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Abstract. Branching random walks play a key role in modeling the evo-
lutionary processes with birth and death of particles depending on the
structure of a medium. The branching random walk on a multidimen-
sional lattice with a finite number of branching sources of three types
is investigated. It is assumed that the intensities of branching in the
sources can be arbitrary. The principal attention is paid to the analy-
sis of spectral characteristics of the operator describing evolution of the
mean numbers of particles both at an arbitrary point and on the entire
lattice. The obtained results provide an explicit conditions for the expo-
nential growth of the numbers of particles without any assumptions on
jumps variance of the underlying random walk.

Keywords: Branching random walks · Equations in Banach spaces ·
Non-homogeneous environments · Positive eigenvalues · Population
dynamics

1 Introduction: Model of BRW/r/k/m

We present results for continuous-time branching random walks (BRWs) on the
lattice Zd, d ∈ N, with a finite number of lattice sites in which the generation
of particles can occur, which are called branching sources. By a BRW we mean
a stochastic process that combines branching (birth or death) of particles at
certain points on Zd with their random walk on Zd. The goal of the paper
is to study the distributions of the particle population μt(y) at every point
y ∈ Zd and μt =

∑
y∈Zd μt(y) over the lattice Zd for a BRW with branching

sources of different type without any assumptions on the variance of jumps of
the underlying random walk.

Suppose that there is a single particle at the moment t = 0 on the lattice
situated at the point x ∈ Zd. Each particle moves on the lattice Zd until it
reaches a source where its behavior changes. There are three types of branching
sources, depending on whether branching takes place or not and on whether
random walk symmetry is violated or not. At sources of the first type, particles
die or are born, and random walk symmetry is maintained, see, e.g., [1,2,11].
At sources of the second type, walk symmetry is violated through an increase
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in the degree of branching or walk dominance, see, e.g., [9]. Sources of the third
type should be called “pseudo-sources,” because at these sources only the walk
symmetry is violated, with no particle births or deaths ever occurring. BRWs
with r sources of the first type, k of the second type, and m of the third type are
denoted BRW/r/k/m and introduced in [12]. Particles exist on Zd independently
of each other and of their antecedent history.

We define random walk by its generator

A = A +
k+m∑

j=1

ζjΔuj
A (1)

where A = (a(x, y))x,y∈Zd satisfies the regularity property
∑

y∈Zd a(x, y) = 0 for
all x, where a(x, y) ≥ 0 for x �= y, −∞ < a(x, x) < 0. From this it follows that A
itself satisfies this regularity property [12,13]. Additionally, we assume that the
intensities a(x, y) are symmetric and spatially homogeneous, that is, a(x − y) :=
a(x, y) = a(y, x) = a(0, y − x). Thus we can denote a(y, x), a(0, y − x), that is,
a(x − y) := a(x, y) = a(y, x) = a(0, y − x). The matrix A under consideration is
irreducible, so for any z ∈ Zd there is such a set of vectors z1, . . . , zk ∈ Zd that
z =

∑k
i=1 zi and a(zi) �= 0 for i = 1, . . . , k. It is fairly clear that the irreducibility

property is inherited by the perturbed matrix A. This, however, does not hold
true for the properties of spatial homogeneity and, most importantly, symmetry.
We will, however, make use of the structure of A and the symmetry of the
underlying matrix A in order to overcome this complication.

According to the axiomatics outlined in [3, Ch. III, §2], the probabilities
p(h, x, y) of a particle at x /∈ {v1, v2, . . . , vk+r} to jump to a point y over a
short period of time h can be presented as p(h, x, y) = a(x, y)h + o(h) for y �= x
and p(h, x, x) = 1 + a(x, x)h + o(h) for y = x. From these equalities, see, for
instance, [3, Ch. III], we obtain the Kolmogorov backward equations:

∂p(t, x, y)
∂t

=
∑

x′
a(x, x′)p(t, x′, y), p(0, x, y) = δ(x − y), (2)

where δ(·) is the discrete Kronecker δ-function on Zd.
Infinitesimal generating functions f(u, vi) =

∑∞
n=0 bn(vi)un, 0 ≤ u ≤ 1,

govern branching process at each of the sources v1, v2, . . . , vk+r. We denote source
intensities βi := β

(1)
i = f (1)(1, vi) = (−b1(vi))

(∑
n�=1 nbn(vi)/(−b1(vi)) − 1

)

where the sum is the average number of descendants a particle has at the source
vi.

If the particle is not in the branching source, then its random walk occurs
in accordance with the above rules. Consider a combination of branching and
walking processes observed when a particle is in one of the branching sources
v1, v2, . . . , vk+r. In this case, the following possible transitions, which can occur
in a short period of time h, are as follows: the particle will either move to
a point y �= vi with the probability of p(h, vi, y) = a(vi, y)h + o(h), or will
remain at the source and produce n �= 1 descendants with the probability of
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p∗(h, vi, n) = bn(vi)h + o(h) (we assume that the particle itself is included in
these n descendants and we say that the particle dies if n = 0), or no changes will
occur to the particle at all, which has the probability of 1 − ∑

y �=vi
a(vi, y)h −∑

n�=1 bn(vi)h + o(h). Thus, the time spent by the particle in the source vi is
exponentially distributed with the parameter −(a(vi, vi)+b1(vi)). The evolution
of each new particle obeys the same law and does not depend on the evolution
of other particles.

