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Abstract We re-examine the celebrated Doob–McKean identity that identifies a
conditioned one-dimensional Brownian motion as the radial part of a 3-dimensional
Brownian motion or, equivalently, a Bessel-3 process, albeit now in the analogous
setting of isotropic α-stable processes. We find a natural analogue that matches the
Brownian setting, with the role of the Brownian motion replaced by that of the
isotropic α-stable process, providing one interprets the components of the original
identity in the right way.
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1 Introduction

A now-classical result in the theory of Markov processes due to Doob [8] and
McKean [19] equates the law of a Brownian motion conditioned to stay positive
with that of a Bessel-3 process; see also [21, 24, 25]. A precise statement of this
identity can be made in a number of different ways as each of the two processes
that are equal in law have several different representations. For the purpose of this
exposition, it is worth reminding ourselves of them.
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Denote by D(R) the space of càdlàg paths ω : [0,∞) → R ∪ � with lifetime
ζ = inf{t > 0 : ωt = �}, where � is a cemetery state. The space D(R) will be
equipped with the Skorokhod topology and its natural Borel σ -algebra into which
is embedded the natural filtration (Fs , s ≥ 0). On this space, we will denote by
B = (Bt , t ≥ 0) the coordinate process whose probabilities P = (Px, x ∈ R) are
those of a standard one dimensional Brownian motion. For each t ≥ 0, x > 0, the
limit

P
↑
x (A, t < ζ) := lim

ε→0
Px(A, t < e/ε | τ−

0 (B) > e/ε), (1)

where e is an independent exponentially distributed random variable with unit mean,
τ−

0 (B) = inf{t > 0 : Bt < 0}, defines a new family of probabilities on D(R≥0) :=
{ω ∈ D(R) : ω ∈ (0,∞) ∪ �}. It turns out that P↑ = (P

↑
x , x > 0) defines a

conservative (i.e. ζ = ∞) Markov process on [0,∞). As such, (B,P↑) is the sense
in which we can understand Brownian motion conditioned to stay positive.

Thanks to the well known fact that the probability Px(τ
−
0 (B) > t) ∼ x/

√
2πt ,

as t → ∞, it is easy to verify by taking its Laplace transform followed by an
integration by parts, then an application of the classical Tauberian Theorem, that, up
to an constant c > 0, Px(τ

−
0 (B) > e/ε) ∼ cx

√
ε. One thus easily verifies from (1),

with the help of an easy dominated convergence argument, that (B,P↑) satisfies

dP↑
x

dPx

∣
∣
∣
∣
∣Ft

= Bt

x
1{t<τ−

0 (B)}, x, t > 0. (2)

The change of measure (2) presents a second definition of the Brownian motion
conditioned to stay positive via a Doob h-transform with respect to Brownian
motion killed on exiting [0,∞), using the harmonic function h(x) = x. Suppose we
write pt (x, y) and p

†
t (x, y), t ≥ 0, x, y > 0, for the transition density of Brownian

motion and of Brownian motion killed on exiting [0,∞), respectively. Then another
way of expressing (2) is via the harmonic transformation

p↑(x, y) := y

x
p

†
t (x, dy) = y

x
(pt (x, y) − pt (x,−y)), x, y > 0. (3)

As alluded to above, the so-called Doob–McKean identity states that the process
(B,P↑) is equal in law to a Bessel-3 process. There are also several ways that one
may define the latter processes. Among the many, there are three that we mention
here.
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As a parametric family indexed by ν ≥ 0, Bessel-ν processes are defined as non-
negative valued, conservative, one-dimensional diffusions which can be identified
via the action of their generator Lν , which satisfies

Lν = 1

2

(
d2

dx2
+ ν − 1

x

d

dx

)

, x > 0, (4)

such that the point 0 is treated as an absorbing boundary if ν = 0, as a reflecting
boundary if ν ∈ (0, 2) and as an entrance boundary if ν ≥ 2. As such, the associated
transition density can be identified as a non-zero solution to the backward equation
given by Lν . In general, the transition density can be identified explicitly with the
help of Bessel functions (hence the name of the family of processes). In the special
case that ν = 3, it turns out that the transition density can be more simply identified
by the right-hand side of (3).

