
Resonance in Large Finite Particle
Systems

Alexandr Lykov, Vadim Malyshev, Margarita Melikian(B),
and Andrey Zamyatin

Faculty of Mechanics and Mathematics, Lomonosov Moscow State University,

Moscow 119991, Russia

Abstract. We consider general linear system of Hamiltonian equations.
The corresponding linear operator is assumed to be positive definite for
the particles could not escape to infinity. However, there are also external
driving forces, that could make the solution unbounded. It is assumed
that driving force depends only on time, it can be periodic, almost-
periodic and random. Moreover, it acts only on one coordinate. Our main
problem here is to understand what restrictions on driving force and/or
what dissipative force could be added to escape resonance (unbounded
trajectories). Various conditions for existence and non-existence of reso-
nance are obtained, for any number of particles.
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1 The Model

There are extreme models in non-equilibrium statistical physics. First one is the
ideal (or almost ideal) gas where the particles are free that is do not interact
(or almost do not interact) with each other. The second is when the particles
interact but each particle moves inside its own potential well, which also moves
due to interaction of particles. The simplest such model is the general linear
model with quadratic potential interaction energy. However, besides interaction,
there can be also external driving and dissipative forces. There are many different
qualitative phenomena concerning such systems. One of the most important is
resonance phenomena. That is when the particles start to leave their potential
wells, the system becomes unstable and the dynamics becomes unbounded. Here
we study the models with large number of particles where the resonance can
occur even if the external forces act only on one fixed particle.

We consider general linear system of N0 point particles in IRd with N = dN0

coordinates qj ∈ IR, j = 1, .., N . Let

vj = dxj

dt , pj = mjvj , j = 1, .., N,

q = (q1, ..., qN )T , p = (p1, ..., pN )T , ψ(t) = (q1, ..., qN , p1, ..., pN )T .
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Here mj is the mass of the particle having qj as one of its coordinate. Further
on we put mj = 1 and thus pj = vj . Potential and kinetic energies are:

U(ψ(t)) =
1
2

∑

1≤j,l≤N

Vj,lqjql =
1
2
(q, V q), T (ψ(t)) =

N∑

j=1

p2j
2

=
1
2
(p, p),

where the matrix V = (Vij) is always assumed to be positive definite. Then
qj(t), vj(t) are bounded for any initial conditions.

If there are also external forces fj(t, vj), acting correspondingly on the coor-
dinates j, then we have the following system of equations:

q̈j = −
∑

l

Vj,lql + fj(t, vj), j = 1, .., N,

or in the first order form:

q̈j = v̇j =
∑

l

Vj,lql + fj(t, vj).

or
ψ̇ = A0ψ + F, (1)

where

A0 =
(

0 E
−V 0

)
, (2)

F = (0, ..., 0, f1(t, v1), ..., fN (t, vN ))T ∈ IR2N .

We shall consider the case:

fj(t, vj) = f(t)δj,n − αvjδj,k, (3)

where the time dependent external force f(t) acts only on fixed coordinate n,
and the dissipative force −αvk acts only on coordinate k.

For fixed initial conditions and parameters (F, V ), we say that resonance
takes place if the solutions xj(t), vj(t) are not bounded in t ∈ [0,∞) at least for
one j = 1, ..., N .

2 Main Results

As matrix V is positively definite, its eigenvalues are strictly positive and it is
convenient to denote them as ak = ν2

k , k = 1, ..., N , furthermore, it is convenient
to consider all νk positive too. Corresponding system of eigenvectors we denote
as {uk, k = 1, ..., N} and this system can always be assumed to be orthonormal.
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2.1 Periodic Driving Force

Here we consider the case (3) with f(t) = a sin ωt and α = 0. And for general
periodic force one could just (due to linearity of equations) consider its Fourier
series.

Denote ΩN the set of all positive-definite (N × N)-matrices. It is an open
subset in RM (the set of all symmetric matrices), where M = N + N2−N

2 =
N(N+1)

2 . It is open because any sufficiently small perturbation does not change
positive definiteness. Denote μ the Lebesgue measure on ΩN , and let (for fixed
ω) Ω(ω) be the subset of ΩN such that ω2 = ν2

l at least for one l ∈ {1, ..., N}.
It is an algebraic manifold in IRM and thus μ(Ω(ω)) = 0.

