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Preface

This volume contains a collection of revised selected full-text papers presented at
the 5th International Conference on Stochastic Methods (ICSM-5), held in
Moscow, Russia, November 23–27, 2020.

ICSM-5 is the successor to the previous conferences—the All-Russian
Colloquium School on Stochastic Methods (held from 1994 till 2013) and the
ICSM series—which took place in the last 5 years. ICSM-5 inherits its conferencing
features configuration and the traditions initiated by the previous conferences and
keeps and develops the ICSM participants’ international community formed in the
last several years of successful work. The aim of ICSM-5 is to unite the efforts of
Russian and foreign researchers from various academic and research organizations
for the development, exchange and generalization of the accumulated experience in
the field of stochastic analysis and applications of stochastic modeling methods.
The geography of the conference participants is traditionally wide and covers all
parts of the world. In 2020, ICSM-5 gathered 110 submissions from authors from
19 different countries. From these, 87 high-quality papers in English were accepted
and presented during the conference. The current volume contains 29 extended
papers which were recommended by session chairs and selected by the Scientific
Committee for Springer post-proceedings.

The content of this volume is related to the following subjects:

– Analytical modeling,
– Asymptotic methods and limit theorems,
– Stochastic analysis,
– Markov processes,
– Martingales,
– Insurance and financial mathematics,
– Queuing theory and stochastic networks,
– Reliability theory and risk analysis,
– Statistical methods and applications,
– Stochastic methods in computer science,

v



– Machine learning and data analysis,
– Probability in industry, economics and other fields.

All the papers selected for the post-proceedings volume are given in the form
presented by the authors. These papers are of interest to everyone working in the
field of stochastic analysis and applications of stochastic models.

February 2021 Albert N. Shiryaev
Scientific Committee Chair
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On Threshold Selection Problem
for Extremal Index Estimation

Igor Rodionov(B)

Trapeznikov Institute of Control Sciences of RAS, Moscow, Russian Federation

Abstract. We study the properties of the new threshold selection
method for non-parametric estimation of the extremal index of a sta-
tionary sequence proposed in [15]. The method is to apply the so-called
discrepancy method based on the Cramér–von Mises–Smirnov’s statistic
calculated by the largest order statistics of a sample. The limit distri-
bution of this statistic is derived if the proportion of the largest order
statistics used tends to some nonzero constant. We also use the non-
standard modification of the Cramér–von Mises–Smirnov’s statistic to
propose the goodness-of-fit test procedure of ω2 type for distribution
tails.

Keywords: Extremal index · Threshold selection · Discrepancy
method · Stationary sequence · Cramér–von Mises–Smirnov’s statistic ·
Goodness-of-fit · Distribution tail

1 Introduction

Let (Xn) be a strictly stationary sequence with common cumulative distribution
function (cdf) F. Introduce the following

Definition 1 [11]. The sequence (Xn) is said to have the extremal index θ ∈
[0, 1], if for each τ > 0 there exists a sequence of real numbers un = un(τ) such
that

lim
n→∞ n(1 − F (un)) = τ, lim

n→∞ P (Mn ≤ un) = e−θτ ,

where Mn = max(X1, . . . , Xn).

The extremal index exists for a wide class of stationary sequences and reflects
a cluster structure of an underlying sequence and its local dependence properties.
The extremal index of an independent sequence is equal to 1, and the opposite
is not true. In particular, if the Berman’s condition holds, then a Gaussian
stationary sequence has the extremal index equal to 1, [11].

We consider the problem of non-parametric estimation of the extremal index.
It is important to note that absolutely all non-parametric extremal index esti-
mators require the selection of the threshold parameter u and/or the block size

The author was partly supported by the Russian Foundation for Basic Research (grant
No. 19-01-00090) and by Young Russian Mathematics Award.

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2021
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4 I. Rodionov

b or other declustering parameter. The well-known blocks estimator [1] and its
later modifications [19] depend of the choice of both b and u. Another classical
one, the runs estimator [24], requires the selection of u and the number of con-
secutive observations r running below u separating two clusters. The intervals
[8] and K-gaps [21] estimators require the choice of u only, whereas the sliding
blocks estimators proposed in [16] and simplified in [2] depend on the block size
only.

Less attention in the literature is devoted to methods of selection of the
mentioned parameters, in particular, the threshold parameter u. Usually, the
value of u is taken from high quantiles of an underlying sequence (Xn) or selected
visually corresponding to a stability plot of values of some estimate θ̂(u) with
respect to u. Fukutome et al. [9] proposed the procedure of selection among pairs
(u,K) for the K-gaps estimator based on Information Matrix Test.

Markovich and Rodionov [15] proposed the non-parametric tool to select one
of the necessary parameters for extremal index estimation. Although the pro-
posed method can be applied for selection of arbitrary aforementioned param-
eter, they focused on the selection of a threshold parameter u. The developed
method is an automatic procedure of extremal index estimation in cases if it is
based on estimators requiring the choice of only one parameter, in particular,
the intervals and K-gaps estimators. But in [15] this procedure was established
only if the proportion of the largest order statistics of a sample used vanishes as
n → ∞ (more precisely, see Theorem 3.3 [15]). The aim of this work is to inves-
tigate the opportunity of justification of the Markovich and Rodionov’s method
if the mentioned proportion tends to some positive constant c. The problem of
goodness-of-fit testing of distribution tails is also studied.

2 Preliminaries

2.1 Inter-exceedance Times and Their Asymptotic Behavior

Let us discuss the properties of a stationary sequence (Xn) and its extremal
index θ. Let L be the number of exceedances of level u by the sequence (Xi)n

i=1

and Sj(u) be the j-th exceedance time, that is,

Sj(u) = min{k > Sj−1(u) : Xk > u}, j = 1, . . . , L,

where S0 = 0. Define the inter-exceedance times as

Tj(u) = Sj+1(u) − Sj(u), j = 1, . . . , L − 1

and assume its number equal to L for convenience.
Introduce the following ϕ-mixing condition.

Definition 2 [8]. For real u and integers 1 ≤ k ≤ l, let Fk,l(u) be the σ-field,
generated by {Xi > u}, k ≤ i ≤ l. Introduce the mixing coefficients αn,q(u),

αn,q(u) = max
1≤k≤n−q

sup |P (B|A) − P (B)|,
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where the supremum is taken over all sets A ∈ F1,k(u) with P (A) > 0 and
B ∈ Fk+l,n(u).

The next theorem states that for some sequence of levels (un) it holds

F (un)T1(un) d→ Tθ =
{

η, with probability θ,
0, with probability 1 − θ,

where η is exponential with mean θ−1.

Theorem 1 [8]. Let the positive integers (rn) and the thresholds (un), n ≥ 1,
be such that rn → ∞, rnF (un) → τ and P{Mrn

≤ un} → exp(−θτ) as n → ∞
for some τ ∈ (0,∞) and θ ∈ (0, 1]. If there are positive integers qn = o(rn) such
that αcrn,qn

(un) = o(1) for all c > 0, then for t > 0

P{F (un)T1(un) > t} → θ exp(−θt) =: 1 − Fθ(t), n → ∞. (1)

The well-known intervals estimator of the extremal index is based on inter-
exceedance times and is found via method of moments applied to the limit
distribution (1). It is defined as ([8], see also [1], p. 391),

θ̂n(un) =
{min(1, θ̂1n(u)), if max{Ti(un), 1 ≤ i ≤ L} ≤ 2,

min(1, θ̂2n(u)), if max{Ti(un), 1 ≤ i ≤ L} > 2,
(2)

where

θ̂1n(un) =
2
(∑L

i=1 Ti(un)
)2

L
∑L

i=1(Ti(un))2
and θ̂2n(un) =

2
(∑L

i=1(Ti(un) − 1)
)2

L
∑L

i=1(Ti(un) − 1)(Ti(un) − 2)
.

It is known that √
L(θ̂n(un) − θ) d−→ N(0, θ3v(θ)), (3)

where v(θ) is the second moment of the cluster size distribution {π(m)}m≥1,
[18]. Moreover, Theorem 2.4 [18] states that non-zero elements of the sequence

Zi = F (un)Ti(un), i = 1, . . . , L, (4)

are asymptotically independent under the assumptions of Theorem 1 and some
assumptions on the cluster structure of the initial stationary sequence (Xn).

To be able to use these properties, Markovich and Rodionov [15] assume
that there exists a sequence (Ei)l

i=1, l = [θL], of independent exponentially
distributed random variables with mean θ−1 such that

Z(L−k) − E(l−k) = o

(
1√
k

)
(5)

uniformly for all k → ∞ with k/L → 0 as L → ∞. This assumption is based
on the following reasoning. It follows from Theorem 3.2 [18], that the limit
distribution of the statistic

√
L

(
L∑

i=1

f(Zi) − Ef(Z1)

)
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for some class of continuous f does not depend on substitution of the set of
r.v.s {Z∗

i }L
i=1 with cdf Fθ instead of {Zi}L

i=1 under some regularity conditions.
Moreover, for these r.v.s Theorem 2.2.1 and Lemma 2.2.3 [7] imply that if k/L →
c, c ∈ [0, θ) as k → ∞, L → ∞, then

√
k(E(l−k) − ln(l/k)/θ) = OP (1).

2.2 Discrepancy Method

The method proposed in [15] is based on the so-called discrepancy method ini-
tially introduced in [12] and [22], see also [13], for optimal bandwidth selection
in the problem of density estimation and applied at the first time for extremal
index estimation in [14]. Let ρ(·, ·) be some distance on the space of probabil-
ity measures, F̂n be the empirical cdf of the sequence (Xi)n

i=1 and {Fu, u ∈ U}
be the family of cdfs parametrized by one-dimensional parameter u. Then the
optimal value of u can be found as a solution of the discrepancy equation

ρ(F̂n, Fu) = δ, (6)

where δ, the so-called discrepancy value, is defined by the choice of ρ. The statis-
tic of the Cramér–von Mises–Smirnov goodness-of-fit test (CMS statistic)

ω2
n = n

∫
R

(F̂n(x) − F0(x))2dF (x)

was chosen as ρ in [15], though the statistics of other goodness-of-fit tests, e.g.,
the Kolmogorov and Anderson-Darling tests, can be applied in the discussing
problem. Then quantiles of the limit distribution of the CMS statistic can be
used as δ. The choice of the parameter u as û = argminuρ(F̂n, Fu) is usually not
optimal.

3 Main Results

In this section we consider the problem of the discrepancy method application
to choose the threshold/block-size parameter of the extremal index estimator.
To simplify, let us assume that we choose the threshold parameter u. It seems
that for this purpose one can take Fu = Tθ̂(u), F̂n be equal to the empirical
cdf of the sequence {Zi}L

i=1 and ρ be equal to the ω2 distance in (6). However,
we cannot directly apply the discrepancy method coupling with the ω2 distance
to this problem since Tθ is not a continuous distribution and thus the limit
distribution of the CMS statistic would depend on θ. To overcome this difficulty,
we introduce the modification of the CMS statistic based only on the largest
order statistics corresponding to {Zi}L

i=1, since, as was mentioned in Sect. 2.1, the
largest elements of this sequence are continuously distributed and asymptotically
independent. Thus we face the problem of goodness-of-fit testing of left-censored
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data and, in particular, distribution tails, see [20] for the principles of testing of
distribution tails.

Let (Yi)n
i=1 be independent identically distributed random variables with

common continuous cdf FY . Recall that if the hypothesis H0 : FY = F0 for
continuous cdf F0 holds, then the CMS statistic can be rewritten as

ω2
n =

n∑
i=1

(
F0(Y(i)) − i − 0.5

n

)2

+
1

12n
,

where Y(1) ≤ . . . ≤ Y(n) are the order statistics corresponding to (Yi)n
i=1. It is

well-known that the limit distribution of ω2
n (denote its cdf as A1) under H0

does not depend on F0.
Goodness-of-fit procedures for various types of left- and right-censored data

were proposed in a large number of works, we refer to the classical monograph [4]
and recent monograph [23]. But to the best of author’s knowledge, there are no
works in the literature proposing the modifications of goodness-of-fit statistics for
censored data having the same limit distribution as their full-sample analogues.
Introduce the following modification of the CMS statistic

ω̂2
k =

k−1∑
i=0

(
F0(Y(n−i)) − F0(Y(n−k))

1 − F0(Y(n−k))
− k − i − 0.5

k

)2

+
1

12k
.

Theorem 2. Let the hypothesis Ht
0 : {FY (x) = F0(x) for all large x} holds.

Then there is c such that
ω̂2

k
d→ ξ ∼ A1

as k → ∞, k/n < c, n → ∞.

Theorem 3.1, [15], is a particular case of the latter theorem for F0 = Fθ, where
Fθ is defined in (1). It is worth noting that there is no necessity to require the
continuity of F0 for all real x; we need this only for all sufficiently large x. The-
orem 2 allows us to propose the goodness-of-fit test for continuous distribution
tail of significance level α in the following way

if ω̂2
k > a1−α, then reject Ht

0,

where a1−α is the (1 − α)-quantile of A1. Additionally, one can show that this
test is consistent as k → ∞, k/n → 0, n → ∞. Clear, only the largest order
statistics of a sample can be used for testing the distribution tail hypotheses both
if k/n → 0 and if k/n < c. This problem is reasonable both if only the upper
tail of the distribution is of interest and/or if only the largest order statistics of
a sample are available.

Let us return to the problem of extremal index estimation. Consider

ω̃2
L(θ) =

k−1∑
i=0

(
Fθ(Z(L−i)) − Fθ(Z(L−k))

1 − Fθ(Z(L−k))
− k − i − 0.5

k

)2

+
1

12k
.
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The following theorem states that under some mild conditions the statistic ω̃2
L(θ)

with some estimator θ̂n substituted for θ has the same limit distribution as the
statistic ω̂2

k in Theorem 2 and the classical CMS statistic.

Theorem 3. [15]. Let the assumptions of Theorem 1 and the condition (5) hold.
Assume the extremal index estimator θ̂ = θ̂n is such that

√
mn(θ̂n − θ) d→ ζ, n → ∞,

where ζ has a non-degenerate cdf H. Assume the sequence of integers (mn) is
such that

k

mn
= o(1) and

(ln L)2

mn
= o(1)

as n → ∞. Then

ω̃2
L(θ̂n) d→ ξ ∼ A1.

Remark 1. All extremal index estimators mentioned in Introduction satisfy the
assumptions of Theorem 3 with H equal to the normal cdf with zero mean.

Theorem 3 guarantees the correctness of the discrepancy method

ω̃2
L(θ̂n) = δ, (7)

where δ can be selected equal to 0.05, the mode of A1, and k/L → 0 as
k → ∞ and L → ∞. The simulation study provided in [15] shows that
umax = max{u1, . . . , ud} is the best choice for threshold parameter both for the
intervals and the K-gaps estimators of the extremal index, where {u1, . . . , ud}
are solutions of the discrepancy equation (7). The numerical comparison of the
proposed method with other methods of threshold selection shows the significant
advantage of the developed procedure on a wide class of model processes, see
[15] for details. Although the limit distribution of the statistic ω̃2

L(θ̂n) does not
depend on k, the selection of k for samples of moderate sizes remains a problem.
The choice k = min(θ̂0L,Lβ) with β ∈ (0, 1), where θ̂0 is some pilot estimate, has
proven by simulation study to be the most suitable. But in case of k/L → c > 0
as k → ∞, L → ∞ the distribution of θ̂n affects the limit distribution of the
modified CMS statistic ω̃2

L(θ̂n) in contrast to the case c = 0, thus this limit
distribution would differ from A1.

The asymptotic distributions of goodness-of-fit test statistics with parame-
ters of an underlying distribution being estimated were intensively studied in
the literature. The starting point for this classical theory was in works [5] and
[10], whereas the common method to derive the limit distribution was proposed
in [6]. However, this method based on a multivariate central limit theorem and
convergence in the Skorokhod space cannot be directly applied to the problem
of evaluating the limit distribution of the statistic ω̃2

L(θ̂n) when the assumption
k/mn = o(1) does not hold (mn = O(L) for the intervals and K-gaps estima-
tors, thus we can talk about the case k/L = o(1)). For this purpose we consider
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another modification of the CMS statistic, the first analogue of which was intro-
duced in [17],

ω2
L,c(θ) = L

∫ ∞

x(c)

(F ∗
L(x) − Fθ(x))2dFθ(x), (8)

where F ∗
L(x) is the empirical distribution function of the sequence {Zi}i≤L and

x(c) = inf{x : Fθ(x) ≥ 1 − c} =: F←
θ (1 − c), c ∈ (0, 1). In the sequel, we will

assume 0 < c < θ, therefore Fθ(x(c)) = 1 − c. It follows from the results derived
in [17] and the assumption (5) that the statistic ω2

L,c converges in distribution
to ω2(c), where

ω2(c) =
∫ 1

1−c

B2(t)dt

and B(t) is the standard Brownian bridge, i.e. the Gaussian process on the
interval [0, 1] with mean zero and covariance function cov(Bt, Bs) = min(t, s) −
ts.

Denote �c(t) = max(t− (1− c), 0). Following the ideas of [6] we introduce the
sample process

yL,c(t, θ) =
√

L
(
F̂L,c(t, θ) − �c(t)

)
, t ∈ [0, 1],

where

F̂L,c(t, θ) =
1
L

L∑
i=1

I(1 − c < Fθ(Zi) ≤ t),

call it the truncated empirical distribution function of the sequence {Zi}i≤L.
Clear, since θ > c it holds ∫ 1

0

y2
L,c(t, θ)dt = ω2

L,c(θ).

Denote D, the Skorokhod space, i.e. the space of right-continuous functions with
left-hand limits on [0, 1] and metric d(x, y) (see, e.g., [3], p. 111). The following
theorem allows us to find the asymptotic distribution of the statistic ω2

L,c(θ̂n),
where θ̂n is the intervals estimator (2).

Theorem 4. Let the sequence {Zi} defined by (4) satisfies the assumptions of
Theorem 3.2 [18]. Assume θ > 0. For every c ∈ (0, θ) the estimated sample
process ŷc(t) := yL,c(t, θ̂n) converges weakly in D as n → ∞ to the Gaussian
process X(t), t ∈ [1 − c, 1], with mean zero and covariance function

C(t, s) = �c(min(t, s)) − (2 − 2/θ)�c(t)�c(s) (9)

− 1

2θ2
hc(t)(2hc(s) + h̃c(s)) − 1

2θ2
hc(s)(2hc(t) + h̃c(t)) +

v(θ)

θ
hc(t)hc(s),

where

hc(t) = (1−t) log
(

1 − t

θ

)
−c log

( c

θ

)
, h̃c(t) = (1−t) log2

(
1 − t

θ

)
−c log2

( c

θ

)

and v(θ) is defined in (3).
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We see that the covariance function of the process X(t) depends on θ and c.
This fact makes the usage of quantiles of the limit distribution of the statistic
ω2

L,c(θ̂n) (or some its appropriate normalization) as δ in the discrepancy method
(7) quite inconvenient in practice. However, high efficiency of the discrepancy
method apparently means that the values of the mentioned quantiles do not
strongly depend on the values of θ and c.

4 Proofs

4.1 Proof of Theorem 2

To prove Theorem 2, we need the following

Lemma 1 (Lemma 3.4.1, [7]). Let X,X1,X2, ...,Xn be i.i.d. random variables
with common cdf F , and let X(1) ≤ X(2) ≤ ... ≤ X(n) be the nth order statistics.
The joint distribution of {X(i)}n

i=n−k+1 given X(n−k) = t, for some k = 1, ...,

n − 1, equals the joint distribution of the set of order statistics {X∗
(i)}k

i=1 of i.i.d.
r.v.s {X∗

i }k
i=1 with cdf

Ft(x) = P{X ≤ x|X > t} =
F (x) − F (t)

1 − F (t)
, x > t.

Assume FY (x) = F0(x) for all x > x0 and set c = 1 − F0(x0) − ε for some
small ε > 0. Clear, since k/n < c then P (Y(n−k) > x0) → 1 under the assump-
tions.

Consider the conditional distribution of ω̂2
k given F0(Y(n−k)) = t, t > 1 − c.

By Lemma 1 and the assumption k/n < c, the conditional joint distribution of
the set of order statistics {F0(Y(i))}n

i=n−k+1 coincides with the joint distribution
of the set of order statistics {U∗

(i)}k
i=1 of a sample {U∗

i }k
i=1 from the uniform

distribution on [t, 1]. Therefore, it holds

ω̂2
k

d=
1

(1 − t)2

(
k∑

i=1

(
U∗
(i) − t − i − 0.5

k
(1 − t)

)2
)

+
1

12k
.

Next, V ∗
(i) = U∗

(i) − t, 1 ≤ i ≤ k, are the order statistics of a sample {V ∗
i }k

i=1

from the uniform distribution on [0, 1 − t]. Hence, it follows

ω̂2
k

d=
1

(1 − t)2

(
k∑

i=1

(
V ∗
(i) − i − 0.5

k
(1 − t)

)2
)

+
1

12k
.

Finally, W ∗
(i) = V ∗

(i)/(1 − t), 1 ≤ i ≤ k, are the order statistics of a sample
{W ∗

i }k
i=1 from the uniform distribution on [0, 1]. Therefore, we get

ω̂2
k

d=
k∑

i=1

(
W ∗

(i) − i − 0.5
k

)2

+
1

12k
.

It is easy to see, that the latter expression is exactly the CMS statistic and
converges in distribution to a random variable ξ with cdf A1 independently of
the value of t.



On Threshold Selection Problem for Extremal Index Estimation 11

4.2 Proof of Theorem 4

Assume for convenience that θ̂n = θ̂2n(un), where θ̂2n(un) is defined by (2). For
shortening, write θ̂ instead of θ̂n. We need the following

Lemma 2. Under the assumptions

√
L(θ̂ − θ) =

θ√
L

L∑
i=1

(
2Zi − θ

2
Z2

i − 1
)

+ oP (1),

where oP (1) denotes a sequence of random variables vanishing in probability.

Proof. (of Lemma 2)
Observe that

n −
L∑

i=1

Ti(un) ≤ TL+1(un) d= T1(un),

where the last relation holds by stationarity and definition of inter-exceedance
times. Denote rn = nF (un). Theorem 3.2 [18] implies that

√
rn (L/rn − 1) d−→ N(0, θv(θ)), (10)

thus for all ε > 0

P

(
√

rn

(
1 − 1

rn

L∑
i=1

Zi

)
> ε

)
= P

(
√

rn
F (un)

rn

(
n −

L∑
i=1

Ti(un)
)

> ε

)

≤ P

(
F (un)√

rn

TL+1(un) > ε

)
= P

(
1√
rn

Z1 > ε

)
→ 0, (11)

where the last relation holds by Theorem 1. Note that by (10) L/rn
P−→ 1, thus

√
L(θ̂ − θ) =

√
rn(θ̂ − θ) + oP (1).

The latter relations imply that

√
L(θ̂ − θ) =

√
rn

(
2rn/L

1
rn

∑L
i=1 Z2

i

− θ

)
+ oP (1) = θ

√
rn

(
2rn/(θL) − 1

rn

∑L
i=1 Z2

i

1
rn

∑L
i=1 Z2

i

)
+ oP (1).

Next, it follows from Lemma B.7 [18] that

1
rn

L∑
i=1

Z2
i

P−→ 2
θ
,

therefore
√

L(θ̂ − θ) =
θ2

2
√

rn

(
2rn

θL
− 1

rn

L∑
i=1

Z2
i

)
+ oP (1).

It immediately follows from (10) and the delta method that
√

rn(rn/L − 1) =
√

rn(L/rn − 1) + oP (1).
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Finally, we obtain from (11) and the latter

√
rn

(
2rn

θL
− 1

rn

L∑
i=1

Z
2
i

)
=

√
rn

(
4

θ
− 2L

θrn

− 1

rn

L∑
i=1

Z
2
i

)
+ oP (1)

=
4

θ

√
rn

(
1 − 1

rn

L∑
i=1

Zi

)

+
2

θ

√
rn

(
2

1

rn

L∑
i=1

Zi − 1

rn

L∑
i=1

1 − θ

2rn

L∑
i=1

Z
2
i

)
+ oP (1)

=
2√
rnθ

L∑
i=1

(
2Zi − θ

2
Z

2
i − 1

)
+ oP (1).

Applying again L/rn
P→ 1, we derive the result.

First of all, we observe that by (11)

yL,c(t, θ) =
√

L

(
1

L

L∑
i=1

I(1 − c < Fθ(Zi) ≤ t) − �c(t)

)

=
1√
L

L∑
i=1

(
I(1 − c < Fθ(Zi) ≤ t) − �c(t)Zi

)
+ �c(t)

√
L

(
1

L

L∑
i=1

Zi − 1

)

=
1√
L

L∑
i=1

(
I(1 − c < Fθ(Zi) ≤ t) − �c(t)Zi

)
+ oP (1). (12)

It is also worth noting that we can change all expressions of the form 1√
L

∑L
i=1 ξi

appearing in our proof with Eξi = 0 for all i on expressions of the form
1√
rn

∑rn

i=1 ξi using the same argument as in the proof of Theorem 3.2 [18] based
on the formula (10). It means that the randomness of L does not affect the
asymptotic of ŷc(t).

We follow the ideas of the proof of Theorem 2 in [6]. For shortening, write θ̂

instead of θ̂n. Denote

t̂(t) = Fθ(F←
θ̂

(t)), t ∈ [1 − c, 1].

Since θ̂ is a consistent estimator of θ, see [18], we have

P (t̂(t) ≥ 1 − c) → 1 (13)

for all t ∈ (1 − c, 1], and for t = 1 − c the latter probability tends to 1/2. First,
we will show that

yL,c(t̂(t), θ) − yL,c(t, θ)
P−→ 0 (14)

uniformly for t ∈ [1 − c, 1]. We restrict ourselves to the study of the case t ∈
(1−c, 1], the case t = 1−c is similar. Denote x1(t) = F←

θ1
(t) and t̃(t) = Fθ2(x1(t))

for θ1, θ2 ≥ c and t ∈ (1 − c, 1]. We have

sup
t∈(1−c,1]

|t̃ − t| ≤ sup
t∈(1−c,1]

|Fθ2(x1(t)) − Fθ1(x1(t))|

= sup
x>F ←

θ1
(1−c)

∣∣∣∣(θ2 − θ1)
∂Fθ(x)

∂θ

∣∣∣∣
θ=θ∗

∣∣∣∣ ,
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where θ∗ is between θ1 and θ2. Since
∣∣∣∣∂Fθ(x)

∂θ

∣∣∣∣ =
∣∣(θ2 − 1)e−θx

∣∣ ≤ 1

for all θ ∈ [0, 1] and x > F←
θ1

(1 − c), we derive that t̃ converges uniformly to t as
θ1 → θ and θ2 → θ. Therefore, since θ̂ converges to θ in probability,

sup
t∈(1−c,1]

|t̂(t) − t| P−→ 0.

An appeal to Lemma B.7 [18] gives us that yL,c(t, θ)
d→ y(t), t ∈ (1 − c, 1], in

D where y(t) is the Gaussian random process with mean zero and covariance
function

cov(y(t), y(s)) = �c(min(t, s)) − (2 − 2/θ)�c(t)�c(s).

The rest of the proof of (14) coincides with the corresponding steps in the proof
of Lemma 1 [6].

Now let us show that

ŷc(t) = yL,c(t, θ) −
√

L(θ̂ − θ)(g(t, θ) − g(1 − c, θ)) + oP (1), t ∈ [1 − c, 1], (15)

where

g(t, θ) =
1 − t

θ2
log

(
1 − t

θ

)
.

Note that by definition ŷc(1 − c) = 0 a.s., thus it remains to show (15) for
t ∈ (1 − c, 1]. First we find the explicit form of the “estimated” empirical cdf
F̂L,c(t̂(t), θ). We have

F̂L,c(t̂(t), θ) =
1
L

L∑
i=1

I
(
1 − c ≤ Fθ(Zi) < Fθ(F←

θ̂
(t))

)

=
1
L

L∑
i=1

I
(
Fθ̂(F

←
θ (1 − c)) < Fθ̂(Zi) ≤ t

)

= FL,c(t, θ̂) − 1
L

L∑
i=1

I
(
1 − c ≤ Fθ̂(Zi) < Fθ̂(F

←
θ (1 − c))

)

= FL,c(t, θ̂) − 1
L

L∑
i=1

I
(
t̂(1 − c) < Fθ(Zi) ≤ 1 − c

)
.

Denote

F̃L,c(t, θ) =
1
L

L∑
i=1

I (t < Fθ(Zi) ≤ 1 − c) , t ≤ 1 − c.
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Therefore we derive for the estimated sample process ŷc(t)

ŷc(t) =
√

L(FL,c(t, θ̂) − �c(t))

=
√

L
(
FL,c(t̂(t), θ) − �c(t̂(t))

)
+

√
L

(
�c(t̂(t)) − �c(t)

)
+

√
LF̃L,c(t̂(1 − c), θ)

= yL,c(t̂(t), θ) +
√

L
(
�c(t̂(t)) − �c(t)

)
+

√
LF̃L,c(t̂(1 − c), θ).

