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Abstract It is well-known that the first time a stable subordinator reaches [1,+∞).
is Mittag-Leffler distributed. These distributions also appear as limiting distributions
in triangular Polya urns. We give a direct link between these two results, using a
previous construction of the range of stable subordinators. Beyond the stable case,
we show that for a subclass of complete subordinators in the domain of attraction of
stable subordinators, the law of the first passage time is given by the limit of an urn
with the same replacement rule but with a random initial composition.
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1 Introduction

Let (St )t≥0 be a stable subordinator of index α ∈ (0, 1), started at 0, and let T be
the first passage time in [1,+∞).

T = inf{t > 0, St > 1}

Then it is well-known that the law of T is the Mittag-Leffler distribution with
parameter α, which is characterized by its moments:

ET n = �(1/α + n)

�(1/α)�(1 + nα)

See for instance [10], p.10. This same distribution also appears as the asymptotic
number of white balls in a classical Polya urn scheme. Let us introduce some
standard notation.
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Definition We call an urn scheme with replacement matrix

(
a b

c d

)

and initial condition (B0,W0) the following process. We initially have a black and
a white ball with respective weights (B0,W0). Then sequentially, a ball is drawn at
random with probability proportional to its weight. If this ball is black, it is replaced
into the urn together with a black ball of weight a and a white ball of weight b. If
the ball is white, it is put back into the urn together with a black ball with weight c

and a black ball with weight d.

Consider the case with the replacement matrix

(
1 0

1 − α α

)
(1)

and initial condition (B0,W0). Let Wn be the total weight of white balls after n

steps. Then n−αWn converges in law to a Mittag-Leffler random variable X which
can be characterized by its moments, namely

EXn = �(B0 + W0)�(W0/α + n)

�(W0/α)�(B0 + W0 + nα)
(2)

See e.g. [6]. In particular, X has the same law as the first passage time T defined
above with the choice of parameters (B0,W0) = (1−α, α). Note that (2) still holds
when α = 1.

We argue that these two results are directly related via a construction of stable
subordinators that first appeared in [7] and that was then extended to complete
subordinators in [8]. Complete subordinators can be indexed by all possible
measurable functions β : [0, 1] → [0, 1] and have Lévy-Khintchine exponent given
by

φ(β)(λ) = − logE[exp(−λS
(β)
1 )] = exp

∫ 1

0

(λ − 1)β(x)

1 + (λ − 1)x
dx (3)

For general references on subordinators, see e.g. [2] and [11]. Our result is that for
a subclass of complete subordinators, the first passage time is also related to an urn
process:

Theorem 1 Let β : [0, 1] → [0, 1] be a measurable function which is constant,
equal to α ∈ (0, 1] on an interval [0, h] for some h ∈ (0, 1]. Let (S

(β)
t ) be the

subordinator with exponent given by (3) and let

T (β) = inf{t > 0, S(β)
t > 1}
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be its first passage time to [1,+∞). Then, up to a multiplicative constant, T (β) has
the same law as the limit of n−αWn where Wn is the total weight of white balls in an
urn scheme with replacement matrix (1) and random initial conditions as follows.
Put θ = (1/h) − 1. Then for all integers l, m ≥ 0,

P((B0,W0) = (l+(m+1)(1−α), (m+1)α) = θ le−θ

l!
1

2iπ

∫
C

dt

t
ψ(t)m(1−ψ(t))

1 − (1/t)l+1

1 − (1/t)

where C is the unit circle of the complex plane and the function ψ is given by

ψ(t) = 1 − exp

(∫ 1

0

tγ (x)

1 − tx
dt

)

with

γ (x) = β

(
1

θ + 1 − θx

)

The presence of a multiplicative constant in Theorem 1 is not a real issue since
this corresponds to replacing (S

(β)
t ) with (S

(β)
ct ) for some positive constant c. We

stated our result for the entrance to [1,+∞) but of course, similar results hold with
a staightforward adaptation for the entrance to [a,+∞) for any a > 0.

When h = 1, the subordinator is stable. When h < 1, the process is in the
domain of attraction of an α-stable subordinator in small time: as t → 0, t−1/αS

(β)
t

converges in law to the (unique) positive stable distribution with index α.
Conversely however, a complete subordinator (S

(β)
t ) may belong to the domain

of attraction of an α-stable subordinator in small time without the function β being
constant near 0. Take for instance β(x) = α + (1 − α)x, then (S

(β)
t ) belongs to

this domain of attraction but Theorem 1 does not apply. It would be interesting to
know how far Theorem 1 could be generalized for subordinators of this kind, that
is, whether the first passage time can be related to an urn process.