Theorem 1. 1). Assume that V /∈ Ω(ω) that is, for all j ∈ {1, ..., N}, ν2
j �= ω2.

Then for all j ∈ {1, ..., N} and all t ≥ 0:

|qj(t)| ≤ 2djβ, |pj(t)| ≤ 2djβω,

where

β = max
r

1
|ω2 − ν2

r | , dj = |a|
N∑

k=1

|(uk, en)(uk, ej)|. (4)

In other words, there will not be resonance for almost all matrices V ;
2). Assume ω2 = ν2

l at least for one l ∈ {1, ..., N}. Then qj(t), pj(t) are
bounded uniformly in t ≥ 0 if and only if for this j holds:

∑

k∈I(ω)

(uk, en)(uk, ej)) = 0, (5)

where I(ω) = {k ∈ {1, ..., N} : ω2 = ν2
k}. Otherwise resonance occurs. Moreover,

for all j ∈ {1, ..., N}:

lim inf
t→+∞ qj(t) = −∞, lim sup

t→+∞
qj(t) = +∞,

lim inf
t→+∞ pj(t) = −∞, lim sup

t→+∞
pj(t) = +∞,

and

lim sup
t→+∞

T (ψ(t))
t2

= lim sup
t→+∞

U(ψ(t))
t2

= lim
t→+∞

H(ψ(t))
t2

= C,

where

C =
a2

8

∑

k∈I(ω)

(uk, en)2.
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2.2 Arbitrary Driving Force and Dissipation

Now we consider the force (3), that is the equation:

q̈j = −
∑

l

Vj,lql + f(t)δj,n − αq̇kδj,k, j = 1, .., N, α > 0.

In the vector form it can be written as:

q̇j = pj ,

ṗj = −
∑

l

Vj,lql + f(t)δj,n − αpkδj,k,

or
ψ̇ = Aψ + f(t)gn, (6)

where

A =
(

0 E
−V −αD

)
(7)

is the 2N × 2N -matrix with N × N blocks, E is the unit N × N -matrix,

D = Dk = diag(δ1,k, .., δN,k),

gn = (0, en)T ∈ IR2N , en = (δ1,n, .., δN,n), 0 = (0, ..., 0) ∈ IRN , (8)

and again we consider zero initial conditions.
Put

S =
(

0 0
0 αD

)
.

Then
A = A0 − S,

where A0 was defined in (2). It is known that Reν ≤ 0 for all eigenvalues of A
[see [2]].

Theorem 2. 1). Assume that the function f(t) (defined by (3)) grows in time t
on [0,∞) not faster than the power function. Then if the spectrum of A does not
have pure imaginary eigenvalues, then the solution of the system (6) is bounded
on [0,∞).

2). Let ΛN ⊂ ΩN ⊂ IRM be the set of matrices V such that all eigenvalues of
the matrix A lie inside left halfplane. Then the Lebesgue measure μ(ΩN\ΛN ) = 0,
that is for almost all matrices V the spectrum of the corresponding matrices
A = A(V ) lies inside left halfplane.
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2.3 Almost-Periodic Force

Suppose the force f(t) has the form:

f(t) =
∫

R

a(ω) cos(ωt)dω,

where a(ω) ∈ l1(IR) is a sufficiently smooth function. Then the function f(t) on
IR is almost periodic.

Theorem 3. Assume α = 0, that is there is no dissipative force. Then for any
initial data the solutions {xk(t), vk(t)} are bounded on the time interval [0,∞).

