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Abstract. The oversampling approach is often used for binary imbal-
anced classification. We demonstrate that the approach can be inter-
preted as the weighted classification and derived a generalization bound
for it. The bound can be used for more accurate re-balancing of classes.
Results of computational experiments support the theoretical estimate
of the optimal weighting.
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1 Introduction

In this paper, we consider the imbalanced binary classification, i.e. the case of
two-class classification when one class (a minor class) has much less represen-
tatives in the available dataset than the other class (a major class). Many real-
world problems have unavoidable imbalances due to properties of data sources,
e.g. network intrusion detection and maintenance [1–3,8], damage detection from
satellite images [12,13,17], prediction and localization of failures in technical sys-
tems [4,5,7,21,22], etc. In these examples target events (diseases, failures, etc.)
are rare and presented only in a small fraction of available data.

Often the main goal of the imbalanced classification is to accurately detect
the minor class [11]. However, standard classification approaches (logistic regres-
sion, SVM, etc.) are often based on the assumption that all classes as equally
represented [10]. As a consequence the resulting classification model is biased
towards the major class. E.g., if we predict an event occurring in just 1% of all
cases and the classification model always gives a “no-event” prediction, then the
model error is equal to 1%. Therefore, the average accuracy of the classifier is
high, although it can not be used for the minor class detection.

An efficient way to deal with the problem is to resample the dataset in order
to decrease the class imbalance, as it was discussed in [6,20]. In practice we
can perform oversampling, i.e., add synthesized elements to the minor class, or
perform undersampling, i.e., delete particular elements from the major class; or
do the both types of samplings. There also exist other more delicate approaches
to resampling.
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Most of the resampling approaches takes as input the resampling amount,
which defines how many observations we have to add or delete. In [6,20] they
demonstrated that there is no “universal” choice of the resampling amount and
the final classification accuracy significantly depends on a particular value we
select for a dataset at hand.

The authors of [6,20] proposed to use either the cross-validation procedure
[10] or the meta-learning procedure to select the resampling method and the
resampling amount. However, these approaches are purely empirical and require
to spend significant time for additional computational experiments due to the
exhaustive search.

In this work we argue that the resampling approaches can be considered as
a specific variant of the weighted classification: so to deal with a possible class
imbalance when constructing a classifier we use a weighted error (risk) to stress
the most important class. The question is how to select an appropriate weight
value to up-weight the minor class. For that we estimate the theoretical general-
ization ability of the classifier with the weighted loss function and explore how it
depends on the weighting scheme. We discuss how these findings can be used in
practice when solving the imbalanced classification problem. In Sect. 2 we intro-
duce the main notations and provide a theoretical problem statement. In Sect. 3
we prove the main result of the paper, namely, we obtain the generalization
bound for the weighted binary classification and obtain an optimal weighting
scheme. We propose the algorithm for the weighted classification based on the
derived optimal weighting, and evaluate its empirical performance in Sect. 4.
Results of computational experiments demonstrate usefulness of the proposed
approach. We discuss conclusions in Sect. 5.

2 Problem Statement

Let us consider the formal binary classification problem statement, discuss how it
can be interpreted as the weighted classification task in case we use the standard
oversampling technique, and estimate the corresponding excess risk. Thanks to
the estimate, we can characterize the influence of the weight (playing a role of
the resampling amount) on the generalization ability of the classifier.

We denote by

– F ⊆ YX a class of binary classifiers with a multi-dimensional input space
x ∈ X and an output label space Y. Here we consider Y = {−1,+1} for
simplicity. E.g.

F = {fa,b : fa,b(x) = 2I(〈a, x〉 + b ≥ 0) − 1};

– P a distribution on X × Y;
– π a prior probability of a positive class, i.e.

P = πPx|y=+1 + (1 − π)Px|y=−1;

– D = {(xi, yi)}N
i=1 a training sample, xi ∈ X , yi ∈ Y;
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– RN (F) a Rademacher complexity of F [15]. Recall that the empirical Rade-
macher complexity of some family of functions G from Z to [a, b] for a fixed
sample S = (z1, . . . , zm) is equal to

R̂S(G) = Eσ

[
sup
g∈G

1
m

m∑
i=1

σig(zi)

]
,

where σ = (σ1, . . . , σm) are Rademacher random variables. Then the
Rademacher complexity of G w.r.t. some distribution P on Z is defined as

Rm(G) = ES∼Pm

[
R̂S(G)

]
.

We consider a zero-one loss function L(ŷ, y) = Iŷ �=y. The theoretical risk is
equal to EPL(f(x), y), so that the theoretically optimal classifier

f∗ = arg min
f∈F

EPL(f(x), y).

The empirical risk has the form

EDL(f(x), y) =
1
N

N∑
j=1

L(f(xj), yj).

