
On the Chromatic Number of a Random
3-Uniform Hypergraph

Yury A. Demidovich1(B) and Dmitry A. Shabanov1,2,3

1 Moscow Institute of Physics and Technology (National Research University),
Dolgoprudnyi, Moscow Region, Russia

{demidovich.yua,dmitry.shabanov}@phystech.edu
2 Lomonosov Moscow State University, Moscow, Russian Federation

3 HSE University, Moscow, Russian Federation

Abstract. This paper is devoted to the problem concerning the chro-
matic number of a random 3-uniform hypergraph. We consider the bino-
mial model H(n, 3, p) and show that if p = p(n) decreases fast enough
then the chromatic number of H(n, 3, p) is concentrated in 2 or 3 consec-
utive values which can be found explicitly as functions of n and p. This
result is derived as an application of the solution of an extremal problem
for doubly stochastic matrices.
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1 Introduction

The theory of random graphs and hypergraphs was always in the focus of study
in probabilistic combinatorics. Recall that a hypergraph H is a pair of sets H =
(V,E), where V is a finite set whose elements are called vertices, and E is a
family of subsets of V that are called edges of the hypergraph. If every edge
consists of k vertices then a hypergraph is called k-uniform. An r-coloring of a
vertex set is an arbitrary mapping f : V → {1, . . . , r} . It is said to be proper if
no edge is monochromatic. The chromatic number χ(H) of a hypergraph H is
the minimum number of colors required for a proper coloring of H.

One of main stochastic models of random hypergraphs is the well-known
binomial model of a random k-uniform hypergraph H(n, k, p), which can be
viewed as the Bernoulli scheme on k-subsets of an n-element set: every subset is
included into H(n, k, p) as an edge independently with probability p. We study
the asymptotic behaviour of the chromatic number of H(n, k, p) for large n,
when k is fixed, and p = p(n) is a function of n.

1.1 Related Work

The chromatic numbers of random graphs and hypergraphs have been intensively
studied since the 1970s. For known results concerning χ(H(n, k, p)) in the graph
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case, k = 2, the reader is referred to the recent paper [6]. In the current paper we
concentrate only on the case k ≥ 3. The asymptotics of the chromatic number of
H(n, k, p) in the dense case, when the expected number of edges is much larger
than the number of vertices, i.e. when pnk−1 → +∞, was obtained by Shamir
with coauthors [8,10] and by Krivelevich, Sudakov [7]. But we know much more
about the limit distribution of χ(H(n, k, p)) in the sparse case, when the expected
number of edges is a linear function of n, i.e. p = cn/

(
n
k

)
and c > 0 does not

depend on n. Dyer, Frieze and Greenhill [5] proved that in this case χ(H(n, k, p))
is concentrated in two consecutive numbers, moreover, for some values, there is
a concentration in exactly one number. For given c > 0, let us denote rc =
min{r ∈ IN : c < rk−1 ln r}. Clearly, c ∈ [(rc − 1)k−1 ln(rc − 1), rk−1

c ln rc). The
authors of [5] established that

– if c > rk−1
c ln rc − 1

2 ln rc then

P(χ(H(n, k, p)) = rc + 1) → 1 as n → ∞;

– if c < rk−1
c ln rc − rc−1

rc
(1 + ln rc) − O

(
k2r1−k

c ln rc

)
then

P(χ(H(n, k, p)) = rc) → 1 as n → ∞;

– if c ∈ [rk−1
c ln rc − rc−1

rc
(1 + ln rc)−O

(
k2r1−k

c ln rc

)
, rk−1

c ln rc − 1
2 ln rc] then

P(χ(H(n, k, p)) ∈ {rc, rc + 1}) → 1 as n → ∞. (1)

So, in many cases we obtain the exact limit distribution of the chromatic number.
Later, the bounds in the third ambiguous case (1) were improved by Ayre, Coja–
Oghlan and Greenhill [2] and by Shabanov [9]. They proved that up to the value
rk−1
c ln rc − 1

2 ln rc − O(1) we still have the chromatic number equal to rc.
The non-sparse case when pnk−1 → +∞ is not studied so well. Krivelevich

and Sudakov showed that if additionally p → 0 then

χ(G(n, p)) ·
(

(k − 1)d
k ln d

)− 1
k−1

P−→ 1 as n → +∞, (2)

where d = p
(
n−1
k−1

)
. But they did not investigate the concentration effect. The

authors of the current paper study the chromatic number of the random hyper-
graph H(n, k, p) for k ≥ 4 [4] and proved the following theorem.

