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Abstract. General Markov chains in an arbitrary phase space are con-
sidered in the framework of the operator treatment. Markov operators
continue from the space of countably additive measures to the space
of finitely additive measures. Cycles of measures generated by the corre-
sponding operator are constructed, and algebraic operations on them are
introduced. One of the main results obtained is that any cycle of finitely
additive measures can be uniquely decomposed into the coordinate-wise
sum of a cycle of countably additive measures and a cycle of purely
finitely additive measures. A theorem is proved (under certain condi-
tions) that if a finitely additive cycle of a Markov chain is unique, then
it is countably additive.
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1 Introduction

The considered general Markov chains (MC) are random processes with an arbi-
trary phase space, with discrete time, and homogeneous in time. MCs are given
by the usual transition probability, countably additive in the second argument,
which generates two Markov operators T and A in the space of measurable func-
tions and in the space of countably additive measures, respectively. Thus, we use
the operator treatment in the theory of general MCs, proposed in 1937 by N.
Kryloff and N. Bogolyuboff, and developed in detail in the article [1]. Later, in
a number of works by different authors, an extension of the Markov operator A
to the space of finitely additive measures was carried out, which turned A into
an operator topologically conjugate to the operator T , and opened up new pos-
sibilities in the development of the operator treatment. Within the framework of
such a scheme, we carry out here the study of cycles of measures of general MC.
In this case, we use a number of information on the general theory of finitely
additive measures from the sources [2] and [3].

In the ergodic theory of MC, one usually distinguishes in the space of its states
ergodic classes and their cyclic subclasses, if such exist (see, for example, [4]).
However, in the general phase space, the study of such sets has its natural
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limitations. Therefore, in some cases it is more convenient to use not cycles of
sets, but cycles of measures generated by the Markov operator A.

In this paper we propose a corresponding construction for cyclic finitely
additive measures of MC on an arbitrary measurable space. We study cycles
of countably additive and purely finitely additive measures, and their relation-
ship. A number of theorems on the properties of cycles are proved. In particular,
an analogue of the Alexandroff-Yosida-Hewitt expansion for cycles of finitely
additive measures is constructed.

In the proof of the theorems presented here, we also use some results of
papers [5] and [6].

2 Finitely Additive Measures and Markov Operators

Let X be an arbitrary infinite set and Σ the sigma-algebra of its subsets con-
taining all one-point subsets from X. Let B(X,Σ) denote the Banach space of
bounded Σ-measurable functions f : X → R with sup-norm.

We also consider Banach spaces of bounded measures μ : Σ → R, with the
norm equal to the total variation of the measure μ (but you can also use the
equivalent sup-norm):

ba(X,Σ) is the space of finitely additive measures,
ca(X,Σ) is the space of countably additive measures.

If μ ≥ 0, then ||μ|| = μ(X).

Definition 1 ([2]). A finitely additive nonnegative measure μ is called purely
finitely additive (pure charge, pure mean) if any countably additive measure λ
satisfying the condition 0 ≤ λ ≤ μ is identically zero. An alternating measure μ
is called purely finitely additive if both components of its Jordan decomposition
are purely finitely additive.

Any finitely additive measure μ can be uniquely expanded into the sum
μ = μ1 + μ2, where μ1 is countably additive and μ2 is a purely finitely additive
measure (the Alexandroff-Yosida-Hewitt decomposition, see [2] and [3]).

Purely finitely additive measures also form a Banach space pfa(X,Σ) with
the same norm, ba(X,Σ) = ca(X,Σ) ⊕ pfa(X,Σ).

Examples 1. Here are two examples of purely finitely additive measures.
Let X = [0, 1] ⊂ R (R = (−∞; +∞)) and Σ = B (Borel sigma algebra).

There is (proved) a finitely additive measure μ : B → R, μ ∈ Sba, such that for
any ε > 0 the following holds:

μ((0, ε)) = 1, μ([ε, 1]) = 0, μ({0}) = 0.

