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Abstract. A first investigation of high-dimensional low-sample-size
(HDLSS) asymptotics, Hall, Marron and Neeman (2005) discovered a
surprisingly rigid geometric structure. A sample of size k taken from
the standard m-dimensional normal distribution is for large m close to
the vertices of the k-dimensional simplex in m-dimensional vector space.
It follows from the analysis of three geometric statistics: the length of
an observation, the distance between any two independent observations
and the angle between these vectors. We generalize and refine the results
constructing the second order Chebyshev-Edgeworth expansions under
assumption that the data dimension is random and different scaling fac-
tors are chosen.

Keywords: HDLSS data · Chebyshev-Edgeworth expansions ·
Random dimension · Student’s t-distribution · Laplace approximation

1 Three Geometric Statistics of Gaussian Vectors

We continue to study properties of high-dimensional Gaussian random vectors.
In our earlier papers Christoph, Prokhorov and Ulyanov [8] and Bobkov, Naumov
and Ulyanov [5] two-sided bounds were constructed for a probability density
function of the distance of a Gaussian random element Y with zero mean from
a point a in a Hilbert space H. We get new results for basic geometric statistics
connected with high-dimensional random normal vectors.

Let X1 = (X1,1, ...,X1,m)T ,..., Xk = (Xk,1...,Xk,m)T be a random sample.
In a high-dimension low-sample-size (HDLSS) data it is assumed that dimen-

sion m tends to infinity and sample size k is fixed.
One of the first investigation of HDLSS data was done in Hall, Marron and

Neeman (2005) [14]. It became the basis of research in high-dimensional math-
ematical statistics. See a recent survey on HDLSS asymptotics and its applica-
tions in Aoshima et al. [1]. Further development see e.g. in Fujikoshi, Ulyanov
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and Shimizu [12] when both m and k may tend to infinity. This is an important
framework of the current data analysis called Big data. In [14] it was discovered
a surprisingly rigid geometric structure. A sample of size k taken from the stan-
dard m-dimensional normal distribution is close for large m to the vertices of
the k-dimensional simplex in R

m. It follows from the analysis of three geometric
statistics:

the length ||Xi||m of an observation,

the distance ||Xi − Xj ||m between any two independent observations,
and the angle θm = ang(Xi,Xj) between these vectors.

We generalize and refine the results constructing the second order Chebyshev-
Edgeworth expansions under assumption that the data dimension is random and
different scaling factors are chosen.

In case of dimH < ∞ we consider a sample of size k when the dimension of
the observations is a random variable Nn with values in N+ = {1, 2, . . .}.

The present work continues our investigations in Christoph and Ulyanov [9]
on these three geometric statistics of Gaussian vectors with randomly distributed
dimension Nn which depends on parameter n ∈ N+ and Nn → ∞ in prob-
ability as n → ∞. Let the vectors X1, ...,Xk and N1, N2, ... be defined on
one and the same probability space and it is assumed that they are indepen-
dent. If Tm := Tm (X1, ...,Xk) is some statistic of the vectors X1, ...,Xk with
non-random dimension m ∈ N+ then the random variable TNn

= TNn
(ω) is

defined as:

TNn
(ω) := TNn(ω) (X1(ω), ...,Xk(ω)) , ω ∈ Ω and n ∈ N+.

Therefore, the statistics TNn
based on statistics Tm are constructed from the

sample {X1, ...,Xk}, where these vectors have the dimension Nn.
In [9], the distribution function of the normalized angle θm = ang(Xi,Xj)

was approximated by a second order Chebyshev-Edgeworth expansion with a
bound ≤ Cm−2 for all m ∈ N+. Furthermore, the fixed dimension m of the
Gaussian vectors was substituted by a random number Nn and expansions for
statistics θNn

were proved.
A natural question arises whether similar results hold for the length ||Xi||Nn

and the distance ||Xi −Xj ||Nn
of Gaussian vectors with random dimension Nn.