Let us introduce the moments of the random variables μt(y) and μt as
mn(t, x, y) = Exμn

t (y) and mn(t, x) = Exμn
t , respectively, where n is the order

of the moment and Ex is the mean on condition μ0(·) = δx(·).
In BRW/r/k/m more general multi-point perturbations of the self-adjoint

operator A generated of the symmetric random walk are used than in
BRW/r/0/0 or in BRW/0/k/0, see, e.g., [13]. This follows from the statement,
see [12], that the mean number of particles m1(t) = m1(t, ·, y) at a point y ∈ Zd

in BRW/r/k/m is governed by:

dm1(t)
dt

= Y m1(t), m1(0) = δy,

where

Y = A +

(
r∑

s=1

βsΔzs

)

+

(
k∑

i=1

ζiΔxi
A +

k∑

i=1

ηiΔxi

)

+

⎛

⎝
m∑

j=1

χjΔyj
A

⎞

⎠ . (3)

Here, A : lp(Zd) → lp(Zd), p ∈ [1,∞], is a symmetric operator, Δx = δxδT
x , and

δx = δx(·) denotes a column-vector on the lattice taking the unit value at the
point x and vanishing at other points, βs, ζi, ηi, and χj are some constants. The
same equation is also valid for the mean number of particles (the mean popula-
tion size) over the lattice m1(t) = m1(t, ·) with the initial condition m1(0) = 1
in l∞(Zd). Operator (3) can be written as

Y = A +
k+m∑

i=1

ζiΔui
A +

k+r∑

j=1

βjΔvj
. (4)

In each of the sets U = {ui}k+m
i=1 , and V = {vj}k+r

j=1 , the points are pairwise
distinct, but U and V may have a nonempty intersection. The points from V \U
correspond to r sources of the first type; those from U ∩ V to k sources of the
second type; and those from U \ V to m sources of the third type.

Denote the largest positive eigenvalue of the operator Y by λ0. In contrast
to [7] we consider BRW/r/k/m instead of BRW/r/0/0 and assume that in (4)
the parameters βj are real (βj ∈ R) instead of being positive (βj > 0). Under
this assumption, we conclude that if λ0 exitsts then it is simple, strictly positive
and guarantees an exponential growth of the first moments m1 of particle both
at an arbitrary point y and on the entire lattice.

Theorem 1. Let for BRW/r/k/m under consideration the operator Y have an
isolated eigenvalue λ0 > 0, and let the remaining part of its spectrum be located
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on the halfline {λ ∈ R : λ � λ0 − ε}, where ε > 0. If β
(r)
i = O(r!rr−1) for

all i = 1, . . . , N and r ∈ N, then the following statements hold in the sense of
convergence in distribution

lim
t→∞ μt(y)e−λ0t = ψ(y)ξ, lim

t→∞ μte
−λ0t = ξ, (5)

where ψ(y) is the eigenfunction corresponding to the eigenvalue λ0 and ξ is a
nondegenerate random variable.

One approach to analysing Eqs. (2) and evolutionary equations for mean
numbers of particles m1(t, x, y) and m1(t, x) is to treat them as differential equa-
tions in Banach spaces. To apply this approach to our case, we introduce the
operators

(A u)(x) =
∑

x′
a(x − x′)u(x′), (Δxi

u)(x) = δ(x − xi)u(x), i = 1, . . . , N.

on functions set u(x), x ∈ Zd. We can represent the operator (4) in a more
convenient form:

Y = Yβ1,...,βk+r
= A +

k+r∑

i=1

βiΔvi
(6)

where βi ∈ R, i = 1, . . . , βk+r. All operators in (6) can be considered as linear
continuous operators in any of the spaces lp(Zd), p ∈ [1,∞]. Note that the
operator A is self-adjoint in l2(Zd) [12–14].

Now, treating for each t ≥ 0 and each y ∈ Zd the p(t, ·, y) and m1(t, ·, y) as
elements of lp(Zd) for some p, we can write (see, for example, [12]) the following
differential equations in lp(Zd):

dp(t, x, y)
dt

= (Ap(t, ·, y))(x), p(0, x, y) = δ(x − y),

dm1(t, x, y)
dt

= (Y m1(t, ·, y))(x), m1(0, x, y) = δ(x − y),

and for m1(t, x) the following differential equation in l∞(Zd):

dm1(t, x)
dt

= (Y m1(t, ·))(x), m1(0, x) ≡ 1.

Point out that for large t the asymptotic behaviour of the transition probabilities
p(t, x, y), as well as of the mean particle numbers m1(t, x, y) and m1(t, x) is
tightly connected with operators A and Y spectral properties.

The properties of p(t, x, y) can be expressed in terms of the Green’s func-
tion which can be defined [11, § 2.2] as the Laplace transform of the transition
probability p(t, x, y) or through the resolvent form:

Gλ(x, y) :=
∫ ∞

0

e−λtp(t, x, y)dt =
1

(2π)d

∫

[−π,π]d

ei(θ,y−x)

λ − φ(θ)
dθ, λ ≥ 0.
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where x, y ∈ Zd, λ ≥ 0, and φ(θ) is the transition intensity a(z) Fourier trans-
form:

φ(θ) :=
∑

z∈Zd

a(z)ei(θ,z) =
∑

x∈Zd

a(x) cos(x, θ), θ ∈ [−π, π]d. (7)

The meaning of the function G0(x, y) is as follows: it represents the mean
amount of time spent by a particle at at y ∈ Zd as t → ∞ provided that at the
initial moment t = 0 the particle was at x ∈ Zd. The asymptotic behaviour of the
mean numbers of particles m1(t, x, y) and m1(t, x) as t → ∞ can be described in
terms of the function Gλ(x, y), see, e.g., [11]. Lastly, BRW asymptotic behaviour
depends strongly on whether G0 := G0(0, 0) is finite, it was shown in [10].

The approach presented in this section is based on representing the BRW
evolution equations as differential equations in Banach spaces. It can also be
applied to a wide range of problems, including the description of the evolution
of higher-order moments of particle numbers (see, e.g., [11,12]).