Note that if the hypothesis of Theorem 1 on β is satisfied with α = 1, the
subordinator has positive drift whereas if it is satisfied with α = 0, the subordinator
is a compound Poisson process, see [8]. In the case α = 1, Theorem 1 still holds.
On the other hand, in the case α = 0, the first passage time problem reduces to a
problem on random walks which can be handled using the same tools as in Sect. 3.3.
This last case is in fact very classical and we shall not review the corresponding
literature here.

Using Theorem 1 and (2), one can compute the moments of the first passage time.
Let us make these computations in two simple cases. First, suppose that

β(x) = α1{x∈[0,h]
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Then almost surely, W0 = α and the moments of T are given by (with c a positive
constant and θ as in Theorem 1):

ET n = cn
∑
l≥0

θ le−θ

l!
�(1 + n)

�(1 + l + nα)

Next, suppose that

β(x) = α1{x∈[0,h)} + 1{x∈[h,1]}

Then almost surely, B0 = 1 − α and the moments of T are given by:

ET n = cn
∑
m≥0

θme−θ

m!
�(1 + m + n)

�(1 + m + nα)

In all other cases however, the computations are more intricate and there are no
obvious simplifications.

Apart from exact computations, for which little is known, other results on first
passage times for subordinators, regarding in particular the existence of a density or
asymptotic estimates, can be found in [5] and references therein.

The remainder of this paper is organized as follows. We first recall the con-
struction of regenerative sets from [8], both in the discrete and continuous case,
in Sect. 2. We explain in Sect. 3 how urns are embedded in this construction and
how the distributions described in Theorem 1 occur in that context. Finally, we
show in Sect. 4 that the embedded urns described in Sect. 3 indeed correspond to
first passage times for subordinators.

2 A Construction of Regenerative Sets

In the first two subsections, we recall the construction of regenerative sets given in
[8], both in the discrete and in the continuous case. The proof of Theorems 2 and 3
can be found there. The class of regenerative sets obtained in Sect. 2.2 is exactly the
class of ranges of complete subordinators, as noted in [1] and [4].

2.1 The Lattice Case

We begin by the construction of regenerative sets in N.
Construction 1.
Fix a measurable function γ : [0, 1] → [0, 1]. Let (Xn, n ≥ 1) be iid random

variables, uniformly distributed on [0, 1]2. We denote Xn = (hn, Un). One should
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Fig. 1 Construction 1

view h as a height and U as a parameter. Say that Xn is green if Un ≤ γ (hn),
and red otherwise. Say that an integer k ∈ [1, n] is n-visible if hk ≥ hm for all
integers m ∈ [k, n]. Finally, say that n percolates for γ if, for every k ≤ n such that
k is n-visible, Xk is green. Let R(γ ) be the set of integers that percolate for γ (by
convention, 0 percolates for γ ).

See Fig. 1. Green points are represented by black circles, red points by white
circles and the black squares stand for the integers that percolate. The horizontal
lines express the fact that the red point at 4 prevents 5, 6 and 7 from percolating.

Remark that if γ is a constant, then the Xn are green or red with probability γ

(resp. 1 − γ ), independently of the height.

Theorem 2 The set R(γ ) defined by Construction 1 is a lattice regenerative set.
It can be viewed as the image of a random walk (S

(γ )
n , n ≥ 0), where S

(γ )
n =

Y
(γ )

1 + . . . + Y
(γ )
n , the Y

(γ )

i being iid random variables taking values in N ∪ {∞},
with generating function

ψ(γ )(t) = E(tY
(γ )
1 ) = 1 − exp

(
−

∫ 1

0

tγ (x)

1 − tx
dx

)

2.2 The Continuous Case

Consider a Poisson Point process N on R+ × [0, 1] × [0, 1] with intensity
dx ⊗ y−2dy ⊗ dz. Given a measurable function β : [0, 1] → [0, 1], we can
define an analogue of Construction 1 as follows.

Construction 2.
Say that a point X = (t, h, U) of N is green if U ≤ β(h), and red otherwise.