Two cases of random dimensions (or random sample sizes) Nn are considered
as e.g. in Bening, Galieva and Korolev [2], Christoph, Monakhov and Ulyanov [7]
and Christoph and Ulyanov [9]:

i) The random dimension Nn = Nn(r) ∈ N+ has negative binomial distribution
displaced by 1 with probability of success 1/n, positive parameter r > 0 and
probabilities

P(Nn(r) = j) =
Γ (j + r − 1)
Γ (j)Γ (r)

(
1
n

)r (
1 − 1

n

)j−1

, j ∈ N+. (1)
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ii) The random dimension Nn = Nn(s) ∈ N+ is discrete Pareto-like distributed
with parameters n ∈ N+, s > 0 and distribution function

P(Nn(s) ≤ k) =
(

k

s + k

)n

where Nn(s) = max
1≤j≤n

Yj(s), (2)

and Y (s), Y1(s), Y2(s), ..., are independent discrete Pareto II distributed ran-
dom variables with the common distribution

P
(
Y (s) ≤ k

)
=

k

s + k
and P(Y (s) = k) =

s

(s + k) (s + k − 1)
, k ∈ N+.

(3)
The discrete Y (s) on integers is the discretized continuous Pareto II (Lomax)
random variable, see Buddana and Kozubowski [6].

Both cases of random dimensions of the Gaussian vectors are also interesting
because ENn(r) = r(n − 1) + 1 < ∞ and ENn(s) = ∞, which has an influence
on the normalization factors.

The rest of the paper is organized as follows: In Sect. 2, Chebyshev-Edgeworth
expansions are proved for the geometric statistics of Gaussian vectors with fixed
dimension m. Section 3 presents the transfer theorem for results with fixed sam-
ple size (in our case the dimension of the vectors) m to those with random
sample size Nn. The main results are given in Sects. 4 and 5 when the random
sample size is negative binomial Nn(r) or discrete Pareto-like Nn(s) distributed,
respectively. In Sect. 6 the main results are proved.

2 Approximation for Geometric Statistics
of m-Dimensional Normal Vectors

Let Xi = (Xi,1, ...,Xi,m)T ,..., Xj = (Xj,1...,Xj,m)T be m-dimensional vectors
chosen from a sample {X1, ....,Xk} of normal distribution N (0m, Im) with mean
vectors EXk = 0m and covariance matrix Im for 1 ≤ i < j ≤ k ≤ m.

The length of the vector Xj is defined by the Euclidean distance || · ||m:

||Xi||m = S1/2
m with Sm =

∑m

k=1
X2

i,k . (4)

and similarly the distance ||Xi − Xj ||m between any two independent vectors

||Xi − Xi||m =
∑m

k=1
(Xi,k − Xj,k)2 . (5)

The distribution of distance ||Xi − Xj ||m is closely linked to the distribution
of length ||Xi||m, since (Xi,k − Xj,k)/

√
2 has also standard normal distribution

Φ(x). Therefore

P(||Xi − Xj ||m/
√

2 ≤ x) = P(||Xi||m ≤ x). (6)



218 G. Christoph and V. V. Ulyanov

The angle θm = ang(Xi,Xj) between these two independent vectors with ver-
tex at the origin and the sample correlation coefficient Rm(Xi,Xj) are
connected by:

cos θm =
||Xi||2m + ||Xj ||2m − ||Xi − Xj ||2m

2 ||Xi||m ||Xj ||m = Rm(Xi,Xj) = Rm. (7)

Hall, Marron and Neeman [14] showed

• for the length ||Xi||m =
√

m + Op(1),
• for the distance ||Xi − Xj ||m =

√
2m + Op(1) with i �= j and

• for the θm = angle ang(Xi,Xj) = 1
2π + Op(m−1/2) with i �= j,

where 1 ≤ i < j ≤ k ≤ m and Op refers to the stochastic boundedness.

