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Abstract. We study the properties of the new threshold selection
method for non-parametric estimation of the extremal index of a sta-
tionary sequence proposed in [15]. The method is to apply the so-called
discrepancy method based on the Cramér–von Mises–Smirnov’s statistic
calculated by the largest order statistics of a sample. The limit distri-
bution of this statistic is derived if the proportion of the largest order
statistics used tends to some nonzero constant. We also use the non-
standard modification of the Cramér–von Mises–Smirnov’s statistic to
propose the goodness-of-fit test procedure of ω2 type for distribution
tails.
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1 Introduction

Let (Xn) be a strictly stationary sequence with common cumulative distribution
function (cdf) F. Introduce the following

Definition 1 [11]. The sequence (Xn) is said to have the extremal index θ ∈
[0, 1], if for each τ > 0 there exists a sequence of real numbers un = un(τ) such
that

lim
n→∞ n(1 − F (un)) = τ, lim

n→∞ P (Mn ≤ un) = e−θτ ,

where Mn = max(X1, . . . , Xn).

The extremal index exists for a wide class of stationary sequences and reflects
a cluster structure of an underlying sequence and its local dependence properties.
The extremal index of an independent sequence is equal to 1, and the opposite
is not true. In particular, if the Berman’s condition holds, then a Gaussian
stationary sequence has the extremal index equal to 1, [11].

We consider the problem of non-parametric estimation of the extremal index.
It is important to note that absolutely all non-parametric extremal index esti-
mators require the selection of the threshold parameter u and/or the block size
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b or other declustering parameter. The well-known blocks estimator [1] and its
later modifications [19] depend of the choice of both b and u. Another classical
one, the runs estimator [24], requires the selection of u and the number of con-
secutive observations r running below u separating two clusters. The intervals
[8] and K-gaps [21] estimators require the choice of u only, whereas the sliding
blocks estimators proposed in [16] and simplified in [2] depend on the block size
only.

Less attention in the literature is devoted to methods of selection of the
mentioned parameters, in particular, the threshold parameter u. Usually, the
value of u is taken from high quantiles of an underlying sequence (Xn) or selected
visually corresponding to a stability plot of values of some estimate θ̂(u) with
respect to u. Fukutome et al. [9] proposed the procedure of selection among pairs
(u,K) for the K-gaps estimator based on Information Matrix Test.

Markovich and Rodionov [15] proposed the non-parametric tool to select one
of the necessary parameters for extremal index estimation. Although the pro-
posed method can be applied for selection of arbitrary aforementioned param-
eter, they focused on the selection of a threshold parameter u. The developed
method is an automatic procedure of extremal index estimation in cases if it is
based on estimators requiring the choice of only one parameter, in particular,
the intervals and K-gaps estimators. But in [15] this procedure was established
only if the proportion of the largest order statistics of a sample used vanishes as
n → ∞ (more precisely, see Theorem 3.3 [15]). The aim of this work is to inves-
tigate the opportunity of justification of the Markovich and Rodionov’s method
if the mentioned proportion tends to some positive constant c. The problem of
goodness-of-fit testing of distribution tails is also studied.

2 Preliminaries

2.1 Inter-exceedance Times and Their Asymptotic Behavior

Let us discuss the properties of a stationary sequence (Xn) and its extremal
index θ. Let L be the number of exceedances of level u by the sequence (Xi)n

i=1

and Sj(u) be the j-th exceedance time, that is,

Sj(u) = min{k > Sj−1(u) : Xk > u}, j = 1, . . . , L,

where S0 = 0. Define the inter-exceedance times as

Tj(u) = Sj+1(u) − Sj(u), j = 1, . . . , L − 1

and assume its number equal to L for convenience.
Introduce the following ϕ-mixing condition.

Definition 2 [8]. For real u and integers 1 ≤ k ≤ l, let Fk,l(u) be the σ-field,
generated by {Xi > u}, k ≤ i ≤ l. Introduce the mixing coefficients αn,q(u),

αn,q(u) = max
1≤k≤n−q

sup |P (B|A) − P (B)|,
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where the supremum is taken over all sets A ∈ F1,k(u) with P (A) > 0 and
B ∈ Fk+l,n(u).

