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Abstract We extend the classical one-parameter Yule-Simon law to a version
depending on two parameters, which in part appeared in Bertoin (J Stat Phys
176(3):679–691, 2019) in the context of a preferential attachment algorithm with
fading memory. By making the link to a general branching process with age-
dependent reproduction rate, we study the tail-asymptotic behavior of the two-
parameter Yule-Simon law, as it was already initiated in Bertoin (J Stat Phys
176(3):679–691, 2019). Finally, by superposing mutations to the branching process,
we propose a model which leads to the two-parameter range of the Yule-Simon law,
generalizing thereby the work of Simon (Biometrika 42(3/4):425–440, 1955) on
limiting word frequencies.

Keywords Yule-Simon model · Crump-Mode-Jagers branching process ·
Population model with neutral mutations · Heavy tail distribution · Preferential
attachment with fading memory

1 Introduction

The standard Yule process Y = (Y (t))t≥0 is a basic population model in continuous
time and with values in N := {1, 2, . . .}. It describes the evolution of the size of a
population started from a single ancestor, where individuals are immortal and give
birth to children at unit rate, independently one from the other. It is well-known
that for every t ≥ 0, Y (t) has the geometric distribution with parameter e−t . As a
consequence, if Tρ denotes an exponentially distributed random time with parameter

E. Baur
Bern University of Applied Sciences, Bern, Switzerland
e-mail: erich.baur@bfh.ch

J. Bertoin (�)
Institut für Mathematik, Universität Zürich, Zürich, Switzerland
e-mail: jean.bertoin@math.uzh.ch

© Springer Nature Switzerland AG 2021
L. Chaumont, A. E. Kyprianou (eds.), A Lifetime of Excursions Through
Random Walks and Lévy Processes, Progress in Probability 78,
https://doi.org/10.1007/978-3-030-83309-1_4

59

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-83309-1_4&domain=pdf
mailto:erich.baur@bfh.ch
mailto:jean.bertoin@math.uzh.ch
https://doi.org/10.1007/978-3-030-83309-1_4


60 E. Baur and J. Bertoin

ρ > 0 which is independent of the Yule process, then for every k ∈ N, there is the
identity

P
(
Y (Tρ) = k

) = ρ

∫ ∞

0
e−ρt (1 − e−t )k−1e−tdt = ρB(k, ρ + 1), (1)

where B is the beta function.
The discrete distribution in (1) has been introduced by H.A. Simon [20] in 1955

and is nowadays referred to as the Yule-Simon distribution with parameter ρ. It
arises naturally in preferential attachment models and often explains the occurrence
of heavy tail variables in stochastic modeling. Indeed, the basic estimate

B(k, ρ + 1) ∼ �(ρ + 1)k−(ρ+1) as k → ∞,

implies that the Yule-Simon distribution has a fat tail with exponent ρ.
The present work is devoted to a two-parameter generalization of the Yule-Simon

distribution, which results from letting the fertility (i.e. the reproduction rate) of
individuals in the population model depend on their age. Specifically, imagine that
now the rate at which an individual of age a ≥ 0 begets children is e−θa for some
fixed θ ∈ R. So for θ > 0 the fertility decays with constant rate θ as individuals
get older, whereas for θ < 0, the fertility increases with constant rate −θ . Denote
the size of the population at time t by Yθ (t). In other words, Yθ = (Yθ (t))t≥0 is a
general (or Crump-Mode-Jagers) branching process, such that the point process on
[0,∞) that describes the ages at which a typical individual begets a child is Poisson
with intensity measure e−θtdt . For θ = 0, Y0 = Y is the usual Yule process.

Definition 1.1 Let θ ∈ R and ρ > 0. Consider Yθ as above and let Tρ be an
exponential random time with parameter ρ > 0, independent of Yθ . We call the law
of the discrete random variable

Xθ,ρ := Yθ (Tρ)

the Yule-Simon distribution with parameters (θ, ρ).

A key difference with the original Yule-Simon distribution, which corresponds
to θ = 0, is that no close expression for the two-parameter distribution is known.1

Actually, the general branching process Yθ is not even Markovian for θ �= 0, and
its one-dimensional distributions are not explicit. This generalization of the Yule-
Simon distribution has recently appeared in [1] for θ > 0 and ρ > (1 − θ)+, in
connection with a preferential attachment model with fading memory in the vein of
Simon’s original model. We shall point out in Sect. 5 that the range of parameters
θ ≤ 0 and ρ > 0 arises similarly for a family of related models.

1Although the probability P(Xθ,ρ = 1) can easily be computed in terms of an incomplete Gamma
function, the calculations needed to determine P(Xθ,ρ = k) for k ≥ 2 become soon intractable.
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One of the purposes of the present contribution is to describe some features of
the two-parameter Yule-Simon law, notably by completing [1] and determining the
tail-asymptotic behavior of Xθ,ρ . It was observed in [1] that the parameter θ = 1 is
critical, in the sense that when θ < 1, Xθ,ρ has a fat tail with exponent ρ/(1 − θ),
whereas when θ > 1, some exponential moments of positive order of Xθ,ρ are
finite. We show here in Sect. 4 that when θ > 1, the tail of Xθ,ρ is actually decaying
exponentially fast with exponent ln θ − 1 + 1/θ . Further, in the critical case θ = 1,
we show that X1,ρ has a stretched exponential tail with stretching exponent 1/3.

By superposing independent neutral mutations at each birth with fixed proba-
bility 1 − p ∈ (0, 1) to the classical Yule process, the original Yule-Simon law
with parameter ρ = 1/p captures the limit number of species of a genetic type
chosen uniformly at random among all types, upon letting time tend to infinity. This
fact is essentially a rephrasing of Simon’s results in [20]. We give some (historical)
background in Sect. 5 and extend Simon’s observations to more general branching
processes, for which the two-parameter distribution from Definition 1.1 is observed.

In a similar vein, the number of species belonging to a genus chosen uniformly at
random has been studied for generalized Yule models in several works by Lansky,
Polito, Sacerdote and further co-authors, both at fixed times t and upon letting t →
∞. For instance, in [12], the linear birth process governing the growth of species
is replaced by a birth-and-death process, whereas in [13], a fractional nonlinear
birth process is considered instead. Both works are formulated in the framework of
World Wide Web modeling. Recently, Polito [17] changed also the dynamics of how
different genera appear, leading to a considerably different limit behavior.