2 Key Equations and Auxiliary Results

We start off with a crucial remark. Since the operator Y is in general not self-
adjoint, the vast analytical apparatus, developed in [13] and relying heavily on
the self-adjointness of the operators involved, is not applicable here directly.
Due to the structure of Y , however, this difficulty can be obviated, to a certain
extent, with relative ease. Indeed, consider the following differential equation in
a Banach space

df(t, x, y)
dt

= Y f(t, x, y)

with Y = A +
∑k+m

i=1 ζiΔui
A +

∑k+r
j=1 βjΔvj

. Let us now introduce the operator

D :=
(

I +
k+m∑

i=1

ζiΔui

)− 1
2

,

which is correctly defined for ζi > −1, and rewrite the equation using this
notation:

df(t, x, y)
dt

=
(

D−2A +
k+r∑

j=1

βjΔvj

)

f(t, x, y),

which is equivalent to

D−1 dDf(t, x, y)
dt

=
(

D−1D−1A D−1 +
k+r∑

j=1

βjΔvj
D−1

)

Df(t, x, y).

By applying D to both parts of the equation above, we obtain

dDf(t, x, y)
dt

=
(

D−1A D−1 +
k+r∑

j=1

βjDΔvj
D−1

)

Df(t, x, y).
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Since the operators D and Δvj
commute, the expression above is equivalent to

dg(t, x, y)
dt

=
(

D−1A D−1 +
k+r∑

j=1

βjΔvj

)

g(t, x, y),

where g := Df . We have thus rewritten the original equation in such a way
that the previously non-self-adjoint operator Y is replaced with the self-adjoint
operator

Y ′ := D−1A D−1 +
k+r∑

j=1

βjΔvj
,

and a one-to-one correspondence between the solutions f to the starting equation
and the solutions g to the new equation can be established through the formula
g = Df . Therefore, when it comes to analysing Cauchy problems, the operator
Y can, for all intents and purposes, be considered self-adjoint.

We introduce the Laplace generating functions of the random variables μt(y)
and μt for z � 0:

F (z; t, x, y) := Exe−zμt(y), F (z; t, x) := Exe−zμt .

where Ex is the mean on condition μ0(·) = δx(·).
Theorem 2. Let the operator A have the form (1). The functions F (z; t, x)
and F (z; t, x, y) are continuously differentiable with respect to t uniformly with
respect to x, y ∈ Zd for all 0 � z � ∞. They satisfy the inequalities 0 �
F (z; t, x), F (z; t, x, y) � 1 and are the solutions to the following Cauchy problems
in l∞

(
Zd

)

dF (z; t, ·)
dt

= AF (z; t, ·) +
k+r∑

j=1

Δvj
fj (F (z; t, ·)) (8)

with the initial condition F (z; 0, ·) = e−z and

dF (z; t, ·, y)
dt

= AF (z; t, ·, y) +
k+r∑

j=1

Δvj
fj (F (z; t, ·, y)) (9)

with the initial condition F (z; 0, ·, y) = e−zδy(·).

Theorem 2 allows us to advance from analysing the BRW at hand to consid-
ering the corresponding Cauchy problem in a Banach space instead. Note that,
contrary to the single branching source case examined in [11], there is not one but
several terms Δvj

fj(F ) in the right-hand side of Eqs. (8) and (9), j = 1, 2, . . . , N .
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Theorem 3. The moments mn(t, ·, y) ∈ l2
(
Zd

)
and mn(t, ·) ∈ l∞

(
Zd

)
satisfy

the following differential equations in the corresponding Banach spaces for all
natural n � 1:

dm1

dt
= Y m1, (10)

dmn

dt
= Y mn +

k+r∑

j=1

Δvj
g(j)n (m1, . . . , mn−1), n � 2, (11)

the initial values being mn(0, ·, y) = δy(·) and mn(0, ·) ≡ 1 respectively. Here
Y mn stands for Y mn(t, ·, y) or Y mn(t, ·) respectively, and

g(j)n (m1, . . . , mn−1) :=
n∑

q=2

β
(q)
j

q!

∑

i1,...,iq>0
i1+···+iq=n

n!
i1! · · · iq!mi1 · · · miq . (12)

Theorem 3 will later be used in the proof of Theorem8 to help determine the
asymptotic behaviour of the moments as t → ∞.

Theorem 4. The moments m1(t, x, ·) ∈ l2
(
Zd

)
satisfy the following Cauchy

problem in l2
(
Zd

)
:

dm1(t, x, ·)
dt

= Y m1(t, x, ·), m1(0, x, ·) = δx(·).

This theorem allows us to obtain different differential equations by making use
of the BRW symmetry.

Theorem 5. The moment m1(t, x, y) satisfies both integral equations

m1(t, x, y) = p(t, x, y) +
k+r∑

j=1

βj

∫ t

0

p(t − s, x, vj)m1(t − s, vj , y)ds,

m1(t, x, y) = p(t, x, y) +
k+r∑

j=1

βj

∫ t

0

p(t − s, vj , y)m1(t − s, x, vj)ds.

The moment m1(t, x) satisfies both integral equations

m1(t, x) = 1 +
k+r∑

j=1

βj

∫ t

0

p(t − s, x, vj)m1(s, vj)ds, (13)

m1(t, x) = 1 +
k+r∑

j=1

βj

∫ t

0

m1(s, x, vj)ds. (14)
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For k > 1 the moments mk(t, x, y) and mk(t, x) satisfy the equations

mk(t, x, y) = m1(t, x, y)

+
k+r∑

j=1

∫ t

0

m1(t − s, x, vj)g
(j)
k (m1(s, vj , y), . . . , mk−1(s, vj , y)) ds,

mk(t, x) = m1(t, x)

+
k+r∑

j=1

∫ t

0

m1(t − s, x, vj)g
(j)
k (m1(s, vj), . . . , mk−1(s, vj)) ds.

