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Abstract. We study a robust adaptive nonparametric estimation prob-
lem for periodic functions observed in discrete fixed time moments with
non-Gaussian Ornstein–Uhlenbeck noises. For this problem we develop
a model selection method, based on the shrinkage (improved) weighted
least squares estimates. We found constructive sufficient conditions for
the observations frequency under which sharp oracle inequalities for the
robust risks are obtained. Moreover, on the basis of the obtained oracle
inequalities we establish for the proposed model selection procedures the
robust efficiency property in adaptive setting. Then, we apply the con-
structed model selection procedures to estimation problems in Big Data
models in continuous time. Finally, we provide Monte - Carlo simulations
confirming the obtained theoretical results.
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1 Introduction

In this paper we consider the following nonparametric regression model in con-
tinuous time

dyt = S(t)dt + dξt, 0 ≤ t ≤ T, (1)

where S is an unknown 1-periodic R → R function from L2[0, 1], the duration
of observations T is integer and (ξt)t≥0 is defined by a Ornstein – Uhlenbeck –
Lévy defined as

dξt = aξtdt + dut, ut = �1 wt + �2 zt, ξ0 = 0. (2)

Here (wt)t≥0 is a standard Brownian motion, zt is a pure jump Lévy process
defined through the stochastic integral with respect to the compensated jump
measure μ(ds, dx) with deterministic compensator μ̃(dsdx) = dsΠ(dx), i.e.

zt = x ∗ (μ − μ̃)t =
∫ t

0

∫

R∗

v (μ − μ̃)(dsdv) and R∗ = R \ {0},
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Π(·) is the Lévy measure on R∗, (see, for example in [2]), such that
∫

R∗

z2 Π(dz) = 1 and
∫

R∗

z8 Π(dz) < ∞.

We assume that the unknown parameters a ≤ 0, �1 and �2 are such that

− amax ≤ a ≤ 0, 0 < � ≤ �2
1

and σQ = �2
1

+ �2
2

≤ ς∗. (3)

Moreover, we assume that the bounds amax, � and ς∗ are functions of T , i.e.
amax = amax(T ), � = �

T
and ς∗ = ς∗

T
, for which for any ε > 0

lim
T→∞

amax(T ) + ς∗
T

T ε
= 0 and lim inf

T→∞
T ε �

T
> 0. (4)

We denote by QT the family of all distributions of process (1)–(2) on the Sko-
rokhod space D[0, n] satisfying the conditions (3)–(4). It should be noted that
the process (2) is conditionally-Gaussian square integrated semimartingale with
respect to σ-algebra G = σ{zt, t ≥ 0} which is generated by the jump process
(zt)t≥0.

The problem is to estimate the unknown function S in the model (1) on the
basis of observations

(ytj
)0≤j≤n, tj = jΔ and Δ =

1
p
, (5)

where n = Tp and the observations frequency p is some fixed integer number.
For this problem we use the quadratic risk, which for any estimate ̂S, is defined
as

RQ(̂S, S) := EQ,S ‖̂S − S‖2 and ‖f‖2 :=
∫ 1

0

f2(t)dt, (6)

where EQ,S stands for the expectation with respect to the distribution PQ,S of
the process (1) with a fixed distribution Q of the noise (ξt)0≤t≤n and a given
function S. Moreover, in the case when the distribution Q is unknown we use
also the robust risk

R∗
T
(̂S, S) = sup

Q∈QT

RQ(̂S, S). (7)

Note that if (ξt)t≥0 is a Brownian motion, then we obtain the well known white
noise model (see, for example, [7] and [13]). Later, to take into account the
dependence structure in the papers [6] and [10] it was proposed to use the Orn-
stein – Uhlenbeck noise processes, so called color Gaussian noises. Then, to study
the estimation problem for non-Gaussian observations (1) in the papers [9,11]
and [12] it was introduced impulse noises defined through the compound Pois-
son processes with unknown impulse distributions. However, compound Poisson
processes can describe the impulse influence of only one fixed frequency and,
therefore, such models are too restricted for practical applications. In this paper
we consider more general pulse noises described by the Ornstein – Uhlenbeck –
Lévy processes.
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Our main goal in this paper is to develop improved estimation methods for the
incomplete observations, i.e. when the process (1) is available for observations
only in the fixed time moments (5). To this end we propose adaptive model
selection method based on the improved weighted least squares estimates. For
nonparametric estimation problem such approach was proposed in [15] for Lévy
regression model.

