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Abstract. Extreme properties of the average characteristics of fuzzy
random variables are given. A new form of the law of large numbers for
fuzzy random variables is established. An optimal linear regression of
fuzzy random variables is constructed, in which the coefficients are sim-
ilar to the Fourier coefficients. It is shown that under certain conditions,
the optimal regression has the maximum cosine of the angle with the
predicted fuzzy random variable.
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1 Introduction

Fuzzy random variables originated as a branch of fuzzy mathematics in [1–3].
They are widely used in financial mathematics, forecasting, decision theory, and
others. In particular, the mathematical model of a random experiment with
fuzzy outcomes is interpreted as a fuzzy random variable. The current state of
the theory of fuzzy random variables is reflected in [4–7] and others.

In this paper, a new definition of the quasi-scalar product between fuzzy
random variables is introduced, and its relationship with the covariance of fuzzy
random variables proposed in [8] is revealed. Extreme properties of expectations
and fuzzy expectations of fuzzy random variables are discussed.

The main results of this work are devoted to the law of large numbers (LLN)
for fuzzy random variables and linear regression of fuzzy random variables. The
difference between our result and those known from the LLN consists in using a
special metric associated with the quasi-scalar product introduced by the author.
The specificity of our result on linear regression is to derive a formula for optimal
linear regression coefficients similar to the Fourier coefficients for an orthonormal
system in Hilbert space. This is provided by introduction the definition quasi-
scalar product.

In addition, it is shown that under certain conditions, the optimal solution
has the maximum cosine of the angle with the predicted fuzzy random variable
in the class of linear estimates.
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Below, by the fuzzy set A given on the universal space U , we mean the set
of ordered pairs (u, μA(u)), where the membership function μA : U → [0, 1],
determines the degree to which ∀u ∈ U belongs to the set A.

We rely on the following definition of a fuzzy number (cf. [9] chap. 2–4). A
fuzzy number is called a fuzzy set whose universal set is the set of real numbers
R, and which additionally satisfies the following conditions:

1) the support (supp) of a fuzzy number is a closed and bounded (compact) set
of real numbers;

2) the membership function of a fuzzy number is convex;
3) the membership function of a fuzzy number is normal, i.e. the supremum of

the membership function is equal to one;
4) the membership function of a fuzzy number is semi-continuous from above.

We will use the interval representation of fuzzy numbers. Namely, we will
assign a set of α-intervals to each fuzzy number.

The set of fuzzy numbers satisfying the conditions 1)–4) is denoted by J .
As known, the set α-level of a fuzzy number z̃ ∈ J with the membership

function μz̃(x) is defined by the relation

Zα = {x|μz̃(x) ≥ α} (α ∈ (0, 1]), Z0 = supp(z̃).

According to the above assumptions 1)–4) all α-levels of a fuzzy number are
closed and bounded intervals at the real axis. Let’s denote the left (lower) border
of the interval z−(α), and the right (upper) - z+(α), i.e. Zα = [z−(α), z+(α)].
Sometimes z−(α) and z+(α) they are called the left and right indices of a fuzzy
number, respectively.

On a set of fuzzy numbers, you can enter the definition of distances between
them in different ways. The interval approach sometimes uses the Hausdorff dis-
tance, which for fuzzy numbers z̃, ũ ∈ J with α-level sets Zα = [z−(α), z+(α)]
and Uα = [u−(α), u+(α)] in accordance with [5] is defined by the formula
ρH(z̃, ũ) = sup

0<α≤1
dH(Zα, Uα), where

dH(Zα, Uα) = max
[

sup
z∈Zα

inf
u∈uα

|z − u|, sup
u∈uα

inf
z∈zα

|z − u|
]

- Hausdorff metric. Some other distances are also considered (see, for example.,
[7,8,10]).

Denote by J0 - the set of fuzzy numbers in the interval representation of
which the left and right indices are quadratically summable.

We use the distance ρ(z̃, ũ) between the fuzzy numbers z̃ and ũ from J0 with
α-level sets Zα = [z−(α), z+(α)] and Uα = [u−(α), u+(α)], which is defined by
the formula

ρ(z̃, ũ) =
(∫ 1

0

(z−(α) − u−(α))2 + (z+(α) − u+(α))2dα

) 1
2

. (1)
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Here and below, integration is understood by Lebesgue.
This kind of distance was previously used, for example, in [11].
Let the fuzzy number z̃ correspond to α - levels Zα = [z−(α), Z+(α)], with

α ∈ (0, 1]. Suppose, as is customary in interval analysis,

midZα =
1
2
(z+(α) + z−(α)), radZα =

1
2
(z+(α) − z−(α)).

