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Abstract Given a two-sided real-valued Lévy process (Xt )t∈R, define processes
(Lt )t∈R and (Mt)t∈R by Lt := sup{h ∈ R : h − α(t − s) ≤ Xs for all s ≤ t} =
inf{Xs + α(t − s) : s ≤ t}, t ∈ R, and Mt := sup{h ∈ R : h − α|t − s| ≤
Xs for all s ∈ R} = inf{Xs + α|t − s| : s ∈ R}, t ∈ R. The corresponding contact
sets are the random sets Hα := {t ∈ R : Xt ∧ Xt− = Lt } and Zα := {t ∈ R :
Xt ∧ Xt− = Mt }. For a fixed α > E[X1] (resp. α > |E[X1]|) the set Hα (resp. Zα)
is non-empty, closed, unbounded above and below, stationary, and regenerative. The
collections (Hα)α>E[X1] and (Zα)α>|E[X1]| are increasing in α and the regeneration
property is compatible with these inclusions in that each family is a continuum of
embedded regenerative sets in the sense of Bertoin. We show that (sup{t < 0 :
t ∈ Hα})α>E[X1] is a càdlàg, nondecreasing, pure jump process with independent
increments and determine the intensity measure of the associated Poisson process
of jumps. We obtain a similar result for (sup{t < 0 : t ∈ Zα})α>|β| when (Xt )t∈R is
a (two-sided) Brownian motion with drift β.

Keywords Lévy process · Fluctuation theory · Subordinator · Lipschitz
minorant

1 Introduction

Let X = (Xt )t∈R be a two-sided, real-valued Lévy process on a complete
probability space (�,F ,P). That is, X has càdlàg paths and stationary, independent
increments. Assume that X0 = 0. Let (Ft )t∈R be the natural filtration of X
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augmented by the P-null sets. Suppose that E[X+
1 ] < ∞ so that E[X1] is well-

defined (but possibly −∞).
For α > E[X1] define a process (Lt )t∈R by

Lt := sup{h ∈ R : h−α(t−s) ≤ Xs for all s ≤ t} = inf{Xs+α(t−s) : s ≤ t}, t ∈ R,

and set

Hα := {t ∈ R : Xt ∧ Xt− = Lt }.

Equivalently,

Hα :=
{
t ∈ R : Xt ∧ Xt− − αt = inf

u≤t
(Xu − αu)

}
.

By the strong law of large numbers for Lévy processes (see, for example, [10,
Example 7.2])

lim
t→+∞

Xt

t
= lim

t→−∞
Xt

t
= E[X1] a.s.

so that

lim
t→+∞ Xt − αt = −∞ a.s.

and

lim
t→−∞ Xt − αt = +∞ a.s.

It follows from Lemma 7.1 below that Hα is almost surely a non-empty, closed set
that is unbounded above and below.

We show in Theorem 2.5 that Hα is a regenerative set in the sense of [8].
Moreover, we observe in Lemma 5.1 that

Hα1 ⊆ Hα2 ⊆ · · · ⊆ Hαn

for

E[X1] < α1 < α2 < · · · < αn.

In Sect. 4 we recall from [4] the notion of regenerative embeddings and establish
in Proposition 5.2 that these embeddings are regenerative. As a consequence, we
derive the following result which we prove in Sect. 5.
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Theorem 1.1 For α > E[X1] set

Gα := sup{t < 0 : t ∈ Hα}.

Then (Gα)α>E[X1] is a nondecreasing, càdlàg, pure jump process with independent
increments. The point process

{(α,Gα − Gα−) : Gα − Gα− > 0}

is a Poisson point process on (E[X1],∞) × (0,∞) with intensity measure

γ (dx × dt) = t−1
P

{
Xt

t
∈ dx

}
dt 1{t>0, x>E[X1]}.

The set Hα is obviously closely related to the ladder time

Rα :=
{
t ∈ R : Xt − αt = inf

u≤t
(Xu − αu)

}

of the Lévy process (Xt − αt)t∈R. We clarify the connection with the following
result which is proved in Sect. 3.

Proposition 1.2 The following hold almost surely.

(i) Rα ⊆ Hα .
(ii) Rα is closed from the right.