We can say that the measure μ fixes the unit mass arbitrarily close to zero (on
the right), but not at zero. According to [2], such a measure is purely finitely
additive, but it is not the only one. It is known that the cardinality of a family
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of such measures located “near zero (on the right)” is not less than 22
ℵ0 = 2c

(hypercontinuum). And the same family of purely finitely additive measures
exists “near each point x0 ∈ [0, 1] (to the right, or to the left, or both there, and
there)”.

Examples 2. Let X = R = (−∞; +∞) and Σ = B. There is (proved) a finitely
additive measure μ : B → R, μ ∈ Sba, such that for any x ∈ R the following
holds:

μ((x,∞)) = 1, μ((−∞, x)) = 0, μ({x}) = 0.

We can say that the measure μ fixes the unit mass arbitrarily far, “near infinity”.
This measure is also purely finitely additive. And there are also a lot of such
measures.

We denote the sets of measures:
Sba = {μ ∈ ba(X,Σ) : μ ≥ 0, ||μ|| = 1}, Sca = {μ ∈ ca(X,Σ) : μ ≥ 0, ||μ|| =

1},
Spfa = {μ ∈ pfa(X,Σ) : μ ≥ 0, ||μ|| = 1}.
All measures from these sets will be called probabilistic.
Markov chains (MC) on a measurable space (X,Σ) are given by their tran-

sition function (probability) p(x,E), x ∈ X,E ∈ Σ, under the usual conditions:

1. 0 ≤ p(x,E) ≤ 1, p(x,X) = 1,∀x ∈ X,∀E ∈ Σ;
2. p(·, E) ∈ B(X,Σ),∀E ∈ Σ;
3. p(x, ·) ∈ ca(X,Σ),∀x ∈ X.

We emphasize that our transition function is a countably additive measure
in the second argument, i.e. we consider classical MCs.

The transition function generates two Markov linear bounded positive inte-
gral operators:

T : B(X,Σ) → B(X,Σ), (Tf)(x) = Tf(x) =
∫

X

f(y)p(x, dy),

∀f ∈ B(X,Σ),∀x ∈ X;

A : ca(X,Σ) → ca(X,Σ), (Aμ)(E) = Aμ(E) =
∫

X

p(x,E)μ(dx),

∀μ ∈ ca(X,Σ),∀E ∈ Σ.

Let the initial measure be μ0 ∈ Sca. Then the iterative sequence of countably
additive probability measures μn = Aμn−1 ∈ Sca, n ∈ N , is usually identified
with the Markov chain.

Topologically conjugate to the space B(X,Σ) is the (isomorphic) space of
finitely additive measures: B∗(X,Σ) = ba(X,Σ) (see, for example, [3]). More-
over, the operator T ∗ : ba(X,Σ) → ba(X,Σ) is topologically conjugate to the
operator T :

T ∗μ(E) =
∫

X

p(x,E)μ(dx),∀μ ∈ ba(X,Σ),∀E ∈ Σ.
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The operator T ∗ is the only bounded continuation of the operator A to the
entire space ba(X,Σ) while preserving its analytic form. The operator T ∗ has
its own invariant subspace ca(X,Σ), i.e. T ∗[ca(X,Σ)] ⊂ ca(X,Σ), on which it
matches the original operator A. The construction of the Markov operators T
and T ∗ is now functionally closed. We shall continue to denote the operator T ∗

as A.
In such a setting, it is natural to admit to consideration also the Markov

sequences of probabilistic finitely additive measures μ0 ∈ Sba, μn = Aμn−1 ∈
Sba, n ∈ N , keeping the countable additivity of the transition function p(x, ·)
with respect to the second argument.

3 Cycles of Measures and Their Properties

Definition 2. If Aμ = μ holds for some positive finitely additive measure μ,
then we call such a measure invariant for the operator A (and for the Markov
chain).

We denote the sets of all probability invariant measures for the operator A:

Δba = {μ ∈ Sba : μ = Aμ},
Δca = {μ ∈ Sca : μ = Aμ}, Δpfa = {μ ∈ Spfa : μ = Aμ}.

A classical countably additive Markov chain may or may not have invariant
countably additive probability measures, i.e. possibly Δca = ∅ (for example, for
a symmetric walk on Z).