For fuzzy numbers z̃ and ũ from J0, with sets of α - levels [z−(α), z+(α)] and
[u−(α), u+(α)], we define quasi-scalar product

〈z̃, ũ〉 =

1∫
0

(midZα,midUα + radUα radZα)dα

= 0.5

1∫
0

(z+(α)u+(α) + z−(α)u−(α))dα. (2)

The quasinorm z̃ is 〈z̃, z̃〉1/2.
According to (1), (2) the distance between the fuzzy numbers z̃ and ũ from J0

with sets of α - levels [z−(α), z+(α)] and [u−(α), u+(α)] matches the quasinorm
of a fuzzy number whose left index is z−(α)−u−(α), and the right index z+(α)−
u+(α).

Under the sum of the fuzzy numbers z̃ and ũ we will understand a fuzzy num-
ber with α - levels [z−(α)+u−(α), z+(α)+u+(α)]. The product of a fuzzy number
z̃ by a positive number c is a fuzzy number with α - levels [cz−(α), cz+(α)]. In
the case of c < 0 - a fuzzy number with α - levels [cz+(α), cz−(α)].

The following properties of the introduced quasi-scalar product are valid:

1) 〈z̃, ũ〉 = 〈ũ, z̃〉 (∀z̃, ũ ∈ J0);
2) 〈c1z̃, c2ũ〉 = c1c2 〈z̃, ũ〉 (∀z̃, ũ ∈ J0), provided that the product of the num-

bers c1c2 > 0;
3) 〈z̃1 + z̃2, ũ〉 = 〈z̃1, ũ〉 + 〈z̃2, ũ〉 (∀z̃1, z̃2, ũ ∈ J0);
4) 〈z̃, z̃〉 ≥ 0 (∀z̃ ∈ J0) , and the condition 〈z̃, z̃〉 = 0 is equivalent to vanishing

the left and right indexes z̃;
5) Cauchy-Bunyakovsky Inequality | 〈z̃, ũ〉 | ≤ 〈z̃, z̃〉1/2 〈ũ, ũ〉1/2 (∀z̃, ũ ∈ J0).

The quasi-scalar product of the form 〈z̃, ũ〉1 =
1∫
0

(mid Zα mid Uα)dα is con-

sidered in [6]. It is easy to see that in this case, turning the 〈z̃, z̃〉1/2
1 to zero does

not guarantee that the left and right indexes of z̃ are equal to zero.
Other definitions of the scalar product of fuzzy numbers are also found in

the literature (see, for example, [10]).
Note the following relationship between the quasi-scalar product (2) and the

distance (1).
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Set the fuzzy number z̃ with indexes z−(α) and z+(α) match the vector
function z̄(α) = (z−(α), z+(α))T . Scalar product of 〈z̄, ū〉 vector functions z̄ and
ū define by equality (2). Then ρ(z̃, ũ) = ||z̄ − ū||.

We introduce the concept of the cosine of the angle between fuzzy numbers.
For fuzzy numbers z̃, ũ ∈ J0, we put

cos(z̃, ũ) =
〈z̃, ũ〉

〈z̃, z̃〉1/2 〈ũ, ũ〉1/2
.

Note the properties of the cosine.

1. |cos(z̃, ũ)| ≤ 1 (forallz̃, ũ ∈ J0).
This follows from the Cauchy-Bunyakovsky inequality.

2. cos(z̃, ũ) = 0, if and only if z̃ and ũ quasi-orthogonal.
3. cos(z̃, ũ) = 1, if and only if z̃ and ũ are collinear, i.e. there is a number λ > 0

such that z̃ = λũ.

Indeed, cos(z̃, ũ) matches cos(z̄, ū), where z̄, ū are vector functions corre-
sponding to z̃ and ũ, respectively. Then the condition cos(z̃, ũ) = cos(z̄, ū) = 1
means that z̄ = λū, where λ > 0. This is equivalent to z̃ = λũ, i.e. the fuzzy
numbers z̃ and ũ collinear.

2 Fuzzy Random Variables and Their Averages

Let (Ω,Σ,P ) be a probability space, where Ω is a set of elementary events, Σ
is a σ-algebra consisting of subsets of the set Ω, and P is a probability measure.