Consider the third summand on the right-hand side. Fix c1 ∈ (c, θ). Note that
(14) remains true for all c1 < θ, thus we derive

yL,c1(t̂(1 − c), θ) − yL,c1(1 − c, θ) P−→ 0.

On the other hand,

yL,c1 (t̂(1 − c), θ) − yL,c1 (1 − c, θ)

=
√

L(FL,c1 (t̂(1 − c), θ̂) − �c1 (t̂(1 − c))) −
√

L(FL,c1 (1 − c, θ̂) − �c1 (1 − c))

=
√

L(1 − c − t̂(1 − c)) −
√

LF̃L,c(t̂(1 − c), θ),

therefore we derive
√

LF̃L,c(t̂(1 − c), θ) =
√

L(1 − c − t̂(1 − c)) + oP (1).

Next, (13) implies that
√

L
(
�c(t̂(t)) − �c(t)

)
=

√
L(t̂(t) − t) + oP (1) in case

of t ∈ (1 − c, 1]. We have

√
L

(
�c(t̂(t)) − �c(t)

)
=

√
L

(
Fθ(F←

θ̂
(t)) − Fθ̂(F

←
θ̂

(t))
)

+ oP (1)

=
√

L(θ − θ̂)
∂Fγ(x)

∂γ

∣∣∣∣x=F ←
θ̂

(t)

γ=θ∗
+ oP (1),

where θ∗ is between θ and θ̂. Similarly to the corresponding steps in the proof
of Lemma 2 [6] we can show that

∂Fγ(x)
∂γ

∣∣∣∣x=F ←
θ̂

(t)

γ=θ∗
=

∂Fγ(x)
∂γ

∣∣∣∣x=F ←
θ

(t)

γ=θ

+ oP (1),

since ∂Fγ(x)/∂γ is continuous with respect to (x, γ) for all x > F←
θ (1 − c) and

γ ∈ (0, 1]. Clear,

∂Fγ(x)
∂γ

∣∣∣∣x=F ←
θ

(t)

γ=θ

= (x − 1)e−γx
∣∣

x=F ←
θ

(t)

γ=θ

=
1 − t

θ2
log

(
1 − t

θ

)
= g(t, θ).

Note that the relation
√

L(t̂(t) − t) =
√

L(θ − θ̂)g(t, θ) + oP (1)

derived above for t ∈ (1− c, 1] remains true also for t = 1− c. Finally, combining
the previous relations and using (14), we derive (15).
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Define the empirical process

zL(t) =
1√
L

L∑
i=1

(
I(1−c < Fθ(Zi) ≤ t)−�c(t)Zi−θ

(
2Zi− θ

2
Z2

i −1
)
(g(t, θ)−g(1−c, θ))

)

and notice that ŷc(t) = zL(t) + oP (1) by Lemma 2, (12) and (15). To complete
the proof of Theorem 4 we need to prove that

(zL(t1), . . . , zL(tk)) P−→ (X(t1), . . . , X(tk)), for all 1 − c ≤ t1 < . . . < tk ≤ 1,

where X(t) is the Gaussian process on [1 − c, 1] with mean zero and covariance
function (9), and justify that the sequence of random elements (zL) is tight.
These parts of the proof are carried out similarly to the proofs of Lemma 3 and
Lemma 4 [6], respectively.

5 Conclusion

The paper provides a study of properties of the new threshold selection method
for non-parametric estimation of the extremal index of stationary sequences pro-
posed in [15]. We consider a specific normalization of the discrepancy statistic
based on some modifications of the Cramér–von Mises–Smirnov statistic ω2 that
is calculated by only k largest order statistics of a sample. We show that the
asymptotic distribution of the truncated Cramér–von Mises–Smirnov statistic
(8) as k → ∞, k/L → c, L → ∞ depends both on c and the limit distribution of
the extremal index estimator being substituted in the statistic. We also develop
the goodness-of-fit test for distribution tails based on the ω2 statistic modifica-
tion, which limit distribution coincides with the limit distribution of the classical
Cramér–von Mises–Smirnov statistic under null hypothesis.
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Abstract. This work is devoted to the mean-square approximation of
iterated stochastic integrals with respect to the infinite-dimensional Q-
Wiener process. These integrals are part of the high-order strong numer-
ical methods (with respect to the temporal discretization) for semilin-
ear stochastic partial differential equations with nonlinear multiplicative
trace class noise, which are based on the Taylor formula in Banach spaces
and exponential formula for the mild solution of semilinear stochastic
partial differential equations. For the approximation of the mentioned
stochastic integrals we use the multiple Fourier–Legendre series converg-
ing in the sense of norm in Hilbert space. In this article, we propose the
optimization of the mean-square approximation procedures for iterated
stochastic integrals of multiplicities 1 to 3 with respect to the infnite-
dimensional Q-Wiener process.

Keywords: Semilinear stochastic partial differential equation ·
Infinite-dimensional Q-Wiener process · Nonlinear multiplicative trace
class noise · Iterated stochastic integral · Generalized multiple Fourier
series · Multiple Fourier–Legendre series · Exponential Milstein
scheme · Exponential Wagner–Platen scheme · Legendre polynomial ·
Mean-square approximation · Expansion

1 Introduction

This paper continues the author’s research [1,2] on methods of the mean-square
approximation of iterated stochastic integrals (ISIs) with respect to the infinite
dimensional Q-Wiener process.
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It is well-known that one of the effective approaches to the construction of
high-order strong numerical methods (with respect to the temporal discretiza-
tion) for semilinear stochastic partial differential equations (SPDEs) is based on
the Taylor formula in Banach spaces and the exponential formula for the mild
solution of semilinear SPDE [3,4]. For example, in [3,4] the exponential Milstein
and Wagner–Platen methods for semilinear SPDEs under the commutativity
conditions were constructed. These methods have strong orders of convergence
1.0 − ε and 1.5 − ε correspondingly with respect to the temporal variable if the
special conditions [3,4] are fullfilled (here ε is an arbitrary small posilive real
number). Note that in [5] the convergence of the exponential Milstein scheme
for semilinear SPDEs with strong order 1.0 has been proved under additional
smoothness assumptions.

An important feature of the mentioned numerical methods is the presence in
them the so-called ISIs with respect to the infinite-dimensional Q-Wiener process
[6]. The problem of numerical modeling of these ISIs with multiplicities 1 to 3
was solved in [3,4] for the case when special commutativity conditions for SPDE
are fulfilled. If the mentioned commutativity conditions are not satisfied, which
often corresponds to SPDEs in numerous applications, the numerical modeling
of ISIs with respect to the infinite-dimensional Q-Wiener process becomes much
more difficult.

Two methods of the mean-square approximation of ISIs from the exponen-
tial Milstein scheme for semilinear SPDEs without the commutativity condi-
tions have been considered in [7]. Note that the mean-square approximation
error of these ISIs consists of two components [7]. The first component is related
with the finite-dimentional approximation of the infinite-dimentional Q-Wiener
process while the second one is connected with the approximation of Itô ISIs
with respect to the scalar standard Brownian motions. In the author’s publica-
tion [1] the problem of the mean-square approximation of ISIs with respect to
the infinite-dimensional Q-Wiener process in the sense of second component of
approximation error (see above) has been investigated for arbitrary multiplicity
k (k ∈ IN) of stochastic integrals and without the assumptions of commutativity
for SPDE.

In this article, we extend the method [7] for an estimation of the first com-
ponent of approximation error for ISIs of multiplicities 1 to 3 with respect to
the infinite-dimensional Q-Wiener process. In addition, we combine the obtained
results with results from [1] and propose the optimization of the mean-square
approximation procedures for the mentioned stochastic integrals.

2 Exponential Milstein and Wagner–Platen Numerical
Schemes for Non-commutative Semilinear SPDEs

Let U,H be separable IR-Hilbert spaces and LHS(U,H) be a space of Hilbert–
Schmidt operators from U to H. Let (Ω,F,P) be a probability space with a
normal filtration {Ft, t ∈ [0, S]} [6], let Wt be an U -valued Q-Wiener process
with respect to {Ft, t ∈ [0, S]}, which has a covariance trace class operator
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Q ∈ L(U). Here and further L(U) denotes all bounded linear operators on U .
Let U0 = Q1/2(U) be an IR-Hilbert space with a scalar product 〈u,w〉U0

=〈
Q−1/2u,Q−1/2w

〉
U

for all u,w ∈ U0 [3,4].
Consider the semilinear parabolic SPDE with multiplicative trace class noise

dXt = (AXt + F (Xt)) dt + B(Xt)dWt, X0 = ξ, t ∈ [0, S], (1)

where nonlinear operators F, B (F : H → H, B : H → LHS(U0,H)), linear
operator A : D(A) ⊂ H → H as well as the initial value ξ are assumed to satisfy
the conditions of existence and uniqueness of the mild solution of (1) (see [4],
Assumptions A1–A4).

It is well-known [8] that Assumptions A1–A4 [4] guarantee the existence and
uniqueness (up to modifications) of the mild solution Xt : [0, S] × Ω → H of (1)

Xt = eAtξ +
∫ t

0

eA(t−τ)F (Xτ )dτ +
∫ t

0

eA(t−τ)B(Xτ )dWτ (2)

with probability 1 (further w. p. 1) for all t ∈ [0, S], where eAt is the semigroup
generated by the operator A.

Consider eigenvalues λi and eigenfunctions ei(x) of the covariance operator
Q, where i = (i1, . . . , id) ∈ J, J = {i : i ∈ INd and λi > 0}, and x = (x1, . . . , xd).
Note that ei(x), i ∈ J form an orthonormal basis of U [6]. The series represen-
tation of the Q-Wiener process Wt has the form [6]

Wt =
∑

i∈J

ei

√
λiw

(i)
t ,

where t ∈ [0, S], w(i)
t (i ∈ J) are independent standard Wiener processes.

Consider the finite-dimensional approximation of Wt [6]

WM
t =

∑

i∈JM

ei

√
λiw

(i)
t , t ∈ [0, S], (3)

where JM = {i : 1 ≤ i1, . . . , id ≤ M and λi > 0}. Obviously, without the loss of
generality we can suppose that JM = {1, 2, . . . ,M}.

Let Δ > 0, τp = pΔ (p = 0, 1, . . . , N), and NΔ = S. Consider the exponential
Milstein numerical scheme [3]

Yp+1 = eAΔ

(

Yp + ΔF (Yp) +
∫ τp+1

τp

B(Yp)dWs

+
∫ τp+1

τp

B′(Yp)
∫ s

τp

B(Yp)dWτdWs

)

(4)

and Wagner–Platen numerical scheme [4]

Yp+1 = e
AΔ
2

(

e
AΔ
2 Yp + ΔF (Yp) +

∫ τp+1

τp

B(Yp)dWs
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+
∫ τp+1

τp

B′(Yp)
∫ s

τp

B(Yp)dWτdWs

+
Δ2

2
F ′(Yp) (AYp + F (Yp)) +

∫ τp+1

τp

F ′(Yp)
∫ s

τp

B(Yp)dWτds

+
Δ2

4

∑

i∈J

λiF
′′(Yp) (B(Yp)ei, B(Yp)ei)

+A

(∫ τp+1

τp

∫ s

τp

B(Yp)dWτds − Δ

2

∫ τp+1

τp

B(Yp)dWs

)

+Δ

∫ τp+1

τp

B′(Yp) (AYp + F (Yp)) dWs

−
∫ τp+1

τp

∫ s

τp

B′(Yp) (AYp + F (Yp)) dWτds

+
1
2

∫ τp+1

τp

B′′(Yp)

(∫ s

τp

B(Yp)dWτ ,

∫ s

τp

B(Yp)dWτ

)

dWs

+
∫ τp+1

τp

B′(Yp)
∫ s

τp

B′(Yp)
∫ τ

τp

B(Yp)dWθdWτdWs

)

(5)

for SPDE (1), where Yp is an approximation of Xτp
(mild solution (2) at the time

moment τp), p = 0, 1, . . . , N, and B′, B′′, F ′, F ′′ are Fréchet derivatives. Note
that in addition to the temporal discretization, the implementation of numerical
schemes (4) and (5) also requires a discretization of the infinite-dimensional
Hilbert space H and a finite-dimensional approximation of the Q-Wiener process.

Let us focus on the approximation related to the Q-Wiener process. Consider
the following Itô ISIs

I
(r1)
(1)T,t =

∫ T

t

dw(r1)
t1 , I

(r10)
(10)T,t =

∫ T

t

∫ t2

t

dw(r1)
t1 dt2, I

(0r2)
(01)T,t =

∫ T

t

∫ t2

t

dt1dw
(r2)
t2 ,

(6)

I
(r1r2)
(11)T,t =

∫ T

t

∫ t2

t

dw(r1)
t1 dw(r2)

t2 , I
(r1r2r3)
(111)T,t =

∫ T

t

∫ t3

t

∫ t2

t

dw(r1)
t1 dw(r2)

t2 dw(r3)
t3 ,

(7)
where r1, r2, r3 ∈ JM , 0 ≤ t < T ≤ S, and JM is defined as in (3).

Let us replace the infinite-dimensional Q-Wiener process in the ISIs from (4),
(5) with its finite-dimensional approximation (3). Moreover, replace Yp with Z,
τp with t, and τp+1 with T in these integrals. Then we have w. p. 1

J1[B(Z)]MT,t =
∫ T

t

B(Z)dWM
s =

∑

r1∈JM

B(Z)er1

√
λr1I(1)T,t, (8)

J2[B(Z)]MT,t = A

(∫ T

t

∫ s

t

B(Z)dWM
τ ds − T − t

2

∫ T

t

B(Z)dWM
s

)



Mean-Square Approximation of Iterated Stochastic Integrals 21

=
∑

r1∈JM

AB(Z)er1

√
λr1

(
T − t

2
I
(r1)
(1)T,t − I

(0r1)
(01)T,t

)
, (9)

J3[B(Z), F (Z)]MT,t = (T − t)
∫ T

t

B′(Z) (AZ + F (Z)) dWM
s

−
∫ T

t

∫ s

t

B′(Z) (AZ + F (Z)) dWM
τ ds

=
∑

r1∈JM

B′(Z) (AZ + F (Z)) er1

√
λr1I

(0r1)
(01)T,t, (10)

J4[B(Z), F (Z)]MT,t =
∫ T

t

F ′(Z)
∫ s

t

B(Z)dWM
τ ds

=
∑

r1∈JM

F ′(Z)B(Z)er1

√
λr1

(
(T − t)I(r1)

(1)T,t − I
(0r1)
(01)T,t

)
, (11)

I1[B(Z)]MT,t =
∫ T

t

B′(Z)
∫ s

t

B(Z)dWM
τ dWM

s

=
∑

r1,r2∈JM

B′(Z)(B(Z)er1)er2

√
λr1λr2I

(r1r2)
(11)T,t, (12)

I2[B(Z)]MT,t =
∫ T

t

B′(Z)
∫ s

t

B′(Z)
∫ τ

t

B(Z)dWM
θ dWM

τ dWM
s

=
∑

r1,r2,r3∈JM

B′(Z) (B′(Z) (B(Z)er1) er2) er3

√
λr1λr2λr3I

(r1r2r3)
(111)T,t , (13)

I3[B(Z)]MT,t =
∫ T

t

B′′(Z)
(∫ s

t

B(Z)dWM
τ ,

∫ s

t

B(Z)dWM
τ

)
dWM

s

=
∑

r1,r2,r3∈JM

B′′(Z) (B(Z)er1 , B(Z)er2) er3

√
λr1λr2λr3

×
∫ T

t

∫ s

t

dw(r1)
τ

∫ s

t

dw(r2)
τ dw(r3)

s . (14)

Note that in (9)–(11) we used the Itô formula. Moreover, using the Itô formula
we obtain

∫ s

t

dw(r1)
τ

∫ s

t

dw(r2)
τ = I

(r1r2)
(11)s,t + I

(r2r1)
(11)s,t + 1{r1=r2}(s − t) w. p. 1, (15)

where 1A is the indicator of the set A. From (15) and (14) we obtain w. p. 1

I3[B(Z)]MT,t =
∑

r1,r2,r3∈JM

B′′(Z) (B(Z)er1 , B(Z)er2) er3

√
λr1λr2λr3
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×
(
I
(r1r2r3)
(111)T,t + I

(r2r1r3)
(111)T,t + 1{r1=r2}I

(0r3)
(01)T,t

)
. (16)

Thus, for the implementation of numerical schemes (4) and (5) we need
to approximate the following Itô ISIs I

(r1)
(1)T,t, I

(0r1)
(01)T,t, I

(r1r2)
(11)T,t, I

(r1r2r3)
(111)T,t , where

r1, r2, r3 ∈ JM , 0 ≤ t < T ≤ S.

3 Approximation of Itô ISIs

Consider an efficient method [9–12] of the mean-square approximation of Itô ISIs
of the form

J [ψ(k)](i1...ik)
T,t =

∫ T

t

ψk(tk) . . .

∫ t2

t

ψ1(t1)dw
(i1)
t1 . . . dw(ik)

tk
, (17)

where 0 ≤ t < T ≤ S, ψl(τ) (l = 1, . . . , k) are continuous non-random functions
on [t, T ], w(i)

τ (i = 1, . . . , m) are independent standard Wiener processes, w(0)
τ =

τ, i1, . . . , ik = 0, 1, . . . ,m.
Suppose that {φj(x)}∞

j=0 is a complete orthonormal system of functions in
the space L2([t, T ]) and define the following function on the hypercube [t, T ]k

K(t1, . . . , tk) = ψ1(t1) . . . ψk(tk)1{t1<...<tk}, t1, . . . , tk ∈ [t, T ] for k ≥ 2 (18)

and K(t1) ≡ ψ1(t1) for t1 ∈ [t, T ], where 1A is the indicator of the set A.
The function K(t1, . . . , tk) is piecewise continuous on the hypercube [t, T ]k.

At this situation it is well known that the generalized multiple Fourier series of
K(t1, . . . , tk) ∈ L2([t, T ]k) converges to K(t1, . . . , tk) on the hypercube [t, T ]k in
the mean-square sense, i.e.

lim
p1,...,pk→∞

∥∥∥∥
∥∥
K(t1, . . . , tk) −

p1∑

j1=0

. . .

pk∑

jk=0

Cjk...j1

k∏

l=1

φjl
(tl)

∥∥∥∥
∥∥

= 0, (19)

where ‖ · ‖ is the L2([t, T ]k)-norm and the Fourier coefficient is defined by

Cjk...j1 =
∫

[t,T ]k
K(t1, . . . , tk)

k∏

l=1

φjl
(tl)dt1 . . . dtk. (20)

Consider the discretization {τj}N
j=0 of [t, T ] such that

t = τ0 < . . . < τN = T, ΔN = max
0≤j≤N−1

Δτj → 0 if N → ∞, (21)

where Δτj = τj+1 − τj .

Theorem 1 [9–12]. Suppose that ψl(τ) (l = 1, . . . , k) are continuous non-
random functions on the interval [t, T ] and {φj(x)}∞

j=0 is a complete orthonormal
system of continuous functions in L2([t, T ]). Then

J [ψ(k)](i1...ik)
T,t = l.i.m.

p1,...,pk→∞ J [ψ(k)](i1...ik)p1...pk

T,t , (22)
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where

J [ψ(k)](i1...ik)p1...pk

T,t =
p1∑

j1=0

. . .

pk∑

jk=0

Cjk...j1

(
k∏

l=1

ζ
(il)
jl

−l.i.m.
N→∞

∑

(l1,...,lk)∈Gk

φj1(τl1)Δw(i1)
τl1

. . . φjk
(τlk)Δw(ik)

τlk

)

(23)

and

E
(i1...ik)p1,...,pk

k ≤ k!

⎛

⎝Ik −
p1∑

j1=0

. . .

pk∑

jk=0

C2
jk...j1

⎞

⎠ , (24)

where E(i1...ik)p1,...,pk = M
(
J [ψ(k)](i1...ik)

T,t − J [ψ(k)](i1...ik)p1,...,pk

T,t

)2

, l.i.m. is a
limit in the mean-square sense, i1, . . . , ik = 1, . . . , m for T − t ∈ (0,+∞)
and i1, . . . , ik = 0, 1, . . . ,m for T − t ∈ (0, 1), I

1/2
k is the L2([t, T ]k)-norm of

K(t1, . . . , tk),

Gk = Hk\Lk, Hk = {(l1, . . . , lk) : l1, . . . , lk = 0, 1, . . . , N − 1},

Lk = {(l1, . . . , lk) : l1, . . . , lk = 0, 1, . . . , N −1; lg �= lr (g �= r); g, r = 1, . . . , k},

ζ
(i)
j =

∫ T

t

φj(s)dw(i)
s (25)

are independent standard Gaussian random variables for various i or j (in the
case when i �= 0), Cjk...j1 is the Fourier coefficient (20), Δw(i)

τj = w(i)
τj+1 − w(i)

τj

(i = 0, 1, . . . , m), {τj}N
j=0 is the discretization (21).

Note that in [9,11,12] some versions and generalizations of Theorem 1 were
considered.

Obtain transformed particular cases of Theorem 1 for k = 1, . . . , 4 [9–12]

J [ψ(1)](i1)T,t = l.i.m.
p1→∞

p1∑

j1=0

Cj1ζ
(i1)
j1

, (26)

J [ψ(2)](i1i2)
T,t = l.i.m.

p1,p2→∞

p1∑

j1=0

p2∑

j2=0

Cj2j1

(
ζ
(i1)
j1

ζ
(i2)
j2

− 1{i1=i2 �=0}1{j1=j2}
)

, (27)

J [ψ(3)](i1i2i3)
T,t = l.i.m.

p1,p2,p3→∞

p1∑

j1=0

p2∑

j2=0

p3∑

j3=0

Cj3j2j1

(
ζ
(i1)
j1

ζ
(i2)
j2

ζ
(i3)
j3

−1{i1=i2 �=0}1{j1=j2}ζ
(i3)
j3

− 1{i2=i3 �=0}1{j2=j3}ζ
(i1)
j1

− 1{i1=i3 �=0}1{j1=j3}ζ
(i2)
j2

)
,

(28)
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J [ψ(4)](i1...i4)
T,t = l.i.m.

p1,...,p4→∞

p1∑

j1=0

. . .

p4∑

j4=0

Cj4...j1

(
4∏

l=1

ζ
(il)
jl

−1{i1=i2 �=0}1{j1=j2}ζ
(i3)
j3

ζ
(i4)
j4

− 1{i1=i3 �=0}1{j1=j3}ζ
(i2)
j2

ζ
(i4)
j4

−1{i1=i4 �=0}1{j1=j4}ζ
(i2)
j2

ζ
(i3)
j3

− 1{i2=i3 �=0}1{j2=j3}ζ
(i1)
j1

ζ
(i4)
j4

−1{i2=i4 �=0}1{j2=j4}ζ
(i1)
j1

ζ
(i3)
j3

− 1{i3=i4 �=0}1{j3=j4}ζ
(i1)
j1

ζ
(i2)
j2

+1{i1=i2 �=0}1{j1=j2}1{i3=i4 �=0}1{j3=j4}
+1{i1=i3 �=0}1{j1=j3}1{i2=i4 �=0}1{j2=j4}

+1{i1=i4 �=0}1{j1=j4}1{i2=i3 �=0}1{j2=j3}

)

, (29)

where 1A is the indicator of the set A.
Let us consider the generalization of the formulas (26)–(29) for the case of

arbitrary k (k ∈ IN).

Theorem 2 [11,12]. In the conditions of Theorem 1 the following mean-square
converging expansion is valid

J [ψ(k)](i1...ik)
T,t = l.i.m.

p1,...,pk→∞

p1∑

j1=0

. . .

pk∑

jk=0

Cjk...j1

(
k∏

l=1

ζ
(il)
jl

+
[k/2]∑

r=1

(−1)r

×
∑

({{g1,g2},...,{g2r−1,g2r}},{q1,...,qk−2r})
{g1,g2,...,g2r−1,g2r,q1,...,qk−2r}={1,2,...,k}

r∏

s=1

1{ig2s−1
= ig2s

�=0}

×1{jg2s−1
= jg2s

}
k−2r∏

l=1

ζ
(iql

)

jql

)

, (30)

where [·] is an integer part of a real number, the sum in the second line of the
formula (30) means the sum with respect to all possible permutations of the set
({{g1, g2}, . . . , {g2r−1, g2r}}, {q1, . . . , qk−2r}). At that {g1, g2, . . . , g2r−1, g2r, q1,
. . . , qk−2r} ={1, 2, . . . , k}, braces mean an disordered set, and parentheses mean
an ordered set; other notations are the same as in Theorem 1.

Using Theorem 1 and complete orthonormal system of Legendre polynomials
in the space L2([t, T ]), we obtain the following approximations of Itô ISIs (6),
(7) [9–12]

I
(i1)
(1)T,t =

√
T − tζ

(i1)
0 , (31)

I
(0i1)
(01)T,t =

(T − t)3/2

2

(
ζ
(i1)
0 +

1√
3
ζ
(i1)
1

)
, (32)

I
(i10)
(10)T,t =

(T − t)3/2

2

(
ζ
(i1)
0 − 1√

3
ζ
(i1)
1

)
, (33)
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I
(i1i2)q
(11)T,t =

T − t

2

(
ζ
(i1)
0 ζ

(i2)
0 +

q∑

i=1

1√
4i2 − 1

(
ζ
(i1)
i−1ζ

(i2)
i − ζ

(i1)
i ζ

(i2)
i−1

)
− 1{i1=i2}

)
,

(34)

I
(i1i2i3)p
(111)T,t =

p∑

j1,j2,j3=0

Cj3j2j1

(
ζ
(i1)
j1

ζ
(i2)
j2

ζ
(i3)
j3

− 1{i1=i2}1{j1=j2}ζ
(i3)
j3

−1{i2=i3}1{j2=j3}ζ
(i1)
j1

− 1{i1=i3}1{j1=j3}ζ
(i2)
j2

)
, (35)

Cj3j2j1 =
1
8
(T − t)3/2

√
(2j1 + 1)(2j2 + 1)(2j3 + 1)C̄j3j2j1 , (36)

C̄j3j2j1 =

1∫

−1

Pj3(z)

z∫

−1

Pj2(y)

y∫

−1

Pj1(x)dxdydz,

where the Gaussian random variable ζ
(i)
j (if i �= 0) is defined by (25) and Pj(x)

(j = 0, 1, 2, . . .) is the Legendre polynomial.
The estimate (24) is rather rough due to the multiplier factor k! Therefore,

consider the exact value E(i1...ik)p1,...,pk
def= E(i1...ik)p for p1 = . . . = pk = p.

Theorem 3 [10,11]. Suppose that the conditions of Theorem 1 are satisfied.
Then

E
(i1...ik)p
k = Ik −

p∑

j1,...,jk=0

Cjk...j1

×M

(
J [ψ(k)](i1...ik)

T,t

∑

(j1,...,jk)

∫ T

t

φjk
(tk) . . .

∫ t2

t

φj1(t1)dw
(i1)
t1 . . . dw(ik)

tk

)
,(37)

where i1, . . . , ik = 1, . . . , m; expression
∑

(j1,...,jk)

means the sum with respect to all

possible permutations (j1, . . . , jk). At the same time if jr swapped with jq in the
permutation (j1, . . . , jk), then ir swapped with iq in the permutation (i1, . . . , ik);
another notations are the same as in Theorem 1.

Note that

M

(
J [ψ(k)](i1...ik)

T,t

∫ T

t

φjk
(tk) . . .

∫ t2

t

φj1(t1)dw
(i1)
t1 . . . dw(ik)

tk

)
= Cjk...j1 . (38)

Then we can obtain the following particular cases of Theorem 3 [9–11]

E
(i1...ik)p
k = Ik −

p1∑

j1=0

. . .

pk∑

jk=0

C2
jk...j1 (i1, . . . , ik are pairwise different), (39)
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E
(i1...ik)p
k = Ik −

p∑

j1,...,jk=0

Cjk...j1

⎛

⎝
∑

(j1,...,jk)

Cjk...j1

⎞

⎠ (i1 = . . . = ik),

E
(i1i2i3)p
3 = I3 −

p∑

j1,j2,j3=0

C2
j3j2j1 −

p∑

j1,j2,j3=0

Cj3j1j2Cj3j2j1 (i1 = i2 �= i3), (40)

E
(i1i2i3)p
3 = I3 −

p∑

j1,j2,j3=0

C2
j3j2j1 −

p∑

j1,j2,j3=0

Cj2j3j1Cj3j2j1 (i1 �= i2 = i3), (41)

E
(i1i2i3)p
3 = I3 −

p∑

j1,j2,j3=0

C2
j3j2j1 −

p∑

j1,j2,j3=0

Cj3j2j1Cj1j2j3 (i1 = i3 �= i2). (42)

Obviously, the above conditions do not contain multiplier factors k! in con-
trast to the estimate (24). However, the number of the mentioned conditions
is quite large, which is inconvenient for practical calculations. In this paper we
propose the hypothesis that all the formulas (40)–(42) can be replaced with the
equality (39) for k = 3 without noticeable loss of the mean-square accuracy of
approximation for Itô ISIs. Section 5 is devoted to the detailed confirmation of
the mentioned hypothesis for the case of multiple Fourier–Legendre series.

