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Abstract. We formulate an optimization stochastic algorithm conver-
gence theorem, of Solis and Wets type, and we show several instances of
its application to concrete algorithms. In this convergence theorem the
algorithm is a sequence of random variables and, in order to describe
the increasing flow of information associated to this sequence we define
a filtration – or flow of σ-algebras – on the probability space, depending
on the sequence of random variables and on the function being opti-
mized. We compare the flow of information of two convergent algorithms
by comparing the associated filtrations by means of the Cotter distance
of σ-algebras. The main result is that two convergent optimization algo-
rithms have the same information content if both their limit minimization
functions generate the full σ-algebra of the probability space.

Keywords: Stochastic algorithms · Global optimization · Convergence
of information σ-fields

1 Introduction

There are three main roots we can consider to the present work. The first is a
quite general formulation of a stochastic optimization algorithm given in [SW81],
studied under a different perspective in [SP99] and [PS00], and then corrected
and slightly generalized in [Esq06] and having further developments and exten-
sions in [dC12]. The subject of stochastic optimization – in the perspective
adopted in this work – become stabilized with the books [Spa03,Zab03] and
the work [Spa04]. The interest on the development of stochastic optimization
methods continued, for instance in the work [RS03]. We refer a very effective
and general approach to a substantial variety of stochastic optimization prob-
lems that takes the denomination of the cross entropy method proposed in a
unified way in [RK04], further explained in [dBKMR05], with the convergence
proved in [CJK07] and further extended in [RK08].
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The second root originated in [SB98], is detailed in Sect. 4 for the reader’s
convenience, and may be broadly described as a form of conditioning of the
results of any algorithm for global optimization; conditioning in the sense that
the algorithm must gather enough information in order to get significant results.

This leads to the third root, namely the formalization of the concept informa-
tion, conveyed by a random variable, as the σ-algebra generated by this random
variable. This formalization encompasses many extensions and uses (see [Vid18])
for a recent and thorough account). We may initially refer with introduction
of a convergence definition for σ-algebras – the so called strong convergence –
related to the conditional expectation by Neveu in [Nev65] (or the French ver-
sion in [Nev64]), with in [Kud74] a very deep study and, with developments,
in [Pic98] and [Art01]. Then [Boy71] introducing a different convergence – the
Hausdorff convergence – with an important observation in [Nev72] and further
analysis in [Rog74] and [VZ93]. In the study of convergence of σ-algebras (or
fields) there were many noticeable advances – and useful in our perspective –
with Cotter in [Cot86] and [Cot87] extended in [ALR03] and detailed in [Bar04]
and further extensions in [Kom08].

In the perspective of further developments, we mention [Wan01] and [Yin99],
two works that concern the determination of the rates of convergence of stochas-
tic algorithms allowing for the determination of adequate and most effective
stopping rules for the algorithm and also [dC11] – and references therein – for a
method to obtain confidence intervals for stochastic optimums.

2 Some Random Search Algorithms

We will now develop the following general idea: a convergent stochastic search
algorithm for global optimization of a real valued function f defined on a domain
D may be seen simply as a sequence of random variables Y = (Yn)n≥1 such that
the sequence (f(Yn))n≥1 converges (almost surely or in probability) to a random
variable which gives a good estimate of minx∈D f(x). This sequence of random
variables gives information about f on D. A natural question is how to compare
quantitatively the information brought by two different algorithms.

We now describe three algorithms which we will discuss in the following.
Important issues for discussion are the convergence of the algorithm and, in
case of convergence, the rate of convergence of the algorithm. Let (Ω,F,P) be
a complete probability space.

2.1 The Pure Random Search Algorithm

For the general problem of minimizing f : D ⊆ Rn �→ R over D, a bounded
Borel set of Rn, we consider the following natural algorithm.

S.1 Select a point x1 at random in D. Do y1 := x1.
S.2 Choose a point x2 at random in D. Do:

y2 := y11I{f(y1) < f(x2)} + x21I{f(y1) ≥ f(x2)}.
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S.3 Repeat S.2.

To this algorithm it corresponds a probabilistic translation given in the following.

Sp.1 Let X1,X2, . . . , Xn, . . . be independent random variables with common
distribution over D verifying furthermore, with B(D) the Borel σ-algebra
of D:

∀B ∈ B(D) λ(B) > 0 ⇒ P[X1 ∈ B] > 0. (1)

Sp.2 Y1 := X1

Sp.3 Yn+1 = Yn1I{f(Yn) < f(Xn+1)} + Xn+11I{f(Yn) ≥ f(Xn+1)}
Having no prior information on the minimum set location and for random vari-
ables having common distribution on a bounded Borel set, a natural choice for
the distribution of the random variables Xj is the uniform distribution. A non
uniform distribution will distribute more mass on some particular sub domain.
This may entail a loss of efficiency if the minimizer set is not contained in the
more charged domain.