The rest of this article is organized as follows. In the following Sect. 2,
we analyze the branching process Yθ introduced above and study its large-time
behavior. In Sect. 3, we develop an integral representation for the tail distribution
of the two-parameter Yule-Simon law, which lies at the heart of our study of the tail
asymptotics of Xθ,ρ in the subsequent Sect. 4. This part complements the work [1]
and contains our main results. In the last Sect. 5, we relate the generalized Yule-
Simon distribution to a population model with mutations, in the spirit of Simon’s
original work [20].

2 Preliminaries on the General Branching Process Yθ

The purpose of this section is to gather some basic features about the general
branching process Yθ that has been described in the introduction. We start with a
construction of Yθ in terms of a certain branching random walk.

Specifically, we consider a sequence Z = (Zn)n≥0 of point processes on [0,∞)

which is constructed recursively as follows. First, Z0 = δ0 is the Dirac point mass
at 0, and for any n ≥ 0, Zn+1 is obtained from Zn by replacing each and every atom
of Zn, say located at z ≥ 0, by a random cloud of atoms {z+ωz

i }Nz

i=1, where {ωz
i }Nz

i=1
is the family of atoms of a Poisson point measure on [0,∞) with intensity e−θtdt

and to different atoms z correspond independent such Poisson point measures. In



62 E. Baur and J. Bertoin

particular, each Nz has the Poisson distribution with parameter 1/θ when θ > 0,
whereas Nz = ∞ a.s. when θ ≤ 0. If we now interpret [0,∞) as a set of times,
the locations of atoms as birth-times of individuals, and consider the number of
individuals born on the time-interval [0, t],

Yθ (t) :=
∞∑

n=0

Zn([0, t]) , t ≥ 0,

then Yθ = (Yθ (t))t≥0 is a version of the general branching process generalizing the
standard Yule process that was discussed in the introduction.

We readily observe the following formula for the first moments:

Proposition 2.1 One has for every t ≥ 0:

E(Yθ (t)) =
{
(e(1−θ)t − θ)/(1 − θ) if θ �= 1,

1 + t if θ = 1.

Proof By definition, the intensity of the point process Z1 is e−θtdt , and by the
branching property, the intensity of Zn is the nth convolution product of the latter.
Considering Laplace transforms, we see that for any q > 1 − θ :

q

∫ ∞

0
E (Yθ (t)) e−qtdt = q

∫ ∞

0
e−qt

( ∞∑

n=0

E (Zn([0, t]))
)

dt

=
∞∑

n=0

E

(∫ ∞

0
e−qtZn(dt)

)

=
∞∑

n=0

(θ + q)−n

= θ + q

θ + q − 1
.

Inverting this Laplace transform yields our claim. 	

Remark 2.2 The calculation above shows that a two-parameter Yule-Simon variable
Xθ,ρ , as in Definition 1.1, is integrable if and only if θ + ρ > 1, and in that case we
have

E(Xθ,ρ) = θ + ρ

θ + ρ − 1
.

Proposition 2.1 ensures the finiteness of the branching process Yθ observed at
any time. Further, it should be plain that the atoms of the branching random walk
Z (at all generations) occupy different locations. Thus Yθ is a counting process,
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in the sense that its sample paths take values in N, are non-decreasing and all its
jumps have unit size. We next discuss its large time asymptotic behavior, and in this
direction, we write

Yθ (∞) = lim
t→∞ ↑ Yθ (t) ∈ N̄ := N ∪ {∞}

for its terminal value.

Proposition 2.3

(i) If θ > 0, then Yθ (∞) has the Borel distribution with parameter 1/θ , viz.

P(Yθ (∞) = n) = e−n/θ (n/θ)n−1

n! for every n ∈ N.

In particular P(Yθ (∞) < ∞) = 1 if and only if θ ≥ 1.
(ii) If θ < 1, then

lim
t→∞ e(θ−1)tYθ (t) = Wθ in probability,

where Wθ ≥ 0 is a random variable in Lk(P) for any k ≥ 1. Moreover, the
events {Wθ = 0} and {Yθ (∞) < ∞} coincide a.s., and are both negligible (i.e.
have probability 0) if θ ≤ 0.

Proof

(i) When θ > 0, (Zn([0,∞))n≥0 is a Galton-Watson process with reproduction
law given by the Poisson distribution with parameter 1/θ . In particular, it is
critical for θ = 1, sub-critical for θ > 1, and super-critical for θ < 1. In
this setting, Yθ (∞) is the total population generated by a single ancestor in this
Galton-Watson process; since the reproduction law is Poisson, it is well-known
that Yθ (∞) is distributed according to the Borel distribution with parameter
1/θ .

(ii) The claims follow by specializing to our setting well-known results on general
branching processes. More precisely, the fact that

∫ ∞
0 e−(1−θ)te−θtdt = 1

shows that the so-called Malthus exponent of the general branching process
Yθ equals 1 − θ . Then we just combine Theorem A of Doney [4], Theorem 1 of
Bingham and Doney [2], and Theorem 3.1 in Nerman [15].

	

Finally, it will be convenient to also introduce

Fθ(t) :=
∞∑

n=0

∫ t

0
e−θ(t−s)Zn(ds), t ≥ 0.

We call Fθ = (Fθ (t))t≥0 the fertility process; it can be interpreted as follows. Recall
that an atom, say at s ≥ 0, of the branching random walk (at any generation n) is
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viewed as the birth-time of an individual, and t − s is thus its age at time t ≥ s.
The times at which this individual begets children form a Poisson point measure on
[s,∞) with intensity e−θ(t−s)dt . Hence, Fθ(t) should be viewed as the total rate of
birth (therefore the name fertility) at time t for the population model described by
Yθ .

Proposition 2.4 The fertility process Fθ is a Markov process on (0,∞) with
infinitesimal generator

Gθf (x) = −θxf ′(x) + x(f (x + 1) − f (x)), (2)

say for f : (0,∞) → R a bounded C1 function with bounded derivative f ′.

Remark 2.5 Specialists will have recognized from (2) that the fertility Fθ is a so-
called continuous state branching process; see [10] and Chapter 12 in [11] for
background.

Proof The fertility process starts from Fθ(0) = 1, takes values in (0,∞), decays
exponentially with constant rate θ (by convention, exponential decay with rate θ <

0 means exponential increase with rate −θ > 0), and makes jumps of unit size
corresponding to birth events at time t . That is, there is the identity

Fθ(t) = Yθ (t) − θ

∫ t

0
Fθ(s)ds. (3)

The claim should now be intuitively obvious since Fθ(t) is also the rate at time t at
which the counting process Yθ has a jump of unit size.