In the setting that ν is a natural number, in particular, in the case that ν = 3, the
generator (4) is also the radial component of the ν-dimensional Laplacian. Noting
that the latter is the generator of a ν-dimensional Brownian motion, we also see that,
for positive integer values of ν, the Bessel-ν process is also the radial distance from
the origin of a ν-dimensional Brownian motion; cf. [12]. This also illuminates the
need for the point 0 to be either reflecting or an entrance point when ν > 0, at least
for ν ∈ N.

The Doob–McKean identity is present-day nested in a much bigger dialogue
concerning the representation of conditioned, path-segment-sampled and time-
reversed stochastic processes, including general diffusions, random walks and Lévy
processes; see e.g. [1, 2, 5–8, 19, 21, 22, 24, 25] and others. In this article we add
to the list of extensions to the Doob–McKean identity by looking at the setting in
which the role of the Brownian motion is replaced by an isotropic α-stable process.

2 Doob-McKean for Isotropic α-Stable Processes

We recall that an isotropic α-stable process (henceforth sometimes referred to as a
stable process or a symmetric stable process in one dimension) in dimension d ∈ N,
with coordinate process say X = (Xt , t ≥ 0) and probabilities Pα,d = (Pα,d

x , x ∈
R

d), is a Lévy process which is also a self-similar Markov process, which has self-
similarity index α. More precisely, as a Lévy process, its transitions are uniquely
described by its characteristic exponent given by the identity

Eα,d
0 [exp(iθXt )] = exp(−|θ |αt), t ≥ 0,



272 A. E. Kyprianou and N. O’Connell

where we interpret θXt as an inner product in the setting that d ≥ 2. For the pure
jump case that we are interested in, it is necessary that α ∈ (0, 2). As a self-similar
Markov process with index α, it satisfies the scaling property that, for all c > 0,

(cXc−αt , t ≥ 0) under Pα,d
x is equal in law to (X,Pα,d

cx ). (5)

In any dimension, (X,Pα,d) has a transition density and, for example, in the setting
d = 1, if we denote it by q

(α)
t (x, y), x, y ∈ R, then the scaling property (5)

manifests in the form

cq
(α)
t (cx, cy) = q

(α)

c−αt
(x, y), x, y ≥ 0, t > 0. (6)

We note that the Cauchy process has a symmetric distribution in one dimension
and is isotropic in higher dimensions. As a Lévy process, its jump measure is given
by

�(dz) = 2απ−d/2 ((d + α)/2)
∣
∣(−α/2)

∣
∣

1

|z|α+d
dz, z ∈ R

d (7)

where B is a Borel set in R
d . A special case of interest will be when α = 1 and

when d = 1, in which case, (7) takes the form

�(dx) = 1

π

1

x2 dx, x ∈ R.

Moreover, the transition density, more conveniently written as (qt , t ≥ 0) rather
than (q

(1)
t , t ≥ 0), is given by

qt (x, y) = 1

π

t

(y − x)2 + t2
, x, y ∈ R, t > 0, (8)

from which we can verify the scaling property (5) directly.
Given the summary of the Doob–McKean identity for the Brownian setting

above, the stable-process analogue we present as our main result below matches
perfectly the Brownian setting providing one interprets the components in the
identity in the right way.

Theorem 1 The kernel

q
(α),∗
t (x, y) = y

x

(

q
(α)
t (x, y) − q

(α)
t (x,−y)

)

x, y ≥ 0, t > 0 (9)

defines a conservative Feller semigroup, say Y = (Yt , t ≥ 0), on [0,∞) which is
self-similar with index α. Moreover, Y is equal in law to the radial part of a three-
dimensional isotropic α-stable process.
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An easy corollary of the above result is the following.