(iii) cl(Rα) = Hα .
(iv) Hα \ Rα consists of points in Hα that are isolated on the right and so, in

particular, this set is countable.

Remark 1.3 The embedded regenerative sets structure for the sets Hα = Rα when
X is Brownian motion with drift has already been noted in [5] in relation to the
additive coalescent of Aldous and Pitman (see also [6]). This is further related to the
Burgers turbulence (see [11] and the references therein).

Given α > 0, denote by (Mt)t∈R be the α-Lipschitz minorant of the two-
sided Lévy process (Xt )t∈R; that is, t �→ Mt is the greatest α-Lipschitz function
dominated by t �→ Xt (our notation suppresses the dependence of M on α). We
refer the reader to [1] and [7] for extensive investigations of the Lipschitz minorant
of a Lévy process. The α-Lipschitz minorant exists if

E[|X1|] < ∞ and α > |E[X1]|
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and we suppose that these conditions hold when discussing (Mt)t∈R. Then,

Mt = sup{h ∈ R : h−α|t−s| ≤ Xs for all s ∈ R} = inf{Xs+α|t−s| : s ∈ R}, t ∈ R.

Set

Zα := {t ∈ R : Xt ∧ Xt− = Mt }.

It is shown in [1][Theorem 2.6] that this set is closed, unbounded above and below,
stationary, and regenerative. We establish in Proposition 6.1 that

Zα1 ⊆ · · · ⊆ Zαn

for |E[X1]| < α1 < · · · < αn and that these embeddings are regenerative. As a
consequence, we derive the following result which is proved in Sect. 6.

Theorem 1.4 Suppose that (Xt )t∈R is a two-sided standard Brownian motion with
drift β For α > |β| set

Yα := sup{t < 0 : t ∈ Zα}.

Then (Yα)α>|β| is a nondecreasing, càdlàg, pure jump process with independent
increments. The point process

{(α, Yα − Yα−) : Yα − Yα− > 0}

is a Poisson point process on (|β|,∞) × (0,∞) with intensity measure

γ (ds × dr) = φ(
√

r
s−β

) + φ(
√

r
s+β

)√
r

ds dr 1{s>|β|,r>0},

where φ(x) := e
− x2

2√
2π

, for x > 0.

2 Regenerative Sets

We introduce the notion of a regenerative set in the sense of [8]. For simplicity,
we specialize the definition by only considering random sets defined on probability
spaces (rather than general σ -finite measure spaces).

Notation 2.1 Let �↔ denote the class of closed subsets of R. For t ∈ R and ω↔ ∈
�↔, define

dt (ω
↔) := inf{s > t : s ∈ ω↔}, rt (ω

↔) := dt (ω
↔) − t,



Two Continua of Embedded Regenerative Sets 219

and

τt (ω
↔) := cl{s − t : s ∈ ω↔ ∩ (t,∞)} = cl ((ω↔ − t) ∩ (0,∞)) .

Here cl denotes closure and we adopt the convention inf ∅ = +∞. Note that t ∈ ω↔
if and only if lims↑t rs(ω

↔) = 0, and so ω↔ ∩ (−∞, t] can be reconstructed from
rs(ω

↔), s ≤ t , for any t ∈ R. Set G↔ := σ {rs : s ∈ R} and G↔
t := σ {rs : s ≤ t}.

Clearly, (dt )t∈R is an increasing càdlàg process adapted to the filtration (G↔
t )t∈R,

and dt ≥ t for all t ∈ R.
Let �→ denote the class of closed subsets of R+. Define a σ -field G→ on �→ in

the same manner that the σ -field G↔ was defined on �↔.

Definition 2.2 A random closed set is a measurable mapping S from a measurable
space (�,F) into (�↔,G↔).

Definition 2.3 A probability measure Q
↔ on (�↔,G↔) is regenerative with

regeneration law Q
→ a probability measure on (�→,G→) if

(i) Q
↔{dt = +∞} = 0, for all t ∈ R;

(ii) for all t ∈ R and for all G→-measurable nonnegative functions F ,

Q
↔ [

F(τdt ) |G↔
t+

] = Q
→[F ], (2.1)

where we write Q↔[·] and Q
→[·] for expectations with respect to Q

↔ and Q
→.

