochemical screening, given the signifi-
cantly lower sensitivity and specificity of these markers in 
sebaceous lesions, as compared to colorectal cancers, con-
sensus is not reached about routine immunohistochemical 
screening in many sebaceous lesion scenarios. 
Immunohistochemical screening is considered “usually 
appropriate” in patients of all ages with multiple sebaceous 
tumors, keratoacanthomas with sebaceous differentiation, 
cystic sebaceous lesions and patients with known MTS asso-
ciated neoplasms. It is also considered “usually appropriate” 
in patients who are 60 years or under with a sebaceous lesion 
that is located outside the head and neck.

References: [24, 31, 36, 138, 282, 310–313].
Differentiating nevus from nevoid melanoma can be prob-

lematic, even for experts in the field. Misdiagnosis of mela-
noma as nevus is one of the most common causes of malpractice 
lawsuits in pathology. Many immunohistochemical markers 
have been investigated to aid in distinction without identifica-
tion of a consistent and reliable method. While overlap exists, 
general trends have been identified with some markers. 
Expression of a single marker should never be a single or domi-
nant criterion for designation as benign or malignant.

HMB-45 stain melanocytes at the junction and upper der-
mis but not the deeper melanocytes in nevi (Figs. 35.30 and 
35.31) with the exception of blue nevi that are strongly and 
diffusely positive throughout (Fig. 35.33). This gradient sug-
gests maturation. In contrast, melanomas reveal more hetero-
geneous, weak, and focal staining with HMB-45. Caution is 
required in interpreting HMB-45 in lesions that contain a blue 
nevus component. This component of combined nevi fails to 
show evidence of a gradient and is strongly positive through-
out (Figs. 35.32 and 35.33) which should not be confused 

Fig. 35.28  CK20 highlights Merkel cells colonizing DTE

Fig. 35.29  CK20 positive Merkel cells are not identified in mBCC

Table 35.13  Nevus versus melanoma
Antibodies Nevus MM
PRAME − +

HMB-45 Gradient No gradient
Mib-1 <2% >10%
p16 >40% <20%

Ber-EP4 is not diagnostic of BCC.  In addition to occa-
sional sebaceous carcinomas, MCC and porocarcinoma can 
show Ber-EP4 expression.

When sebaceous carcinoma is considered, AR and adipo-
philin may be helpful. Adipophilin highlights intracellular 
lipid droplets, as seen in sebocytes (see Fig. 35.1). 
Adipophilin positive membranovesicles can be only focal in 
sebaceous carcinoma and most BCCs and SCCs (see Fig. 

Table 35.12  Basal cell carcinoma versus squamous cell 
carcinoma versus sebaceous carcinoma
Antibodies SCC BCC Sebaceous carcinoma
EMA + − +^
Ber-EP4 − +^ −/+
Bcl-2 − + +/−
CK7 −/+ −/+ +
Factor XIIIa − − +
AR − +/− +
Adipophilin − (50% 

granular)
− (75% 

granular)
+^ (membranovesicular)
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with lack of maturation typical of melanoma. Another poten-
tial pitfall is the presence of HMB-45 expression in dermal 
melanocytes within and below the scar of traumatized nevi.

A proliferation index, as determined by nuclear Mib-1 
staining of melanocytes, over 10% favors melanoma while a 
proliferation index below 2% favors nevus. However, great 
overlap exists between some nevi, like Spitz nevi and mela-
noma. The pattern of staining is also important. Mib-1 posi-
tive cells tend to be throughout the dermal component in 
melanoma, whereas they are superficial or absent in nevi. 
Mib-1 is not lineage specific and also stains proliferating 
lymphocytes. When a lesion is heavily inflamed, distinction 
by cytology or dual staining with a cytoplasmic melanocytic 
marker is required (Figs. 35.34 and 35.35).

The cell-cycle inhibitor protein p16 is expressed in a greater 
percentage of nevi (Fig. 35.36) but is deleted or mutated in a 
proportion of melanomas resulting in loss of nuclear and 
sometimes also cytoplasmic staining. Nevi are not always dif-
fusely positive with p16 but typically show approximately 
50% staining in a “patchwork” or “checkerboard” pattern. A 
recent study suggests that p16 is less helpful in heavily pig-
mented lesions. Loss of 9p21 that encodes p16 has been iden-
tified in spitzoid melanoma and correlates with loss of 
expression of p16 immunohistochemically. Some studies 
report a scoring system based on the results of p16, Ki-67, and 
HMB-45 to be helpful in classifying spitzoid lesions.