This theorem allows us to make transition from differential equations to integral
equations. It is later used to prove Theorem8.

Theorems 3–5 are a generalization to the case BRW/r/k/m of Lemma 1.2.1,
Theorem 1.3.1 and Theorem 1.4.1 from [11], proved there for BRW/1/0/0. The
proofs of Theorems 3–5 differ only in technical details from the proofs of the
above statements from [11] and are therefore omitted here.

3 Properties of the Operator Y

We call a BRW supercritical if μt(y) and μt grow exponentially. As was men-
tioned in Introduction, one of the main results of this work is the numbers of
particles limit behavior (5), from which it follows that the BRW with several
branching sources with arbitrary intensities is supercritical if the operator Y
has a positive eigenvalue λ. For this reason we devote this section to studying
the spectral properties of the operator Y .

We mention a statement proved in [11, Lemma 3.1.1].

Lemma 1. The spectrum σ(A ) of the operator A is included in the half-line
(−∞, 0]. Also, since the operator

∑N
j=1 βjΔvj

is compact, σess(Y ) = σ (A ) ⊂
(−∞, 0], where σess(Y ) denotes the essential spectrum [6] of the operator Y .

The following theorem provides a criterion of there being a positive eigenvalue
in the spectrum of the operator Y .

Theorem 6. A number λ > 0 is an eigenvalue and f ∈ l2
(
Zd

)
is the cor-

responding eigenvector of the operator Y if and only if the system of linear
equations

f(ui) =
1

1 + ζi

(

λ

k+m∑

j=1

ζjf(uj)Iuj−ui
(λ) +

k+r∑

j=1

βjf(vj)Ivj−ui
(λ)

)

(15)

for i = 1, . . . , k + m, and

f(vi) =
(

λ

k+m∑

j=1

ζjf(uj)Iuj−vi
(λ) +

k+r∑

j=1

βjf(vj)Ivj−vi
(λ)

)

(16)
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for i = 1, . . . , k + r, with respect to the variables f(uj) and f(vj), where

Ix(λ) := Gλ(x, 0) =
1

(2π)d

∫

[−π,π]d

e−i(θ,x)

λ − φ(θ)
dθ, x ∈ Zd,

has a non-trivial solution.

Proof. For λ > 0 to be an eigenvalue of the operator Y it is necessary and
sufficient that there be a non-zero element f ∈ l2

(
Zd

)
that satisfies the equation

(Y − λI) f =
(

A +
k+m∑

i=1

ζiΔui
A +

k+r∑

j=1

βjΔvj
− λI

)

f = 0.

Obviously, the solution sets of such an equation for the operators Y and C−1Y C

are the same for any operator C; let us set C :=
(
I +

∑k+m
i=1 ζiΔui

) 1
2
, which

is correctly defined since ζi > −1 for all i. Thus the equation above can be
rewritten as follows:

(

A +
k+m∑

i=1

ζiA Δui
+

k+r∑

j=1

βjΔvj
− λI

)

f = 0

Since (Δvj
f)(x) := f(x)δvj

(x) = f(vj)δvj
(x) and (A Δui

f)(x) := f(x)Aδuj
(x),

the preceding expression can be rewritten as follows:

(A f)(x) +
k+m∑

j=1

ζjf(uj)Aδuj
(x) +

k+r∑

j=1

βjf(vj)δvj
(x) = λf(x), x ∈ Zd.

We apply Fourier transform to this equality and obtain

(Ã f)(θ) +
k+m∑

j=1

ζjf(uj)Ã δuj
(θ) +

k+r∑

j=1

βjf(vj)ei(θ,vj) = λf̃(θ), (17)

for θ ∈ [−π, π]d. The Fourier transform Ã f of (A f)(x) is of the form φf̃ ,
where f̃ is the Fourier transform of f , and φ(θ) is defined by the equality (7),
see [11, Lemma 3.1.1]. With this in mind, and making use of the fact that, by
the definition of the Fourier transform,

Ã δuj
(θ) = φ(θ)δ̃uj

(θ) = φ(θ)
∑

x∈Zd

δuj
(x)ei(x,θ) = φ(θ)ei(uj ,θ),

we rewrite equality (17) as

φ(θ)f̃(θ) +
k+m∑

j=1

ζjf(uj)φ(θ)ei(uj ,θ) +
k+r∑

j=1

βjf(vj)ei(θ,vj) = λf̃(θ),
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or

f̃(θ) =
1

λ − φ(θ)

[k+m∑

j=1

ζjf(uj)φ(θ)ei(uj ,θ) +
k+r∑

j=1

βjf(vj)ei(θ,vj)

]

, (18)

where θ ∈ [−π, π]d. Since λ > 0 and φ(θ) � 0,
∫
[−π,π]d

|λ − φ(θ)|−2dθ < ∞,
which allows us to apply the inverse Fourier transform to equality (18): as

Φ−1

[
1

λ − φ(θ)

k+m∑

j=1

ζjf(uj)φ(θ)ei(uj ,θ)

]

= Φ−1

[

−
k+m∑

j=1

ζjf(uj)ei(ui,θ) +
λ

λ − φ(θ)

k+m∑

j=1

ζjf(uj)ei(uj ,θ)

]

= −
k+m∑

j=1

ζjf(uj)
1

(2π)d

∫

[−π,π]d
e−i(θ,uj−x)dθ + λ

k+m∑

j=1

ζjf(uj)Iuj−x(λ)