A measurable map X̃ : Ω → J0 is called a fuzzy random variable if, for any
ω ∈ Ω, the set X̃(ω) is a fuzzy number from J0.

Consider the intervals of α - levels of a fuzzy random variable X̃ for a
fixed ω. Namely, Xα(ω) = {t ∈ R : μX̃(ω) ≥ α}, where μX̃(ω) - membership
function of a fuzzy number X̃(ω) , and α ∈ (0, 1]. The interval Xα(ω) repre-
sent as Xα(ω) = [X−(ω, α),X+(ω, α)], where the boundaries are X−(ω, α) and
X+(ω, α) - random variables. They are called, respectively, the left and right
index of the fuzzy random variable X̃.

Below, we will consider the class X of fuzzy random variables X̃, for which
indexes X−(ω, α) and X+(ω, α) are functions that are quadratically summable
by Ω × [0, 1].

Put
x−(α) =

∫
Ω

X−(ω, α)dP, x+(α) =
∫
Ω

X+(ω, α)dP. (3)

A fuzzy number x̃ with indexes defined by formula (3) is called the fuzzy
expectation of a fuzzy random variable X̃.

Let Xα(ω) = [X−(ω, α),X+(ω, α)] - interval α - level of the fuzzy ran-
dom variable X̃. Put mid Xα(ω) = 1

2 (X+(ω, α) + X−(ω, α)) and radXα(ω) =
1
2 (X+(ω, α) − X−(ω, α)).
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Expectation E(X̃) a fuzzy random variable X̃ is a number defined by the
expression

E(X̃) =

1∫
0

∫
Ω

mid Xα(ω)dPdα = 0.5

1∫
0

∫
Ω

(X−(ω, α) + X+(ω, α))dPdα. (4)

Note the equality

E(X̃) =

1∫
0

mid Xαdα = 0.5

1∫
0

(X−(α) + X+(α))dα,

where X−(α) and X+(α) are determined by formulas (3).
We define a quasi-scalar product for fuzzy random variables X̃ and Ỹ with

α - level sets Xα(ω) = [X−(ω, α),X+(ω, α)] and Yα(ω) = [Y −(ω, α), Y +(ω, α)]
formula

〈
X̃, Ỹ

〉
=

1∫
0

∫
Ω

(mid Xα(ω)mid Yα(ω) + rad Xα(ω) rad Yα(ω))dPdα

= 0.5

1∫
0

∫
Ω

(X+(ω, α)Y +(ω, α) + X−(ω, α)Y −(ω, α))dPdα. (5)

In this case, the quasinorm of the fuzzy random variable X̃ will be denoted

||X̃|| =
〈
X̃, X̃

〉1/2

.
Note that the same properties 1)–5) hold for the quasi-scalar product (5) as

for the quasi-scalar product of fuzzy numbers.
Some other definitions of the scalar product of fuzzy random variables may

be found in [6,10], and others.
Fuzzy random variables X̃ and Ỹ with α-level intervals [X(ω, α)−,X(ω, α)+]

and [Y (ω, α)−, Y (ω, α)+] are called independent if the random variables
X(ω, α)− and Y (ω, α)−, as well as X(ω, α)+ and Y (ω, α)+ are pairwise inde-
pendent for all α ∈ (0, 1].

It is easy to check.

Statement 1. for independent fuzzy random variables X̃ and Ỹ their quasiscalar
product

〈
X̃, Ỹ

〉
= 〈x̃, ỹ〉, where x̃, ỹ-fuzzy expectations x̃ and ỹ, respectively.

Define the distance between fuzzy random variables X̃ and Ỹ of class X
expression

d(X̃, Ỹ ) = (

1∫
0

∫
Ω

(
[
X−(ω, α) − Y −(ω, α)

]2
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+
[
X+(ω, α) − Y +(ω, α)

]2)dPdα)1/2. (6)

Definition (6) corresponds to the definition of the distance between fuzzy
numbers (1). Other definitions of the distance between fuzzy-random variables
are used, for example, in the works [3,7,10].

It turns out that the expectation E(X̃) and the fuzzy expectation x̃ of a fuzzy
random variable X̃ have certain extreme properties with respect to distances (1)
and (6), respectively.

Denote by ŷ a singleton corresponding to the number y ∈ R, i.e. a fuzzy
number characterized by the membership function μŷ(x) equal to 1 for x = y
and zero in other cases. By definition, all left and right indexes of ŷ are equal to
y.

The following statements take place.