Immunohistochemistry for elastin typically shows pre-
served elastic fibers between nests and often around individ-
ual melanocytes in nevi, in contrast to melanomas that have 
markedly decreased elastic between and within the nests of 
melanocytes, often with compression at the base of the tumor 
or in areas of regression. This contrasts with scars that also 
show loss of elastic fibers in the fibrosis but lack the com-
pression. Although exceptions are reported, identification of 
the elastic fiber pattern is potentially used in differentiating 
scar from regression and identifying the depth of melanoma 
invasion in a nevus.

PRAME (preferentially expressed antigen in melanoma), 
a tumor-associated antigen originally identified from patients 
with metastatic melanoma, has subsequently been found in 
ocular melanoma and various non-melanocytic malignan-
cies. It is part of a 12-gene prognostic assay for uveal mela-
noma included in the National Comprehensive Cancer 
Network guidelines and a component of a 23-gene diagnos-
tic assay for cutaneous melanoma, as well as one of the two 
genes evaluated in a noninvasive molecular assay used by 
clinicians to assist in determining the need for biopsy of a 
melanocytic lesion. Emerging studies show the value of 
immunohistochemistry for PRAME in diagnosis of melano-
cytic lesions. Diffuse nuclear expression is seen in a high 
proportion of primary and metastatic melanomas, excluding 
dMMs, while the majority of benign nevi are negative or 
show expression only in a minor subpopulation of cells (Fig. 
35.37). Large numbers of equivocal melanocytic lesions 
have not yet been studied. Sparsely scattered PRAME posi-

tive melanocytes have been seen in solar lentigines and non-
lesion skin suggesting a potential pitfall.

S100A6 and p21 have been studied in spitzoid lesions; 
however, use in non-spitzoid melanocytic lesions has not been 
studied or shown less consistent results. S100A6 (calcyclin) is 
a S100 subtype that stains Spitz nevi in a strong and diffuse 
pattern while only one-third of melanomas express S100A6 
and usually in a weak and patchy pattern with minimal to no 
reactivity at the junction. It is important to recognize that nevi 
other than Spitz, including pigmented spindle cell nevi, react 
with S100A6 in a weak or negative pattern similar to mela-
noma and S100A6 also stains fibrohistiocytic lesions. The 
tumor suppressor, p21, is the main downstream effector gene 
mediating p53-induced cell cycle arrest. A high level of p21 
nuclear expression suggests Spitz nevus over melanoma, espe-
cially when coupled with a low proliferation index.

Low levels of cyclin D1, bcl-2, and p53 are seen in Spitz, 
in contrast to higher expression in melanoma; however, sig-
nificant overlap exists limiting their usefulness.

Fig. 35.30  Hematoxylin and eosin–stained sections of Spitz nevus

Fig. 35.31  Gradient of decreased expression of HMB-45 with 
increased depth into the dermis of a Spitz nevus
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Fig. 35.33  HMB-45 staining the blue nevus component in the dermis

Fig. 35.34  Melanoma with dual MART1 and Mib-1 staining. MART1 
with Fast red as the chromogen was used to stain the cytoplasm of the 
melanocytic cells at the same time that Mib-1 with DAB was used to 
highlight the nuclei of proliferating cells. This allows identification of 
the frequent proliferating melanocytes that have red cytoplasm and 
brown nuclei in melanoma

Fig. 35.32  Hematoxylin and eosin–stained sections of a combined nevus
Fig. 35.35  Spitz nevus with MART1(Fast red) and Mib-1(DAB) 
revealing a gradient of Mib-1 positive Spitz cells with very few prolif-
erating cells in the deeper dermis