It should be noted that unlike the method based on Theorem 1, existing
approaches to the mean-square approximation of ISIs (see, for example, [13,14])
do not allow to choose different numbers p for approximations of different ISIs.
Moreover, the noted approaches [13,14] exclude the possibility for obtaining
of approximate and exact expressions for the mean-square approximation error
similar to (24), (37).

4 Approximation of ISIs with Respect to the Q-Wiener
Process

Consider the following ISI with respect to the Q-Wiener process

I[Φ(k)(Z), ψ(k)]T,t =
∫ T

t

ψk(tk)Φk(Z) . . .

∫ t2

t

ψ1(t1)Φ1(Z)dWt1 . . . dWtk
, (43)

where Z : Ω → H is an Ft/B(H)-measurable mapping, every non-random func-
tion ψl(τ) (l = 1, . . . , k) is continuous on [t, T ], and Φk(v)( . . . (Φ1(v)) . . . ) is a
k-linear Hilbert–Schmidt operator mapping from U0 × . . . × U0 (k times) to H
for all v ∈ H.

Let I[Φ(k)(Z), ψ(k)]MT,t be an approximation of the ISI (43)

I[Φ(k)(Z), ψ(k)]MT,t =
∫ T

t

ψk(tk)Φk(Z) . . .

∫ t2

t

ψ1(t1)Φ1(Z)dWM
t1 . . . dWM

tk

=
∑

r1,...,rk∈JM

Φk(Z) (. . . (Φ1(Z)er1) . . .) erk

√
λr1 . . . λrk

J [ψ(k)](r1...rk)
T,t , (44)
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where 0 ≤ t < T ≤ S and J [ψ(k)](r1...rk)
T,t is defined by (17).

Let I[Φ(k), ψ(k)]M,p1...,pk

T,t be an approximation of the ISI (44)

I[Φ(k)(Z), ψ(k)]M,p1...,pk

T,t =
∑

r1,...,rk∈JM

Φk(Z) (. . . (Φ1(Z)er1) . . .) erk

×
√

λr1 . . . λrk
J [ψ(k)](r1...rk)p1,...,pk

T,t , (45)

where J [ψ(k)](r1...rk)p1,...,pk

T,t is defined by (23) or as the expression before passing
to the limit in (30).

Let L(U,H) be the space of linear and bounded operators mapping from U
to H. Let L(U,H)0 = {T |U0 : T ∈ L(U,H)} , where T |U0 is the restriction of
the operator T to the space U0. It is known [6] that L(U,H)0 is a dense subset
of the space of Hilbert–Schmidt operators LHS(U0,H).

Theorem 4 [1,12]. Let the conditions of Theorem 1 be fulfilled as well as the
following conditions:

1. Q ∈ L(U) is a non-negative and symmetric trace class operator (λi and ei (i ∈
J) are its eigenvalues and eigenfunctions correspondingly), {Wτ , τ ∈ [0, S]}
is an U -valued Q-Wiener process, and Z : Ω → H is an Ft/B(H)-measurable
mapping.

2. Φ1 ∈ L(U,H)0, Φ2 ∈ L(H,L(U,H)0), and Φk(v)( . . . (Φ1(v)) . . . ) is a k-linear
Hilbert–Schmidt operator mapping from U0 × . . . × U0 (k times) to H for all
v ∈ H such that ‖Φk(Z) (. . . (Φ1(Z)er1) . . .) erk

‖2H ≤ Lk < ∞ w. p. 1 for all
r1, . . . , rk ∈ JM , M ∈ IN. Then

M
∥∥∥I[Φ(k)(Z), ψ(k)]MT,t − I[Φ(k)(Z), ψ(k)]M,p1...pk

T,t

∥∥∥
2

H

≤ Lk(k!)2 (trQ)k

⎛

⎝Ik −
p1∑

j1=0

. . .

pk∑

jk=0

C2
jk...j1

⎞

⎠ , (46)

where I
1/2
k is the L2([t, T ]k)-norm of K(t1, . . . , tk) and trQ =

∑

i∈J

λi < ∞.

Note that the right-hand side of the inequality (46) is independent of M and
tends to zero if p1, . . . , pk → ∞ due to the Parseval equality.

Let us consider the approximation of ISIs from (4) and (5). According to
(8)–(11), (31), and (32) we can write the following relatively simple formulas

J1[B(Z)]MT,t = (T − t)1/2
∑

r1∈JM

B(Z)er1

√
λr1ζ

(r1)
0 ,

J2[B(Z)]MT,t = − (T − t)3/2

2
√

3

∑

r1∈JM

AB(Z)er1

√
λr1ζ

(r1)
1 , (47)
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J3[B(Z), F (Z)]MT,t

=
(T − t)3/2

2

∑

r1∈JM

B′(Z) (AZ + F (Z)) er1

√
λr1

(
ζ
(r1)
0 +

1√
3
ζ
(r1)
1

)
, (48)

J4[B(Z), F (Z)]MT,t =
(T − t)3/2

2

∑

r1∈JM

F ′(Z)B(Z)er1

√
λr1

(
ζ
(r1)
0 − 1√

3
ζ
(r1)
1

)
,

(49)
where ζ

(r1)
0 , ζ

(r1)
1 (r1 ∈ JM ) are independent standard Gaussian random vari-

ables.
Further, consider ISIs (12), (13), (16) in detail. Let I1[B(Z)]M,q

T,t , I2[B(Z)]M,p
T,t ,

I3[B(Z)]M,p
T,t be approximations of ISIs (12), (13), (16), which have the form

I1[B(Z)]M,q
T,t =

∑

r1,r2∈JM

B′(Z) (B(Z)er1) er2

√
λr1λr2I

(r1r2)q
(11)T,t ,

I2[B(Z)]M,p
T,t =

∑

r1,r2,r3∈JM

B′(Z) (B′(Z) (B(Z)er1) er2) er3

√
λr1λr2λr3I

(r1r2r3)p
(111)T,t ,

(50)

I3[B(Z)]M,p
T,t =

∑

r1,r2,r3∈JM

B′′(Z) (B(Z)er1 , B(Z)er2) er3

√
λr1λr2λr3

×
(
I
(r1r2r3)p
(111)T,t + I

(r2r1r3)p
(111)T,t + 1{r1=r2}I

(0r3)
(01)T,t

)
, (51)

where p, q ≥ 1, approximations I
(r1r2)q
(11)T,t , I

(r1r2r3)p
(111)T,t , I

(r2r1r3)p
(111)T,t are defined by (34),

(35), and I
(0r3)
(01)T,t has the form (32).

Let L
(k)
HS(U0,H), k ≥ 1 be the space of k-linear Hilbert–Schmidt operators

from U0 × . . . × U0 (k times) to H. Furthermore, let ‖·‖
L

(k)
HS(U0,H)

be operator
norm in this space.

Let I1[B(Z)]T,t, I2[B(Z)]T,t, I3[B(Z)]T,t be ISIs which are defined by the
equalities (12)–(14) in which the finite-dimensional approximation of the Q-
Wiener process depending on M should be replaced with the Q-Wiener process.

Theorem 5 [2]. Let the condition 1 of Theorem 4 as well as the conditions
of Theorem 1 be fulfilled. Futhermore, let B(v) ∈ LHS(U0,H), B′(v)(B(v)) ∈
L
(2)
HS(U0,H), B′(v)(B′(v)(B(v))), B′′(v)(B(v), B(v)) ∈ L

(3)
HS(U0,H) for all v ∈

H (we suppose that Frêchet derivatives B′, B′′ exist; see Sect. 2). Moreover, let
there exists a constant C such that

∥∥B′(Z)(B(Z))Q−α
∥∥

L
(2)
HS(U0,H)

+
∥∥B′(Z)(B′(Z)(B(Z)))Q−α

∥∥
L

(3)
HS(U0,H)

+
∥∥B(Z)Q−α

∥∥
LHS(U0,H)

+
∥∥B′′(Z)(B(Z), B(Z))Q−α

∥∥
L

(3)
HS(U0,H)

< C
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w. p. 1 for some α > 0. Then

M

∥∥
∥∥I1[B(Z)]T,t − I1[B(Z)]M,q

T,t

∥∥
∥∥

2

H

≤ (T − t)2

⎛

⎝C0(trQ)2

⎛

⎝1
2

−
q∑

j=1

1
4j2 − 1

⎞

⎠ + KQ

(

sup
i∈J\JM

λi

)2α
⎞

⎠ , (52)

M
∥∥
∥I2[B(Z)]T,t − I2[B(Z)]M,p

T,t

∥∥
∥
2

H
+ M

∥∥
∥I3[B(Z)]T,t − I3[B(Z)]M,p

T,t

∥∥
∥
2

H

≤ (T − t)3

⎛

⎝C1 (trQ)3
⎛

⎝1
6

−
p∑

j1,j2,j3=0

Ĉ2
j3j2j1

⎞

⎠ + LQ

(

sup
i∈J\JM

λi

)2α
⎞

⎠ ,(53)

where Ĉj3j2j1 = Cj3j2j1(T − t)−3/2, Cj3j2j1 is defined by (36), p, q ∈ IN, C0, C1,
KQ, LQ < ∞.

Note that the estimate similar to (52) has been derived in [7] (also see [3])
with the difference related to the first term on the right-hand side of (52). In
[7] the authors used the Karhunen–Loeve expansion of the Brownian bridge
process for the approximation of Itô ISIs with respect to components of the
finite-dimensional Wiener process. In this article we apply Theorem 1 and the
system of Legendre polynomials to obtain the first term on the right-hand side
of (52). If we assume that λi ≤ C ′i−γ (γ > 1, C ′ < ∞) for i ∈ J , then the
parameter α > 0 obviously increases with decreasing γ [7].

Let J2[B(Z)]T,t, J3[B(Z), F (Z)]T,t J4[B(Z), F (Z)]T,t be ISIs which are
defined by the equalities (9)–(11) in which the finite-dimensional approximation
of the Q-Wiener process depending on M should be replaced with the Q-Wiener
process.

Suppose that

M
∥∥B′(Z)(AZ + F (Z))Q−α

∥∥2

LHS(U0,H)
+ M

∥∥AB(Z)Q−α
∥∥2

LHS(U0,H)
< ∞

for some α > 0. Then by analogy with the proof of Theorem 5 [2] we obtain

M
∥∥J2[B(Z)]T,t − J2[B(Z)]MT,t

∥∥2

H
≤ C2(T − t)3

(

sup
i∈J\JM

λi

)2α

,

M
∥∥Jl[B(Z), F (Z)]T,t − Jl[B(Z), F (Z)]MT,t

∥∥2

H
≤ C3(T − t)3

(

sup
i∈J\JM

λi

)2α

,

where l = 3, 4 and C2, C3 < ∞.
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5 Optimization of the Mean-Square Approximation
Procedures for Itô ISIs

This section is devoted to the optimization of approximation procedures for Itô
ISIs (7) that are used for approximation of ISIs with respect to the infinite-
dimensional Q-Wiener process. More precisely, we discuss how to minimize the
number p from the approximation (35).

From (39)–(42) for Itô ISIs I
(i1i2)
(11)T,t, I

(i1i2i3)
(111)T,t we obtain [9,11,12]

E
(i1i2)p
2 =

(T − t)2

2

(
1
2

−
p∑

i=1

1
4i2 − 1

)
(i1 �= i2), (54)

E
(i1i2i3)p1
3 = (T − t)3

(
1
6

− 1
64

p1∑

j1,j2,j3=0

3∏

g=1

(2jg + 1) C̄2
j3j2j1

)
(55)

for i1 �= i2, i1 �= i3, i2 �= i3,

E
(i1i2i3)p2
3 = (T − t)3

(
1
6

− 1
64

p2∑

j1,j2,j3=0

3∏

g=1

(2jg + 1)
(
C̄2

j3j2j1 + C̄j3j1j2C̄j3j2j1

)
)

(56)
for i1 = i2 �= i3,

E
(i1i2i3)p3
3 = (T − t)3

(
1
6

− 1
64

p3∑

j1,j2,j3=0

3∏

g=1

(2jg + 1)
(
C̄2

j3j2j1 + C̄j2j3j1C̄j3j2j1

))

(57)
for i1 �= i2 = i3,

E
(i1i2i3)p4
3 = (T − t)3

(
1
6

− 1
64

p4∑

j1,j2,j3=0

3∏

g=1

(2jg + 1)
(
C̄2

j3j2j1 + C̄j3j2j1C̄j1j2j3

))

(58)
for i1 = i3 �= i2.

Let p1, . . . , p4 be minimal natural numbers satisfying the conditions

E
(i1i2i3)pj

3 ≤ (T − t)4, j = 1, . . . , 4, (59)

where the values E
(i1i2i3)pj

3 (j = 1, . . . , 4) are defined by (55)–(58).
Let us show by numerical experiments (see Table 1) that in most situations

p1 ≥ p2, p3, p4. This means that we can use the condition (55) instead of the
conditions (55)–(58) for approximation of the Itô ISI I

(i1i2i3)
(111)T,t. As a result, we

will not get a noticeable increase of the mean-square approximation error (see
[12], Sect. 5.4 for details).

Let p5 be minimal natural number satisfying the condition

3!E(i1i2i3)p5
3 ≤ (T − t)4, (60)



Mean-Square Approximation of Iterated Stochastic Integrals 31

Table 1. The numbers p1, p2, p3, p4

T − t 0.0110 0.0080 0.0045 0.0035 0.0027 0.0025

p1 12 16 28 36 47 50

p2 6 8 14 18 23 25

p3 6 8 14 18 23 25

p4 12 16 28 36 47 51

Table 2. Comparison of the numbers p1 and p5

T − t 2−1 2−2 2−3 2−4 2−5 2−6

p1 0 0 1 2 4 8

p5 1 3 6 12 24 48

where the value E
(i1i2i3)p5
3 is defined by (55). Recall that the multiplier factor 3!

(see (60)) contains in the estimate (24) for the case k = 3.
In Table 2, we can see the numerical comparison of the numbers p1 and p5 (the

number p1 is defined as in (59)). Obviously, using the formula (55) significantly
reduces the computational costs for approximation of the Itô ISI I

(i1i2i3)
(111)T,t, and,

as a consequence, for approximation of the integrals (13), (16).
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Abstract. We construct a Bayesian sequential test of two simple
hypotheses about the value of the unobservable drift coefficient of a
Brownian motion, with a possibility to change the initial decision at
subsequent moments of time for some penalty. Such a testing procedure
allows to correct the initial decision if it turns out to be wrong. The test
is based on observation of the posterior mean process and makes the
initial decision and, possibly, changes it later, when this process crosses
certain thresholds. The solution of the problem is obtained by reducing
it to joint optimal stopping and optimal switching problems.

Keywords: Brownian motion · Sequential test · Simple hypothesis ·
Optimal stopping · Optimal switching

1 Introduction

We consider a problem of sequential testing of two simple hypotheses about the
value of the unknown drift coefficient of a Brownian motion. In usual sequential
testing problems (see e.g. the seminal works [4,8,10] or the recent monographs
[1,9]), a testing procedure must be terminated at some stopping time and a
decision about the hypotheses must be made. In contrast, in the present paper
we propose a new setting, where a testing procedure does not terminate and it
is allowed to change the initial decision (for the price of paying some penalty)
if, given later observations, it turns out that it is incorrect.

We will work in a Bayesian setting and assume that the drift coefficient has
a known prior distribution on a set of two values. A decision rule consists of
an initial decision (τ, d), where τ is the moment at which the decision is made
and d is a two-valued function showing which hypothesis is accepted initially,
and a sequence of stopping times τn, at which the decision can be changed
later. The goal is to minimize a penalty function which consists of the three
parts: a penalty for the waiting time until the initial decision, a penalty for a

The research was supported by the Russian Science Foundation, project 19-11-00290.

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2021
A. N. Shiryaev et al. (Eds.): ICSM-5 2020, PROMS 371, pp. 33–42, 2021.
https://doi.org/10.1007/978-3-030-83266-7_3

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-83266-7_3&domain=pdf
https://doi.org/10.1007/978-3-030-83266-7_3


34 M. Zhitlukhin

wrong decision proportional to the time during which the corresponding wrong
hypothesis is being accepted, and a penalty for each change of a decision.

This study was motivated by the paper [6], where a sequential multiple
changepoint detection problem was considered. That problem consists in tracking
of the value of the unobservable drift coefficient of a Brownian motion, which is
modeled by a telegraph process (a two-state Markov process) switching between
−1 and +1 at random times. In the present paper, we deal with a similar track-
ing procedure and a penalty function, but the difference is that the unobservable
drift coefficient does not change. Among other results on multiple changepoint
detection, one can mention the paper [3], where a tracking problem for a general
two-state Markov process with a Brownian noise was considered, and the paper
[2], which studied a tracking problem for a compound Poisson process.

We solve our problem by first representing it as a combination of an optimal
stopping problem and an optimal switching problem (an optimal switching prob-
lem is an optimal control problem where the control process assumes only two
values). The optimal stopping problem allows to find the initial stopping time,
while the subsequent moments when the decision is changed are found from
the optimal switching problem. Consequently, the value function of the optimal
switching problem becomes the payoff function of the optimal stopping prob-
lem. Then both of the problems are solved by reducing them to free-boundary
problems associated with the generator of the posterior mean process of the drift
coefficient. We consider only the symmetric case (i.e. type I and type II errors are
of the same importance), in which the solution turns out to be of the following
structure. First an observer waits until the posterior mean process exists from
some interval (−A, A) and at that moment of time makes the initial decision.
Future changes of the decision occur when the posterior mean process crosses
some thresholds −B and B. The constants A,B are found as unique solutions
of certain equations.

The rest of the paper consists of the three sections: Sect. 2 describes the
problem, Sect. 3 states the main theorem which provides the optimal decision
rule, Sect. 4 contains its proof.

2 The Model and the Optimality Criterion

Let (Ω,F ,P) be a complete probability space. Suppose one can observe a process
Xt defined on this probability space by the relation

Xt = μθt + Bt, (1)

where Bt is a standard Brownian motion, μ > 0 is a known constant, and θ
is a ±1-valued random variable independent of Bt. It is assumed that neither
θ nor Bt can be observed directly. The goal is to find out whether θ = 1 or
θ = −1 by observing the process Xt sequentially. Note that the case when the
drift coefficient of Xt can take on two arbitrary values μ1 �= μ2 can be reduced
to (1) by considering the process Xt − 1

2 (μ1 + μ2)t.
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We will assume that the prior distribution of θ is known and is characterized
by the probability p = P(θ = 1). Recall that usual settings of sequential testing
problems consist in that an observer must choose a stopping time τ of the (com-
pleted and right-continuous) filtration F

X = (FX
t )t≥0 generated by Xt, at which

the observation is stopped, and an FX
τ -measurable function d with values −1 or

+1 that shows which of the two hypotheses is accepted at time τ . The choice of
(τ, d) depends on a particular optimality criterion which combines penalties for
type I and type II errors, and a penalty for observation duration. But, in any
case, a test terminates at time τ .

In this paper we will focus on a setting where an observer can change a
decision made initially at time τ and the testing procedure does not terminate.

By a decision rule we will call a triple δ = (τ0, d, T ), where τ0 is an F
X -

stopping time, d is an FX
τ0 -measurable function which assumes values ±1, and

T = (τ1, τ2 . . .) is a sequence of FX -stopping times such that τn ≤ τn+1 for all
n ≥ 0. At the moment τ0, the initial decision d is made. Later, if necessary,
an observer can change the decision to the opposite one, and the moments of
change are represented by the sequence T . Thus, if, for example, d = 1, then at
τ0 an observer decides that θ = 1 and at τ1 switches the opinion to θ = −1; at
τ2 switches back to θ = 1, and so on. It may be the case that τn = +∞ starting
from some n; then the decision is changed only a finite number of times (the
optimal rule we construct below will have this property with probability 1).

With a given decision rule δ, associate the F
X -adapted process Dδ

t which
expresses the current decision at time t,

Dδ
t =

⎧
⎪⎨

⎪⎩

0, if t < τ0,

d, if t ∈ [τ2n, τ2n+1),
−d, if t ∈ [τ2n+1, τ2n+2),

and define the Bayesian risk function

R(δ) = E
(

c0τ0 + c1

∫ ∞

τ0

I(Dδ
t �= θ)dt + c2

∑

t>τ0

I(Dδ
t− �= Dδ

t )
)

, (2)

where ci > 0 are given constants.
The problem that we consider consists in finding a decision rule δ∗ which

minimizes R, i.e.
R(δ∗) = inf

δ
R(δ).

Such a decision rule δ∗ will be called optimal.
One can give the following interpretation to the terms under the expectation

in (2). The term c0τ0 is a penalty for a delay until making the initial decision.
The next term is a penalty for making a wrong decision, which is proportional
to the time during which the wrong hypothesis is being accepted. The last term
is a penalty for changing a decision, in the amount c2 for each change. Note that
the problem we consider is symmetric (i.e. type I and type II errors are penalized
in the same way); in principle, an asymmetric setting can be studied as well.
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3 The Main Result

To state the main result about the optimal decision rule, introduce the posterior
mean process

Mt = E(θ | FX
t ).

As follows from known results, the process Mt satisfies the stochastic differential
equation

dMt = μ(1 − M2
t )dB̃t, M0 = 2p − 1, (3)

where B̃t is a Brownian motion with respect to F
X (an innovation process, see,

e.g., Chap. 7 in [5]), which satisfies the equation

dB̃t = dXt − Mtdt.

Representation (3) can be obtained either directly from filtering theorems (see
Theorem 9.1 in [5]) or from the known equation for the posterior probability
process πt = P(θ = 1 | FX

t ) (see Chapter VI in [7]) since Mt = 2πt − 1. In the
explicit form, Mt can be expressed through the observable process Xt as

Mt = 1 − 2(1 − p)
pe2μXt + 1 − p

.

Introduce the two thresholds A,B ∈ (0, 1), which depend on the parame-
ters μ, c0, c1, c2 of the problem, and will define the switching boundaries for the
optimal decision rule. The threshold B is defined as the solution of the equation

ln
1 − B

1 + B
+

2B

1 − B2
=

2μ2c2
c1

, (4)

and the threshold A is defined as the solution of the equation
(

c1
2c0

− 1
)

ln
1 − A

1 + A
+

2
1 + A

(
c1
2c0

+
A

1 − A

)

=
c1

c0(1 − B2)
. (5)

The next simple lemma shows that A and B are well-defined. Its proof is rather
straightforward and is omitted.

Lemma 1. Equations (4), (5) have unique solutions A,B ∈ (0, 1). If c1 = 2c0,
then A = B.

The following theorem, being the main result of the paper, provides the
optimal decision rule in an explicit form.

Theorem 1. The optimal decision rule δ∗ = (τ∗
0 , d∗, T ∗) consists of the stopping

time τ∗
0 and the decision function d∗ defined by the formulas

τ∗
0 = inf{t ≥ 0 : |Mt| ≥ A}, d∗ = sgn Mτ0 ,

and the sequence of stopping times T ∗ = (τ∗
n)∞

n=1 which on the event {d∗ = 1}
are defined by the formulas

τ∗
2k+1 = inf{t ≥ τ∗

2k : Mt ≤ −B}, τ∗
2k+2 = inf{t ≥ τ∗

2k+1 : Mt ≥ B}, (6)
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and on the event {d = −1} by the formulas

τ∗
2k+1 = inf{t ≥ τ∗

2k : Mt ≥ B}, τ∗
2k+2 = inf{t ≥ τ∗

2k+1 : Mt ≤ −B} (7)

(where inf ∅ = +∞).

Example 1. Figure 1 illustrates how the optimal decision rule works. In this
example, we take p = 0.5, μ = 1/3, c0 = 2/3, c1 = 1, c2 = 3/2. The thresholds
A,B can be found numerically, A ≈ 0.37, B ≈ 0.55.

The simulated path on the left graph has θ = 1. The rule δ∗ first waits until
the process Mt exists from the interval (−A,A). Since in this example it exists
through the lower boundary (at τ∗

0 ), the initial decision is d∗ = −1 (incorrect).
Then the rule waits until Mt crosses the threshold B, and changes the decision
to θ = 1 at τ∗

1 .

Fig. 1. Left: the process Xt; right: the process Mt. Parameters: p = 0.5, µ = 1/3,
c0 = 2/3, c1 = 1, c2 = 3/2.

4 Proof of the Main Theorem

Let us denote by Px and Ex the probability measure and the expectation under
the assumption P(θ = 1) = (x + 1)/2, so the posterior mean process Mt starts
from the value M0 = x. It is easy to verify that

Px(Dδ
t �= θ | FX

t ) =
1 − MtD

δ
t

2
,

and, by taking intermediate conditioning with respect to FX
t in (2), we can see

that we need to solve the following problem for x ∈ [−1, 1]

V ∗(x) = inf
δ

Ex

(

c0τ0 +
c1
2

∫ ∞

τ0

(1 − MtD
δ
t )dt + c2

∑

t>τ0

I(Dδ
t− �= Dδ

t )
)

(8)

(by “to solve” we mean to find δ at which the infimum is attained for a given x;
in passing we will also find the function V ∗(x) in an explicit form).
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Observe that there exists the limit M∞ := limt→∞ Mt = θ a.s. Hence the
solution of problem (8) should be looked for only among decision rules δ such that
Dδ

t has a finite number of jumps and Dδ
∞ = θ (note that the rule δ∗ satisfies these

conditions). In view of this, for a stopping time τ0 denote by D(τ0) the class of
all FX -adapted càdlàg processes Dt such that, with probability 1, they assume
values ±1 after τ0, have a finite number of jumps, and satisfy the condition
D∞ = θ. Let U∗(τ0) be the value of the following optimal switching problem:

U∗(τ0) = inf
D∈D(τ0)

Ex

(
c1
2

∫ ∞

τ0

(1 − MtDt)dt + c2
∑

t>τ0

I(Dt− �= Dt)
)

. (9)

Consequently, problem (8) can be written in the form

V ∗(x) = inf
τ0

Ex(c0τ0 + U∗(τ0)). (10)

Thus, to show that the decision rule δ∗ is optimal, it will be enough to show
that τ∗

0 delivers the infimum in the problem V ∗, and Dδ∗
delivers the infimum

in the problem U∗(τ∗
0 ). In order to do that, we are going to use a usual approach

based on “guessing” a solution and then verifying it using Itô’s formula. Since
this approach does not show how to actually find the functions V ∗ and U∗, in
the remark after the proof we provide heuristic arguments that can be used for
that.

We will first deal with U∗. Let B be the constant from (4). Introduce the
“candidate” function U(x, y) x ∈ [−1, 1], y ∈ {−1, 1}, defined by

U(x, 1) =
c1(1 − x)

4μ2

(

ln
1 + x

1 − x
+

2
1 − B2

)

, x ∈ (−B, 1], (11)

U(x, 1) = U(−x, 1) + c2, x ∈ [−1, −B], (12)
U(x,−1) = U(−x, 1), x ∈ [−1, 1] (13)

(see Fig. 2, which depicts the function U(x, y), as well as the function V (x)
defined below, with the same parameters as in the example in the previous
section).

We are going to show that U∗(τ0) = U(|Mτ0 |, 1). Let Lf denotes application
of the generator of the process Mt to a sufficiently smooth function f , i.e.

Lf(x) =
μ2

2
(1 − x2)2

∂2

∂x2
f(x).

By U ′ and ΔU denote, respectively, the derivative with respect to the first
argument, and the difference with respect to the second argument of U , i.e.

U ′(x, y) =
∂U

∂x
(x, y), ΔU(x, y) = U(x, y) − U(x,−y).

From the above explicit construction (11)–(13), it is not difficult to check that
U(x, y) has the following properties:



A Sequential Test for a Brownian Motion 39

Fig. 2. The functions V (x) and U(x, y). The parameters µ, c0, c1, c2 are the same as in
Fig. 1.

(U.1) U(x, y) ∈ C1 in x for x ∈ (−1, 1), and U(x, y) ∈ C2 in x except at points
x = −yB;

(U.2) (1 − x2)U ′(x, y) is bounded for x ∈ (−1, 1);
(U.3) LU(x, y) = −c1(1 − xy)/2 if xy > −B, and LU(x, y) ≥ −c1(1 − xy)/2 if

xy < −B;
(U.4) ΔU(x, y) = −c2 if xy ≥ B, and ΔU(x, y) ≥ −c2 if xy < B.

