
Survival Probabilities in Compound
Poisson Model with Negative Claims

and Investments as Viscosity Solutions
of Integro-Differential Equations

Tatiana Belkina(B)

Central Economics and Mathematics Institute RAS,
Nakhimovsky Prosp. 47, 117418 Moscow, Russia

tbel@cemi.rssi.ru

http://www.cemi.rssi.ru/about/persons/index.php?SECTION ID=6&ELEMENT ID=4123

Abstract. This work relates to the problem of the identifying of some
solutions to linear integro-differential equations as the probability of sur-
vival (non-ruin) in the corresponding collective risk models involving
investments. The equations for the probability of non-ruin as a func-
tion of the initial reserve are generated by the infinitesimal operators of
corresponding dynamic reserve processes. The direct derivation of such
equations is usually accompanied by some significant difficulties, such
as the need to prove a sufficient smoothness of the survival probabil-
ity. We propose an approach that does not require a priori proof of the
smoothness. It is based on previously proven facts for a certain class of
insurance models with investments: firstly, under certain assumptions,
the survival probability is at least a viscosity solution to the correspond-
ing integro-differential equation, and secondly, any two viscosity solu-
tions with coinciding boundary conditions are equivalent. We apply this
approach, allowing us to justify rigorously the form of the survival prob-
ability, to the collective life insurance model with investments.

Keywords: Survival probability · Viscosity solution ·
Integro-differential equations

1 Introduction

The problem of viscosity solutions of linear integro-differential equations (IDEs)
for non-ruin probabilities as a functions of an initial surplus in collective insur-
ance risk models, when the whole surplus is invested into a risky (or risk-free)
asset, is considered in [1]. For a rather general model of the resulting surplus pro-
cess, it is shown that the non-ruin probability always solves corresponding IDE in
the viscosity sense. Moreover, for the case when the distributions of claims in the
insurance risk process have full support on the half-line, a uniqueness theorem
is proved in [1]. In the present paper, we use these results to establish that the
solution of some previously formulated and investigated boundary value prob-
lem for IDE defines the probability of ruin for the corresponding surplus model.
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Thus, the uniqueness theorem for a viscosity solution plays the role of a verifica-
tion argument for the solution of the IDE as the probability of non-ruin for the
resulting surplus process in the models with investments. The approach proposed
here can be considered as an alternative tool along with traditional verification
arguments based on the use of the martingale approach (see, e.g., [2,3] and ref-
erences therein). It can be used when it is possible to determine a priori the
value of the probability of non-ruin at an initial surplus which is equal to zero,
and its limiting value when the initial surplus tends to infinity.

The mentioned general model, which is studied in [1], considers an insurance
risk in the classical actuarial framework but under the assumptions that the
price process of the risky asset is a jump-diffusion process defined by the stochas-
tic exponential of the Lévy process. The classical actuarial framework involves
two possible versions of the original model (without investment): the classical
Cramér-Lundberg model or the so-called dual risk model (also called compound
Poisson model with negative claims [4], or life annuity insurance model [5]). To
demonstrate the main idea of this paper, we consider the dual risk model and
assume that the insurer’s reserve is invested to a risky asset with price modelled
by the geometric Brownian motion or it is invested to a risk-free asset. We use
this particular case of the model considered in [1], because 1) for the case of
an exponential distribution of jumps and risky investments, the existence of a
twice continuously differentiable solution to the boundary value problem for the
corresponding IDE is proved in [6], where its properties also are studied and
the numerical calculations are done; for the risk-free investment, a non-smooth,
generally speaking, solution is constructed in [7] and 2) the value of the sur-
vival probability at zero surplus level is a priory known (unlike, for example,
the Cramér-Lundberg model with investment, where it can be determined only
numerically; see, e.g. [8]).

The paper is organized as follows. In Sect. 2 the compound Poisson model
with negative claims and investments is described. Then the problem of the
identifying of some solutions to linear integro-differential equations as the sur-
vival probabilities in this model in two cases: risky and risk-free investments is
formulated. In Sect. 3 some preliminary results about survival probabilities as
viscosity solutions of IDEs are given. In Sect. 4 a general statement concerning
the identifying the survival probability in the considered model (Theorem 3) is
proved. In this statement, the uniqueness theorem for a viscosity solution as a
verification argument for the survival probability is used. Moreover, the results
of Theorem 3 with applying to the case of exponential distribution of premiums
size (jumps of the compound Poisson process) are given; here risky investments
(Sect. 4.1) as well as risk-free investments (Sect. 4.2) are considered. Section 5
deals with proofs. In Sect. 6 some results of numerical calculations from [7] are
presented, and Sect. 7 contains the conclusions.

