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Abstract. The paper introduces a new test for equality of two distribu-
tions in a class of models. We proved analytically and by stochastic sim-
ulation that the test possesses high efficiency. For the case of normal and
Cauchy distributions that differ only by shift the asymptotic power of the
test appears to be approximately the same as for the Wilcoxon-Mann-
Whitney, the Kolmogorov-Smirnov and the Anderson-Darling tests. But
if the distributions differ by scale parameters the power of the new test
is considerably better.
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1 Formulation of the Problem

Let us consider the classical problem of testing hypothesis on the equality of two
distributions

H0 : F1 = F2 (1)

against the alternative
H1 : F1 �= F2 (2)

in the case of two independent samples X = (X1, . . . , Xn) and Y = (Y1, . . . , Ym)
with the distributions functions F1 and F2 respectively.

It is well known (see e.g. [1]) that in the case when both distributions differ
only by the means and are normal the classical Student test has a few optimal
properties. If the distributions are not normal but still differs only by means
a widely popular Wilcoxon-Mann-Whitney (WMW) U-statistic is often used
instead. However, it can be shown that if two normal populations differ only
in variances, the power of WMW test is very low. If distributions are arbitrary
there are some universal techniques such as tests by Kolmogorov-Smirnov and
Cramer-von Mises (see [2]) and the Anderson-Darling test (see [3]) that can be
applied but in many cases these tests can be not powerful.

Recently, Zech and Aslan [4] suggested the test based on U-statistics with
the logarithmic kernel and provided its numerical justification for one and many
dimensional cases in comparison with a few alternative techniques. However, to
the best authors knowledge there are no analytical results about its asymptotic
power. Here we introduce a similar but different test and provide a few analytical
results on its power.
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2 The New Test and Its Statistical Motivation

Assume that the distribution functions F1 and F2 belongs to the class of distri-
bution functions of random variables ξ, such that

E[ln2(1 + ξ2)] < ∞. (3)

Many distributions and, in particular, the Cauchy distribution have this prop-
erty.

Among all distributions with given left hand side of (3) the Cauchy’s one has
the maximum entropy.

Consider the following test

ΦA = − 1
n2

∑

1≤i<j≤n

g(Xi − Xj), ΦB = − 1
m2

∑

1≤i<j≤m

g(Yi − Yj), (4)

ΦAB = − 1
nm

n∑

i=1

m∑

j=1

g(Xi − Yj), Φnm = ΦAB − ΦA − ΦB , (5)

where
g(u) = − ln(1 + |u|2),

g(x) is under a constant term precision the logarithm of the density of the
standard Cauchy distribution. (Note that Zech and Aslan (2005) took g(u) =
− ln(|u|)).

We would like to have a test that is appropriate for the case where the basic
distribution belongs to a rather general class of distributions and the alternative
distribution differs only by shift and scale transformations.

In particular, we consider the class of distributions satisfying (3), but the
approach can be generalized for other classes of distributions.

Consider the class of distributions given by the property (3). Note that if the
parameters are known the test based on likelihood ratio is the most powerful
among tests with given parameters.

The test suggested above can be considered as an approximation of logarithm
of this ratio for the Cauchy distribution. We suppose that it will be very efficient
for all distributions with property (3).

3 The Analytical Study of Asymptotic Power

Let us consider the case of two distributions having the property (3) and, in
particular, the two that differ only by a shift. To simplify notations assume that
m = n. The case m �= n is similar. Now the criterion (4)–(5) assumes the form

Tn = Φnn =
1
n2

n∑

i,j=1

ln(1 + (Xi − Yj)2) − 1
n2

∑

1≤i<j≤n

ln(1 + (Xi − Xj)2) (6)
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− 1
n2

∑

1≤i<j≤n

ln(1 + (Yi − Yj)2). (7)

Denote by C(u, v) the Cauchy distribution with the density function

v/(π(v2 + (x − u)2)).

Let f(x) denotes the density of F1. Denote

Jh =
∫

R

−g(x − y − |h|/√
n)f(x)f(y)dxdy,

where g(u) = − ln(1 + |u|2).
By expending the function g(u) = ln(1+|u|2) into the Taylor series we obtain

that for arbitrary density function f(x) there exists the finite limit

J∗(h) = limn→∞n(Jh − J0) (8)

and it is equal to

(1/2)h2

∫

R

g′′
θ (x − y − θ)f(x)f(y)dxdy|θ=0.