2 Improved Estimation Method

First, we chose the trigonometric basis (φj)j≥1 in L2[0, 1], i.e. φ1 ≡ 1 and for
j ≥ 2

φj(x) =
√

2

⎧

⎨

⎩

cos(2π[j/2]x) for even j;

sin(2π[j/2]x) for odd j,
(8)

where [a] denotes the integer part of a. Note that if p is odd, then for any
1 ≤ i, j ≤ p

(φi, φj)p =
1
p

p
∑

l=1

φi(tl)φj(tl) = 1{i=j}. (9)

We use this basis to represent the function S on the lattice Tp = {t1, ..., tp} in
the Fourier expansion form

S(t) =
p

∑

j=1

θjφj(t) and θj = (S, φj)p :=
1
p

p
∑

k=1

S(tk)φj(tk).

The coefficients θj can be estimated from the discrete data (5) as

̂θj =
1
T

∫ T

0

ψj(t) dyt and ψj(t) =
n

∑

k=1

φj(tk)1(tk−1,tk](t).

We note that the system of the functions {ψj}1≤j≤p is orthonormal in L2[0, 1].
Now we set weighted least squares estimates for S(t) as

̂Sγ(t) =
p

∑

j=1

γ(j)̂θjψj(t) (10)

with weights γ = (γ(j))1≤j≤p from a finite set Γ ⊂ [0, 1]p. Now for the weight
coefficients we introduce the following size characteristics

ν = #(Γ ) and ν∗ = max
γ∈Γ

p
∑

j=1

γ(j),

where #(Γ ) is the number of the vectors γ in Γ .
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Definition 1. Function g(T ) is called slowly increasing as T → ∞, if for any
ε > 0

lim
T→∞

T−ε gT = 0.

H1) For any vector γ ∈ Γ there exists some fixed integer 7 ≤ d = d(γ) ≤ p
such that their first d components are equal to one, i.e. γ(j) = 1 for 1 ≤ j ≤
d. Moreover, we assume that the parameters ν and ν∗ are functions of T , i.e.
ν = ν(T ) and ν∗ = ν∗(T ), and the functions ν(T ) and T−1/3ν∗(T ) are slowly
increasing as T → ∞.

Using this condition, we define the shrinkage weighted least squares estimates
for S

S∗
γ
(t) =

p
∑

j=1

γ(j)θ∗
j
ψj(t), θ∗

j
=

⎛

⎝1 − cT
√

∑d
j=1

̂θ2
j

1{1≤j≤d}

⎞

⎠ ̂θj , (11)

where

cT =
�

T
(d − 6)

2
(

r +
√

2dς∗/T
)

T

and the radius r > 0 may be dependent of T , i.e. r = rT as a slowly increasing
function for T → ∞. To compare the estimates (10) and (11) we set

d0 = inf {d ≥ 7 : 5 + ln d ≤ ǎd} and ǎ =
1 − e−amax

4amax

.

Now we can compare the estimators (10) and (11) in mean square accuracy
sense.

Theorem 1. Assume that the condition H1) holds with d ≥ d0. Then for any
p ≥ d and T ≥ 3

sup
Q∈QT

sup
‖S‖≤r

(

RQ(S∗
γ
, S) − RQ(̂Sγ , S)

)

< −c2
T
. (12)

Remark 1. The inequality (12) means that non-asymptotically, uniformly in p ≥
d the estimate (11) outperforms in square accuracy the estimate (10). Such
estimators are called improved. Note that firstly for parametric regression models
in continuous time similar estimators were proposed in [14] and [12]. Later, for
Lévy models in nonparametric setting these methods were developed in [15].