The next theorem states that for some sequence of levels (un) it holds

F (un)T1(un) d→ Tθ =
{

η, with probability θ,
0, with probability 1 − θ,

where η is exponential with mean θ−1.

Theorem 1 [8]. Let the positive integers (rn) and the thresholds (un), n ≥ 1,
be such that rn → ∞, rnF (un) → τ and P{Mrn

≤ un} → exp(−θτ) as n → ∞
for some τ ∈ (0,∞) and θ ∈ (0, 1]. If there are positive integers qn = o(rn) such
that αcrn,qn

(un) = o(1) for all c > 0, then for t > 0

P{F (un)T1(un) > t} → θ exp(−θt) =: 1 − Fθ(t), n → ∞. (1)

The well-known intervals estimator of the extremal index is based on inter-
exceedance times and is found via method of moments applied to the limit
distribution (1). It is defined as ([8], see also [1], p. 391),

θ̂n(un) =
{min(1, θ̂1n(u)), if max{Ti(un), 1 ≤ i ≤ L} ≤ 2,

min(1, θ̂2n(u)), if max{Ti(un), 1 ≤ i ≤ L} > 2,
(2)

where

θ̂1n(un) =
2
(∑L

i=1 Ti(un)
)2

L
∑L

i=1(Ti(un))2
and θ̂2n(un) =

2
(∑L

i=1(Ti(un) − 1)
)2

L
∑L

i=1(Ti(un) − 1)(Ti(un) − 2)
.

It is known that √
L(θ̂n(un) − θ) d−→ N(0, θ3v(θ)), (3)

where v(θ) is the second moment of the cluster size distribution {π(m)}m≥1,
[18]. Moreover, Theorem 2.4 [18] states that non-zero elements of the sequence

Zi = F (un)Ti(un), i = 1, . . . , L, (4)

are asymptotically independent under the assumptions of Theorem 1 and some
assumptions on the cluster structure of the initial stationary sequence (Xn).

To be able to use these properties, Markovich and Rodionov [15] assume
that there exists a sequence (Ei)l

i=1, l = [θL], of independent exponentially
distributed random variables with mean θ−1 such that

Z(L−k) − E(l−k) = o

(
1√
k

)
(5)

uniformly for all k → ∞ with k/L → 0 as L → ∞. This assumption is based
on the following reasoning. It follows from Theorem 3.2 [18], that the limit
distribution of the statistic

√
L

(
L∑

i=1

f(Zi) − Ef(Z1)

)
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for some class of continuous f does not depend on substitution of the set of
r.v.s {Z∗

i }L
i=1 with cdf Fθ instead of {Zi}L

i=1 under some regularity conditions.
Moreover, for these r.v.s Theorem 2.2.1 and Lemma 2.2.3 [7] imply that if k/L →
c, c ∈ [0, θ) as k → ∞, L → ∞, then

√
k(E(l−k) − ln(l/k)/θ) = OP (1).

2.2 Discrepancy Method

The method proposed in [15] is based on the so-called discrepancy method ini-
tially introduced in [12] and [22], see also [13], for optimal bandwidth selection
in the problem of density estimation and applied at the first time for extremal
index estimation in [14]. Let ρ(·, ·) be some distance on the space of probabil-
ity measures, F̂n be the empirical cdf of the sequence (Xi)n

i=1 and {Fu, u ∈ U}
be the family of cdfs parametrized by one-dimensional parameter u. Then the
optimal value of u can be found as a solution of the discrepancy equation

ρ(F̂n, Fu) = δ, (6)

where δ, the so-called discrepancy value, is defined by the choice of ρ. The statis-
tic of the Cramér–von Mises–Smirnov goodness-of-fit test (CMS statistic)

ω2
n = n

∫
R

(F̂n(x) − F0(x))2dF (x)

was chosen as ρ in [15], though the statistics of other goodness-of-fit tests, e.g.,
the Kolmogorov and Anderson-Darling tests, can be applied in the discussing
problem. Then quantiles of the limit distribution of the CMS statistic can be
used as δ. The choice of the parameter u as û = argminuρ(F̂n, Fu) is usually not
optimal.