Say that another point X′ = (t ′, h′, U ′) of N is visible for X if t ′ ≤ t and if, for
all points of N of the form X′′ = (t ′′, h′′, u′′) with t ′ ≤ t ′′ ≤ t , we have h′ ≥ h′′.
Finally, say that X percolates for β if, for every X′ such that X′ is visible for X,
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X′ is green. By convention, 0 percolates for β. We denote by R(β)
1 the set of first

coordinates of percolating points, and we set

R(β) = R(β)
1

For every point X = (t, h, U) of N , let U(X) be the set of points of N of
the form X′ = (t ′, h′, u′) with t ′ ≤ t and h′ ≥ h. Then almost surely, U(X)

is finite, since almost surely, every strip of the form [0, t] × [h,∞] × [0, 1] with
h > 0 contains a finite number of points of N . Moreover, determining whether X

percolates only depends on U(X), and therefore Construction 2 is well-defined.

Theorem 3 The set R(β) defined by Construction 2 is a regenerative set. It can be
viewed as the image of a subordinator (S

(β)
t )t≥0 with Laplace exponent

φ(β)(λ) = − logE[exp(−λS
(β)
1 )] = exp

∫ 1

0

(λ − 1)β(x)

1 + (λ − 1)x
dx

for λ ≥ 0.

2.3 Relating the Discrete and the Continuous Case

Let h > 0. As noted above, if we only look at the points of N with y-coordinate
≥ h in Construction 2, we have a discrete set and we can determine whether these
points percolate or not without taking into account the points whose y-coordinate is
< h. Denote the points with y-coordinate ≥ h by

(x1, y1, U1), (x2, y2, U2), . . .

with x1 < x2 < . . .. From this discrete set, we can recover Construction 1 as
follows.

Let θ = (1/h) − 1 and consider the function F : [h, 1] → [0, 1] defined by

F(x) = 1 + 1

θ
− 1

θx

Its inverse is the function F−1 : [0, 1] → [h, 1] given by

F−1(x) = 1

θ + 1 − θx
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Put hn = F(yn) for every n ≥ 1. Then it is easily seen that the sequence
(hn, n ≥ 1) is a sequence of iid random variables, uniformly distributed on [0, 1]
and independent of the sequence (xn, n ≥ 1). Therefore the sequence

((hn, Un), n ≥ 1)

has the same law as in Sect. 2.1 and is independent of (xn, n ≥ 1).
Consider the function

γ (x) = β(F−1(x)) = β

(
1

θ + 1 − θx

)

so that β(x) = γ (F (x)). Then from the sequence (hn, Un) and the function γ , we
can define a regenerative set R by Construction 1 and we check that k ∈ R if and
only if (xk, yk, Uk) percolates by Construction 2. Moreover, Theorem 2 tells us that
R is the range of a random walk (Sn) with generating function

ψ(t) = 1 − exp

(∫ 1

0

tγ (x)

1 − tx

)

which is the same as in Theorem 1.

3 Embedded Urns

In this section, we use the construction of regenerative sets from Sect. 2.2. We shall
always restrict ourselves to the subset of points of N with x-coordinate ≤ 1.

3.1 An Alternative Description of the Urn

Consider an urn scheme with replacement matrix

(
1 0

1 − α α

)

and initial condition (B0,W0). This urn can be described by the following mecha-
nism:

• At time 0, add a black ball with weight B0 and a white ball with weight W0.
• Recursively at time N ≥ 1,
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– choose, independently of the past, a random time tN ∈ {0, . . . N − 1} with
probability

P(tN = k) = 1

N − 1 + B0 + W0

if k ≥ 1 and

P(tN = 0) = B0 + W0

N − 1 + B0 + W0

– If tN = 0, then at timeN , with probabilityB0/(B0+W0), add a black ball with
weight 1 and with probability W0/(B0 + W0), add a black ball with weight
1 − α and a white ball with weight α.

– If, at time tN ≥ 1, a black ball with weight 1 had been added, then add at time
N a black ball with weight 1.

– If, at time tN ≥ 1, a black ball with weight 1− α and a white ball with weight
α had been added, then at time N , with probability 1 − α, add a black ball
with weight 1 and with probability α, add a black ball with weight 1 − α and
a white ball with weight α.