Statement 2. For a given fuzzy random variable X̃ with indexes X−(ω, α),
X+(ω, α) its expectation is E(X̃) is the only solution to the extreme problem

d(X̃, ŷ) → min (∀y ∈ R),

where the distance is d(X̃, ŷ) is defined by the formula (6).

Statement 3. Expectation E(X̃) is the only solution to the following extreme
problem

ρ(x̃, ŷ) → min (∀y ∈ R),

where is the distance ρ defined by the formula (2).
These statements are verified by applying an extreme sign for scalar differ-

entiable functions f(y) = d2(X̃, y) and g = ρ2(x̃, y), respectively, taking into
account the expectation definition E(X̃) and fuzzy expectation x̃ of a fuzzy
random variable X̃.

The following theorem is true.

Theorem 1. The fuzzy expectation x̃ of a fuzzy random variable X̃ is the solu-
tion to the following extreme problem

d(X̃, ỹ) → min (∀ỹ ∈ J0).

The proof is just to check equality

d2(X̃, ỹ) = d2(X̃, x̃) + ρ2(x̃, ỹ) (∀ỹ ∈ J0).

We emphasize that the average fuzzy random variables in various aspects are
widely discussed in the literature. However, their extreme properties were not
previously observed.
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3 The Law of Large Numbers

According to [8] we define the covariance between fuzzy random variables X̃
and Ỹ with intervals of α-level [X−(ω, α)X+(ω, α)] and [Y −(ω, α), Y +(ω, α)] by
formula

cov[X̃, Ỹ ] = 0.5

1∫
0

∫
Ω

((X−(ω, α) − x−(α))(Y −(ω, α) − y−(α))

+ (X+(ω, α) − x+(α))(Y +(ω, α) − y+(α)))dPdα. (7)

where x−(α) and x+(α) defined by formulas (3) and similarly y−(α) and y+(α).
This definition is convenient for us because it is closely related to the quasi-

scalar product (5) and distance (6) that we have introduced. Various definitions
of covariance of fuzzy random variables are found in the literature. In particular,
in [6], the covariance cov[X̃, Ỹ ] fuzzy random variables X̃, Ỹ is similar to (7)
expression

cov[X̃, Ỹ ] = 0.25

1∫
0

∫
Ω

(X−(ω, α) + X+(ω, α) − x−(α)

−x+(α))(Y −(ω, α) + Y +(ω, α) − y−(α) − y+(α))dPdα.

However, it is easy to see that this formula actually includes covariances
of random variables mid Xα(ω) and mid Yα(ω), but not for rad Xα(ω) and
rad Yα(ω).

In this sense, the formula (7) used below more adequately reflects the struc-
ture of fuzzy random variables.

The definition of covariance (7) has a lot of properties, that are such a mod-
ification of the case of real random variables (see, [8]).

1) cov[X̃ + Z̃, Ỹ ] = cov[X̃, Ỹ ] + cov[Z̃, Ỹ ];

2) cov[c1X̃, c2Ỹ ] = c1c2cov[X̃, Ỹ ],

for any real c1, c2 ∈ R such that c1c2 > 0.
This definition of sum fuzzy random variables and product of fuzzy random

variable with real number understands as the respective definition for fuzzy
numbers above.

A specific property of the covariance of fuzzy random variables defined by
formula (7) with the quasi-scalar product (5) introduced by us (and not noted
in [8]) is the following

3. cov[X̃, Ỹ ] =
〈
X̃, Ỹ

〉
− 〈x̃, ỹ〉 .
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This property (for other definitions of covariance) was considered, for exam-
ple, in [6,10].

As usual, fuzzy random variables X̃1, X̃2 are called uncorrelated if
cov[X̃1, X̃2] = 0.

Remark 1. If the fuzzy random variables X̃1, X̃2 are independent, they are
uncorrelated.

This follows from property 3 of the covariance given statement 1.

Remark 2. If the fuzzy random variables X̃1, X̃2 are uncorrelated, then〈
X̃1, X̃2

〉
= 〈x̃1, x̃2〉, where x̃1, x̃2 - fuzzy expectations x̃1 and x̃2. Conversely, if

the previous equality is satisfied, the fuzzy random variables X̃1, X̃2 are uncor-
related.

This follows from property 3 of the covariance.
We define the variance of the fuzzy random variable X̃ the equation D(X̃) =

cov[X̃, X̃] and note its properties (cf. [8]):

1. D(cX̃) = c2D(X̃) for any real number c.
2. D(X̃ + Ỹ ) = D(X̃) + D(Ỹ ) + 2cov[X̃, Ỹ ] for ∀X̃, Ỹ ∈ X.
3. D(z̃) = 0 for any fuzzy number z̃ ∈ J0.

