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Abstract. Positive recurrence of one-dimensional diffusion with switch-
ing, with an additive Wiener process, and with one recurrent and one
transient regime is established under suitable conditions on the drift
in both regimes and on the intensities of switching. The approach is
based on an embedded Markov chain with alternating jumps: one jump
increases the average of the square norm of the process, while the next
jump decreases it, and under suitable balance conditions this implies
positive recurrence.
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1 Introduction

On a probability space (Ω,F , (Ft),P) with a one-dimensional (Ft)-adapted
Wiener process W = (Wt)t≥0 on it, a one-dimensional SDE with switching is
considered,

dXt = b(Xt, Zt) dt + dWt, t ≥ 0, X0 = x, Z0 = z,

where Zt is a continuous-time Markov process on the state space S = {0, 1}
with (positive) intensities of respective transitions λ01 =: λ0, &λ10 =: λ1; the
process Z is assumed to be independent of W and adapted to the filtration (Ft).
We assume that these intensities are constants; this may be relaxed. Under the
regime Z = 0 the process X is assumed positive recurrent, while under the regime
Z = 1 its modulus may increase in the square mean with the rate comparable to
the decrease rate under the regime Z = 0. This vague wording will be specified
in the assumptions. Denote

b(x, 0) = b−(x), b(x, 1) = b+(x).
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The problem addressed in this paper is to find sufficient conditions for the
positive recurrence (and, hence, for convergence to the stationary regime) for
solutions of stochastic differential equations (SDEs) with switching in the case
where not for all values of the modulating process the SDE is recurrent, and
where it is recurrent, this property is assumed to be “not very strong”. Earlier a
similar problem was tackled in [2] in the exponential recurrent case; its method
apparently does not work for the weaker polynomial recurrence. A new approach
is offered. Other SDEs with switching were considered in [1,4,5,7], see also the
references therein. Neither of these works address exactly the problem which is
attacked in this paper: some of them tackled an exponential recurrence, some
other study the problem of a simple recurrence versus transience.

2 Main Result: Positive Recurrence

The existence and pathwise uniqueness of the solution follows easily from [9],
or from [6], or from [8], although, neither of these papers tackles the case with
switching. The next theorem is the main result of the paper.

Theorem 1. Let the drift b be bounded and let there exist r−, r+,M > 0 such
that

xb−(x) ≤ −r−, xb+(x) ≤ +r+, ∀ |x| ≥ M, (1)

and

2r− > 1 & κ−1
1 :=

λ0(2r+ + 1)
λ1(2r− − 1)

< 1. (2)

Then the process (X,Z) is positive recurrent; moreover, there exists C > 0 such
that for all M1 large enough and all x ∈ R

ExτM1 ≤ C(x2 + 1), (3)

where
τM1 := inf(t ≥ 0 : |Xt| ≤ M1).

Moreover, the process (Xt, Zt) has a unique invariant measure, and for each
nonrandom initial condition x, z there is a convergence to this measure in total
variation when t → ∞.

3 Proof

Denote ‖b‖ = supx |b(x)|. Let M1 	 M (the value M1 will be specified later);
denote

T0 := inf(t ≥ 0 : Zt = 0),

and
0 ≤ T0 < T1 < T2 < . . . ,
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where each Tn is defined as the next moment of switch of the component Z; let

τ := inf(Tn ≥ 0 : |XTn
| ≤ M1).

It suffices to evaluate from above the value Exτ because τ ≥ τM1 . Let us choose
ε > 0 such that

λ0(2r+ + 1 + ε) = qλ1(2r− − 1 − ε) (4)

with some q < 1 (see (2)). Note that for |x| ≤ M there is nothing to prove; so
assume |x| > M .

Lemma 1. Under the assumptions of the theorem for any δ > 0 there exists M1

such that

max

[
sup

|x|>M1

Ex

(∫ T1

0

1( inf
0≤s≤t

|Xs|≤M)dt|Z0=0

)
,

(5)

sup
|x|>M1

Ex

(∫ T0

0

1( inf
0≤s≤t

|Xs|≤M)dt|Z0=1

)]
< δ.