To give a rigorous proof, we introduce the filtration Ft = σ(1[0,t]Zn : n ∈ N)

for t ≥ 0. Since the point measure Z1 is Poisson with intensity e−θsds, the process

Z1([0, t]) −
∫ t

0
e−θsds, t ≥ 0

is an (Ft )-martingale. By the branching property, we have more generally that for
any n ≥ 0,

Zn+1([0, t]) −
∫ t

0

∫ s

0
e−θ(s−r)Zn(dr)ds, t ≥ 0

is also an (Ft )-martingale, and summing over all generations, we conclude that

Yθ (t) −
∫ t

0
Fθ(s)ds is an (Ft )-martingale. (4)
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As Yθ is a counting process, we deduce from (3) that for any bounded C1 function
f : (0,∞) → R with bounded derivative, there is the identity

f (Fθ (t))−f (1) = −θ

∫ t

0
Fθ (s)f

′(Fθ (s))ds+
∫ t

0
(f (Fθ (s−)+1)−f (Fθ (s−))dYθ (s).

We now see from (4) that

f (Fθ (t)) −
∫ t

0
Gθ (Fθ (s))ds is an (Ft )-martingale.

It is readily checked that the martingale problem above is well-posed, and the
statement follows; see Section 4.4 in [9] for background. 	


We point out that for f (x) = x, we get Gθf = (1 − θ)f , and it follows that
E(Fθ (t)) = e(1−θ)t for all t ≥ 0. We then see from (3) that for θ �= 1,

E(Yθ (t)) = e(1−θ)t + θ

∫ t

0
e(1−θ)sds = 1

1 − θ
(e(1−θ)t − θ),

and that E(Y1(t)) = 1 + t for θ = 1, hence recovering Proposition 2.1.

3 Poissonian Representation for the Tail Distribution

The purpose of this section is to point at the following representation of the tail
distribution of the two-parameter Yule-Simon distribution. We first introduce a
standard Poisson process N = (N(t))t≥0. We write

γ (n) := inf{t > 0 : N(t) = n}

for every n ∈ N (so that γ (n) has the Gamma distribution with parameters (n, 1)),
and

ζθ := inf{t > 0 : N(t) + 1 − θt = 0} (5)

for θ ∈ R (in particular ζθ = ∞ a.s. when θ ≤ 0).

Proposition 3.1 Let θ ∈ R and ρ > 0. For every n ∈ N, one has

P(Xθ,ρ > n) = E

(

exp

(

−ρ

∫ γ (n)

0
(N(t) + 1 − θt)−1dt

)

1γ (n)<ζθ

)

.

This identity could be inferred from [1]; for the sake of completeness, we shall
provide here an independent proof based on Proposition 2.4 and the identity (3).
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Proof of Proposition 3.1 Observe from Proposition 2.4 that the infinitesimal gener-
ator Gθ of the fertility process fulfills

x−1Gθf (x) = −θf ′(x) + (f (x + 1) − f (x)), x > 0,

and that the right-hand side is the infinitesimal generator of a standard Poisson
process with drift −θ absorbed at 0. If we write

ξθ (t) := N(t ∧ ζθ ) + 1 − θ(t ∧ ζθ ) for t ≥ 0,

so that the process ξθ is that described above and started from ξθ (0) = 1, then by
Volkonskii’s formula (see e.g. Formula (21.6) of Section III.21 in [19]), the fertility
can be expressed as a time-change of ξθ . Specifically, the map t �→ ∫ t

0 ξθ (s)
−1ds is

bijective from [0, ζθ ) to R+, and if we denote its inverse by σθ , then the processes
Fθ and ξθ ◦ σθ have the same distribution; we can henceforth assume that they are
actually identical.

In this setting, we can further identify σθ (t) = ∫ t

0 Fθ(s)ds and then deduce from
(3) that Yθ (t) = 1 + N(σθ (t)). As a consequence, if we write

τθ (n) := inf{t > 0 : Yθ (t) > n},

then we have also

τθ (n) = inf{t > 0 : N ◦ σθ (t) = n} =
{∫ γ (n)

0 ξθ (s)
−1ds if γ (n) < ζθ ,

∞ otherwise.

Finally, recall from Definition 1.1 that Tρ has the exponential distribution with
parameter ρ > 0 and is independent of Yθ , so

P(Xθ,ρ > n) = P(Yθ (Tρ) > n) = E
(
exp(−ρτθ (n))1τθ (n)<∞

)
.

This completes the proof. 	

Remark 3.2 Following up Remark 2.5, the application of Volkonskii’s formula in
the proof above amounts to the well-known Lamperti’s transformation that relates
continuous state branching processes and Lévy processes without negative jumps
via a time-change; see [3] for a complete account.

We conclude this section by pointing at a simple inequality between the tail
distributions of Yule-Simon processes with different parameters.

Corollary 3.3

(i) The random variable Xθ,ρ decreases stochastically in the parameters θ and ρ.
That is, for every θ ′ ≥ θ and ρ′ ≥ ρ > 0, one has

P(Xθ ′,ρ′ > n) ≤ P(Xθ,ρ > n) for all n ∈ N.
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(ii) For every θ ∈ R, ρ > 0 and a > 1, one has

P(Xθ,ρ > n)a ≤ P(Xθ,aρ > n) for all n ∈ N.

Proof

(i) It should be plain from the construction of the general branching process Yθ

in the preceding section, that for any θ ≤ θ ′, one can obtain Yθ ′ from Yθ by
thinning (i.e. random killing of individuals and their descent). In particular
Yθ and Yθ ′ can be coupled in such a way that Yθ (t) ≥ Yθ ′(t) for all t ≥ 0.
Obviously, we may also couple Tρ and Tρ′ such that Tρ ≥ Tρ′ (for instance by
defining Tρ′ = ρ

ρ′ Tρ), and our claim follows from the fact that individuals are
eternal in the population model. Alternatively, we can also deduce the claim by
inspecting Proposition 3.1.

(ii) This follows immediately from Hölder’s inequality and Proposition 3.1.
	


4 Tail Asymptotic Behaviors

We now state the main results of this work which completes that of [1]. The asymp-
totic behavior of the tail distribution of a two parameter Yule-Simon distribution
exhibits a phase transition between exponential and power decay for the critical
parameter θ = 1; here is the precise statement.

Theorem 4.1 Let ρ > 0.

(i) If θ < 1, then there exists a constant C = C(θ, ρ) ∈ (0,∞) such that, as
n → ∞:

P(Xθ,ρ > n) ∼ Cn−ρ/(1−θ).

(ii) If θ > 1, then as n → ∞:

lnP(Xθ,ρ > n) ∼ −(ln θ − 1 + 1/θ)n.