Remark 1 (The laws of the random variables of pure random search algorithm).
We observe that for n > 1 we have:

Yn =
n∑

k=1

Xk1I⋂
j<k{f(Xk)≤f(Xj)}∩ ⋂

j>k{f(Xk)<f(Xj)},

an alternative expression that will allow us to describe the law of Yn. Let D in
the Borel σ-algebra of D and suppose that the random variables (Xn)n≥1 are
uniformly distributed in D. We have the following disjoint union:

{Yn ∈ D}

=
n⋃

k=1

⎛

⎝{Xk ∈ D} ∩
⋂

1≤j<k

{f(Xk) ≤ f(Xj)} ∩
⋂

k<j≤n

{f(Xk) < f(Xj)}
⎞

⎠ ,

which entails, representing by λ the Lebesgue measure over D, that (see the
Appendix, page 17, for the complete deduction):

P[Yn ∈ D]

=
n∑

k=1

(
1

λ(D)n

∫

D

λ(f−1([f(xk),+∞[))k−1λ(f−1(]f(xk),+∞[))n−kdλ(xk)
)

,

(2)
by Fubini theorem and by the fact that (Xn)n≥1 is a sequence of independent
uniformly distributed random variables on D. Suppose furthermore that for every
x ∈ D we have λ(f−1({f(x)})) = 0, we then have:

P[Yn ∈ D] =
n

λ(D)n

∫

D

λ(f−1([f(x),+∞[))n−1dλ(x),

which gives us the density of Yn with respect to the Lebesgue measure.



60 M. L. Esqúıvel et al.

2.2 The Random Search Algorithm on (Nearly) Unbounded
Domains

In the context of simple random search we may ask what is the natural substitute
of the uniform distribution on an unbounded domain? A variant of the algorithm
we now present was introduced in [Esq06] having in mind performing global
optimization in unbounded domains. For bounded but large domains one may
consider an algorithm using, for instance, a Gaussian distribution.

S.1 Select a point x at random in D ⊂ R. Do z := x.
S.2 Choose a point x at random in D. Choose a point y with distribution N(x, σ)

where for instance σ := diam(D)/10. Do:

z := z1I{f(z) < f(y)} + y1I{f(z) ≥ f(y)}.

S.3 Repeat S.2.

The probabilistic recursive translation of this algorithm is the following.

pS.1 Let X1,X2, . . . , Xn, . . . independent random variables with common uni-
form distribution over D

pS.2 Z1 := X1

pS.3 Let Y1, Y2, . . . , Yn, . . . be a sequence of independent random variables such
that Yn � N(Xn, σ).

pS.4 Zn+1 := Zn1I{f(Zn) < f(Yn+1)} + Yn+11I{f(Zn) ≥ f(Yn+1)}.

2.3 The Zig-Zag Algorithm

The zig-zag algorithm was introduced in [MPB99] (see also for other references
and a convergence proof [PM10]) in order to optimize a quadratic function in
two sets of multidimensional variables. The main idea of this algorithm may be
simply described. In the first step we optimize in one of the sets of variables
leaving the variables of the other set unchanged. On the second step, the first
set of variables remains unchanged in the optimum value determined in the first
step and an optimization is performed in the second set of variables. On the
third step, it is now the second set of variables that remains unchanged in the
optimum determined in the second step while an optimization is executed in the
first set of variables. For the general case, the convergence and – if applicable –
the rate of convergence issues were open problems, as far as we know.

One of the possibilities opened by this algorithm is to perform the optimiza-
tion in sets of strictly smaller linear dimension than the dimension of D. Suppose
that D ⊆ R2 is bounded.

S.1 Select a point x at random in D. Do z := x.
S.2 (Optimization along a lower dimensional subset of the domain)
S.2.1 Choose a point y at random in D.
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S.2.2 Choose, at random, points λ1, . . . , λN ∈ R such that λjz+(1−λj)y ∈ D

and define x to be such that f(x) = min1≤j≤N f(λjz + (1 − λj)y). Do:

z := z1I{f(z) < f(x)} + x1I{f(z) ≥ f(x)}.

S.3 Repeat S.2

For this algorithm, one probabilistic recursive translation may be the following.

pS.1 Let Y1, Y2, . . . , Yn, . . . be a sequence of independent random variables with
common uniform distribution over D.

pS.2 Z1 := Y1

pS.3 For each n ≥ 1, let λn
1 , . . . , λn

N be independent sequences of independent
random variables with uniform distribution in [a, b] an interval such that:

∀λ ∈ [a, b] ∀x, y ∈ D λx + (1 − λ)y ∈ D .

which is possible as D is bounded.
pS.4 Define the random variable Xj0

n such that:

f(Xj0
n ) = min

1≤j≤N
f(λn

j Zn + (1 − λn
j )Yn+1)

pS.5 Zn+1 := Zn1I{f(Zn) < f(Xj0
n )} + Xj0

n 1I{f(Zn) ≥ f(Xj0
n )}.

The main idea of the zig-zag algorithm may, of course, be exploited in several
other ways.

3 The Solis and Wets Approach of Random Algorithms

We present this approach following the presentation in [Esq06] – which follows
the context formalism of [SW81] – and observe that this approach may be applied
to the algorithms described above.

3.1 The Convergence Results

We introduce some definitions which are necessary for the presentation of the
convergence results. Let f : D ⊂ Rn −→ R be a measurable function defined on a
domain D that can be unbounded. Let (Ω,F,P) be a complete probability space.
In order to deal with discontinuous functions, such as 1I[0,1]\{1/2}, or unbounded
functions, such as ln(|x| 1IR\{0} + (∞)1I{0}, we need the following notion.