In [7, Theorem 2.2] Šidak proved that any countably additive MC on an
arbitrary measurable space (X,Σ) extended to the space of finitely additive
measures has at least one invariant finitely additive measure, i.e. always Δba �= ∅.
Šidak in [7, Theorem 2.5] also established in the general case that if a finitely
additive measure μ is invariant Aμ = μ, and μ = μ1 + μ2 is its decomposition
into are countably additive and purely finitely additive components, then each
of them is also invariant: Aμ1 = μ1, Aμ2 = μ2. Therefore, it suffices to study
invariant measures from Δca and from Δpfa, separately.

Definition 3. A finite numbered set of pairwise different positive finitely addi-
tive measures K = {μ1, μ2, ..., μm} will be called a cycle measures of an operator
A of a given Markov chain (or a cycle of measures MC) if

Aμ1 = μ2, Aμ2 = μ3, ..., Aμm−1 = μm, Aμm = μ1.

Such cycles will be called finitely additive. The number m ≥ 1 will be called
the cycle period, and the measures μ1, μ2, ..., μm – cyclic measures. Unnormalized
cycles will also be used below.

If K = {μ1, μ2, ..., μm} is a MC cycle, then, obviously,

Amμ1 = μ1, A
mμ2 = μ2, ..., A

mμm = μm,

i.e. all cyclic measures μi are invariant for the operator Am and Am(K) = K.
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The following well-known statement is obvious. Let K = {μ1, μ2, ..., μm} be
a cycle of finitely additive measures. Then the measure

μ =
1
m

m∑

k=1

μk =
1
m

m∑

k=1

Ak−1μ1

is invariant for the operator A, i.e. Aμ = μ (here A0 is the identity operator).

Definition 4. The measure constructed above will be called the mean cycle mea-
sure K.

Definition 5. We call each method of choosing a measure μ1 in K an operation
renumbering a cycle K.

Definition 6. We say that two cycles of the same period K1 and K2are identical
if there is a renumbering of cycles K1 or K2 such that all their cyclic measures
with the same numbers match. In this case, we will write K1 = K2. Instead of
the words “identical cycles”, we will still say the words “equal cycles”.

Obviously, for the cycles to be equal, it is sufficient that their first measures
coincide.

Hereinafter, it is convenient to call cyclic measures μi, i = 1, ...,m, cycle
coordinates K.

Definition 7. By the operation of multiplying a cycle of measures K =
{μ1, μ2, ..., μm} by a number γ > 0 we mean the construction of a cycle of
measures γK = {γμ1, γμ2, ..., γμm}.

Since the operator A is isometric in the cone of positive measures, all cyclic
measures of one cycle K = {μ1, μ2, ..., μm} have the same norm ‖μ1‖ = ‖μ2‖ =,
...,= ‖μm‖ = ‖μ‖, which is naturally called the norm ‖K‖ of the cycle K itself.

To give the cycle a probabilistic meaning, it is sufficient to multiply it coor-
dinatewise by the normalizing factor γ = 1

‖μ‖ : K̂ = γ · K = {γμ1, γμ2, ..., γμm}.

We obtain a probability cycle with the norm ‖K̂‖ = 1, K̂ ⊂ Sba.

Definition 8. Let there be given two cycles of measures of the same MC K1 =
{μ1

1, μ
1
2, ..., μ

1
m} and K2 = {μ2

1, μ
2
2, ..., μ

2
m} of the same period m. We call the

sum of cycles K1 and K2 the following set of measures K = K1 + K2 = {μ1
1 +

μ2
1, ..., μ

1
m + μ2

m} derived from K1 and K2 coordinatewise addition.

The measure spaces are semi-ordered by the natural order relation. In them
one can introduce the notion of infimum inf{μ1, μ2} = μ1 ∧ μ2 and supremum
sup{μ1, μ2} = μ1 ∨ μ2, which are also contained in these spaces. Thus, the
measure spaces ba(X,Σ), ca(X,Σ) and pfa(X,Σ) are lattices (K-lineals).