Corollary 1 The transition density of the radial part of a 3-dimensional Cauchy
process is given by

q
(1),∗
t (x, y) = 1

π

4y2t

(y2 − x2)2 + 2t2(y2 + x2) + t4
, x, y ≥ 0, t > 0. (10)

Proof of Theorem 1 The proof is a relatively elementary consequence of the classi-
cal Doob–McKean identity once one takes account of the following basic fact; cf.
e.g. Chapter 3 of [17].

Lemma 1 If (B
(d)
t , t ≥ 0) is a standard d-dimensional Brownian motion (d ≥ 1)

and � = (�t , t ≥ 0) is an independent stable subordinator with index α/2, where
α ∈ (0, 2), then (

√
2B

(d)
�t

, t ≥ 0) is an isotropic d-dimensional stable process with
index α.

An immediate consequence of Lemma 1 is that, e.g. in one dimension, we can
identify the semigroup of a symmetric stable process with index α via

q
(α)
t (x, y) =

∫ ∞

0
γ

(α/2)
t (s)

1

2d/2 p(d)
s (x, y/

√
2)ds

where p
(d)
t (x, y), x, y ∈ R

d is the transition density of a standard Brownian motion
in R

d (and for consistency we have p
(1)
t = pt , t ≥ 0.)

γ
(α/2)
t (s) = 1

π

∑

n≥1

(−1)n−1 (1 + αn
2 )

n! sin
(nπα

2

)

tns− nα
2 −1, x > 0,

is the transition density of the stable subordinator with index α/2.
Replacing y by y/

√
2 in (3) and dividing through by

√
2, by integrating against

the kernel γ (α/2) we see with the help of Lemma 1 that

1√
2

∫ ∞
0

γ
(α/2)
t (s)p

↑
s (x, y/

√
2)ds = y

x

(

q
(α)
t (x, y) − q

(α)
t (x,−y)

)

, x, y ≥ 0, t ≥ 0.

Writing P
(3) for the law of 3-dimensional Brownian motion with coordinate process

(B
(3)
t , t ≥ 0) as a coordinate process on D(R). Since (p

↑
t , t ≥ 0) is the transition

density of a Bessel-3 process, which is also the transition density of the radius of a
3-dimensional standard Brownian motion, we know that

1√
2
p↑

s (x, y/
√

2)dy = P
(3)
(x,0,0)(|

√
2B

(3)
t | ∈ dy), y, t ≥ 0.
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As such, it follows that

1√
2

∫ ∞

0
γ

(α/2)
t (s)p↑

s (x, y/
√

2)ds = P
(3)
(x,0,0)(|

√
2B

(3)
�t

| ∈ dy),

where � is an independent stable subordinator with index α/2. Lemma 1 now allows
us to conclude that (9) agrees with the transition semigroup of the radial component
of a 3-dimensional stable process. On account of the fact that the radial component
of an isotropic stable process is a conservative self-similar Markov process (and in
particular a Feller process), we see that the semigroup in (9) must also offer the
same properties. This also includes the existence of an entrance law at zero which
is affirmed by the representation given in Lemma 1. ��

3 The Special Case of Cauchy Processes

The special case of the Doob–McKean identity for α = 1, i.e. the Cauchy process,
reveals a few more details that we can explore further. In the subsections below, we
look at the Doob–McKean identity in terms of the Lamperti representation of self-
similar Markov processes, its relation with the Cauchy process conditioned to stay
positive and in terms of a pathwise interpretation.