3 Main Results

In this section we consider the problem of the discrepancy method application
to choose the threshold/block-size parameter of the extremal index estimator.
To simplify, let us assume that we choose the threshold parameter u. It seems
that for this purpose one can take Fu = Tθ̂(u), F̂n be equal to the empirical
cdf of the sequence {Zi}L

i=1 and ρ be equal to the ω2 distance in (6). However,
we cannot directly apply the discrepancy method coupling with the ω2 distance
to this problem since Tθ is not a continuous distribution and thus the limit
distribution of the CMS statistic would depend on θ. To overcome this difficulty,
we introduce the modification of the CMS statistic based only on the largest
order statistics corresponding to {Zi}L

i=1, since, as was mentioned in Sect. 2.1, the
largest elements of this sequence are continuously distributed and asymptotically
independent. Thus we face the problem of goodness-of-fit testing of left-censored
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data and, in particular, distribution tails, see [20] for the principles of testing of
distribution tails.

Let (Yi)n
i=1 be independent identically distributed random variables with

common continuous cdf FY . Recall that if the hypothesis H0 : FY = F0 for
continuous cdf F0 holds, then the CMS statistic can be rewritten as

ω2
n =

n∑
i=1

(
F0(Y(i)) − i − 0.5

n

)2

+
1

12n
,

where Y(1) ≤ . . . ≤ Y(n) are the order statistics corresponding to (Yi)n
i=1. It is

well-known that the limit distribution of ω2
n (denote its cdf as A1) under H0

does not depend on F0.
Goodness-of-fit procedures for various types of left- and right-censored data

were proposed in a large number of works, we refer to the classical monograph [4]
and recent monograph [23]. But to the best of author’s knowledge, there are no
works in the literature proposing the modifications of goodness-of-fit statistics for
censored data having the same limit distribution as their full-sample analogues.
Introduce the following modification of the CMS statistic

ω̂2
k =

k−1∑
i=0

(
F0(Y(n−i)) − F0(Y(n−k))

1 − F0(Y(n−k))
− k − i − 0.5

k

)2

+
1

12k
.

Theorem 2. Let the hypothesis Ht
0 : {FY (x) = F0(x) for all large x} holds.

Then there is c such that
ω̂2

k
d→ ξ ∼ A1

as k → ∞, k/n < c, n → ∞.

Theorem 3.1, [15], is a particular case of the latter theorem for F0 = Fθ, where
Fθ is defined in (1). It is worth noting that there is no necessity to require the
continuity of F0 for all real x; we need this only for all sufficiently large x. The-
orem 2 allows us to propose the goodness-of-fit test for continuous distribution
tail of significance level α in the following way

if ω̂2
k > a1−α, then reject Ht

0,

where a1−α is the (1 − α)-quantile of A1. Additionally, one can show that this
test is consistent as k → ∞, k/n → 0, n → ∞. Clear, only the largest order
statistics of a sample can be used for testing the distribution tail hypotheses both
if k/n → 0 and if k/n < c. This problem is reasonable both if only the upper
tail of the distribution is of interest and/or if only the largest order statistics of
a sample are available.

Let us return to the problem of extremal index estimation. Consider

ω̃2
L(θ) =

k−1∑
i=0

(
Fθ(Z(L−i)) − Fθ(Z(L−k))

1 − Fθ(Z(L−k))
− k − i − 0.5

k

)2

+
1

12k
.
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The following theorem states that under some mild conditions the statistic ω̃2
L(θ)

with some estimator θ̂n substituted for θ has the same limit distribution as the
statistic ω̂2

k in Theorem 2 and the classical CMS statistic.