Definition 1 (Essential infimum of f in D).

α := inf{t ∈ R : λ({x ∈ D : f(x) < t}) > 0} (3)

with λ being the Lebesgue measure on Rn.
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The formulation of general hypothesis on the function f in order to obtain
the algorithm convergence requires the definition of the sets for ε > 0 and M < 0.

Definition 2 (Level set of f of height ε over α).

Eα+ε,M :=

{
{x ∈ D : f(x) < α + ε} if α ∈ R

{x ∈ D : f(x) < M} if α = −∞ (4)

The general form of the algorithm may be decomposed into the nuclear part
which is a function verifying some condition and the procedure.

Definition 3 (The algorithm).

– A function ψ : D × Rn �→ D ⊂ Rn such that the following hypothesis [H1] is
verified.

[H1] :

{
∀t, x f(ψ(t, x)) ≤ f(t)
∀x ∈ D f(ψ(t, x)) ≤ f(x)

(5)

– A sequence of random variables given by:
{

Y1 = X1

Yn+1 = ψ(Yn,Xn) for n ≥ 1
(6)

where Xn � Pn satisfying hypothesis in Formula (1), and Pn being a prob-
ability measure – the law of Xn – that may depend on P1, . . . ,Pn−1 in case
of adaptive random search.

Remark 2 (Examples of stochastic algorithms for global optimization). The pure
random search algorithm in Sect. 2.1, the random search on nearly unbounded
domains in Sect. 2.2 and the zig-zag algorithm in Sect. 2.3 may be considered
as instances of Solis and Wets approach. As presented, the following function
obviously describes the algorithms and verifies the hypothesis H1 in Formula (5).

ψ(t, x) = t1I{f(t)<f(x)}(t, x) + x1I{f(t)≥f(x)}(t, x)

The following result ensures the convergence of the algorithm under very
general hypothesis.

Theorem 1 (A Solis and Wets’ type theorem for random search algo-
rithm convergence). Suppose that f is measurable and bounded from below.
Let α be the essential infimum of f in D.

H2(ε) For pure random search this hypothesis is defined for every ε > 0 as:

lim
k→+∞

∏

1≤j≤k

P[Xj ∈ Ec
α+ε,M ] = lim

k→+∞

∏

1≤j≤k

Pj [Ec
α+ε,M ] = 0 .
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H ′2(ε) For adaptive search this hypothesis is defined for every ε > 0 as:

lim
k→+∞

inf
1≤j≤k

P[Xj ∈ Ec
α+ε,M ] = lim

k→+∞
inf

1≤j≤k
Pj [Ec

α+ε,M ] = 0 . (7)

If for some ε > 0 hypothesis H2(ε) ( in case of pure random search) or H ′2(ε)
(in case of adaptive search) are verified, then:

lim
n→+∞P[Yn ∈ Eα+ε,M ] = 1 . (8)

If for every ε > 0 hypothesis H2(ε) (in case of pure random search) or H ′2(ε)
(in case of adaptive search) are verified, then the sequence (f(Yn))n≥1 converges
almost surely to a random variable Minf,Y such that P[Minf,Y ≤ α] = 1.

Proof. A first fundamental observation is that if Yn ∈ Eα+ε,M or Xn ∈ Eα+ε,M ,
then by hypothesis H1 we have that Yn+1 ∈ Eα+ε,M and so as (f(Yn))n≥1 is
decreasing, Yn+k ∈ Eα+ε,M for every k ≥ 1. As a consequence, for k > 1:

{Yk ∈ Ec
α+ε,M} ⊆ {Y1, . . . , Yk−1 ∈ Ec

α+ε,M} ∩ {X1, . . . , Xk−1 ∈ Ec
α+ε,M}.

as if it was otherwise we would contradict our first observation. Now, it is clear
that:

P[Yk ∈ Ec
α+ε,M ] ≤ P

⎡

⎣
⋂

1≤j≤k−1

{Yj ∈ Ec
α+ε,M} ∩ {Xj ∈ Ec

α+ε,M}
⎤

⎦

≤ P

⎡

⎣
⋂

1≤j≤k−1

{Xj ∈ Ec
α+ε,M}

⎤

⎦ .

(9)

On the pure random search scenario we have that (Xn)n≥1 is a sequence of iid
random variables and so:

P

⎡
⎣ ⋂

1≤j≤k−1

{Xj ∈ Ec
α+ε,M}

⎤
⎦ =

∏
1≤j≤k−1

P
[
Xj ∈ Ec

α+ε,M

]
= P

[
X1 ∈ Ec

α+ε,M

]k−1
,

(10)
implying that

1 ≥ P[Yk ∈ Eα+ε,M ] = 1 − P[Yk ∈ Ec
α+ε,M ] ≥ 1 − P

[
X1 ∈ Ec

α+ε,M

]k−1
.