2 The Model Description and Statement of the Problem

The typical insurance contract for the policyholder in the dual risk model is the
life annuity with the subsequent transfer of its property to the benefit of the
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insurance company. Thus, the surplus of a company in a collective risk model is
of the form

Rt = u − ct +
N(t)∑

k=1

Zk, t ≥ 0. (1)

Here Rt is the surplus of a company at time t ≥ 0; u is the initial surplus, c > 0
is the life annuity rate (or the pension payments per unit of time), assumed to be
deterministic and fixed. N(t) is a homogeneous Poisson process with intensity
λ > 0 that, for any t > 0, determines the number of random revenues up to
the time t; Zk (k = 1, 2, ...) are independent identically distributed random
variables (r.v.) with a distribution function F (z) (F (0) = 0, EZ1 = m < ∞,
m > 0) that determine the revenue sizes (premiums) and are assumed to be
independent of N(t). These random revenues arise at the final moments of the
life annuity contracts realizations.

We assume also that the insurer’s reserve is invested to a risky asset with
price St modelled by the geometric Brownian motion,

dSt = μStdt + σStdwt, t ≥ 0,

where μ is the stock return rate, σ is the volatility, wt is a standard Brownian
motion independent of N(t) and Zi’s.

Then the resulting surplus process Xt is governed by the equation

dXt = μXtdt + σXtdwt + dRt, t ≥ 0, (2)

with the initial condition X0 = u, where Rt is defined by (1).
Denote by ϕ(u) the survival probability: ϕ(u) = P (Xt ≥ 0, t ≥ 0). Then

Ψ(u) = 1 − ϕ(u) is the ruin probability. Then τu := inf{t : Xu
t ≤ 0} is the time

of ruin.
Recall at first that the infinitesimal generator A of the process Xt has the

form

(Af)(u) =
1
2
σ2u2f ′′(u) + f ′(u)(μu − c) − λf(u) + λ

∞∫

0

f(u + z) dF (z), (3)

for any function f(u) from a certain subclass of the space C2(R+) of twice con-
tinuously differentiable on (0,∞) functions (in the case σ > 0; if σ = 0 we are
dealing with a different class of functions, see [7]).

One of the important questions in this and similar models is the question
of whether the survival probability ϕ(u) is a twice continuously differentiable
function of the initial capital u on (0,∞). In the case of a positive answer to this
question, we can state that ϕ(u) is a classical solution of the equation

(Af)(u) = 0, u > 0, (4)

and the properties of this probability can be investigated as properties of a
suitable solution to this equation. In [10], for the case of exponential distribution
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of Zk and σ > 0, such a suitable solution in the set of all solutions of the linear
IDE (4) is selected using some results of renewal theory; the regularity (twice
continuous differentiability) of ϕ(u) is studied using a method based on integral
representations; asymptotic expansions of the survival probability for infinitely
large values of the initial capital is obtained.

In contrast to the direct method used in [10], we propose a method based
on the assumption of the existence of a classical (or, maybe, viscosity) solution
to a boundary value problem for the IDE (4) and verification arguments for the
survival probability related to the concept of viscosity. For the case of exponential
distribution of the company’s random revenues and σ > 0, the existence theorem
for IDE (4) with boundary conditions

lim
u→+0

f(u) = 0, lim
u→+∞ f(u) = 1, (5)

is proved in [6]. The uniqueness of the classical solution is also established, as
well as its asymptotic behaviour at zero and at infinity. For the case σ = 0, a
non-smooth (generally speaking) solution is presented in [7].

The problem we are solving here: to prove that if there exists a solution f of
the problem (4), (5), then it determines the survival probability of the process (2).
For the solving this problem, we use the results of [1] on the survival probability
as a viscosity solution to equation (4).

3 Survival Probabilities as Viscosity Solutions of IDEs:
Preliminary Results [1]

Let denote by C2
b (u) the set of bounded continuous functions f : R → R two

times continuously differentiable in the classical sense in a neighbourhood of the
point u ∈]0,∞[ and equal to zero on ]−∞, 0]. For f ∈ C2

b (u), the value (Af)(u)
is well-defined.