3.2 The Stable Case

We deal here with the case when β is constant and equal to α ∈ (0, 1). Let us denote
the set of points of N , re-arranged by decreasing y-coordinate, as

{(x1, y1, U1), (x2, y2, U2), . . .}

with y1 > y2 . . .. By convention, set (x0, y0) = (0,∞).
For two integers N ≥ 0 and k ∈ [0, N], put

z
(N)
k = min({x ∈ {1, x0, . . . , xN }, x > xk})

and

I
(N)
k = (xk, z

(N)
k ]

In words, x0, . . . , xN cut the interval [0, 1] into N + 1 subintervals and I
(N)
k is the

subinterval with left extremity xk . Denote the lengths of these subintervals

l
(N)
k = z

(N)
k − xk
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Let QN+1 be the index of the interval where xN+1 lies, that is, put QN+1 = k if k is
the (unique) integer ∈ [0, N] such that xN+1 ∈ I

(N)
k . From the properties of Poisson

point processes, the random variable (l
(N)
0 , . . . , l

(N)
N ) is uniformly distributed on the

N -dimensional simplex and is independent of the random variables Qi, 1 ≤ i ≤ N .
Therefore, for every k ∈ [0, N ],

P(QN+1 = k|Q1, . . .QN) = 1/(N + 1) (4)

Say that I (N)
k percolates if the point (xk, yk, Uk) percolates. From Construction 2,

we see that the point (xN+1, yN+1, UN+1) percolates if and only if I
(N)
QN

percolates
and (xN+1, yN+1, UN+1) is green.

To put it formally, for every k ∈ [1, N ] let Vk be the indicator function that
(xk, yk) is green and Wk be the indicator function that (xk, yk) percolates. Put also
W0 = 1. Then we have

WN+1 = VN+1WQN
(5)

Since the random variables Vn are independent of the random variables Qn, we can
extend (4) by further conditioning on the random variables Vn,Wn:

P(QN+1 = k|Q1, . . . QN, V1, . . . VN,W0, . . . WN, ) = 1/(N + 1) (6)

Using (6) together with (5), we can describe the law of the family of random
variables (Wn) as follows.

• First, W0 = 1.
• Recursively at time N ≥ 1,

– choose QN uniformly at random on [0, N], independently of the past.
– If WQN

= 0, then WN = 0.
– IfWQN

= 1, then independently of the past, choose eitherWN = 1 orWN = 0
with respective probabilities α, 1 − α.

Comparing with Sect. 3.1, we check that it is exactly the same mechanism as the
urn scheme with initial condition B0 = 1 − α, W0 = α. So we can state

Proposition 1 Let An be the number of percolating points in the set

{(x1, y1, U1), (x2, y2, U2), . . . (xn, yn, Un)}

Then the sequence (An) has the same law as (Wn), where Wn is the total weight of
white balls in an urn scheme with replacement matrix

(
1 0

1 − α α

)

and initial condition (1 − α, α).
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3.3 The General Case

We use here the same assumptions on the function β as in Theorem 1 and we keep
the notation from Sect. 3.2.

Let M be the number of points of the process N with y-coordinate greater that
h. Then conditionally on M , the interval [0, 1] is cut into M + 1 subintervals. We
define percolating and non-percolating subintervals as in the previous subsection
and denote by W the number subintervals that percolate. Note that even if M = 0,
W = 1 since by convention, we say that (x0, y0) percolates.

Using the same arguments as in Sect. 3.2, we see that the family of lengths of
these subintervals, which we can denote by (l1, . . . lM+1), is uniformly distributed
on the simplex and that (xM+1, yM+1, UM+1) percolates if and only if it is green
and xM+1 lies in a subinterval which percolates.

Then adding xM+1, we cut [0, 1] into M + 2 subintervals and then we can see
in which subintervals xM+2 and whether the point (xM+2, yM+2) percolates or not.
Reasoning this way by induction, as in Sect. 3.2, we see that conditionally on M and
W , we get an urn scheme with the same replacement matrix (1) but now the initial
condition is (M + 1 − Wα,Wα).

Proposition 2 Let An be the number of percolating points in the set

{(x1, y1), (x2, y2), . . . (xM+n, yM+n)}

Then the sequence (An) has the same law as (Wn), where Wn is the total weight of
white balls in an urn scheme with replacement matrix

(
1 0

1 − α α

)

and random initial condition (M + 1 − Wα,Wα).

It remains to study the joint law of (M,W). First, the law of M is Poisson with
mean θ = (1/h) − 1. Next, conditionally on M , using Sect. 2.3, we get that W has
the same law as the number of points in [0,M] in the regenerative set R obtained
from Construction 1 in Sect. 2.3.