The length of the vector Xi drawn from an m-dimensional normal distribu-
tion N (0, Im) is defined in (4) as ||Xi||m = S

1/2
m , where the statistics Sm as

a sum of the squares of m independent standard normal random variables has
chi-square distribution with m degrees of freedom and

Vm =
Sm − m√

2m
(8)

is asymptotically standard normally distributed. With the two-term Chebyshev-
Edgeworth expansions in the central limit theorem for the distribution function
of Vm, the following inequality results for all m ∈ N∣∣∣∣P

(
Vm ≤ x

)
− Φ(x) − ϕ(x)

(λ3 H2(x)
6
√

m
+

λ2
3 H5(x)
72m

+
λ4 H3(x)

24m

)∣∣∣∣ ≤ C

m3/2

where H2(x) = x2 − 1, H3(x) = x3 − 3x, H5(x) = x5 − 10x3 + 15x are the
Chebyshev-Hermite polynomials, skewness λ3 =

√
8 and excess kurtosis λ4 = 12

of S1, see Petrov [19, Sec. 5.7, Theorem 5.18].
Then Sm = m(1 +

√
2/m Vm) and Tayor expansion of (1 + u)1/2 lead to

||Xi||m = S1/2
m =

√
m

(
1 +

1√
2m

Vm − 1
4m

V 2
m +

√
2

8m3/2
V 3

m + ...

)
(9)

Define the statistics

Zm =
√

2
( ||Xi||m√

m
− 1

)
and Z∗

m =
√

2
( ||Xi − Xj ||m√

2m
− 1

)
, (10)

then (6) results in

P
(√

m Zm ≤ x
)

= P
(√

mZ∗
m ≤ x

)
. (11)

It follows from (9) that the statistic T1 =
√

mZm holds

T1 =
√

mZm = Vm −
√

2
4
√

m
V 2

m +
√

1
4m

V 3
m + ... (12)
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Following the sketch of the proof in Kawaguchi, Ulyanov and Fujikoshi [16, The-
orem 1] (The coefficients in the polynomial l2(x) are incorrect.) and calculating
the characteristic function fT1(t), we obtain

fT1(t) = E

[
eitVm

(
1 −

√
2(it)

4
√

m
V 2

m +
(it)
4m

V 3
m +

(it)2

16m
V 4

m + Op(m−3/2)

)]

= e−t2/2

(
1 −

√
2((it)3 + 3(it))

12
√

m
+

(it)6 − 6(it)4 − 9(it)2

144m
)

)
+ O(m−3/2). (13)

This results in the related expansion of the corresponding distribution function:

Proposition 1. Let Xi be a vector drawn from an m-dimensional normal dis-
tribution N (0m, Im). Then with the asymptotic expansion for the distribution of

normalized length Zm =
√

2
( ||Xi||m√

m
− 1

)
we obtain the following inequality for

all m ∈ N:∣∣∣∣P
(√

m Zm ≤ x
)

− Φ(x) − ϕ(x)
( x2 − 4

6
√

2m
+

x5 − 16x3 + 24x

144m

)∣∣∣∣ ≤ C

m3/2
. (14)

Corollary 1. Let Xi and Xj, i �= j be independent random vectors with an m-
dimensional normal distribution N (0m, Im). Due to (11), distribution function

of the normalized distance Z∗
m =

√
2
( ||Xi − Xj ||m√

2m
−1

)
has the same asymptotic

expansion as the distribution of normalized length Zm and inequality (14) with
replacing Zm by Z∗

m.

Second order Chebyshev-Edgeworth expansion of the angle θm =
ang(Xi,Xj) between independent vectors Xi and Xj with vertex at the ori-
gin and the corresponding sample correlation coefficient Rm(Xi,Xj) with com-
putable error bounds of approximation are shown in Christoph and Ulyanov [9,
Section 2], using results of Konishi [17, Sect. 4], Johnson, Kotz and Balakrishnan
[15, Chap. 32], Christoph, Ulyanov and Fujikoshi [11]:

supx

∣∣∣∣P
(√

m Rm ≤ x
)

− Φ(x) − x3 − 5x

4m
ϕ(x)

∣∣∣∣ ≤ B1

m2
(15)

and

supx

∣∣∣P (√
m(θm − π

2
) ≤ x

)
− Φ(x) − x3 − 15x

12m
ϕ(x)

∣∣∣ ≤ B2

m2
. (16)

The estimates (15) and (16) were used in Christoph and Ulyanov [9] to obtain
second order approximations the statistics RNn

and ΘNn
= θNn

−π/2 when the
non-random dimension m of the vectors is replaced be a random dimension
Nn, where the random dimension Nn → ∞ in probability when the parameter
n → ∞.