Theorem 1 ([4]). Let k ≥ 4 and ε > 0 be fixed. Denote rp = rp(n) = min{r ∈
IN : c < rk−1 ln r} and c = c(n) = p

(
n
k

)
1
n . Suppose also that c ≤ n

k−1
2k+4−γ for

some positive fixed γ, but c → +∞ as n → ∞. Then we have the following
concentration values for the chromatic number of H(n, k, p):

1. if c ≤ rk−1
p ln rp − 1

2 ln rp − rp−1
rp

− O

(
k2 ln rp

r
k/3−1
p

)
then

P (χ(H(n, k, p)) ∈ {rp, rp + 1}) −→ 1 as n → ∞;
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2. if c > rk−1
p ln rp − 1

2 ln rp + ε for some fixed positive ε > 0 then

P (χ(H(n, k, p)) ∈ {rp + 1, rp + 2}) −→ 1 as n → ∞.

3. finally, if

c ∈
(

rk−1
p ln rp − 1

2
ln rp − rp − 1

rp
− O

(
k2 ln rp

r
k/3−1
p

)

, rk−1
p ln rp − 1

2
ln rp + ε

]

then
P (χ(H(n, k, p)) ∈ {rp, rp + 1, rp + 2}) −→ 1 as n → ∞.

So, we see almost the same picture as in the sparse case but every time we have
one more value.

1.2 Extremal Problem for Doubly Stochastic Matrices

The key ingredient of the proof of Theorem 1 is some result concerning the
doubly stochastic matrices. Suppose that r ≥ 3 is an integer. Let Mr denote
the set of r × r real-valued matrices M = (mij , i, j = 1, . . . , r) with nonnegative
elements satisfying the following conditions:

r∑

i=1

mij =
1
r
, for any j = 1, . . . , r;

r∑

j=1

mij =
1
r
, for any i = 1, . . . , r. (3)

So, for any M ∈ Mr, the matrix r · M is doubly stochastic. Now, denote the
following functions

Hr(M) = −
r∑

i,j=1

mij ln(r · mij); Er,k(M) = ln

⎛

⎝1 − 2
rk−1

+
r∑

i,j=1

mk
ij

⎞

⎠ . (4)

Denote for c > 0, Gc,r,k(M) = Hr(M)+c·Er,k(M). It is known that if c = c(r, k) is
not too large then Gc,r,k(M) reaches its maximal value at the matrix Jr which has
all entries equal to 1/r2. The first result of this type was obtained by Achlioptas
and Naor in the breakthrough paper [1] for the graph case k = 2. Recently, it
was improved by Kargaltsev, Shabanov and Shaikheeva [6]. For k ≥ 4, Shabanov
[9] proved the following.

Theorem 2 ([9]). There exists an absolute constant d such that if k ≥ 4,
max(r, k) > d and

c < rk−1 ln r − 1
2

ln r − r − 1
r

− O(k2r1−k/3 ln r) (5)

then for any M ∈ Mr, Gc,r,k(M) ≤ Gc,r,k(Jr).

The aim of our work was to generalize Theorems 1 and 2 to the missed case
k = 3.
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1.3 New Results

The first new result of the paper provides the solution for the extremal problem
concerning Gc,r,k in the case k = 3.

Theorem 3. There exists an absolute constant r0 such that if r ≥ r0 and

c < r2 ln r − 1
2

ln r − 1 − r−1/6 (6)

then for any M ∈ Mr, Gc,r,3(M) ≤ Gc,r,3(Jr).