Theorem 3. [15]. Let the assumptions of Theorem 1 and the condition (5) hold.
Assume the extremal index estimator θ̂ = θ̂n is such that

√
mn(θ̂n − θ) d→ ζ, n → ∞,

where ζ has a non-degenerate cdf H. Assume the sequence of integers (mn) is
such that

k

mn
= o(1) and

(ln L)2

mn
= o(1)

as n → ∞. Then

ω̃2
L(θ̂n) d→ ξ ∼ A1.

Remark 1. All extremal index estimators mentioned in Introduction satisfy the
assumptions of Theorem 3 with H equal to the normal cdf with zero mean.

Theorem 3 guarantees the correctness of the discrepancy method

ω̃2
L(θ̂n) = δ, (7)

where δ can be selected equal to 0.05, the mode of A1, and k/L → 0 as
k → ∞ and L → ∞. The simulation study provided in [15] shows that
umax = max{u1, . . . , ud} is the best choice for threshold parameter both for the
intervals and the K-gaps estimators of the extremal index, where {u1, . . . , ud}
are solutions of the discrepancy equation (7). The numerical comparison of the
proposed method with other methods of threshold selection shows the significant
advantage of the developed procedure on a wide class of model processes, see
[15] for details. Although the limit distribution of the statistic ω̃2

L(θ̂n) does not
depend on k, the selection of k for samples of moderate sizes remains a problem.
The choice k = min(θ̂0L,Lβ) with β ∈ (0, 1), where θ̂0 is some pilot estimate, has
proven by simulation study to be the most suitable. But in case of k/L → c > 0
as k → ∞, L → ∞ the distribution of θ̂n affects the limit distribution of the
modified CMS statistic ω̃2

L(θ̂n) in contrast to the case c = 0, thus this limit
distribution would differ from A1.

The asymptotic distributions of goodness-of-fit test statistics with parame-
ters of an underlying distribution being estimated were intensively studied in
the literature. The starting point for this classical theory was in works [5] and
[10], whereas the common method to derive the limit distribution was proposed
in [6]. However, this method based on a multivariate central limit theorem and
convergence in the Skorokhod space cannot be directly applied to the problem
of evaluating the limit distribution of the statistic ω̃2

L(θ̂n) when the assumption
k/mn = o(1) does not hold (mn = O(L) for the intervals and K-gaps estima-
tors, thus we can talk about the case k/L = o(1)). For this purpose we consider
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another modification of the CMS statistic, the first analogue of which was intro-
duced in [17],

ω2
L,c(θ) = L

∫ ∞

x(c)

(F ∗
L(x) − Fθ(x))2dFθ(x), (8)

where F ∗
L(x) is the empirical distribution function of the sequence {Zi}i≤L and

x(c) = inf{x : Fθ(x) ≥ 1 − c} =: F←
θ (1 − c), c ∈ (0, 1). In the sequel, we will

assume 0 < c < θ, therefore Fθ(x(c)) = 1 − c. It follows from the results derived
in [17] and the assumption (5) that the statistic ω2

L,c converges in distribution
to ω2(c), where

ω2(c) =
∫ 1

1−c

B2(t)dt

and B(t) is the standard Brownian bridge, i.e. the Gaussian process on the
interval [0, 1] with mean zero and covariance function cov(Bt, Bs) = min(t, s) −
ts.

Denote �c(t) = max(t− (1− c), 0). Following the ideas of [6] we introduce the
sample process

yL,c(t, θ) =
√

L
(
F̂L,c(t, θ) − �c(t)

)
, t ∈ [0, 1],

where

F̂L,c(t, θ) =
1
L

L∑
i=1

I(1 − c < Fθ(Zi) ≤ t),

call it the truncated empirical distribution function of the sequence {Zi}i≤L.
Clear, since θ > c it holds ∫ 1

0

y2
L,c(t, θ)dt = ω2

L,c(θ).