Analogous results for the statistics ||Xi||m and ||Xi − Xj ||m are proven in
Sects. 4 and 5 below, when the non-random dimension m is replaced be a random
dimension Nn.
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3 Auxiliary Proposition

In this section, expansions for the distribution function of statistics TNn
obtained

from samples with random sample size (here with random dimension Nn of the
considered vectors Xi) are obtained. These depend directly on the expansions
concerning statistics Tm based on non-random samples size m and expansions
regarding the random sample size Nn.

First we formulate the conditions determining expansions for the statistic Tm

with ETm = 0 and the normalized random dimension Nn:

Assumption A: Given γ ∈ {−1/2, 0, 1/2}, a > 1, C1 > 0 and differentiable
functions f1(x), f2(x) with bounded derivatives f ′

1(x), f ′
2(x) such that

supx

∣∣∣P(
mγTm ≤ x

) − Φ(x) − f1(x)√
m

− f2(x)
m

∣∣∣ ≤ C1

ma
for all m ∈ N. (17)

Remark 1. Statistics satisfying Assumption A are shown in (14), (15) and (16).

Assumption B: Given constants b > 0 and C2 > 0, real numbers gn with
0 < gn ↑ ∞ if n → ∞, a distribution function H(y) with H(0+) = 0 and a
function h2(y)of bounded variation that

sup
y≥0

∣∣∣∣P
(

Nn

gn
≤ y

)
− H(y) − h2(y) I{b>1}(b)

n

∣∣∣∣ ≤ C2

nb
for all n ≥ 1. (18)

where IA(x) =
{

1, x ∈ A
0, x /∈ A

defines the indicator function of a set A ⊂ R.

Remark 2. The random dimensions Nn(r) and Nn(s) given in (1) and (2),
respectively, fulfill Assumption B as shown in [9, Propositions 1 and 2], see
(29) and (39) below.

Proposition 2. Let γ ∈ {1/2, 0, −1/2} and both Assumption A and B as well
as the following requirements on H(.) and h2(.) are fulfilled

i : H(1/gn) ≤ c1 g−b
n for b > 0,

ii :
∫ 1/gn

0
y− 1/2dH(y) ≤ c2 g

−b+1/2
n for b > 1/2,

iii :
∫ 1/gn

0
y− 1dH(y) ≤ c3 g−b+1

n for b > 1,

⎫⎪⎬
⎪⎭ (19)

i : h2(0) = 0, and |h2(1/gn)| ≤ c4 n g−b
n for b > 1,

ii :
∫ 1/gn

0
y− 1|h2(y)|dy ≤ c5 n g−b

n for b > 1,

}
(20)

where b is the convergence rate in (18). Then for all n ≥ 1 is valid:

sup
x∈R

∣∣∣P(
gγ

nTNn
≤ x

)
− Gn,2(x)

∣∣∣ ≤ C1 E
(
N−a

n

)
+ (C3Dn + C4)n−b + In, (21)
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where with a > 1, b > 0, f1(z), f2(z), h2(y) are given in (17) and (18)

Gn,2(x) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

∞∫
0

Φ(x yγ)dH(y), 0 < b ≤ 1/2,

∞∫
0

(
Φ(xyγ) + f1(x yγ)√

gny

)
dH(y) =: Gn,1(x), 1/2 < b ≤ 1,

Gn,1(x) +
∞∫
0

f2(x yγ)
gny dH(y) +

∞∫
0

Φ(x yγ)
n dh2(y), b > 1,

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

(22)

Dn = sup
x

∫ ∞

1/gn

∣∣∣∣ ∂

∂y

(
Φ(xyγ) +

f1(xyγ)√
gny

+
f2(xyγ)

ygn

)∣∣∣∣ dy, (23)

In = supx (|I1(x, n)| + |I2(x, n)|) , (24)

I1(x, n) =
∫ ∞

1/gn

(f1(x yγ) I(0,1/2](b)√
gny

+
f2(x yγ)

gn y

)
dH(y), b ≤ 1, (25)

and

I2(x, n) =
∫ ∞

1/gn

(f1(x yγ)
n

√
gny

+
f2(x yγ)
n gny

)
dh2(y), b > 1. (26)

The constants C1, C3, C4 are independent of n.