Note that the obtained result is best possible in the following sense: if for some
fixed ε > 0, it holds that c > r2 ln r − 1

2 ln r − 1 + ε then for any large enough r,
there is M ∈ Mr such that Gc,r,3(M) > Gc,r,3(Jr).

Theorem 3 and the second moment method allow us to estimate the chro-
matic number of the random 3-uniform hypergraph from above when p = p(n)
does not decrease too slowly.

Theorem 4. Let 0 < γ < 1/5 be fixed. Denote c = c(n) = p
(
n
k

)
1
n and rp =

rp(n) = min{r ∈ IN : c < rk−1 ln r}. Suppose that c ≤ n
1
5−γ and c → ∞ as

n → ∞. If

c < r2p ln rp − 1
2

ln rp − 1 − r−1/6
p , (7)

then
P (χ (H (n, 3, p)) ≤ rp + 1}) −→ 1 as n → ∞.

Together with a theorem from [4] (see Theorem 1 in [4]) our second theorem
extends Theorem 1 to the missed case k = 3. For c ≤ n

1
5−γ , we obtain the

following values of the chromatic number of a random 3-uniform hypergraph:

1. if c ≤ r2p ln rp − 1
2 ln rp − 1 − r

−1/6
p then

P (χ(H(n, 3, p)) ∈ {rp, rp + 1}) −→ 1 as n → ∞;

2. if c > r2p ln rp − 1
2 ln rp + ε for some fixed positive ε > 0 then

P (χ(H(n, 3, p)) ∈ {rp + 1, rp + 2}) −→ 1 as n → ∞.

3. if c ∈
(
r2p ln rp − 1

2 ln rp − 1 − r
−1/6
p , r2p ln rp − 1

2 ln rp + ε
]

then

P (χ(H(n, 3, p)) ∈ {rp, rp + 1, rp + 2}) −→ 1 as n → ∞.

In the next section we will prove Theorem 3.
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2 Proof of Theorem 3

Note that (3) implies that the total sum of mij is equal to 1. Since Gc,r,3(Jr) =
ln r + c · ln

(
1 − 1

r2

)2, we have

Gc,r,3(Jr) − Gc,r,3(M) = Hr(Jr) − Hr(M) − c (Er,3(M) − Er,3(Jr))

= ln r +
r∑

i,j=1

mij ln(r · mij) + c

⎛

⎝ln

⎛

⎝1 − 2
r2

+
r∑

i,j=1

m3
ij

⎞

⎠ − ln
(

1 − 1
r2

)2
⎞

⎠

=
r∑

i,j=1

mij ln(r2 · mij) − c · ln

(

1 +

∑r
i,j=1 m3

ij − r−4

(
1 − 1

r2

)2

)

. (8)

We need to show that this value is nonnegative for any M ∈ Mr. In fact, we prove
a more precise statement and show that there exist some function a = a(r) > 0
such that given the condition (6) the following inequality holds for any M ∈ Mr,

Gc,r,3(Jr) − Gc,r,3(M) ≥ a(r) ·
r∑

i,j=1

(
mij − 1

r2

)2

. (9)

Our proof strategy follows the proof of Theorem 2 from [9], however we need to
make some changes that allow to extend the result to the case k = 3.

2.1 Row Functions

Let us denote εij = mij − 1/r2. Due to (3), for any i, j = 1, . . . , r, we have

εij ∈
[
− 1

r2
,
1
r

− 1
r2

]
,

r∑

j′=1

εij′ = 0,

r∑

i′=1

εi′j = 0. (10)

Let us also define the following “row” functions: for any i = 1, . . . , r,

Hi(M) =
r∑

j=1

mij ln(r2 · mij) =
r∑

j=1

(
1
r2

+ r2εij

)
ln(1 + r2εij),

Ei(M) =

∑r
j=1 m3

ij − r−5

(
1 − 1

r2

)2 =
(

1 − 1
r2

)−2
⎛

⎝ 3
r2

r∑

j=1

ε2ij +
r∑

j=1

ε3ij

⎞

⎠ . (11)