Now by hypothesis in Formula (1) we have that P
[
X1 ∈ Ec

α+ε,M

]
< 1 and so

conclusion in Formula (8) of the theorem now follows. On the alternative scenario
of adaptive random search we still have the same conclusion but now based on
the estimate:

P

⎡

⎣
⋂

1≤j≤k−1

{Xj ∈ Ec
α+ε,M}

⎤

⎦ ≤ inf
1≤j≤k−1

P
[
Xj ∈ Ec

α+ε,M

]
,
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instead of estimate in Formula (10) used in the pure random search case. For
the second conclusion of the proof, observe that the sequence (f(Yn))n≥1 being
almost surely non increasing, as a consequence of hypothesis H1, and bounded
below is almost surely convergent to a random variable that we denote by MinY.
Now, observing that for all ε > 0:

lim
k→+∞

P[Yk ∈ Eα+ε,M ] = lim
k→+∞

P[f(Yk) < α + ε] = 1,

in either pure random search or adaptive search, the conclusion follows by a
standard argument (see Corollary 1. and Lemma 1. in [Esq06, p. 844]).

Remark 3. Having in mind a characterization of the speed of convergence of
the algorithm it may be useful to observe that the following condition H ′′2(ε)
also entails the conclusion of the theorem, although being more stringent than
H ′2(ε).

lim
k→+∞

max
1≤j≤k

P[Xj ∈ Ec
α+ε,M ] = lim

k→+∞
max
1≤j≤k

Pj [Ec
α+ε,M ] = 0. (11)

In order to improve Theorem 1 some additional hypothesis are needed. For
instance, if the minimizer is not unique then the sequence (Yn)n≥1 may not
converge. First, let us observe that if the minimizer of f is unique and f is
continuous, then the essential minimum of f coincides with the minimum of f .

Proposition 1. Let f be continuous and admiting an unique minimizer z ∈ D

that is such that f(z) = minx∈D f(x). Then α = minx∈D f(x) =: m.

Proof. Let ε > 0 be given. There exists xε ∈ D such that m = f(z) < f(xε) <
m + ε. By the continuity we have an open neighborhood V of xε such that for
all x ∈ V we still have m < f(x) < m + ε. As a consequence:

λ({x : f(x) < m + ε}) ≥ λ(V ) > 0,

and so α ≤ m + ε and, as ε is arbitrary, we have α ≤ m. Consider again a given
ε > 0. There exists α < tε < α + ε. As a consequence:

λ ({x ∈ D : f(x) < tε}) > 0,

and m = minx∈D f(x) < α + ε. As ε is arbitrary we have m ≤ α and finally the
conclusion stated.

Theorem 2. Suppose the same notations and the same set of hypothesis of The-
orem 1, namely that for every ε > 0 hypothesis H2(ε) (in case of pure random
search) or H ′2(ε) (in case of adaptive search) are verified. Suppose, furthermore,
that f is continuous and that admits an unique minimizer z ∈ D. Then we have
almost surely that limn→+∞ f(Yn) = f(z). If, furthermore, D is compact then
limn→+∞ Yn = z.
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Proof. Let us first show that the sequence (f(Yn))n≥1 converges in probability
to f(z). Consider ε > 0. As f(z) is now the essential minimum of f in D we have
that:

| f(Yn) − f(z) |≥ ε ⇔
{

f(Yn) ≤ f(z) − ε impossible
f(Yn) ≥ f(z) + ε,

the possible case meaning that Yn ∈ Ec
f(z)+ε. Now, by a similar argument as the

one used in the proof of Theorem 1, we have that X1, . . . , Xn−1 ∈ Ec
f(z)+ε and

so, under each one of the alternative hypothesis, we have:

P [| f(Yn) − f(z) |≥ ε] ≤
{
P[{X∈Ec

f(z)+ε}]n−1 under H2(ε)
inf1≤j≤n−1 P[Xj ∈ Ec

f(z)+ε] under H ′2(ε),
(12)

thus ensuring that limn→+∞ P[| f(Yn)−f(z) |≥ ε] = 0. If H2ε (or H ′2ε) are ver-
ified for all ε > 0 the convergence in probability follows immediately. Finally, by
a standard argument, the convergence almost surely of the sequence (f(Yn))n≥1

follows because this sequence is non increasing and convergent in probability.
Let us suppose now that D is compact and that the sequence (Yn)n≥1 does not
converge to z almost surely. Then for every ω on a set of positive probability
Ω′ ⊂ Ω:

∃ε > 0 ∀n ∈ N ∃Nn > n | YNn
(ω) − z |> ε. (13)

Now for all ω ∈ Ω′ the sequence (Yn)(ω)n≥1 is a sequence of points in a com-
pact set D and by Bolzano-Weierstrass theorem there is a convergent subse-
quence (Ynk

)(ω)k≥1 of (Yn)(ω)n≥1. This subsequence must converge to z because
if the limit were y then, by the continuity of f we would have the sequence
(f(Ynk

))(ω)k≥1 converging to f(y) = f(z). Now as z is an unique minimizer of f
in D we certainly have y = z. Finally observe that the subsequence (Ynk

)(ω)k≥1

also verifies the condition expressed in Formula (13) for k large enough, which
yields the desired contradiction.

3.2 A Preliminary Observation on the Rate of Convergence

Results on the rate of convergence may be used to determine a stopping criterium
for the algorithm. As a proxy for the speed of convergence of the algorithms in
the context of the proof Theorems 1 and 2, namely for instance Formula (12), we
may consider the quantity P[Xj ∈ Ec

α+ε,M ] for various choices of distributions.
In case of pure random search we have obviously:

P
[
Xj ∈ Ec

α+ε,M

]
=

λ(Ec
α+ε,M )

λ(D)
.