Proof. Let Xi
t , i = 0, 1 denote the solution of the equation

dXi
t = b(Xi

t , i) dt + dWt, t ≥ 0, Xi
0 = x.

Let Z0 = 0; then T0 = 0. The processes X and X0 coincide a.s. on [0, T1] due
to uniqueness of solution. Therefore, due to the independence of Z and W , and,
hence, of Z and X0, we obtain

Ex

(∫ T1

0

1( inf
0≤s≤t

|Xs| ≤ M)dt|Z0 = 0

)
= Ex

∫ T1

0

1( inf
0≤s≤t

|X0
s | ≤ M)dt

= Ex

∫ ∞

0

1(t < T1)1( inf
0≤s≤t

|X0
s | ≤ M)dt =

∫ ∞

0

Ex1(t < T1)P( inf
0≤s≤t

|X0
s | ≤ M)dt

=

∫ ∞

0

exp(−λ0t)P( inf
0≤s≤t

|X0
s | ≤ M)dt.

Let us take t such that ∫ ∞

t

e−λ0sds < δ/2.

Now, by virtue of the boundedness of b, it is possible to choose M1 > M such
that for this value of t we have

tPx( inf
0≤s≤t

|X0
s | ≤ M) < δ/2.

The bound for the second term in (5) follows by using the process X1 and the
intensity λ1 in the same way. QED
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Lemma 2. If M1 is large enough, then under the assumptions of the theorem
for any |x| > M1 for any k = 0, 1, . . .

Ex(X2
T2k+1∧τ |Z0 = 0,FT2k) ≤ Ex(X2

T2k∧τ |Z0 = 0,FT2k)
(6)

−1(τ > T2k)λ−1
0 ((2r− − 1) − ε),

Ex(X2
T2k+2∧τ |Z0 = 1,FT2k+1) ≤ Ex(X2

T2k+1∧τ |Z0 = 1,FT2k+1)
(7)

+1(τ > T2k+1)λ−1
1 ((2r− + 1) + ε).

Proof. 1. Recall that T0 = 0 under the condition Z0 = 0. We have,

T2k+1 = inf(t > T2k : Zt = 1).

In other words, the moment T2k+1 may be treated as “T1 after T2k”. Under
Z0 = 0 the process Xt coincides with X0

t until the moment T1. Hence, we have
on [0, T1] by Ito’s formula

dX2
t − 2XtdWt = 2Xtb−(Xt)dt + dt ≤ (−2r− + 1)dt,

on the set (|Xt| > M) due to the assumptions (1). Further, since 1(|Xt| > M) =
1 − 1(|Xt| ≤ M), we obtain

∫ T1∧τ

0

2Xtb−(Xt)dt

=
∫ T1∧τ

0

2Xtb−(Xt)1(|Xt| > M)dt +
∫ T1∧τ

0

2Xtb−(Xt)1(|Xt| ≤ M)dt

≤ −2r−
∫ T1∧τ

0

1(|Xt| > M)dt +
∫ T1∧τ

0

2M‖b‖1(|Xt| ≤ M)dt

= −2r−
∫ T1∧τ

0

1dt +
∫ T1∧τ

0

(2M‖b‖ + 2r−)1(|Xt| ≤ M)dt

≤ −2r−
∫ T1∧τ

0

1dt + (2M‖b‖ + 2r−)
∫ T1∧τ

0

1(|Xt| ≤ M)dt.

Thus, always for |x| > M1,

Ex

∫ T1∧τ

0

2Xtb−(Xt)dt

≤ −2r−E

∫ T1∧τ

0

1dt + (2M‖b‖ + 2r−)Ex

∫ T1∧τ

0

1(|Xt| ≤ M)dt
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= −2r−E
∫ T1∧τ

0

1dt + (2M‖b‖ + 2r−)Ex

∫ T1∧τ

0

1(|Xt| ≤ M)dt

≤ −2r−E
∫ T1∧τ

0

1dt + (2M‖b‖ + 2r−)Ex

∫ T1

0

1(|Xt| ≤ M)dt

≤ −2r−E
∫ T1∧τ

0

1dt + (2M‖b‖ + 2r−)δ.