The exact formulas for constructing the ordinal infimum and supremum of
two finitely additive measures are given, for example, in [2].

Definition 9. Two positive measures μ1, μ2 ∈ ba(X,Σ) are called disjoint if
μ1 ∧ μ2 = 0.
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Definition 10. Two positive measures μ1, μ2 ∈ ba(X,Σ) are called singular
if there are two sets D1,D2 ⊂ X, D1,D2 ∈ Σ, such that μ1(D1) = μ1(X),
μ2(D2) = μ2(X) and D1 ∩ D2 = ∅.

Countably additive measures μ1, μ2 are disjunct if and only if they are sin-
gular (see [2]).

If the measures μ1 and μ2 are singular, then they are also disjoint (see [2]).

Definition 11. A cycle K = {μ1, μ2, ..., μm} is called a cycle of disjoint mea-
sures if all its cyclic measures are pairwise disjoint, i.e. μi ∧ μj = 0 for all
i �= j.

Definition 12. Two cycles of measures K1,K2 are called disjoint, if each mea-
sure from the cycle K1 is disjoint with each measure from the cycle K2.

If the cycle of disjoint measures K = {μ1, μ2, ..., μm} is countably additive,
then all its cyclic measures are pairwise singular and have pairwise disjoint sup-
ports (sets of full measure) D1,D2, ...,Dm ∈ Σ, that is, μi(Di), i = 1, ...,m, and
Di ∩ Dj = ∅ for i �= j.

If we do not require pairwise disjointness (singularity) of the measures of a
countably additive cycle, then new, somewhat unexpected objects may appear
in the state space of a MC. Let’s give a suitable simple example.

Examples 3. Let the MC be finite, having exactly three states X = {x1, x2, x3}
with transition probabilities:

p(x1, x1) = 1, p(x2, x3) = 1, p(x3, x2) = 1.

This means that the MC has in the state space X one stationary state {x1} (we
can say that this is a cycle of period m = 1) and one cycle {x2, x3} of the period
m = 2. Within the framework of the operator approach, it is more convenient
for us to translate what has been said into the language of measures as follows.

Let x ∈ X and E ⊂ X(E ∈ Σ = 2X). Then p(x1, E) = δx1(E), p(x2, E) =
δx3(E), p(x3, E) = δx2(E), where δxi

(·), i = 1, 2, 3, are the Dirac measures at the
points x1, x2, x3. For an operator A such a MC we have: Aδx1 = δx1 , Aδx2 = δx3 ,
Aδx3 = δx2 , i.e. the family of measures K = {δx2 , δx3} is a cycle according to
Definition 3, and the cyclic measures δx2 and δx3 are singular.

Consider one more family of measures K̃ = { 1
2η1,

1
2η2}, where η1 = δx1 +δx2 ,

η2 = δx1 + δx3 . Then Aη1 = A(δx1 + δx2) = Aδx1 + Aδx2 = δx1 + δx3 = η2
and similarly Aη2 = η1. Since the measures η1 and η2 are different, then by
Definition 3, the family of measures K̃ is also a MC cycle different from K.
Moreover, the measures η1 and η2 are not disjoint: η1 ∧ η2 = δx1 �= 0. These
measures are not singular: their supports {x1, x2} and {x1, x3} intersect, i.e.
{x1, x2} ∩ {x1, x3} = {x1} �= ∅.

Remark 1. Such cycles with intersecting cyclic sets of states, as in Example 3,
are usually not considered in the classical theory of MC.
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However, we believe that the study of intersecting cycles of sets is very useful
in general theory. Research of such cycles is more productive for us in terms of
measure cycles. In this case, instead of intersecting sets of measures, one should
consider cycles of measures that are not disjoint. Our Theorems 1, 2, 3, and 5
(proved in Sect. 4) do not require pairwise disjointness (or singularity) of cyclic
measures in measure cycles.

4 Main Results

Theorem 1. Any finitely additive cycle of measures for an arbitrary MC is a
linearly independent set in the linear space ba(X,Σ).