This phase transition can be explained as follows. We rewrite Proposition 3.1 in the
form

P(Xθ,ρ > n) = E

(

exp

(

−ρ

∫ γ (n)

0
(N(t) + 1 − θt)−1dt

)

| γ (n) < ζθ

)

×P(γ (n) < ζθ ).

On the one hand, the probability that γ (n) < ζθ remains bounded away from 0 when
θ < 1 and decays exponentially fast when θ > 1. On the other hand, for θ < 1,
the integral

∫ γ (n)

0 (N(t) + 1 − θt)−1dt is of order ln n on the event {γ (n) < ζθ },
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and therefore the first term in the product decays as a power of n when n tends to
infinity. Last, when θ > 1, the first term in the product decays sub-exponentially
fast.

In the critical case θ = 1, we observe from the combination of Theorem 4.1 and
Corollary 3.3 that the tail of X1,ρ is neither fat nor light, in the sense that

exp(−αn) � P(X1,ρ > n) � n−β

for all α, β > 0. We obtain a more precise estimate of stretched exponential type.
In the following statement, f � g means lim supn→∞ f (n)/g(n) ≤ 1.

Theorem 4.2 Consider the critical case θ = 1, and let ρ > 0. Then we have as
n → ∞:

−20(ρ2n)1/3 � lnP(X1,ρ > n) � −(1/2)1/3(ρ2n)1/3.

Remark 4.3 Note that Theorems 4.1 and 4.2 entail that the series
∑

n≥0 P(Xθ,ρ >

n) converges if and only if θ + ρ > 1, in agreement with Remark 2.2.
The methods we use to prove Theorem 4.2 seem not to be fine enough to obtain

the exact asymptotics of n−1/3 lnP(X1,ρ > n). More specifically, for the lower
bound we employ estimates for first exits through moving boundaries proved by
Portnoy [18] first for Brownian motion and then transferred via the KMT-embedding
to general sums of independent random variables. The constant c1 = 20 is an
(rough) outcome of our proof and clearly not optimal.

For obtaining the upper bound, we consider an appropriate exponential martin-
gale and apply optional stopping. The constant c2 = (1/2)1/3 provides the best
value given our method, but is very likely not the optimal value neither.

Theorem 4.1(i) has been established in Theorem 1(ii) of [1] in the case θ ∈ (0, 1)

and ρ > 1−θ . Specifically, the parameters α and p̄ there are such that, in the present
notation, θ = α/p̄(α + 1) and p̄(α + 1) = 1/ρ. Taking this into account, we see
that the claim here extends Theorem 1(ii) in [1] to a larger set of parameters. The
argument is essentially the same, relying now on Proposition 2.3(ii) here rather than
on the less general Corollary 2 in [1], and we won’t repeat it.

We next turn our attention to the proof of Theorem 4.1(ii), which partly relies
on the following elementary result on first-passage times of Poisson processes with
drift (we refer to [5–7] for related estimates in the setting of general random walks
and Lévy processes).

Lemma 4.4 Let b > 1, x > 0, and define ν(x) := inf{t > 0 : bt − N(t) > x}. The
distribution of the integer-valued variable bν(x) − x fulfills

P(bν(x) − x = n) = 1

n! e−(x+n)/bx(x + n)n−1b−n ∼ xex(1−1/b)

√
2πn3

en(1−1/b−ln b) as n → ∞.
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As a consequence,

lim
t→∞ t−1 lnP(ν(x) ≥ t) = −(b ln b − b + 1).

Proof The event bν(x) = x holds if and only if the Poisson process N stays at 0
up to time x/b at least, which occurs with probability e−x/b. The first identity in the
statement is thus plain for n = 0. Next, note that, since the variable bν(x) − x must
take integer values whenever it is finite, there is the identity

bν(x) − x = inf{j ≥ 0 : N((j + x)/b) = j}.

On the event N(x/b) = k ∈ N, set N ′(t) = N(t + x/b) − k, and write

bν(x) − x = inf{j ∈ N : N ′(j/b) = j − k}.

Since N ′ is again a standard Poisson process, Kemperman’s formula (see, e.g.
Equation (6.3) in [16]) applied to the random walk N ′(·/b) gives for any n ≥ k

P(bν(x) − x = n | N(x/b) = k) = k

n
· e−n/b(n/b)n−k

(n − k)! .

Since N(x/b) has the Poisson distribution with parameter x/b, this yields for any
n ≥ 1

P(bν(x) − x = n) = e−(x+n)/b
n∑

k=1

(x/b)k

k! · k

n
· (n/b)n−k

(n − k)!

= 1

n!e−(x+n)/b(x/b)

n∑

k=1

(x/b)k−1(n/b)n−k · (n − 1)!
(k − 1)!(n − k)!

= 1

n!e−(x+n)/bx(x + n)n−1b−n,

where we used Newton’s binomial formula at the third line. The second assertion
in the claim follows from Stirling’s formula, and the third one is a much weaker
version. 	


We can now proceed to the proof of Theorem 4.1(ii).

Proof of Theorem 4.1(ii) The upper-bound is easy. Indeed on the one hand, Propo-
sition 3.1 yields

P(Xθ,ρ > n) ≤ P(γ (n) < ζθ ),
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and on the other hand, since N(ζθ ) + 1 = θζθ , on the event {γ (n) < ζθ }, one has
obviously N(ζθ ) ≥ n, and a fortiori θζθ > n. Thus P(Xθ,ρ > n) is bounded from
above by P(ζθ > n/θ), and we conclude from Lemma 4.4 specialized for x = 1
and b = θ that

lim sup
n→∞

n−1 lnP(Xθ,ρ > n) ≤ −(ln θ − 1 + 1/θ).

In order to establish a converse lower bound, let ε ∈ (0, 1) be arbitrarily small,
and consider the event

�(n, θ, ε) := {N(t) + 1 − ε − (θ + ε)t ≥ 0 for all 0 ≤ t ≤ γ (n)}.

On that event, one has N(t) + 1 − θt ≥ ε(1 + t) for all 0 ≤ t ≤ γ (n), and hence

exp

(

−ρ

∫ γ (n)

0
(N(t) + 1 − θt)−1dt

)

≥ (γ (n) + 1)−ρ/ε ≥ (n/(θ + ε))−ρ/ε,

where for the second inequality, we used that N(γ (n)) + 1 − ε ≥ (θ + ε)γ (n).
We are left with estimating P(�(n, θ, ε)). Set b = θ + ε and use the notation of

Lemma 4.4, so that

�(n, θ, ε) = {γ (n) < ν(1 − ε)}.