Fig. 35.36  p16 checkerboard staining of a Spitz nevus

Fig. 35.37  Melanoma developing in a nevus with PRAME positive 
nuclei in the melanoma but lack of staining in the nevi of the pre-
existing congenital nevus at the base
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Table 35.14  Nodal nevus versus metastatic melanoma
Antibodies Nodal nevus Nodal metastasis
S100 + +
SOX-10 + +
MART1 + +
HMB-45 − +/−
Mib-1 − +

p16 + −
PRAME − +

Fig. 35.38  Perivascular small SOX-10 positive nuclei in a negative 
sentinel lymph node

Fig. 35.40  PRAME positive nuclei in metastatic melanoma of the 
lymph node

Fig. 35.39  PRAME negative nodal nevus

DFSP
+^
–/+
–

+/–
but weak and deep

–
+/–
–

+^
–/+
–/+
–

Antibodies
CD34

Factor XIIIa
Stromelysin-3

S100A6
p53

Tenascin (at DEJ)
Nestin
CD10
CD163
CD68

CD99

DF
–/+
+
+

+^
–

+^
–/+
+^
+^
+

+^

Table 35.15  Dermatofibroma versus dermatofibrosar-
coma protuberans

DEJ dermal epidermal junction

The majority of nevi have no chromosomal abnormalities, 
whereas melanoma shows various aberrations providing 
great potential in the field of molecular testing in diagnosis 
of difficult melanocytic lesions. Once identified molecularly, 
specific markers have and will continue to be developed to 
immunohistochemically identify the identified target in a 
faster, cheaper, and more accessible way.

References: [17, 29, 48, 52, 81, 105, 314–343].
Nodal nevi are present in lymph nodes from patients with 

divergent primary malignancies but most commonly from 
patients with melanoma, at a frequency as high as 22%. 
Differentiation of nodal nevus and metastatic melanoma can 
typically be determined based on presence or absence of 
cytologic atypia, histologic comparison with the primary 
melanoma, and location, capsular/trabecular or subcapsular/
parenchymal, respectively.

Protocols for melanoma SLNs vary from institution to 
institution with differing use of immunohistochemical stains. 
S100 is highly sensitive but is also expressed in dendritic 
cells complicating interpretation of potential small foci. 
MART1 fails to show this distraction but on occasion, pig-
mented macrophages will weakly label. SOX-10 is highly 
sensitive and lacks these limitations. Nerves and small 
slightly elongate perivascular nuclei, possibly of pericytes or 
schwannian cells, are highlighted with SOX-10 in normal 
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Fig. 35.41  DFSP staining with CD34

Fig. 35.42  Cellular DF staining with Factor XIIIa

lymph nodes (Fig. 35.38). This dot-like reactivity is smaller 
than the size of typical lymphocyte, shows little to no associ-
ated cytoplasm, is variably elongate, and is perivascular aid-
ing in differentiation from metastases.

HMB-45 is expressed by approximately 60% of meta-
static melanomas, whereas, similar to the dermal component 
of benign cutaneous nevi, ordinary nodal nevi fail to express 
HMB-45. This can be useful in differentiation, however, like 
cutaneous blue nevi, nodal blue nevi are HMB-45 positive.

Similar to nevi and melanoma of cutaneous sites p16, 
Mib-1, and PRAME (Figs. 35.39 and 35.40) appear to be 
helpful in differentiation. Additional studies have suggested 
the pattern of reticulin expression and presence or absence of 
fatty acid synthase (FAS), acetyl-CoA carboxylase (ACC), 
and 5-hydroxymethylcytosine (5-hmC) may be of assistance 
with FAS and ACC expression limited to metastases and 
5-hmC nuclear expression preserved in nevi.

Dual staining of some of the non-melanocytic markers in 
conjunction with a melanocytic marker, like MART1, can 
ensure reactivity is involving only the cells of interest.