A function Φ :]0,∞[→ [0, 1] is called a viscosity supersolution of (4) if for
every point u ∈]0,∞[ and every function f ∈ C2

b (u) such that Φ(u) = f(u) and
Φ ≥ f the inequality (Af)(u) ≤ 0 holds.

A function Φ :]0,∞[→ [0, 1] is called a viscosity subsolution of (4) if for every
u ∈]0,∞[ and every function f ∈ C2

b (u) such that Φ(u) = f(u) and Φ ≤ f the
inequality (Af)(u) ≥ 0 holds.

A function Φ :]0,∞[→ [0, 1] is a viscosity solution of (4) if Φ is simultaneously
a viscosity super- and subsolution.

From the results of [1], formulated for the more general model of the surplus
process, we have that the following propositions are true:

Theorem 1. The survival probability ϕ of the process (2) as a function of an
initial surplus u is a viscosity solution of IDE (4) with A defined by (3).

Theorem 2. Suppose that the topological support of the measure dF (z) is R+ \
{0}. Let Φ and Φ̃ be two continuous bounded viscosity solutions of (4) with the
boundary conditions Φ(+0) = Φ̃(+0) and Φ(∞) = Φ̃(∞). Then Φ ≡ Φ̃.
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4 Main Results

Theorem 3. Let the topological support of the measure dF (z) be R+ \ {0} and
the survival probability ϕ(u) of the process (2) be continuous on [0,∞[ and not
identically zero. Suppose there is a continuous viscosity solution Φ of IDE (4)
with the boundary conditions (5). Then ϕ ≡ Φ.

Proof. First, we note that, as is easy to see, ϕ(0) = 0 (see also [6, Lemma 1]).
In addition, if ϕ(u) is not identically zero, then

lim
u→+∞ ϕ(u) = 1. (6)

Indeed, by the Markov property for any t, u ≥ 0 we have the identity
ϕ(u) = ϕ(Xτu∧t). Using the Fatou lemma and the monotonicity of ϕ we get, for
t → ∞, that ϕ(u) = limt Eϕ(Xτu∧t) ≤ E limt ϕ(Xτu∧t) ≤ Eϕ(Xτu)I{τu<∞} +
+ limu→+∞ ϕ(u)E I{τu=∞}. In virtue of definitions, the first term in the right-
hand side is zero. Then ϕ(u) ≤ ϕ(u) limu→+∞ ϕ(u). Since ϕ(u) is monotone, we
conclude from this inequality that if it is not identically zero, then equality (6) is
true. In view of Theorem 1 the survival probability ϕ is the viscosity solution of
IDE (4). Therefore, from Theorem 2 on the uniqueness of the viscosity solution
with fixed boundary conditions, we have ϕ ≡ Φ.

Remark 1. For the case σ = 0, the equality (6) is also the consequence of the
following relation:

ϕ(u) ≡ 1, u ≥ c/μ, (7)

(see Lemma 1 and Remark 2 below).

Next, we consider examples of the application of Theorem 3 in the case of expo-
nential distribution of Zi.

4.1 The Case of Risky Investments (σ > 0 )

In [6] the following proposition is proved.

Theorem 4. Let F (z) = 1 − exp (−z/m), all the parameters in (3): c, λ, m,
μ, σ > 0, and 2μ > σ2. Then the following assertions hold:

(I) there exists a twice continuously differentiable function f satisfying the
equation IDE (4) and conditions (5);

(II ) this solution may be defined by the formula f(u) = 1−
∞∫
u

g(s) ds, where g(u)

is the unique solution of the following problem for an ordinary differential
equation (ODE):

1

2
σ2u2g′′(u) +

(
μu + σ2u − c − 1

2m
σ2u2

)
g′(u) +

(
μ − λ − μu − c

m

)
g(u) = 0, u > 0,

(8)
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lim
u→+0

|g(u)| < ∞, lim
u→+0

[ug′(u)] = 0, (9)

lim
u→∞ [ug(u)] = 0, lim

u→∞ [u2 g′(u)] = 0, (10)

with the normalizing condition

∞∫

0

g(s) ds = 1. (11)

Moreover, in [6], asymptotic representations of the solution f at zero and at
infinity are obtained and examples of its numerical calculations by solving the
ODE problem (8)–(11) are given.