A random set S defined on a probability space (�,F ,P) is a regenerative set if
the push-forward of P by the map S (that is, the distribution of S) is a regenerative
probability measure.

Remark 2.4 Suppose that the probability measure Q
↔ on (�↔,G↔) is stationary;

that is, if S↔ is the identity map on �↔, then the random set S↔ on (�↔,G↔,Q↔)

has the same distribution as u + S↔ for any u ∈ R or, equivalently, that the process
(rt )t∈R has the same distribution as (rt−u)t∈R for any u ∈ R. Then, in order to check
conditions (i) and (ii) of Definition 2.3, it suffices to check them for the case t = 0.

Theorem 2.5 The random set Hα is stationary and regenerative.

Proof We first show that Hα is stationary. Let a ∈ R. Define the process
(X

(a)
t )t∈R := (Xt−a − X−a)t∈R. This process is a Lèvy process that has the same

distribution as (Xt )t∈R, and we have

t ∈ HX
α + a ⇔ t − a ∈ HX

α

⇔ Xt−a ∧ X(t−a)− − α(t − a) = inf
u≤t−a

(Xu − αu)

⇔ Xt−a ∧ X(t−a)− − X−a − α(t − a) = inf
u≤t

(Xu−a − X−a − α(u − a))

⇔ X
(a)
t ∧ X

(a)
t− − αt = inf

u≤t
(X(a)

u − αu)

⇔ t ∈ HX(a)

α .
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Hence, HX
α + a = HX(a)

α
d=HX

α for all a ∈ R, and the stationarity is proved.
Now, because of Remark 2.4, to prove the regeneration property it suffices to

check that conditions (i) and (ii) of Definition 2.3 hold for t = 0. As pointed out in
the Introduction, the random set Hα is almost surely unbounded from above, hence
condition (i) is verified.

For t ∈ R introduce the random times

Dt := inf{s > t : s ∈ Hα} = inf

{
s > t : Xs ∧ Xs− − αs = inf

u≤s
(Xu − αu)

}

and put

Rt := Dt − t.

It is clear from the début theorem that D := D0 is a stopping time with respect to
the filtration (Ft )t∈R. To prove condition (ii), it suffices to show that the random set

τD(Hα) = cl
{
t > 0 : Xt+D ∧ X(t+D)− − α(t + D) = inf

u≤t+D
(Xu − αu)

}

is independent of the σ -field
⋂

ε>0 σ {Rs : s ≤ ε}.
We shall prove first that

⋂
ε>0

σ {Rs : s ≤ ε} ⊆ FD. (2.2)

It is clear that

⋂
ε>0

σ {Rs : s ≤ ε} ⊆
⋂
n∈N

FD 1
n

. (2.3)

Moreover, for a sequence of nonincreasing stopping times Tn converging almost
surely to a stopping time T , we have

⋂
n∈N

FTn = FT . (2.4)

To see this, take ε > 0 and consider a random variable Z that is
⋂

n∈N FTn–
measurable. We have almost surely the convergence Z1{Tn≤T +ε} → Z. Note that
Z1{Tn≤T +ε} is FT +ε–measurable. Thus Z is FT +ε–measurable. It follows from the
strong Markov property and the Blumenthal zero–one law that

⋂
ε>0

FT +ε = FT

and so Z is FT –measurable.
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In order to establish (2.2), it follows from (2.3) and (2.4) that it is enough to
conclude that

D+ := lim
n→∞ D 1

n
= D, a.s. (2.5)

To see this, suppose to the contrary that P{D < D+} > 0. We claim that D > 0 on
the event {D < D+}. This is so, because on the event {0 = D < D+} the point 0 is
a right accumulation point of Hα and then D 1

n
must converge to zero, which is not

possible. On the event {0 < D} we have that D+ ≤ D 1
N

≤ D as soon as N is large

enough so that 1
N

< D. Thus, P{D < D+} = 0 and (2.5) holds, implying that (2.2)
also holds.