If we perform the oversampling the empirical risk can be represented as

1
N

N∑
j=1

ujL(f(xj), yj),

where uj ≥ 1 is equal to the number of times the object xj from the initial
sample D is selected in the oversampling procedure (we count xj as well). Thus
the binary classification problem in case of the oversampling can be interpreted as
a classification problem with a weighted empirical loss: we optimize the weighted
empirical risk when training a classifier and measure its accuracy using a non-
weighted theoretical risk.

Therefore, we define some (fixed) weighting function

u : (X × Y) → (0,+∞).

The weighted empirical risk is equal to

EDu(x, y)L(f(x), y) =
1
N

N∑
i=1

u(xi, yi)L(f(xi), yi),

so that the empirical classifier

f̂ = arg min
f∈F

EDu(x, y)L(f(x), y). (1)



110 E. Burnaev

We would like to derive an upper bound for the excess risk

Δ(F ,P) = sup
f∈F

(EPL(f(x), y) − EDu(x, y)L(f(x), y)) ,

which characterizes a generalization ability of the classifier. In particular, high
values of the excess risk means that the function class F is “too complex” for
the considered problem.

There exist theoretical results about the classification performance when
the classifier is trained with the weighted loss. E.g. in [9] a bayesian frame-
work for imbalanced classification with a weighted risk is proposed, [19] inves-
tigated the calibration of asymmetric surrogate losses, [16] considered the case
of cost-sensitive learning with noisy labels. The case of weighted risk for the
one-dimensional classification based on probability density functions estimates
is considered in [14].

However, to the best of our knowledge, there is no studied upper bound for
the excess risk with explicitly derived dependence on the class imbalance value
π and the weighting scheme u(·) that quantifies their influence on the overall
classification performance.

3 Generalization Bound

To derive explicit expressions we use an additional assumption, namely, we con-
sider

u(x, y) = (1 + g+(w))I{y=+1} + (1 + g−(w)) I{y=−1}
for some positive weighting functions g+(w) and g−(w) of the weight value w ≥
0. We can tune w to re-balance the proportion between classes and decrease
Δ(F ,P).

Theorem 1. With probability 1 − δ, δ > 0 for D ∼ P
N the excess risk Δ(F ,P)

is upper bounded by

Δ(w) = 3 (g+(w)π + g−(w)(1 − π)) + RN (F) + (2 + g+(w) + g−(w)) αN , (2)

where αN =
√

log δ−1

2N .

Proof. Let
L = {(x, y) → L(f(x), y) : f ∈ F}

be a composite loss class. For any L ∈ L we get that

EPL − EDuL = EPL − EPuL + EPuL − EDuL

≤ EP|(1 − u)L| + (EPuL − EDuL). (3)

Since any L ∈ L is bounded from above by 1 for the first term in (3) we obtain

EP|(1 − u)L| ≤ EPg+(w)I{y=+1} + EPg−(w)I{y=−1}
= g+(w)π + g−(w)(1 − π). (4)
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Thanks to McDiarmid’d concentration inequality [15], applied to the function
class Lu = {uL : L ∈ L}, with probability 1 − δ, δ > 0 for D ∼ P

N we get the
upper bound on the excess risk

sup
L∈L

(EPuL − EDuL) ≤ 2RN (Lu) + max[(1 + g+(w)), (1 + g−(w))]αN ≤

≤ 2RN (Lu) + (2 + g+(w) + g−(w))αN . (5)

Let us find a relation between RN (Lu) and RN (L). We denote by zi a pair
zi = (xi, yi). By the definition (see [15]) the empirical Rademacher complexity

R̂D(Lu) =
1
N

Eσ sup
L∈Lu

N∑
i=1

σiu(zi)L(zi)

≤ 1
N

Eσ sup
L∈Lu

N∑
i=1

σiL(zi) +
g+(w)

N
Eσ sup

L∈Lu

∑
i:yi=+1

σiL(zi)

+
g−(w)

N
Eσ sup

L∈Lu

∑
i:yi=−1

σiL(zi)

≤ R̂D(L) +
g+(w)

N
Eσ sup

L∈Lu

∑
i:yi=+1

σiL(zi)

+
g−(w)

N
Eσ sup

L∈Lu

∑
i:yi=−1

σiL(zi).

For the zero-one loss

Eσ sup
L∈Lu

∑
i:yi=+1

σiL(zi) ≤ #{i : yi = +1},

and
Eσ sup

L∈Lu

∑
i:yi=−1

σiL(zi) ≤ #{i : yi = −1}.

The Rademacher complexity

RN (Lu) = ED∼PN R̂D(Lu)

≤ ED∼PN

[
R̂D(L) +

g+(w)
N

#{i : yi = +1} +
g−(w)

N
#{i : yi = −1}

]
= RN (L) + g+(w)π + g−(w)(1 − π). (6)

Using the fact that RN (L) = 1
2RN (F), substituting inequalities (4), (5) and

(6) into (3), we get that

Δ(F ,P) ≤ 3 (g+(w)π + g−(w)(1 − π)) + RN (F) + (2 + g+(w) + g−(w)) αN .