Proof. The proof is based on the statement in [2, Theorem 3.1] for γ ≥ 0. Since
in Theorems 1 and 2 in the present paper as well as in Christoph and Ulyanov [9,
Theorems 1 and 2] the case γ = −1/2 is also considered, therefore the proof was
adapted to γ ∈ {1/2, 0, −1/2} in [9]. The conditions (19) and (20) guarantee
integration range (0,∞) of the integrals in (22). The approximation function
Gn,2(x) in (22) is now a polynomial in g

−1/2
n and n−1/2. Present Proposition 2

differs from Theorems 1 and 2 in [9] only by the term f1(xyγ) (gny)−1/2 and
the added condition (19ii) to estimate this term. Therefore here the details are
omitted. ��
Remark 3. The domain [1/gn,∞) of integration depends on gn in (23), (25) and
(26). Some of the integrals in (25) and (26) could tend to infinity with 1/gn → 0
as n → ∞ and thus worsen the convergence rates of the corresponding terms.
See (47) in Sect. 6.

In the next two sections we consider the statistics Zm and Z∗
m defined in (10)

and the cases when the random dimension Nn is given in either (1) or (2).
We use Proposition 2 when the limit distributions of scaled statistics ZNn

are
scale mixtures Gγ(x) =

∫ ∞
0

Φ(x yγ)dH(y) with γ ∈ {1/2, 0, −1/2} that can be
expressed in terms of the well-known distributions. We obtain non-asymptotic
results for the statistics ZNn

and Z∗
Nn

, using second order approximations the
statistics Zm and Z∗

m given in (14) as well as for the random sample size Nn. In
both cases the jumps of the distribution function of the random sample size Nn

only affect the function h2(y) in formula (18).



222 G. Christoph and V. V. Ulyanov

4 The Random Dimension Nn(r) is Negative Binomial
Distributed

The negative binomial distributed dimension Nn(r) has probability mass func-
tion (1)) and gn = E(Nn(r)) = r (n − 1) + 1. Schluter and Trede [21] (Sect. 2.1)
underline the advantage of this distribution compared to the Poisson distribution
for counting processes. They showed in a general unifying framework

limn→∞ supy |P(Nn(r)/gn ≤ y) − Gr,r(y)| = 0, (27)

where Gr,r(y) is the Gamma distribution function with the identical shape and
scale parameters r > 0 and density

gr,r(y) =
rr

Γ (r)
yr−1 e−ry

I(0 , ∞)(y) for all y ∈ R. (28)

Statement (27) was proved earlier in Bening and Korolev [3, Lemma 2.2].
In [9, Proposition 1] the following inequality was proved for r > 0:

sup
y≥0

∣∣∣∣P
(

Nn(r)
gn

≤ y

)
− Gr,r(y) − h2;r(y) I{r>1}(r)

n

∣∣∣∣ ≤ C2(r)
nmin{r,2} , (29)

where h2;r(y) = 1
2 r gr,r(y)

(
(y − 1)(2 − r) + 2Q1

(
gn y

))
for r > 1,

Q1(y) = 1/2 − (y − [y]) and [y] is the integer part of a value y. (30)

Both Bening, Galieva and Korolev [2] and Gavrilenko, Zubov and Korolev [13]
showed the rate of convergence in (29) for r ≤ 1. In Christoph, Monakhov and
Ulyanov [7, Theorem 1] the Chebyshev-Edgeworth expansion (29) for r > 1 is
proved.

Remark 4. The random dimension Nn(r) satisfies Assumption 2 of the Transfer
Propositions 2 with gn = ENn(r), H(y) = Gr,r(y), h2(y) = h2;r(y) and b = 2.