With (2.2) in hand, it is enough to prove that the set τD(Hα) is independent of
FD . Observe that

τD(Hα) = cl
{
t > 0 : Xt+D ∧ X(t+D)− − XD − αt

= (XD ∧ XD− − XD) ∧ inf
0≤u≤t

(Xu+D − XD − αu)
}
.

Because D is a stopping time, the process (Xt+D − XD)t≥0 is independent of FD .
It therefore suffices to prove that XD ≤ XD− a.s.

Suppose that the event {XD > XD−} has positive probability. Because X0 =
X0− almost surely, D > 0 on this event.

Introduce the nondecreasing sequence (D(n))n∈N of stopping times

D(n) := inf

{
t > 0 : Xt ∧ Xt− − αt ≤ inf

u≤t
(Xu − αu) + 1

n

}

and put D(∞) := supn∈N D(n). By Lemma 7.1,

D = inf

{
t > 0 : Xt ∧ Xt− − αt ≤ inf

u≤t
(Xu − αu)

}
,

and so D(∞) ≤ D. Because X has càdlàg paths, for all n ∈ N we have that
XD(n) ∧XD(n)− −αD(n) ≤ infu≤D(n)(Xu −αu)+ 1

n
. Sending n to infinity and again

using the fact that X has càdlàg paths, we get that XD(∞) ∧ XD(∞)− − αD(∞) ≤
infu≤D(∞) (Xu − αu), and so D(∞) ∈ Hα . By definition of D, we conclude that
D(∞) = D.

Set N := inf{n ∈ N : D(n) = D} with the usual convention that inf ∅ = ∞.
Suppose we are on the event {XD > XD−} ∩ {N < ∞}. Recall that D > 0 on this
event. For all 0 < s < D we have that Xs ∧Xs− −αs > infu≤s(Xu −αu)+ 1

N
so by

sending s ↑ D we get that: XD− −αD ≥ infu≤D(Xu −αu)+ 1
N

, which contradicts
XD− < XD . Hence N = ∞ almost surely on the event {XD > XD−} and so
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D(n) < D for all n ∈ N on the event {XD > XD−}. By the quasi-left continuity of
X we thus have on the event {XD > XD−} that

XD− = lim
n→∞ XD(n) = XD, a.s.

Therefore P{XD > XD−} = 0 as claimed. ��

3 Relationship with the Set of Ladder Times

Proof of Proposition 1.2 (i) If t ∈ Rα , then Xt − αt = infu≤t (Xu − αu) and so
Xt ∧ Xt− − αt ≤ infu≤t (Xu − αu). It follows from Lemma 7.1 that t ∈ Hα .

(ii) Because the process (Xt )t∈R is right-continuous, it is clear that Rα is closed
from the right; that is, for every sequence tn ↓ t such that tn ∈ Rα we have
t ∈ Rα .

(iii) As the set Hα is closed and Rα ⊆ Hα we certainly have cl(Rα) ⊆ Hα . We
showed in the proof of Theorem 2.5 that XD ≤ XD− a.s. and so D ∈ Rα a.s.
By stationarity, Dt ∈ Rα a.s. for any t ∈ R. Therefore, almost surely for all
r ∈ Q we have Dr ∈ Rα . Suppose that t ∈ Hα . Take a sequence of rationals
{rn}n∈N such that rn ↑ t . Then, for all n ∈ N, we have rn ≤ Drn ≤ t and
Drn ∈ Rα . It follows that t ∈ cl(Rα) and so cl(Rα) = Hα .

(iv) Take t ∈ Hα that is not isolated on the right so that there exists a sequence
{tn}n∈N of point in Hα such that tn ↓ t and tn > t . Consider a sequence
(rn)n∈N of rational numbers such that for every n ∈ N we have t ≤ rn ≤ tn.
We then have t ≤ rn ≤ Drn ≤ tn. Thus, Drn ↓ t and, as we have already
observed, Drn ∈ Rα for all n ∈ N. Since Rα is closed from the right, we must
have t ∈ Rα . Finally, as the set of points isolated on the right is countable, the
set Hα \ Rα consists of at most countably many points. ��

Remark 3.1 The ladder time set Rα has been thoroughly studied in the fluctuation
theory of Lévy processes. From Proposition VI.1 in [2], we know that the process
(Xt − αt − infu≤t {Xu − αu})t∈R is a strong Markov process with cádlág paths and
hence, by the strong Markov property, the closure of its zero set is a regenerative set
in the sense of the Definition 2.3. This result together with Proposition 1.2 proves
that Hα = cl(Rα) is a regenerative set.