Theorem 5. Let the conditions of Theorem4 be satisfied. Then the function f
defined in this theorem is the survival probability for the process (2), i.e., ϕ ≡ f .

4.2 The Case of Risk-Free Investments (σ = 0)

For this case, our approach can also be applied to a non-smooth (generally
speaking) solution constructed in [7] (see also [9,11]).

We assume here that the insurer’s reserve is invested to a risk-free asset with
price Bt modelled by the equation

dBt = rBtdt, t ≥ 0,

where r is the return rate.
Then the resulting surplus process Xt is governed by the equation

dXt = rXtdt + dRt, t ≥ 0, (12)

with the initial condition X0 = u, where Rt is defined by (1).
Recall that, in the case σ = 0, the infinitesimal generator (3) of the corre-

sponding process Xt takes the form

(Af)(u) = f ′(u)(ru − c) − λf(u) + λ

∞∫

0

f(u + z) dF (z) (13)

(here we rename the return rate of the risk-free asset from μ to r). From the
results of [7] we have the following

Proposition 1. Let F (z) = 1 − exp (−z/m), all the parameters in (13): c, λ,
m, r > 0. Then the following assertions hold:

(I) there exists a continuous function Φ, which is twice continuously differen-
tiable on the interval (0, c/r), satisfying the equation IDE (4) (everywhere,
except, perhaps, the point c/r) and the conditions

lim
u→+0

Φ(0) = 0, Φ(u) ≡ 1, u ≥ c/r; (14)
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(II ) on the interval (0, c/r), this solution may be defined by the formula Φ(u) =

1 −
c/r∫
u

g(s) ds, where

g(u) =

⎡

⎢⎣
c/r∫

0

(c/r − u)λ/r−1 exp (u/m) du

⎤

⎥⎦

−1

(c/r − u)λ/r−1 exp (u/m); (15)

(III ) Φ(u) is a viscosity solution of IDE (4);
(IV) for λ > 2r, Φ(u) is a twice continuously differentiable on (0,∞) function,

i.e., it is a classical solution of IDE (4); in this case limu↑c/r Φ′′(u) =
limu↑c/r Φ′(u) = 0; otherwise, Φ(u) satisfies IDE (4) in the classical sense
everywhere except for the point u = c/r;

(V) for r < λ ≤ 2r, Φ(u) is smooth but it is not twice continuously differen-
tiable on (0,∞), since limu↑c/r Φ′′(u) = −∞ for λ < 2r, and

lim
u↑c/r

Φ′′(u) = −m−2
[
exp

(
c/(rm)

) − 1 − c/(rm)
]−1 exp

(
c/(rm)

)
< 0,

λ = 2r;
(VI) for λ ≤ r, Φ(u) is not smooth, since its derivative is discontinuous at the

point u = c/r:

lim
u↑c/r

Φ′(u) = m−1
[
exp

(
c/(rm)

) − 1
]−1 exp

(
c/(rm)

)
> 0,

λ = r, and limu↑c/r Φ′(u) = ∞, wherein Φ′(u) is integrable at the point
u = c/r, λ < r.

Theorem 6. Let the conditions of Proposition 1 be satisfied. Then the function
Φ defined in this proposition is the survival probability for the process (12), i.e.,
ϕ ≡ Φ.

5 Proofs

Let us return to the general case of a process of the form (2) and prove aux-
iliary statements about non-triviality and continuity of its survival probability
(Lemma 1 and Lemma 3 below respectively). We also formulate Lemma 2 about
zero value of the survival probability at zero surplus level. Then the statement of
Theorem 5 is a consequence of Theorems 3, 4 and Lemmas 1–3. The statement of
Theorem 6 is a consequence of Theorem 3, Proposition 1 and the same lemmas.