Denote D, the Skorokhod space, i.e. the space of right-continuous functions with
left-hand limits on [0, 1] and metric d(x, y) (see, e.g., [3], p. 111). The following
theorem allows us to find the asymptotic distribution of the statistic ω2

L,c(θ̂n),
where θ̂n is the intervals estimator (2).

Theorem 4. Let the sequence {Zi} defined by (4) satisfies the assumptions of
Theorem 3.2 [18]. Assume θ > 0. For every c ∈ (0, θ) the estimated sample
process ŷc(t) := yL,c(t, θ̂n) converges weakly in D as n → ∞ to the Gaussian
process X(t), t ∈ [1 − c, 1], with mean zero and covariance function

C(t, s) = �c(min(t, s)) − (2 − 2/θ)�c(t)�c(s) (9)

− 1

2θ2
hc(t)(2hc(s) + h̃c(s)) − 1

2θ2
hc(s)(2hc(t) + h̃c(t)) +

v(θ)

θ
hc(t)hc(s),

where

hc(t) = (1−t) log
(

1 − t

θ

)
−c log

( c

θ

)
, h̃c(t) = (1−t) log2

(
1 − t

θ

)
−c log2

( c

θ

)

and v(θ) is defined in (3).
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We see that the covariance function of the process X(t) depends on θ and c.
This fact makes the usage of quantiles of the limit distribution of the statistic
ω2

L,c(θ̂n) (or some its appropriate normalization) as δ in the discrepancy method
(7) quite inconvenient in practice. However, high efficiency of the discrepancy
method apparently means that the values of the mentioned quantiles do not
strongly depend on the values of θ and c.

4 Proofs

4.1 Proof of Theorem 2

To prove Theorem 2, we need the following

Lemma 1 (Lemma 3.4.1, [7]). Let X,X1,X2, ...,Xn be i.i.d. random variables
with common cdf F , and let X(1) ≤ X(2) ≤ ... ≤ X(n) be the nth order statistics.
The joint distribution of {X(i)}n

i=n−k+1 given X(n−k) = t, for some k = 1, ...,

n − 1, equals the joint distribution of the set of order statistics {X∗
(i)}k

i=1 of i.i.d.
r.v.s {X∗

i }k
i=1 with cdf

Ft(x) = P{X ≤ x|X > t} =
F (x) − F (t)

1 − F (t)
, x > t.

Assume FY (x) = F0(x) for all x > x0 and set c = 1 − F0(x0) − ε for some
small ε > 0. Clear, since k/n < c then P (Y(n−k) > x0) → 1 under the assump-
tions.

Consider the conditional distribution of ω̂2
k given F0(Y(n−k)) = t, t > 1 − c.

By Lemma 1 and the assumption k/n < c, the conditional joint distribution of
the set of order statistics {F0(Y(i))}n

i=n−k+1 coincides with the joint distribution
of the set of order statistics {U∗

(i)}k
i=1 of a sample {U∗

i }k
i=1 from the uniform

distribution on [t, 1]. Therefore, it holds

ω̂2
k

d=
1

(1 − t)2

(
k∑

i=1

(
U∗
(i) − t − i − 0.5

k
(1 − t)

)2
)

+
1

12k
.

Next, V ∗
(i) = U∗

(i) − t, 1 ≤ i ≤ k, are the order statistics of a sample {V ∗
i }k

i=1

from the uniform distribution on [0, 1 − t]. Hence, it follows

ω̂2
k

d=
1

(1 − t)2

(
k∑

i=1

(
V ∗
(i) − i − 0.5

k
(1 − t)

)2
)

+
1

12k
.

Finally, W ∗
(i) = V ∗

(i)/(1 − t), 1 ≤ i ≤ k, are the order statistics of a sample
{W ∗

i }k
i=1 from the uniform distribution on [0, 1]. Therefore, we get

ω̂2
k

d=
k∑

i=1

(
W ∗

(i) − i − 0.5
k

)2

+
1

12k
.