(Note that the differentiation under integral is justified since the derivative
g′′

θ (x − y − θ)|θ=0 is less than 2.) That is

J∗(h) = h2

∫

R

1 − (x − y)2

(1 + (x − y)2)2
f(x)f(y)dxdy.

Denote
b̄ =

√
J∗(h)/h2.

The basic analytical result of the present paper is the following

Theorem 1. Consider the problem of testing hypothesis on the equality of two
distributions (1)–(2) where both functions have the property (3). Then

(i) under the condition n → ∞ the distribution function of nTn converges under
H0 to that of the random variable

(aL)2, (9)

where L has the normal distribution with zero expectation and variance equal
to 1, a > 0 is some number.

(ii) Let F1(x) = F (x), F2 = F (x + θ), where F is an arbitrary distribution
function that is symmetric around a point and possess property (3), θ =
h/

√
n, h is an arbitrary given number. Then the distribution function of

nTn converges under H1 to that of the random variable

(aL + b)2,
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where b = 0 for the case of H0 and b = b̄h for H1. In this case the power of
the criterion Tn with significance α is asymptotically equal to that is given
by the formula

Pr{L ≥ z1−α/2 − b̄h/a} + Pr{L ≤ −z1−α/2 − b̄h/a},

where z1−α/2 is such that

Pr{L ≥ z1−α/2} = α/2.

If F1 = C(ν, 1), F2 = C(ν + θ, 1) then b = h/3.

Note that the analytical presentation for the coefficient a is a difficult problem
that is not solved up to now. However this coefficient can be easily found by
stochastic simulation. In the case of Cauchy distribution we found a heuristic
formula 3a2 = J0, that means a =

√
(2/3) ln 3. This formula provide a very exact

approximation for empirical power (see Tables 1, 2 and 3 in the next section).
Thus in the case of Cauchy distributions with scale parameter equal to 1 the

power of the criterion Tn with significance α is approximately equal to

Pr{L ≥ z1−α/2 − (1/
√

6 ln 3)h} + Pr{L ≤ −z1−α/2 − (1/
√

6 ln3)h}.

The proof of the theorem is given in the Appendix.

4 Simulation Results

In this section we present numerical results of the efficiency of new criterion in
comparison with a few alternative criteria.

At the Tables 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11 and 12 results for cases n = 100,
500, 1000 and different values of h with α = 0.05 are given for normal and Cauchy
distributions that differ either by shift or by scale parameters. The critical values
were calculated in two ways: by simulation of the initial distribution and by
random permutations (we used 800 random permutation in all cases). It worth
to be noted that the results are very similar. Since the permutation technique is
more universal, it can be recommended for practical applications.

Note that in all these cases when the distributions differ only in the shift
parameters the power of Tn and that of the Wilcoxon-Mann-Whitney, the Kol-
mogorov-Smirnov and the Anderson-Darling tests were approximately equal to
each other. It can be pointed out also that if the variances are not standard
but are known we should simply make the corresponding normalisation. But for
the cases where the distributions differ in scale parameters the Wilcoxon-Mann-
Whitney is not appropriate at all and the power of the Kolmogorov-Smirnov and
the Anderson-Darling tests is considerably lower.
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Table 1. Cauchy distribution, X ∼ C(0, 1), Y ∼ C(h/
√
n, 1), n = 100