4 Regenerative Embedding Generalities

We recall the notion of a regenerative embedding of a sequence of regenerative sets
from [4]. We modify it slightly to encompass the whole real line instead of the set
of nonnegative real numbers. For ease of notation we restrict our definition to the
case of two sets. The generalization to a greater number of sets is straightforward.
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Definition 4.1 Recall that �↔ is the set of closed subsets of R and that �→ is the
set of closed subsets of R+). Set

�̄ := {ω = (ω(1), ω(2)) ∈ �↔ × �↔ : ω(1) ⊆ ω(2)}.

and

�̄→ := {ω = (ω(1), ω(2)) ∈ �→ × �→ : ω(1) ⊆ ω(2)}.

Write M(1)(ω) = ω(1) and M(2)(ω) = ω(2) for the canonical projections on �̄,
M = (M(1),M(2)). For t ∈ R put

d
(1)
t (ω) = dt (ω

(1))

and, with a slight abuse of notation,

τt (ω) = (τt (ω
(1)), τt (ω

(2))).

Denote by Gt the sigma-field generated by d
(1)
t , M(1) ∩ (−∞, d

(1)
t ], and M(2) ∩

(−∞, d
(1)
t ]. It is easy to check that (Gt )t∈R is a filtration. A probability measure P

is called a regenerative embedding law with regeneration law P→ if for each t ∈ R

and each bounded measurable function f : �̄→ → R

P[f (M ◦ τ
d

(1)
t

) |Gt ] = P→[f (M)] on {d(1)
t < ∞}. (4.1)

We denote such an embedding by the notation M(1) ≺ M(2).

Remark 4.2

(i) If under the probability measure P , the canonical pair (M1,M2) of random sets
is jointly stationary, in the sense that for all t ∈ R the pair (M1 + t,M2 + t)

has the same distribution as (M1,M2), then to check that there is a regenerative
embedding it suffices to verify (4.1) for t = 0.

(ii) A similar definition holds for subsets of R+ that contain zero almost surely,
which is the version present in [4].

The following theorem follows straightforwardly from the results in [4].

Theorem 4.3 Let:

S(1) ≺ S(2) ≺ . . .S(n)

be a jointly stationary sequence of subsets of R that are regeneratively embedded in
the sense of the Definition 4.1. Let �i be the Laplace exponent of the subordinator
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associated with each S(i). Introduce the measures μ1, . . . , μn on R+, defined by
their Laplace transforms

∫
R+

e−λx μi(dx) := �i(λ)

�i+1(λ)
, λ > 0, 1 ≤ i ≤ n,

where we adopt the convention �n+1(λ) := λ, λ > 0. Put

ci := 1

μi(R+)
= lim

λ↓0

�i+1(λ)

�i(λ)
, 1 ≤ i ≤ n.

Define the age processes Ai
t for each set S(i) by

Ai
t := inf{s ≥ 0 : t − s ∈ S(i)}.

Then, for any t ∈ R,

(A1
t − A2

t , . . . , A
n−1
t − An

t , A
n
t )

d= c1μ1 ⊗ c2μ2 ⊗ · · · ⊗ cnμn.

Remark 4.4 We elaborate here on the relationship between subordinators and
regenerative sets. If (σt )t≥0 is a subordinator (i.e an increasing Lévy process) then
the closure of its range cl{σt : t ≥ 0} has the distribution of a regeneration law
on (�→,G→). Conversely, if S is a regenerative set and we define S→ := τd0(S).
There exists a continuous nondecreasing process (Ls)s≥0 which increases exactly
on S→. We call L the local time on S . Its right continuous inverse defined by
σt = inf{s ≥ 0 : Ls > t} is a subordinator, and S→ coincides almost surely
with the closed range of σ .