3.1 Lamperti Representation of the Doob-McKean Identity

As a self-similar Markov process with index 1, the process Y in Theorem 1 when
α = 1 enjoys a Lamperti representation. Specifically,

Yt = eξϕ(t) , t ≤
∫ ∞

0
eξudu, (11)

where ϕ(t) = inf{s > 0 : ∫ s

0 exp(ξu)du > t} and (ξt , t ≥ 0) is a Lévy process,
which is possibly killed at an independent and exp

Another way of understanding the statement in the second part of Theorem 1
is that the Lévy process ξ agrees with the one that underlies the Lamperti
representation of the radial part of a three-dimensional Cauchy process. The reason
why the latter is a positive self-similar Markov process was examined in [4];
see also Chapter 5 of [17]. Indeed, there it was shown that the radial part of
a 3-dimensional Cauchy process has underlying Lévy process, say (ηt , t ≥ 0),
with probabilities (P

η
x, x ∈ R), which is identified via its characteristic exponent

�(z) = − log
∫

R
eizx

P
η
0(η1 ∈ dx), where

�(z) = 2
( 1

2 (−iz + 1))

(− 1
2 iz)

( 1
2 (iz + 3))

( 1
2 (iz + 2))

= (z − i) tanh(πz/2), z ∈ R. (12)
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An equivalent way of identifying η is as a pure jump process, with no killing (note
that �(0) = 0) and with Lévy measure having density taking the form

μ(x) = 4

π

e3x

(e2x − 1)2 , x ∈ R. (13)

Note that for small |x| the density above behaves like O(|x|−2), for large positive
x, it behaves like O(e−x) and for large negative x, it behaves like O(e−3|x|). As
such, the process η has paths of unbounded variation and its law enjoys exponential
moments; in particular η has a finite first moment.

The long term linear growth of η (in the sense of the Strong Law of Large
Numbers) is given by the mean E

η
0[η1] = π/2 which can also be computed

from the value of i� ′(0); see also Proposition 1 of [15]. Not surprisingly this
implies that limt→∞ ηt = ∞ almost surely. This is consistent with the fact that
a three-dimensional Cauchy process is transient and hence, its radial component
drifts to +∞, which implies its underlying Lévy process must too. Note, in the
latter observation, we are also using the fact that positive self-similar Markov
processes are either: Transient to infinity, corresponding to the underlying Lévy
process drifting to +∞; Interval recurrent, corresponding to the underlying Lévy
process oscillating; Continuously absorbed at the origin, corresponding to the
case that the underlying Lévy process drifts to −∞; Absorbed at the origin by a
jump; corresponding to the case that the underlying Lévy process is killed at an
independent and exponentially distributed time. See [16–18] for further details.

Because η has a finite first moment, we can relate (13) to (12) via the particular
arrangement of the Lévy–Khintchine formula

�(z) = −π

2
iz +

∫

R

(

1 − eizx + izx
)

μ(x)dx, z ∈ R. (14)

This arrangement will prove to be convenient in the following Corollary.

Corollary 2 Suppose that C2(R≥0) is the space of twice continuously integrable
functions on R≥0. On C2(R≥0), the action of the generator L associated to the
process Y in Theorem 1 is given by

Lf (x) = π

2
f ′(x) + 4

πx

∫ ∞
0

(

f (xu) − f (x) − xf ′(x) log u
) u2

(u2 − 1)2
du, x > 0

(15)

which agrees with the representation

Lf (x) = 4

πx
(PV )

∫ ∞

0
(f (xu) − f (x))

u2

(u2 − 1)2 du, x > 0, (16)

where (PV )
∫

is understood as a principal value integral.
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Proof Because of the arrangement of the characteristic exponent in (14), from [3],
we know that its generator can be accordingly arranged to have action on f ∈
C2(R≥0) given by

Lf (x) = π

2
f ′(x) + 4

πx

∫ ∞
0

(

f (xu) − f (x) − xf ′(x) log u
) u2

(u2 − 1)2
du, x > 0.