Clearly,

Hr(Jr) − Hr(M) =
r∑

i=1

Hi(M), Er,3(M) − Er,3(Jr) ≤
r∑

i=1

Ei(M). (12)

Now we are going to estimate the differences Hi(M) − c · Ei(M), i = 1, . . . , r, in
various cases. The value Hi(M) − c · Ei(M) depends only on the i-th row of the
matrix M . The classification of rows is the following. The row Mi = (mij ; j =
1, . . . , r) is said to be
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1. central if
max

j=1,...,r
mij <

1
r

− 1
r
√

ln r
;

2. good if

max
j=1,...,r

mij ∈
[
1
r

− 1
r
√

ln r
,
1
r

− r−11/4

]
;

3. bad if
max

j=1,...,r
mij >

1
r

− r−11/4.

Now let us consider these three types of rows separately. Throughout the
paper we use the estimates from [9] whenever it is possible. We also assume that
r is large enough.

2.2 Central Rows

Proposition 1. For any central row Mi,

Hi(M) − c · Ei(M) ≥ r2

4

∑

j:εij<0

ε2ij +
(
2r

√
ln r + O (r ln ln r)

) ∑

j:εij≥0

ε2ij . (13)

Proof. First, let us estimate the value c ·Ei(M). Since every εij < 1
r − 1

r2 − 1
r
√
ln r

and c < r2 ln r, we have

c · Ei(M) = c ·
(

1 − 1
r2

)−2
⎛

⎝ 3
r2

r∑

j=1

ε2ij +
r∑

j=1

ε3ij

⎞

⎠

≤ r2 ln r

(
1 − 1

r2

)−2
⎛

⎝ 3
r2

∑

j:εij<0

ε2ij +
(

3
r2

+
1
r

− 1
r2

− 1
r
√

ln r

) ∑

j:εij>0

ε2ij

⎞

⎠

≤ 4 ln r
∑

j:εij<0

ε2ij +
(
r ln r − r

√
ln r + O(ln r)

) ∑

j:εij>0

ε2ij . (14)

Now proceed to Hi. We need to estimate the value of
(

1
r2 + εij

)
ln(1 + r2εij)

from below. In [9] it was proved that

1. if εij < 0 then (see (34) in [9])
(

1
r2

+ εij

)
ln(1 + r2εij) ≥ εij +

r2

2
ε2ij ; (15)

2. if εij ≥ 0 and εij ≤ 1
r ln r − 1

r2 then (see (34) in [9])
(

1
r2

+ εij

)
ln(1 + r2εij) ≥ εij +

3r ln r

2(1 + 2 ln r/r)
ε2ij . (16)
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Assume that εij > 1
r ln r − 1

r2 . Then
(

1
r2

+ εij

)
ln(1 + r2εij) ≥ εij ln

( r

ln r

)
= εij + εij(ln r − ln ln r − 1)

≥ εij + rε2ij

(
1 − 1

r
− 1√

ln r

)−1

(ln r − ln ln r − 1)

= εij + r ln r · ε2ij

(
1 +

1√
ln r

+ O

(
ln ln r

ln r

))
. (17)

The obtained bounds (15), (16), (17) imply that for all large enough r,

Hi(M) ≥ r2

2

∑

j:εij<0

ε2ij +
(
r ln r + r

√
ln r + O (r ln ln r)

) ∑

j:εij≥0

ε2ij . (18)

Together (14) and (18) provide the required estimate:

Hi(M) − c · Ei(M) ≥ r2

4

∑

j:εij<0

ε2ij +
(
2r

√
ln r + O (r ln ln r)

) ∑

j:εij≥0

ε2ij .

2.3 Good Rows

For good or bad row Mi, its maximal element is very close to 1
r . So, it is conve-

nient to define the value

mi =
1
r

− max
j=1,...,r

mij . (19)

The inequality (28) from [9] estimates the value Hi(M) in terms of the value mi

as follows:

Hi(M) ≥ ln r

r
+ mi ln mi + mi ln

(
r

r − 1

)
− mi. (20)

Note that these bounds hold for any row. We will use it very often in the remain-
ing proof.