Lemma 1. Let
2μ > σ2. (16)

Then the survival probability ϕ(u) of process (2) is not identically zero. Moreover,
if σ = 0, then ϕ(u) = 1, u ≥ c/μ.
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Proof. 1) The case σ > 0. Let

μ(x) = μx − c, σ(x) = σx. (17)

Let us consider the process Yt = Y u
t given by the equation

dYt = μ(Yt)dt + σ(Yt)dwt, (18)

with initial state Y0 = u > 0 and the same standard Brownian motion as
in (2). To understand the qualitative behavior of the process (2), we use the
corresponding result for the process (18) at first; this result is given in [12,
Chapter 4]. Below we use the following functions:

ρ(x) = exp

⎛

⎝−
x∫

a

2μ(y)
σ2(y)

dy

⎞

⎠, x ∈ [a,∞), (19)

s(x) = −
∞∫

x

ρ(y)dy, x ∈ [a,∞). (20)

It is easy to check that in the case when the functions μ(x), σ(x) are of the
form (17) and the relation (16) is valid, we have

∫ ∞

a

ρ(x)dx < ∞,

∫ ∞

a

|s(x)|
ρ(x)σ2(x)

dx = ∞.

Note that the (strong) solution of equation (18) with coefficients defined in
(17) and the initial state Y0 = u can be represented as

Y u
t = exp(Ht)

⎡

⎣u − c

t∫

0

exp(−Hs) ds

⎤

⎦ , t ≥ 0, (21)

where
Ht =

(
μ − σ2/2

)
t + σwt.

Let us denote Tu
a := inf{t : Y u

t ≤ a}; for the process Y u
t , the r.v. Tu

a is the
moment of its first hitting the level a. Then, for a < u, according to [12, Th.
4.2], we conclude that

P{Tu
a = ∞} > 0 (22)

and limt→∞ Yt = ∞ P − a.s. on {Tu
a = ∞}. For the solution of (2) with the

same initial state X0 = u we can write

Xu
t = Y u

t + exp(Ht)

⎡

⎣
N(t)∑

i=1

Zi exp (−Hθi
)

⎤

⎦ , t ≥ 0, (23)

where θi is the moment of the i-th jump of the process N(t). It is clear that

Xu
t ≥ Y u

t P − a.s., t ≥ 0. (24)
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Hence, taking into account the relation (22) for a < u, we have for the time
τu of ruin of the process Xu

t that

P{τu = ∞} > 0, u > 0,

i.e., ϕ(u) > 0, u > 0.
2) The case σ = 0. It is clear in this case that for u ≥ c/μ the ruin of the process

Y u
t will never occur and relations (23), (24) are true. Hence, for the process

Xu
t we have at least that ϕ(u) = 1, u ≥ c/μ.

Remark 2. For the survival probability ϕ(u) of process (12) we have clearly from
Lemma 1 that ϕ(u) = 1, u ≥ c/r.

Lemma 2. For σ2 ≥ 0, the survival probability ϕ(u) of process (2) satisfies the
condition

ϕ(0) = 0. (25)

For the simple proof of this lemma, see ([6]).

Lemma 3. Let c, λ, m be positive numbers. Then for arbitrary μ, σ the survival
probability ϕ(u) of process (2) is continuous on [0,∞[.

Proof. Let us prove this statement in the case σ2 > 0; otherwise the proof is
simpler. Let us show first the continuity of ϕ(u) at zero. In other words, we prove
the limit equality

lim
u→+0

ϕ(u) = 0. (26)

Note that, for u > 0 and any fixed t > 0,

ϕ(u) ≤ P(Xu
t > 0) = P

⎛

⎝u − c

t∫

0

exp(−Hs) ds +
N(t)∑

i=1

Zi exp (−Hθi
) > 0

⎞

⎠

≤ P

⎛

⎝
N(t)∑

i=1

Zi exp (−Hθi
) > 0

⎞

⎠ + P

⎛

⎝
t∫

0

exp(−Hs) ds < u/c

⎞

⎠

≤ P(N(t) ≥ 1) + P
(

t inf
s≤t

exp(−Hs) < u/c

)
.

Denote Ms = exp[(μ − σ2)s − Hs]. Clear that

Ms = exp(−σ2

2
s − σws) (27)

is a non-negative martingale with M0 = 1. Hence,

ϕ(u) ≤ P(N(t) ≥ 1) + P
(

inf
s≤t

Ms <
u

ctb(t)

)
, (28)
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Fig. 1. The case λ > 2r: r=0.3; μ = 0.7.

where b(t) = exp[(μ − σ2)t] I{μ > σ2} + I{μ ≤ σ2} and I is the indicator
function of the set. The following inequality is proved in the course of the proof
of Lemma 4.2 in [13]. For non-negative supermartingale Mt, M0 = 1, we have

P
(

inf
s≤t

Ms < ε

)
≤ 2P (Mt < 2ε) , ε > 0. (29)

Setting ε = u
ctb(t) and applying inequality (29) to the martingale of the form

(27), we obtain from (28) that, for any fixed t,

lim
u→+0

ϕ(u) ≤ 1 − exp (−λt). (30)

Letting t → 0 in (30) and taking into account the non-negativity of ϕ, we have
equality (26).