Proof. We prove by induction.
Consider first two arbitrary different measures μ1, μ2 ∈ Sba (not necessarily

cyclic), for which ‖μ1‖ = ‖μ2‖ = 1.
They are obviously linearly independent.
In particular the cycle K = {μ1, μ2} consisting of two different measures

from Sba, is linearly independent.
Now let the cycle consist of three pairwise different measures: K =

{μ1, μ2, μ3} ⊂ Sba. As we found out above, any two measures of them are linearly
independent.

Suppose that one of these three measures is linearly dependent on the other
two, let it be the measure μ3 (the number is not important here). Then there
exist numbers α1, α2, 0 ≤ α1, α2 ≤ 1, α1 + α2 = 1, such that the measure μ3 is
uniquely representable as a linear combination μ3 = α1μ1 + α2μ2.

Let α1 = 0. Then α2 = 1 and μ3 = μ2 which contradicts the pairwise
difference of the three measures. Similarly for α1 = 1. Therefore, we can assume
that 0 < α1, α2 < 1.

By cycle conditions

μ1 = Aμ3 = A(α1μ1 + α2μ2) = α1Aμ1 + α2Aμ2 = α1μ2 + α2μ3.

Since α2 �= 0 from this we get μ3 = 1
α2

μ1 − α1
α2

μ2. Since the decomposition of
μ3 is unique, we have α1 = 1

α2
, α2 = −α1

α2
< 0. Since α1 and α2 are positive,

we obtain a contradiction in the second equality. Therefore, all three measures
μ1, μ2 and μ3 are linearly independent.

We turn to the general case.
Let be a cycle of measures K = {μ1, μ2, ..., μm} with an arbitrary period

m ≥ 3. We assume that the sets of any m − 1 pieces of measures μi from
K are linearly independent. Assume that the measure μm (the number is not
important) depends linearly on the measures μ1, μ2, ..., μm−1. Then the measure
μm is uniquely represented as

μm =
m−1∑

i=1

αiμi,
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where 0 ≤ αi ≤ 1 for i = 1, 2, ...,m,
∑m−1

i=1 αi = 1.
Assume that for some t ∈ {1, 2, ...,m − 1}, αt = 0 is executed. Then the

measure μm is linearly expressed in terms of m − 2 pieces of measures μi, all of
them together with μm will be m−1 piece. This contradicts the assumption that
the sets of any m − 1 pieces of measures μi from K are linearly independent.
Therefore, all αi > 0, i = 1, 2, ...,m − 1.

Now let t ∈ {1, 2, ...,m − 1} be αt = 1. Then all other αi = 0 (i �= t) and
μm = αt · μt = μt, which contradicts the condition of pairwise difference of all
measures from the cycle.

So, for all coefficients in the linear decomposition of the measure μm we have
0 < αi < 1, i = 1, 2, ...,m − 1.

We apply the operator A to this decomposition of the measure μm and obtain:

μ1 = Aμm =
m−1∑

i=1

αiAμi =
m−1∑

i=1

αiμi+1 = α1μ2 + α2μ3 + ... + αm−1μm.

Therefore, we have (αm−1 �= 0):

μm =
1

αm−1
μ1 − 1

αm−1

m−2∑

i=1

αiμi+1.

Since the representation for the measure μm is unique, here and above we
obtain the following relations for the coefficients of the measure μ2:

0 < α2 = − α1

αm−1
< 0.

It follows from the contradiction obtained that the measure μm is linearly
independent of the other measures of the cycle. Consequently, any other measure
μi ∈ K is linearly independent of the other measures of the cycle K. The theorem
is proved.

Theorem 2. Let K = {μ1, μ2, ..., μm} be a finitely additive cycle of measures
for an arbitrary MC. If at least one cyclic measure μi is countably additive,
then all other cyclic measures in K and their mean measures are also countably
additive. Such cycles will be called countably additive.