In case of random search on a nearly unbounded domain we have, (with the
notations of Sect. 2.2), that:

P[Yj ∈ Ec
α+ε,M ] = E

[
E
[
1I{Yj∈Ec

α+ε,M }] | Xj

]]
.
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Now as we have that:

P
[
Yj ∈ Ec

α+ε,M | Xj = x
]

=
∫

Ec
α+ε,M

e− (x−u)2

2σ2

√
2πσ

du,

it follows that,

E
[
1I{Yj∈Ec

α+ε,M } | Xj

]
=
∫

Ec
α+ε,M

e− (Xj−u)2

2σ2

√
2πσ

du,

which, in turn, implies that,

P
[
Yj ∈ Ec

α+ε,M

]
= E

⎡

⎣
∫

Ec
α+ε,M

e− (Xj−u)2

2σ2

√
2πσ

du

⎤

⎦ =
∫

D

∫

Ec
α+ε,M

e− (x−u)2

2σ2

√
2πσ

du
dx

λ(D)

where the integral on the right doesn’t seem easily estimable, in general. Suppose
for simplification that D = [−A,+A] and that Ec

α+ε,M ⊆ [−a,+a] where 0 <
a � 1 � A. Then, by Fubini theorem,

∫

D

∫

Ec
α+ε,M

e− (x−u)2

2σ2

√
2πσ

du
dx

λ(D)
≈
∫ +∞

−∞

∫

Ec
α+ε,M

e− (x−u)2

2σ2

√
2πσ

du
dx

λ(D)

=
λ(Ec

α+ε,M )
λ(D)

,

allowing the conclusion that also P[Yj ∈ Ec
α+ε,M ] ≈ λ(Ec

α+ε,M )/λ(D) thus show-
ing that the two algorithms, in the special situation assumed for simplification,
are comparable in a first approximation.

4 On the Information Content of a Stochastic Algorithm

It is natural to conceive that in order for an algorithm to achieve global stochastic
optimization of a function over a domain the algorithm has to collect complete
– in some sense – information on the function over the domain. In [SB98] there
are some very striking precise results on this idea. Let us detail Stephens and
Baritompa’s result. Consider a random algorithm described by a sequence of
random variable Xf

1 , . . . , Xf
n , . . . for some function f on a domain D. The closure

Xf of the set {Xf
1 , . . . , Xf

n , . . . } is a random set in D.

Theorem 3 (Global optimization requires global information). For any
r ∈ ]0, 1[, the following are equivalent:

1. The probability that the algorithm locate the global minimizers for f as points
of Xf is greater or equal than r, for any f in a sufficiently rich class of
functions.
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2. The probability that x ∈ Xf is greater or equal than r, for any x ∈ D and f
in a sufficiently rich class of functions.

That is, roughly speaking, an algorithm works on any rich class of functions if
and only if we have P[Xf = D] = 1. In the case of deterministic search the
result is as expected, namely that the algorithm sees – in an intuitive yet precise
sense – the global optimum for a class of functions in a domain if and only if
the closure of the set of finite testing sequences, for any function, is dense in the
domain. The extension of this result to the stochastic case gives the necessary
and sufficient condition, in Theorem 3, that the lower bound of the probability of
a stochastic algorithm seing the global optimum is the same as the lower bound
of the probability of an arbitrary point of the domain belonging to the closure
of the (random) set of finite testing sequences.

Having in mind the study of the limitations of an effective global optimization
stochastic algorithm we address the problem of studying the information content
of an algorithm. We recall that – as in Theorem 1 – a random algorithm may be
identified with a sequence of random variables. The flow of information gained
through a sequential observation of the sequence of random variables is usually
described by the natural filtration associated with the sequence. In order to
compare, in the information sense, two sequences of random variables we need
to compare the associated natural filtrations.

In Theorem 5 below, by resorting to a natural defined notion of the informa-
tion content of a stochastic algorithm, we obtain the result that two convergent
algorithms have the same information content if the information generated by
their respective minimizing functions is the whole available information in the
probability space. So, the connection between the function and the stochastic
set-up to generate stochastic algorithms for its global optimization - namely,
probability space, probability laws of the algorithm – deserves to be further
investigated.

In the following Sect. 4.1 we briefly recall results from [Cot86,Cot87,ALR03,
Kud74,Bar04] on the set of complete sub σ-algebras of F as a topological metric
space.

4.1 The Cotter Metric Space of the Complete σ-algebras

Recall that all random variables are defined on a complete probability space
(Ω,F,P). We now consider F�, the set of all σ-algebras G ⊆ F which are complete
with respect to P.