Let us prove the continuity at any point u > 0. Note that the difference
between the two processes Xt(u+ε) = Xu+ε

t and Xt(u) = Xu
t starting at points

u + ε and u respectively, has the form

Xt(u + ε) − Xt(u) = ε exp(Ht). (31)

For the stopping time τu ∧ t, where τu is the time of ruin of the process Xu
t , due

to the strong Markov property of the process Xu+ε
t , we have

ϕ(u + ε) = Eϕ(Xτu∧t(u + ε))
= E[ϕ(Xτu∧t(u + ε))I{τu < ∞}] + E[ϕ(Xτu∧t(u + ε))I{τu = ∞}]
= E[ϕ(Xt(u + ε))I{τu = ∞}] + E[ϕ(Xτu∧t(u + ε))I{τu ≤ t}]
+E[ϕ(Xτu∧t(u + ε))I{t < τu < ∞}]
= E[ϕ(Xt(u + ε))I{τu = ∞}] + E[ϕ(Xτu(u + ε))I{τu ≤ t}]
+E[ϕ(Xt(u + ε))I{t < τu < ∞}].
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Fig. 2. The case λ = 2r: r=0.5; μ = 0.7.

Fig. 3. The case r < λ < 2r: r=0.75; μ = 1.

For three terms at the end of the last chain of equalities, we have
E[ϕ(Xt(u + ε))I{τu = ∞}] ≤ P{τu = ∞} = ϕ(u),

E[ϕ(Xτu(u + ε))I{τu ≤ t}] = E[ϕ(ε exp(Hτu)I{τu ≤ t}], (32)

E[ϕ(Xt(u + ε))I{t < τu < ∞}] ≤ P{t < τu < ∞} (equality (32) is true due to
relation (31) and the fact that Xτu = 0 for the process with positive jumps).
Then

ϕ(u + ε) ≤ ϕ(u) + E[ϕ(ε exp(Hτu)I{τu ≤ t}] + P{t < τu < ∞}. (33)
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Fig. 4. The case λ = r: r=1; μ = 1.5.

Fig. 5. The case λ < r: r=1.5; μ = 1.75.

Note that the first term in (33) tends to zero as ε → 0 due to the proved
continuity at zero of ϕ(u), condition (25) and taking into account the dominated
convergence theorem. Then, for any t,

lim
ε→+0

(ϕ(u + ε) − ϕ(u)) ≤ P{t < τu < ∞}.

Letting t → ∞ in the last inequality and taking into account that the survival
probability ϕ is the non-decreasing on the initial state u, we obtain the right-
continuity of this function. The left-continuity may be proved analogously.
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6 Numerical Results [7]

For the results of numerical calculations (Figs. 1, 2, 3, 4 and 5), the curves with
number 1 (2) correspond to the case of risky investments in shares with parame-
ters μ and σ2 (risk-free ones with return rate r respectively). The figures are pre-
sented in order of decreasing smoothness and increasing discontinuity of deriva-
tives for the curves number 2. For all figures, c = 4, m = 2, λ = 1, σ2 = 0.3 (the
parameter values are relative, they are normalized in such a way that λ = 1).

7 Conclusions

s A new approach to justifying the survival probabilities in dynamic insurance
models with investments as the solutions of corresponding IDE problems is pro-
posed. This approach avoids direct proof of the smoothness of the survival prob-
ability by using verification arguments based on the uniqueness of the viscosity
solution. It can be applied if it has been previously proved, that the survival
probability is continuous, not identically equal to zero function, has a known
value at zero initial surplus and is a viscosity solution of some IDE problem.
The first two facts can be established quite simply, and the last fact can be
proved for a whole class of models, as it is done in [1]. In this case, for specific
models from this class, it remains only to prove the existence of a solution (clas-
sical or in the sense of viscosity) for the corresponding IDE problem. On the
other hand, it remains unclear whether this approach can be applied to models
in which the corresponding problem for the IDE is not a boundary problem (see,
e.g., [8])
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