(17)

For the second statement of the corollary, we need to show that

I := (PV )

∫ ∞

0

u2 log u

(u2 − 1)2 du = π2

8
(18)

and that

(PV )

∫ ∞

0
(f (xu) − f (x))

u2

(u2 − 1)2 du

is well defined. The latter is easily done on account of the fact that, near the
singularity u = 1, f (ux) − f (x) ≈ (u − 1)xf ′(x) + O((u − 1)2), x, u > 0, so that
we can estimate the principal value of the integral there using partial fractions.

To see why the equality in (18) holds, note that after a change of variable u = ex

we see

I = (PV )

∫ ∞

−∞
xex

(ex − e−x)2 dx = −(PV )

∫ ∞

−∞
xe−x

(ex − e−x)2 dx, (19)

where in the second equality we have noted the simple change of variables x �→ −x.
It thus follows by adding the two integrals in (19) together that

I = 1

2

∫ ∞

−∞
x

(ex − e−x)
dx = 1

2

∫ ∞

0

x

sinh x
dx = π2

8
.

where the final equality follows from equation 3.521.1 of [11].
Note, another way to approach the second part of the corollary is to use the

standard definition of a Feller generator on C∞
c (R≥0), the space of compactly

supported smooth functions; cf [13]. We have

Lf (x) = lim
t→0

1

t

(∫ ∞

0
f (y)q

(1),∗
t (x, y) − f (x)

)

, x > 0.
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Making use of (9) and monotone convergence, again taking note that the singularity
in the integral can be dealt with in a similar manner, we see that

Lf (x) = lim
t→0

4

π
(PV )

∫ ∞

0
(f (y) − f (x))

y2

(y2 − x2)2 + 2t2(y2 + x2) + t4 dy

= 4

π
(PV )

∫ ∞

0
(f (y) − f (x))

y2

(y2 − x2)2
dy, x > 0, (20)

which agrees with (16) after a simple change of variables. ��

3.2 Connection to Cauchy Process Conditioned to Stay Positive

It is also worthy of note in the general case α ∈ (0, 2) that the process Y does not
agree with the law of a one-dimensional symmetric stable process conditioned to
stay positive. The latter can be understood via the exact same limiting process in
(1), again replacing the role of Brownian motion by that of the one-dimensional
stable process, inducing a new family of probabilities (P1,1,↑

x , x > 0) on D(R≥0).
Rather than corresponding to the change of measure (2), the law of the Cauchy
process conditioned to stay positive is related to that of the Cauchy process via

dP1,1,↑
x

dP1,1
x

∣
∣
∣
∣
∣Ft

=
(

Xt

x

)1/2

1{t<τ−
0 (X)}, x > 0, t ≥ 0, (21)

where τ−
0 (X) = inf{t > 0 : Xt < 0}.

There is nonetheless a close relationship between (Px, x > 0) and (P1,1,↑
x , x >

0), which is best seen through the Lamperti representation (11). Suppose we write
�↑ for the characteristic exponent of the Lévy process that underlies the Cauchy
process conditioned to stay positive. It is known from [3] (see also Chapter 5 of
[17]) that

�↑(z) = �(2z), z ∈ R. (22)

If we write μ↑ for the Lévy measure associated to �↑. This is equivalent to
saying that 2μ↑(x) = μ(x/2), or indeed that the Lévy process underlying the
Cauchy process conditioned to stay positive is equal in law to 2η. This is a
curious relationship which is clearly related to the fact that the Doob h-transform
in the definition (9) uses h(x) = x, whereas the Doob h-transform in (21) uses
h(x) = √

x. It is less clear if or how this relationship extends to other values of α.
From Lemma 2.2 in [20] we can now identify the following simple relationship.
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Corollary 3 Denote by Y↑ = (Y
↑
t , t ≥ 0) is the co-ordinate process of a one-

dimensional Cauchy process conditioned to stay positive. Then with Y denoting the
process in Theorem 1, we have space-time path transformation relating Y to Y↑,