Important for us is the following special property of the dispersion
4.

D(X̃) =
1
2
d2(X̃, x̃) (∀X̃ ∈ X),

where x̃ is the fuzzy expectation of a fuzzy random variable X̃, and d2(X̃, x̃) is
the distance defined by the formula (6).

It follows from the equality D(X̃) = cov[X̃, X̃] and the definitions (6), (7).
Consider for fuzzy random variables looks Chebyshev’s inequality (see, e.g.,

[12], Chap. 6, Sect. 32 to “normal” random variables).

Lemma 1 (Chebyshev’s Inequality). For a fuzzy random variable X̃ with a
fuzzy expectation x̃ and a given ε > 0, the inequality occurs

P (d(X̃, x̃) ≥ ε) ≤ 2
ε2

D(X̃). (8)

Indeed, by the probability properties

P (d(X̃, x̃) ≥ ε) =
∫

d(X̃,x̄)≥ε

dP.

Since in the integration domain d2(X̃,x̄)
ε2 ≥ 1, then

∫

d(X̃,x̄)≥ε

dP ≤ 1
ε2

∫
Ω

d2(X̃, x̄)dP =
1
ε2

d2(X̃, x̄).
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Whence, taking into account the property 4 of the variance, follows (8).
Inequality (8) is similar to the corresponding inequality from [8], but it uses

a different definition of distance.
Let’s look how the law of large numbers turns out in the case of fuzzy random

variables. There are a significant number of publications on this subject (see, for
example, [7,13–15]). The main difference is in determining the distance between
fuzzy numbers (respectively, between fuzzy random variables).

Theorem 2 (Law of large numbers). Let X̃1, X̃2, ..., X̃n be a collection of
pairwise uncorrelated fuzzy random variables with fuzzy expectations x̃i. Let their
variances be uniformly bounded, i.e. there is a constant c > 0 such that D(Xi) ≤
c (i = 1, ..., n). Then the relation is valid

P (d(
1
n

n∑
i=1

X̃i,
1
n

n∑
i=1

x̃i) ≥ ε) ≤ 2c

nε2
. (9)

Indeed, putting the Chebyshev’s inequality X̃ = 1
n

n∑
i=1

X̃i, get

P (d(
1
n

n∑
i=1

X̃i,
1
n

n∑
i=1

x̃i) ≤ 2
ε2

D(
1
n

n∑
i=1

X̃i).

Further, under the properties 1, 2 of the variance we have

D(
1
n

n∑
i=1

X̃i) =
1
n2

D(
n∑

i=1

X̃i) =
1
n2

n∑
i=1

D(X̃i) ≤ c

n
.

Hence the result.
Inequality (9) implies

Corollary 1. In the conditions of Theorem 2 the relation is valid

P (d(
1
n

n∑
i=1

X̃i,
1
n

n∑
i=1

x̃i) < ε) ≥ 1 − 2c

nε2
. (10)

The law of large numbers means that the probability on the left in (10) tends
to 1 for n → ∞.

Let’s consider an important special case of the law of large numbers.
It is said that fuzzy random variables X̃ and Ỹ with intervals of α - lev-
els [X−(ω, α),X+(ω, α)] and [Y −(ω, α), Y +(ω, α)] are equally distributed if
X−(ω, α) and Y −(ω, α), and X+(ω, α) and Y +(ω, α), are equally distributed
for all α ∈ [0, 1].

It is said that X̃1, X̃2, ..., X̃n is a fuzzy random sample if X̃i are independent
and equally distributed. Theorem 2 implies

Corollary 2. Let X̃1, X̃2, ..., X̃n be a fuzzy random sample and x̃ be a fuzzy
expectation for each of the fuzzy random variables X̃i. Then
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P (d(
1
n

n∑
i=1

X̃i, x̃) < ε) ≥ 1 − 2c

nε2
,

where c is the variance of the fuzzy random variable X̃i.
Moreover, under conditions of Corollary 2 and properties 1)–4) of the variance

the convergence on metric (6) of 1
n

n∑
i=1

X̃i to x̃ is valid, when n → ∞.