3 Proofs

3.1 Proof of Theorem 1

Note first that the eigenvalues of matrix A0 are ±iν1, ...,±iνN . In fact, if u = uk

- eigenvector of V corresponding to the eigenvalue ν2
k , k = 1, ..., N , (i.e. V u =

ν2
ku) then vector x± =

(
u

λ±u

)
, where λ± = ±iνk is the eigenvector of A0,

corresponding to the eigenvalue λ± = ±iνk:

A0x± =
(

0 E
−V 0

)(
u

λ±u

)
=

(
λ±u
−V u

)
=

(
λ±u
−ν2

ku

)
=

(
λ±u
λ2

±u

)
= λ±x±.

It is well-known that the solution of equation (1) can be written as:

ψ(t) = eA0t(
∫ t

0

f(s)e−A0sgnds + ψ(0)). (9)

It is easy to prove that:

eA0t =
(

cos(
√

V t) (
√

V )−1 sin(
√

V t)
−√

V sin(
√

V t) cos(
√

V t)

)
,

where trigonometric functions of matrices are defined by the corresponding power
series. Then we can find q(t), p(t) explicitely:

q(t) =
∫ t

0
f(s)(

√
V )−1 sin(

√
V (t − s))ends + cos(

√
V t)q(0)

+(
√

V )−1 sin(
√

V t)p(0),
(10)

p(t) =
∫ t

0

f(s) cos(
√

V (t − s))ends −
√

V sin(
√

V t)q(0) + cos(
√

V t)p(0). (11)

Let us expand vectors en, q(0), p(0) in the orthonormal basis of eigenvectors
of V :

en =
N∑

k=1

(uk, en)uk, q(0) =
N∑

k=1

(uk, q(0))uk, p(0) =
N∑

k=1

(uk, p(0))uk.
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Then as

(
√

V )−1uk =
1
νk

uk, sin(
√

V t)uk = uk sin(νkt),

cos(
√

V t)uk = uk cos(νkt),

we have:

q(t) =
N∑

k=1

[(uk, en)(
∫ t

0

f(s)
sin(νk(t − s))

νk
ds)

+ (uk, q(0)) cos(νkt) + (uk, p(0))
sin(νkt)

νk
]uk, (12)

p(t) =
N∑

k=1

[(uk, en)(
∫ t

0

f(s) cos(νk(t − s))ds)

− (uk, q(0))νk sin(νkt) + (uk, p(0)) cos(νkt)]uk. (13)

Thus we reduced the question of boundedness to the question of boundedness of
the functions:

q̃k(t) =
∫ t

0

f(s) sin(νk(t − s))ds,

p̃k(t) =
∫ t

0

f(s) cos(νk(t − s))ds.

For those j ∈ {1, ..., N}, where ω2 �= ν2
j :

q̃j(t) =
∫ t

0

sin(ωs) sin(
√

aj(t − s))ds =
√

aj

ω2 − aj
(sin(ωt) − sin(

√
ajt)),

p̃j(t) =
∫ t

0

sin(ωs) cos(
√

aj(t − s))ds =
ω

ω2 − aj
(cos(

√
ajt) − cos(ωt)).

It follows:

|qj(t)| = |(q, ej)| = |a
N∑

k=1

(uk, en)
1
νk

q̃k(t)(uk, ej)| ≤ 2djβ,

|pj(t)| = |(p, ej)| = |a
N∑

k=1

(uk, en)p̃k(t)(uk, ej)| ≤ 2djβω.

Now consider j ∈ {1, ..., N}, where ν2
j = ν2

l = ω2:

q̃j(t) =
∫ t

0
sin(ωs) sin(

√
aj(t − s))ds = sin(ωt)

2ω
− t cos(ωt)

2
,

p̃j(t) =
∫ t

0
sin(ωs) cos(

√
aj(t − s))ds = t sin(ωt)

2
,

qj(t) = (q, ej) = a
N
∑

k=1

(uk, en) 1
νk

q̃k(t)(uk, ej)

= (a
∑

k∈I(ω)(uk, en)(uk, ej))(− t cos(ωt)
2ω

) + O(1) = Bj(− t cos(ωt)
2ω

) + O(1), t → +∞,
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where I(ω) = {j ∈ {1, ..., N} : ω2 = ν2
j }.