h Tn, perm Tn, sim formulae wilcox.test ks.test ad.test

1 6.4 6.3 6.8 6.6 6.3 7.1

2 10.1 10.6 12.2 11.9 11.1 11.6

3 19.6 20.3 21.5 20.5 20.2 20.7

5 50.9 50.5 49.5 48.5 53.1 52.2

7 82 82.3 77.8 77.2 83.6 80.7

9 96.7 96.8 93.9 91.5 96.5 95.2

Table 2. Cauchy distribution, X ∼ C(0, 1), Y ∼ C(h/
√
n, 1), n = 500

h Tn, perm Tn, sim formula wilcox.test ks.test ad.test

1 5.8 6.1 6.8 6.4 6.4 7.1

2 11.6 11.6 12.2 12.6 13.9 12.2

3 21 21.8 21.5 22.2 24.3 22.8

5 50.9 51 49.5 48 57.9 50.3

7 82.2 82.4 77.8 75.6 85.9 81.1

9 96.2 96.5 93.9 93.2 97.2 96.0

Table 3. Cauchy distribution, X ∼ C(0, 1), Y ∼ C(h/
√
n, 1), n = 1000

h Tn, perm Tn, sim formula wilcox.test ks.test ad.test

1 6.3 6 6.8 6.8 8.1 6.8

2 11.4 11.9 12.2 12.9 13.4 12.9

3 21 20.9 21.5 22.8 26.2 22.2

5 53.6 53.6 49.5 50.8 59.6 54.2

7 84 84.5 77.8 79.5 87.6 84.4

9 96.6 96.6 93.9 93.2 98.3 96.3

Table 4. Cauchy distribution, X ∼ C(0, 1), Y ∼ C(0, 1 + h/
√
n), n = 100

h Tn, perm Tn, sim wilcox.test ks.test ad.test

2 10.6 11.9 5.4 5.4 6.9

4 27.6 29.8 5.5 8.7 11.3

6 49.4 53.6 5.5 15.9 22.2

8 68.8 73.5 5.5 25 37.7

10 84.2 87.1 5.2 36.4 55.4
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Table 5. Cauchy distribution, X ∼ C(0, 1), Y ∼ C(0, 1 + h/
√
n), n = 500

h Tn, perm Tn, sim wilcox.test ks.test ad.test

2 9.4 10 4.5 6.3 6.2

4 28.5 30.6 4.8 14 12.3

6 54.5 56.5 5 26.1 29.7

8 79.5 80.5 5.2 43.3 51.0

10 93 94 5.2 62.2 74.2

Table 6. Cauchy distribution, X ∼ C(0, 1), Y ∼ C(0, 1 + h/
√
n), n = 1000

h Tn, perm Tn, sim wilcox.test ks.test ad.test

2 10.2 10.5 5 7.6 7.3

4 32.4 33.8 5.2 13.8 14.9

6 61.1 62.8 5.2 27.9 32.8

8 84.8 85.6 5.2 47.4 59.7

10 96.1 97.1 5.4 67.9 82.8

Table 7. Normal distribution, X ∼ N(0, 1), Y ∼ N(h/
√
n, 1), n = 100

h Tn, perm Tn, sim wilcox.test ks.test ad.test

1 11.1 11.3 12.5 9.5 12.2

2 29.3 29 31.1 20.5 29.6

3 52.4 53.4 55.8 42 55

4 77.5 77.5 80.6 64.9 78.9

5 91.9 92.5 93.1 84.7 93.1

Table 8. Normal distribution, X ∼ N(0, 1), Y ∼ N(h/
√
n, 1), n = 500

h Tn, perm Tn, sim wilcox.test ks.test ad.test

1 9.2 8.9 9.6 8.3 9.0

2 23.9 23.9 26.3 20.6 25.4

3 47.3 48.9 51.7 41.4 49.7

4 75.3 75.1 77.8 66.9 76.9

5 91.1 91 92.8 86.1 92.6
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Table 9. Normal distribution, X ∼ N(0, 1), Y ∼ N(h/
√
n, 1), n = 1000