= −
k+m∑

j=1

ζjf(uj)I[x = uj ] + λ
k+m∑

j=1

ζjf(uj)Iuj−x(λ)

we obtain

f(x) +
k+m∑

j=1

ζjf(uj)I[x = uj ]

= λ
k+m∑

j=1

ζjf(uj)Iuj−x(λ)φ(θ)ei(uj ,θ) +
k+r∑

j=1

βjIvj−x(λ)f(vj). (19)

By choosing x = ui, where i = 1, . . . , k + m, or x = vi, where i = 1, . . . , k + r,
we can rewrite (19) as follows:

f(ui) =
1

1 + ζi

(

λ

k+m∑

j=1

ζjf(uj)Iuj−ui
(λ) +

k+r∑

j=1

βjf(vj)Ivj−ui
(λ)

)

,

f(vi) = λ

k+m∑

j=1

ζjf(uj)Iuj−vi
(λ) +

k+r∑

j=1

βjf(vj)Ivj−vi
(λ).

We note that any solution of system (15) completely defines f(x) on the entirety
of its domain by formula (19), which proves the theorem. ��

Let among k + r sources, in which branching occurs, in s ≤ k + r sources
intensities are βi > 0, i = 0, . . . , s, and in k + r − s sources intensities are βi ≤ 0,
i = s + 1, . . . , k + r. We represent the operator Y defined by (6) as follows:

Y = A +
k+m∑

i=1

ζiΔui
A +

s∑

i=1

βiΔvi
+

k+r∑

i=s+1

βiΔvi
.
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Define operator

B := λI − A −
k+m∑

i=1

ζiΔui
A −

k+r∑

i=s+1

βiΔvi
,

then the eigenvector h corresponding to the eigenvalue λ of Y satisfies the
equation

Bh =
s∑

i=1

βiδvi
〈δvi

, h〉.

Note that 〈A x, x〉 ≤ 0. Besides, βi < 0 for i = s + 1, . . . , k + r, and therefore

〈
k+r∑

i=s+1

βiΔvi
x, x〉 ≤ 0. Hence, the operator B is reversible. The problem of exis-

tence of positive eigenvalues of the operator Y is converted to the question of the

existence of nonzero solutions for the equation h = B−1
s∑

j=1

βjδvj
〈δvj

, h〉, which,

after introducing auxiliary variables qi = 〈δvi
, h〉 and scalar multiplication on

the left of this equality by δvi
reduces to a finite system of equations

qi =
s∑

j=1

βj〈δvi
,B−1δvj

〉qj , i = 1, 2, . . . , s. (20)

Denote matrix B(λ):

B
(λ)
i,j := βj〈δvi

,B−1δvj
〉, i, j = 1, . . . , s. (21)

So the matrix representation (20) has the following form

q = B(λ)q, (22)

and the problem on positive eigenvalues for Y is reduced to the question of for
which λ > 0 the number 1 is the matrix B(λ) eigenvalue.

Theorem 7. Let λ0 > 0 be the largest eigenvalue of the operator Y . Then λ0

is a simple eigenvalue of Y , and 1 is the largest eigenvalue of the matrix B(λ0).

Proof. Denote ζ := max(0,max
i

(ζi)) ≥ 0 and note that the elements of the
operator

Ã := A +
k+m∑

i=1

ζiΔui
A − a(0, 0)(ζ + 1)I

are non-negative. It follows from Schur’s test [4] that in each of the spaces lp(Zd)
for the operator norm Ã there is an estimation

‖Ã ‖p ≤ −a(0, 0)(ζ + 1). (23)
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Operator B can be represented as follows:

B = λI − a(0, 0)(ζ + 1)I −
k+r∑

i=s+1

βiΔvi
− Ã = Fλ − Ã ,

where the operator

Fλ = λI − a(0, 0)(ζ + 1)I −
k+r∑

i=s+1

βiΔvi

is diagonal with all its diagonal elements no less than −a(0, 0)(ζ + 1) + λ > 0.
Then

‖F−1
λ ‖p ≤ 1

−a(0, 0)(ζ + 1) + λ
. (24)

Then B can be represented in the following form B = Fλ

(
I − F−1

λ Ã
)

and
therefore

B−1 =
(
I − F−1

λ Ã
)−1

F−1
λ . (25)

Here by virtue of (23) and (24) the operator norm of F−1
λ Ã is less than one:

‖F−1
λ Ã ‖p ≤ −a(0, 0)(ζ + 1)

−a(0, 0)(ζ + 1) + λ
< 1,

and therefore the operator
(
I − F−1

λ Ã
)−1

can be represented as a series:

(
I − F−1

λ Ã
)−1

=
∞∑

n=0

(
F−1

λ Ã
)n

.

Hence, by virtue of (25)

B−1 =
∞∑

n=0

(
F−1

λ Ã
)n

F−1
λ . (26)

Note that the right-hand side (26) is the sum of the products of operators
(infinite matrices) with non-negative elements. Therefore, each element of the
operator (infinite matrix) B−1 is non-negative.