3 Adaptive Model Selection Procedure

To obtain a good estimate from the class (11), we have to choose a weight vector
γ ∈ Γ . The best way is to minimize the empirical squared error

Errp(γ) = ‖S∗
γ

− S‖2
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with respect to γ. Since this quantity depends on the unknown function S and,
hence, depends on the unknown Fourier coefficients (θj)j≥1, the weight coeffi-
cients (γj)j≥1 cannot be found by minimizing one. Then, one needs to replace
the corresponding terms by their estimators. For this change in the empirical
squared error, one has to pay some penalty. Thus, one comes to the cost func-
tion of the form

Jp(γ) =
p

∑

j=1

γ2(j)(θ∗
j
)2 − 2

p
∑

j=1

γ(j)
(

θ∗
j

̂θj − σ̂T

T

)

+ ρ ̂PT (γ). (13)

Here ρ is some positive penalty coefficient, ̂PT (γ) is the penalty term is defined
as

̂PT (γ) =
σ̂T

T

p
∑

j=1

γ2(j),

where σ̂T is the estimate for the variance σQ which is chosen for
√

T ≤ p ≤ T
in the following form

σ̂T =
T

p

p
∑

j=[
√

T ]+1

̂θ2
j
. (14)

The substituting the weight coefficients, minimizing the cost function (13), in
(11) leads to the improved model selection procedure, i.e.

S∗ = S∗
γ∗ and γ∗ = argmin

γ∈Γ
Jp(γ). (15)

It will be noted that γ∗ exists because Γ is a finite set. If the minimizing sequence
γ∗ is not unique, one can take any minimizer. Unlike Pinsker’s approach [16],
here we do not use the regularity property of the unknown function to find the
weights sequence γ∗, i.e. the procedure (15) is adaptive.

Now we study non-asymptotic property of the estimate (15). To this end we
assume that

H2) The observation frequency p is a function of T , i.e. p = p(T ) such that√
T ≤ p ≤ T and for any ε > 0

lim
T→∞

T ε−5/6p = ∞.

First, we study the estimate (14).

Proposition 1. Assume that the conditions H1) and H2) hold and the unknown
function S has the square integrated derivative Ṡ. Then for T ≥ 3 and

√
T <

p ≤ T

EQ,S |σ̂T − σQ| ≤ KT T−1/3
(

1 + ‖Ṡ‖2
)

, (16)

where the term KT > 0 is slowly increasing as T → ∞.

Using this Proposition, we come to the following sharp oracle inequality for
the robust risk of proposed improved model selection procedure.
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Theorem 2. Assume that the conditions H1) – H2) hold and the function S
has the square integrable derivative Ṡ. Then for any T ≥ 3 and 0 < ρ < 1/2 the
robust risk (7) of estimate (15) satisfies the following sharp oracle inequality

R∗
T
(S∗, S) ≤ 1 + 5ρ

1 − ρ
min
γ∈Γ

R∗
T
(S∗

γ
, S) +

1
ρT

UT (1 + ‖Ṡ‖2),

where the rest term UT is slowly increasing as T → ∞.

We use the condition H1) to construct the special set Γ of weight vectors
(γ(j))j≥1 as it is proposed in [4] and [5] for which we will study the asymp-
totic properties of the model selection procedure (15). For this we consider the
following grid

AT = {1, . . . ,k} × {r1, . . . , rm},

where ri = iδ, i = 1, m with m = [1/δ2]. We assume that the parameters k ≥ 1
and 0 < δ ≤ 1 are functions of T , i.e. k = kT and δ = δ(T ), such that

lim
T→∞

(

1
kT

+
kT

ln T

)

= 0 and lim
T→∞

(

δ(T ) +
1

T εδ(T )

)

= 0

for any ε > 0. One can take, for example,

δ(T ) =
1

ln(T + 1)
and k(T ) = k0 +

√

ln(T + 1),

where k0 ≥ 0 is a fixed constant. For α = (β, r) ∈ AT we define the weights
γα = (γα(j))j≥1 as

γα(j) = 1{1≤j≤j∗(α)} +
(

1 − (j/ωα)β
)

1{j∗(α)<j≤ωα},

where j∗(α) = ωα/ ln(T + 1),

ωα =
(

(β + 1)(2β + 1)
π2ββ

r vT

)1/(2β+1)

and vT = T/ς∗.

Finally, we set
Γ = {γα, α ∈ AT }. (17)

Remark 2. It should be noted, that in this case the condition H1) holds true with
d = [j∗(α)] (see, for example, [15]). Therefore, the model selection procedure (15)
with the coefficients (17) satisfies the oracle inequality obtained in Theorem 2.