h Tn, perm Tn, sim wilcox.test ks.test ad.test

1 11 11.3 11.5 10 11.6

2 26.4 27.4 28.5 22 27.7

3 51.3 51.6 54.2 44.6 52.9

4 76.7 77 79.3 68.9 77.9

5 91.6 91.2 92.7 86.6 92.1

Table 10. Normal distribution, X ∼ N(0, 1), Y ∼ N(0, 1 + h/
√
n), n = 100

h Tn, perm Tn, sim wilcox.test ks.test ad.test

1 8.1 8.7 6.4 5.3 7.3

2 15 17.4 6.3 7.2 12.7

3 30.5 34.2 6.6 10.7 24.0

4 50.6 57.1 6.7 16.7 39.9

5 70.8 76.7 6.5 24.8 59.9

Table 11. Normal distribution, X ∼ N(0, 1), Y ∼ N(0, 1 + h/
√
n), n = 500

h Tn, perm Tn, sim wilcox.test ks.test ad.test

1 8.3 8.4 5 7.4 7.7

2 15.4 16.7 5.1 10.3 12.8

3 33.2 34.7 5.4 16.4 28.3

4 60 63.3 5.6 25.3 52.6

5 83.1 86.3 5.5 40.4 78.1

Table 12. Normal distribution, X ∼ N(0, 1), Y ∼ N(0, 1 + h/
√
n), n = 1000

h Tn, perm Tn, sim wilcox.test ks.test ad.test

1 6.7 6.9 5.4 6 6.7

2 15.1 16.4 5.5 9.9 13.1

3 33.2 36 5.4 16.1 30.6

4 62.2 64 5.6 27.5 56.8

5 84.6 86.6 5.4 43.6 81.1
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5 Conclusion

In this paper we suggested a new test for equality of two distributions. In a wide
class of distributions it was proved that the limiting distribution is the square
of a Normal distribution. It allows to find asymptotic power analytically for the
case of distributions that differ only by shift up to unknown parameter that can
be found by stochastic simulation. The high efficiency of the test was confirmed
by stochastic simulations.

Acknowledgments. The authors are indebted to professor Yakov Nikitin for the help
in calculating the integrals. Work of Viatcheslav Melas was supported by RFBR (grant
N 20-01-00096).

6 Appendix

Proof of Theorem 1. Let us consider the test (4)–(5) with the function g(u) =
−u2 that is the logarithm of the density of the standard Normal distribution.

Lemma 1. For g(x) = x2 the following identity holds

Φnn = (x̄ − ȳ)2

where

x̄ = (
n∑

i=1

Xi)/n, ȳ = (
n∑

i=1

Yi)/n.

Denote

Z = (X,Y ) = (X1, . . . , Xn, Y1, . . . , Yn), V (Z) =
1
2

2n∑

i=1

2n∑

j=1

(Zi − Zj)2.

The proof follows from the known formula [see e.g. [5], p. 296]

1
n(n − 1)

∑

1≤i<j≤n

(Xi − Xj)2 =
1

(n − 1)

n∑

i=1

(Xi − x̄)2 (10)

and the obvious identity

2n∑

i=1

2n∑

j=1

(Zi −Zj)2 =
n∑

i,j=1

(Xi −Xj)2+
n∑

i,j=1

(Yi −Yj)2+2
n∑

i=1

n∑

j=1

(Xi −Yj)2, (11)

by direct but non trivial calculations.
Really, let us use the standard notation

S2
x =

1
(n − 1)

n∑

i=1

(Xi − x̄)2
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And S2
y and S2

z will be understood in the similar way. Denote

Sxy =
1
n2

n∑

i=1

n∑

j=1

(Xi − Yj)2.

Note that due to formula (10) for X replaced by Z

V (Z) = 2n[
n∑

i=1

(Xi−(x̄+ȳ)/2)2+
n∑

j=1

(Yi−(x̄+ȳ)/2)2] = 2n(n−1)(S2
x+S2

y)+n2(x̄−ȳ)2.

(12)
From (10) and (11) we obtain

n2Sxy = V (Z) − n(n − 1)(S2
x + S2

y). (13)

Therefore
Sxy =

1
n

(n − 1)(S2
x + S2

y) + (x̄ − ȳ)2,

and we obtain

Φnn = Sxy − 1
n

(n − 1)(S2
x + S2

y) = (x̄ − ȳ)2.

Thus Lemma 1 is proved. It follows from this lemma, that the criterion Φnn in
this case is equivalent to the criterion (x̄ − ȳ)2.

Let us turn to the proof of the theorem.
Assume that either H0 or H1 holds. Then due to the law of large numbers

for U−statistics [5] each of the sums

ΦAB =
1
n2

n∑

i,j=1

ln(1 + (Xi − Yj)2),

ΦA + ΦB =
1
n2

∑

1≤i<j≤n

ln(1 + (Xi − Xj)2) +
1
n2

∑

1≤i<j≤n

ln(1 + (Yi − Yj)2)

tends to J0.
Moreover,

ΦAB = J0 + o(n2),

ΦA + ΦB = J0(1 − 1
n

) + o(n2).