It is easy to see, that the latter expression is exactly the CMS statistic and
converges in distribution to a random variable ξ with cdf A1 independently of
the value of t.
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4.2 Proof of Theorem 4

Assume for convenience that θ̂n = θ̂2n(un), where θ̂2n(un) is defined by (2). For
shortening, write θ̂ instead of θ̂n. We need the following

Lemma 2. Under the assumptions

√
L(θ̂ − θ) =

θ√
L

L∑
i=1

(
2Zi − θ

2
Z2

i − 1
)

+ oP (1),

where oP (1) denotes a sequence of random variables vanishing in probability.

Proof. (of Lemma 2)
Observe that

n −
L∑

i=1

Ti(un) ≤ TL+1(un) d= T1(un),

where the last relation holds by stationarity and definition of inter-exceedance
times. Denote rn = nF (un). Theorem 3.2 [18] implies that

√
rn (L/rn − 1) d−→ N(0, θv(θ)), (10)

thus for all ε > 0

P

(
√

rn

(
1 − 1

rn

L∑
i=1

Zi

)
> ε

)
= P

(
√

rn
F (un)

rn

(
n −

L∑
i=1

Ti(un)
)

> ε

)

≤ P

(
F (un)√

rn

TL+1(un) > ε

)
= P

(
1√
rn

Z1 > ε

)
→ 0, (11)

where the last relation holds by Theorem 1. Note that by (10) L/rn
P−→ 1, thus

√
L(θ̂ − θ) =

√
rn(θ̂ − θ) + oP (1).

The latter relations imply that

√
L(θ̂ − θ) =

√
rn

(
2rn/L

1
rn

∑L
i=1 Z2

i

− θ

)
+ oP (1) = θ

√
rn

(
2rn/(θL) − 1

rn

∑L
i=1 Z2

i

1
rn

∑L
i=1 Z2

i

)
+ oP (1).

Next, it follows from Lemma B.7 [18] that

1
rn

L∑
i=1

Z2
i

P−→ 2
θ
,

therefore
√

L(θ̂ − θ) =
θ2

2
√

rn

(
2rn

θL
− 1

rn

L∑
i=1

Z2
i

)
+ oP (1).

It immediately follows from (10) and the delta method that
√

rn(rn/L − 1) =
√

rn(L/rn − 1) + oP (1).
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Finally, we obtain from (11) and the latter

√
rn

(
2rn

θL
− 1

rn

L∑
i=1

Z
2
i

)
=

√
rn

(
4

θ
− 2L

θrn

− 1

rn

L∑
i=1

Z
2
i

)
+ oP (1)

=
4

θ

√
rn

(
1 − 1

rn

L∑
i=1

Zi

)

+
2

θ

√
rn

(
2

1

rn

L∑
i=1

Zi − 1

rn

L∑
i=1

1 − θ

2rn

L∑
i=1

Z
2
i

)
+ oP (1)

=
2√
rnθ

L∑
i=1

(
2Zi − θ

2
Z

2
i − 1

)
+ oP (1).

Applying again L/rn
P→ 1, we derive the result.

First of all, we observe that by (11)

yL,c(t, θ) =
√

L

(
1

L

L∑
i=1

I(1 − c < Fθ(Zi) ≤ t) − �c(t)

)

=
1√
L

L∑
i=1

(
I(1 − c < Fθ(Zi) ≤ t) − �c(t)Zi

)
+ �c(t)

√
L

(
1

L

L∑
i=1

Zi − 1

)

=
1√
L

L∑
i=1

(
I(1 − c < Fθ(Zi) ≤ t) − �c(t)Zi

)
+ oP (1). (12)

It is also worth noting that we can change all expressions of the form 1√
L

∑L
i=1 ξi

appearing in our proof with Eξi = 0 for all i on expressions of the form
1√
rn

∑rn

i=1 ξi using the same argument as in the proof of Theorem 3.2 [18] based
on the formula (10). It means that the randomness of L does not affect the
asymptotic of ŷc(t).

We follow the ideas of the proof of Theorem 2 in [6]. For shortening, write θ̂

instead of θ̂n. Denote

t̂(t) = Fθ(F←
θ̂

(t)), t ∈ [1 − c, 1].