Consider any process D ∈ D(τ0) and let (τn)n≥1 be the sequence of the
moments of its jumps after τ0. Property (U.1) allows to apply Itô’s formula to
the process U(Mt,Dt), from which for any s > 0 we obtain

U(Ms∨τ0 ,Ds∨τ0) = U(Mτ0 ,Dτ0)

+
∑

n : τn−1≤s

(∫ s∧τn

τn−1

LU(Mt,Dt)I(Mt �= −DtB)dt

+ μ

∫ s∧τn

τn−1

(1 − M2
t )U ′(Mt,Dt)dB̃t + ΔU(Mτn ,Dτn)I(s ≥ τn)

)

. (14)

Take the expectation Ex( · | FX
τ0 ) of the both sides of (14). By (U.2), the inte-

grand in the stochastic integral is uniformly bounded, so its expectation is zero.
Passing to the limit s → ∞ and using the equality D∞ = M∞, which implies
U(Ms∨τ0 ,Ds∨τ0) → 0 as s → ∞, we obtain

U(Mτ0 ,Dτ0) ≤ Ex

(
c1
2

∫ ∞

τ0

(1 − MtDt)dt + c2
∑

t>τ0

I(Dt �= Dt−)
∣
∣
∣ FX

τ0

)

, (15)

where to get the inequality we used property (U.3) for the first term under the
expectation and (U.4) for the second term. Taking the infimum of the both sides
of (15) over D ∈ D(τ0) we find

U(Mτ0 ,Dτ0) ≤ U∗(τ0). (16)

On the other hand, if the process Dt is such that Dτ0 = sgn Mτ0 (let sgn 0 = 1,
if necessary) and its jumps after τ0 are identified with the sequence (τn)n≥1
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defined as in (6)–(7) but with arbitrary τ0 in place of τ∗
0 , then we would have

the equality in (15), as follows from (U.3) and (U.4). Together with (16), this
implies that U∗(τ0) = U(Mτ0 , sgn Mτ0) = U(|Mτ0 |, 1) and the infimum in the
definition of U∗(τ0) is attained at this process Dt.

Let us now consider the problem V ∗. As follows from the above arguments,
we can write it in the form

V ∗(x) = inf
τ0

Ex(c0τ0 + U(|Mτ0 |, 1)). (17)

It is clear that it is enough to take the infimum only over stopping times with
finite expectation.

Let A be the constant defined in (5), and put

K =
(

c1(1 − A)
4μ2

+
c0A

2μ2

)

ln
1 + A

1 − A
+

c1(1 − A)
2μ2(1 − B2)

. (18)

Introduce the “candidate” function V (x), x ∈ [−1, 1]:

V (x) =
c0x

2μ2
ln

1 − x

1 + x
+ K, |x| < A, (19)

V (x) = U(|x|, 1), |x| ≥ A. (20)

It is straightforward to check that V (x) has the following properties:

(V.1) V (x) ∈ C1 in x for x ∈ (−1, 1), and V (x) ∈ C2 in x except at points
x = ±A;

(V.2) (1 − x2)V ′(x) is bounded for x ∈ (−1, 1);
(V.3) LV (x) = −c0 if |x| < A, and LV (x) ≥ −c0 if |x| > A;
(V.4) V (x) = U(|x|, 1) if |x| ≥ A, and V (x) ≤ U(|x|, 1) if |x| < A.

Applying Iô’s formula to the process V (Mt) and taking the expectation, for any
stopping time τ0 with Eτ0 < ∞ we obtain

ExV (Mτ0) = V (x) + Ex

∫ τ0

0

LV (Ms)ds

(Itô’s formula can be applied in view of (V.1); the expectation of the stochastic
integral, which appears in it, is zero in view of (V.2) and the finiteness of Eτ0).

From (V.3) and (V.4), we find

V (x) ≤ Ex(c0τ0 + U(|Mτ0 |, 1)), (21)

so, after taking the infimum over τ0, we get V (x) ≤ V ∗(x). On the other hand,
for the stopping time τ∗

0 we have the equality in (21), so V (x) = V ∗(x). Conse-
quently, τ∗

0 solves the problem V ∗.
The proof is complete.
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Remark 1. The above proof does not explain how to find the functions V (x) and
U(x, y). Here we provide arguments which are based on well-known ideas from
the optimal stopping theory and allow to do that. The reader is referred, e.g.,
to the monograph [7] for details.

Since the process Mt is Markov, we can expect that the optimal process Dt for
U∗ should depend only on current values of Mt and Dt−. Moreover, it is natural
to assume that Dt should switch from 1 to −1 when Mt becomes close to −1, and
switch from −1 to 1 when Mt becomes close to 1. The symmetry of the problem
suggests that there should be a threshold B such that the switching occurs when
Mt crosses the levels ±B. This means that the optimal sequence of stopping times
T ∗ is of the form (6)–(7). Consequently, in the set {(x, y) : x > −yB}, where x
corresponds to the value of Mt and y corresponds to the value of Dt, one should
continue using the current value of Dt, while in the set {(x, y) : x ≤ −yB} switch
to the opposite one. In what follows, we will call these sets the continuation set
and the switching set, respectively.

Next we need to find B. Introduce the value function U(x, y) (cf. (9); it turns
out to be the same function U(x, y) which appears in the proof):

U(x, y) = inf
D

Ex

(
c1
2

∫ ∞

0

(1 − MtDt)dt + c2I(D0 �= y) + c2
∑

t>0

I(Dt− �= Dt)
)

,

where the infimum is taken over all càdlàg processes Dt which are adapted to
the filtration generated by Mt, take on values ±1, and have a finite number of
jumps. In the switching set, we have

U(x, y) = U(x,−y) + c2.

From the general theory (see Chapter III in [7]), we can expect that the value
function U(x, y) in the continuation set solves the ODE

LU(x, y) = −c1
2

(1 − xy).

Its general solution can be found explicitly:

Ugen(x, 1) =
c1(1 − x)

4μ2
ln

1 + x

1 − x
+ K1x + K2,

where K1 and K2 are constants. Since we have U(1, 1) = 0 (if x = 1, then Mt = 1
for all t ≥ 0 and the optimal process D is Dt ≡ 1), we get K2 = −K1. To find K1

and B, we can employ the continuous fit and smooth fit conditions, also known
from the general theory, which state that at the boundary of the continuation set,
i.e. at the points (x, y) with x = −yB, the value function satisfies the equations

U(−B, 1) = U(−B,−1) + c2, U ′(−B, 1) = U ′(−B,−1)

(here x = −B, y = 1; the pair x = B, y = −1 gives the same equations due to
the symmetry of the problem). Solving these equations gives formulas (11)–(13)
for U(x, y).
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To find the function V (x) we use a similar approach. From the representation
as a standard optimal stopping problem (17), we can expect that the optimal
stopping time should be the first exit time of the process Mt from some con-
tinuation set. Taking into account the original formulation of the problem as a
sequential test, it is natural to assume that the initial decision should be made
at a moment when the posterior mean becomes close to 1 or −1, i.e. the contin-
uation set for V (x) should be an interval (−A, A). As follows from the general
theory, V (x) in the continuation set satisfies the ODE

LV (x) = −c0,

which has the general solution

Vgen(x) =
c0x

2μ2
ln

1 − x

1 + x
+ K3x + K4.

Due to the symmetry of the problem, we have V (x) = V (−x), so K3 = 0. Then
the constants A and K4 can be found from the continuous fit and smooth fit
conditions at x = A:

V (A) = U(A, 1), V ′(A) = U ′(A, 1).

These equations give the function V (x) defined in (19)–(20), with K4 = K
from (18).

References

1. Bartroff, J., Lai, T.L., Shih, M.C.: Sequential Experimentation in Clinical Trials:
Design and Analysis. Springer Science & Business Media, New York (2012)

2. Bayraktar, E., Ludkovski, M.: Sequential tracking of a hidden Markov chain using
point process observations. Stoch. Process. Appl. 119(6), 1792–1822 (2009)

3. Gapeev, P.V.: Bayesian switching multiple disorder problems. Math. Oper. Res.
41(3), 1108–1124 (2015)

4. Irle, A., Schmitz, N.: On the optimality of the SPRT for processes with continuous
time parameter. Stat. J. Theor. Appl. Stat. 15(1), 91–104 (1984)

5. Liptser, R.S., Shiryaev, A.N.: Statistics of Random Processes I, II. Springer-Verlag,
Berlin (2001)

6. Muravlev, A., Urusov, M., Zhitlukhin, M.: Sequential tracking of an unobservable
two-state Markov process under Brownian noise. Seq. Anal. 40(1), 1–16 (2021)

7. Peskir, G., Shiryaev, A.: Optimal Stopping and Free-Boundary Problems.
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Abstract. This work relates to the problem of the identifying of some
solutions to linear integro-differential equations as the probability of sur-
vival (non-ruin) in the corresponding collective risk models involving
investments. The equations for the probability of non-ruin as a func-
tion of the initial reserve are generated by the infinitesimal operators of
corresponding dynamic reserve processes. The direct derivation of such
equations is usually accompanied by some significant difficulties, such
as the need to prove a sufficient smoothness of the survival probabil-
ity. We propose an approach that does not require a priori proof of the
smoothness. It is based on previously proven facts for a certain class of
insurance models with investments: firstly, under certain assumptions,
the survival probability is at least a viscosity solution to the correspond-
ing integro-differential equation, and secondly, any two viscosity solu-
tions with coinciding boundary conditions are equivalent. We apply this
approach, allowing us to justify rigorously the form of the survival prob-
ability, to the collective life insurance model with investments.

Keywords: Survival probability · Viscosity solution ·
Integro-differential equations

1 Introduction

The problem of viscosity solutions of linear integro-differential equations (IDEs)
for non-ruin probabilities as a functions of an initial surplus in collective insur-
ance risk models, when the whole surplus is invested into a risky (or risk-free)
asset, is considered in [1]. For a rather general model of the resulting surplus pro-
cess, it is shown that the non-ruin probability always solves corresponding IDE in
the viscosity sense. Moreover, for the case when the distributions of claims in the
insurance risk process have full support on the half-line, a uniqueness theorem
is proved in [1]. In the present paper, we use these results to establish that the
solution of some previously formulated and investigated boundary value prob-
lem for IDE defines the probability of ruin for the corresponding surplus model.
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Thus, the uniqueness theorem for a viscosity solution plays the role of a verifica-
tion argument for the solution of the IDE as the probability of non-ruin for the
resulting surplus process in the models with investments. The approach proposed
here can be considered as an alternative tool along with traditional verification
arguments based on the use of the martingale approach (see, e.g., [2,3] and ref-
erences therein). It can be used when it is possible to determine a priori the
value of the probability of non-ruin at an initial surplus which is equal to zero,
and its limiting value when the initial surplus tends to infinity.

The mentioned general model, which is studied in [1], considers an insurance
risk in the classical actuarial framework but under the assumptions that the
price process of the risky asset is a jump-diffusion process defined by the stochas-
tic exponential of the Lévy process. The classical actuarial framework involves
two possible versions of the original model (without investment): the classical
Cramér-Lundberg model or the so-called dual risk model (also called compound
Poisson model with negative claims [4], or life annuity insurance model [5]). To
demonstrate the main idea of this paper, we consider the dual risk model and
assume that the insurer’s reserve is invested to a risky asset with price modelled
by the geometric Brownian motion or it is invested to a risk-free asset. We use
this particular case of the model considered in [1], because 1) for the case of
an exponential distribution of jumps and risky investments, the existence of a
twice continuously differentiable solution to the boundary value problem for the
corresponding IDE is proved in [6], where its properties also are studied and
the numerical calculations are done; for the risk-free investment, a non-smooth,
generally speaking, solution is constructed in [7] and 2) the value of the sur-
vival probability at zero surplus level is a priory known (unlike, for example,
the Cramér-Lundberg model with investment, where it can be determined only
numerically; see, e.g. [8]).

The paper is organized as follows. In Sect. 2 the compound Poisson model
with negative claims and investments is described. Then the problem of the
identifying of some solutions to linear integro-differential equations as the sur-
vival probabilities in this model in two cases: risky and risk-free investments is
formulated. In Sect. 3 some preliminary results about survival probabilities as
viscosity solutions of IDEs are given. In Sect. 4 a general statement concerning
the identifying the survival probability in the considered model (Theorem 3) is
proved. In this statement, the uniqueness theorem for a viscosity solution as a
verification argument for the survival probability is used. Moreover, the results
of Theorem 3 with applying to the case of exponential distribution of premiums
size (jumps of the compound Poisson process) are given; here risky investments
(Sect. 4.1) as well as risk-free investments (Sect. 4.2) are considered. Section 5
deals with proofs. In Sect. 6 some results of numerical calculations from [7] are
presented, and Sect. 7 contains the conclusions.

2 The Model Description and Statement of the Problem

The typical insurance contract for the policyholder in the dual risk model is the
life annuity with the subsequent transfer of its property to the benefit of the
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insurance company. Thus, the surplus of a company in a collective risk model is
of the form

Rt = u − ct +
N(t)∑

k=1

Zk, t ≥ 0. (1)

Here Rt is the surplus of a company at time t ≥ 0; u is the initial surplus, c > 0
is the life annuity rate (or the pension payments per unit of time), assumed to be
deterministic and fixed. N(t) is a homogeneous Poisson process with intensity
λ > 0 that, for any t > 0, determines the number of random revenues up to
the time t; Zk (k = 1, 2, ...) are independent identically distributed random
variables (r.v.) with a distribution function F (z) (F (0) = 0, EZ1 = m < ∞,
m > 0) that determine the revenue sizes (premiums) and are assumed to be
independent of N(t). These random revenues arise at the final moments of the
life annuity contracts realizations.

We assume also that the insurer’s reserve is invested to a risky asset with
price St modelled by the geometric Brownian motion,

dSt = μStdt + σStdwt, t ≥ 0,

where μ is the stock return rate, σ is the volatility, wt is a standard Brownian
motion independent of N(t) and Zi’s.

Then the resulting surplus process Xt is governed by the equation

dXt = μXtdt + σXtdwt + dRt, t ≥ 0, (2)

with the initial condition X0 = u, where Rt is defined by (1).
Denote by ϕ(u) the survival probability: ϕ(u) = P (Xt ≥ 0, t ≥ 0). Then

Ψ(u) = 1 − ϕ(u) is the ruin probability. Then τu := inf{t : Xu
t ≤ 0} is the time

of ruin.
Recall at first that the infinitesimal generator A of the process Xt has the

form

(Af)(u) =
1
2
σ2u2f ′′(u) + f ′(u)(μu − c) − λf(u) + λ

∞∫

0

f(u + z) dF (z), (3)

for any function f(u) from a certain subclass of the space C2(R+) of twice con-
tinuously differentiable on (0,∞) functions (in the case σ > 0; if σ = 0 we are
dealing with a different class of functions, see [7]).

One of the important questions in this and similar models is the question
of whether the survival probability ϕ(u) is a twice continuously differentiable
function of the initial capital u on (0,∞). In the case of a positive answer to this
question, we can state that ϕ(u) is a classical solution of the equation

(Af)(u) = 0, u > 0, (4)

and the properties of this probability can be investigated as properties of a
suitable solution to this equation. In [10], for the case of exponential distribution
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of Zk and σ > 0, such a suitable solution in the set of all solutions of the linear
IDE (4) is selected using some results of renewal theory; the regularity (twice
continuous differentiability) of ϕ(u) is studied using a method based on integral
representations; asymptotic expansions of the survival probability for infinitely
large values of the initial capital is obtained.

In contrast to the direct method used in [10], we propose a method based
on the assumption of the existence of a classical (or, maybe, viscosity) solution
to a boundary value problem for the IDE (4) and verification arguments for the
survival probability related to the concept of viscosity. For the case of exponential
distribution of the company’s random revenues and σ > 0, the existence theorem
for IDE (4) with boundary conditions

lim
u→+0

f(u) = 0, lim
u→+∞ f(u) = 1, (5)

is proved in [6]. The uniqueness of the classical solution is also established, as
well as its asymptotic behaviour at zero and at infinity. For the case σ = 0, a
non-smooth (generally speaking) solution is presented in [7].

The problem we are solving here: to prove that if there exists a solution f of
the problem (4), (5), then it determines the survival probability of the process (2).
For the solving this problem, we use the results of [1] on the survival probability
as a viscosity solution to equation (4).

3 Survival Probabilities as Viscosity Solutions of IDEs:
Preliminary Results [1]

Let denote by C2
b (u) the set of bounded continuous functions f : R → R two

times continuously differentiable in the classical sense in a neighbourhood of the
point u ∈]0,∞[ and equal to zero on ]−∞, 0]. For f ∈ C2

b (u), the value (Af)(u)
is well-defined.

A function Φ :]0,∞[→ [0, 1] is called a viscosity supersolution of (4) if for
every point u ∈]0,∞[ and every function f ∈ C2

b (u) such that Φ(u) = f(u) and
Φ ≥ f the inequality (Af)(u) ≤ 0 holds.

A function Φ :]0,∞[→ [0, 1] is called a viscosity subsolution of (4) if for every
u ∈]0,∞[ and every function f ∈ C2

b (u) such that Φ(u) = f(u) and Φ ≤ f the
inequality (Af)(u) ≥ 0 holds.

A function Φ :]0,∞[→ [0, 1] is a viscosity solution of (4) if Φ is simultaneously
a viscosity super- and subsolution.

From the results of [1], formulated for the more general model of the surplus
process, we have that the following propositions are true:

Theorem 1. The survival probability ϕ of the process (2) as a function of an
initial surplus u is a viscosity solution of IDE (4) with A defined by (3).

Theorem 2. Suppose that the topological support of the measure dF (z) is R+ \
{0}. Let Φ and Φ̃ be two continuous bounded viscosity solutions of (4) with the
boundary conditions Φ(+0) = Φ̃(+0) and Φ(∞) = Φ̃(∞). Then Φ ≡ Φ̃.
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4 Main Results

Theorem 3. Let the topological support of the measure dF (z) be R+ \ {0} and
the survival probability ϕ(u) of the process (2) be continuous on [0,∞[ and not
identically zero. Suppose there is a continuous viscosity solution Φ of IDE (4)
with the boundary conditions (5). Then ϕ ≡ Φ.

Proof. First, we note that, as is easy to see, ϕ(0) = 0 (see also [6, Lemma 1]).
In addition, if ϕ(u) is not identically zero, then

lim
u→+∞ ϕ(u) = 1. (6)

Indeed, by the Markov property for any t, u ≥ 0 we have the identity
ϕ(u) = ϕ(Xτu∧t). Using the Fatou lemma and the monotonicity of ϕ we get, for
t → ∞, that ϕ(u) = limt Eϕ(Xτu∧t) ≤ E limt ϕ(Xτu∧t) ≤ Eϕ(Xτu)I{τu<∞} +
+ limu→+∞ ϕ(u)E I{τu=∞}. In virtue of definitions, the first term in the right-
hand side is zero. Then ϕ(u) ≤ ϕ(u) limu→+∞ ϕ(u). Since ϕ(u) is monotone, we
conclude from this inequality that if it is not identically zero, then equality (6) is
true. In view of Theorem 1 the survival probability ϕ is the viscosity solution of
IDE (4). Therefore, from Theorem 2 on the uniqueness of the viscosity solution
with fixed boundary conditions, we have ϕ ≡ Φ.

Remark 1. For the case σ = 0, the equality (6) is also the consequence of the
following relation:

ϕ(u) ≡ 1, u ≥ c/μ, (7)

(see Lemma 1 and Remark 2 below).

Next, we consider examples of the application of Theorem 3 in the case of expo-
nential distribution of Zi.

4.1 The Case of Risky Investments (σ > 0 )

In [6] the following proposition is proved.

Theorem 4. Let F (z) = 1 − exp (−z/m), all the parameters in (3): c, λ, m,
μ, σ > 0, and 2μ > σ2. Then the following assertions hold:

(I) there exists a twice continuously differentiable function f satisfying the
equation IDE (4) and conditions (5);

(II ) this solution may be defined by the formula f(u) = 1−
∞∫
u

g(s) ds, where g(u)

is the unique solution of the following problem for an ordinary differential
equation (ODE):

1

2
σ2u2g′′(u) +

(
μu + σ2u − c − 1

2m
σ2u2

)
g′(u) +

(
μ − λ − μu − c

m

)
g(u) = 0, u > 0,

(8)
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lim
u→+0

|g(u)| < ∞, lim
u→+0

[ug′(u)] = 0, (9)

lim
u→∞ [ug(u)] = 0, lim

u→∞ [u2 g′(u)] = 0, (10)

with the normalizing condition

∞∫

0

g(s) ds = 1. (11)

Moreover, in [6], asymptotic representations of the solution f at zero and at
infinity are obtained and examples of its numerical calculations by solving the
ODE problem (8)–(11) are given.

Theorem 5. Let the conditions of Theorem4 be satisfied. Then the function f
defined in this theorem is the survival probability for the process (2), i.e., ϕ ≡ f .

4.2 The Case of Risk-Free Investments (σ = 0)

For this case, our approach can also be applied to a non-smooth (generally
speaking) solution constructed in [7] (see also [9,11]).

We assume here that the insurer’s reserve is invested to a risk-free asset with
price Bt modelled by the equation

dBt = rBtdt, t ≥ 0,

where r is the return rate.
Then the resulting surplus process Xt is governed by the equation

dXt = rXtdt + dRt, t ≥ 0, (12)

with the initial condition X0 = u, where Rt is defined by (1).
Recall that, in the case σ = 0, the infinitesimal generator (3) of the corre-

sponding process Xt takes the form

(Af)(u) = f ′(u)(ru − c) − λf(u) + λ

∞∫

0

f(u + z) dF (z) (13)

(here we rename the return rate of the risk-free asset from μ to r). From the
results of [7] we have the following

Proposition 1. Let F (z) = 1 − exp (−z/m), all the parameters in (13): c, λ,
m, r > 0. Then the following assertions hold:

(I) there exists a continuous function Φ, which is twice continuously differen-
tiable on the interval (0, c/r), satisfying the equation IDE (4) (everywhere,
except, perhaps, the point c/r) and the conditions

lim
u→+0

Φ(0) = 0, Φ(u) ≡ 1, u ≥ c/r; (14)
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(II ) on the interval (0, c/r), this solution may be defined by the formula Φ(u) =

1 −
c/r∫
u

g(s) ds, where

g(u) =

⎡

⎢⎣
c/r∫

0

(c/r − u)λ/r−1 exp (u/m) du

⎤

⎥⎦

−1

(c/r − u)λ/r−1 exp (u/m); (15)

(III ) Φ(u) is a viscosity solution of IDE (4);
(IV) for λ > 2r, Φ(u) is a twice continuously differentiable on (0,∞) function,

i.e., it is a classical solution of IDE (4); in this case limu↑c/r Φ′′(u) =
limu↑c/r Φ′(u) = 0; otherwise, Φ(u) satisfies IDE (4) in the classical sense
everywhere except for the point u = c/r;

(V) for r < λ ≤ 2r, Φ(u) is smooth but it is not twice continuously differen-
tiable on (0,∞), since limu↑c/r Φ′′(u) = −∞ for λ < 2r, and

lim
u↑c/r

Φ′′(u) = −m−2
[
exp

(
c/(rm)

) − 1 − c/(rm)
]−1 exp

(
c/(rm)

)
< 0,

λ = 2r;
(VI) for λ ≤ r, Φ(u) is not smooth, since its derivative is discontinuous at the

point u = c/r:

lim
u↑c/r

Φ′(u) = m−1
[
exp

(
c/(rm)

) − 1
]−1 exp

(
c/(rm)

)
> 0,

λ = r, and limu↑c/r Φ′(u) = ∞, wherein Φ′(u) is integrable at the point
u = c/r, λ < r.

Theorem 6. Let the conditions of Proposition 1 be satisfied. Then the function
Φ defined in this proposition is the survival probability for the process (12), i.e.,
ϕ ≡ Φ.

5 Proofs

Let us return to the general case of a process of the form (2) and prove aux-
iliary statements about non-triviality and continuity of its survival probability
(Lemma 1 and Lemma 3 below respectively). We also formulate Lemma 2 about
zero value of the survival probability at zero surplus level. Then the statement of
Theorem 5 is a consequence of Theorems 3, 4 and Lemmas 1–3. The statement of
Theorem 6 is a consequence of Theorem 3, Proposition 1 and the same lemmas.

Lemma 1. Let
2μ > σ2. (16)

Then the survival probability ϕ(u) of process (2) is not identically zero. Moreover,
if σ = 0, then ϕ(u) = 1, u ≥ c/μ.
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Proof. 1) The case σ > 0. Let

μ(x) = μx − c, σ(x) = σx. (17)

Let us consider the process Yt = Y u
t given by the equation

dYt = μ(Yt)dt + σ(Yt)dwt, (18)

with initial state Y0 = u > 0 and the same standard Brownian motion as
in (2). To understand the qualitative behavior of the process (2), we use the
corresponding result for the process (18) at first; this result is given in [12,
Chapter 4]. Below we use the following functions:

ρ(x) = exp

⎛

⎝−
x∫

a

2μ(y)
σ2(y)

dy

⎞

⎠, x ∈ [a,∞), (19)

s(x) = −
∞∫

x

ρ(y)dy, x ∈ [a,∞). (20)

It is easy to check that in the case when the functions μ(x), σ(x) are of the
form (17) and the relation (16) is valid, we have

∫ ∞

a

ρ(x)dx < ∞,

∫ ∞

a

|s(x)|
ρ(x)σ2(x)

dx = ∞.

Note that the (strong) solution of equation (18) with coefficients defined in
(17) and the initial state Y0 = u can be represented as

Y u
t = exp(Ht)

⎡

⎣u − c

t∫

0

exp(−Hs) ds

⎤

⎦ , t ≥ 0, (21)

where
Ht =

(
μ − σ2/2

)
t + σwt.

Let us denote Tu
a := inf{t : Y u

t ≤ a}; for the process Y u
t , the r.v. Tu

a is the
moment of its first hitting the level a. Then, for a < u, according to [12, Th.
4.2], we conclude that

P{Tu
a = ∞} > 0 (22)

and limt→∞ Yt = ∞ P − a.s. on {Tu
a = ∞}. For the solution of (2) with the

same initial state X0 = u we can write

Xu
t = Y u

t + exp(Ht)

⎡

⎣
N(t)∑

i=1

Zi exp (−Hθi
)

⎤

⎦ , t ≥ 0, (23)

where θi is the moment of the i-th jump of the process N(t). It is clear that

Xu
t ≥ Y u

t P − a.s., t ≥ 0. (24)
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Hence, taking into account the relation (22) for a < u, we have for the time
τu of ruin of the process Xu

t that

P{τu = ∞} > 0, u > 0,

i.e., ϕ(u) > 0, u > 0.
2) The case σ = 0. It is clear in this case that for u ≥ c/μ the ruin of the process

Y u
t will never occur and relations (23), (24) are true. Hence, for the process

Xu
t we have at least that ϕ(u) = 1, u ≥ c/μ.

Remark 2. For the survival probability ϕ(u) of process (12) we have clearly from
Lemma 1 that ϕ(u) = 1, u ≥ c/r.

Lemma 2. For σ2 ≥ 0, the survival probability ϕ(u) of process (2) satisfies the
condition

ϕ(0) = 0. (25)

For the simple proof of this lemma, see ([6]).

Lemma 3. Let c, λ, m be positive numbers. Then for arbitrary μ, σ the survival
probability ϕ(u) of process (2) is continuous on [0,∞[.

Proof. Let us prove this statement in the case σ2 > 0; otherwise the proof is
simpler. Let us show first the continuity of ϕ(u) at zero. In other words, we prove
the limit equality

lim
u→+0

ϕ(u) = 0. (26)

Note that, for u > 0 and any fixed t > 0,

ϕ(u) ≤ P(Xu
t > 0) = P

⎛

⎝u − c

t∫

0

exp(−Hs) ds +
N(t)∑

i=1

Zi exp (−Hθi
) > 0

⎞

⎠

≤ P

⎛

⎝
N(t)∑

i=1

Zi exp (−Hθi
) > 0

⎞

⎠ + P

⎛

⎝
t∫

0

exp(−Hs) ds < u/c

⎞

⎠

≤ P(N(t) ≥ 1) + P
(

t inf
s≤t

exp(−Hs) < u/c

)
.