Proposition 2. For any good row Mi,

Hi(M) − c · Ei(M) ≥ 1
4
r−11/4 ln r. (21)

Proof. Let us estimate c·Ei(M). For a good row, we have mi ∈ [r−11/4, 1/r
√

ln r],
so mi = o(r−1) and mi = ω(r−3). Suppose that mij0 = 1/r −mi is the maximal
element of Mi. Then (3) implies that

∑
j �=j0

mij = 1/r − mij0 = mi. Thus,
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c · Ei(M) = c ·
(

1 − 1
r2

)−2
⎛

⎝
r∑

j=1

m3
ij − r−5

⎞

⎠ ≤ c ·
(

1 − 1
r2

)−2 r∑

j=1

m3
ij

= c ·
(

1 − 1
r2

)−2
⎛

⎝
(

1
r

− mi

)3

+
r∑

j �=j0

m3
ij

⎞

⎠

≤ c ·
(

1 − 1
r2

)−2 (
1
r3

− 3mi

r2
+

3m2
i

r

)
.

Here we use the fact that
∑r

j �=j0
m3

ij ≤ m3
i . Since mi = o(r) and c < r2 ln r we

obtain that

c · Ei(M) ≤ c ·
(

1
r3

− 3mi

r2
+

3m2
i

r
+ O

(
1
r5

))

≤ ln r

r
− 3mi ln r(1 + o(1)) + O

(
ln r

r3

)
. (22)

The general estimate (20) and the condition mi ≥ r−11/4 imply that

Hi(M) ≥ ln r

r
+ mi ln mi(1 + o(1)) ≥ ln r

r
− 11

4
mi ln r(1 + o(1)). (23)

The bounds (22) and (23) provide the required inequality:

Hi(M) − c · Ei(M) ≥ 1
4
mi ln r(1 + o(1)) + O

(
ln r

r3

)

≥ 1
8
mi ln r ≥ 1

4
r−11/4 ln r.

2.4 Bad Rows

Now it is time to deal with bad rows. Recall that in every bad row Mi there is
an index j0 such that mij0 = maxj=1,...,r > 1

r − r−11/4. The main problem here
is that in this case the difference Hi(M) − c · Ei(M) can be negative. For k ≥ 4,
this negative value can be compensated by the bounds (13), (21) for central and
good rows, if there is at least one non-bad row (see [9]). So, it remains to consider
the case when all the rows are bad. Unfortunately, this is not the way for k = 3.
Here we had to consider all the bad rows simultaneously.

Let D ⊂ {1, . . . , r} denote the set of indices of the bad rows in M . Introduce
the following values:

HD(M) =
∑

i∈D

Hi(M), ED(M) = ln

(

1 +
∑

i∈D

Ei(M)

)

. (24)

The following statement estimates their difference.
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Proposition 3. Under the condition (6) the following inequality holds:

HD(M) − c · ED(M) ≥ −|D| ln r

2r3
+

|D|2 ln r

2r4
+

|D|
r19/6

+ O
(
r−3

)
. (25)

Proof. For Hi(M), i ∈ D, we have the bound (20). So, it remains to estimate
c · ED(M). Again, for any i ∈ D, we consider the maximal element of Mi,

mij0(i) = max
j=1,...,r

mij =
1
r

− mi,

where mi ∈ [0, r−11/4]. Using (11) we get

∑

i∈B

Ei(M) =
(

1 − 1
r2

)−2 ∑

i∈D

⎛

⎝
r∑

j=1

m3
ij − 1

r5

⎞

⎠

=
(

1 − 1
r

)−2 ∑

i∈D

⎛

⎝
(

1
r

− mi

)3

+
∑

j �=j0(i)

m3
ij − 1

r5

⎞

⎠ .