Since θ̂ is a consistent estimator of θ, see [18], we have

P (t̂(t) ≥ 1 − c) → 1 (13)

for all t ∈ (1 − c, 1], and for t = 1 − c the latter probability tends to 1/2. First,
we will show that

yL,c(t̂(t), θ) − yL,c(t, θ)
P−→ 0 (14)

uniformly for t ∈ [1 − c, 1]. We restrict ourselves to the study of the case t ∈
(1−c, 1], the case t = 1−c is similar. Denote x1(t) = F←

θ1
(t) and t̃(t) = Fθ2(x1(t))

for θ1, θ2 ≥ c and t ∈ (1 − c, 1]. We have

sup
t∈(1−c,1]

|t̃ − t| ≤ sup
t∈(1−c,1]

|Fθ2(x1(t)) − Fθ1(x1(t))|

= sup
x>F ←

θ1
(1−c)

∣∣∣∣(θ2 − θ1)
∂Fθ(x)

∂θ

∣∣∣∣
θ=θ∗

∣∣∣∣ ,
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where θ∗ is between θ1 and θ2. Since
∣∣∣∣∂Fθ(x)

∂θ

∣∣∣∣ =
∣∣(θ2 − 1)e−θx

∣∣ ≤ 1

for all θ ∈ [0, 1] and x > F←
θ1

(1 − c), we derive that t̃ converges uniformly to t as
θ1 → θ and θ2 → θ. Therefore, since θ̂ converges to θ in probability,

sup
t∈(1−c,1]

|t̂(t) − t| P−→ 0.

An appeal to Lemma B.7 [18] gives us that yL,c(t, θ)
d→ y(t), t ∈ (1 − c, 1], in

D where y(t) is the Gaussian random process with mean zero and covariance
function

cov(y(t), y(s)) = �c(min(t, s)) − (2 − 2/θ)�c(t)�c(s).

The rest of the proof of (14) coincides with the corresponding steps in the proof
of Lemma 1 [6].

Now let us show that

ŷc(t) = yL,c(t, θ) −
√

L(θ̂ − θ)(g(t, θ) − g(1 − c, θ)) + oP (1), t ∈ [1 − c, 1], (15)

where

g(t, θ) =
1 − t

θ2
log

(
1 − t

θ

)
.

Note that by definition ŷc(1 − c) = 0 a.s., thus it remains to show (15) for
t ∈ (1 − c, 1]. First we find the explicit form of the “estimated” empirical cdf
F̂L,c(t̂(t), θ). We have

F̂L,c(t̂(t), θ) =
1
L

L∑
i=1

I
(
1 − c ≤ Fθ(Zi) < Fθ(F←

θ̂
(t))

)

=
1
L

L∑
i=1

I
(
Fθ̂(F

←
θ (1 − c)) < Fθ̂(Zi) ≤ t

)

= FL,c(t, θ̂) − 1
L

L∑
i=1

I
(
1 − c ≤ Fθ̂(Zi) < Fθ̂(F

←
θ (1 − c))

)

= FL,c(t, θ̂) − 1
L

L∑
i=1

I
(
t̂(1 − c) < Fθ(Zi) ≤ 1 − c

)
.

Denote

F̃L,c(t, θ) =
1
L

L∑
i=1

I (t < Fθ(Zi) ≤ 1 − c) , t ≤ 1 − c.
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Therefore we derive for the estimated sample process ŷc(t)

ŷc(t) =
√

L(FL,c(t, θ̂) − �c(t))

=
√

L
(
FL,c(t̂(t), θ) − �c(t̂(t))

)
+

√
L

(
�c(t̂(t)) − �c(t)

)
+

√
LF̃L,c(t̂(1 − c), θ)

= yL,c(t̂(t), θ) +
√

L
(
�c(t̂(t)) − �c(t)

)
+

√
LF̃L,c(t̂(1 − c), θ).