Denote Ms = exp[(μ − σ2)s − Hs]. Clear that

Ms = exp(−σ2

2
s − σws) (27)

is a non-negative martingale with M0 = 1. Hence,

ϕ(u) ≤ P(N(t) ≥ 1) + P
(

inf
s≤t

Ms <
u

ctb(t)

)
, (28)
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Fig. 1. The case λ > 2r: r=0.3; μ = 0.7.

where b(t) = exp[(μ − σ2)t] I{μ > σ2} + I{μ ≤ σ2} and I is the indicator
function of the set. The following inequality is proved in the course of the proof
of Lemma 4.2 in [13]. For non-negative supermartingale Mt, M0 = 1, we have

P
(

inf
s≤t

Ms < ε

)
≤ 2P (Mt < 2ε) , ε > 0. (29)

Setting ε = u
ctb(t) and applying inequality (29) to the martingale of the form

(27), we obtain from (28) that, for any fixed t,

lim
u→+0

ϕ(u) ≤ 1 − exp (−λt). (30)

Letting t → 0 in (30) and taking into account the non-negativity of ϕ, we have
equality (26).

Let us prove the continuity at any point u > 0. Note that the difference
between the two processes Xt(u+ε) = Xu+ε

t and Xt(u) = Xu
t starting at points

u + ε and u respectively, has the form

Xt(u + ε) − Xt(u) = ε exp(Ht). (31)

For the stopping time τu ∧ t, where τu is the time of ruin of the process Xu
t , due

to the strong Markov property of the process Xu+ε
t , we have

ϕ(u + ε) = Eϕ(Xτu∧t(u + ε))
= E[ϕ(Xτu∧t(u + ε))I{τu < ∞}] + E[ϕ(Xτu∧t(u + ε))I{τu = ∞}]
= E[ϕ(Xt(u + ε))I{τu = ∞}] + E[ϕ(Xτu∧t(u + ε))I{τu ≤ t}]
+E[ϕ(Xτu∧t(u + ε))I{t < τu < ∞}]
= E[ϕ(Xt(u + ε))I{τu = ∞}] + E[ϕ(Xτu(u + ε))I{τu ≤ t}]
+E[ϕ(Xt(u + ε))I{t < τu < ∞}].



Survival Probabilities as Viscosity Solutions of IDEs 53

Fig. 2. The case λ = 2r: r=0.5; μ = 0.7.

Fig. 3. The case r < λ < 2r: r=0.75; μ = 1.

For three terms at the end of the last chain of equalities, we have
E[ϕ(Xt(u + ε))I{τu = ∞}] ≤ P{τu = ∞} = ϕ(u),

E[ϕ(Xτu(u + ε))I{τu ≤ t}] = E[ϕ(ε exp(Hτu)I{τu ≤ t}], (32)

E[ϕ(Xt(u + ε))I{t < τu < ∞}] ≤ P{t < τu < ∞} (equality (32) is true due to
relation (31) and the fact that Xτu = 0 for the process with positive jumps).
Then

ϕ(u + ε) ≤ ϕ(u) + E[ϕ(ε exp(Hτu)I{τu ≤ t}] + P{t < τu < ∞}. (33)



54 T. Belkina

Fig. 4. The case λ = r: r=1; μ = 1.5.

Fig. 5. The case λ < r: r=1.5; μ = 1.75.

Note that the first term in (33) tends to zero as ε → 0 due to the proved
continuity at zero of ϕ(u), condition (25) and taking into account the dominated
convergence theorem. Then, for any t,

lim
ε→+0

(ϕ(u + ε) − ϕ(u)) ≤ P{t < τu < ∞}.

Letting t → ∞ in the last inequality and taking into account that the survival
probability ϕ is the non-decreasing on the initial state u, we obtain the right-
continuity of this function. The left-continuity may be proved analogously.
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6 Numerical Results [7]

For the results of numerical calculations (Figs. 1, 2, 3, 4 and 5), the curves with
number 1 (2) correspond to the case of risky investments in shares with parame-
ters μ and σ2 (risk-free ones with return rate r respectively). The figures are pre-
sented in order of decreasing smoothness and increasing discontinuity of deriva-
tives for the curves number 2. For all figures, c = 4, m = 2, λ = 1, σ2 = 0.3 (the
parameter values are relative, they are normalized in such a way that λ = 1).

7 Conclusions

s A new approach to justifying the survival probabilities in dynamic insurance
models with investments as the solutions of corresponding IDE problems is pro-
posed. This approach avoids direct proof of the smoothness of the survival prob-
ability by using verification arguments based on the uniqueness of the viscosity
solution. It can be applied if it has been previously proved, that the survival
probability is continuous, not identically equal to zero function, has a known
value at zero initial surplus and is a viscosity solution of some IDE problem.
The first two facts can be established quite simply, and the last fact can be
proved for a whole class of models, as it is done in [1]. In this case, for specific
models from this class, it remains only to prove the existence of a solution (clas-
sical or in the sense of viscosity) for the corresponding IDE problem. On the
other hand, it remains unclear whether this approach can be applied to models
in which the corresponding problem for the IDE is not a boundary problem (see,
e.g., [8])

Acknowlegements. The author is grateful to Alexander Gushchin for useful discus-
sion on the subject matter.
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Abstract. We formulate an optimization stochastic algorithm conver-
gence theorem, of Solis and Wets type, and we show several instances of
its application to concrete algorithms. In this convergence theorem the
algorithm is a sequence of random variables and, in order to describe
the increasing flow of information associated to this sequence we define
a filtration – or flow of σ-algebras – on the probability space, depending
on the sequence of random variables and on the function being opti-
mized. We compare the flow of information of two convergent algorithms
by comparing the associated filtrations by means of the Cotter distance
of σ-algebras. The main result is that two convergent optimization algo-
rithms have the same information content if both their limit minimization
functions generate the full σ-algebra of the probability space.

Keywords: Stochastic algorithms · Global optimization · Convergence
of information σ-fields

1 Introduction

There are three main roots we can consider to the present work. The first is a
quite general formulation of a stochastic optimization algorithm given in [SW81],
studied under a different perspective in [SP99] and [PS00], and then corrected
and slightly generalized in [Esq06] and having further developments and exten-
sions in [dC12]. The subject of stochastic optimization – in the perspective
adopted in this work – become stabilized with the books [Spa03,Zab03] and
the work [Spa04]. The interest on the development of stochastic optimization
methods continued, for instance in the work [RS03]. We refer a very effective
and general approach to a substantial variety of stochastic optimization prob-
lems that takes the denomination of the cross entropy method proposed in a
unified way in [RK04], further explained in [dBKMR05], with the convergence
proved in [CJK07] and further extended in [RK08].
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The second root originated in [SB98], is detailed in Sect. 4 for the reader’s
convenience, and may be broadly described as a form of conditioning of the
results of any algorithm for global optimization; conditioning in the sense that
the algorithm must gather enough information in order to get significant results.

This leads to the third root, namely the formalization of the concept informa-
tion, conveyed by a random variable, as the σ-algebra generated by this random
variable. This formalization encompasses many extensions and uses (see [Vid18])
for a recent and thorough account). We may initially refer with introduction
of a convergence definition for σ-algebras – the so called strong convergence –
related to the conditional expectation by Neveu in [Nev65] (or the French ver-
sion in [Nev64]), with in [Kud74] a very deep study and, with developments,
in [Pic98] and [Art01]. Then [Boy71] introducing a different convergence – the
Hausdorff convergence – with an important observation in [Nev72] and further
analysis in [Rog74] and [VZ93]. In the study of convergence of σ-algebras (or
fields) there were many noticeable advances – and useful in our perspective –
with Cotter in [Cot86] and [Cot87] extended in [ALR03] and detailed in [Bar04]
and further extensions in [Kom08].

In the perspective of further developments, we mention [Wan01] and [Yin99],
two works that concern the determination of the rates of convergence of stochas-
tic algorithms allowing for the determination of adequate and most effective
stopping rules for the algorithm and also [dC11] – and references therein – for a
method to obtain confidence intervals for stochastic optimums.

2 Some Random Search Algorithms

We will now develop the following general idea: a convergent stochastic search
algorithm for global optimization of a real valued function f defined on a domain
D may be seen simply as a sequence of random variables Y = (Yn)n≥1 such that
the sequence (f(Yn))n≥1 converges (almost surely or in probability) to a random
variable which gives a good estimate of minx∈D f(x). This sequence of random
variables gives information about f on D. A natural question is how to compare
quantitatively the information brought by two different algorithms.

We now describe three algorithms which we will discuss in the following.
Important issues for discussion are the convergence of the algorithm and, in
case of convergence, the rate of convergence of the algorithm. Let (Ω,F,P) be
a complete probability space.

2.1 The Pure Random Search Algorithm

For the general problem of minimizing f : D ⊆ Rn �→ R over D, a bounded
Borel set of Rn, we consider the following natural algorithm.

S.1 Select a point x1 at random in D. Do y1 := x1.
S.2 Choose a point x2 at random in D. Do:

y2 := y11I{f(y1) < f(x2)} + x21I{f(y1) ≥ f(x2)}.
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S.3 Repeat S.2.

To this algorithm it corresponds a probabilistic translation given in the following.

Sp.1 Let X1,X2, . . . , Xn, . . . be independent random variables with common
distribution over D verifying furthermore, with B(D) the Borel σ-algebra
of D:

∀B ∈ B(D) λ(B) > 0 ⇒ P[X1 ∈ B] > 0. (1)

Sp.2 Y1 := X1

Sp.3 Yn+1 = Yn1I{f(Yn) < f(Xn+1)} + Xn+11I{f(Yn) ≥ f(Xn+1)}
Having no prior information on the minimum set location and for random vari-
ables having common distribution on a bounded Borel set, a natural choice for
the distribution of the random variables Xj is the uniform distribution. A non
uniform distribution will distribute more mass on some particular sub domain.
This may entail a loss of efficiency if the minimizer set is not contained in the
more charged domain.

Remark 1 (The laws of the random variables of pure random search algorithm).
We observe that for n > 1 we have:

Yn =
n∑

k=1

Xk1I⋂
j<k{f(Xk)≤f(Xj)}∩ ⋂

j>k{f(Xk)<f(Xj)},

an alternative expression that will allow us to describe the law of Yn. Let D in
the Borel σ-algebra of D and suppose that the random variables (Xn)n≥1 are
uniformly distributed in D. We have the following disjoint union:

{Yn ∈ D}

=
n⋃

k=1

⎛

⎝{Xk ∈ D} ∩
⋂

1≤j<k

{f(Xk) ≤ f(Xj)} ∩
⋂

k<j≤n

{f(Xk) < f(Xj)}
⎞

⎠ ,

which entails, representing by λ the Lebesgue measure over D, that (see the
Appendix, page 17, for the complete deduction):

P[Yn ∈ D]

=
n∑

k=1

(
1

λ(D)n

∫

D

λ(f−1([f(xk),+∞[))k−1λ(f−1(]f(xk),+∞[))n−kdλ(xk)
)

,

(2)
by Fubini theorem and by the fact that (Xn)n≥1 is a sequence of independent
uniformly distributed random variables on D. Suppose furthermore that for every
x ∈ D we have λ(f−1({f(x)})) = 0, we then have:

P[Yn ∈ D] =
n

λ(D)n

∫

D

λ(f−1([f(x),+∞[))n−1dλ(x),

which gives us the density of Yn with respect to the Lebesgue measure.
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2.2 The Random Search Algorithm on (Nearly) Unbounded
Domains

In the context of simple random search we may ask what is the natural substitute
of the uniform distribution on an unbounded domain? A variant of the algorithm
we now present was introduced in [Esq06] having in mind performing global
optimization in unbounded domains. For bounded but large domains one may
consider an algorithm using, for instance, a Gaussian distribution.

S.1 Select a point x at random in D ⊂ R. Do z := x.
S.2 Choose a point x at random in D. Choose a point y with distribution N(x, σ)

where for instance σ := diam(D)/10. Do:

z := z1I{f(z) < f(y)} + y1I{f(z) ≥ f(y)}.

S.3 Repeat S.2.

The probabilistic recursive translation of this algorithm is the following.

pS.1 Let X1,X2, . . . , Xn, . . . independent random variables with common uni-
form distribution over D

pS.2 Z1 := X1

pS.3 Let Y1, Y2, . . . , Yn, . . . be a sequence of independent random variables such
that Yn � N(Xn, σ).

pS.4 Zn+1 := Zn1I{f(Zn) < f(Yn+1)} + Yn+11I{f(Zn) ≥ f(Yn+1)}.

2.3 The Zig-Zag Algorithm

The zig-zag algorithm was introduced in [MPB99] (see also for other references
and a convergence proof [PM10]) in order to optimize a quadratic function in
two sets of multidimensional variables. The main idea of this algorithm may be
simply described. In the first step we optimize in one of the sets of variables
leaving the variables of the other set unchanged. On the second step, the first
set of variables remains unchanged in the optimum value determined in the first
step and an optimization is performed in the second set of variables. On the
third step, it is now the second set of variables that remains unchanged in the
optimum determined in the second step while an optimization is executed in the
first set of variables. For the general case, the convergence and – if applicable –
the rate of convergence issues were open problems, as far as we know.

One of the possibilities opened by this algorithm is to perform the optimiza-
tion in sets of strictly smaller linear dimension than the dimension of D. Suppose
that D ⊆ R2 is bounded.

S.1 Select a point x at random in D. Do z := x.
S.2 (Optimization along a lower dimensional subset of the domain)
S.2.1 Choose a point y at random in D.



Information of Stochastic Algorithms 61

S.2.2 Choose, at random, points λ1, . . . , λN ∈ R such that λjz+(1−λj)y ∈ D

and define x to be such that f(x) = min1≤j≤N f(λjz + (1 − λj)y). Do:

z := z1I{f(z) < f(x)} + x1I{f(z) ≥ f(x)}.

S.3 Repeat S.2

For this algorithm, one probabilistic recursive translation may be the following.

pS.1 Let Y1, Y2, . . . , Yn, . . . be a sequence of independent random variables with
common uniform distribution over D.

pS.2 Z1 := Y1

pS.3 For each n ≥ 1, let λn
1 , . . . , λn

N be independent sequences of independent
random variables with uniform distribution in [a, b] an interval such that:

∀λ ∈ [a, b] ∀x, y ∈ D λx + (1 − λ)y ∈ D .

which is possible as D is bounded.
pS.4 Define the random variable Xj0

n such that:

f(Xj0
n ) = min

1≤j≤N
f(λn

j Zn + (1 − λn
j )Yn+1)

pS.5 Zn+1 := Zn1I{f(Zn) < f(Xj0
n )} + Xj0

n 1I{f(Zn) ≥ f(Xj0
n )}.

The main idea of the zig-zag algorithm may, of course, be exploited in several
other ways.

3 The Solis and Wets Approach of Random Algorithms

We present this approach following the presentation in [Esq06] – which follows
the context formalism of [SW81] – and observe that this approach may be applied
to the algorithms described above.

3.1 The Convergence Results

We introduce some definitions which are necessary for the presentation of the
convergence results. Let f : D ⊂ Rn −→ R be a measurable function defined on a
domain D that can be unbounded. Let (Ω,F,P) be a complete probability space.
In order to deal with discontinuous functions, such as 1I[0,1]\{1/2}, or unbounded
functions, such as ln(|x| 1IR\{0} + (∞)1I{0}, we need the following notion.

Definition 1 (Essential infimum of f in D).

α := inf{t ∈ R : λ({x ∈ D : f(x) < t}) > 0} (3)

with λ being the Lebesgue measure on Rn.
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The formulation of general hypothesis on the function f in order to obtain
the algorithm convergence requires the definition of the sets for ε > 0 and M < 0.

Definition 2 (Level set of f of height ε over α).

Eα+ε,M :=

{
{x ∈ D : f(x) < α + ε} if α ∈ R

{x ∈ D : f(x) < M} if α = −∞ (4)

The general form of the algorithm may be decomposed into the nuclear part
which is a function verifying some condition and the procedure.

Definition 3 (The algorithm).

– A function ψ : D × Rn �→ D ⊂ Rn such that the following hypothesis [H1] is
verified.

[H1] :

{
∀t, x f(ψ(t, x)) ≤ f(t)
∀x ∈ D f(ψ(t, x)) ≤ f(x)

(5)

– A sequence of random variables given by:
{

Y1 = X1

Yn+1 = ψ(Yn,Xn) for n ≥ 1
(6)

where Xn � Pn satisfying hypothesis in Formula (1), and Pn being a prob-
ability measure – the law of Xn – that may depend on P1, . . . ,Pn−1 in case
of adaptive random search.

Remark 2 (Examples of stochastic algorithms for global optimization). The pure
random search algorithm in Sect. 2.1, the random search on nearly unbounded
domains in Sect. 2.2 and the zig-zag algorithm in Sect. 2.3 may be considered
as instances of Solis and Wets approach. As presented, the following function
obviously describes the algorithms and verifies the hypothesis H1 in Formula (5).

ψ(t, x) = t1I{f(t)<f(x)}(t, x) + x1I{f(t)≥f(x)}(t, x)

The following result ensures the convergence of the algorithm under very
general hypothesis.

Theorem 1 (A Solis and Wets’ type theorem for random search algo-
rithm convergence). Suppose that f is measurable and bounded from below.
Let α be the essential infimum of f in D.

H2(ε) For pure random search this hypothesis is defined for every ε > 0 as:

lim
k→+∞

∏

1≤j≤k

P[Xj ∈ Ec
α+ε,M ] = lim

k→+∞

∏

1≤j≤k

Pj [Ec
α+ε,M ] = 0 .
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H ′2(ε) For adaptive search this hypothesis is defined for every ε > 0 as:

lim
k→+∞

inf
1≤j≤k

P[Xj ∈ Ec
α+ε,M ] = lim

k→+∞
inf

1≤j≤k
Pj [Ec

α+ε,M ] = 0 . (7)

If for some ε > 0 hypothesis H2(ε) ( in case of pure random search) or H ′2(ε)
(in case of adaptive search) are verified, then:

lim
n→+∞P[Yn ∈ Eα+ε,M ] = 1 . (8)

If for every ε > 0 hypothesis H2(ε) (in case of pure random search) or H ′2(ε)
(in case of adaptive search) are verified, then the sequence (f(Yn))n≥1 converges
almost surely to a random variable Minf,Y such that P[Minf,Y ≤ α] = 1.

Proof. A first fundamental observation is that if Yn ∈ Eα+ε,M or Xn ∈ Eα+ε,M ,
then by hypothesis H1 we have that Yn+1 ∈ Eα+ε,M and so as (f(Yn))n≥1 is
decreasing, Yn+k ∈ Eα+ε,M for every k ≥ 1. As a consequence, for k > 1:

{Yk ∈ Ec
α+ε,M} ⊆ {Y1, . . . , Yk−1 ∈ Ec

α+ε,M} ∩ {X1, . . . , Xk−1 ∈ Ec
α+ε,M}.

as if it was otherwise we would contradict our first observation. Now, it is clear
that:

P[Yk ∈ Ec
α+ε,M ] ≤ P

⎡

⎣
⋂

1≤j≤k−1

{Yj ∈ Ec
α+ε,M} ∩ {Xj ∈ Ec

α+ε,M}
⎤

⎦

≤ P

⎡

⎣
⋂

1≤j≤k−1

{Xj ∈ Ec
α+ε,M}

⎤

⎦ .

(9)

On the pure random search scenario we have that (Xn)n≥1 is a sequence of iid
random variables and so:

P

⎡
⎣ ⋂

1≤j≤k−1

{Xj ∈ Ec
α+ε,M}

⎤
⎦ =

∏
1≤j≤k−1

P
[
Xj ∈ Ec

α+ε,M

]
= P

[
X1 ∈ Ec

α+ε,M

]k−1
,

(10)
implying that

1 ≥ P[Yk ∈ Eα+ε,M ] = 1 − P[Yk ∈ Ec
α+ε,M ] ≥ 1 − P

[
X1 ∈ Ec

α+ε,M

]k−1
.

Now by hypothesis in Formula (1) we have that P
[
X1 ∈ Ec

α+ε,M

]
< 1 and so

conclusion in Formula (8) of the theorem now follows. On the alternative scenario
of adaptive random search we still have the same conclusion but now based on
the estimate:

P

⎡

⎣
⋂

1≤j≤k−1

{Xj ∈ Ec
α+ε,M}

⎤

⎦ ≤ inf
1≤j≤k−1

P
[
Xj ∈ Ec

α+ε,M

]
,
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instead of estimate in Formula (10) used in the pure random search case. For
the second conclusion of the proof, observe that the sequence (f(Yn))n≥1 being
almost surely non increasing, as a consequence of hypothesis H1, and bounded
below is almost surely convergent to a random variable that we denote by MinY.
Now, observing that for all ε > 0:

lim
k→+∞

P[Yk ∈ Eα+ε,M ] = lim
k→+∞

P[f(Yk) < α + ε] = 1,

in either pure random search or adaptive search, the conclusion follows by a
standard argument (see Corollary 1. and Lemma 1. in [Esq06, p. 844]).

Remark 3. Having in mind a characterization of the speed of convergence of
the algorithm it may be useful to observe that the following condition H ′′2(ε)
also entails the conclusion of the theorem, although being more stringent than
H ′2(ε).

lim
k→+∞

max
1≤j≤k

P[Xj ∈ Ec
α+ε,M ] = lim

k→+∞
max
1≤j≤k

Pj [Ec
α+ε,M ] = 0. (11)

In order to improve Theorem 1 some additional hypothesis are needed. For
instance, if the minimizer is not unique then the sequence (Yn)n≥1 may not
converge. First, let us observe that if the minimizer of f is unique and f is
continuous, then the essential minimum of f coincides with the minimum of f .

Proposition 1. Let f be continuous and admiting an unique minimizer z ∈ D

that is such that f(z) = minx∈D f(x). Then α = minx∈D f(x) =: m.

Proof. Let ε > 0 be given. There exists xε ∈ D such that m = f(z) < f(xε) <
m + ε. By the continuity we have an open neighborhood V of xε such that for
all x ∈ V we still have m < f(x) < m + ε. As a consequence:

λ({x : f(x) < m + ε}) ≥ λ(V ) > 0,

and so α ≤ m + ε and, as ε is arbitrary, we have α ≤ m. Consider again a given
ε > 0. There exists α < tε < α + ε. As a consequence:

λ ({x ∈ D : f(x) < tε}) > 0,

and m = minx∈D f(x) < α + ε. As ε is arbitrary we have m ≤ α and finally the
conclusion stated.

Theorem 2. Suppose the same notations and the same set of hypothesis of The-
orem 1, namely that for every ε > 0 hypothesis H2(ε) (in case of pure random
search) or H ′2(ε) (in case of adaptive search) are verified. Suppose, furthermore,
that f is continuous and that admits an unique minimizer z ∈ D. Then we have
almost surely that limn→+∞ f(Yn) = f(z). If, furthermore, D is compact then
limn→+∞ Yn = z.
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Proof. Let us first show that the sequence (f(Yn))n≥1 converges in probability
to f(z). Consider ε > 0. As f(z) is now the essential minimum of f in D we have
that:

| f(Yn) − f(z) |≥ ε ⇔
{

f(Yn) ≤ f(z) − ε impossible
f(Yn) ≥ f(z) + ε,

the possible case meaning that Yn ∈ Ec
f(z)+ε. Now, by a similar argument as the

one used in the proof of Theorem 1, we have that X1, . . . , Xn−1 ∈ Ec
f(z)+ε and

so, under each one of the alternative hypothesis, we have:

P [| f(Yn) − f(z) |≥ ε] ≤
{
P[{X∈Ec

f(z)+ε}]n−1 under H2(ε)
inf1≤j≤n−1 P[Xj ∈ Ec

f(z)+ε] under H ′2(ε),
(12)

thus ensuring that limn→+∞ P[| f(Yn)−f(z) |≥ ε] = 0. If H2ε (or H ′2ε) are ver-
ified for all ε > 0 the convergence in probability follows immediately. Finally, by
a standard argument, the convergence almost surely of the sequence (f(Yn))n≥1

follows because this sequence is non increasing and convergent in probability.
Let us suppose now that D is compact and that the sequence (Yn)n≥1 does not
converge to z almost surely. Then for every ω on a set of positive probability
Ω′ ⊂ Ω:

∃ε > 0 ∀n ∈ N ∃Nn > n | YNn
(ω) − z |> ε. (13)

Now for all ω ∈ Ω′ the sequence (Yn)(ω)n≥1 is a sequence of points in a com-
pact set D and by Bolzano-Weierstrass theorem there is a convergent subse-
quence (Ynk

)(ω)k≥1 of (Yn)(ω)n≥1. This subsequence must converge to z because
if the limit were y then, by the continuity of f we would have the sequence
(f(Ynk

))(ω)k≥1 converging to f(y) = f(z). Now as z is an unique minimizer of f
in D we certainly have y = z. Finally observe that the subsequence (Ynk

)(ω)k≥1

also verifies the condition expressed in Formula (13) for k large enough, which
yields the desired contradiction.

3.2 A Preliminary Observation on the Rate of Convergence

Results on the rate of convergence may be used to determine a stopping criterium
for the algorithm. As a proxy for the speed of convergence of the algorithms in
the context of the proof Theorems 1 and 2, namely for instance Formula (12), we
may consider the quantity P[Xj ∈ Ec

α+ε,M ] for various choices of distributions.
In case of pure random search we have obviously:

P
[
Xj ∈ Ec

α+ε,M

]
=

λ(Ec
α+ε,M )

λ(D)
.

In case of random search on a nearly unbounded domain we have, (with the
notations of Sect. 2.2), that:

P[Yj ∈ Ec
α+ε,M ] = E

[
E
[
1I{Yj∈Ec

α+ε,M }] | Xj

]]
.
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Now as we have that:

P
[
Yj ∈ Ec

α+ε,M | Xj = x
]

=
∫

Ec
α+ε,M

e− (x−u)2

2σ2

√
2πσ

du,

it follows that,

E
[
1I{Yj∈Ec

α+ε,M } | Xj

]
=
∫

Ec
α+ε,M

e− (Xj−u)2

2σ2

√
2πσ

du,

which, in turn, implies that,

P
[
Yj ∈ Ec

α+ε,M

]
= E

⎡

⎣
∫

Ec
α+ε,M

e− (Xj−u)2

2σ2

√
2πσ

du

⎤

⎦ =
∫

D

∫

Ec
α+ε,M

e− (x−u)2

2σ2

√
2πσ

du
dx

λ(D)

where the integral on the right doesn’t seem easily estimable, in general. Suppose
for simplification that D = [−A,+A] and that Ec

α+ε,M ⊆ [−a,+a] where 0 <
a � 1 � A. Then, by Fubini theorem,

∫

D

∫

Ec
α+ε,M

e− (x−u)2

2σ2

√
2πσ

du
dx

λ(D)
≈
∫ +∞

−∞

∫

Ec
α+ε,M

e− (x−u)2

2σ2

√
2πσ

du
dx

λ(D)

=
λ(Ec

α+ε,M )
λ(D)

,

allowing the conclusion that also P[Yj ∈ Ec
α+ε,M ] ≈ λ(Ec

α+ε,M )/λ(D) thus show-
ing that the two algorithms, in the special situation assumed for simplification,
are comparable in a first approximation.

4 On the Information Content of a Stochastic Algorithm

It is natural to conceive that in order for an algorithm to achieve global stochastic
optimization of a function over a domain the algorithm has to collect complete
– in some sense – information on the function over the domain. In [SB98] there
are some very striking precise results on this idea. Let us detail Stephens and
Baritompa’s result. Consider a random algorithm described by a sequence of
random variable Xf

1 , . . . , Xf
n , . . . for some function f on a domain D. The closure

Xf of the set {Xf
1 , . . . , Xf

n , . . . } is a random set in D.

Theorem 3 (Global optimization requires global information). For any
r ∈ ]0, 1[, the following are equivalent:

1. The probability that the algorithm locate the global minimizers for f as points
of Xf is greater or equal than r, for any f in a sufficiently rich class of
functions.
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2. The probability that x ∈ Xf is greater or equal than r, for any x ∈ D and f
in a sufficiently rich class of functions.

That is, roughly speaking, an algorithm works on any rich class of functions if
and only if we have P[Xf = D] = 1. In the case of deterministic search the
result is as expected, namely that the algorithm sees – in an intuitive yet precise
sense – the global optimum for a class of functions in a domain if and only if
the closure of the set of finite testing sequences, for any function, is dense in the
domain. The extension of this result to the stochastic case gives the necessary
and sufficient condition, in Theorem 3, that the lower bound of the probability of
a stochastic algorithm seing the global optimum is the same as the lower bound
of the probability of an arbitrary point of the domain belonging to the closure
of the (random) set of finite testing sequences.

Having in mind the study of the limitations of an effective global optimization
stochastic algorithm we address the problem of studying the information content
of an algorithm. We recall that – as in Theorem 1 – a random algorithm may be
identified with a sequence of random variables. The flow of information gained
through a sequential observation of the sequence of random variables is usually
described by the natural filtration associated with the sequence. In order to
compare, in the information sense, two sequences of random variables we need
to compare the associated natural filtrations.