Note that
∑

j �=j0(i)
m3

ij ≤ m3
i = O(r−33/4). Therefore,

∑

i∈B

Ei(M) =
(

1 − 1
r2

)−2 ∑

i∈D

(
1
r3

− 3mi

r2
+

3m2
i

r
− 1

r5
+ O(r−33/4)

)

=
∑

i∈D

(
1
r3

− 3mi

r2
− 1

r5
+ O(r−13/2)

) (
1 +

2
r2

+ O(r−4)
)

.

Now, we have
(

1
r3

− 3mi

r2
− 1

r5
+ O(r−13/2)

) (
2
r2

+ O(r−4)
)

=
2
r5

+ O(r−27/4).

Consequently,

∑

i∈D

Ei(M) =
∑

i∈D

(
1
r3

− 3mi

r2
+

1
r5

+ O(r−13/2)
)

=
|D|
r3

− 3
r2

∑

i∈D

mi +
|D|
r5

+ O(|D|r−13/2). (26)

Now, we want to estimate the square of this expression. Since |D| ≤ r, the last
three summands have the order O(r−15/4). Therefore, (26) implies that

(
∑

i∈D

Ei(M)

)2

=
|D|2
r6

+ O(r−23/4),

(
∑

i∈D

Ei(M)

)3

= O(r−6). (27)
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Now we are ready to estimate c · ED(M). Using (26), (27) and applying Taylor
expansion for the logarithm, we obtain

c · ED(M) = c · ln

(

1 +
∑

i∈D

Ei(M)

)

= c ·
⎛

⎝
∑

i∈D

Ei(M) − 1
2

(
∑

i∈D

Ei(M)

)2

+ O

⎛

⎝

(
∑

i∈D

Ei(M)

)3
⎞

⎠

⎞

⎠

= c ·
(

|D|
r3

− 3
r2

∑

i∈D

mi +
|D|
r5

+ O(|D|r−13/2) − |D|2
2r6

+ O(r−23/4) + O(r−6)

)

= c ·
(

|D|
r3

+
|D|
r5

− |D|2
2r6

− 3
r2

∑

i∈D

mi + O(r−11/2)

)

.

The condition (6) states that c < r2 ln r − 1
2 ln r − 1 − r−1/6. Thus,

c · ED(M) <

(
r2 ln r − 1

2
ln r − 1 − r−1/6

)

×
(

|D|
r3

+
|D|
r5

− |D|2
2r6

− 3
r2

∑

i∈D

mi + O(r−11/2)

)

=
|D| ln r

r
+

|D| ln r

r3
− |D|2 ln r

2r4
− (3 ln r)

∑

i∈D

mi + O

(
ln r

r7/2

)

− |D| ln r

2r3
− |D|

r3
− |D|

r19/6
+ O

(
ln r · r−15/4

)

=
|D| ln r

r
+

|D| ln r

2r3
− |D|2 ln r

2r4
− |D|

r3
− |D|

r19/6
− (3 ln r)

∑

i∈D

mi + O

(
ln r

r7/2

)
.

(28)

Let us complete the proof. Due to (20) we have the following lower bound
for HD(M):

HD(M) ≥ |D| ln r

r
+

∑

i∈D

[
mi ln mi + mi ln

(
r

r − 1

)
− mi

]
.

Using (28), we obtain that

HD(M) − c · ED(M) ≥ −|D| ln r

2r3
+

|D|2 ln r

2r4
+

|D|
r3

+
|D|

r19/6
+ O

(
ln r

r7/2

)

+
∑

i∈D

[
mi lnmi + mi ln

(
r

r − 1

)
− mi + 3mi ln r

]
.

The function f(x) = x ln x + x ln
(

r
r−1

)
− x + 3x ln r is minimized when x =

(r − 1)/r4 ∈ [0, r−11/4). So, the minimal value is attained when mi = (r − 1)/r4

for any i ∈ D. Hence,
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∑

i∈D

[
mi ln mi + mi ln

(
r

r − 1

)
− mi + 3mi ln r

]

≥
∑

i∈D

(
r − 1
r4

(
ln

(
r − 1
r4

)
+ ln

(
r

r − 1

)
− 1 + 3 ln r

))

= −
∑

i∈D

r − 1
r4

= − (r − 1)|D|
r4

= −|D|
r3

+ O(r−3).