Proof. Since μi+1 = Aμi, i = 1, 2, ...,m − 1 and μ1 = Aμm then the statement
of the theorem follows from the fact that the operator A has the space ca(X,Σ)
as its invariant subspace in ba(X,Σ), that is, transforms countably additive
measures into countably additive ones. The countable additivity of the mean
measure follows from the fact that ca(X,Σ) is a linear space, i.e. the sum of
countably additive measures is also countably additive and a countably additive
measure multiplied by a number is also countably additive.

The theorem is proved.



Cycles of Markov Chains 139

Proposition 1. There exist classical Markov chains with purely finitely additive
cycles of measures with period m ≥ 2.

Examples 4. An example of a classical MC is constructed, for which the exis-
tence of a purely finitely additive cycle of measures is proved.

For simplicity, we take a deterministic MC generated by a point transforma-
tion.

Let X = (0, 1) ∪ (1, 2), Σ = BX (Borel σ-algebra on X). Denote D1 = (0, 1),
D2 = (1, 2). Then D1 ∪ D2 = X, D1 ∩ D2 = ∅.

Let’s define the transition function of the Markov chain according to the
rules:

p(x, {1 + x2}) = 1, if x ∈ (0, 1);
p(y, {(y − 1)2}) = 1, if y ∈ (1, 2).
Then p(x,D2) = 1, if x ∈ D1; p(x,D1) = 1, if x ∈ D2.
Therefore, the sets of states D1 and D2 are cyclic and form a singular cycle

S = {D1,D2} with period m = 2.
Note that for any trajectory of the Markov chain beginning at the point

x0 ∈ (0, 1), its subsequence with even numbers tends to one from the right:

1 + x2
0, 1 + x16

0 , 1 + x64
0 , ... → 1,

and the subsequence with odd numbers tends to zero from the right:

x0, x4
0, x

32
0 , ... → 0

(and vice versa, for x0 ∈ (1, 2)).
By Šidak’s theorem (see [7, Theorem 2.2]) for a given MC there exists an

invariant finitely additive measure μ = Aμ ∈ Sba. It can be shown that for her
μ(D1) = μ(D2) = 1

2 > 0.
We construct two new measures μ1 and μ2 as the restriction of the measure

μ to the sets D1 and D2: μ1(E) = μ(E ∩ D1), μ2(E) = μ(E ∩ D2) for all
E ⊂ X, E ∈ Σ, and μ = μ1 +μ2. The measures μ1 and μ2 are singular and have
supports D1 and D2. It can be proved that Aμ1 = μ2 and Aμ2 = μ1. This means
that the measures μ1 and μ2 form a disjoint cycle of finitely additive measures
K = {μ1, μ2}.

Let 0 < ε < 1 and Dε
1 = (0, ε), Dε

2 = (1, 1 + ε). We can get that for any ε,
μ1(Dε

1) = 1/2, μ2(Dε
2) = 1/2. This means that the measures μ1 and μ2 and their

mean measure are purely finitely additive. The constructed MC has no invariant
countably additive measures.

It can be shown that the singular sets Dε
1 and Dε

2 for any ε form a cycle of
states Sε = {Dε

1,D
ε
2} and are also supports of measures μ1 and μ2.

It can be proved that the family of all pairwise disjoint invariant finitely
additive measures of a given MC has cardinality at least a continuum, i.e. 2ℵ0 .

Let us modify the considered MC - add the points 0 and 1 to X = (0, 1) ∪
(1, 2) and get X = [0, 2). Let us determine the possible transitions from these
points using the same formulas as the original MC. We get:

p(0, {1}) = 1, p(1, {0}) = 1.
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This means that the family of state sets S0 = {{0}, {1}} for the new MC is
a new singular cycle of dimension m = 2.

It corresponds to a new singular cycle of countably additive measures
K0 = {δ0, δ1}, where δ0 and δ1 are Dirac measures at the points 0 and 1, respec-
tively. Their mean measure μ = 1

2δ0 + 1
2δ1 is countably additive and is the only

invariant measure of the modified Markov chain in the class of countably additive
measures.

Note that the whole infinite family of disjoint purely finitely additive cycles
of measures K considered above on X = (0, 1) ∪ (1, 2) remains the same for the
new MC.