In Theorem 5 below, by resorting to a natural defined notion of the informa-
tion content of a stochastic algorithm, we obtain the result that two convergent
algorithms have the same information content if the information generated by
their respective minimizing functions is the whole available information in the
probability space. So, the connection between the function and the stochastic
set-up to generate stochastic algorithms for its global optimization - namely,
probability space, probability laws of the algorithm – deserves to be further
investigated.

In the following Sect. 4.1 we briefly recall results from [Cot86,Cot87,ALR03,
Kud74,Bar04] on the set of complete sub σ-algebras of F as a topological metric
space.

4.1 The Cotter Metric Space of the Complete σ-algebras

Recall that all random variables are defined on a complete probability space
(Ω,F,P). We now consider F�, the set of all σ-algebras G ⊆ F which are complete
with respect to P.

Remark 4. We may define an equivalence relation R on F� by considering an
equivalence relation ∼ for sets in F defined for all G,H ∈ F by:

G ∼ H ⇔ P[G \ H ∪ H \ G] = 0. (14)

As so, the quotient class F := F�/R is the class of all sub-σ-algebras of F with
elements identified up to sets of probability zero.



68 M. L. Esqúıvel et al.

Strong convergence in L1(Ω,F,P) – and also in Lp(Ω,F,P) for p ∈ [1,+∞[
– of a sequence (Gn)n≥1 of σ-algebras to G∞ was introduced by Neveu in 1970
(see [Nev64, pp. 117–118]) with the condition that:

∀X ∈ L1(Ω,F,P) lim
n→+∞ ‖E[X | Gn] − E[X | G∞]‖L1(Ω,F,P) = 0, (15)

noticing that for the sequence (Gn)n≥1 to converge it suffices that for all F ∈ F

the sequence (E[1IF | Gn])n≥1 converges in probability. In 1985, Cotter showed
that this notion of convergence defines a topology which is metrizable (see
[Cot87]). The Cotter distance dc is defined on F × F by:

dc(H,G) =
+∞∑

i=1

1
2i

min (E [|E[Xi | H] − E[Xi | G]|] , 1)

=
+∞∑

i=1

1
2i

min (‖E[Xi | H] − E[Xi | G]‖1 , 1) .

(16)

with H,G ∈ F, ‖X‖1 the L1(Ω,F,P) norm of X, with (Xi)i∈N a dense denu-
merable set in L1(Ω,F,P). We have that (F, dc) is a complete metric space.

We will need a consequence of the definition of the Cotter distance (see
Corollary III.35, in [Bar04, p. 36]) that we quote for the reader’s convenience.

Proposition 2. Consider G1 ⊂ G2 ⊂ G3 in F, Then we have that:

dc (G2,G3) ≤ 2dc (G1,G3) .

We will also need a remarkable result of Cotter (see Corollary 2.2 and Corol-
lary 2.4 in [Cot87, p. 42]) that we formulate next.

Theorem 4. Let LP be the metric space of the real valued random variables
defined on the probability space (Ω,F,P) with the metric of the convergence in
probability. Let σ : LP �→ F that to each random variable X associates σ(X) =
{X−1(B) : B ∈ B(R)} the sigma-algebra generated by X. Then, considering the
metric space (F, dc) with dc the Cotter distance defined in Formulas (16), we
have that σ is continuous at X ∈ LP if and only if σ(X) = F.

This result on the continuity of the map σ between metric spaces LP and
(F, dc) will be applied to convergent sequences.

4.2 The Information Content of a Random Algorithm

Let Y = (Yn)n≥1 be a stochastic algorithm for the minimization of f on a
domain D. According to Theorem 1 we may define a convergent algorithm for
the minimization problem of f on the domain D.

Definition 4. Let α be the essential infimum of f on D defined in For-
mula (3). Following Theorem 1, the algorithm Y converges on D if the sequence
(f(Yn))n≥1 converges almost surely to a random variable Minf,Y such that:

P [Minf,Y ≤ α] = 1.



Information of Stochastic Algorithms 69

Now given a random algorithm Y = (Yn)n≥1 we define the flow of information
associated to this algorithm.

Definition 5. The flow of information associated to the algorithm Y =
(Yn)n≥1 for the global minimization of the function f is given by the natural
filtration of (f(Yn))n≥1, which is the increasing sequence of σ-algebras defined
by:

FY
n := σ (f(Y1), . . . , f(Yn)) .

The terminal σ-algebra associated to this algorithm, FY
∞, is naturally defined

as (in the two usual notations):

FY
∞ := σ

(
+∞⋃

n=1

FY
n

)
=

+∞∨

n=1

FY
n .

As an immediate result we have that the filtration converges in the Cotter dis-
tance to the terminal σ-algebra.

Proposition 3. For every stochastic algorithm Y = (Yn)n≥1,

lim
n→+∞ dc

(
FY

n ,FY
∞
)

= 0.

Proof. Let’s first observe that by Proposition 2.2 of Cotter (see again [Cot86])
any increasing sequence of σ-algebras converges in the Cotter distance. In fact,
by a standard argument we have that:

+∞⋂

n=1

+∞∨

m=n

FY
m = FY

∞ =
+∞∨

n=1

+∞⋂

m=n

FY
m

and by the result quoted this suffices to ensure that the filtration associated to
the algorithm converges. Now, it is a well known fact (see [Bil95, p. 470]) that,
by the definitions above, we have that almost surely:

∀Z ∈ L1(Ω,F,P) lim
n→+∞E

[
Z | FY

n

]
= E

[
Z | FY

∞
]

(17)

as the sequence (E
[
Z | FY

n

]
)n≥1 is uniformly integrable, (17) implies that

∀Z ∈ L1(Ω,F,P) lim
n→+∞

∥∥E
[
Z | FY

n

]− E
[
Z | FY

∞
]∥∥

L1(Ω,F,P)
= 0,

and this is just definition given by Formula (15).

We now compare the information content of two stochastic algorithms by
comparing their information induced filtrations.

Definition 6. Two algorithms Y1 and Y2 are informationally asymptoti-
cally equivalent (IAE) if and only if:

lim
n→+∞ dc

(
FY1

n ,FY2

n

)
= 0.
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As an easy first observation we have that two algorithms are informationally
asymptotically equivalent if and only if the Cotter distance of their terminal
σ-algebras is zero, that is:

Proposition 4. Let Y1 and Y2 be two algorithms, Then:

Y1IAE Y2 ⇔ dc

(
FY1

∞ ,FY2

∞
)

= 0. (18)

Proof. If the two algorithms are informationally asymptotically equivalent then
the condition about the terminal σ-algebras is verified as an immediate conse-
quence of Proposition 3. In fact,

dc

(
FY1

∞ ,FY2

∞
)

≤ dc

(
FY1

∞ ,FY1

n

)
+ dc

(
FY1

n ,FY2

n

)
+ dc

(
FY2

n ,FY2

∞
)

.

Now, for the converse suppose that dc

(
FY1

∞ ,FY2

∞
)

= 0 and that the algorithms
are not IAE. Then, for some ε > 0 there exists an increasing integer sequence
(nε

k)k∈N such that

∀k ∈ N, dc

(
FY1

nε
k
,FY2

nε
k

)
≥ ε.

We then have that for all k ≥ 1,

ε ≤ dc

(
FY1

nε
k
,FY2

nε
k

)
≤ dc

(
FY1

nε
k
,FY1

∞
)

+ dc

(
FY1

∞ ,FY2

∞
)

+ dc

(
FY1

∞ ,FY2

nε
k

)

= dc

(
FY1

nε
k
,FY1

∞
)

+ dc

(
FY1

∞ ,FY2

nε
k

)

≤ lim sup
n→+∞

(
dc

(
FY1

nε
k
,FY1

∞
)

+ dc

(
FY1

∞ ,FY2

nε
k

))
= 0,

again, by Proposition 3, which is a contradiction.

Our purpose now is to illustrate the intuitive idea that a convergent algo-
rithm for minimizing a function must recover all available information about
the function. For the first result we require that the algorithm exhausts all the
available information in the probability space. We will suppose that the two
algorithms Y1 and Y2 both converge. We will show next that, if we suppose,

σ
(
Minf,Y1

)
= F = σ

(
Minf,Y2

)
, (19)

then, these algorithms, Y1 and Y2, are informationally asymptotic equivalent.

Theorem 5. With the notations of Definition 4, let Y1 and Y2 be two algo-
rithms that converge. We have that:

σ
(
Minf,Y1

)
= F = σ

(
Minf,Y2

)⇒ Y1IAE Y2.

Proof. The proof is a consequence of the continuity of the operator that maps
each random variable to the σ-algebra it generates formulated in Cotter’s The-
orem 4. We have that the sequences,

(
σ
(
f(Y 1

n )
))

n≥1
,
(
σ
(
f(Y 2

n )
))

n≥1
,
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both converge in the Cotter distance to F by reason of the hypothesis. Now, by
definition, as we have that for all n ≥ 1,

σ
(
f(Y 1

n )
) ⊂ FY1

n ⊂ F , σ
(
f(Y 2

n )
) ⊂ FY2

n ⊂ F,

by Proposition 2, we have:

dc

(
FY1

n ,F
)

≤ 2dc

(
σ
(
f(Y 1

n )
)
,F
)

, dc

(
FY2

n ,F
)

≤ 2dc

(
σ
(
f(Y 2

n )
)
,F
)

and so we also have that the sequences,
(
FY1

n

)

n≥1
,
(
FY2

n

)

n≥1
,

converge in the Cotter distance to F. Finally, as we have:

dc

(
FY1

n ,FY2

n

)
≤ dc

(
FY1

n ,F
)

+ dc

(
F,FY2

n

)
,

we have the condition of Formula (19) appearing in Theorem 5.

Remark 5. If condition in Formula (19), essential in Theorem 5, is not verified –
then by Cotter’s theorem quoted in Theorem 4 – the map σ is not continuous at
σ
(
Minf,Y1

)
and σ

(
Minf,Y2

)
and so – it is in general not true that the sequences(

σ
(
f(Y 1

n )
))

n≥1
and

(
σ
(
f(Y 2

n )
))

n≥1
converge. As a consequence, despite the fact

that, by Proposition 3, the sequences
(
FY1

n

)

n≥1
and

(
FY2

n

)

n≥1
both converge

– to FY1

∞ and FY2

∞ , respectively – we can not ensure that the condition given by
Formula (18) in Proposition 4 is verified and so, we can not conclude that the
two algorithms are IAE.

If moreover the algorithms are informationally asymptotic equivalent, and their
associated limit minimum functions take a denumerable set of values, then their
associated limit minimum functions will coincide almost surely thus saying,
essentially, that two IAE convergent algorithms carry the same information con-
tent with respect to the minimization function.

Theorem 6. With the notations of Definition 4, let Y1 and Y2 be two algo-
rithms that converge. Let us suppose that the set Minf,Y1(Ω) ∪ Minf,Y2(Ω) is
denumerable. We then have that:

Y1IAE Y2 ⇒ Minf,Y1 = Minf,Y2 a. s. (20)

Proof. The announced result is a consequence of Proposition 4. In fact, if Y1

and Y2 are IAE then this means that:

FY1

∞ ∼ FY2

∞ ,

and so by (14), for every B in the Borel σ-algebra of the reals B(R),

P
[
Min−1

f,Y1(B) \ Min−1
f,Y2(B)

]
= 0 = P

[
Min−1

f,Y2(B) \ Min−1
f,Y1(B)

]
(21)
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Now, consider B = {x} ∈ B(R). Formulas (21) imply that:

P
[{

ω ∈ Ω | Minf,Y1(ω) �= x
} ∪ {ω ∈ Ω | Minf,Y2(ω) = x

}]
= 1,

and also

P
[{

ω ∈ Ω | Minf,Y2(ω) �= x
} ∪ {ω ∈ Ω | Minf,Y1(ω) = x

}]
= 1.

Now, by considering the intersection
({

Minf,Y1 �= x
} ∪ {Minf,Y2 = x

}) ∩ ({Minf,Y2 �= x
} ∪ {Minf,Y1 = x

})
,

which is is a set of probability one, we get by expanding that for every x ∈ R:

P
[{

Minf,Y1 �= x ∧ Minf,Y2 �= x
} ∪ {Minf,Y1 = x ∧ Minf,Y2 = x

}]
= 1.

And so by considering the denumerable set Im = Minf,Y1(Ω) ∪ Minf,Y2(Ω), as
{
Minf,Y1 �= Minf,Y2

}

⊆
⋃

x∈Im

{
Minf,Y1 = x ∧ Minf,Y2 �= x

} ∪ {Minf,Y1 �= x ∧ Minf,Y2 = x
}

=
⋃

x∈Im

({
Minf,Y1 �= x ∧ Minf,Y2 �= x

} ∪ {Minf,Y1 = x ∧ Minf,Y2 = x
})c

we will have that P
[
Minf,Y1 �= Minf,Y2

]
= 0, as wanted.

The particular case of an unique minimizer of a continuous function on a
compact domain deserves special mention as a case where two algorithms having
IAE lead to the same minimizing function almost surely.

Proposition 5. With the notations of definition 4, let Y1 and Y2 be two algo-
rithms that converge. Suppose, furthermore, that f is continuous, that f admits
an unique minimizer z and D is compact. Then we have that:

Y1IAE Y2 ⇒
⎧
⎨

⎩

lim
n→+∞ f(Y 1

n ) = f(z) = lim
n→+∞ f(Y 2

n ) a. s.

lim
n→+∞ Y 1

n = z = lim
n→+∞ Y 2

n a. s.
.

Proof. As we have limn→+∞ f(Y 1
n ) = f(z) = limn→+∞ f(Y 2

n ) and
limn→+∞ Y 1

n = z = limn→+∞ Y 2
n , by Theorem 2 and Proposition 1, we also

have that Minf,Y1 = f(z) = Minf,Y2 almost surely and so, by Theorem 6, we
have the announced result.

Remark 6. Let us observe, with respect to Proposition 5, that under the hypoth-
esis stated in that proposition, that is, if we have almost surely,

Minf,Y1 = Minf,Y2 = f(z),
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then, by modifying Minf,Y1 and Minf,Y2 on sets of probability zero we would
have that:

σ
(
Minf,Y1

)
= {∅, Ω} = σ

(
Minf,Y2

)
.

By Remark 4, in general, under the hypothesis of Proposition 5, the two σ-
algebras σ

(
Minf,Y1

)
and σ

(
Minf,Y1

)
are equal to {∅, Ω} in F := F�/ ∼ – the

class of all sub-σ-algebras of F identified up to sets of probability zero – and
so the condition in Formula (19) – which is essential in Theorem 5 – may be
verified only for deterministic algorithms (as in this case all random variables
are constant).
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A Appendix

Deduction of Formula (2). Let λx denote the Lebesgue measure over D applied
to the set defined by the variable x.

P[Yn ∈ D]

=
n∑

k=1

P

⎡

⎣{Xk ∈ D} ∩
⋂

1≤j<k

{f(Xk) ≤ f(Xj} ∩
⋂

k<j≤n

{f(Xk) < f(Xj)}
⎤

⎦

=
n∑

k=1

⎛

⎝ 1
λ(D)n

∫

Dn

1I{xk∈D}
∏

1≤j<k

1I{f(xk)≤f(xj}

×
∏

k<j≤n

1I{f(xk)<f(xj)}dλ(x1) . . . dλ(xn)

⎞

⎠

=
n∑

k=1

⎛

⎝ 1
λ(D)

∫

D

dλ(xk)
1

λ(D)k−1

∏

1≤j<k

∫

Dk−1
1I{f(xk)≤f(xj}dλ(xj)

× 1
λ(D)n−k

∏

k<j≤n

∫

Dn−k

1I{f(xk)<f(xj)}dλ(xj)

⎞

⎠

=
n∑

k=1

(
1

λ(D)

∫

D

1I{xk∈D}
λx({f(xk) ≤ f(x})k−1

λ(D)k−1

×λx({f(xk) < f(x})n−k

λ(D)n−k
dλ(xk)

)

=
n∑

k=1

(
1

λ(D)n

∫

D

λ(f−1([f(xk),+∞[)k−1λ(f−1(]f(xk),+∞[)n−kdλ(xk)
)

.
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Numbers and Linear Regression of Fuzzy

Random Variables
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Abstract. Extreme properties of the average characteristics of fuzzy
random variables are given. A new form of the law of large numbers for
fuzzy random variables is established. An optimal linear regression of
fuzzy random variables is constructed, in which the coefficients are sim-
ilar to the Fourier coefficients. It is shown that under certain conditions,
the optimal regression has the maximum cosine of the angle with the
predicted fuzzy random variable.

Keywords: Fuzzy random variables · Means · Covariance · Variance ·
Law of large numbers · Linear regression

1 Introduction

Fuzzy random variables originated as a branch of fuzzy mathematics in [1–3].
They are widely used in financial mathematics, forecasting, decision theory, and
others. In particular, the mathematical model of a random experiment with
fuzzy outcomes is interpreted as a fuzzy random variable. The current state of
the theory of fuzzy random variables is reflected in [4–7] and others.

In this paper, a new definition of the quasi-scalar product between fuzzy
random variables is introduced, and its relationship with the covariance of fuzzy
random variables proposed in [8] is revealed. Extreme properties of expectations
and fuzzy expectations of fuzzy random variables are discussed.

The main results of this work are devoted to the law of large numbers (LLN)
for fuzzy random variables and linear regression of fuzzy random variables. The
difference between our result and those known from the LLN consists in using a
special metric associated with the quasi-scalar product introduced by the author.
The specificity of our result on linear regression is to derive a formula for optimal
linear regression coefficients similar to the Fourier coefficients for an orthonormal
system in Hilbert space. This is provided by introduction the definition quasi-
scalar product.

In addition, it is shown that under certain conditions, the optimal solution
has the maximum cosine of the angle with the predicted fuzzy random variable
in the class of linear estimates.
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Below, by the fuzzy set A given on the universal space U , we mean the set
of ordered pairs (u, μA(u)), where the membership function μA : U → [0, 1],
determines the degree to which ∀u ∈ U belongs to the set A.

We rely on the following definition of a fuzzy number (cf. [9] chap. 2–4). A
fuzzy number is called a fuzzy set whose universal set is the set of real numbers
R, and which additionally satisfies the following conditions:

1) the support (supp) of a fuzzy number is a closed and bounded (compact) set
of real numbers;

2) the membership function of a fuzzy number is convex;
3) the membership function of a fuzzy number is normal, i.e. the supremum of

the membership function is equal to one;
4) the membership function of a fuzzy number is semi-continuous from above.

We will use the interval representation of fuzzy numbers. Namely, we will
assign a set of α-intervals to each fuzzy number.

The set of fuzzy numbers satisfying the conditions 1)–4) is denoted by J .
As known, the set α-level of a fuzzy number z̃ ∈ J with the membership

function μz̃(x) is defined by the relation

Zα = {x|μz̃(x) ≥ α} (α ∈ (0, 1]), Z0 = supp(z̃).

According to the above assumptions 1)–4) all α-levels of a fuzzy number are
closed and bounded intervals at the real axis. Let’s denote the left (lower) border
of the interval z−(α), and the right (upper) - z+(α), i.e. Zα = [z−(α), z+(α)].
Sometimes z−(α) and z+(α) they are called the left and right indices of a fuzzy
number, respectively.

On a set of fuzzy numbers, you can enter the definition of distances between
them in different ways. The interval approach sometimes uses the Hausdorff dis-
tance, which for fuzzy numbers z̃, ũ ∈ J with α-level sets Zα = [z−(α), z+(α)]
and Uα = [u−(α), u+(α)] in accordance with [5] is defined by the formula
ρH(z̃, ũ) = sup

0<α≤1
dH(Zα, Uα), where

dH(Zα, Uα) = max
[

sup
z∈Zα

inf
u∈uα

|z − u|, sup
u∈uα

inf
z∈zα

|z − u|
]

- Hausdorff metric. Some other distances are also considered (see, for example.,
[7,8,10]).

Denote by J0 - the set of fuzzy numbers in the interval representation of
which the left and right indices are quadratically summable.

We use the distance ρ(z̃, ũ) between the fuzzy numbers z̃ and ũ from J0 with
α-level sets Zα = [z−(α), z+(α)] and Uα = [u−(α), u+(α)], which is defined by
the formula

ρ(z̃, ũ) =
(∫ 1

0

(z−(α) − u−(α))2 + (z+(α) − u+(α))2dα

) 1
2

. (1)
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Here and below, integration is understood by Lebesgue.
This kind of distance was previously used, for example, in [11].
Let the fuzzy number z̃ correspond to α - levels Zα = [z−(α), Z+(α)], with

α ∈ (0, 1]. Suppose, as is customary in interval analysis,

midZα =
1
2
(z+(α) + z−(α)), radZα =

1
2
(z+(α) − z−(α)).

For fuzzy numbers z̃ and ũ from J0, with sets of α - levels [z−(α), z+(α)] and
[u−(α), u+(α)], we define quasi-scalar product

〈z̃, ũ〉 =

1∫
0

(midZα,midUα + radUα radZα)dα

= 0.5

1∫
0

(z+(α)u+(α) + z−(α)u−(α))dα. (2)

The quasinorm z̃ is 〈z̃, z̃〉1/2.
According to (1), (2) the distance between the fuzzy numbers z̃ and ũ from J0

with sets of α - levels [z−(α), z+(α)] and [u−(α), u+(α)] matches the quasinorm
of a fuzzy number whose left index is z−(α)−u−(α), and the right index z+(α)−
u+(α).

Under the sum of the fuzzy numbers z̃ and ũ we will understand a fuzzy num-
ber with α - levels [z−(α)+u−(α), z+(α)+u+(α)]. The product of a fuzzy number
z̃ by a positive number c is a fuzzy number with α - levels [cz−(α), cz+(α)]. In
the case of c < 0 - a fuzzy number with α - levels [cz+(α), cz−(α)].

The following properties of the introduced quasi-scalar product are valid:

1) 〈z̃, ũ〉 = 〈ũ, z̃〉 (∀z̃, ũ ∈ J0);
2) 〈c1z̃, c2ũ〉 = c1c2 〈z̃, ũ〉 (∀z̃, ũ ∈ J0), provided that the product of the num-

bers c1c2 > 0;
3) 〈z̃1 + z̃2, ũ〉 = 〈z̃1, ũ〉 + 〈z̃2, ũ〉 (∀z̃1, z̃2, ũ ∈ J0);
4) 〈z̃, z̃〉 ≥ 0 (∀z̃ ∈ J0) , and the condition 〈z̃, z̃〉 = 0 is equivalent to vanishing

the left and right indexes z̃;
5) Cauchy-Bunyakovsky Inequality | 〈z̃, ũ〉 | ≤ 〈z̃, z̃〉1/2 〈ũ, ũ〉1/2 (∀z̃, ũ ∈ J0).

The quasi-scalar product of the form 〈z̃, ũ〉1 =
1∫
0

(mid Zα mid Uα)dα is con-

sidered in [6]. It is easy to see that in this case, turning the 〈z̃, z̃〉1/2
1 to zero does

not guarantee that the left and right indexes of z̃ are equal to zero.
Other definitions of the scalar product of fuzzy numbers are also found in

the literature (see, for example, [10]).
Note the following relationship between the quasi-scalar product (2) and the

distance (1).
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Set the fuzzy number z̃ with indexes z−(α) and z+(α) match the vector
function z̄(α) = (z−(α), z+(α))T . Scalar product of 〈z̄, ū〉 vector functions z̄ and
ū define by equality (2). Then ρ(z̃, ũ) = ||z̄ − ū||.

We introduce the concept of the cosine of the angle between fuzzy numbers.
For fuzzy numbers z̃, ũ ∈ J0, we put

cos(z̃, ũ) =
〈z̃, ũ〉

〈z̃, z̃〉1/2 〈ũ, ũ〉1/2
.

Note the properties of the cosine.

1. |cos(z̃, ũ)| ≤ 1 (forallz̃, ũ ∈ J0).
This follows from the Cauchy-Bunyakovsky inequality.

2. cos(z̃, ũ) = 0, if and only if z̃ and ũ quasi-orthogonal.
3. cos(z̃, ũ) = 1, if and only if z̃ and ũ are collinear, i.e. there is a number λ > 0

such that z̃ = λũ.

Indeed, cos(z̃, ũ) matches cos(z̄, ū), where z̄, ū are vector functions corre-
sponding to z̃ and ũ, respectively. Then the condition cos(z̃, ũ) = cos(z̄, ū) = 1
means that z̄ = λū, where λ > 0. This is equivalent to z̃ = λũ, i.e. the fuzzy
numbers z̃ and ũ collinear.

2 Fuzzy Random Variables and Their Averages

Let (Ω,Σ,P ) be a probability space, where Ω is a set of elementary events, Σ
is a σ-algebra consisting of subsets of the set Ω, and P is a probability measure.

A measurable map X̃ : Ω → J0 is called a fuzzy random variable if, for any
ω ∈ Ω, the set X̃(ω) is a fuzzy number from J0.

Consider the intervals of α - levels of a fuzzy random variable X̃ for a
fixed ω. Namely, Xα(ω) = {t ∈ R : μX̃(ω) ≥ α}, where μX̃(ω) - membership
function of a fuzzy number X̃(ω) , and α ∈ (0, 1]. The interval Xα(ω) repre-
sent as Xα(ω) = [X−(ω, α),X+(ω, α)], where the boundaries are X−(ω, α) and
X+(ω, α) - random variables. They are called, respectively, the left and right
index of the fuzzy random variable X̃.

Below, we will consider the class X of fuzzy random variables X̃, for which
indexes X−(ω, α) and X+(ω, α) are functions that are quadratically summable
by Ω × [0, 1].

Put
x−(α) =

∫
Ω

X−(ω, α)dP, x+(α) =
∫
Ω

X+(ω, α)dP. (3)

A fuzzy number x̃ with indexes defined by formula (3) is called the fuzzy
expectation of a fuzzy random variable X̃.

Let Xα(ω) = [X−(ω, α),X+(ω, α)] - interval α - level of the fuzzy ran-
dom variable X̃. Put mid Xα(ω) = 1

2 (X+(ω, α) + X−(ω, α)) and radXα(ω) =
1
2 (X+(ω, α) − X−(ω, α)).
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Expectation E(X̃) a fuzzy random variable X̃ is a number defined by the
expression

E(X̃) =

1∫
0

∫
Ω

mid Xα(ω)dPdα = 0.5

1∫
0

∫
Ω

(X−(ω, α) + X+(ω, α))dPdα. (4)

Note the equality

E(X̃) =

1∫
0

mid Xαdα = 0.5

1∫
0

(X−(α) + X+(α))dα,

where X−(α) and X+(α) are determined by formulas (3).
We define a quasi-scalar product for fuzzy random variables X̃ and Ỹ with

α - level sets Xα(ω) = [X−(ω, α),X+(ω, α)] and Yα(ω) = [Y −(ω, α), Y +(ω, α)]
formula

〈
X̃, Ỹ

〉
=

1∫
0

∫
Ω

(mid Xα(ω)mid Yα(ω) + rad Xα(ω) rad Yα(ω))dPdα

= 0.5

1∫
0

∫
Ω

(X+(ω, α)Y +(ω, α) + X−(ω, α)Y −(ω, α))dPdα. (5)

In this case, the quasinorm of the fuzzy random variable X̃ will be denoted

||X̃|| =
〈
X̃, X̃

〉1/2

.
Note that the same properties 1)–5) hold for the quasi-scalar product (5) as

for the quasi-scalar product of fuzzy numbers.
Some other definitions of the scalar product of fuzzy random variables may

be found in [6,10], and others.
Fuzzy random variables X̃ and Ỹ with α-level intervals [X(ω, α)−,X(ω, α)+]

and [Y (ω, α)−, Y (ω, α)+] are called independent if the random variables
X(ω, α)− and Y (ω, α)−, as well as X(ω, α)+ and Y (ω, α)+ are pairwise inde-
pendent for all α ∈ (0, 1].

It is easy to check.

Statement 1. for independent fuzzy random variables X̃ and Ỹ their quasiscalar
product

〈
X̃, Ỹ

〉
= 〈x̃, ỹ〉, where x̃, ỹ-fuzzy expectations x̃ and ỹ, respectively.

Define the distance between fuzzy random variables X̃ and Ỹ of class X
expression

d(X̃, Ỹ ) = (

1∫
0

∫
Ω

(
[
X−(ω, α) − Y −(ω, α)

]2
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+
[
X+(ω, α) − Y +(ω, α)

]2)dPdα)1/2. (6)

Definition (6) corresponds to the definition of the distance between fuzzy
numbers (1). Other definitions of the distance between fuzzy-random variables
are used, for example, in the works [3,7,10].

It turns out that the expectation E(X̃) and the fuzzy expectation x̃ of a fuzzy
random variable X̃ have certain extreme properties with respect to distances (1)
and (6), respectively.