4 Asymptotic Efficiency

To study the efficiency properties we use the approach proposed by Pinsker
in [16], i.e. we assume that the unknown function S belongs to the functional
Sobolev ball Wk,r defined as
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Wk,r =

⎧

⎨

⎩

f ∈ C(k)
per

[0, 1] :
k

∑

j=0

‖f (j)‖2 ≤ r

⎫

⎬

⎭

, (18)

where r > 0 and k ≥ 1 are some unknown parameters, Ck
per

[0, 1] is the space of k
times differentiable 1-periodic R → R functions such that for any 0 ≤ i ≤ k − 1
the periodic boundary conditions are satisfied, i.e. f (i)(0) = f (i)(1). It should
be noted that the ball Wk,r can be represented as an ellipse in R

∞ through the
Fourier representation in L2[0, 1] for S, i.e.

S =
∞
∑

j=1

τjφj and τj =
∫ 1

0

S(t)φj(t)dt.

In this case we can represent the ball (18)

Wk,r =

⎧

⎨

⎩

f ∈ L2[0, 1] :
∑

j≥1

ajτ
2
j

≤ r

⎫

⎬

⎭

, (19)

where aj =
∑k

i=0
‖φ(i)‖2 =

∑k

i=0
(2π[j/2])2i.

To compare the model selection procedure (15) with all possible estimation
methods we denote by ΣT the set of all estimators ̂ST based on the observations
(ytj

)0≤j≤n. According to the Pinsker method, firstly one needs to find a lower
bound for risks. To this end, we set

lk(r) = ((2k + 1)r)1/(2k+1)

(

k

(π(k + 1))

)2k/(2k+1)

. (20)

Using this coefficient we obtain the following lower bound.

Theorem 3. The robust risks (7) are bounded from below as

lim inf
T→∞

v
2k/(2k+1)
T inf

̂ST ∈ΣT

sup
S∈Wk,r

R∗
T
(̂ST , S) ≥ lk(r), (21)

where vT = T/ς∗.

Remark 3. The lower bound (21) is obtained on the basis of the Van - Trees
inequality obtained in [15] for non-Gaussian Lévy processes.

To obtain the upper bound we need the following condition.
H3) The parameter ρ in the cost function (13) is a function of T , i.e. ρ = ρ(T ),

such that limT→∞ ρ(T ) = 0 and

lim
T→∞

T ερ(T ) = +∞

for any ε > 0
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Theorem 4. Assume that the conditions H2) – H3) hold. Then the model selec-
tion procedure (15) constructed through the weights (17) has the following upper
bound

lim sup
T→∞

v
2k/(2k+1)
T sup

S∈Wk,r

R∗
T
(S∗, S) ≤ lk(r).

It is clear that these theorems imply the following efficient property.

Theorem 5. Assume that the conditions of Theorems 3 and 4 hold. Then the
procedure (15) is asymptotically efficient, i.e.

lim
T→∞

v
2k/(2k+1)
T sup

S∈Wk,r

R∗
T
(S∗, S) = lk(r)

and

lim
T→∞

inf
̂ST ∈ΣT

sup
S∈Wk,r

R∗
T
(̂ST , S)

sup
S∈Wk,r

R∗
T
(S∗, S)

= 1. (22)

Remark 4. Note that the parameter (20) defining the lower bound (21) is the
well-known Pinsker constant, obtained in [16] for the model (1) with the Gaus-
sian white noise process (ξt)t≥0. For general semimartingale models the lower
bound is the same as for the white noise model, but generally the normal-
ization coefficient is not the same. In this case the convergence rate is given
by

(

T/ς∗
T

)−2k/(2k+1) while in the white noise model the convergence rate is
(T )−2k/(2k+1). So, if the upper variance threshold ς∗

T
tends to zero, the conver-

gence rate is better than the classical one, if it tends to infinity, it is worse and,
if it is a constant, the rate is the same.

Remark 5. It should be noted that the efficiency property (22) is shown for the
procedure (15) without using the Sobolev regularity parameters r and k, i.e. this
procedure is efficient in adaptive setting.