In (21), negative moment E(Nn(r))−a is required where m−a is rate of con-
vergence of Chebyshev-Edgeworth expansion for Tm in (17). Negative moments
E(Nn(r))−a fulfill the estimate:

E
(
Nn(r)

)−a ≤ C(a, r)
{

n−min{r, a}, r �= a
ln(n)n−a, r = a

for all r > 0 and a > 0. (31)

For r = a the factor ln n cannot be removed. In Christoph, Ulyanov and Bening
[10, Corollary 4.2] leading terms for the negative moments of E

(
Nn(r)

)−p were
derived for any p > 0 that lead to (31).

The expansions of the length of the vector Zm in (14) as well as of the
sample correlation coefficient Rn in (15) and the angle θm in (16) have as limit
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distribution the standard normal distribution Φ(x). Therefore, with gn = ENn(r)
and γ ∈ {1/2, 0, −1/2}, limit distributions for

P

(
gγ

n(Nn(r))1/2−γZNn(r) ≤ x
)

are Gγ(x, r) =
∫ ∞

0

Φ(x yγ)dGr,r(y).

These scale mixtures distributions Gγ(x, r) are calculated in Christoph and
Ulyanov [9, Theorems 3–5]. We apply Proposition 2 to the statistics

TNn(r) = Nn(r)1/2−γ ZNn(r) with the normalizing factor gγ
n = E(Nn(r))γ .

The limit distributions are:

• for γ = 1/2 and r > 0 the Student’s t-distribution S2 r(x) with density

s2 r(x) =
Γ (r + 1/2)√

2 rπ Γ (r)

(
1 +

x2

2 r

)−(r+1/2)

, x ∈ R, (32)

• for γ = 0 the normal law Φ(x),
• for γ = −1/2 and r = 2 the generalized Laplace distributions L2(x) with

density l2(x):

L2(x) =
1
2

+
1
2

sign(x) (1 − (1 + |x|) e−2 |x|) and l2(x) =
(

1
2

+ |x|
)

e−2 |x|.

For arbitrary r > 0 Macdonald functions Kr−1/2(x) occur in the density lr(x),
which can be calculated in closed form for integer values of r.

The standard Laplace density with variance 1 is l1(x) = 1√
2

e−√
2 |x|.

Theorem 1. Let Zm and Nn(r) with r > 0 be defined by (10) and (1), respec-
tively. Suppose that (14) is satisfied for Zm and (29) for Nn(r). Then the fol-
lowing statements hold for all n ∈ N+:

(i) Student’s t approximation using scaling factor
√
ENn(r) by ZNn(r)

supx

∣∣P (√
gn ZNn(r) ≤ x

) − S2r;n(x)
∣∣ ≤ Cr

{
n−min{r,3/2}, r �= 3/2,
ln(n)n−3/2, r = 3/2,

(33)

where

S2r;n(x) = S2r(x) + s2r(x)

(√
2 ((2r − 5)x2 − 8r)

12 (2r − 1)
√
gn

I{r>1/2}(r)

+
96r2x+ (−64r2 + 128r)x3 + (4r2 − 32r + 39)x5

(x2 + 2r)(2r − 1) gn
I{r>1}(r)

)
, (34)
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(ii) Normal approximation with random scaling factor Nn(r) by ZNn(r)

supx

∣∣∣P(
√

Nn(r) ZNn(r) ≤ x) − Φn , 2(x)
∣∣∣ ≤ Cr

{
n−min{r,3/2}, r �= 3/2,
ln(n)n−3/2, r = 3/2,

(35)
where

Φn , 2(x) = Φ(x) +
√

2 r Γ (r − 1/2)
12Γ (r)

√
gn

(x2 − 4)ϕ(x) I{r>1/2}(r)

+
x5 − 16x3 + 24x

144 gn

(
r

r − 1
I{r>1}(r) + ln n I{r=1}(r)

)
. (36)