4 Linear Regression

Let’s consider the optimal linear approximation of a (predicted) fuzzy random
variable Ỹ using a system of (predictive) fuzzy 1random variables X̃1, X̃2, ..., X̃n.
In a number of works [8,11,15–17] and other tasks of this kind were considered.
In this case, the specifics of the problem are determined by the choice of the
distance to be minimized. We investigate the question of approximating a fuzzy

random variable Ỹ - the linear combinations
n∑

i=1

βiX̃i with real coefficients βi

(i = 1, ..., n) by the criterion of minimizing the distance (6).
Consider first the extreme challenge with nonnegative coefficients βi ≥ 0

(i = 1, ..., n)

d(Ỹ ,

n∑
i=1

βiX̃i) → min (∀βi ≥ 0). (11)

Takes place

Lemma 2. Let the fuzzy random variables X̃i be quasi-orthogonal for i 
= j,

and their quasinorms κj :=
〈
X̃j , X̃j

〉1/2


= 0 (j = 1, ..., n). Let the condition

bi =
〈
Ỹ , X̃i

〉
≥ 0 (i = 1, ..., n). then problem (11) has a non-negative solution,

and the only one. It has the form β∗
i = bi

κ
2
i
, (i = 1, ..., n).

Indeed, due to the assumption that the coefficients βi are non-negative, the

left index
n∑

i=1

βiX̃i is equal to
n∑

i=1

βiX
−
i (ω, α), and the right one is

n∑
i=1

βiX
+
i (ω, α).

We will omit the arguments ω, α in the proof below. Put

F (β1, ..., βn) = d2(Ỹ ,

n∑
i=1

βiX̃i)

=

1∫
0

∫
Ω

((Y + −
n∑

i=1

βiX
+
i )2 + (Y − −

n∑
i=1

βiX
−
i )2)dPdα. (12)

This is a quadratic form in β1, ..., βn.
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Differentiate with respect to (12) for βj and equate the derivative to zero

∂F

∂βj
= −2

1∫
0

∫
Ω

((Y + −
n∑

i=1

βiX
+
i )X+

j + (Y − −
n∑

i=1

βiX
−
i )X−

j )dPdα = 0.

Hence, for every j = 1, 2, ..., n we have

n∑
i=1

βi

1∫
0

∫
Ω

(X+
i X+

j + X−
i X−

j )dPdα =

1∫
0

∫
Ω

(Y +X+
j + Y −X−

j )dPdα,

i.e.
n∑

i=1

βi

〈
X̃i, X̃j

〉
=

〈
Ỹ , X̃j

〉
(j = 1, ..., n), (13)

We introduce the following notation. Vector B with coefficients bi =
〈
Ỹ , X̃i

〉
,

matrix A with coefficients Aij =
〈
X̃i, X̃j

〉
, vector β with coefficients βi. In

vector form, system (13) has the form Aβ = B. Matrix A due to the quasi-
orthogonality of the system {X̃i} has a diagonal form, with positive numbers
on the main diagonal κ

2
i (i = 1, ..., n). then the solution is β∗ = A−1B, i.e.

β∗
i = bi

κ
2
i

(i = 1...n).
The nonnegativity of the obtained coefficients β∗

i is provided by the condition
bi =

〈
Ỹ , X̃i

〉
≥ 0 (i = 1, ..., n).

To verify that β∗ = A−1B is the minimum point, consider the second deriva-
tive

∂2 F

∂βj∂βs
= 2

1∫
0

∫
Ω

4(X+
s X+

j + X−
s X−

j )dPdα =
〈
X̃s, X̃j

〉
when s 
= j.

∂2 F

∂β2
j

= 2

1∫
0

∫
Ω

((X+
j )2 + (X−

j )2)dPdα = 4
〈
X̃j , X̃j

〉
when s = j.

A sufficient sign of a minimum is the positive definiteness of the Hesse matrix
{ ∂2F

∂βj∂βs
} . And this is provided by the quasi-orthogonality of the system {X̃j}.

Remark 3. Condition
〈
Ỹ , X̃i

〉
> 0 means that there is an acute angle between

the fuzzy random variables Ỹ and X̃i. In other words, the fuzzy-random variables
Ỹ and X̃i increase (in this sense) or decrease at the same time.