(Y
↑
t , t ≥ 0) law=

(

(Yχ(t))
2, t ≥ 0

)

, where χ(t) = inf{s > 0 :
∫ t

0
Y−1
u du > t}, t ≥ 0.

3.3 Pathwise Representation

One way to understand the Doob-McKean in the Cauchy setting is to consider it
via a path transformation which mirrors the proof of Theorem 1. Think of a two-
dimensional Brownian motion P

(2) on the x-y plane which is stopped when hits
the line x = t , that is at the time t = inf{s > 0 : πx(

√
2B

(2)
s ) = t}, where πx

is the projection of
√

2B(2) onto the x-axis. It is well known that t is a 1/2-stable
subordinator and that (πy(

√
2B

(2)
t

), t ≥ 0) is a Cauchy process where πy is the
projection on to the y-axis.

Suppose now we replace B(2) by the x-y planar process (B,R), where B is
a one-dimensional Brownian motion and R is an independent Bessel-3 process.
Noting that R is a Doob h-transform of πy(

√
2B(2)) killed on hitting the x-axis,

the independence of B and R, and hence the independence of (t , t ≥ 0) and R

means that the process (
√

2Rt , t ≥ 0) agrees precisely with the transformation on
the right-hand side of (9) with α = 1.

3.4 Generators

We know that the generator of the process Y in Theorem 1 is given by (16). The
pathwise representation in the previous section, captured e.g. in Fig. 1 also gives us
some insight into the structure of the generator (16).

As alluded to above, if B is a one-dimensional Brownian motion, then
(
√

2Bt , t ≥ 0) is a Cauchy process. Its generator C is written

Cf (x) = 1

π
(PV )

∫ ∞

−∞
f (y) − f (x)

(y − x)2 dy, f ∈ C∞
c (R≥0). (23)

We want to connect the generator C with the processes Y we see in the path
decomposition, in particular with the process (Rt , t ≥ 0).

We know from (3) that a Bessel-3 process is the result of Doob h-transforming
the law of a Brownian motion killed on entry to (−∞, 0). We have also seen e.g.
in the proof of Theorem 1 that subordination with the 1/2-stable process (t , t ≥ 0)

preserves the effect of the Doob h-transform. What we would like to understand
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Fig. 1 A pathwise representation of the Doob-McKean transformation for Cauchy processes. The
red path depicts a sample path from the process (B,R), where B is a Brownian motion in the
direction of the x axis and R is a Bessel-3 process in the direction of the y axis, until it hits
the vertical line x = t . The green and purple paths are sample paths from the two dimensional
Brownian motion B(2) until first hitting of the vertical line x = t

is how the 1/2-stable subordination of killed Brownian motion, i.e. (q
(1/2)
t (x, y) −

q
(1/2)
t (x,−y)), plays out in (23).

To this end, we can think of jump rate from x ≥ 0 to y ≥ 0 of the sub-Markov
process with semigroup (q

(1/2)
t (x, y) − q

(1/2)
t (x,−y)), as being derived from a

principal of ‘path counting’ using jump rates of the Cauchy process. The generator
of a Cauchy process killed on exiting the upper half line is given by

C+f (x) − 1

πx
where C+f (x) := 1

π

∫ ∞

0

f (y) − f (x)

(y − x)2
dy, f ∈ C∞

c (R≥0).

Indeed, the aforesaid process jumps from x ≥ 0 to y ≥ 0 at rate 1/π(y − x)2dy,
however, we must subtract from this rate, the rate at which killing occurs by jumping
from x into the negative half line. The latter is

1

π

∫ 0

−∞
1

(y − x)2
dy = 1

π

∫ ∞

x

1

z2
dz = 1

πx
.

The combined effect of reflection principal and 1/2-stable subordination, suggests
we must also subtract the rate at which jumps from x ≥ 0 to y ≥ 0 occur as the
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reflection of jumps from x to −y, with the additional effect of killing on the lower
half line, i.e.