Denote by ŷ a singleton corresponding to the number y ∈ R, i.e. a fuzzy
number characterized by the membership function μŷ(x) equal to 1 for x = y
and zero in other cases. By definition, all left and right indexes of ŷ are equal to
y.

The following statements take place.

Statement 2. For a given fuzzy random variable X̃ with indexes X−(ω, α),
X+(ω, α) its expectation is E(X̃) is the only solution to the extreme problem

d(X̃, ŷ) → min (∀y ∈ R),

where the distance is d(X̃, ŷ) is defined by the formula (6).

Statement 3. Expectation E(X̃) is the only solution to the following extreme
problem

ρ(x̃, ŷ) → min (∀y ∈ R),

where is the distance ρ defined by the formula (2).
These statements are verified by applying an extreme sign for scalar differ-

entiable functions f(y) = d2(X̃, y) and g = ρ2(x̃, y), respectively, taking into
account the expectation definition E(X̃) and fuzzy expectation x̃ of a fuzzy
random variable X̃.

The following theorem is true.

Theorem 1. The fuzzy expectation x̃ of a fuzzy random variable X̃ is the solu-
tion to the following extreme problem

d(X̃, ỹ) → min (∀ỹ ∈ J0).

The proof is just to check equality

d2(X̃, ỹ) = d2(X̃, x̃) + ρ2(x̃, ỹ) (∀ỹ ∈ J0).

We emphasize that the average fuzzy random variables in various aspects are
widely discussed in the literature. However, their extreme properties were not
previously observed.
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3 The Law of Large Numbers

According to [8] we define the covariance between fuzzy random variables X̃
and Ỹ with intervals of α-level [X−(ω, α)X+(ω, α)] and [Y −(ω, α), Y +(ω, α)] by
formula

cov[X̃, Ỹ ] = 0.5

1∫
0

∫
Ω

((X−(ω, α) − x−(α))(Y −(ω, α) − y−(α))

+ (X+(ω, α) − x+(α))(Y +(ω, α) − y+(α)))dPdα. (7)

where x−(α) and x+(α) defined by formulas (3) and similarly y−(α) and y+(α).
This definition is convenient for us because it is closely related to the quasi-

scalar product (5) and distance (6) that we have introduced. Various definitions
of covariance of fuzzy random variables are found in the literature. In particular,
in [6], the covariance cov[X̃, Ỹ ] fuzzy random variables X̃, Ỹ is similar to (7)
expression

cov[X̃, Ỹ ] = 0.25

1∫
0

∫
Ω

(X−(ω, α) + X+(ω, α) − x−(α)

−x+(α))(Y −(ω, α) + Y +(ω, α) − y−(α) − y+(α))dPdα.

However, it is easy to see that this formula actually includes covariances
of random variables mid Xα(ω) and mid Yα(ω), but not for rad Xα(ω) and
rad Yα(ω).

In this sense, the formula (7) used below more adequately reflects the struc-
ture of fuzzy random variables.

The definition of covariance (7) has a lot of properties, that are such a mod-
ification of the case of real random variables (see, [8]).

1) cov[X̃ + Z̃, Ỹ ] = cov[X̃, Ỹ ] + cov[Z̃, Ỹ ];

2) cov[c1X̃, c2Ỹ ] = c1c2cov[X̃, Ỹ ],

for any real c1, c2 ∈ R such that c1c2 > 0.
This definition of sum fuzzy random variables and product of fuzzy random

variable with real number understands as the respective definition for fuzzy
numbers above.

A specific property of the covariance of fuzzy random variables defined by
formula (7) with the quasi-scalar product (5) introduced by us (and not noted
in [8]) is the following

3. cov[X̃, Ỹ ] =
〈
X̃, Ỹ

〉
− 〈x̃, ỹ〉 .
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This property (for other definitions of covariance) was considered, for exam-
ple, in [6,10].

As usual, fuzzy random variables X̃1, X̃2 are called uncorrelated if
cov[X̃1, X̃2] = 0.

Remark 1. If the fuzzy random variables X̃1, X̃2 are independent, they are
uncorrelated.

This follows from property 3 of the covariance given statement 1.

Remark 2. If the fuzzy random variables X̃1, X̃2 are uncorrelated, then〈
X̃1, X̃2

〉
= 〈x̃1, x̃2〉, where x̃1, x̃2 - fuzzy expectations x̃1 and x̃2. Conversely, if

the previous equality is satisfied, the fuzzy random variables X̃1, X̃2 are uncor-
related.

This follows from property 3 of the covariance.
We define the variance of the fuzzy random variable X̃ the equation D(X̃) =

cov[X̃, X̃] and note its properties (cf. [8]):

1. D(cX̃) = c2D(X̃) for any real number c.
2. D(X̃ + Ỹ ) = D(X̃) + D(Ỹ ) + 2cov[X̃, Ỹ ] for ∀X̃, Ỹ ∈ X.
3. D(z̃) = 0 for any fuzzy number z̃ ∈ J0.

Important for us is the following special property of the dispersion
4.

D(X̃) =
1
2
d2(X̃, x̃) (∀X̃ ∈ X),

where x̃ is the fuzzy expectation of a fuzzy random variable X̃, and d2(X̃, x̃) is
the distance defined by the formula (6).

It follows from the equality D(X̃) = cov[X̃, X̃] and the definitions (6), (7).
Consider for fuzzy random variables looks Chebyshev’s inequality (see, e.g.,

[12], Chap. 6, Sect. 32 to “normal” random variables).

Lemma 1 (Chebyshev’s Inequality). For a fuzzy random variable X̃ with a
fuzzy expectation x̃ and a given ε > 0, the inequality occurs

P (d(X̃, x̃) ≥ ε) ≤ 2
ε2

D(X̃). (8)

Indeed, by the probability properties

P (d(X̃, x̃) ≥ ε) =
∫

d(X̃,x̄)≥ε

dP.

Since in the integration domain d2(X̃,x̄)
ε2 ≥ 1, then

∫

d(X̃,x̄)≥ε

dP ≤ 1
ε2

∫
Ω

d2(X̃, x̄)dP =
1
ε2

d2(X̃, x̄).
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Whence, taking into account the property 4 of the variance, follows (8).
Inequality (8) is similar to the corresponding inequality from [8], but it uses

a different definition of distance.
Let’s look how the law of large numbers turns out in the case of fuzzy random

variables. There are a significant number of publications on this subject (see, for
example, [7,13–15]). The main difference is in determining the distance between
fuzzy numbers (respectively, between fuzzy random variables).

Theorem 2 (Law of large numbers). Let X̃1, X̃2, ..., X̃n be a collection of
pairwise uncorrelated fuzzy random variables with fuzzy expectations x̃i. Let their
variances be uniformly bounded, i.e. there is a constant c > 0 such that D(Xi) ≤
c (i = 1, ..., n). Then the relation is valid

P (d(
1
n

n∑
i=1

X̃i,
1
n

n∑
i=1

x̃i) ≥ ε) ≤ 2c

nε2
. (9)

Indeed, putting the Chebyshev’s inequality X̃ = 1
n

n∑
i=1

X̃i, get

P (d(
1
n

n∑
i=1

X̃i,
1
n

n∑
i=1

x̃i) ≤ 2
ε2

D(
1
n

n∑
i=1

X̃i).

Further, under the properties 1, 2 of the variance we have

D(
1
n

n∑
i=1

X̃i) =
1
n2

D(
n∑

i=1

X̃i) =
1
n2

n∑
i=1

D(X̃i) ≤ c

n
.

Hence the result.
Inequality (9) implies

Corollary 1. In the conditions of Theorem 2 the relation is valid

P (d(
1
n

n∑
i=1

X̃i,
1
n

n∑
i=1

x̃i) < ε) ≥ 1 − 2c

nε2
. (10)

The law of large numbers means that the probability on the left in (10) tends
to 1 for n → ∞.

Let’s consider an important special case of the law of large numbers.
It is said that fuzzy random variables X̃ and Ỹ with intervals of α - lev-
els [X−(ω, α),X+(ω, α)] and [Y −(ω, α), Y +(ω, α)] are equally distributed if
X−(ω, α) and Y −(ω, α), and X+(ω, α) and Y +(ω, α), are equally distributed
for all α ∈ [0, 1].

It is said that X̃1, X̃2, ..., X̃n is a fuzzy random sample if X̃i are independent
and equally distributed. Theorem 2 implies

Corollary 2. Let X̃1, X̃2, ..., X̃n be a fuzzy random sample and x̃ be a fuzzy
expectation for each of the fuzzy random variables X̃i. Then
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P (d(
1
n

n∑
i=1

X̃i, x̃) < ε) ≥ 1 − 2c

nε2
,

where c is the variance of the fuzzy random variable X̃i.
Moreover, under conditions of Corollary 2 and properties 1)–4) of the variance

the convergence on metric (6) of 1
n

n∑
i=1

X̃i to x̃ is valid, when n → ∞.

4 Linear Regression

Let’s consider the optimal linear approximation of a (predicted) fuzzy random
variable Ỹ using a system of (predictive) fuzzy 1random variables X̃1, X̃2, ..., X̃n.
In a number of works [8,11,15–17] and other tasks of this kind were considered.
In this case, the specifics of the problem are determined by the choice of the
distance to be minimized. We investigate the question of approximating a fuzzy

random variable Ỹ - the linear combinations
n∑

i=1

βiX̃i with real coefficients βi

(i = 1, ..., n) by the criterion of minimizing the distance (6).
Consider first the extreme challenge with nonnegative coefficients βi ≥ 0

(i = 1, ..., n)

d(Ỹ ,

n∑
i=1

βiX̃i) → min (∀βi ≥ 0). (11)

Takes place

Lemma 2. Let the fuzzy random variables X̃i be quasi-orthogonal for i 
= j,

and their quasinorms κj :=
〈
X̃j , X̃j

〉1/2


= 0 (j = 1, ..., n). Let the condition

bi =
〈
Ỹ , X̃i

〉
≥ 0 (i = 1, ..., n). then problem (11) has a non-negative solution,

and the only one. It has the form β∗
i = bi

κ
2
i
, (i = 1, ..., n).

Indeed, due to the assumption that the coefficients βi are non-negative, the

left index
n∑

i=1

βiX̃i is equal to
n∑

i=1

βiX
−
i (ω, α), and the right one is

n∑
i=1

βiX
+
i (ω, α).

We will omit the arguments ω, α in the proof below. Put

F (β1, ..., βn) = d2(Ỹ ,

n∑
i=1

βiX̃i)

=

1∫
0

∫
Ω

((Y + −
n∑

i=1

βiX
+
i )2 + (Y − −

n∑
i=1

βiX
−
i )2)dPdα. (12)

This is a quadratic form in β1, ..., βn.
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Differentiate with respect to (12) for βj and equate the derivative to zero

∂F

∂βj
= −2

1∫
0

∫
Ω

((Y + −
n∑

i=1

βiX
+
i )X+

j + (Y − −
n∑

i=1

βiX
−
i )X−

j )dPdα = 0.

Hence, for every j = 1, 2, ..., n we have

n∑
i=1

βi

1∫
0

∫
Ω

(X+
i X+

j + X−
i X−

j )dPdα =

1∫
0

∫
Ω

(Y +X+
j + Y −X−

j )dPdα,

i.e.
n∑

i=1

βi

〈
X̃i, X̃j

〉
=

〈
Ỹ , X̃j

〉
(j = 1, ..., n), (13)

We introduce the following notation. Vector B with coefficients bi =
〈
Ỹ , X̃i

〉
,

matrix A with coefficients Aij =
〈
X̃i, X̃j

〉
, vector β with coefficients βi. In

vector form, system (13) has the form Aβ = B. Matrix A due to the quasi-
orthogonality of the system {X̃i} has a diagonal form, with positive numbers
on the main diagonal κ

2
i (i = 1, ..., n). then the solution is β∗ = A−1B, i.e.

β∗
i = bi

κ
2
i

(i = 1...n).
The nonnegativity of the obtained coefficients β∗

i is provided by the condition
bi =

〈
Ỹ , X̃i

〉
≥ 0 (i = 1, ..., n).

To verify that β∗ = A−1B is the minimum point, consider the second deriva-
tive

∂2 F

∂βj∂βs
= 2

1∫
0

∫
Ω

4(X+
s X+

j + X−
s X−

j )dPdα =
〈
X̃s, X̃j

〉
when s 
= j.

∂2 F

∂β2
j

= 2

1∫
0

∫
Ω

((X+
j )2 + (X−

j )2)dPdα = 4
〈
X̃j , X̃j

〉
when s = j.

A sufficient sign of a minimum is the positive definiteness of the Hesse matrix
{ ∂2F

∂βj∂βs
} . And this is provided by the quasi-orthogonality of the system {X̃j}.

Remark 3. Condition
〈
Ỹ , X̃i

〉
> 0 means that there is an acute angle between

the fuzzy random variables Ỹ and X̃i. In other words, the fuzzy-random variables
Ỹ and X̃i increase (in this sense) or decrease at the same time.

Remark 4. In the conditions of Lemma 2, we can reject the requirement of
pairwise quasi-orthogonality of fuzzy random variables X̃1, ..., X̃n. It is sufficient
to require positive invertibility of their Gram matrix A with coefficients aij =〈
X̃i, X̃j

〉
. In the sense that the inverse matrix A−1 exists and converts vectors

with non-negative coordinates back to vectors with non-negative coordinates.
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Remark 5. If, under Lemma 2, we reject the requirement of pairwise quasi-
orthogonality of fuzzy random variables X̃1, ..., X̃n, but additionally assume their
pairwise uncorrelability, then it is sufficient to require positive invertibility of the
Gram matrix from their fuzzy expectations 〈x̃i, x̃j〉.

We emphasize that the coefficients β∗
i are analogous to the Fourier coefficients

when decomposing in an orthogonal system in a Hilbert space (see, for example,
[17], Chap. II, Sect. 11 for random variables). This is due to the relationship of
the metric to be minimized in problem (11) with quasi-scalar product (5).

The proximity of fuzzy random variables (as well as any space with a scalar
product) can be characterized by the cosine of the angle between them.

Define the cosine between the fuzzy random variables Ỹ , Z̃ by the equality

cos(Ỹ , Z̃) =

〈
Ỹ , Z̃

〉
||Ỹ ||||Z̃|| . (14)

According to the definition (14) and the properties of the cosine of the angle
between the fuzzy numbers |cos(Ỹ , Z̃)| ≤ 1. In this case, cos(Ỹ , Z̃) = 0, if and
only, if Ỹ and Z̃ are quasi-orthogonal. And cos(Ỹ , Z̃) = 1, if and only, if Z̃ = λỸ
are collinear (λ > 0).

Denote, as in Lemma 2, β∗
i = 1

κ
2
i

〈
Ỹ , X̃i

〉
and consider

Z̃∗
n =

n∑
i=1

β∗
i X̃i (15)

- an optimal estimate of the predicted fuzzy random variable Ỹ from Lemma 2.

Theorem 3. Let the conditions of Lemma 2. Then the optimal estimate (15)
has the maximum cosine with the predicted fuzzy random variable Ỹ in the class

of linear estimates of the form Zn =
n∑

i=1

βiX̃i (βi ≥ 0).

Indeed, we will show that

|cos(Ỹ , Z̃n)| ≤ cos(Ỹ , Z̃∗
n).

Due to the properties of the quasi-scalar product and the non-negativity of the
coefficients β∗

i ≥ 0 we have

〈
Ỹ , Z̃∗

n

〉
=

〈
Ỹ ,

n∑
i=1

β∗
i X̃i

〉
=

n∑
i=1

β∗
i

〈
Ỹ , X̃i

〉
=

n∑
i=1

(β∗
i )2κ2

i .

In this case, due to the pairwise quasi-orthogonality of the system ||Z∗
n||2 =

n∑
i=1

(β∗
i )2κ2

i . Then

cos(Ỹ , Z̃∗
n) =

n∑
i=1

κ
2
i (β∗

i )2

||Ỹ ||(
n∑

i=1

κ
2
i (β∗

i )2)1/2

=
1

||Ỹ || (
n∑

i=1

κ
2
i (β∗

i )2)1/2.
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Consider

〈
Ỹ , X̃i

〉
=

n∑
i=1

βi

〈
Ỹ , X̃i

〉
=

n∑
i=1

βiβ
∗
i κ

2
i

and ||Z̃n||2 =
n∑

i=1

β2
i κ

2
i .

Then

cos(Ỹ , Z̃n) =

n∑
i=1

κ
2
i βiβ

∗
i

||Ỹ ||(
n∑

i=1

β2
i κ

2
i )1/2

.

By the Cauchy-Schwarz inequality

|cos(Ỹ , Z̃n)| ≤
(

n∑
i=1

κ
2
i β2

i )1/2(
n∑

i=1

κ
2
i (β∗

i )2)1/2

||Ỹ ||(
n∑

i=1

κ
2
i β2

i )1/2

=
1

||Ỹ || (
n∑

i=1

κ
2
i (β∗

i )2)1/2 = cos(Ỹ , Z̃∗
n),

which was required to be proved.
Let’s consider the optimal regression problem in a situation where all linear

approximation coefficients are not assumed to be nonnegative and the condition〈
Ỹ , X̃i

〉
≥ 0 (i = 1, ..., n) is met.

Note that the explicit form of the formula for the distance d(Ỹ ,
n∑

i=1

βiX̃i) in

the case of coefficients βi of an arbitrary sign is inconvenient for research, since
in this case the product of the interval α - the level of a fuzzy number z̃ by a
clear number β is given by the cumbersome expression

β[z−, z+] = [min{βz−, βz+},max{βz−, βz+}].

However, in the general situation, the following statement is true. Let’s say
c∗ = max

j=1,...,n
{ ||Ỹ ||

||X̃j ||}.

Theorem 4. Let the fuzzy-random variables X̃i be quasi-orthogonal for i 
= j,
and all their quasinorms κi 
= 0 (i = 1, ..., n). then the problem is

d(Ỹ ,

n∑
i=1

βiX̃i) → min (βi ∈ [−c∗,∞)) (16)
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has a solution, and the only one. It has the form β∗
i = bi

κ
2
i

(i = 1, ..., n).
Note though problem (16) does not assume that the coefficients βi are posi-

tive, the formula for the coefficients βi has the same form as in Lemma 2. At the
same time the coefficients bi in the condition of Theorem 4 may have different
signs.

In the proof of Theorem 4, the following special property of the distance (6)
between fuzzy random variables will be used.

Lemma 3. For any fuzzy random variables X̃, Ỹ and W̃ in X the next equality
holds

d(X̃ + W̃ , Ỹ + W̃ ) = d(X̃, Ỹ ).

In fact, this is true because subject to the rules of interval addition on the
left are

(X̃ + W̃ )− = X− + W−, (Ỹ + W̃ )− = Y − + W−,

and similarly for the right indexes.
After substituting the corresponding expressions in (6), we obtain the

required equality.

Proof of Theorem 4. Let the condition
〈
Ỹ , X̃i

〉
≥ 0 not be satisfied for at least

one j. Consider the fuzzy random variable Z̃ = Ỹ + c∗
n∑

i=1

X̃i. According to

the definition c∗ > 0,
〈
Z̃, X̃j

〉
≥ 0 (j = 1, ..., n). Consider for Z̃ task (11).

Let γi ≥ 0 be the optimal coefficients of a linear combination
n∑

i=1

γiX̃i for Z̃,

obtained by solving problem (11). The vector γ with coordinates γi is defined
by the formula γ = A−1f , for fi =

〈
Z̃, X̃j

〉
.

We show that the coefficients γi − c∗ are optimal for linear approximation of
a fuzzy random variable Ỹ by the system {X̃i}.

Consider the distance d(Ỹ ,
n∑

i=1

(γi − c∗)Xi). By Lemma 3 and taking into

account the definition of Z̃, we have

d(Ỹ ,

n∑
i=1

(γi − c∗)Xi) = d(Ỹ +
n∑

i=1

c∗X̃i,

n∑
i=1

γiX̃i) = d(Z̃,

n∑
i=1

γiX̃i). (17)

Since {γi} - solution of problem (11) for Z̃, then in accordance with Lemma
2 for any set of numbers ξi ≥ 0 (i = 1, ..., n) can record

d(Z̃,

n∑
i=1

γiX̃i) ≤ d(Z̃,

n∑
i=1

ξiX̃i) = d(Ỹ +
n∑

i=1

cX̃i,

n∑
i=1

(ξi − c∗)Xi +
n∑

i=1

c∗X̃i)
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Using Lemma 3 again, we get

d(Z̃,

n∑
i=1

γiX̃i) ≤ d(Ỹ ,

n∑
i=1

(ξi − c∗)X̃i).

Then (17) implies the inequality

d(Ỹ ,
n∑

i=1

(γi − c∗)Xi) ≤ d(Ỹ ,
n∑

i=1

(ξi − c∗)Xi).

Since here (ξi − c∗) - arbitrary coefficients from a closed interval [−c∗,∞) , then
(γi − c∗) - optimal coefficients.

Note that by definition Z̃ and according to Lemma 2

γj =
1

κ
2
j

〈
Z̃, X̃j

〉
=

1
κ

2
j

〈
(Ỹ +

n∑
i=1

c∗X̃i), X̃j

〉
.

Then, taking into account quasiorthogonality system {X̃i} will receive

γj =
1

κ
2
j

(
bj + c∗

〈
X̃j , X̃j

〉)
=

bj

κ
2
j

+ c∗.

Hence, the optimal coefficients of β̃j for X̃j in the linear approximation Ỹ , having
the form (γj − c∗), defined by the equality bj

κ
2
j

(j = 1, ..., n). this is what the
statement implies.

Remark 6. Similarly to Remark 4, under the conditions of theorem 4, one can
reject the quasi-orthogonality of the system {X̃i} and instead assume positive
invertibility of their Gram matrix. In addition, it is required that the sum of
elements of all columns of the Gram matrix be positive.
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Stochastic Approach to the Vanishing
Viscosity Method

Yana Belopolskaya(B)

SPbGASU, St. Petersburg 190005, Russia

Abstract. We derive stochastic counterparts for solutions of the for-
ward Cauchy problem for two classes of nonlinear parabolic equations.
We refer to the first class parabolic systems such that coefficients of the
higher order terms are the same for each equation in the system and
to the second class parabolic systems with different higher order term
coefficients. With a simple substitution we reduce a system of the first
class to a system which may be interpreted as a system of backward
Kolmogorov equations and construct a probabilistic representation of its
solution. A different approach based on interpretation of a system under
consideration as a system of forward Kolmogorov equations is developed
to deal with stochastic counterparts of the second class systems. These
approaches allow to reduce the investigation of the vanishing viscosity
limiting procedure to a stochastic level which makes its justification to
be much easier.

Keywords: Systems of parabolic equations · Stochastic differential
equations · Vanishing viscosity

1 Probabilistic Counterparts of Nonlinear Parabolic
Systems

In this paper we consider the Cauchy problem for two types of nonlinear second
order parabolic equations and construct probabilistic representations of solu-
tions to the Cauchy problem for these systems. Namely, we consider the Cauchy
problem for systems of the form

∂um

∂t
+

d∑

i=1

∂f i
m(x, u)
∂xi

=
1
2

d∑

i,j=1

Gij(x, u)
∂2um

∂xi∂xj
+

d1∑

q=1

cmq(x, u)uq, (1)

um(0, x) = u0m(x), m = 1, . . . , d1,

called reaction-diffusion systems and for systems of the form

∂vm

∂t
+

d∑

i=1

∂f i
m(y, v)
∂yi

=
1
2

d1∑

q=1

d∑

i,j=1

∇2
yi,yj

[Gij
mq(y, v)vq] +

d1∑

q=1

cmq(y, v)vq, (2)
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vm(0, y) = u0m(y),

called systems with cross-diffusion.
Our aim is to construct probabilistic representations of the Cauchy problem

solutions for these systems and justify the existence of their vanishing viscosity
limits.

A probabilistic approach based on the theory of stochastic differential equa-
tions (SDEs) to scalar nonlinear parabolic equations was started in papers by
McKean [1] and Freidlin [2]. The approach suggested by McKean was devel-
oped to construct a solution of a nonlinear parabolic equation called the Vlasov
equation which arises in plasma physics. The theory of the McKean-Vlasov
type equations now is a well developed theory with many applications (see [3]).
Some results concerning systems of McKean-Vlasov equations with coefficients
which are functionals of equation solutions were obtained in [4–6]. On the other
hand Freidlin’s approach allows to deal with nonlinear scalar parabolic equations
with coefficients depending on an unknown function pointwise. In general both
approaches allow to construct stochastic equations for stochastic processes to be
used in probabilistic representations of the original nonlinear Cauchy problem
solution.

To extend the theory to the case of systems of nonlinear parabolic equa-
tions one meets some additional problems. In particular, Freidlin’s approach
was extended to systems of nonlinear parabolic equations by Dalecky and the
author in [7,8]. In this paper we construct stochastic representations for solu-
tions of the Cauchy problem for systems of nonlinear parabolic equations in the
framework of both approaches and apply these representations to justify the van-
ishing viscosity method which allow to construct the Cauchy problem solutions
for systems of hyperbolic equations.

To construct a probabilistic representation of a solution to a system of the
form (1) we reduce it to a system of backward Kolmogorov equations. To this
end we set

div[fm(x, u)] =
d∑

i=1

d1∑

q=1

∂f i
m(x, u)
∂uq

∂uq

∂xi
+

d∑

i=1

∂f i
m(x, u)
∂xi

=
d∑

i=1

d1∑

q=1

Bi
mq(x, u)

∂uq

∂xi
+ κm(x, u)

and rewrite (1) in a suitable form

∂um

∂t
+

d∑

i=1

d1∑

q=1

Bi
mq(x, u)

∂uq

∂xi
=

1
2

d∑

i,j=1

Gij(x, u)
∂2um

∂xi∂xj
+

d1∑

q=1

cmq(x, u)uq (3)

−κm(x, u), um(0, x) = u0m(x), m = 1, . . . , d1.
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Then we introduce functions gm(T − t, x) = um(t, x) and reduce (3) to the
backward Cauchy problem

∂gm

∂t
+

1
2

d∑

i,j,k=1

Aik(y, g)
∂2gm

∂xi∂xj
Akj(y, g) −

d1∑

q=1

d∑

i=1

Bi
mq(x, g)

∂gq

∂xi
(4)

+
∑

q

cmq(x, g)gq − κm(x, g) = 0, gm(T, x) = u0m(x),

with respect to g assuming that Gij =
∑d

k=1 AikAkj .
Below we will use notations ∇xi

= ∂
∂xi

,∇2
xi,xj

= ∂2

∂xi∂xj
and TrA∇2gA =

∑d
i,j,k=1 Aik ∂2g

∂xi∂xj
Akj .

We say that condition C 1 holds if the functions A(x, u) ∈ Rd ⊗Rd, c(x, u) ∈
Rd1 ⊗ Rd1 , C(x, u) ∈ Rd ⊗ Rd1 ⊗ Rd1 satisfy the estimates

|A(x, u) − A(x1, u1)| ≤ L‖x − x1‖2 + L1|u − u1|2, x ∈ Rd, u ∈ Rd1

|A(x, u)|2 ≤ K[1 + ‖x‖2 + |u|2],
|c(x, u) − c(x1, u1)|2 ≤ L‖x − x1‖2 + L1‖u − u1‖2,

|[C(x, u) − C(x1, u1)]y|2 ≤ L‖x − x1‖2 + L1‖u − u1‖2‖y‖2,
|C(x, u)y‖2 ≤ ρ‖u‖2‖y‖2, y ∈ Rd, c(x, u)h · h ≤ [ρ0 + ρ‖u‖2]‖h‖2, h ∈ Rd1 ,

where L1 > 0 depends on max(|u|, |u1|), u0(x) ∈ Rd1 , κ(x, u) ∈ Rd1 are bounded
and differentiable in their arguments.

Here h · u =
∑d1

j=1 hjuj , |A| =
∑d

k=1 ‖Aek‖2, where {ek}d
k=1 is an orthonor-

mal basis in Rd, and

supx‖u0(x)‖2 ≤ K0, supx‖∇u0(x)‖2 ≤ K1
0 .

We say that condition C2k holds if coefficients and initial data are k times
differentiable and satisfy C1 along with their derivatives.

To simplify the problem we assume first that f(x, u) = f(u) and hence
κ(x, u) ≡ 0.

Denote by (Ω,F , P ) a probability space and let w(t) ∈ Rd denote the Wiener
process defined on this probability space.