On the event {bν(1 − ε) ≥ n}, one has

N(ν(1 − ε)) = bν(1 − ε) − 1 + ε ≥ n + ε − 1,

so actually γ (n) < ν(1−ε). Hence {bν(1−ε) ≥ n} ⊂ �(n, θ, ε), and we conclude
from Lemma 4.4 that

lim inf
n→∞ n−1 lnP(�(n, θ, ε)) ≥ 1 − ln b − 1/b.

Putting the pieces together, we have shown that for any b > θ

lim inf
n→∞ n−1 lnE

(

exp

(

−ρ

∫ γ (n)

0
(N(t) + 1 − θt)−1dt

)

1γ (n)<ζθ

)

≥ 1−ln b−1/b.

Thanks to Proposition 3.1, this completes the proof. 	
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We next establish Theorem 4.2.

Proof of Theorem 4.2 We use the abbreviations ξ(t) := N(t) + 1 − t and ζ := ζ1,
and start with the lower bound. We let 0 < ε < 1. First note that there are the
inclusions of events

{γ (n) < ζ } ⊃ {γ (n) < min{ζ, (1 + ε)n}} ⊃ {ξ(t) > 0 for all 0 ≤ t ≤ (1 + ε)n , γ (n) < (1 + ε)n}
⊃ {ξ(t) > ρ1/3t2/3 for all 0 < t ≤ (1 + ε)n , γ (n) < (1 + ε)n}.

In particular, with Proposition 3.1 at hand, we obtain for small ε and large n

P(X1,ρ > n) = E

(

exp

(

−ρ

∫ γ (n)

0
(ξ(t))−1dt

)

1γ (n)<ζ

)

≥ exp

(

−ρ

∫ (1+ε)n

0

1

ρ1/3t2/3 dt

)

P
(
ξ(t) > ρ1/3t2/3 for all 0 < t ≤ (1 + ε)n , γ (n) < (1 + ε)n

)

≥ exp
(
−4(ρ2n)1/3

)
P
(
ξ(t) > ρ1/3t2/3 for all 0 < t ≤ (1 + ε)n

) − P (γ (n) ≥ (1 + ε)n) ,

where for the last line, we used that exp(−3(ρ2(1 + ε)n)1/3) ≥ exp(−4(ρ2n)1/3)

for small ε, and that P(A ∩ B) ≥ P(A) − P(Bc) for arbitrary events A,B.
From an elementary large deviation estimate for a sum of n independent standard
exponentials, we know that for some λ > 0

P (γ (n) ≥ (1 + ε)n) = O(exp(−λ ε2n)). (6)

Therefore, our claim follows if we show a bound of the form

P

(
ξ(t) > ρ1/3t2/3 for all 0 < t ≤ (1 + ε)n

)
≥ exp

(
−16(ρ2n)1/3

)
(7)

for large n. Essentially, this can be deduced from [18, Theorem 4.1]: In the notation
from there, we may consider the random walk Sj = N(j) − j , j ∈ N, and the
function

g(t) := 3

2
ρ1/3(t + max{ρ, 1})2/3 − 2 max{ρ, ρ1/3} , t ≥ 0.

The function g is monotone increasing with g(0) < 0 and regularly varying with
index 2/3. Moreover, it is readily checked that

sup
t≥1

(
g
(
(2/3)t

) − g
(
(2/3)(t − 1)

)) ≤ 2/3 .
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Therefore, the assumptions of [18, Theorem 4.1] are fulfilled, which ensures after a
small calculation that for ε sufficiently small and n large enough,

P
(
Sj > g(j) for all j = 1, . . . , �(1 + ε)n�) ≥ exp

(
−16(ρ2n)1/3

)
. (8)

Now let us define for 0 ≤ t0 < t1 the event

E(t0, t1) :=
{
ξ(t) > ρ1/3t2/3 for all t0 < t ≤ t1

}
.

For j ∈ N and t ∈ R with j ≤ t ≤ j + 1, we have ξ(t) ≥ Sj and, provided
j ≥ ρ0 := 8�ρ�, also

g(j) ≥ ρ1/3(j + 1)2/3 ≥ ρ1/3t2/3.

Therefore, by (8),

P (E(ρ0, (1 + ε)n)) ≥ P
(
Sj > g(j) for all j = ρ0, . . . , �(1 + ε)n�) ≥ exp

(
−16(ρ2n)1/3

)
.

(9)

Writing

P (E(0, (1 + ε)n)) = P (E(ρ0, (1 + ε)n) | E(0, ρ0)) · P (E(0, ρ0)) ,

we note that P (E(0, ρ0)) is bounded from below by a strictly positive constant
(depending on ρ). Moreover, since ξ is a spatially homogeneous Markov process,
we clearly have

P (E(ρ0, (1 + ε)n) | E(0, ρ0)) ≥ P (E(ρ0, (1 + ε)n)) ,

so that our claim (7) follows from (9). En passant, let us mention that n1/3 is the
correct stretch for the exponential in (7). Indeed, this can be seen from Theorem 4.2
in [18], where an analogous upper bound on the probability in (7) is given.

We now turn our attention to the upper bound. We fix a small 0 < ε < 1. On the
event

{

γ (n) ≥ (1 − ε)n and sup
t≤(1−ε)n

ξ(t) ≤ (2ρ)1/3n2/3

}

,

we have

exp

(

−ρ

∫ γ (n)

0
ξ(t)−1dt

)

≤ exp
(
−(1 − ε)(ρ2/2)1/3n1/3

)
,
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and from Proposition 3.1, P(X1,ρ > n) can be bounded from above by

exp
(
−(1 − ε)(ρ2/2)1/3n1/3

)
+P(γ (n) < (1 − ε)n) +P( sup

t≤(1−ε)n

ξ(t) > (2ρ)1/3n2/3).

On the one hand, from an elementary large deviation estimate similar to (6), we get
that for some λ > 0:

P(γ (n) < (1 − ε)n) = P(N((1 − ε)n) ≥ n) = O(exp(−λε2n)).

On the other hand, ξ is a Lévy process with no negative jumps started from 1 such
that

E(exp(q(ξ(t) − 1))) = exp
(
t (eq − 1 − q)

)
, t ≥ 0.

It follows classically that the process

exp
(
qξ(t) − t (eq − 1 − q)

)
, t ≥ 0

is a martingale started from eq . An application of the optional sampling theorem at
the first passage time of ξ above (2ρ)1/3n2/3 yields the upper-bound

exp
(
q(2ρ)1/3n2/3 − (1 − ε)n(eq − 1 − q)

)
P( sup

t≤(1−ε)n

ξ(t) > (2ρ)1/3n2/3) ≤ eq .