Similarly for pj(t):

pj(t) = (p, ej) = a

N∑

k=1

(uk, en)p̃k(t)(uk, ej)

= (a
∑

k∈I(ω)

(uk,en)(uk, ej))
t sin(ωt)

2
+ O(1) = Bj

t sin(ωt)
2

+ O(1), t → +∞.

The theorem follows.

3.2 Proof of Theorem 2

In [1–3] the following subspaces of

L = {ψ = (q, p), q, p ∈ IRN}
were defined (with H = U + T ):

L− = {ψ ∈ L : H(eAtψ) −→ 0, t −→ +∞},
L0 = {ψ ∈ L : d

dtH(eAtψ) = 0 ∀t},

and was proved that:

1). L−, L0 are linear orthogonal subspaces;
2). L = L− ⊕ L0;
3). both L−, L0 are invariant with respect to dynamics;
4). L0 = {0} iff A does not have pure imaginary eigenvalues;
5). A does not have pure imaginary eigenvalues iff the vectors
en, V en, ..., V N−1en are linear independent.

Note that resonance is possible for pure imaginary eignvalues as in the inte-
grals, introduced below, secular terms like t cos(ωt), t sin(ωt) can appear.

The first statement of the theorem follows from Theorem 4.1. (in [4],p.88),
where the solution of the system:

ψ̇ = Bψ + F (t), (14)

where B is some linear operator and F (t) is vector function, is considered.
We cite this theorem almost literally.

Theorem 4. (see [4], Theorem 4.1, p.88)
In order for there to correspond to any bounded-on-the-real-line continuous

vector function F (t) one and only one bounded-on-the-real-line solution of (14)
it is necessary and sufficient that the spectrum σ(B) not intersect the imaginary
axis.

The solution is given by formula:

x(t) =
∫

IR

GB(t − s)F (s)ds,

where GB(t) is principal Green function for equation.
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In our case F (t) = f(t)gn, t ≥ 0, and

GB(t) = eBtP−,

where P− is the spectral projection corresponding to the spectrum of B in the
left (negative) halfplane.

3.3 Proof of Theorem 3

Using formula (12) we want to prove boundedness in t ∈ [0,∞) of the function

I(t) =
∫ t

0

f(s) sin(νk(t − s))ds.

We have:
∫ t

0
sin(νk(t − s))f(s)ds =

∫
R

a(ω)dω
∫ t

0
sin(νk(t − s)) cos(ωs)ds

= νk

∫
R

a(ω) cosωt−cos νkt
ν2
k−ω2 dω

= 2
∫

R
a(ω) sin((ω+νk)t) sin((ω−νk)t)

(ω+νk)(ω−νk)
dω.

We see that unboundedness in time can only arise when we integrate in a small
neighborhood of νk. Denoting ω = νk + x we get as ε → 0:

2
∫ ε

−ε

a(νk + x)
sin((x + 2νk)t) sin(xt)

(x + 2νk)x
dx ∼ a(νk) sin(2νkt)

νk

∫ ε

−ε

sin xt

x
dx.

At the same time we have that the integral:
∫ ε

−ε

sin xt

x
dx =

∫ tε

−tε

sinx

x
dx

is bounded uniformly in t. Indeed, on arbitrary period (N,N+2π) put x = N+y,
then

1
x

=
1
N

1
1 + y

N

=
1
N

− y

N2
+ ...

The first term gives 0 in the integrals for such periods, and the rest will give a
convergent sum.

4 Conclusion

Note first that the solution boundedness problem with the external force f(t)
was in fact reduced to the problem of boundedness of the integral:

I(t) =
∫ t

0

f(s) sin ωsds. (15)

Now we want to formulate simple and more difficult problems concerning
general situation with resonances.

Let us summarize now how to get rid of resonances without self-isolation
from external influence. If the external force is periodic, there are following
possibilities:
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1). one should choose his own oscillation frequency sufficiently far from the
external frequency;
2). use external “smooth” almost-periodic force like in Theorem 3;
3). if all previous is impossible one should be simultaneously be under influ-
ence of some external dissipative force;
4). what will be if the external force is neither periodic nor almost-periodic.
In particular, what will be if f(s) is a random stationary process.