Remark 4. We may define an equivalence relation R on F� by considering an
equivalence relation ∼ for sets in F defined for all G,H ∈ F by:

G ∼ H ⇔ P[G \ H ∪ H \ G] = 0. (14)

As so, the quotient class F := F�/R is the class of all sub-σ-algebras of F with
elements identified up to sets of probability zero.
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Strong convergence in L1(Ω,F,P) – and also in Lp(Ω,F,P) for p ∈ [1,+∞[
– of a sequence (Gn)n≥1 of σ-algebras to G∞ was introduced by Neveu in 1970
(see [Nev64, pp. 117–118]) with the condition that:

∀X ∈ L1(Ω,F,P) lim
n→+∞ ‖E[X | Gn] − E[X | G∞]‖L1(Ω,F,P) = 0, (15)

noticing that for the sequence (Gn)n≥1 to converge it suffices that for all F ∈ F

the sequence (E[1IF | Gn])n≥1 converges in probability. In 1985, Cotter showed
that this notion of convergence defines a topology which is metrizable (see
[Cot87]). The Cotter distance dc is defined on F × F by:

dc(H,G) =
+∞∑

i=1

1
2i

min (E [|E[Xi | H] − E[Xi | G]|] , 1)

=
+∞∑

i=1

1
2i

min (‖E[Xi | H] − E[Xi | G]‖1 , 1) .

(16)

with H,G ∈ F, ‖X‖1 the L1(Ω,F,P) norm of X, with (Xi)i∈N a dense denu-
merable set in L1(Ω,F,P). We have that (F, dc) is a complete metric space.

We will need a consequence of the definition of the Cotter distance (see
Corollary III.35, in [Bar04, p. 36]) that we quote for the reader’s convenience.

Proposition 2. Consider G1 ⊂ G2 ⊂ G3 in F, Then we have that:

dc (G2,G3) ≤ 2dc (G1,G3) .

We will also need a remarkable result of Cotter (see Corollary 2.2 and Corol-
lary 2.4 in [Cot87, p. 42]) that we formulate next.

Theorem 4. Let LP be the metric space of the real valued random variables
defined on the probability space (Ω,F,P) with the metric of the convergence in
probability. Let σ : LP �→ F that to each random variable X associates σ(X) =
{X−1(B) : B ∈ B(R)} the sigma-algebra generated by X. Then, considering the
metric space (F, dc) with dc the Cotter distance defined in Formulas (16), we
have that σ is continuous at X ∈ LP if and only if σ(X) = F.

This result on the continuity of the map σ between metric spaces LP and
(F, dc) will be applied to convergent sequences.

4.2 The Information Content of a Random Algorithm

Let Y = (Yn)n≥1 be a stochastic algorithm for the minimization of f on a
domain D. According to Theorem 1 we may define a convergent algorithm for
the minimization problem of f on the domain D.

Definition 4. Let α be the essential infimum of f on D defined in For-
mula (3). Following Theorem 1, the algorithm Y converges on D if the sequence
(f(Yn))n≥1 converges almost surely to a random variable Minf,Y such that:

P [Minf,Y ≤ α] = 1.
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Now given a random algorithm Y = (Yn)n≥1 we define the flow of information
associated to this algorithm.

Definition 5. The flow of information associated to the algorithm Y =
(Yn)n≥1 for the global minimization of the function f is given by the natural
filtration of (f(Yn))n≥1, which is the increasing sequence of σ-algebras defined
by:

FY
n := σ (f(Y1), . . . , f(Yn)) .

The terminal σ-algebra associated to this algorithm, FY
∞, is naturally defined

as (in the two usual notations):

FY
∞ := σ

(
+∞⋃

n=1

FY
n

)
=

+∞∨

n=1

FY
n .

As an immediate result we have that the filtration converges in the Cotter dis-
tance to the terminal σ-algebra.

Proposition 3. For every stochastic algorithm Y = (Yn)n≥1,

lim
n→+∞ dc

(
FY

n ,FY
∞
)

= 0.

Proof. Let’s first observe that by Proposition 2.2 of Cotter (see again [Cot86])
any increasing sequence of σ-algebras converges in the Cotter distance. In fact,
by a standard argument we have that:

+∞⋂

n=1

+∞∨

m=n

FY
m = FY

∞ =
+∞∨

n=1

+∞⋂

m=n

FY
m

and by the result quoted this suffices to ensure that the filtration associated to
the algorithm converges. Now, it is a well known fact (see [Bil95, p. 470]) that,
by the definitions above, we have that almost surely:

∀Z ∈ L1(Ω,F,P) lim
n→+∞E

[
Z | FY

n

]
= E

[
Z | FY

∞
]

(17)

as the sequence (E
[
Z | FY

n

]
)n≥1 is uniformly integrable, (17) implies that

∀Z ∈ L1(Ω,F,P) lim
n→+∞

∥∥E
[
Z | FY

n

]− E
[
Z | FY

∞
]∥∥

L1(Ω,F,P)
= 0,

and this is just definition given by Formula (15).

We now compare the information content of two stochastic algorithms by
comparing their information induced filtrations.

Definition 6. Two algorithms Y1 and Y2 are informationally asymptoti-
cally equivalent (IAE) if and only if:

lim
n→+∞ dc

(
FY1

n ,FY2

n

)
= 0.
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As an easy first observation we have that two algorithms are informationally
asymptotically equivalent if and only if the Cotter distance of their terminal
σ-algebras is zero, that is:

Proposition 4. Let Y1 and Y2 be two algorithms, Then:

Y1IAE Y2 ⇔ dc

(
FY1

∞ ,FY2

∞
)

= 0. (18)

Proof. If the two algorithms are informationally asymptotically equivalent then
the condition about the terminal σ-algebras is verified as an immediate conse-
quence of Proposition 3. In fact,

dc

(
FY1

∞ ,FY2

∞
)

≤ dc

(
FY1

∞ ,FY1

n

)
+ dc

(
FY1

n ,FY2

n

)
+ dc

(
FY2

n ,FY2

∞
)

.