Let us prove that each element of the operator B−1 is strictly positive. For
the proof, we use the fact that our random walk is irreducible. Note that, since
the random walk under the action of the operator A is irreducible, for any pair
x, y ∈ Zd there exists n ≥ 1 and the set of points

u0, u1, . . . , un ∈ Zd, u0 = x, un = y, (27)

such that a(u1 − u0)a(u2 − u1) · · · a(un − un−1) > 0, whence follows

a(u1 − u0)a(u2 − u1) · · · a(un − un−1) > 0. (28)
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Note that the elements of the infinite matrix B−1 are indexed by pairs of points
x, y ∈ Zd. In addition, the element with indices (x, y) of the matrix

(
F−1

λ Ã
)n

in (26) is a sum of the form
∑

u0=x, un=y

a(u1 − u0)a(u2 − u1) · · · a(un − un−1)fu0,u1,...,un
(29)

taken over all possible “chains” of n elements, satisfying (27), in which positive
factors fu0,u1,...,un

are formed due to the presence of the diagonal matrix F−1
λ

of
(
F−1

λ Ã
)n

. But by virtue of (28) at least one term in the sum (29) is strictly
positive, while the rest are non-negative. Hence, the entire sum is also strictly
positive, which implies that all elements of the operator (infinite matrix) B−1

are strictly positive. Since the elements of B−1 (see (21)) are positive, the matrix
B(λ) is positive.

The right side of (25) contains the operators F−1
λ , whose elements, mono-

tonically decreasing in λ > 0, tend to zero as λ → ∞. Since in this case all
multiplied and added operators (infinite matrices) are positive, then all their
elements in this case will also decrease monotonically in λ > 0 and tend to zero
as λ → ∞.

We first show that if λ0 is the operator Y largest eigenvalue, then the largest
(absolute) eigenvalue of the matrix B(λ0) is 1. Indeed, assume it is not the case.

It follows from (22) that λ0 > 0 is an eigenvalue of Y if and only if 1 is an
eigenvalue of B(λ0). All elements of B(λ0) are strictly positive. Consequently, by
the Perron-Frobenius theorem, see [5, Theorem 8.4.4], the matrix B(λ0) has a
strictly positive eigenvalue that is strictly greater (by absolute value) than any
other of its eigenvalues.

Let us denote the dominant eigenvalue of B(λ0) by γ(λ0). Since we assumed
that 1 is not the largest eigenvalue of B(λ0), then γ(λ0) > 1. Given that with
respect to λ the functions Ixi−xj

(λ) are continuous, then all elements of B(λ)

and all eigenvalues of B(λ) are continuous functions with respect to λ. All matrix
B(λ) eigenvalues tend to zero as λ → ∞, because for all i and j Ixi−xj

(λ) → 0 as
λ → ∞. Hence there is such a λ̂ > λ0 that γ(λ̂) = 1. Then, as was shown earlier,
this λ̂ has to be an eigenvalue of Y , which contradicts the initial assumption
that λ0 is the largest eigenvalue of the operator Y .

We have just proved that 1 is the largest eigenvalue of B(λ0); then we obtain
from the Perron-Frobenius theorem the simplicity of this eigenvalue. Therefore,
to complete the proof, we have to show the simplicity of the eigenvalue λ0 of Y .

Suppose it is not, and λ0 is not simple. In this case, there are at least two
linearly independent eigenvectors f1 and f2 corresponding to the eigenvalue λ0.
Therefore, we can again applying the equality (19), notice that the linear inde-
pendence of the vectors f1 and f2 is equivalent to the linear independence of the
vectors

f̂i := (fi(u1), . . . , fi(uN )) , i = 1, 2.
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From the definition of B(λ) and Theorem 6 it follows that vectors f̂1 and f̂2
satisfy

(
B(λ0) − I

)
f = 0. It contradicts the simplicity of eigenvalue 1 of B(λ0).

This completes the proof. ��
Lemma 2. Let Y be a self-adjoint continuous operator on a separable Hilbert
space E, the spectrum of which is a disjoint union of two sets: fist one is a finite
(counting multiplicity) set of isolated eigenvalues λi > 0 and second one is the
remaining part of the spectrum which is included in [−s, 0], s > 0. Then the
solution m(t) of the Cauchy problem

dm(t)
dt

= Y m(t), m(0) = m0,

satisfies the condition
lim

t→∞ e−λ0tm(t) = C (m0) ,

where λ0 = maxi λi.

Proof. Let us denote by Vλi
the finite-dimensional eigenspace of Y that corre-

sponds to the eigenvalue λi.
We consider the projection Pi of Y onto Vλi

, see [6]. Let

xi(t) := Pim(t),

v(t) :=

(

I −
∑

i

Pi

)

m(t) = m(t) −
∑

i

xi(t).

All spectral operators Pi and (I − ∑
Pi) commute with Y , see [6]. Therefore

dxi(t)
dt

= PiY m(t) = Y xi(t)

dv(t)
dt

=
(
I −

∑
Pi

)
Y m(t) =

(
I −

∑
Pi

)
Y

(
I −

∑
Pi

)
v(t).

As xi(t) ∈ Vλi
, we can see that Y xi(t) = λixi(t), from which it follows that

xi(t) = eλitxi(0). Since the spectrum of the operator

Y0 :=
(
I −

∑
Pi

)
Y

(
I −

∑
Pi

)

is included into the spectrum of operator Y and Y0 has no isolated eigenvalues
λi, it is included into [−s, 0]. From this for all t � 0 we obtain |v(t)| � |v(0)|,
see [11, Lemma 3.3.5]. Hence

m(t) =
∑

i

eλitPim(0) + v(t), (30)

and the proof is complete. ��
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Remark 1. Let λ0 be the largest eigenvalue of Y . Denote P0m(0) = C(m0)
in (30). Then C(m0) �= 0 if and only if the orthogonal projection P0m(0) of the
initial value m0 = m(0) onto the corresponding to the eigenvalue λ0 eigenspace
is non-zero.

If the eigenvalue λ0 of Y is simple and f is an eigenvector corresponding to
λ0, the projection P0 is defined by the formula P0x = (f,x)

(f,f)f , where (·, ·) denots
scalar product in the Hilbert space E. In cases when this λ0 is not simple,
describing the projection P0 is a significantly more difficult task.