For our fixed ε > 0 let us choose δ = λ−1
0 ε/(2M‖b‖+2r−). Then, since |x| > M1

implies T1 ∧ τ = T1 on (Z0 = 0), we get

ExX2
T1∧τ − x2 ≤ −(2r− − 1)Ex

∫ T1

0

dt + λ−1
0 ε = −λ−1

0 ((2r− − 1) − ε).

Substituting here XT2k instead of x and writing Ex(·|FT2k) instead of Ex(·), and
multiplying by 1(τ > T2k), we obtain the bound (6), as required.
2. The condition Z0 = 1 implies the inequality T0 > 0. We have,

T2k+2 = inf(t > T2k+1 : Zt = 0).

In other words, the moment T2k+2 may be treated as “T0 after T2k+1”. Under
Z0 = 1 the process Xt coincides with X1

t until the moment T0. Hence, we have
on [0, T0] by Ito’s formula

dX2
t − 2XtdWt = 2Xtb+(Xt)dt + dt ≤ (2r+ + 1)dt,

on the set (|Xt| > M) due to the assumptions (1). Further, since 1(|Xt| > M) =
1 − 1(|Xt| ≤ M), we obtain ∫ T0∧τ

0

2Xtb+(Xt)dt

=
∫ T0∧τ

0

2Xtb+(Xt)1(|Xt| > M)dt +
∫ T0∧τ

0

2Xtb+(Xt)1(|Xt| ≤ M)dt

≤ 2r+

∫ T0∧τ

0

1(|Xt| > M)dt +
∫ T0∧τ

0

2M‖b‖1(|Xt| ≤ M)dt

= 2r+

∫ T0∧τ

0

1dt +
∫ T1∧τ

0

(2M‖b‖ − 2r+)1(|Xt| ≤ M)dt

≤ 2r+

∫ T0∧τ

0

1dt + 2M‖b‖
∫ T0∧τ

0

1(|Xt| ≤ M)dt.

Thus, always for |x| > M1,

Ex

∫ T0∧τ

0

2Xtb+(Xt)dt



Positive Recurrence 247

≤ 2r+E

∫ T0∧τ

0

1dt + 2M‖b‖Ex

∫ T0∧τ

0

1(|Xt| ≤ M)dt

= 2r+E

∫ T0∧τ

0

1dt + 2M‖b‖Ex

∫ T1∧τ

0

1(|Xt| ≤ M)dt

≤ 2r+E

∫ T0∧τ

0

1dt + 2M‖b‖Ex

∫ T0

0

1(|Xt| ≤ M)dt

≤ 2r+E

∫ T0∧τ

0

1dt + 2M‖b‖δ.

For our fixed ε > 0 let us choose δ = λ−1
0 ε/(2M‖b‖). Then, since |x| > M1

implies T0 ∧ τ = T0 on (Z0 = 1), we get

ExX2
T1∧τ − x2 ≤ −(2r− − 1)Ex

∫ T1

0

dt + λ−1
0 ε = −λ−1

0 ((2r− − 1) − ε).

Substituting here XT2k+1 instead of x and writing Ex(·|FT2k+1) instead of Ex(·),
and multiplying by 1(τ > T2k+1), we obtain the bound (7), as required. QED

Lemma 3. If M1 is large enough, then under the assumptions of the theorem
for any k = 0, 1, . . .

Ex(X2
T2k+2∧τ |Z0 = 0,FT2k+1) ≤ Ex(X2

T2k+1∧τ |Z0 = 0,FT2k+1)
(8)

+1(τ > T2k+1)λ−1
1 ((2r+ + 1) + ε)),

and

Ex(X2
T2k+1∧τ |Z0 = 1,FT2k) ≤ Ex(X2

T2k∧τ |Z0 = 1,FT2k)
(9)

−1(τ > T2k)λ−1
0 ((2r+ − 1) − ε)).