If it is unbounded then the solution also will be unbounded. If f(s) is bounded,
consider the following cases.
5). If f(s) is stationary with fast correlation function decay, then the solution
will be unbounded. In fact, let τ = 2π

ω be the period in (15). Consider the
sequence of random variables

ξk =
∫ (k+1)τ

kτ

f(s) sin ωsds

and their sums
SN = ξ1 + ... + ξN .

If ξk are independent or have sufficient decay of correlations, then just by
central limit theorem there cannot be boundedness. Interesting question is
to formulate general conditions when, keeping the randomness and wihout
dissipation forces, one can have bounded solutions.
6). Complete different situation will be for infinite collection of particles.
Namely, in many cases there will not be resonance (unbounded graph) due
to phenomenon that energy escaped to infinity.

We consider countable number of point particles (with unit masses) on the
real axis xk ∈ IR, k ∈ ZZ. Intuitively, we would like that each particle xk(t)
were close to ak ∈ IR for some a > 0. That is why we introduce the formal
Hamiltonian:

H(q, p) =
1
2

∑

k∈ZZ

p2k +
1
2

∑

k,j∈ZZ

b(k − j)qkqj ,

where qk = xk − ak, and pk(t) = q̇k(t) are momenta of the particles k. The real
function v(k) is assumed to satisfy the following conditions:

1. symmetry: b(k) = b(−k), b(0) > 0;
2. boundedness of the support, that is there exists r ∈ IN such that b(k) = 0 for

any k, |k| > r;
3. for any λ ∈ IR:

ω2(λ) =
∑

k∈ZZ

b(k)eikλ > 0.

It follows that the linear operator V in l2(ZZ) with elements Vjk = b(k − j)
(in the standard orthonormal basis en ∈ l2(ZZ), en(j) = δj,n) is a positive
definite self-adjoint operator.
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The trajectories of the system are defined by the following system of equa-
tions:

q̈j = −
∑

k

b(k − j)qk + f(t)δj,n, j ∈ ZZ,

where f(t) is some external force which acts only on the particle n, δj,n is the
Kronecker symbol. We will always assume zero initial conditions:

qk(0) = 0, pk(0) = 0, k ∈ ZZ.

We can rewrite it in the Hamiltonian form:

q̇j = pj , ṗj = −
∑

k

b(k − j)qk + f(t)δj,n. (16)

In l2(ZZ × ZZ) define the (state) vector ψ(t) =
(

q(t)
p(t)

)
and the linear operator

A0 which was defined in (2). Then the system can be rewritten as follows:

ψ̇ = A0ψ + f(t)gn, (17)

where gn is defined in (8).
Here we assume that f(t) is a real-valued stationary random process (in the

wider sense) with zero mean and covariance function B(s), so that:

Ef(t) = 0, Ef(t)f(s) = B(t − s).

Also assume that there exist random measure Z(dx) and (spectral) measure
μ(dx) such that for any Borel set D ⊂ IR:

EZ(D) = 0, E|Z|2(D) = μ(D), EZ(D1)Z∗(D2) = 0

for nonintersecting D1 and D2, and moreover:

B(s) =
∫

IR

eisxμ(dx), f(s) =
∫

IR

eisxZ(dx). (18)

We assume also that the support of the random measure is “separated” from
the spectrum of A0. Then the following assertion holds.

Theorem 5. Solution ψ(t) of the system (16) can be presented as the sum of
two centered random processes:

ψ(t) = ζ(t) + η(t),

η(t) = −eA0t
∫
IR

eitxRA0(ix)Z(dx)g,

ζ(t) = eA0t
∫
IR

RA0(ix)Z(dx)g = −eA0tη(0),

where RA(z) = (A0 − zI)−1 is the resolvent of the operator A0 (I is the unit
operator in l2(ZZ × ZZ). Moreover, components of η(t) are stationary (in wider
sense) random processes, and each component of ζ(t) → 0 a.s. as t → +∞.

Proof of this theorem and the development of this theme will be given else-
where.
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