Specializing this for q = (2ρ)1/3n−1/3, we deduce that for n large enough

P( sup
t≤(1−ε)n

ξ(t) > (2ρ)1/3n2/3) ≤ exp
(
−(1 + (ε/2))(ρ2/2)1/3n1/3

)
.

Since ε > 0 can be taken arbitrarily small, this completes the proof. 	


5 Connection with a Population Model with Neutral
Mutations

The Yule-Simon distribution originates from [20], where Simon introduced a simple
random algorithm to exemplify the appearance of (1) in various statistical models.
More specifically, he proposed a probabilistic model for describing observed
linguistic (but also economic and biological) data leading to (1).

We shall now give some details of Simon’s model, which he described in terms
of word frequencies. Imagine a book that is being written has reached a length of
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n words. Write f (k, n) for the number of different words which occurred exactly k

times in the first n words. Simon works under the following two assumptions:

A1 The probability that the (n + 1)-st word is a word that has already appeared
exactly k times is proportional to kf (k, n);

A2 The probability that the (n + 1)-st word is a new word is a constant α

independent of n.

Setting

ρ = 1

1 − α
, (10)

he argues that under these two assumptions, the relative frequencies of words that
have occurred exactly k times are in the limit n → ∞ described by a Yule-Simon
law (1) with parameter ρ.

Simon’s paper initiated a lively dispute between Simon and Mandelbrot (known
as the Simon-Mandelbrot debate) on the validity and practical relevance of Simon’s
model. We mention only Mandelbrot’s reply [14] and Simon’s response [21], but the
discussions includes further (final) notes and post scripta. While Simon’s derivation
presupposes ρ > 1, see (10), the discussion between the two gentlemen evolved in
particular around the adequacy and meaning of Simon’s model when 0 < ρ < 1;
see pp. 95–96 in [14].

It is one of the purposes of this section to specify a probabilistic population model
for which the Yule-Simon law is observed in all cases ρ > 0. To that aim, it is
convenient to first recast Simon’s model in terms of random recursive forests, and
then interpret the latter as a population model with neutral mutations. By letting the
rate of mutation asymptotically decrease to zero in an appropriate way, we will then
obtain the whole family of one-parameter Yule-Simon laws.

However, we will go further: A natural generalization of Simon’s algorithm,
which we formulate in terms of a more general population model with age-
dependent reproduction rate, will finally result in the two-parameter Yule-Simon
laws (Proposition 5.1).

5.1 Simon’s Model in Terms of Yule Processes with Mutations

Fix p ∈ (0, 1), take n � 1 and view [n] := {1, . . . , n} as a set of vertices. We
equip every vertex 2 ≤ � ≤ n with a pair of variables (ε(�), u(�)), independently
of the other vertices. Specifically, each ε(�) is a Bernoulli variable with parameter
p, i.e. P(ε(�) = 1) = 1 − P(ε(�) = 0) = p, and u(�) is independent of ε(�) and
has the uniform distribution on [� − 1]. Simon’s algorithm amounts to creating an
edge between � and u(�) if and only if ε(�) = 1. The resulting random graph is
a random forest and yields a partition of [n] into random sub-trees. In this setting,
Simon showed that for every k ≥ 1, the proportion of trees of size k, i.e. the ratio
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between the number of sub-trees of size k and the total number of sub-trees in the
random forest, converges on average as n → ∞ to ρB(k, ρ + 1), where ρ = 1/p.

Let us next enlighten the connection with a standard Yule process Y = Y0. We
start by enumerating the individuals of the population model described by the Yule
process in the increasing order of their birth dates (so the ancestor is the vertex 1,
its first child the vertex 2, . . . ), and stop the process at time

T (n) := inf{t ≥ 0 : Y (t) = n}

when the population has reached size n. Clearly, the parent u(�) of an individual 2 ≤
� ≤ n has the uniform distribution on [�−1], independently of the other individuals.
The genealogical tree obtained by creating edges between parents and their children
is known as a random recursive tree of size n; see e.g. [8]. Next imagine that neutral
mutations are superposed to the genealogical structure, so that each child is either
a clone of its parent or a mutant with a new genetic type, and more precisely, the
individual � is a mutant if and only if ε(�) = 0, where (ε(�))�≥2 is a sequence of
i.i.d. Bernoulli variables with parameter p, independent of the sequence (u(�))�≥2.
The partition of the population into sub-populations of the same genetic type, often
referred to as the allelic partition, corresponds to an independent Bernoulli bond
percolation with parameter p on the genealogical tree, that is, it amounts to deleting
each edge with probability 1 − p, independently of the other edges. The resulting
forest has the same distribution as that obtained from Simon’s algorithm.

Simon’s result can then be re-interpreted by stating that the distribution of the
size of a typical sub-tree after percolation (i.e. the number of individuals having the
same genetic type as a mutant picked uniformly at random amongst all mutants)
converges as n → ∞ to the Yule-Simon distribution with parameter ρ = 1/p. This
can be established as follows. Observe first that a typical mutant is born at time
T (�Un�), where U is an independent uniform variable on [0, 1]. By the branching
property, a typical sub-tree can thus be viewed as the genealogical tree of a Yule
process with birth rate p per individual (recall that p is the probability for a child to
be a clone of its parent), stopped at time T (n) − T (�Un�). Then recall that

lim
t→∞ e−t Y (t) = W a.s.,

where W > 0 is some random variable, and hence

T (n) − T (�Un�) ∼ ln(n/W) − ln(Un/W) = − ln U as n → ∞.

Since a Yule process with birth rate p per individual and taken at time t ≥ 0 has
the geometric distribution with parameter e−pt , and −p ln U has the exponential
distribution with parameter ρ = 1/p, we conclude that the distribution of the size
of a typical sub-tree after percolation converges as n → ∞ to (1).

In the following section, we shall generalize Simon’s algorithm in two different
directions.
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5.2 A Generalization of Simon’s Model

The random algorithm described above only yields Yule-Simon distributions with
parameter ρ > 1. A modification dealing with the case ρ ≤ 1 has already been
suggested in Simon’s article, see Case II on page 431 in [20]; let us now elaborate
on this more specifically.

The Full Range of the One-Parameter Yule-Simon Law

Let us now assume that the ε(�) are independent Bernoulli variables with parameter
p = p(�) depending possibly on �, again everything independent of the u(�)’s. As
previously, the individuals � such that ε(�) = 0 are viewed as mutants, and those
with ε(�) = 1 as clones.