Now, for the converse suppose that dc

(
FY1

∞ ,FY2

∞
)

= 0 and that the algorithms
are not IAE. Then, for some ε > 0 there exists an increasing integer sequence
(nε

k)k∈N such that

∀k ∈ N, dc

(
FY1

nε
k
,FY2

nε
k

)
≥ ε.

We then have that for all k ≥ 1,

ε ≤ dc

(
FY1

nε
k
,FY2

nε
k

)
≤ dc

(
FY1

nε
k
,FY1

∞
)

+ dc

(
FY1

∞ ,FY2

∞
)

+ dc

(
FY1

∞ ,FY2

nε
k

)

= dc

(
FY1

nε
k
,FY1

∞
)

+ dc

(
FY1

∞ ,FY2

nε
k

)

≤ lim sup
n→+∞

(
dc

(
FY1

nε
k
,FY1

∞
)

+ dc

(
FY1

∞ ,FY2

nε
k

))
= 0,

again, by Proposition 3, which is a contradiction.

Our purpose now is to illustrate the intuitive idea that a convergent algo-
rithm for minimizing a function must recover all available information about
the function. For the first result we require that the algorithm exhausts all the
available information in the probability space. We will suppose that the two
algorithms Y1 and Y2 both converge. We will show next that, if we suppose,

σ
(
Minf,Y1

)
= F = σ

(
Minf,Y2

)
, (19)

then, these algorithms, Y1 and Y2, are informationally asymptotic equivalent.

Theorem 5. With the notations of Definition 4, let Y1 and Y2 be two algo-
rithms that converge. We have that:

σ
(
Minf,Y1

)
= F = σ

(
Minf,Y2

)⇒ Y1IAE Y2.

Proof. The proof is a consequence of the continuity of the operator that maps
each random variable to the σ-algebra it generates formulated in Cotter’s The-
orem 4. We have that the sequences,

(
σ
(
f(Y 1

n )
))

n≥1
,
(
σ
(
f(Y 2

n )
))

n≥1
,
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both converge in the Cotter distance to F by reason of the hypothesis. Now, by
definition, as we have that for all n ≥ 1,

σ
(
f(Y 1

n )
) ⊂ FY1

n ⊂ F , σ
(
f(Y 2

n )
) ⊂ FY2

n ⊂ F,

by Proposition 2, we have:

dc

(
FY1

n ,F
)

≤ 2dc

(
σ
(
f(Y 1

n )
)
,F
)

, dc

(
FY2

n ,F
)

≤ 2dc

(
σ
(
f(Y 2

n )
)
,F
)

and so we also have that the sequences,
(
FY1

n

)

n≥1
,
(
FY2

n

)

n≥1
,

converge in the Cotter distance to F. Finally, as we have:

dc

(
FY1

n ,FY2

n

)
≤ dc

(
FY1

n ,F
)

+ dc

(
F,FY2

n

)
,

we have the condition of Formula (19) appearing in Theorem 5.

Remark 5. If condition in Formula (19), essential in Theorem 5, is not verified –
then by Cotter’s theorem quoted in Theorem 4 – the map σ is not continuous at
σ
(
Minf,Y1

)
and σ

(
Minf,Y2

)
and so – it is in general not true that the sequences(

σ
(
f(Y 1

n )
))

n≥1
and

(
σ
(
f(Y 2

n )
))

n≥1
converge. As a consequence, despite the fact

that, by Proposition 3, the sequences
(
FY1

n

)

n≥1
and

(
FY2

n

)

n≥1
both converge

– to FY1

∞ and FY2

∞ , respectively – we can not ensure that the condition given by
Formula (18) in Proposition 4 is verified and so, we can not conclude that the
two algorithms are IAE.

If moreover the algorithms are informationally asymptotic equivalent, and their
associated limit minimum functions take a denumerable set of values, then their
associated limit minimum functions will coincide almost surely thus saying,
essentially, that two IAE convergent algorithms carry the same information con-
tent with respect to the minimization function.

Theorem 6. With the notations of Definition 4, let Y1 and Y2 be two algo-
rithms that converge. Let us suppose that the set Minf,Y1(Ω) ∪ Minf,Y2(Ω) is
denumerable. We then have that:

Y1IAE Y2 ⇒ Minf,Y1 = Minf,Y2 a. s. (20)

Proof. The announced result is a consequence of Proposition 4. In fact, if Y1

and Y2 are IAE then this means that:

FY1

∞ ∼ FY2

∞ ,

and so by (14), for every B in the Borel σ-algebra of the reals B(R),

P
[
Min−1

f,Y1(B) \ Min−1
f,Y2(B)

]
= 0 = P

[
Min−1

f,Y2(B) \ Min−1
f,Y1(B)

]
(21)



72 M. L. Esqúıvel et al.

Now, consider B = {x} ∈ B(R). Formulas (21) imply that:

P
[{

ω ∈ Ω | Minf,Y1(ω) �= x
} ∪ {ω ∈ Ω | Minf,Y2(ω) = x

}]
= 1,

and also

P
[{

ω ∈ Ω | Minf,Y2(ω) �= x
} ∪ {ω ∈ Ω | Minf,Y1(ω) = x

}]
= 1.