Remark 4.5 If S(1) and S(2) are regenerative sets in the sense of the Definition 2.3
such that almost surely S(1) ⊆ S(2), and �1 (resp �2) is the Laplace exponent
of the subordinator associated with S(1) (resp S(2)). Then from a result of Bertoin
(see Theorem 1 in [3]), we have that S(1) ≺ S(2) iff �1

�2
is a completely monotone

function. As any completely monotone function is a Laplace transform of a
nonnegative measure, that proves the existence of the measures μi in the statement
of Theorem 4.3.

5 A Continuous Family of Embedded Regenerative Sets

For this section, we suppose that X has a Brownian component or infinite Lévy
measure. That is, we suppose that X is not a compound Poisson process with
drift. The latter case is trivial to study.
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Lemma 5.1 For

E[X1] < α1 < α2 < · · · < αn.

we have

Hα1 ⊆ Hα2 ⊆ · · · ⊆ Hαn .

Proof By part (i) of Lemma 7.1,

Hα :=
{
t ∈ R : Xt ∧ Xt− − αt ≤ inf

u≤t
(Xu − αu)

}
.

Hence, if E[X1] < α′ < α′′, t ∈ Hα′ , and u ≤ t , then

Xt ∧ Xt− − α′′t ≤ Xu − α′u − (α′′ − α′)t ≤ Xu − α′u − (α′′ − α′)u = Xu − α′′u,

so that t ∈ Hα′′ . Thus Hα′ ⊆ Hα′′ for E[X1] < α′ < α′′.

Proposition 5.2 For E[X1] < α1 < α2 < · · · < αn we have

Hα1 ≺ Hα2 ≺ · · · ≺ Hαn .

��
Proof For ease of notation, we restrict our proof to the case n = 2.

By Lemma 5.1 we have Hα1 ⊆ Hα2 when E[X1] < α1 < α2.
By stationarity, we only need to verify (4.1) for t = 0. It is clear that

D
(1)
0 := inf

{
s > 0 : Xs ∧ Xs− − α1s = inf

u≤s
(Xu − α1u)

}

is an (Ft )t∈R-stopping time. From the proof of Theorem 2.5, we have that almost
surely

X
D

(1)
0

≤ X
D

(1)
0 −.

Now D
(1)
0 ∈ Hα2 and hence

Hαi
◦ τ

D
(1)
0

= cl
{
s > 0 :X

s+D
(1)
0

∧ X
s+D

(1)
0 − − X

D
(1)
0

− αis

= inf
u≤s

(
X

u+D
(1)
0

− X
D

(1)
0

− αiu
) }



226 S. N. Evans and M. Ouaki

for i = 1, 2. Now each of D
(1)
0 , Hα1 ∩(−∞,D

(1)
0 ], and Hα2 ∩(−∞,D

(1)
0 ] is F

D
(1)
0

–

measurable, so it remains to note that (X
s+D

(1)
0

−X
D

(1)
0

)s≥0 is independent of F
D

(1)
0

.
��

Proof of Theorem 1.1 It is clear that G is nondecreasing.
As for the right-continuity, consider β > E[X1] and a sequence {βn}n∈N with

βn ↓ β and βn > β. Suppose that Gβ+ := limn→∞ Gβn > Gβ . For any u ≤
Gβ+ ≤ Gβn we have

XGβn
∧ XGβn− − βnGβn ≤ Xu − βnu.

Taking the limit as n goes to infinity gives

XGβ+ − βGβ+ ≤ Xu − βu

and hence

XGβ+ ∧ XGβ+− − βGβ+ ≤ Xu − βu.

It follows from Lemma 7.1 that Gβ < Gβ+ ∈ Hβ , but this contradicts the definition
of Gβ .

Corollary VI.10 in [2] gives that the Laplace exponent of the subordinator
associated with the ladder time set of the process (αt − Xt)t≥0 (the subordinator
is the right-continuous inverse of the local time associated with this set) is

�α(λ) = exp

(∫ ∞

0
(e−t − e−λt )t−1

P{Xt ≥ αt}dt

)
.