5 Statistical Analysis for the Big Data Model

Now we apply our results for the high dimensional model (1), i.e. we consider
this model with the parametric function

S(t) =
q

∑

j=1

βjuj(t), (23)

where the parameter dimension q more than number of observations given in
(5), i.e. q > n, the functions (uj)1≤j≤q are known and orthonormal in L2[0, 1].
In this case we use the estimator (11) to estimate the vector of parameters
β = (βj)1≤j≤q as

β∗
γ

= (β∗
γ,j

)1≤j≤q and β∗
γ,j

= (uj , S
∗
γ
).
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Moreover, we use the model selection procedure (15) as

β∗ = (β∗
j
)1≤j≤q and β∗

j
= (uj , S

∗). (24)

It is clear that

|β∗
γ

− β|2
q

=
q

∑

j=1

(β∗
γ,j

− βj)
2 = ‖S∗

γ
− S‖2

and
|β∗ − β|2

q
= ‖S∗ − S‖2.

Therefore, Theorem 2 implies

Theorem 6. Assume that conditions H1) - H2) hold and the function (23) has
the square integrable derivative Ṡ. Then for any T ≥ 3 and 0 < ρ < 1/2

sup
Q∈QT

EQ,β |β∗ − β|2
q

≤ 1 + 5ρ

1 − ρ
min
γ∈Γ

sup
Q∈QT

EQ,β |β∗ − β|2
q

+
1

ρT
UT (1 + ‖Ṡ‖2),

where the term UT is slowly increasing as T → ∞.

Theorems 3 and 4 imply the efficiency property for the estimate (24) based on
the model selection procedure (15) constructed on the weight coefficients (17)
and the penalty threshold satisfying the condition H3).

Theorem 7. Assume that the conditions H2) – H3) hold. Then the estimate
(24) is asymptotically efficient, i.e.

lim
T→∞

v
2k/(2k+1)
T sup

S∈Wk,r

sup
Q∈QT

EQ,β |β∗ − β|2
q

= lk(r) (25)

and

lim
T→∞

inf
̂βT ∈ΞT

sup
S∈Wk,r

sup
Q∈QT

EQ,β |̂βT − β|2
q

sup
S∈Wk,r

sup
Q∈QT

EQ,β |β∗ − β|2
q

= 1,

where ΞT is the set of all possible estimators for the vector β.

Remark 6. In the estimator (15) doesn’t use the dimension q in (23). Moreover,
it can be equal to +∞. In this case it is impossible to use neither LASSO method
nor Dantzig selector which are usually applied to similar models (see, for exam-
ple, [17] and [1]). It should be emphasized also that the efficiency property (25)
is shown without using any sparse conditions for the parameters β = (βj)1≤j≤q

usually assumed for such problems (see, for example, [3]).

6 Monte-Carlo Simulations

In this section we give the results of numerical simulations to assess the per-
formance and improvement of the proposed model selection procedure (15). We
simulate the model (1) with 1-periodic functions S of the forms

S1(t) = t sin(2πt) + t2(1 − t) cos(4πt) (26)
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and

S2(t) =
+∞
∑

j=1

1
1 + j3

sin(2πjt) (27)

on [0, 1] and the Ornstein – Uhlenbeck – Lévy noise process ξt is defined as

dξt = −ξtdt + 0.5 dwt + 0.5 dzt, zt =
Nt
∑

j=1

Yj ,

where Nt is a homogeneous Poisson process of intensity λ = 1 and (Yj)j≥1 is i.i.d.
N (0, 1) sequence (see, for example, [11]). We use the model selection procedure
(15) constructed through the weights (17) in which k = 100 +

√

ln(T + 1),

ri =
i

ln(T + 1)
, m = [ln2(T + 1)], ρ =

1
(3 + lnT )2

and ς∗ = 0.5 We define the empirical risk as

R(S∗, S) =
1
p

p
∑

j=1

̂EΔ2
T
(tj) and ̂EΔ2

T
(t) =

1
T

N
∑

l=1

Δ2
T,l

(t),

where ΔT (t) = S∗
T
(t) − S(t) and ΔT,l(t) = S∗

T,l
(t) − S(t) is the deviation for the

l-th replication. In this example we take p = T/2 and N = 1000.