By collecting the terms with w in Δ(w) (2) we get

g+(w) (3π + αN ) + g−(w) (3(1 − π) + αN ) ,
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and so minimizing this quantity w.r.t. w we can make the upper bound Δ(w)
tighter. For example, in case we set

g+(w) = w g−(w) = 1/w,

the optimal weight

wopt =

√
3(1 − π) + αN

3π + αN
≈

√
1 − π

π
, (7)

where αN ≈ 0 for N � 1. For such optimal wopt we get

Δ
opt

= Δ(wopt) = 6
√

π(1 − π) + RN (F) + αN

(
2 +

1√
π(1 − π)

)
.

Thus we obtain an estimate on how the weighting influences the classification
accuracy: e.g. in the imbalanced case (when π ≈ 0 or π ≈ 1) for N � 1 by
selecting the weight optimally we reduce the generalization gap almost to zero,
as Δ

opt ≈ 0; at the same time not optimal weight can lead to overfitting.
As we already discussed, under some mild modeling assumptions the binary

classification problem in case of the oversampling can be interpreted as the clas-
sification problem with the weighted loss. Therefore not correctly selected resam-
pling amount has the same negative effect as not optimal weight value for the
classification with the weighted loss function. If we know the class imbalance,
we can use the optimal value wopt either to set the weight in case we use the
weighted classification scheme, or as a reference value when selecting the resam-
pling amount in case we use the oversampling approach—this should help to
reduce the number of steps of the exhaustive search, used in [6,20].

4 Empirical Results

Let us perform an empirical evaluation of the obtained estimate (7). We expect
that for the optimal weight value wopt the classifier achieves better accuracy
on the test when being trained by minimizing the weighted empirical loss. We
consider the following protocol of experiments:

1. Consider different values of the weight w ∈ WK = {w1, . . . , wK};
2. Train a classifier fw(x) by minimizing a weighted empirical loss (1) for the

particular weight value w = wi;
3. Estimate accuracy on the test set and find the weight w∗ ∈ WK for which

accuracy is the highest;
4. Compare the best obtained weight with the theoretical weight calculated

using the formula (7).

We generated artificial datasets as pairs of 2D Gaussian samples with various
means and covariance matrices and sample sizes, where each Gaussian sample
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Fig. 1. Example of a toy dataset 1 Fig. 2. Example of a toy dataset 2

Fig. 3. Example of a toy dataset 3 Fig. 4. Example of a toy dataset 4

corresponds to some class. Examples of artificial datasets 1, 2, 3 and 4 are shown
in Figs. 1, 2, 3 and 4.

We took real datasets from Penn Machine Learning Benchmark repository
[18]: we selected diabetes, german, waveform-40, satimage, splice, spambase,
hypothyroid, and mushroom, that have various types of data and features. Due
to multiclass data, we took class 0 for waveform-40 and splice, class 1 for satim-
age and class 2 for diabetes as a positive, whereas other classes were combined
into a negative one.

To obtain a specific balance between classes in experiments, we used under-
sampling of an excess class. In this way we can get learning samples D corre-
sponding to different values of π. Using this method, we varied the positive class
share to test the dependence of the results on π.
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Fig. 5. w∗ (black dot) vs. wopt (red star) for the toy dataset 1 and different values of
π

Fig. 6. w∗ (black dot) vs. wopt (red star) for the toy dataset 2 and different values of
π
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Fig. 7. w∗ (black dot) vs. wopt (red star) for the toy dataset 3 and different values of
π

Fig. 8. w∗ (black dot) vs. wopt (red star) for the toy dataset 4 and different values of
π
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Fig. 9. w∗ (black dot) vs. wopt (red star) for the real dataset waveform-40 and different
values of π

To measure the performance of the method, we conducted 5-fold cross-
validation of a Logistic Regression classifier [10]. We provide examples of typ-
ical results on different datasets and for different positive class shares π: in
Figs. 5, 6, 7, 8 there are results for toy datasets, and in Figs. 9 and 10 there are
results for two real datasets—waveform-40 and hypothyroid). In particular, we
show how the average validation accuracy depends on the weight w; we indi-
cate empirically optimal values of w∗ by black dots, and indicate theoretically
optimal values of wopt by red stars. We can observe that for most of the cases
estimates w∗ and wopt agree rather well. Moreover, although the estimate wopt

is obtained under general conditions from the rather loose bound (2), still the
classifier with w = wopt provides often quite good accuracy even if there is a big
difference between w∗ and wopt.
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Fig. 10. w∗ (black dot) vs. wopt (red star) for the real dataset hypothyroid and different
values of π

5 Conclusion

We considered the binary classification problem in the imbalanced setting. We
showed that the oversampling approach under somewhat realistic assumptions
can be interpreted as the weighted classification. We derived the generation
bound for the weighted classification and discussed what connection the bound
has with the selection of the resampling amount. We proposed the algorithm
based on the derived optimal weighting. Results of the computational experi-
ments demonstrated usefulness of the proposed approach.
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