Fix E[X1] < α1 < α2 < · · · < αn. Introduce the measures μ1, . . . , μn on R+,
defined by their Laplace transforms

∫
R+

e−λx μi(dx) := �αi
(λ)

�αi+1(λ)
, λ > 0, 1 ≤ i ≤ n,

where we adopt the convention �αn+1(λ) := λ, λ > 0. Put

ci := 1

μi(R+)
= lim

λ↓0

�αi+1(λ)

�αi
(λ)

, 1 ≤ i ≤ n.
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Set νi = ciμi , 1 ≤ i ≤ n, so that

∫
R+

e−λx νi(dx)

= exp

(
−

∫ ∞

0
(1 − e−λt )t−1

P{αit ≤ Xt ≤ αi+1t} dt

)
, 1 ≤ i ≤ n − 1,

(5.1)

and

∫
R+

e−λx νi(dx) = exp

(
−

∫ ∞

0
(1 − e−λt )t−1

P{Xt ≥ αnt} dt

)
. (5.2)

Then, by Theorem 4.3,

(Gα2 − Gα1 , . . . ,Gαn − Gαn−1 ,−Gαn)
d= ν1 ⊗ ν2 ⊗ · · · ⊗ νn.

It follows that the process G has independent increments and that limα→∞ Gα =
0 almost surely. That (Gα)α>E[X1] is a pure jump process (that is, the process is
a sum of its jumps and there is no deterministic drift component) along with the
Poisson description of {(α,Gα −Gα−) : Gα −Gα− > 0} follows from (5.1), (5.2),
and standard Lévy–Khinchin–Itô theory: for example, from [9, p 146], the process
(Gα)α>E[X1] can be written as:

Gα = −
∫ ∞

0
lp([α,∞) × dl)

where p is a Poisson random measure with intensity measure γ . ��
Remark 5.3 Taking the concatenation of the lines with slopes α between Gα and
Gα− for every jump time α constructs the graph of the convex minorant of the Lévy
process (−Xt−)t≥0. The conclusion of Theorem 1.1 thus agrees with the study of
the convex minorant of a Lévy process carried out in [12].

6 Another Continuous Family of Embedded Regenerative
Sets

Proposition 6.1 For |E[X1]| < α1 < · · · < αn, we have that

Zα1 ≺ · · · ≺ Zαn .

Proof We shall just prove the result for the case n = 2. It is very clear that Zα1 ⊆
Zα2 , as any α1-Lipschitz function is also an α2-Lipschitz function. Moreover, the
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sets (Zα1 ,Zα2) are obviously jointly stationary, and thus it suffices to check the
independence condition for t = 0. Note that Dα1 ∈ Zα2 . Using [7, Lemma 7.2]
gives that

(Zα1 ◦ τDα1
,Zα2 ◦ τDα1

)

is measurable with respect to σ {Xt+Dα1
−XDα1

: t ≥ 0}. The same argument yields

G0 = σ {Zα1 ∩ (−∞,Dα1 ],Zα2 ∩ (−∞,Dα1 ]} ⊆ σ {Xt : t ≤ Dα1}

An appeal to [7, Theorem 3.5] completes the proof. ��
Proof of Theorem 1.4 As in the proof of Theorem 1.1, it is clear that the process
(Yα)α>|β| is nondecreasing and has independent increments. We leave to the reader
the straightforward proof of that this process is càdlàg.

We compute the Laplace exponent �α of the subordinator associated with the
regenerative set Zα . From [1, Proposition 8.1] we have

�α(λ) = 4(α2 − β2)λ

(
√

2λ + (α − β)2 + α − β)(
√

2λ + (α + β)2 + α + β)
.

Thus, for |β| < α1 < α2, we have

E[e−λ(Yα2−Yα1 )] = c
�α1(λ)

�α2(λ)

= c
(
√

2λ + (α2 − β)2 + α2 − β)(
√

2λ + (α2 + β)2 + α2 + β)

(
√

2λ + (α1 − β)2 + α1 − β)(
√

2λ + (α1 + β)2 + α1 + β)
,

where

c = lim
λ↓0

(
√

2λ + (α1 − β)2 + α1 − β)(
√

2λ + (α1 + β)2 + α1 + β)

(
√

2λ + (α2 − β)2 + α2 − β)(
√

2λ + (α2 + β)2 + α2 + β)
;

that is,

c = α2
1 − β2

α2
2 − β2

.