Note that
nTn = n[ΦAB − J0] − n[ΦA − 1

2
J0] − n[ΦB − 1

2
J0].

Let us apply the limit theorem for U -statistics (see Theorem 7.1 [5]) to each of
the three terms in brackets. We obtain that nTn tends to a random variable with
a finite variance. Note that the conditions of the limit theorem are fulfilled for
distributions F1 with the property (3).
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Note that 0 ≤ ln(1 + x2) ≤ x2. By this reason ΦAB is between 0 and Sxy.
Due to theorem about the mean it is equal to cnSxy, 0 < cn < 1 and cn tends
to a constant c with n → ∞. In a similar way, ΦA + ΦB = c1n( n

n−1 (S2
x + Sy)2)

and c1n tends to c1 while c1 = c.
Let C be an arbitrary positive number,

X̃ = (X̃1, . . . , X̃n), Ỹ = (Ỹ1, . . . , Ỹn),

where X̃i = Xi, if |Xi| ≤ C and X̃i = C if Xi > 0, X̃i = −C if Xi < 0 otherwise.
And Ỹi are determined similarly.

Consider the function

n{ 1
n2

n∑

i,j=1

ln(1 + (X̃i − Ỹj)2 − 1
n2

∑

i<j

ln(1 + (X̃i − X̃j)2)− (14)

1
n2

∑

i<j

ln(1 + (Ỹi − Ỹj)2)}. (15)

Due to the presentations for ΦAB , ΦA and ΦB derived above it can be checked
that there exists a value tn that depends on X̃ and Ỹ and numbers Bn such that
it is equal to

t(
n∑

i=1

X̃i/
√

n −
n∑

i=1

Ỹi/
√

n)2 + Bn, (16)

and Bn is o(1).
Consider expression (14)–(15). Note that for distributions F1 and F2 sat-

isfying (3) with X̃i and Ỹi replaced by Xi and Yi, respectively, its variance is
bounded from above due to that nTn tends to a random variable with a finite
variance. Therefore the expression (14)–(15) tends with n → ∞ to a random
variable with a finite variance for arbitrary C. Passing to the limit with n → ∞
we obtain due to the central limit theorem that (16) has the limit distribution of
the form (9), where L has the standard normal distribution. Since C is arbitrary
we obtain that the limiting distribution has the required form.
For determining b in the part (ii) of the theorem we now can use the equality

(aL + b)2 = lim
n→∞ nTn, (17)

that follows from the equality between (14)-(15) and (16). If H0 take place we
obviously have b = 0. In the case when H1 take place EnTn is asymptotically
equivalent to

(n(Jh − J0))2 + EnT̂n

where T̂n received from Tn by replacing Yi by Yi − b/
√

n, i = 1, . . . , n and we
obtain by passing to the limit with n → ∞ that

b = b̄h, b̄ =
√

J∗(h)/h2.

And the asymptotic behaviour of the power announced in (ii) follows from the
asymptotic normality of

√
nTn. In order to calculate b̄ in the case when F1 is

the standard Cachy distribution the following result is crucial.
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Lemma 2. If X and Y are independent random variables with the distribution
C(0, 1), then

E ln(1 + (X − Y )2) = ln 9, E ln(1 + (X − Y − θ)2) − ln 9 = ln(1 + θ2/9).

In order to prove this Lemma we need the following integrals
∫

R

ln(1 + (x − y)2)
π(1 + y2)

dy = ln(4 + x2),

∫

R

ln(4 + x2)
π(1 + x2)

dx = ln 9,

([6] 4.296.2 and 4.295.7.)
∫

R

ln(4 + (x + θ)2)
π(x2 + 1)

dx = ln(9 + θ2),

[see [7], formula (2.6.14.19)]. Using these integrals we obtain

E ln(1 + (X − Y − θ)2) − ln 9 = 2
∫

R

∫

R

ln(1 + (x − y − θ)2)
π2(1 + x2)(1 + y2)

dxdy − ln 9

=
∫

R

ln(4 + (y + θ)2)
π(1 + y2)

dy − ln 9 = ln(9 + θ2) − ln 9 = ln(1 + θ2/9).

Submitting here θ = 0 we obtain both formulas of the Lemma. Note that θ2 =
nh2 and

lim
n→∞ n ln(1 + θ2/9) = (1/9)h2.

Therefore we obtain b̄ = 1/3 that completes the proof of the theorem.
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