References: [16, 29, 31, 47, 344–354].
Most DFs are easily distinguished from DFSP in adequate 

samples; however, morphologic differentiation can be diffi-
cult in deep or cellular DFs. Classically, the dermal dendritic 
cell marker, Factor XIIIa has been used with CD34 to dif-
ferentiate. However, there is overlap and lack of specificity. 
While CD34 is positive in DFSP (Fig. 35.41) it is not specific 
and it highlights vascular endothelium, hematopoietic pro-
genitor cells, solitary fibrous tumor, spindle cell lipoma, 
superficial acral fibromyxoma, sclerotic fibroma, Kaposi sar-
coma, trichilemmoma, scleromyxedema, nephrogenic sys-
temic fibrosis, neurofibromas, among others. Caution is 
required in interpretation of DFSP margins with CD34, since 
CD34 disappears from scars but proliferates in peri-cicatri-
cial tissue. DFs are often only weakly positive or reactive at 
the periphery with Factor XIIIa but staining is more diffuse 
in cellular DFs (Fig. 35.42). Some DFs exhibit focal staining 
with CD34, especially at the periphery of cellular and deep 
DF (Fig. 35.43).

Stromelysin-3 is a member of the metalloproteinase fam-
ily that is involved in tissue remodeling, including tumor 
invasion. Expression is seen in the fibroblastic cells sur-
rounding the epithelial portion of most cancers while most 
benign tumors, other than DF, are typically negative.

Tenascin, an extracellular matrix glycoprotein involved in 
embryogenesis, carcinogenesis, and wound healing, is noted 
within the lesion in both DFs and DFSPs and does not assist 
in differentiation. However, strong tenascin expression is 
identified at the DEJ overlying DF but not over DFSP.

Nestin, a neuroectodermal and mesenchymal stem cell 
marker, is strongly expressed in DFSP with no or only rare 
focal expression in DFs. Unlike CD34 that may lose expres-
sion in fibrosarcomatous areas of DFSP, nestin remains 
unaltered.

The vast majority of DFs are reactive with S100A6 and 
CD10, whereas CD10 expression is seen in approximately 
half of DFSPs. Studies on D2-40 show variable expression in 
DFs and DFSPs, typically higher in DFs.
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DFs are more likely to show diffuse CD99 staining than 
DFSP and when staining is present in DFSP it tends to be 
patchy and weak in the deeper parts of the lesion without 
reactivity superficially.

Expression of p53 in DFSPs ranges from 15% to 92% 
depending on the study. It has been suggested that presence 
of a p53 mutation is associated with tumor progression to 
fibrosarcoma.

Contrary to intuition, DFs have a higher Ki-67 prolifera-
tion index and mitotic count than most classic DFSPs, espe-
cially superficially.

In rare cases that cannot be distinguished by morphology 
and immunoprofile, FISH can be used to identify the t(17;22) 
translocation fusing COL1A1 and PDGFB in DFSPs.

References: [46, 55, 188, 293, 339, 340, 355–375].
Histiocytic disorders of the skin tend to be classified as 

LCH and non-Langerhans cell histiocytoses, which includes 
XG, reticulohistiocytoma, and RDD.  All show variable 
expression of the histiocytic markers CD163 and CD68. 
Only LCH and RDD are also S100 positive. Langerhans 
cells are distinguished by the presence of CD1a and Langerin 
that signifies the presence of Birbeck granules. BRAF V600E 
mutations, as characterized by the immunohistochemical 
marker, VE1, are present in approximately half of cases of 
LCH. Indeterminate cells are also S100 and CD1a positive 
but lack Birbeck granules typical of Langerhans cells and 
thus are negative with langerin.

References: [23, 72, 205, 207, 376–380].
Cutaneous angiosarcoma occurs in 3 settings: primary dis-

ease usually on the head and neck of elderly sun-damaged 
patients, secondary due to chronic lymphedema, and second-
ary due to radiation, most commonly in breast cancer patients. 
Several studies have shown that the majority of secondary 
angiosarcomas harbor MYC amplification which has good 
concordance with immunohistochemistry (Fig. 35.44). 
Differentiation of AVLs from secondary angiosarcoma of the 
breast can be problematic, particularly in small biopsy speci-
mens. Although c-MYC immunohistochemistry is helpful in 
this distinction, primary angiosarcomas are not characteristi-
cally positive (0–45%). Margin analysis of secondary angio-
sarcoma can be assisted with c-MYC immunohistochemistry.

References: [24, 31, 35, 381–383].