We remind the reader that we proved the simplicity of the largest eigenvalue
of Y above allowing us to bypass this issue.

Theorem 8. Let defined by (6) operator Y with the parameters {ζi}k+r
i=1 and

{βi}k+m
i=1 , has a finite number of positive eigenvalues (counting multiplicity). We

denote by λ0 the largest of them, and the corresponding to λ0 normalized vector
by f . Then for t → ∞ and all n ∈ N the following statements hold:

mn(t, x, y) ∼ Cn(x, y)enλ0t, mn(t, x) ∼ Cn(x)enλ0t, (31)

where

C1(x, y) = f(y)f(x), C1(x) = f(x)
1
λ0

k+r∑

j=1

βjf(vj),

and the functions Cn(x, y) and Cn(x) > 0 for n � 2 are defined as follows:

Cn(x, y) =
k+r∑

j=1

g(j)n (C1(vj , y), . . . , Cn−1(vj , y)) D(j)
n (x),

Cn(x) =
k+r∑

j=1

g(j)n (C1(vj), . . . , Cn−1(vj)) D(j)
n (x),

where D
(j)
n (x) are certain functions satisfying the estimate |D(j)

n (x)| � 2
nλ0

for

n � n∗ and some n∗ ∈ N and g
(j)
n are the functions defined in (12).

Proof. For n ∈ N we consider the functions νn := mn(t, x, y)e−nλ0t. From The-
orem 3 (see Eqs. (10) and (11) for mn) we obtain the following equations for
νn:

dν1
dt

= Y ν1 − λ0ν1,

dνn

dt
= Y νn − nλ0νn +

k+r∑

j=1

Δvj
g(j)n (ν1, . . . , νn−1) , n � 2,

the initial values being νn(0, ·, y) = δy(·), n ∈ N.
Since λ0 is the largest eigenvalue of Y , the spectrum of Yn := Y − nλ0I for

n � 2 is included into (−∞,−(n − 1)λ0]. As it was shown, for example, in [11,
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p. 58], that if the spectrum of a self-adjoint continuous operator Ỹ on a Hilbert
space is included into (−∞,−s], s > 0, and also f(t) → f∗ as t → ∞, then the
solution of the equation

dν

dt
= Ỹ ν + f(t)

satisfies ν(t) → −Ỹ −1f∗ condition. For this reason for n � 2 we obtain

Cn(x, y) = lim
t→∞ νn = −

k+r∑

j=1

(
Y −1

n Δvj
g(j)n (C1(·, y), . . . , Cn−1(·, y))

)
(x)

= −
k+r∑

j=1

g(j)n (C1(vj , y), . . . , Cn−1(vj , y))(Y −1
n δvj

(·))(x)).

Now we prove the existence of such a natural number n∗ that for all n � n∗
the estimates

D(j)
n (x) := |(Y −1

n δvj
(·))(x)| � 2

nλ0

hold. We evaluate the operator Y −1
n norm. For this, let us consider two vectors

u and x such that u = Ynx = Y x − nλ0x. Then ‖u‖ � nλ0‖x‖ − ‖Y x‖ �
(nλ0 − ‖Y ‖)‖x‖, hence ‖Y −1

n u‖ = ‖x‖ � ‖u‖/ (nλ0 − ‖Y ‖), and for all n �
n∗ = 2λ−1

0 ‖Y ‖ the estimate ‖Y −1
n ‖ � 2

nλ0
holds. From this we conclude that

|(Y −1
n δvj

(·))(x)| � ‖Y −1
n δvj

(·)‖ � ‖Y −1
n ‖‖δvj

(·)‖ � 2
nλ0

, n � n∗.

Now we have to estimate the particle number moments asymptotic behaviour.
It follows from (14) that as t → ∞ the following asymptotic equivalences hold:

m1(t, x) ∼
k+r∑

j=1

βj

∫ t

0

m1(s, x, vj) ds ∼
k+r∑

j=1

βj

λ0
m1(t, x, vj). (32)

The function m1(t, x, 0) exhibits exponential growth as t → ∞ and m1(t, x) will
display the same behaviour.

We can now infer the asymptotic behaviour of the higher moments mn(t, x)
for n � 2 from Eqs. (11) in a similar way to how it was done above for mn(t, x, y).

We proceed to prove the equalities for C1(x, y) and C1(x). The eigenvalue λ0

is simple by Corollary 7 and it follows, according to Remark 1, that

C1(x, y) = lim
t→∞ e−λ0tm1(t, x, y) = Pm0 = (m1(0, x, y), f) f(x).

But m1(0, x, y) = δy(x), hence

C1(x, y) = (m1(0, x, y), f) f(x) = f(y)f(x).

We also obtain from (32) that

C1(x) =
1
λ0

k+r∑

j=1

βjC1(x, vj) = f(x)
1
λ0

k+r∑

j=1

βjf(vj),

which concludes the proof. ��
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Corollary 1. Cn(x, y) = ψn(y)Cn(x), where ψ(y) = λ0f(y)
∑k+r

j=1 βjf(vj)
.

Proof. We prove the corollary by induction on n. For n = 1 the induction basis
holds due to Theorem8. Let us now deal with the induction step: according to
Theorem 8,

Cn+1(x, y) =
k+r∑

j=1

g
(j)
n+1 (C1(vj , y), . . . , Cn(vj , y)) D

(j)
n+1(x),

Cn+1(x) =
k+r∑

j=1

g
(j)
n+1 (C1(vj), . . . , Cn(vj)) D

(j)
n+1(x);

therefore, it suffices to prove that for all j the equalities

g
(j)
n+1 (C1(vj , y), . . . , Cn(vj , y)) = ψn+1(y)g(j)n+1 (C1(vj), . . . , Cn(vj))

hold. As a consequence of the definition and hypothesis of induction,

g
(j)
n+1 (C1(vj , y), . . . , Cn(vj , y))

=
n+1∑

r=2

β
(r)
j

r!