Remark 4. In the conditions of Lemma 2, we can reject the requirement of
pairwise quasi-orthogonality of fuzzy random variables X̃1, ..., X̃n. It is sufficient
to require positive invertibility of their Gram matrix A with coefficients aij =〈
X̃i, X̃j

〉
. In the sense that the inverse matrix A−1 exists and converts vectors

with non-negative coordinates back to vectors with non-negative coordinates.
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Remark 5. If, under Lemma 2, we reject the requirement of pairwise quasi-
orthogonality of fuzzy random variables X̃1, ..., X̃n, but additionally assume their
pairwise uncorrelability, then it is sufficient to require positive invertibility of the
Gram matrix from their fuzzy expectations 〈x̃i, x̃j〉.

We emphasize that the coefficients β∗
i are analogous to the Fourier coefficients

when decomposing in an orthogonal system in a Hilbert space (see, for example,
[17], Chap. II, Sect. 11 for random variables). This is due to the relationship of
the metric to be minimized in problem (11) with quasi-scalar product (5).

The proximity of fuzzy random variables (as well as any space with a scalar
product) can be characterized by the cosine of the angle between them.

Define the cosine between the fuzzy random variables Ỹ , Z̃ by the equality

cos(Ỹ , Z̃) =

〈
Ỹ , Z̃

〉
||Ỹ ||||Z̃|| . (14)

According to the definition (14) and the properties of the cosine of the angle
between the fuzzy numbers |cos(Ỹ , Z̃)| ≤ 1. In this case, cos(Ỹ , Z̃) = 0, if and
only, if Ỹ and Z̃ are quasi-orthogonal. And cos(Ỹ , Z̃) = 1, if and only, if Z̃ = λỸ
are collinear (λ > 0).

Denote, as in Lemma 2, β∗
i = 1

κ
2
i

〈
Ỹ , X̃i

〉
and consider

Z̃∗
n =

n∑
i=1

β∗
i X̃i (15)

- an optimal estimate of the predicted fuzzy random variable Ỹ from Lemma 2.

Theorem 3. Let the conditions of Lemma 2. Then the optimal estimate (15)
has the maximum cosine with the predicted fuzzy random variable Ỹ in the class

of linear estimates of the form Zn =
n∑

i=1

βiX̃i (βi ≥ 0).

Indeed, we will show that

|cos(Ỹ , Z̃n)| ≤ cos(Ỹ , Z̃∗
n).

Due to the properties of the quasi-scalar product and the non-negativity of the
coefficients β∗

i ≥ 0 we have

〈
Ỹ , Z̃∗

n

〉
=

〈
Ỹ ,

n∑
i=1

β∗
i X̃i

〉
=

n∑
i=1

β∗
i

〈
Ỹ , X̃i

〉
=

n∑
i=1

(β∗
i )2κ2

i .

In this case, due to the pairwise quasi-orthogonality of the system ||Z∗
n||2 =

n∑
i=1

(β∗
i )2κ2

i . Then

cos(Ỹ , Z̃∗
n) =

n∑
i=1

κ
2
i (β∗

i )2

||Ỹ ||(
n∑

i=1

κ
2
i (β∗

i )2)1/2

=
1

||Ỹ || (
n∑

i=1

κ
2
i (β∗

i )2)1/2.
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Consider

〈
Ỹ , X̃i

〉
=

n∑
i=1

βi

〈
Ỹ , X̃i

〉
=

n∑
i=1

βiβ
∗
i κ

2
i

and ||Z̃n||2 =
n∑

i=1

β2
i κ

2
i .

Then

cos(Ỹ , Z̃n) =

n∑
i=1

κ
2
i βiβ

∗
i

||Ỹ ||(
n∑

i=1

β2
i κ

2
i )1/2

.

By the Cauchy-Schwarz inequality

|cos(Ỹ , Z̃n)| ≤
(

n∑
i=1

κ
2
i β2

i )1/2(
n∑

i=1

κ
2
i (β∗

i )2)1/2

||Ỹ ||(
n∑

i=1

κ
2
i β2

i )1/2

=
1

||Ỹ || (
n∑

i=1

κ
2
i (β∗

i )2)1/2 = cos(Ỹ , Z̃∗
n),

which was required to be proved.
Let’s consider the optimal regression problem in a situation where all linear

approximation coefficients are not assumed to be nonnegative and the condition〈
Ỹ , X̃i

〉
≥ 0 (i = 1, ..., n) is met.

Note that the explicit form of the formula for the distance d(Ỹ ,
n∑

i=1

βiX̃i) in

the case of coefficients βi of an arbitrary sign is inconvenient for research, since
in this case the product of the interval α - the level of a fuzzy number z̃ by a
clear number β is given by the cumbersome expression

β[z−, z+] = [min{βz−, βz+},max{βz−, βz+}].