Now, by considering the intersection
({

Minf,Y1 �= x
} ∪ {Minf,Y2 = x

}) ∩ ({Minf,Y2 �= x
} ∪ {Minf,Y1 = x

})
,

which is is a set of probability one, we get by expanding that for every x ∈ R:

P
[{

Minf,Y1 �= x ∧ Minf,Y2 �= x
} ∪ {Minf,Y1 = x ∧ Minf,Y2 = x

}]
= 1.

And so by considering the denumerable set Im = Minf,Y1(Ω) ∪ Minf,Y2(Ω), as
{
Minf,Y1 �= Minf,Y2

}

⊆
⋃

x∈Im

{
Minf,Y1 = x ∧ Minf,Y2 �= x

} ∪ {Minf,Y1 �= x ∧ Minf,Y2 = x
}

=
⋃

x∈Im

({
Minf,Y1 �= x ∧ Minf,Y2 �= x

} ∪ {Minf,Y1 = x ∧ Minf,Y2 = x
})c

we will have that P
[
Minf,Y1 �= Minf,Y2

]
= 0, as wanted.

The particular case of an unique minimizer of a continuous function on a
compact domain deserves special mention as a case where two algorithms having
IAE lead to the same minimizing function almost surely.

Proposition 5. With the notations of definition 4, let Y1 and Y2 be two algo-
rithms that converge. Suppose, furthermore, that f is continuous, that f admits
an unique minimizer z and D is compact. Then we have that:

Y1IAE Y2 ⇒
⎧
⎨

⎩

lim
n→+∞ f(Y 1

n ) = f(z) = lim
n→+∞ f(Y 2

n ) a. s.

lim
n→+∞ Y 1

n = z = lim
n→+∞ Y 2

n a. s.
.

Proof. As we have limn→+∞ f(Y 1
n ) = f(z) = limn→+∞ f(Y 2

n ) and
limn→+∞ Y 1

n = z = limn→+∞ Y 2
n , by Theorem 2 and Proposition 1, we also

have that Minf,Y1 = f(z) = Minf,Y2 almost surely and so, by Theorem 6, we
have the announced result.

Remark 6. Let us observe, with respect to Proposition 5, that under the hypoth-
esis stated in that proposition, that is, if we have almost surely,

Minf,Y1 = Minf,Y2 = f(z),
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then, by modifying Minf,Y1 and Minf,Y2 on sets of probability zero we would
have that:

σ
(
Minf,Y1

)
= {∅, Ω} = σ

(
Minf,Y2

)
.

By Remark 4, in general, under the hypothesis of Proposition 5, the two σ-
algebras σ

(
Minf,Y1

)
and σ

(
Minf,Y1

)
are equal to {∅, Ω} in F := F�/ ∼ – the

class of all sub-σ-algebras of F identified up to sets of probability zero – and
so the condition in Formula (19) – which is essential in Theorem 5 – may be
verified only for deterministic algorithms (as in this case all random variables
are constant).
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A Appendix

Deduction of Formula (2). Let λx denote the Lebesgue measure over D applied
to the set defined by the variable x.

P[Yn ∈ D]

=
n∑

k=1

P

⎡

⎣{Xk ∈ D} ∩
⋂

1≤j<k

{f(Xk) ≤ f(Xj} ∩
⋂

k<j≤n

{f(Xk) < f(Xj)}
⎤

⎦

=
n∑

k=1

⎛

⎝ 1
λ(D)n

∫

Dn

1I{xk∈D}
∏

1≤j<k

1I{f(xk)≤f(xj}

×
∏

k<j≤n

1I{f(xk)<f(xj)}dλ(x1) . . . dλ(xn)

⎞

⎠

=
n∑

k=1

⎛

⎝ 1
λ(D)

∫

D

dλ(xk)
1

λ(D)k−1

∏

1≤j<k

∫

Dk−1
1I{f(xk)≤f(xj}dλ(xj)

× 1
λ(D)n−k

∏

k<j≤n

∫

Dn−k

1I{f(xk)<f(xj)}dλ(xj)

⎞

⎠

=
n∑

k=1

(
1

λ(D)

∫

D

1I{xk∈D}
λx({f(xk) ≤ f(x})k−1

λ(D)k−1

×λx({f(xk) < f(x})n−k

λ(D)n−k
dλ(xk)

)

=
n∑

k=1

(
1

λ(D)n

∫

D

λ(f−1([f(xk),+∞[)k−1λ(f−1(]f(xk),+∞[)n−kdλ(xk)
)

.
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[Esq06] Esqúıvel, M.L.: A conditional Gaussian martingale algorithm for global
optimization. In: Gavrilova, M., et al. (eds.) ICCSA 2006, Part III. LNCS,
vol. 3982, pp. 841–851. Springer, Heidelberg (2006). https://doi.org/10.
1007/11751595 89

[Kom08] Komisarski, A.: Distances between σ-fields on a probability space. J. The-
oret. Probab. 21(4), 812–823 (2008)
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