Fig. 35.43  Cellular DF with focal CD34 reactivity at the periphery of 
the lesion

Antibodies
CD1a

Langerin(CD207)
CD68

CD163
S100

Factor XIIIa
VE1

LCH
+
+

–/+
–/+
+
–

–/+

XG
–
–

+/–
+
–
+
–

Reticulohistiocytoma
–
–

+/–
+
–

+/–
NA

RDD
–
–
+
+
+
–
–

Table 35.16  Markers of histiocytic processes of the skin

Antibodies
CD34
CD31
D2-40
c-MYC

AVL
+
+^
+
+^

Secondary Angiosarcoma
+/–
+

–/+
–

Table 35.17  Atypical vascular lesion versus secondary 
angiosarcoma

Antibodies
p63

CK5/6
D2-40 (podoplanin)

CK15
p40

CAT
+
+

+/–
–/+
+

Met Adeno
–

–/+
–
–
–

Table 35.18  Primary cutaneous malignant adnexal 
tumors versus metastatic adenocarcinoma to the skin

CAT cutaneous adnexal tumor, Met adeno metastatic 
adenocarcinoma
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Fig. 35.44  Nuclear c-MYC in a biopsy of a vascular proliferation from 
the breast of a woman who had prior radiation for breast cancer. Wider 
excision revealed angiosarcoma

Fig. 35.45  MAC with strong p63 expression

Fig. 35.46  Metastatic breast carcinoma to the skin fails to stain with p63

Table 35.19  Identification of unknown primary
Lung Breast Colon Kidney Thyroid Ovary

CK7 + + −/+ − + +

CK20 − − + − −/+ −
TTF-1 + − − − + −
CDX-2 − − + − − −
GATA3 − + − − − −
PAX8 − − − + + +

GCDFP − +/− − − − −

The majority of primary benign and malignant CATs are 
positive for p63, p40, CK5/6, and D2-40 while expression is 
rare in metastatic adenocarcinomas (Figs. 35.45 and 35.46). 
These markers are helpful in distinguishing primary CATs 
from metastatic adenocarcinoma to the skin but should not 
preclude systemic evaluation for a primary source. This is 
not useful in the case of metastatic SCC or urothelial carci-
noma to the skin. In addition, primary cutaneous mucinous 
carcinoma appears to be an exception and, although a pri-
mary CAT, does not reliably express p63, D2-40, or CK5/6 
and like metastatic breast carcinoma, is often CK7, ER, PR, 
GATA3, and GCDFP positive. Metastases from malignant 
CATs generally retain p63 and D2-40 expression similar to 
their associated primary CATs.

The studies of high molecular weight CK5/6 are small and 
consist predominantly of benign CATs. In general, metastatic 
adenocarcinomas express CK5/6 in only one-third of cases, 
predominantly with weak intensity. However, metastatic 
breast carcinoma is reactive for CK5/6 in almost half of cases.

CK15 is specific in distinguishing CAT from cutaneous 
metastases but is not sensitive. In general, a panel of immu-
nohistochemical stains provides the greatest sensitivity and 
specificity.

References: [23, 31, 66, 278, 384–397].
Tumors from the lung, breast, and colon are the most 

common source of cutaneous metastases. In general, a panel 
of CK7 and CK20 can differentiate metastases from above 
the diaphragm (CK7+ in breast and lung adenocarcinomas) 
and below the diaphragm (CK20+ in colon carcinoma). TTF-
1 in lung and CDX2 in colon can be of additional assistance. 
However, as the name suggests, TTF-1 is also present in thy-
roid cancer and SCC of the lung is often TTF-1 negative. 
Expression of GCDFP, ER, PR, and mammaglobin favor 
breast metastasis over a primary cutaneous tumor but it 
should not be surprising given the similar origin, that pri-
mary cutaneous apocrine carcinomas can rarely express 
these markers. GATA3 expression is quite common in seba-
ceous and apocrine neoplasms of the skin and thus should 
not be considered pathognomonic of breast metastasis. 
GATA3 is also expressed in urothelial carcinoma. Other less 
common cutaneous metastases and associated immunohisto-
chemical markers include PAX8 in ovary, thyroid, and renal 
tumors, PSA (prostate specific antigen) in prostate carci-
noma, and renal cell carcinoma marker in its namesake.

References: [23, 31, 66, 278, 279, 385, 386, 398–402].
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