Consider the third summand on the right-hand side. Fix c1 ∈ (c, θ). Note that
(14) remains true for all c1 < θ, thus we derive

yL,c1(t̂(1 − c), θ) − yL,c1(1 − c, θ) P−→ 0.

On the other hand,

yL,c1 (t̂(1 − c), θ) − yL,c1 (1 − c, θ)

=
√

L(FL,c1 (t̂(1 − c), θ̂) − �c1 (t̂(1 − c))) −
√

L(FL,c1 (1 − c, θ̂) − �c1 (1 − c))

=
√

L(1 − c − t̂(1 − c)) −
√

LF̃L,c(t̂(1 − c), θ),

therefore we derive
√

LF̃L,c(t̂(1 − c), θ) =
√

L(1 − c − t̂(1 − c)) + oP (1).

Next, (13) implies that
√

L
(
�c(t̂(t)) − �c(t)

)
=

√
L(t̂(t) − t) + oP (1) in case

of t ∈ (1 − c, 1]. We have

√
L

(
�c(t̂(t)) − �c(t)

)
=

√
L

(
Fθ(F←

θ̂
(t)) − Fθ̂(F

←
θ̂

(t))
)

+ oP (1)

=
√

L(θ − θ̂)
∂Fγ(x)

∂γ

∣∣∣∣x=F ←
θ̂

(t)

γ=θ∗
+ oP (1),

where θ∗ is between θ and θ̂. Similarly to the corresponding steps in the proof
of Lemma 2 [6] we can show that

∂Fγ(x)
∂γ

∣∣∣∣x=F ←
θ̂

(t)

γ=θ∗
=

∂Fγ(x)
∂γ

∣∣∣∣x=F ←
θ

(t)

γ=θ

+ oP (1),

since ∂Fγ(x)/∂γ is continuous with respect to (x, γ) for all x > F←
θ (1 − c) and

γ ∈ (0, 1]. Clear,

∂Fγ(x)
∂γ

∣∣∣∣x=F ←
θ

(t)

γ=θ

= (x − 1)e−γx
∣∣

x=F ←
θ

(t)

γ=θ

=
1 − t

θ2
log

(
1 − t

θ

)
= g(t, θ).

Note that the relation
√

L(t̂(t) − t) =
√

L(θ − θ̂)g(t, θ) + oP (1)

derived above for t ∈ (1− c, 1] remains true also for t = 1− c. Finally, combining
the previous relations and using (14), we derive (15).
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Define the empirical process

zL(t) =
1√
L

L∑
i=1

(
I(1−c < Fθ(Zi) ≤ t)−�c(t)Zi−θ

(
2Zi− θ

2
Z2

i −1
)
(g(t, θ)−g(1−c, θ))

)

and notice that ŷc(t) = zL(t) + oP (1) by Lemma 2, (12) and (15). To complete
the proof of Theorem 4 we need to prove that

(zL(t1), . . . , zL(tk)) P−→ (X(t1), . . . , X(tk)), for all 1 − c ≤ t1 < . . . < tk ≤ 1,

where X(t) is the Gaussian process on [1 − c, 1] with mean zero and covariance
function (9), and justify that the sequence of random elements (zL) is tight.
These parts of the proof are carried out similarly to the proofs of Lemma 3 and
Lemma 4 [6], respectively.

5 Conclusion

The paper provides a study of properties of the new threshold selection method
for non-parametric estimation of the extremal index of stationary sequences pro-
posed in [15]. We consider a specific normalization of the discrepancy statistic
based on some modifications of the Cramér–von Mises–Smirnov statistic ω2 that
is calculated by only k largest order statistics of a sample. We show that the
asymptotic distribution of the truncated Cramér–von Mises–Smirnov statistic
(8) as k → ∞, k/L → c, L → ∞ depends both on c and the limit distribution of
the extremal index estimator being substituted in the statistic. We also develop
the goodness-of-fit test for distribution tails based on the ω2 statistic modifica-
tion, which limit distribution coincides with the limit distribution of the classical
Cramér–von Mises–Smirnov statistic under null hypothesis.
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