∑

i1,...,ir>0
i1+···+ir=n+1

n!
i1! · · · ir!Ci1(vj , y) · · · Cir (vj , y)

= ψn+1(y)
n+1∑

r=2

β
(r)
j

r!

∑

i1,...,ir>0
i1+···+ir=n+1

n!
i1! · · · ir!Ci1(vj) · · · Cir (vj),

which proves the corollary. ��

4 Proof of Theorem 1

Let us introduce the function

f(n, r) :=
∑

i1,...,ir>0
i1+···+ir=n

ii11 · · · iirr , 1 � r � n.

The following auxiliary lemma is proved in [7, Lemma 9].

Lemma 3. There is such a constant C > 0 that f(n, r) < C nn

rr−1 for all n �
r � 2.

We now turn to proving Theorem1.

Proof. Let us define the functions

m(n, x, y) := lim
t→∞

mn(t, x, y)
mn

1 (t, x, y)
=

Cn(x, y)
Cn

1 (x, y)
,
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m(n, x) := lim
t→∞

mn(t, x)
mn

1 (t, x)
=

Cn(x)
Cn

1 (x)
;

as follows from Theorem 8 and Gλ(x, y) being positive, these definitions are
sound. Corollary 1 yields

m(n, x, y) = m(n, x) =
Cn(x)
Cn

1 (x)
=

Cn(x, y)
Cn

1 (x, y)
.

From the above equalities and the asymptotic equivalences (31) we have The-
orem 1 statements in terms of convergence of moments of the random variables
ξ(y) = ψ(y)ξ and ξ.

The distributions of the limit random variables ξ(y) and ξ to be uniquely
determined by their moments if, as was shown in [11], the Carleman condition

∞∑

n=1

m(n, x, y)−1/2n = ∞,

∞∑

n=1

m(n, x)−1/2n = ∞ (33)

We establish below that the series for the m(n, x) diverges and that, therefore,
said moments define the random variable ξ uniquely; the statement concerning
ξ(y) and its moments can be proved in much the same manner.

Since β
(r)
j = O(r!rr−1), there is such a constant D that for all r � 2 and

j = 1, . . . , k + r the inequality β
(r)
j < Dr!rr−1 holds. Without loss of generality

we assume that for all n

Cn(x) � max
j=1,...,k+r

Cn(vj) = Cn(v1).

Let γ := 2NCDE λ0β2
2 C2

1 (v1), where C is defined in Lemma 3, and the constant
E is such that Cn(v1) � γn−1n!nn for n � max{n∗, 2}, where n∗ is defined in
Theorem 8.

From this point on, the proof follows to the scheme of proof of [7, Th. 1] and
is included only for readability.

Let us show by induction that

Cn(x) � Cn(v1) � γn−1n!nn.

The induction basis for n = 1 is valid due to the C choice. In order to prove
the step of induction, we will show that

Cn+1(x) � Cn+1(v1) � γn(n + 1)!(n + 1)n+1.

It follows from Cn+1(v1) formula and the estimate for D
(j)
n (x) from Theorem 8

that

Cn+1(v1) �
N∑

j=1

n+1∑

r=2

β
(j)
r

r!

∑

i1,...,ir>0
i1+···+ir=n+1

(n + 1)!
i1! · · · ir!Ci1(v1) · · · Cir (v1)

2
λ0(n + 1)

.
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By the induction hypothesis

(n + 1)!
i1! · · · ir!Ci1(0) · · · Cir (0) � γn+1−r(n + 1)!ii11 · · · iirr ;

which, added to the fact that β
(r)
j < Dr!rr−1 and γn+1−r � γn−1, yields

N∑

j=1

n+1∑

r=2

β
(r)
j

r!

∑

i1,...,ir>0
i1+···+ir=n+1

(n + 1)!
i1! · · · ir!Ci1(v1) · · · Cir (v1)

� Nγn−1D(n + 1)!
n+1∑

r=2

rr−1
∑

i1,...,ir>0
i1+···+ir=n+1

ii11 · · · iirr

= Nγn−1D(n + 1)!
n+1∑

r=2

rr−1f(n + 1, r).

We infer from Lemma 3 that

Nγn−1D(n + 1)!
n+1∑

r=2

rr−1f(n + 1, r) � Nγn−1(n + 1)!DC

n+1∑

r=2

(n + 1)n+1

� Nγn−1DC(n + 1)!(n + 1)n+2.

Hence, by referring to the γ definition we obtain

Cn+1(x) � γn(n + 1)!(n + 1)n+1,

which completes the proof of the step of induction.
Since n! �

(
n+1
2

)n, Cn(x) � γn

2n (n + 1)2n. Thus,

m(n, x) =
Cn(x)
Cn

1 (x)
�

(
γ

2C1(x)

)n

(n + 1)2n,

from which we obtain that

∞∑

n=1

m(n, x)−1/2n �
√

2C1(x)
γ

∞∑

n=1

1
n + 1

= ∞.

The condition (33) is satisfied, and the corresponding Stieltjes moment prob-
lem for the moments m(n, x) has a unique solution [8, Th. 1.11]. Hence, state-
ments (5) are valid in terms of convergence in distribution and Theorem1 is
proved. ��
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9. Vatutin, V.A., Topchĭı, V.A., Yarovaya, E.B.: Catalytic branching random walks
and queueing systems with a random number of independent servers. Teor. Ĭmov̄ır.
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