However, in the general situation, the following statement is true. Let’s say
c∗ = max

j=1,...,n
{ ||Ỹ ||

||X̃j ||}.

Theorem 4. Let the fuzzy-random variables X̃i be quasi-orthogonal for i 
= j,
and all their quasinorms κi 
= 0 (i = 1, ..., n). then the problem is

d(Ỹ ,

n∑
i=1

βiX̃i) → min (βi ∈ [−c∗,∞)) (16)
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has a solution, and the only one. It has the form β∗
i = bi

κ
2
i

(i = 1, ..., n).
Note though problem (16) does not assume that the coefficients βi are posi-

tive, the formula for the coefficients βi has the same form as in Lemma 2. At the
same time the coefficients bi in the condition of Theorem 4 may have different
signs.

In the proof of Theorem 4, the following special property of the distance (6)
between fuzzy random variables will be used.

Lemma 3. For any fuzzy random variables X̃, Ỹ and W̃ in X the next equality
holds

d(X̃ + W̃ , Ỹ + W̃ ) = d(X̃, Ỹ ).

In fact, this is true because subject to the rules of interval addition on the
left are

(X̃ + W̃ )− = X− + W−, (Ỹ + W̃ )− = Y − + W−,

and similarly for the right indexes.
After substituting the corresponding expressions in (6), we obtain the

required equality.

Proof of Theorem 4. Let the condition
〈
Ỹ , X̃i

〉
≥ 0 not be satisfied for at least

one j. Consider the fuzzy random variable Z̃ = Ỹ + c∗
n∑

i=1

X̃i. According to

the definition c∗ > 0,
〈
Z̃, X̃j

〉
≥ 0 (j = 1, ..., n). Consider for Z̃ task (11).

Let γi ≥ 0 be the optimal coefficients of a linear combination
n∑

i=1

γiX̃i for Z̃,

obtained by solving problem (11). The vector γ with coordinates γi is defined
by the formula γ = A−1f , for fi =

〈
Z̃, X̃j

〉
.

We show that the coefficients γi − c∗ are optimal for linear approximation of
a fuzzy random variable Ỹ by the system {X̃i}.

Consider the distance d(Ỹ ,
n∑

i=1

(γi − c∗)Xi). By Lemma 3 and taking into

account the definition of Z̃, we have

d(Ỹ ,

n∑
i=1

(γi − c∗)Xi) = d(Ỹ +
n∑

i=1

c∗X̃i,

n∑
i=1

γiX̃i) = d(Z̃,

n∑
i=1

γiX̃i). (17)

Since {γi} - solution of problem (11) for Z̃, then in accordance with Lemma
2 for any set of numbers ξi ≥ 0 (i = 1, ..., n) can record

d(Z̃,

n∑
i=1

γiX̃i) ≤ d(Z̃,

n∑
i=1

ξiX̃i) = d(Ỹ +
n∑

i=1

cX̃i,

n∑
i=1

(ξi − c∗)Xi +
n∑

i=1

c∗X̃i)
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Using Lemma 3 again, we get

d(Z̃,

n∑
i=1

γiX̃i) ≤ d(Ỹ ,

n∑
i=1

(ξi − c∗)X̃i).

Then (17) implies the inequality

d(Ỹ ,
n∑

i=1

(γi − c∗)Xi) ≤ d(Ỹ ,
n∑

i=1

(ξi − c∗)Xi).

Since here (ξi − c∗) - arbitrary coefficients from a closed interval [−c∗,∞) , then
(γi − c∗) - optimal coefficients.

Note that by definition Z̃ and according to Lemma 2

γj =
1

κ
2
j

〈
Z̃, X̃j

〉
=

1
κ

2
j

〈
(Ỹ +

n∑
i=1

c∗X̃i), X̃j

〉
.

Then, taking into account quasiorthogonality system {X̃i} will receive

γj =
1

κ
2
j

(
bj + c∗

〈
X̃j , X̃j

〉)
=

bj

κ
2
j

+ c∗.

Hence, the optimal coefficients of β̃j for X̃j in the linear approximation Ỹ , having
the form (γj − c∗), defined by the equality bj

κ
2
j

(j = 1, ..., n). this is what the
statement implies.

Remark 6. Similarly to Remark 4, under the conditions of theorem 4, one can
reject the quasi-orthogonality of the system {X̃i} and instead assume positive
invertibility of their Gram matrix. In addition, it is required that the sum of
elements of all columns of the Gram matrix be positive.
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