This finally implies the required inequality

HD(M) − c · ED(M) ≥ −|D| ln r

2r3
+

|D|2 ln r

2r4
+

|D|
r19/6

+ O
(
r−3

)
.

2.5 Completion of the Proof

It remains to summarize the obtained information. Now everything depends on
the number of bad rows |D| in the matrix M . Let C,G ⊂ {1, . . . , r} denote the
set of indices of central and good rows, respectively. Recall (see (8), (11), (24))
that

Gc,r,3(Jr) − Gc,r,3(M) =
r∑

i=1

Hi(M) − c · ln

(

1 +
r∑

i=1

Ei(M)

)

≥
∑

i∈C∪G

(Hi(M) − c · Ei(M)) + HD(M) − c · ED(M). (29)

Note that it is sufficient to show that Gc,r,3(Jr) − Gc,r,3(M) ≥ b for some b =
b(r) > 0. This also implies the required inequality (9), because

∑r
i,j=1(mij −

r−2)2 < 1.
Let us consider the following four cases.

1. If |D| = 0 then (9) follows from (13) and (21).
2. If |D| ≥ r − r5/6

ln r then (25) implies that the total contribution of bad rows is
positive. Indeed, for large enough r,

HD(M) − c · ED(M) ≥ |D| ln r

2r3

( |D|
r

− 1
)

+
|D|

r19/6
+ O

(
r−3

)

≥ |D| ln r

2r3

(
− 1

r1/6 ln r

)
+

|D|
r19/6

+ O
(
r−3

)
=

|D|
2r19/6

+ O
(
r−3

)
>

1
3
r−13/6.

Hence, again (9) follows from (13) and (21).
3. Suppose |D| < r − r5/6

ln r , but |G| ≥ r4/5. Then

HD(M) − c · ED(M) ≥ −|D| ln r

2r3
+ O

(
r−3

) ≥ − ln r

2r2
+ O

(
r−3

)
> − ln r

r2
.
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The inequality (29) and the obtained bounds (13), (21) imply that for large
enough r,

Gc,r,3(Jr) − Gc,r,3(M) ≥
∑

i∈G

(Hi(M) − c · Ei(M)) + HD(M) − c · ED(M)

≥ r4/5 1
4
r−11/4 ln r − ln r

r2
≥ 1

5
r−39/20 ln r.

4. It remains to consider the situation when |G| < r4/5 and 0 < |D| < r − r5/6

2 ln r .
In this case there is at least r5/6

ln r − r4/5 central rows in M . Suppose that
i1, i2 ∈ D are two indices corresponding to bad rows. Recall that any bad
row has an element greater than r−1 − r−11/4. Suppose that mi1j1 and mi2j2

are both greater than 1/r − r−11/4. Then it is straightforward to verify that
the double stochastic property (3) implies that j1 	= j2. So, the maximal
elements of bad rows should be in different columns of matrix M . Without
loss of generality we may assume that these elements are diagonal, i.e. for
any i ∈ D,

mii = max
j=1,...,r

mij >
1
r

− r−11/4.

Recall the notation εij = mij − 1
r2 . If j ∈ D then due to (10) we obtain that

∑

i∈C

εij = −εjj −
∑

i∈G∪D;i�=j

εij .

We know that εjj = mjj − 1
r2 ≥ 1

r − 1
r2 − r−11/4 and any other element is at

least −r−2. Hence,
∑

i∈C

εij ≤ −1
r

+
1
r2

+ r−11/4 +
1
r2

(|G| + |D|) .

In our case |G| < r4/5 and |D| < r − r5/6

ln r , so, we get

∑

i∈C

εij ≤ −1
r

+
1
r2

+ r−11/4 +
1
r2

(
r4/5 + r − r5/6

ln r

)

= −r−7/6

ln r
(1 + o(1)) < −r−7/6

2 ln r
< 0.