Proof. Let Z0 = 0; recall that it implies T0 = 0. If τ ≤ T2k+1, then (8) is trivial.
Let τ > T2k+1. We will substitute x instead of XT2k for a while, and will be
using the solution X1

t of the equation

dX1
t = b(X1

t , 1) dt + dWt, t ≥ T1, X1
T1

= XT1 .

For M1 large enough, since |x| ∧ |XT1 | > M1 implies T2 ≤ τ , and due to the
assumptions (1) we guarantee the bound

1(|XT1 | > M1)(EXT1
X2

T2∧τ − X2
T1∧τ )

≤ 1(|XT1 | > M1)(EXT1
(T2 − T1)((2r+ + 1) + ε))
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= +1(|XT1 | > M1)(λ−1
1 ((2r+ + 1) + ε))

in the same way as the bound (7) in the previous lemma. In particular, it follows
that for |x| > M1

(EXT1
X2

T2∧τ − X2
T1∧τ ) ≤ 1(|XT1 | > M1)(EXT1

(T2 − T1)((2r+ + 1) + ε))

= +1(|XT1 | > M1)(λ−1
1 ((2r+ + 1) + ε)),

since |XT1 | ≤ M1 implies τ ≤ T1 and EXT1
X2

T2∧τ − X2
T1∧τ = 0. So, on the set

|x| > M1 we have,

Ex(EXT1
X2

T2∧τ − X2
T1∧τ )

≤ Ex1(|XT1 | > M1)(λ−1
1 ((2r+ + 1) + ε)) ≤ λ−1

1 ((2r+ + 1) + ε).

Now substituting back XT2k in place of x and multiplying by 1(τ > T2k+1), we
obtain the inequality (8), as required.

For Z0 = 1 we have T0 > 0, and the bound (9) follows in a similar way. QED

Now we can complete the proof of the theorem. Consider the case Z0 = 0
where T0 = 0. Note that the bound (6) of the Lemma 2 together with the bound
(8) of the Lemma 3 can be equivalently rewritten as follows:

ExX2
T2k+1∧τ − ExX2

T2k∧τ ≤ −((2r− − 1) − ε)Ex(T2k+1 ∧ τ − T2k ∧ τ), (10)

and

ExX2
T2k∧τ − ExX2

T2k−1∧τ ≤ ((2r+ + 1) + ε)Ex(T2k ∧ τ − T2k−1 ∧ τ). (11)

We have the identity

τ ∧ Tn = T0 +
n−1∑
m=0

((Tm+1 ∧ τ) − (Tm ∧ τ)).

Therefore,

Ex(τ ∧ Tn) = ExT0 + Ex

n−1∑
m=0

((Tm+1 ∧ τ) − (Tm ∧ τ)),

Since Tn ↑ ∞, by virtue of the monotonic convergence in both parts and due to
Fubini theorem we obtain,

Exτ = ExT0 +
∞∑

m=0

Ex((Tm+1 ∧ τ) − (Tm ∧ τ)) (12)
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= ExT0 +
∞∑

k=0

Ex((T2k+1 ∧ τ) − (T2k ∧ τ))

+
∞∑

k=0

Ex((T2k+2 ∧ τ) − (T2k+1 ∧ τ)).

Due to (10) and (11) we have,

Ex(T2k+1 ∧ τ − T2k ∧ τ) ≤ ((2r− − 1) − ε)−1
(
ExX2

T2k+1∧τ − ExX2
T2k∧τ

)

ExX2
T2m+2∧τ − x2

≤ ((2r+ + 1) + ε)
m∑

k=0

Ex(T2k+2 ∧ τ − T2k+1 ∧ τ)

−((2r− − 1) − ε)
m∑

k=0

Ex(T2k+1 ∧ τ − T2k ∧ τ)

=
m∑

k=0

(−((2r− − 1) − ε)(Ex(T2k+1 ∧ τ − T2k ∧ τ)

+((2r+ + 1) + ε)Ex(T2k+2 ∧ τ − T2k+1 ∧ τ)) .