This regenerative set R is the trace of a random walk (Sn) and the generating
function of S1 is the function ψ given in Theorem 1. Conditionally on M , we have

P(W = n+1|M) = P(Yn ≤ M,Yn+1 > M) = P(Yn ≤ M)−P(Yn+1 ≤ M) (7)

For each k, we have

P(Yn = k) = [tk]E(tYn) = [tk]ψ(t)n
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where [tk]f (t) stands for the coefficient of the momomial tk in the function f (t)

viewed as a power series. By the theorem of residues,

[tk]ψ(t)n = 1

2iπ

∫
C

ψ(t)n

tk+1

Summing over k in (7) yields

P(W = n + 1|M) = 1

2iπ

∫
C

dt

t
ψ(t)n(1 − ψ(t))

1 − (1/t)M+1

1 − (1/t)

and so finally,

P(M = m,W = n+1) = θme−θ

m!
1

2iπ

∫
C

dt

t
ψ(t)n(1−ψ(t))

1 − (1/t)m+1

1 − (1/t)
(8)

Comparing (8) with Theorem 1 and using Proposition 1, we can state:

Proposition 3 The sequence (An) from Proposition 1 has the same law as the
number of white balls in the urn process described in Theorem 1.

4 Proof of Theorem 1

We assume in this section that the conditions of Theorem 1 are satisfied. We shall
use the following property, see for instance [3] or [9] for a recent use of it:

Proposition 4 Suppose that a sequence of subordinators S(n) which are not
compound Poisson converges in law to S. Then the law of the first passage time
for S(n) converges in distribution to the law of the first passage time for S.

Let us go back to the construction of Sect. 2.2. If we only consider the points that
percolate and that have a y-coordinate more than 1/n, this yields a regenerative set
R(n) associated with the function αn(x) = α(x)1{x≥1/n}. According to Theorem 2,
R(n)is the range of a subordinator S(n) with exponent

φ(n)(λ) = exp
∫ 1

0

(λ − 1)α(x)

1 + (λ − 1)x
1{x≥1/n}dx

Thus S(n) converge to the subordinator S with exponent given in Theorem 1. Using
Proposition 4, we get the convergence

T (β)
n

law→ T (β)

where T
(β)
n stands for the first passage time for S(n)
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Since S(n) has a finite number of jumps inside a finite interval, it is a compound
Poisson process. This means that the times between two consecutive jumps are iid,
exponentially distributed random variables whose mean is given by

mn = 1

φ(n)(∞)
= exp

(
−

∫ 1

1/n

α(x)

x
dx

)
∼ cn−α

for some constant c > 0. Now let K(n) denote the number of jumps of S(n) before
exiting from [0, 1]. Then conditionally on K(n) = k, the first passage time T

(β)
n has

the same law as the sum of k iid, exponentially distributed random variables with
mean mn and variance m2

n. Using the Chebyshev inequality, we get

P(|T (β)
n − K(n)mn| > A|K(n)) ≤ K(n)m2

n

A2 = K(n)c2n−2α

A2 (9)

Next, remark that K(n) is the cardinal of the set R(n) ∩ [0, 1], that is, the number
of percolating points with y-coordinate greater than 1/n. Using Proposition 3, we
get that K(n) has the same law as the total weight of white balls in the urn scheme
described in Theorem 1:

αK(n) law= WL(n)

where L(n) is the number of points of N with y-coordinate greater than 1/n. Note
that L(n) is Poisson distributed with mean n − 1 and therefore

P(|L(n) − n| ≥ n2/3) → 0 (10)

as n → ∞. It follows from (10) that n−αWL(n) and n−αWn have the same limit law,
which is also the limit law of n−ααK(n).

Taking δ > 0 and A = n−α/4 in (9) yields

P(|T (β)
n − K(n)mn| > n−α/4) ≤ P(K(n) > δnα) + δ

nα/2 (11)

This is true for every δ > 0 and we have seen that

P(K(n) > δnα)

has the same limit as

P(Wn > δαnα)

Since we know that the sequence (n−αWn) converges, it is tight and therefore, the
upper bound in (11) goes to 0 as n goes to infinity. So T

(β)
n has the same limit law

as K(n)mn, that is, the limit law described in Theorem 1. This concludes the proof.
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