Hence, the sum over all negative summands is also less than − r−7/6

2 ln r :

∑

i∈C:εij<0

εij ≤ −r−7/6

2 ln r
.

By Cauchy–Schwarz inequality

∑

i∈C:εij<0

ε2ij ≥ 1
r

(
r−7/6

2 ln r

)2

=
r−10/3

4(ln r)2
. (30)
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Finally, by using (13), (21), (25), (29) and (30) we establish the required
estimate

Gc,r,3(Jr) − Gc,r,3(M) ≥
∑

i∈C

(Hi(M) − c · Ei(M)) + HB(M) − c · EB(M)

≥
∑

i∈C

r2

4

∑

j:εij<0

ε2ij − |D| ln r

2r3
+

|D|2 ln r

2r4
+

|D|
r19/6

+ O
(
r−3

)

≥ r2

4

∑

i∈C

∑

j:εij<0

ε2ij − |D| ln r

2r3
+ O

(
r−3

)

≥ r2

4

∑

i∈C

∑

j∈D:εij<0

ε2ij − |D| ln r

2r3
+ O

(
r−3

)

=
r2

4

∑

j∈D

∑

i∈C:εij<0

ε2ij − |D| ln r

2r3
+ O

(
r−3

)

≥ r2

4
|D| · r−10/3

4(ln r)2
− |D| ln r

2r3
+ O

(
r−3

)

= |D| · r−4/3

16(ln r)2
(1 + o(1)) + O

(
r−3

)
.

Since |D| ≥ 1, the obtained value is at least r−4/3

16 ln2 r
(1 + o(1)).

Theorem 3 is proved.

3 Sketch of the Proof of Theorem 4

In the last section we give a short sketch of the proof of Theorem 4. We just
follow the proof of Theorem 1 which can be found in [4]. The general scheme
was first developed by Coja-Oghlan, Panagiotou and Steger [3] in the case of
graphs.

First of all, we have to estimate from below the probability that the chromatic
number of the random hypergraph does not exceed rp. By using the second
moment method and Theorem 3 we prove the following lemma.

Lemma 1. Suppose pn2 → +∞ and p → 0 as n → +∞. If the condition (7)
holds then for all large enough n,

P (χ(H(n, 3, p)) ≤ rp) ≥ n−2r2
p .

Lemma 1 helps to estimate the proportion of vertices of our hypergraph that
can be properly colored with rp colors. Let Vn denote the set of vertices of
H(n, 3, p). The following statement is true.

Lemma 2. Suppose that the conditions of Lemma 1 hold. Then with probability
tending to 1, there exists a vertex subset U0 with size at most 2rp

√
n ln n such

that the chromatic number of the subhypergraph induced by H(n, 3, p) on Vn \U0

does not exceed rp.
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Finally, we need to estimate the number of edges in any small induced sub-
hypergraph in H(n, k, p). Here we prove the following.

Lemma 3. Suppose the conditions of Theorem 4 hold. Suppose that fixed δ =
δ(γ) > 0 satisfies the inequality

δ <
25γ

18 + 60γ
.

Then with probability tending to 1, any vertex subset U in H(n, 3, p) with size
at most rp

√
n(ln n) has at most

(
2
3 − δ

) |U | edges inside.

Theorem 4 is easily deduced from Lemmas 1–3. So, we know that with prob-
ability tending to 1, almost whole hypergraph can be properly colored with rp

colors. The remained small vertex subset U has size at most 2rp

√
n ln n. There-

fore, there is a small number of edges inside U .
Now we can increase this set U in such a way that there are no edges in

the set of neighbors of the extended set U ′ and the size of U ′ is still less than
rp

√
n(ln n). By Lemma 3 the set U ′ can be properly colored with colors {1, 2},

its neighborhood W—with reserved color rp + 1 and the remaining subset Vn \
(U ∪W )—with colors {1, 2, . . . , rp}. Clearly, this is a proper coloring of H(n, 3, p)
with rp + 1 colors. Theorem 4 is proved.
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