Table 1. The sample quadratic risks for different optimal weights

T 200 500 1000 10000

R(S∗
γ∗ , S1) 2.8235 0.8454 0.0626 0.0024

R(̂Sγ̂ , S1) 6.0499 1.8992 0.4296 0.0419

R(̂Sγ̂ , S1)/R(S∗
γ∗ , S1) 2.1 2.2 6.9 17.7

R(S∗
γ∗ , S2) 2.3174 1.0199 0.0817 0.0015

R(̂Sγ̂ , S2) 7.1047 3.6592 0.8297 0.0299

R(̂Sγ̂ , S2)/R(S∗
γ∗ , S2) 3.1 3.6 10.2 19.9

Tables 1 and 2 give the sample risks for the improved estimate (15) and the
model selection procedure based on the weighted least squares estimates (10)
from [11] for different observation period T . One can observe that the improve-
ment increases as T increases for the both models (26) and (27).

Remark 7. The figures show the behavior of the procedures (10) and (11) in the
depending on the observation time T . The continuous lines are the functions
(26) and (27), the dotted lines are the model selection procedures based on the
least squares estimates ̂S and the dashed lines are the improved model selection
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Table 2. The sample quadratic risks for the same optimal weights

T 200 500 1000 10000

R(S∗
γ̂ , S1) 3.2017 0.9009 0.1284 0.0076

R(̂Sγ̂ , S1) 6.0499 1.8992 0.4296 0.0419

R(̂Sγ̂ , S1)/R(S∗
γ̂ , S1) 1.9 2.1 3.3 5.5

R(S∗
γ̂ , S2) 4.1586 1.9822 0.1032 0.0036

R(̂Sγ̂ , S2) 7.1047 3.6592 0.8297 0.0299

R(̂Sγ̂ , S2)/R(S∗
γ̂ , S2) 1.7 1.8 8.0 8.3

Fig. 1. Behavior of the regression functions and their estimates for T = 200 (a) – for
the function S1 and b) – for the function S2).

Fig. 2. Behavior of the regressions function and their estimates for T = 500 (a) – for
the function S1 and b) – for the function S2).
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Fig. 3. Behavior of the regression functions and their estimates for T = 1000 (a) – for
the function S1 and b) – for the function S2).

Fig. 4. Behavior of the regression functions and their estimates for T = 10000 (a) –
for the function S1 and b) – for the function S2).

procedures S∗. From the Table 2 for the same γ with various observations num-
bers T we can conclude that theoretical result on the improvement effect (12) is
confirmed by the numerical simulations. Moreover, for the proposed shrinkage
procedure, from the Table 1 and Figs. 1, 2, 3 and 4, one can be noted that the
gain is significant for finite periods T .

7 Conclusion

In the conclusion we would like emphasized that in this paper we studied the
following issues:

– we considered the nonparametric estimation problem for continuous time
regression model (1) with the noise defined by non-Gaussian Ornstein–Uhlen-
beck process with unknown distribution under the condition that this process
can be observed only in the fixed discrete time moments (5);
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– we proposed adaptive robust improved estimation method via model selection
approach and we developed new analytical tools to provide the improvement
effect for the non-asymptotic estimation accuracy. It turns out that in this
case the accuracy improvement is much more significant than for parametric
models, since according to the well-known James–Stein result [8] the accuracy
improvement increases when dimension of the parameters increases. It should
be noted, that for the parametric models this dimension is always fixed, while
for the nonparametric models it tends to infinity, that is, it becomes arbitrarily
large with an increase in the number of observations. Therefore, the gain from
the application of improved methods is essentially increasing with respect to
the parametric case;

– we found constructive conditions for the observation frequency under which
we shown sharp non-asymptotic oracle inequalities for the robust risks (7).
Then, through the obtained oracle inequalities we provide the efficiency prop-
erty for the developed model selection methods in adaptive setting, i.e. when
the regularity of regression function is unknown;

– we apply the developed model selection procedure to the estimation prob-
lem for the Big Data model in continuous time without using the parameter
dimension and without assuming any sparse condition for the model param-
eters ;

– finally, we give Monte - Carlo simulations which confirm the obtained theo-
retical results.
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