C−f (x)− 1

πx
where C−f (x) = 1

π

∫ ∞

0

f (y) − f (x)

(x + y)2
dy, f ∈ C∞

c (R≥0).

We can thus identify the generator of Y , L, as the following Doob h-transform.

Lemma 2 We have

Lf (x) = 1

x
D(xf (x)), f ∈ C∞

c (R≥0), x > 0,

where

D = C+ − C− − 2

πx
.

Proof We compute (all integrals are Cauchy principal value integrals):

1

x
D(xf (x)) = 1

πx

∫ ∞

0

yf (y) − xf (x)

(y − x)2
dy − 1

πx

∫ ∞

0

yf (y) − xf (x)

(y + x)2
dy − 2

πx
f (x)

= 1

πx

∫ ∞

0

4xy(yf (y) − xf (x))

(y2 − x2)2
dy − 2

πx
f (x)

= 4

π

∫ ∞

0

y2(f (y) − f (x))

(y2 − x2)2
dy + 4

π

∫ ∞

0

(y2 − xy)f (x)

(y2 − x2)2
dy − 2

πx
f (x)

= Lf (x),

where the last identity follows from the definition of L and the fact that

(PV )

∫ ∞

0

2xy

(y − x)(y + x)2 dy = 1.

��
Note that the ‘reflected’ Cauchy process has generator CR = C+ + C−, and we

earlier identified the Cauchy process killed on going negative as having generator
CA = C+ − 1/(πx). These are related to the generator D via CA = (D + CR)/2.
The spectral problem associated with the Cauchy process on the half-line with
‘reflecting’ boundary is equivalent to the so-called ‘sloshing problem’ in the
theory of linear water waves, and this has been extensively studied [10]. The
spectral problem associated with the Cauchy process on the half-line with absorbing
boundary conditions has been completely solved in [14].
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4 Concluding Remarks

Elliot and Feller [9] consider various examples of Cauchy processes constrained to
stay in a compact interval [0, a]. One of the examples they consider (Example (d)
in their paper), has transition density

pt (x, y) =
∞
∑

n=−∞
[qt (x, 2an + y) − qt (x, 2an − y)], (24)

where qt (x, y) is the transition density of the one-dimensional Cauchy process.
They remark that (24) defines ‘a transition semi-group and determines a Markovian
process, but it is not the absorbing barrier process. [ · · · ] It is not clear whether and
how the process is related to the Cauchy process.’ In fact, the process considered
in [9] is a Brownian motion in [0, a] with Dirichlet boundary conditions, time-
changed by an independent stable subordinator of index 1/2. Moreover, it may be
interpreted in terms of the Cauchy process via a similar pathwise interpretation to
the one outlined above for the half-line.

It is also natural to consider multi-dimensional versions. For example, Dyson
Brownian motion is a Brownian motion in R

n conditioned never to exit the Weyl
chamber C = {x ∈ R

n : x1 > · · · > xn}. Its transition density is given by

dt (x, y) = h(x)−1h(y)
∑

σ∈Sn

sgn(σ )pt (x, σy),

where the sum is over permutations, σy is the vector y with components permuted
by σ , h(x) = ∏

i<j (xi − xj ) is the Vandermonde determinant, and pt (x, y) is
the standard Gaussian heat kernel in R

n. If we time-change this process by an
independent stable subordinator of index α/2, and multiply by a factor of

√
2, then

the resulting process in C has transition density

Dt(x, y) = h(x)−1h(y)
∑

σ∈Sn

sgn(σ )P
(α)
t (x, σy),

where P
(α)
t (x, y) is the transition density of the isotropic n-dimensional stable

process with index α. We note that, in the case α = 1, this time-changed process
may be interpreted as the ‘radial part’ of a Cauchy process in R

n, as discussed in
Section 5 of the paper [23].
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