By virtue of Fatou’s lemma we get

x2 ≥ ((2r− − 1) − ε)
m∑

k=0

(Ex(T2k+1 ∧ τ − T2k ∧ τ)

(13)

−((2r+ + 1) + ε)
m∑

k=0

Ex(T2k+2 ∧ τ − T2k+1 ∧ τ).

Note that 1(τ > T2k+1) ≤ 1(τ > T2k). So, P(τ > T2k) ≥ P(τ > T2k+1). Hence,

λ0Ex(T2k+1 ∧ τ − T2k ∧ τ) − λ1Ex(T2k+2 ∧ τ − T2k+1 ∧ τ)

= λ0Ex(T2k+1 ∧ τ − T2k ∧ τ)1(τ ≥ T2k)
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−λ1Ex(T2k+2 ∧ τ − T2k+1 ∧ τ)1(τ ≥ T2k+1)

= λ0Ex1(τ > T2k)EXT2k
(T2k+1 ∧ τ − T2k ∧ τ)

−λ1Ex1(τ > T2k+1)EXT2k+1
(T2k+2 ∧ τ − T2k+1 ∧ τ)

= λ0Ex1(τ > T2k)λ−1
0 − λ1Ex1(τ > T2k+1)λ−1

1

= Ex1(τ > T2k) − Ex1(τ > T2k+1) ≥ 0.

Thus,

Ex(T2k+2 ∧ τ − T2k+1 ∧ τ) ≤ λ0

λ1
Ex(T2k+1 ∧ τ − T2k ∧ τ).

Therefore, we estimate

((2r+ + 1) + ε)
m∑

k=0

Ex(T2k+2 ∧ τ − T2k+1 ∧ τ)

≤ ((2r+ + 1) + ε)
λ0

λ1

m∑
k=0

Ex(T2k+1 ∧ τ − T2k ∧ τ)

= q((2r− − 1) − ε)
m∑

k=0

Ex(T2k+1 ∧ τ − T2k ∧ τ).

So, (13) implies that

x2 ≥ ((2r− − 1) − ε)
m∑

k=0

(Ex(T2k+1 ∧ τ − T2k ∧ τ)

−((2r+ + 1) + ε)
m∑

k=0

Ex(T2k+2 ∧ τ − T2k+1 ∧ τ)

≥ (1 − q)((2r− − 1) − ε)
m∑

k=0

(Ex(T2k+1 ∧ τ − T2k ∧ τ)

≥ 1 − q

2
((2r− − 1) − ε)

m∑
k=0

(Ex(T2k+1 ∧ τ − T2k ∧ τ)



Positive Recurrence 251

+
1 − q

2q
((2r+ + 1) + ε)

m∑
k=0

Ex(T2k+2 ∧ τ − T2k+1 ∧ τ).

Denoting c := min
(

1 − q

2q
((2r+ + 1) + ε),

1 − q

2
((2r− − 1) − ε)

)
, we conclude

that

x2 ≥ c

2m∑
k=0

Ex(Tk+1 ∧ τ − Tk ∧ τ).

So, as m ↑ ∞, by the monotone convergence theorem we get the inequality

∞∑
k=0

Ex(Tk+1 ∧ τ − Tk ∧ τ) ≤ c−1x2.

Due to (12), it implies that (in the case T0 = 0)

Exτ ≤ c−1x2, (14)

as required. Recall that this bound is established for |x| > M1, while in the case
of |x| ≤ M1 the left hand side in this inequality is just zero.

In the case of Z0 = 1 (and, hence, T0 > 0), we have to add the value
ExT0 = λ−1

1 to the right hand side of (14), which leads to the bound (3), as
promised.

In turn, this bound implies existence of the invariant measure, see [3,
Section 4.4]. Convergence to it in total variation follows due to the coupling
method in a standard way. So, this measure is unique. The details and some
extensions of this issue will be provided in another paper. QED
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