(iii) Generalized Laplace approximation if r = 2 with mixed scaling factor
g

−1/2
n Nn(2) by ZNn(2)

supx

∣∣∣P(
g−1/2

n Nn(2)ZNn(2) ≤ x
)

− Ln;2(x)
∣∣∣ ≤ C2 n−3/2 (37)

where

Ln;2(x) = L2(x) − 1
3
√

gn

(
1√
2

+
√

2|x| − x2

)
e−2|x|

+
1

33 gn
(12

√
2 x − 15|x|x + 2x3) e−2|x| . (38)

5 The Random Dimension Nn(s) is Discrete Pareto-Like
Distributed

The Pareto-like distributed dimension Nn(s) has probability mass function (2)
and E(Nn(s)) = ∞. Hence gn = n is chosen as normalizing sequence for Nn(s).

Bening and Korolev [4, Sect. 4.3] showed that for integer s ≥ 1

limn→∞ supy>0 |P(Nn(s) ≤ n y) − Hs(y)| = 0.

where Hs(y) = e−s/y
I(0 , ∞)(y) is the continuous distribution function of the

inverse exponential W (s) = 1/V (s) with exponentially distributed V (s) having
rate parameter s > 0. As P(Nn(s) ≤ y), so Hs(y) is heavy tailed with shape
parameter 1 and EW (s) = ∞.

Lyamin [18] proved a bound |P(Nn(s) ≤ n y) − Hs(y)| ≤ C/n and C < 0.37
for integer s ≥ 1.

In [9, Proposition 2] the following results are presented for s > 0:

sup
y>0

∣∣∣∣P
(

Nn(s)
n

≤ y

)
− Hs(y) − h2;s(y)

n

∣∣∣∣ ≤ C3(s)
n2

, for all n ∈ N+, (39)

with Hs(y) = e−s/y and h2;s(y) = s e−s/y
(
s−1+2Q1(n y)

)
/
(
2 y2

)
for y > 0,

where Q1(y) is defined in (30). Moreover

E
(
Nn(s)

)−p ≤ C(p)n−min{p,2}, (40)

where for 0 < p ≤ 2 the order of the bound is optimal.



Random Dimension Low Sample Size Asymptotics 225

The Chebyshev-Edgeworth expansion (39) is proved in Christoph, Mon-
akhov and Ulyanov [7, Theorem 4]. The leading terms for the negative moments
E

(
Nn(s)

)−p were derived in Christoph, Ulyanov and Bening [10, Corollary 5.2]
that lead to (40).

Remark 5. The random dimension Nn(s) satisfies Assumption 2 of the Transfer
Propositions 2 with Hs(y) = e−s/y, h2(y) = h2;s(y), gn = n and b = 2.

With gn = n and γ ∈ {1/2, 0, −1/2}, the limit distributions for

P

(
nγNn(s)1/2−γZNn(s) ≤ x

)
are now Gγ(x, s) =

∫ ∞

0

Φ(x yγ)dHs(y).

These scale mixtures distributions Gγ(x, s) are calculated in Christoph and
Ulyanov [9, Theorems 6–8]. We apply Proposition 2 to statistics

TNn(s) = Nn(s)1/2−γ ZNn(s) with the normalizing factor nγ .

The limit distributions are:

• for γ = 1/2 Laplace distributions L1/
√

s(x) with density

l1/
√

s(x) =
√

s/2 e−√
2 s|x|,

• for γ = 0 the standard normal law Φ(x) and
• for γ = −1/2 the scaled Student’s t-distribution S∗

2 (x;
√

s) with density

s∗
2(x;

√
s) =

1
2
√

2 s

(
1 +

x2

2 s

)−3/2

.