We shall consider two mutually exclusive asymptotic regimes:

(a) limn→∞ p(n) = 1/ρ for some ρ > 1,
(b) limn→∞ p(n) = 1, and

∑n
�=1(1 − p(�)) is regularly varying with index

ρ ∈ (0, 1].

Plainly, case (a) holds in particular when the ε(�)’s form an i.i.d. sequence of
Bernoulli variables with parameter p = 1/ρ as in the preceding section. Regime
(b) is a situation where mutations are asymptotically rare. In terms of the number of
mutants m(n) = n − ∑n

�=2 ε(�), (b) is implying that, in probability, m(n) = o(n),
and m(n) is regularly varying with index ρ.

Just as before, we consider the allelic partition at time T (n), i.e. the partition of
the population into sub-population bearing the same genetic type. As we shall see in
the following Proposition 5.1, this population model leads under the two different
regimes to the full range of the one-parameter Yule-Simon law when studying the
limit size of a typical sub-population.

A Two-Parameter Generalization

It remains to appropriately extend the model in order to encompass the two-
parameter Yule-Simon distributions. To that aim, we replace the underlying standard
Yule process Y = Y0 by a general branching process Yθ as considered in the intro-
duction. Again, we consider independently a sequence (ε(�))�≥2 of {0, 1}-valued
random variables indicating which individuals are clones or mutants, respectively,
and exactly as before, we may study the allelic partition at the time

Tθ (n) = inf{t ≥ 0 : Yθ (t) = n} (11)
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when the total population size n is reached. We stress that the case θ = 0
corresponds to the one-parameter model described just above: We have Y0 = Y ,
and consequently T0(n) = T (n).

We are now in position to formulate a limit result for the proportion of sub-
populations of size k in our extended model, generalizing Simon’s result to the two-
parameter Yule-Simon distributions. For the sake of simplicity, we focus on the
case θ ≤ 0 when the total population in the general branching process Yθ is infinite
almost surely.

Proposition 5.1 Let θ ≤ 0 and ρ > 0, consider a general branching process Yθ

as in Sect. 2, and define Tθ (n) as in (11). Let further (ε(�))�≥2 be a sequence of
variables in {0, 1} which is independent of the branching process and fulfills one
of the regimes (a) or (b). Regard every individual � with ε(�) = 0 as a mutant,
and consider at time Tθ (n) the (allelic) partition of the whole population into sub-
populations of individuals with the same genetic type.

For every k ∈ N, write Qn(k) for the proportion of sub-populations of size k (i.e.
the number of such sub-populations divided by the total number of mutants) in the
allelic partition at time Tθ (n). Then

lim
n→∞ Qn(k) = P(Xϑ,� = k) in probability,

where

(ϑ, �) =
{
(θρ, (1 − θ)ρ) in regime (a),
(θ, (1 − θ)ρ) in regime (b).

Remark 5.2 We stress that our model leads to the complete range of parameters
(ϑ, �) of the Yule-Simon distribution satisfying ϑ ≤ 0 and � > 0. Indeed, if ϑ +
� > 1, then the size of a typical sub-tree converges in law with the choices θ :=
ϑ/(ϑ + �) and ρ := ϑ + � under regime (a) to Xϑ,�. If ϑ + � ≤ 1, then θ := ϑ and
ρ := �/(1 − ϑ) under regime (b) yield the law Xϑ,�.

Remark 5.3 The conditional expectation of the size of a typical sub-tree given that
there are m(n) mutants in the population of total size n is clearly n/m(n). Note that
m(n) ∼ (1−1/ρ)n in regime (a), whereas m(n) = o(n) in regime (b). We may thus
expect from Proposition 5.1 that

E(Xθρ,(1−θ)ρ) = ρ/(ρ − 1) when θ ≤ 0 and ρ > 1,

and that

E(Xθ,(1−θ)ρ) = ∞ when θ ≤ 0and ρ ≤ 1.

That these identities indeed hold has already been observed in Remark 2.2.
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We now present the main steps of the proof of Proposition 5.1, leaving some
of the technical details to the interested readers. We start with an elementary
observation in the case constant mutation rates.

Lemma 5.4 Suppose that p(n) ≡ 1/ρ for some fixed ρ > 1. The process Ỹθ,ρ =
(Ỹθ,ρ(t))t≥0 of the size of the sub-population bearing the same type as the ancestor
has then the same distribution as (Yθρ(t/ρ))t≥0.

Proof Since Ỹθ, ρ is obtained from Yθ by killing each of its child (of course, together
with its descent) with probability 1 − 1/ρ and independently of the others, Ỹθ, ρ is
also a general branching process. More precisely, thanks to the thinning property of
Poisson random measures, typical individuals in Ỹθ, ρ reproduce at ages according
to a Poisson point measure on [0,∞) with intensity ρ−1e−θtdt , and the statement
follows from the change of variables s = t/ρ. 	


We next return to the general situation where mutation rates p(n) may depend
on n, and state two technical lemmas involving convergence in distribution in
D([0,∞), R) × D([0,∞), R), where D([0,∞), R) is the Skorokhod space of
càdlàg functions from [0,∞) to R.

Lemma 5.5 Suppose
∑

n≥1 p(n) = ∞, so there are infinitely many mutants a.s.

Let i, j ≥ 1, and let Y i
θ = (Y i

θ (t))t≥0 denote the process of the size of the sub-
population (both clones and mutants descents) generated by the ith mutant as a

function of its age. Then Y i
θ

(d)= Y
j
θ

(d)= Yθ , and for i, j → ∞, i �= j ,

(
Y i

θ , Y
j
θ

)
(d)�⇒ (

Y ′
θ , Y ′′

θ

)
,

where Y ′
θ and Y ′′

θ are independent copies of Yθ .

Proof This is an immediate consequence of the branching property of Yθ , noting
that the probability that the individuals labelled i and j are in the same sub-
population tends to zero for i �= j → ∞. 	

Lemma 5.6 Let i, j ≥ 1, and let Ỹ i

θ denote the process of the size of the clonal sub-
population generated by the ith mutant (i.e. Ỹ i

θ (t) is the size of the sub-population
bearing the same genetic type as the ith mutant when the latter has age t). Then

Ỹ i
θ

(d)= Ỹ
j
θ , and we have the following convergence for i, j → ∞, i �= j :

(
Ỹ i

θ , Ỹ
j
θ

)
(d)�⇒

{(
Ỹ ′

θ, ρ, Ỹ ′′
θ, ρ

)
in regime (a),

(Y ′
θ , Y ′′

θ ) in regime (b),

where Ỹ ′
θ, ρ , Ỹ ′′

θ, ρ are independent copies of the process Ỹθ, ρ in Lemma 5.4, and Y ′
θ ,

Y ′′
θ are independent copies of Yθ .
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Proof Recall that Ỹ i
θ is obtained from Y i

θ by superposing neutral mutations to the
latter and keeping only the clones of i. Since the nth individual is a mutant with
probability 1 − p(n), the claim now follows readily from Lemma 5.5 and the fact
that p(n) → 1/ρ in regime (a), whereas p(n) → 1 in regime (b). 	