Hence,

log
(
E

[
e−λ(Yα2−Yα1 )

])
= f (a3) + f (a4) − f (a1) − f (a2),
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where a1 = (α1 + β)−1, a2 = (α1 − β)−1, a3 = (α2 + β)−1 and a4 = (α2 − β)−1,
and

f (x) = − log(1 +
√

2λx2 + 1).

It remains to observe that

f (x) = −
∫ ∞

0
(1 − e−λr )r− 1

2

∫ x

0
t−2φ(t

√
r) dt dr

and do a change of variables inside the integral to finish the proof. ��

7 Some Real Analysis

Lemma 7.1 Fix a càdlàg function f : R �→ R and consider the set

H := {t ∈ R : f (t) ∧ f (t−) = inf
u≤t

f (u)}.

(i) The set H coincides with

{t ∈ R : f (t) ∧ f (t−) ≤ inf
u≤t

f (u)}.

(ii) The set H is closed.
(iii) If limt→−∞ f (t) = +∞ and limt→+∞ f (t) = −∞, then the set H is

nonempty and unbounded from above and below.

Proof

(i) Note that {t ∈ R : f (t) ∧ f (t−) ≤ infu≤t f (u)} is the disjoint union {t ∈ R :
f (t)∧f (t−) = infu≤t f (u)}�{t ∈ R : f (t)∧f (t−) < infu≤t f (u)}. Clearly,
f (t) ∧ f (t−) ≥ infu≤t f (u) for all t ∈ R and so the second set on the right
hand side is empty.

(ii) We want to show that if {tn}n∈N is a sequence of elements of H converging to
some t∗ ∈ R, then t∗ ∈ H. The result is clear if tn = t∗ infinitely often, so we
may suppose that t∗ /∈ {tn}n∈N.
Suppose to begin with that there are only finitely many n ∈ N such that tn < t∗.
Then, for n large enough, we have that tn > t∗ and thus f (tn) ∧ f (tn−) ≤
f (u) for all u ≤ t∗. Now limn→∞ f (tn) = limn→∞ f (tn−) = f (t∗). Hence,
f (t∗) ∧ f (t∗−) ≤ f (t∗) ≤ f (u) for all u ≤ t∗ and so t∗ ∈ H by part (i).
Suppose on the other hand, that the set N of n ∈ N such that tn < t∗ is
infinite. For u < t∗ we have for large n ∈ N sufficiently large that u ≤ tn
and thus f (tn) ∧ f (tn−) ≤ f (u). Now the limit as n → ∞ with n ∈ N of
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f (tn) ∧ f (tn−) is f (t∗−). Hence, f (t∗) ∧ f (t∗−) ≤ f (t∗−) ≤ infu<t∗ f (u).
This implies that f (t∗) ∧ f (t∗−) ≤ infu≤t∗ f (u) and so t∗ ∈ H by part (i).

(iii) Fix M ∈ R, put I = inft≤M f (t), and let {tn}n∈N be a sequence of elements
of (−∞,M] such that limn→∞ f (tn) = I . Because f (t) goes to +∞ as
t → −∞, the sequence {tn}n∈N is bounded and thus admits a subsequence
{tnk

}k∈N that converges to some t∗ ∈ (−∞,M]. By the argument in part
(ii), I ∈ {f (t∗), f (t∗−)}. Moreover, I ≤ f (t∗) and I ≤ f (t∗−). Thus,
f (t∗) ∧ f (t∗−) = I = infu≤M f (u) ≤ infu≤t f (u) and t ∈ H by part (i).
Since M ∈ R is arbitrary it follows that H is not only nonempty but also
unbounded below. ��

Because f (t) goes to +∞ as t → −∞ and f (t) goes to −∞ as t → +∞, for
each n ∈ N we have that the set {t ∈ R : f (t) ≤ −n} is nonempty and bounded
below and so sn := inf{t ∈ R : f (t) ≤ −n} ∈ R. The sequence {sn}n∈N is clearly
nondecreasing and unbounded above. Now f (sn) ∧ f (sn−) = f (sn) = inf{f (u) :
u ≤ sn} for all n ∈ N so that sn ∈ H for all n ∈ N and hence H is unbounded above.
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