Theorem 2. Let Zm and Nn(s) with s > 0 be defined by (10) and (2), respec-
tively. Suppose that (14) is satisfied for Zm and (39) for Nn(s). Then the fol-
lowing statements hold for all n ∈ N+:

(i) Laplace approximation with non-random scaling factor nγ by ZNn(s):

supx

∣∣P (√
n ZNn(s) ≤ x

) − L1/
√

s;n(x)
∣∣ ≤ Cs n−3/2 (41)

where

L1/
√

s;n(x) = L1/
√

s(x) + l1/
√

s(x)

( √
2

12 s
√

n
(sx2 − 2 (1 +

√
2 s |x|)

+
s

72n

(
x3 |x|√

2 s
− 8x2

s
+

6x

s2
(1 +

√
2 s |x|)

))
(42)

,
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(ii) Normal approximation with random scaling factor
√

Nn(s) by ZNn(r):

supx

∣∣∣P(√
Nn(s) ZNn(s) ≤ x

)
− Φn,2(x)

∣∣∣ ≤ Cs n−3/2, (43)

where

Φn,2(x) = Φ(x) + ϕ(x)

(√
2π(x2 − 4)

24
√

n
+

x5 − 16x3 + 24x

144 s n

)
(44)

(iii) Scaled Student’s t-distribution with mixed scaling factor by ZNn(s)

supx

∣∣∣P(
n−1/2 Nn(s)ZNn(s) ≤ x

)
− S∗

n;2(x)
∣∣∣ ≤ Cs n−3/2, (45)

where

S∗
n;2(x;

√
s) = S∗

2 (x;
√

s) + s∗
2(x;

√
s)

(
−

√
2 (x2 + 8 s)

12(2 s + x2)
√

n

+
1

144n

(
105x5

(2 s + x2)3
+

240x3

(2 s + x2)2
+

72x

2 s + x2

))
. (46)

6 Proofs of Main Results

Proof. The proofs of Theorems 1 and 2 are based on Proposition 2. The structure
of the functions f1, f2 and h2in Assumptions A and B is similar to the structure of
the corresponding functions in Conditions 1 and 2 in [9]. Therefore, the estimates
of the term Dn and of the integrals I1(x, n) and I2(x, n) in (23), (25) and (24)
as well as the validity of (19) and (20) in Proposition 2 when H(y) is Gr,r(y)
or Hs(y) can be shown analogously to the proofs for Lemmas 1, 2 or 4 in [9].
In Remark 3 above it was pointed out that the integrals in (25) and (25) can
degrade the convergence rate. Let r < 1. With |f2(x yγ | ≤ c∗ we get

∫ ∞

1/gn

|f2(x yγ)|
gn y

dGr,r(y) ≤ c∗rr

Γ (r) gn

∫ ∞

1/gn

yr−2dy ≤ c∗rr

(1 − r)Γ (r)
g−r

n . (47)

The additional term f1(xyγ) (gny)−1/2 in (17) in Assumption A is to be
estimated with condition (19ii).

Moreover, the bounds for E(Nn)−3/2 follow from (31) and (40), since a = 3/2
in Assumption A, considering the approximation (14).

The integrals in (22) in Proposition 2 are still to be calculated. Similar inte-
grals are calculated in great detail in the proofs of Theorems 3–8 in [9]. To obtain
(34), we compute the integrals with Formula 2.3.3.1 in Prudnikov et al. [20]

Mα(x) =
rr

Γ (r)
√

2π

∞∫
0

yα−1e−(r+x2/2)ydy =
Γ (α) rr−α

Γ (r)
√

2π

(
1 + x2/(2r)

)−α (48)

for α = r − 1/2, r + 1/2, r + 3/2 and p = r + x2/2.
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Lemma 2 in [9] and
∫ ∞
0

y−1dGr,r(y) = r/(r − 1) for r > 1 lead to (36).
To show (38) we use Formula 2.3.16.2 in [20] with n = 0, 1 and Formula

2.3.16.3 in [20] with n = 1, 2 and p = 2 and q = x2/2.
To obtain (42), we calculate the integrals again with Formula 2.3.16.3 in [20],

with p = x2/2 > 0, q = s > 0, n = 0, 1, 2.
Lemma 4 in [9] and

∫ ∞
0

y−a−1e−s/ydy = s−aΓ (a) for a = 3/2, 2 lead to (44).
Finally, in

∫ ∞
0

fk(x/ yγ)y−2−k/2e−s/ydy we use the substitution s/y = u to
obtain, with (48), the terms in (46). ��
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