Theorem 3. Let K = {μ1, μ2, ..., μm}be a finitely additive cycle of measures for
an arbitrary MC. If at least one cyclic measure μi is purely finitely additive, then
all other cyclic measures in K and their mean measure are also purely finitely
additive. Such cycles will be called purely finitely additive.

Proof. Let the cyclic measure μ1 be purely finitely additive (the number is not
important here) and μ2 = Aμ1.

Suppose that the measure μ2 is not purely finitely additive. We decompose
the measure μ2 into two components μ2 = λca + λpfa where λca is a countably
additive measure, and λpfa is purely finitely additive. By assumption μ2 �= λpfa

whence λca �= 0, λca ≥ 0, λca(X) = γ > 0.
We apply the operator A to the measure μ2

Aμ2 = Aλca + Aλpfa = μ3.

The operator A takes countably additive measures to the same ones and is
isometric in the cone of positive measures. It follows from this that the measure
Aλca is countably additive, positive, and Aλca(X) = γ > 0. This means that
the measure μ3 also has a positive countably additive component Aλca.

Continuing this procedure further at the last step we get the decomposition

μ1 = Aμm = Am−2λca + Am−2λpfa,

where the measure Am−2λca is countably additive, positive, and Am−2λca(X) =
γ > 0.

Thus, the initial measure μ1 has a nonzero countably additive component
and, thus, is not purely finitely additive, which contradicts the conditions of the
theorem. Therefore, the measure μ2 is also purely finitely additive.

Repeating this procedure sequentially for all the other cyclic measures μ3,
μ4, ..., μm we get that they are all purely finitely additive.

It remains to prove that the mean cyclic measure is also purely finitely addi-
tive. But this follows from the fact that the space of purely finitely additive
measures pfa(X,Σ) is also linear, which is proved nontrivially in [2, Theorem
1.17]. The theorem is proved.

Now let us present an extended cyclic analogue of the Alexandroff-Yosida-
Hewitt decomposition given in Sect. 2.
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Theorem 4. Let K = {μ1, μ2, ..., μm} be a finitely additive cycle of measures of
pairwise disjoint measures with period m of an arbitrary MC and μi = μca

i +μpfa
i

a decomposition of cyclic measures into a countably additive component μca
i and a

purely finitely additive component μpfa
i , i = 1, 2, ...,m. Then these components

are also cyclic, form the cycles Kca and Kpfa, the cycle K is the coordinate
sum of these cycles K = Kca + Kpfa, and the mean measure of the cycle K
is uniquely representable as the sum of its countably additive and purely finitely
additive components, which coincide with the mean measures of the cycles Kca

and Kpfa, respectively. Moreover, the cycles Kca and Kpfa consist of pairwise
disjoint measures and are disjoint with each other, i.e. every measure from Kca

is disjoint with every measure from Kpfa.

Proof. We denote tuples of countably additive and purely finitely additive com-
ponents of cyclic measures of a cycle K by the symbols Kca = {μca

1 , μca
2 , ..., μca

m}
and Kpfa = {μpfa

1 , μpfa
2 , ..., μpfa

m }. The coordinate-wise sum of these two tuples
gives the original cycle K = Kca+Kpfa. Now we need to show that the measures
μca

i and μpfa
i are cyclic, that is, the tuples Kca and Kpfa are cycles.

Let us prove the theorem step by step.
Assume that some of the measures μca

i is zero. Then μi = μpfa
i , and according

to Theorem 3 all other measures μj = μpfa
j , i.e., the cycle K = Kpfa, and the

theorem is proved. Similarly, for μpfa
i = 0, the cycle K is countably additive

by Theorem 2, K = Kca, and the present theorem is proved. The main case
remains when all μca

i �= 0 and all μpfa
i �= 0, which is what we assume below.

Take two arbitrary measures μca
i and μca

j (i �= j) from Kca.
Then

0 ≤ μca
i ∧ μca

j ≤ (μca
i + μpfa

i ) ∧ (μca
j + μpfa

j ) = μi ∧ μj .