We now have all the ingredients needed for the proof of Proposition 5.1.

Proof of Proposition 5.1 We will argue that

lim
n→∞E

(
Qi

n(k)
)

= P(Xϑ,� = k)i for i = 1, 2 .

The claim then follows via the second moment method.
As before, let us write m(n) for the number of mutants among the first n

individuals, i.e. at time Tθ (n). Writing bi for the birth-time of the ith mutant (with
b1 := 0, interpreting the first individual as a mutant), we have

E (Qn(k)) = E

⎛

⎝ 1

m(n)

m(n)∑

i=1

11{
Ỹ i

θ (Tθ (n)−bi )=k
}

⎞

⎠ .

We will first prove convergence of the first moment of Qn(k). From Proposition 2.3
we deduce that the time Tθ (n) at which the population reaches size n satisfies

Tθ (n) = (1 − θ)−1 ln(n/Wθ) + o(1) (12)

in probability, where Wθ > 0 denotes the limit in probability of e(θ−1)tYθ (t) as
t → ∞.

Let us first consider regime (a), where p(n) → 1/ρ as n → ∞. For i tending to
infinity, it follows that

bi = (1 − θ)−1 ln (i/((1 − 1/ρ)Wθ)) + o(1)

in probability. By the law of large numbers, we have for the number of mutants
that m(n) ∼ (1 − 1/ρ)n almost surely. Combining the last display with (12) and
Lemma 5.6, we deduce by a Riemann-type approximation that

lim
n→∞E (Qn(k)) = P

(
Ỹθ,ρ

(
−(1 − θ)−1 ln U

)
= k

)

for n → ∞, where U is an independent uniform variable on (0, 1).
Note that the random variable −(1 − θ)−1 ln U inside the last probability has

the law of an exponentially distributed random variable T1−θ with parameter 1 − θ .
Now, thanks to Lemma 5.4,

P

(
Ỹθ,ρ (T1−θ ) = k

)
= P

(
Yθρ (T1−θ /ρ) = k

) = P(Xθρ,(1−θ)ρ = k),
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where for the last equality, we used that T1−θ /ρ is exponentially distributed with
parameter (1 − θ)ρ.
In regime (b), mutations become asymptotically rare, i.e. p(n) → 1 for n → ∞,
and the number of mutants m(n) is regularly varying with index ρ ∈ (0, 1]. Now,
if i = i(n) = �rρm(n)� for some r ∈ (0, 1), it follows that the ith mutant is born
when there are approximately rn individuals in the population system. Therefore,
in probability as n → ∞,

bi ∼ (1 − θ)−1 ln (rn/Wθ) + o(1).

A approximation similar to that in regime (a) then allows us to deduce that

lim
n→∞E (Qn(k)) = P

(
Yθ

(
−(1 − θ)−1(1/ρ) ln U

)
= k

)
.

Since −(1 − θ)−1(1/ρ) ln U is exponentially distributed with parameter (1 − θ)ρ,
the last expressions is equal to P(Xρ,(1−θ)ρ = k).

As far as the second moment is concerned, it is a consequence of the asymptotic
independence derived in Lemma 5.6 that

E

(
Q2

n(k)
)

∼ E (Qn(k))2

as n → ∞, proving our claim in both regimes (a) and (b). 	

We shall now conclude this work by presenting an alternative proof of Proposi-

tion 5.1 in the special (and important) case when p(n) ≡ 1/ρ for some fixed ρ > 1,
by making the connection with results of Nerman [15]. We thus consider the general
branching process Yθ , where each child is a clone of its parent with fixed probability
1/ρ, or a mutant bearing a new genetic type with complementary probability
1 − 1/ρ, independently of the other individuals. We regard this population model
as a branching particle system, in which the particles represent the clonal sub-
populations. This means that the birth of a mutant child in the population is viewed
as the birth of a new particle in the system; the size of the latter then grows as time
passes and is given by the size of the sub-population having the same genetic type
as this mutant.

The process of the size of a typical particle as a function of the age of the mutant
ancestor has the same distribution as the process Ỹθ,ρ in Lemma 5.4. Moreover, each
particle also gives birth as time passes to daughter particles (i.e. to new mutants)
which in turn evolve independently one from the others and according to the same
dynamics. In words, the particle system is another general branching process.

Observe that the rate at which a particle with size � gives birth to a daughter
particle equals (1−1/ρ)�; hence the reproduction intensity measure μ̃ of branching
particle system is given by

μ̃(dt) = (1 − 1/ρ)E(Ỹθ,ρ(t))dt.
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So Proposition 2.1 and Lemma 5.4 yield

μ̃(dt) = 1 − 1/ρ

1 − θρ

(
e(1−θρ)t/ρ − θρ

)
dt.

It is now readily checked that the so-called Malthusian parameter (see Equation
(1.4) in [15]) of the branching particle system equals 1 − θ , namely we have

∫ ∞

0
e−(1−θ)t μ̃(dt) = 1.

Finally, let us write Zt for the number of particles (i.e. of genetic types) at time
t . For any k ≥ 1, write Zk

t for the number of particles with size k at time t , i.e.
the number of sub-populations with size exactly k in the allelic partition at time t .
According to Theorem 6.3 and Equation (2.7) in [15] (the reader will easily check
that the assumptions there are fulfilled in our framework), one has

lim
t→∞

Zk
t

Zt

= (1 − θ)

∫ ∞

0
e−(1−θ)t

P(Ỹθ,ρ(t) = k)dt, almost surely.

Recalling Lemma 5.4, we have thus

lim
t→∞

Zk
t

Zt

= P(Yθρ(T(1−θ)ρ) = k) = P(Xθρ,(1−θ)ρ = k), almost surely.

It only remains to observe that for t = Tθ (n), one has Zk
t /Zt = Qn(k), and we thus

have arrived at the claim made in Proposition 5.1.
Finally, we point out that the argument above also applies for θ ∈ (0, 1), provided

that one works conditionally on the event that the total number of mutants is infinite,
which has then a positive probability.
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