By the conditions of the theorem, all measures from K are pairwise disjoint.
Therefore, μi ∧μj = 0 and μca

i ∧μca
j = 0, i.e., all measures from Kca are pairwise

disjoint. And since, as we now assume, all measures from the tuple Kca are
nonzero, then they are all pairwise distinct.

Similarly, we obtain that all measures from the tuple Kpfa are also pairwise
disjoint and distinct.

We emphasize that the tuples of measures Kca and Kpfa have dimensions
m, which coincides with the period m of the original cycle K.

By the conditions of the theorem, the cycle K has an (arbitrary) period m ∈
N . Consequently, each cyclic measure μi of the cycle K is an invariant measure
of the operator Am, that is, μi = Amμi, i = 1, 2, ...,m. Take the first cyclic
measure with its Alexandroff-Yosida-Hewitt decomposition [2] μ1 = μca

1 + μpfa
1 .

By Šidak’s Theorem ([7, Theorem 2.5]) both components of the measure μ1 are
also invariant measures for the operator Am, that is, μca

1 = Amμca
1 , μpfa

1 =
Amμpfa

1 .
Each of these components generates its own cycle

K̂ca = {μca
1 , Aμca

1 , ..., Am−1μca
1 },
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K̂pfa = {μpfa
1 , Aμpfa

1 , ..., Am−1μpfa
1 }.

Obviously, the coordinate-wise sum of these two cycles gives the whole cycle
K = K̂ca + K̂pfa.

Since the measure μca
1 is countably additive, then, according to Theorem2, all

other cyclic measures of the cycle K̂ca are countably additive. Since the measure
μpfa
1 is purely finitely additive, then, according to Theorem3, all other cyclic

measures of the cycle K̂pfa are purely finitely additive.
By the uniqueness of the decomposition of any measure into countably addi-

tive and purely finitely additive components (see [2]), we obtain the following
equalities (here the symbol A0 means the identical operator):

μca
1 = A0μca

1 , μca
2 = Aμca

1 , ..., μca
m = Am−1μca

1 ,

where on the left are the measures of the tuple Kca, and on the right are the
cyclic measures of the cycle K̂ca.

Similar equalities are also true for purely finitely additive components.
From this we get that Kca = K̂ca, Kpfa = K̂pfa, i.e. tuples Kca and Kpfa

are cycles, and K = Kca + Kpfa. Note that this decomposition of the cycle K
is unique. The main statement of the theorem is proved.

Now the corresponding equalities for the mean measures of cycles are obvious.
In [2] (Theorem 1.16) it was proved that any countably additive measure is

disjoint with any purely finitely additive measure. Therefore, the cycles of the
measures Kca and Kpfa are disjoint. Above we showed that all measures from
Kca and Kpfa are also pairwise disjoint. The theorem is proved.

Corollary 1. A finitely additive cycle of measures K is countably additive if
and only if its mean measure is countably additive.

Corollary 2. A finitely additive cycle of measures K is purely finitely additive
if and only if its mean measure is purely finitely additive.

Under the conditions of Theorem4 just proved, the requirement of pairwise
disjointness of cyclic measures in the cycle K is essential. If we remove it, then
the theorem becomes incorrect.

Theorem 5. Let an arbitrary MC have one finitely additive cycle of measures
K of any period and its mean measure μ is the only invariant finitely additive
measure for the operator A. Then the cycle K and its mean measure μ are
countably additive.

Proof. Consider a cycle of finitely additive measures K = {μ1, μ2, ..., μm} and
its mean measure μ = 1

m

∑m
i=1 μi. In Sect. 3 shows that the mean measure μ of

the cycle K is invariant for the operator A, i.e. μ ∈ Δba. By the condition of the
theorem, this measure is unique in Δba, i.e. Δba = {μ}.

In ([5], Theorem 8.3), it is proved that if a MC has in Sba a unique invariant
measure μ, i.e. Δba = {μ}, then this measure is countably additive. Therefore,
by Theorem 2 and Corollary 1, the cycle K is countably additive.

The theorem is proved.



Cycles of Markov Chains 143

Therefore, it follows (under the above conditions) that there are no “single”
purely finitely additive cycles.
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