Consider a stochastic system

dξ(s) = A(ξ(s), g(T − s, ξ(s)))dw(s), ξ(t) = x ∈ Rd, s ≥ t, (5)

dη(s) = c∗(ξ(s), g(T − s, ξ(s)))η(s)ds − C∗(g(T − s, ξ(s)))(η(s), dw(s)), (6)

η(t) = h ∈ Rd1 ,

h · g(T − t, x) = E[ηt,h(T ) · u0(ξt,x(T ))]. (7)

Here c∗h · g = h · cg, B = CA and [Ci]∗h · g = h · Cig · h, i = 1, . . . d.
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Theorem 1. Assume that C21 hold. Then there exists an interval [T1, T ] ⊂
[0, T ] with τ = T − T1, T1 ≥ 0, satisfying

τ <
1

2ρ0
ln

(
1 +

2ρ0
3ρK0

)
(8)

such that there exists a solution to (5)–(7) for all t ∈ [T1, T ] and functions
gm(t, x) are classical solutions of the Cauchy problem (4).

The proof of the theorem one can find in [4].
Consider the Cauchy problem with a small positive parameter ε

∂gε
m

∂t
+

ε2

2

d∑

i,j,k=1

Aik(x, gε)∇2
xi,xj

gε
mAkj(x, gε) −

d1∑

q=1

d∑

i=1

Bi
mq(g

ε)∇xi
gε

q (9)

+
∑

q

cmq(x, gε)gε
q = 0, gm(T, x) = u0m(x).

Our aim is to prove that solutions gε
m(t, x) of (9) converge to solutions of the

hyperbolic system

∂gm

∂t
−

d1∑

q=1

d∑

i=1

Bi
mq(g)∇xi

gq +
∑

q

cmq(x, g)gq = 0, gε
m(T, x) = u0m(x). (10)

To this end we need some additional conditions.
We say that condition C 3 holds if d1 × d1-matrices Bi, i = 1, . . . , d, have

a simple spectrum σi = {λi
1, . . . , λ

i
d1

} corresponding to eigenvectors h1, . . . , hd1 ,
Bi(g)hm = λi

m(g)hm and λm(g) satisfy C21.
First we consider a stochastic system associated with (9) in the case c ≡ 0,

dξε(s) = εA(ξε(s), gε(T − s, ξε(s)))dw(s), ξε(t) = x ∈ Rd, s ≥ t, (11)

dηε(s) = −ε−1A−1(ξε(s), gε(T − s, ξε(s)))B∗(gε(T − s, ξε(s)))(η(s), dw(s)),
(12)

η(t) = h ∈ Rd1 ,

h · gε(T − t, x) = E[ηε
t,h(T ) · u0(ξε

t,x(T ))]. (13)

Theorem 2. Assume that C21 and C 3 hold. Then functions gε
m satisfying

(11)–(13) converge in sup norm uniformly on compacts to functions gm(T − t, x)
defined by a system

dxm(s) = −λm(g(T − s, xm(s)))ds, xm(t) = x, (14)

gm(T − t, x) = u0m(xm(T )). (15)
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Proof. Let

Zε(τ) = A−1(ξε(τ), gε(T − τ, ξε(τ)))B∗(gε(T − τ, ξε(τ)))

A solution to the linear SDE (12) has the form

ηε(t) = exp
{

−
∫ t

s

ε−1Zε(τ) · dw(τ) − 1
2

∫ t

s

ε−2[Zε(τ)]2dτ

}
h.

Let eigenvectors hm,m = 1, . . . , d1, of the matrices Bi corresponding to
eigenvalues λi

m serve as initial data in (12). Then we get

ηε
m(s) = exp

{
−

∫ s

t

ε−1A−1(ξε(τ), gε(T − τ, ξε(τ)))λm(gε(T − τ, ξε(τ)))·

·dw(τ) − 1
2

∫ s

t

ε−2‖A−1(ξε(τ), gε(T − τ, ξε(τ)))λm(gε(T − τ, ξε(τ)))‖2dτ

}
hm.

Note that under the theorem assumptions we can verify that

κε
m(τ) = ε−1A−1(ξε(τ), gε(T − τ, ξε(τ)))λm(gε(T − τ, ξε(τ)))

satisfies Novikov’s condition. Hence, setting dQε
m = ηε

m(T )dP we deduce that
w̃m(t) = − ∫ t

0
κε

m(s)ds + w(t) is a Brownian motion with respect to Qε
m. In

addition the process ξε(t) satisfying (10) by the Girsanov theorem solves an
SDE

dξ̃ε
m(s) = −λm(gε(T −s, ξ̃ε

m(s)))ds+εA(ξ̃ε
m(s), gε(T −s, ξ̃ε

m(s)))dw̃m(s), (16)

ξ̃ε
m(t) = x.

Thus, Qε
m- law of ξ̃ε

m(s) is the same as the P -law of ξε(s) that yields
∑

m

hmgε
m(t, x) = EP [ηε

s,h(t) · u0(ξε
t,x(T ))] =

∑

m

hmEQε
m [u0m(ξ̃ε

t,x(T ))]. (17)

Since under theorem assumptions gε
m(t, x) satisfying (13) and (17) are proved

to be bounded and Lipschitz continuous functions on [T1, T ] we obtain

E‖ξ̃ε
m(T ) − xm(T )‖2 ≤ 2TEQm

ε

∫ T

t
‖λm(gε(T − s, ξ̃ε

m(s))) − λm(g(T − s, xm(s)))‖2ds

+2ε2
∫ T

t
EQm

ε ‖A(ξ̃ε
m(s), gε(T − s, ξ̃ε

m(s)))‖2ds

≤ 2T

∫ T

t
LλEQm

ε ‖ξ̃ε
m(τ) − xm(τ)‖2Lgdτ + 2T

∫ T

t
Lλ‖gε(T − s, xm(s))

−g(T − s, xm(s))‖2ds

By the Gronwall lemma we get

EQm
ε ‖ξ̃ε

m(T )−xm(T )‖2 ≤ eCT 2T

∫ T

t

Lλ‖gε(T − s, xm(s))− g(T − s, xm(s))‖2ds
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+2ε2
∫ T

t

EQm
ε ‖A(ξ̃ε

m(s), gε(T − s, ξ̃ε
m(s)))‖2ds.

where C = 2TLλLg. Moreover,

‖gε
m(T − t, x) − gm(T − t, x)‖2 ≤ EQm

ε ‖u0m(ξ̃ε
m(T )) − u0m(xm(T ))‖2

≤ L0‖ξ̃ε
m(T ) − xm(T )‖2

≤ L0e
CT 2T

∫ T

t

Lλ‖gm(T − s, ξ̃m(s)) − gm(T − s, ξ̃m(s))‖2ds

+ 2ε2
∫ T

t

EQm
ε ‖A(ξ̃ε

m(s), gε(T − s, ξ̃ε
m(s)))‖2ds,

Applying Gronwall’s lemma once again we get

‖gε
m(T −t, x)−gm(T −t, x)‖2 ≤ eC1T ε2

∫ T

t

EQm
ε ‖A(ξ̃ε

m(s), gε(T −s, ξ̃ε
m(s)))‖2ds,

where C1 = 2TL0e
CT Lλ. Since the integral in the right hand side of the last

inequality is bounded for t ∈ [T1, T ] we obtain

lim
ε→0

sup
(t,x)∈[T1,T ]×K

‖gε
m(T − t, x) − gm(T − t, x)‖2 = 0

for any compact K ⊂ Rd. Thus, functions gε
m(t, x) given by (13) converge in the

sup-norm as ε → 0 to functions gm(t, x) satisfying (15) and the processes ξ̃ε
m(s)

satisfying (12) converge to xm(s) satisfying (14) with probability 1.

To apply a similar approach to the case when c �= 0 we proceed as follows.
Consider a stochastic system of the form

dξε(s) = εA(ξε(t), gε(T − s, ξε(s)))dw(s), ξε(t) = x ∈ Rd, s ≥ t, (18)

dηε(s) = −ε−1A−1(ξε(s), gε(T −s, ξε(s)))B∗(ξε(s), gε(T −s, ξε(s)))(η(s), dw(s)),
(19)

η(t) = h ∈ Rd1 ,

h · gε(T − t, x) = E
[
ηt,h(T ) · u0(ξε

t,x(T )) (20)

+
∫ T

t

ηt,h(τ) · c(ξε(s), gε(T − s, ξε(s)))gε(T − s, ξε(s))ds

]
,

Theorem 3. Assume that C21 and C 3 hold and f = f(g). Then there exists
an interval [T1, T ] ⊂ [0, T ] such that for a fixed ε there exists a solution of (18)–
(20) for all t ∈ [T1, T ]. In addition, functions gε

m satisfying (18)–(20) uniformly
on compacts converge to functions gm(T − t, x) satisfying a system

dxm(s) = −λm(g(T − s, xm(s)))ds, xm(t) = x, (21)

gm(T − t, x) = u0m(xm(T ))+
∫ T

t

c(ξ(s), g(T −s, xm(s))g(T −s, xm(s))ds. (22)
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Proof. By Theorem 1 we know that for any fixed ε there exists a solution of the
system (18)–(20). defined on the interval [T1, T ] and gε(T −t, x) is a differentiable
bounded function. Besides we may consider and alternative stochastic system
associated with (9) which includes SDE (18), SDE

dηε(τ) = −Zε(τ)(ηε
m(τ), dw(τ)) (23)

with initial data ηε
m(s) = h and a closing relation

h · gε(T − t, x) = E
[
ηt,h(T ) · u0(ξε

t,x(T )) (24)

+
∫ T

t

ηε
t,h(s) · c(ξε

t,x(s), gε(T − s, ξε
t,x(s)))gε(T − s, ξε

t,x(s))ds

]
.

To verify that a classical solution gε(T − t, x) of (9) admits a representation (24)
we consider a process γm(s) = ηε

m(s) ·gε
m(T −s, ξε(s)) and compute its stochastic

differential applying Ito’s formula

dγ(s) = dηε(s) · gε(s, ξε(s)) + ηε(s) · dgε(T − s, ξε(s)) + dηε(s) · dgε(T − s, ξε(s))

= −Zε(s)))(η(s), dw(s)) · gε(s, ξε(s))

+ηε(s) ·
[
∂gε

∂s
+

ε2

2
TrA∇2gεA∗ + B · ∇gε

m

]
(T − s, ξε(s))ds].

Integrating the last relation in time from t to T and computing expectation we
get

E[ηε(T ) · u0(ξε
t,x(T ))] − h · gε(t, x) =

∫ T

t

Eηε(s) ·
[
∂gε(T − s, ξε

t,x(s))
∂s

+
ε2

2
TrA(ξε

t,x(s), gε(T − s, ξε
t,x(s)))∇2gε(s, ξε(s))A∗(ξε

t,x(s), gε(T − s, ξε
t,x(s)))

+B(gε(T − s, ξε
t,x(s))) · ∇gε(T − s, ξε

t,x(s)))
]
ds. (25)

Let h = hm be eigenvectors of the matrix Bi corresponding to eigenvalues
λi

m. Denote by

Φε
m(t, T, ξ(·)) = exp

{∫ T

t

[−ε−1A−1(ξε(s), gε(T − s, ξε(s)))λm(ξε(s),

gε(T − s, ξε(s))) · dw(s) −
∫ T

t

ε−2‖A−1(ξε(s), gε(T − s, ξε(s)))λ(ξε(s),

gε(T − s, ξε(s)))‖2ds
}

.

Keeping in mind that gε satisfies (9) we deduce from (25)

gε
m(T − t, x) = E [Φε

m(t, T, ξ(·))u0m(ξε(T ))−
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∫ T

t

Φε
m(s, T, ξ(·))

d1∑

q=1

cmq(ξε(s), gε(T − s, ξε(s)))gε
q(T − s, ξε(s))ds

]
.

Next we have to apply the Girsanov formula to obtain

gε
m(T − t, x) = EQm

ε [u0m(ξ̃ε(T ))]

−EQm
ε

[∫ T

t

d1∑

q=1

cmq(ξ̃ε(s), gε(T − s, ξ̃ε(s)))gε
q(T − s, ξ̃ε(s))ds

]
,

where ξ̃m(t) satisfy (14). To prove that gε
m satisfying (13) converge in the sup-

norm as ε → 0 to functions gm(t, x) satisfying (15) and the processes ξ̃ε
m(s)

satisfying (12) converge to xm(s) satisfying (14) with probability 1 we use the
same reasons as in Theorem 2.

Corollary. Assume that C23 and C3 hold. Then the functions gε
m given by

(13) are unique classical solutions of (9), while the functions g given by (15) are
unique classical solution of the system (10).

Remark 1. We can generalise the above results to include the case f = f(x, g).
In this case one has to study a stochastic system including (5) and equations

dη(s) = c∗(ξ(s), g(T − s, ξ(s)))η(s)ds − C∗(ξ(s), g(T − s, ξ(s)))(η(s), dw(s)),

h · g(T − t, x) = E

[
ηt,h(T ) · u0(ξt,x(T )) −

∫ T

t

[ηt,h(τ) · κ(τ, ξt,x(τ))dτ

]
,

η(s) = h ∈ Rd1 .

Extending C 3 to this case one can prove that both Theorems 2 and 3 are valid.

2 Stochastic System Associated with Nonlinear Parabolic
Systems with Cross-Diffusions

In this section we consider systems of nonlinear parabolic equations which admit
a natural interpretation as systems of forward Kolmogorov equations. Actually,
we consider a simplified version of a system of the form (2), namely, a system

∂ṽm

∂t
+

d∑

i=1

∇yi
f i

m(y, ṽ) =
1
2

d∑

i,j=1

∇2
yi,yj

[Gij
m(y, ṽ)ṽm] + cm(y, ṽ)ṽm, (26)

ṽm(0, y) = u0m(y)

assuming that Gij
m =

∑d
k=1 AikAkj . For simplicity we assume that u0m and all

coefficients in (26) are smooth and bounded.
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We say that a function ṽm(t, y) is a weak solution of (26) if an integral identity

∂

∂t

∫

Rd

h(y)ṽm(t, y)dy =
∫

Rd

ṽm(t, y)
[
1
2
TrAm(y, ṽ)∇2h(y)A∗

m(y, ṽ)

+fm(y, ṽ) · ∇h(y) + cm(y, ṽ)h(y)] dy

holds for any h ∈ C∞
0 (Rd).

To have a possibility to treat (26) as a system of forward Kolmogorov equa-
tions for distributions of some stochastic processes we will consider its mollifica-
tion to make coefficients to be functionals of the required measures. To this end
we choose a mollifier that is a function ρ ∈ C∞

0 (Rd) with
∫

Rd ρ(y)dy = 1 and
ρ ∗ ṽ(y) =

∫
Rd ρ(y − x)ṽ(dx) and consider a parabolic system

∂vm

∂t
=

1
2

d∑

i,j=1

∇2
yi,yj

[Gij
m(y, ρ ∗ v)vm] − divfm(y, ρ ∗ v) + cm(y, ρ ∗ v)vm, (27)

vm(0, dy) = u0m(dy).

One can see that if c ≡ 0 then (27) is a system of McKean-Vlasov equations.
Assume that there exists a unique positive bounded integrable weak solution to
(26) and construct its probabilistic representation. To this end we need more
notations.

Let P = P(Rd) be a family of Borel probability measures on Rd and P2 =
{μ ∈ P : ‖μ‖2 =

∫
Rd ‖y‖2μ(dy) < ∞.}

Denote by Cd = C([0, T ];Rd) and let ξm = ξm(t, ω) be a canonical process
on Ω = Cd, that is ξ(t, ω) is the value ω(t) of ω ∈ Cd at t ∈ [0, T ]. We set F and
Ft the smallest σ-algebras generated by {ξm(s) : s ≤ T} and {ξm(s) : s ≤ t}
respectively. Let P2 = B([0, T ];P2) be the space of P2 valued Borel measures.

Let d1 = 1 then to construct a measure valued weak solution μ(t, dy) of (29)
given μ0(dy) = u0(y)dy one should construct a probability measure γ on (Cd,F)
[9] such that:

(i) The distribution μγ(t) = γ ◦ ξ−1(t) of the process ξ(t) under γ, that is
μ(t, dy) = γ{ξ(t) ∈ dy} belongs to P2;

(ii) μγ(0, dy) = μ0(dy);
(iii) for every h ∈ C∞

0 (Rd), h(ξ(t))−∫ t

0
Auh(ξ(s))ds is a martingale with respect

to (γ,Ft), where

Auh =
1
2
TrA(y, u)∇2h(y)A∗(y, u) + fm(y, u) · ∇h(y).

To extend this theory to the case of parabolic systems we consider a stochastic
system of the form

dξm(s) = fm(ξm(s), u(s, ξm(s)))ds + Am(ξm(s), u(s, ξm(s)))dwm(s), (28)

ξm(0) = ξ0m, ξm(0) ∼ u0m(y)dy = γm{ξm(0) ∈ dy},
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um(t, y) = E

[
ρ(y − ξm(t)) exp

{∫ t

0

cm(ξm(s), u(s, ξm(s)))ds

}]
(29)

=
∫

Cd

ρ(y − ξm(t, ω)) exp
{∫ t

0

cm(ξm(s, ω), u(s, ξm(s, ω)))ds

}
γm(dω),

L(ξm) = γm.

Here wm(t) ∈ Rd are independent Wiener processes, ξ0m are independent ran-
dom variables with distribution μ0m which do not depend on wm.

Stochastic system (28), (29) is a closed system with respect to a couple
(ξm(t), um(t, y)) and under certain conditions we can prove the existence and
uniqueness of its solution (see [10,11]). In this paper for simplicity we assume that
coefficients fm, Amcm and initial functions u0m are bounded smooth functions.
To verify that there exists a connection between um(t, y) defined by (29) and
a solution of (27) we construct measures μm(t, dy) satisfying (27) such that
μm(t, dy) = um(t, y)dy.

To obtain the required measures we note that for any h ∈ Cb(Rd) an expres-
sion

E

[∫

Rd

h(ξm(t)) exp
{∫ t

0

cm(ξm(s), ρ ∗ μ(s, ξm(s)))ds

}]
,

where ξm(t) is a solution of a stochastic equation (28) is a bounded linear func-
tional over the space Cb(Rd) of continuous bounded functions and hence, by the
Riesz theorem [12] there exists a probability measure μm(t, dy) such that

∫

Rd

h(y)μm(t, dy) = E

[∫

Rd

h(ξm(t)) exp
{∫ t

0

cm(ξm(s), ρ ∗ μ(s, ξm(s)))ds

}]
.

(30)
Next we consider a system

dξm(s) = fm(ξm(s), ρ ∗ μγ(s, ξm(s)))ds + Am(ξm(s), ρ ∗ μγ(s, ξm(s)))dwm(s),
(31)

ξm(0) = ξ0m,
∫

Rd

h(y)μγ
m(t, dy) = E

[∫

Rd

h(ξm(t)) exp
{∫ t

0

cm(ξm(s), ρ ∗ μγ(s, ξm(s)))ds

}]

(32)

=
∫

Cd

h(ξm(t, ω)) exp
{∫ t

0

cm(ξm(s, ω), ρ ∗ μγ(s, ξm(s, ω)))ds

}
γm(dω)

L(ξm) = γm

and verify that if there exists a solution (ξm(t), um(t, y)) of (28), (29) then um

is connected to a solution vm of (27) by the relation um(t, y) = ρ ∗ vm(t, y) =∫
Rd ρ(y − x)vm(t, dx). To this end we establish a correspondence between (28),

(29) and (31), (32).
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Theorem 4. The existence of a solution to the McKean type system (28),
(29) is equivalent to the existence of a solution to the system (31), (32). More
precisely, given a solution (ξm, μγ

m) of (31), (32) we can verify that the pair
(ξm, uγ

m), where uγ
m = ρ ∗ μγ

m solves (28), (29) and vice versa.

Proof. Let (ξm(t), uγ
m(t)) be a solution to (28), (29). Denote by

F (h)(z) =
1

(2π)
d
2

∫

Rd

h(y)e−z·ydy

the Fourier transform of a function h ∈ S(Rd). Since ρ ∈ L1(Rd), we may apply
the Fourier transform to the function uγ

m(t, y) satisfying (29) and obtain

F (uγ
m)(t, z) (33)

= F (ρ)(z)
∫

Cd

e−iz·ξm(t,ω) exp
{∫ t

0

cm(uγm(s, ξm(s, ω)))ds

}
γm(dω).

We deduce from the Lebesgue dominated convergence theorem that

gγ
m(t, z) =

∫

Cd

e−iz·ξm(t,ω) exp
{∫ t

0

cm(uγm(s, ξm(s, ω)))ds

}
γm(dω) (34)

is continuous and bounded for t ∈ [0, T ] since cm is bounded.
Let {βk}k=1,...,d be a sequence of complex numbers and {yk}k=1,...,d ∈ (Rd)d.

Note that for all z ∈ Rd we have the equality

d∑

k=1

d∑

j=1

βkβ̄je
−iz·(yk−yj) =

(
d∑

k=1

βke−iz·yk

) ⎛

⎝
d∑

j=1

βje−iz·yj

⎞

⎠

= |
d∑

k=1

βke−iz·yk |2,

and thus, gγ
m is non-negative definite. Then the Bochner theorem states that

there exists a finite non-negative Borel measure νγ
m(t) on Rd, such that for all

z ∈ Rd

gγ
m(t, z) =

1
(
√

2π)d

∫

Rd

e−iz·yνγ
m(t, dy). (35)

Let us verify that μγ
m(t, dy) ≡ νγ

m(t, dy) satisfy (32). As far as μγ
m(t, dy) is a finite

non-negative Borel measure we can treat it as an element of the Schwartz space
S′(Rd). Hence the equality F−1(gγ

m(t)) = μγ
m(t) holds and for any φ ∈ S(Rd)

the estimate
|
∫

Rd

φ(x)μγ
m(t, dx)| ≤ ‖φ‖∞μγ

m(t, Rd) < ∞

is valid. From (33) and (35) we deduce F (uγ
m)(t, ·) = F (ρ)F (μγ

m(t)) that yields
uγ

m(t, ·) = ρ ∗μγ
m(t, ·). Denote by 〈φ, μ〉 =

∫
Rd φ(y)μ(t, dy), φ ∈ S(Rd). Applying
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the Fubini theorem and the equality uγ
m(t, ·) = ρ ∗ μγ

m(t, ·), we obtain for all
φ ∈ S(Rd)

〈φ, μγ
m(t)〉 = 〈φ, F−1(gγ

m)(t)〉 = 〈F−1(φ), gγ
m(t)〉

=
∫

Rd

F−1(φ)(z)
(∫

Cd

e−iz·ξm(t,ω)e
∫ t
0 cm(uγ(s,ξm(s,ω)))dsγm(dω)

)
dz

=
∫

Cd

(∫

Rd

F−1(φ)(z)e−iz·ξm(t,ω)dz

)
e
∫ t
0 cm(uγ(s,ξm(s,ω)))dsγm(dω)

=
∫

Cd

(∫

Rd

F−1(φ)(z)e−iz·ξm(t,ω)dz

)
e
∫ t
0 cm(ρ∗μγ(s,ξm(s,ω)))dsγm(dω)

=
∫

Cd

φ(ξm(t, ω))e
∫ t
0 cm(ρ∗μγ

m(s,ξm(s,ω)))dsγm(dω).

Thus, (ξm(t), uγ
m(t)) is a solution of (28), (29), if (ξm(t), μγ

m(t)) is a solution of
(31), (32).

To prove an inverse statement assume that (ξm, μγ
m) satisfy (31), (32). Set

uγ
m(t, y) = ρ∗μγ

q (t, y) and note that (ξm(t), uγ
m(t)) satisfy (28), (29). Since μγ(t)

is a finite measure to verify (32) it is enough to put φ = ρ(x − ·) in it. Thus we
have proved the theorem.

Next we state a link between the above stochastic systems and (27).

Theorem 5. Measures μγ
m(t, dy) satisfying (32) satisfy the Cauchy problem

(27) in a weak sense.

Proof. Denote by Φm(t, ρ ∗ μγ(ξm)) = e
∫ t
0 cm(ρ∗μγ(s,ξm(s,ω)))ds. Let us apply the

Ito formula to the process ζm(t) = h(ξm(t))Φm(t, ρ∗μγ(ξm)) where ξm(t) satisfy
(31) and h ∈ C∞

0 (Rd). Then we get

E[h(ξm(t))Φm(t, ρ ∗ μγ(ξm))] = Eh(ξ0m)

+
∫ t

0

E[h(ξm(s))cm(ρ ∗ μγ(s, ξm(s, ω)))Φm(s, ρ ∗ μγ(ξm))]ds

+
∫ t

0

E

⎡

⎣
d∑

i,j=1

Gij(ρ ∗ μγ(s, ξm(s)))
∂2 h(ξm(s))

∂yi∂yj
Φm(s, ρ ∗ μγ(ξm))

⎤

⎦ ds

+
∫ t

0

E

[
d∑

i=1

f i
m(ρ ∗ μγ(s, ξm(s)))

∂h(ξm(s))
∂yi

Φm(s, ρ ∗ μγ(ξm))

]
ds.

Thus, by definition of the measure μγ
m in (32) we have

∫

Rd

h(y)μγ
m(t, dy) =

∫

Rd

h(y)μγ
0m(dy)

+
∫ t

0

∫

Rd

[h(y)cm(ρ ∗ μγ(s, y))μγ(s, dy)ds
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+
1
2

∫ t

0

∫

Rd

d∑

i,j=1

Gij(ρ ∗ μγ(s, y))
∂2 h(y)
∂yi∂yj

μγ(s, dy)ds

+
∫ t

0

∫

Rd

d∑

i=1

f i
m(ρ ∗ μγ(s, y))

∂h(y)
∂yi

μγ(s, dy)ds.

At the end of the section we consider the Cauchy problem

∂vε
m

∂t
=

ε2

2

d∑

i,j=1

∂2

∂yi∂yj
Gij(y, ρ∗vε

m)vε
m−divfm(x, ρ∗vε

m)+cm(y, ρ∗vε
m)vε

m, (36)

vε
m(0, y) = u0m(y)

with a small positive parameter ε and study limiting behaviour of its solution as
ε → 0.

Theorem 6. Assume that there exists a unique solution (ξm,ε(t), um,ε(t, y)) to
the system (28), (29) with Am,ε = εAm such that ξm,ε(t) ∈ Rd is a Markov
process and um,ε(t) ∈ L1(Rd) ∩ Lip(Rd). Then the couple (ξm,ε(t), um,ε(t, y))
converges to a solution of the system

dxm(s) = fm(v(s, xm(s)))ds, xm(0) = ξ0m, (37)

vm(t, y) =
[
ρ(y − xm(t)) exp

{∫ t

0

cm(xm(s), v(s, xm(s)))ds

}]
(38)

and um(t) = ρ ∗ vm(t, y) where vm is a weak solution of a system

∂vm

∂t
+ divfm(v) =

d1∑

q=1

cmq(y, v)vq, vm(0, y) = u0m(y).

Proof. Consider a system

dξγ
m,ε(s) = fm(ξγ

m,ε(s), u
γ
ε (s, ξm,ε(s)))ds + εAm(ξγ

m,ε(s), u
γ
ε (s, ξγ

m,ε(s)))dwm(s),
(39)

ξm(0) = ξ0m, L(ξm) = γm,

uγ
m,ε(t, y) = E

[
ρ(y − ξγ

m,ε(t)) exp
{∫ t

0

cm(ξγ
m,ε(s), u

γ(s, ξγ
m,ε(s)))ds

}]
(40)

=
∫

Cd

ρ(y − ξγ
m,ε(t, ω)) exp

{∫ t

0

cm(ξγ
m,ε(s, ω), u(s, ξγ

m,ε(s, ω)))ds

}
γm,ε(dω),

and estimate a difference αm(t) = E‖ξγ
m,ε(t) − xm(t)‖2, where xm(t) satisfies

(36). Keeping in mind properties of coefficients fm, Am and ρ and assuming
Lipschitz continuity of um we deduce

αm(t) ≤
∫ t

0

Lf [1 + Lu]αm(s)ds + ε2
∫ t

0

‖Am(ξγ
m,ε(s), u

γ
ε (s, ξm,ε(s)))‖2ds.
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Applying the Gronwall lemma we get

αm(t) ≤ ε2
∫ t

0

E‖Am(ξγ
m,ε(s), u

γ
ε (s, ξγ

m,ε(s)))e
Lf [1+Lu][T−T1]. (41)

Next we derive an estimate for

βm(t) = ‖uγ
m,ε(t, y) − vm(t, y)‖2

= ‖E

[
ρ(y − ξγ

m,ε(t)) exp
{∫ t

0

cm(ξγ
m,ε(s), u

γ(s, ξγ
m,ε(s)))ds

}

−ρ(y − xm(t)) exp
{∫ t

0

cm(xm(s), v(s, xm(s)))ds

}]
‖2

≤ LρE‖ξγ
m,ε(t) − xm(t)‖2 + KρK1Lc

∫ t

0

E[(1 + Luε
)‖ξγ

m,ε(s) − xm(s)‖2]ds

+KρLce
KcT

∫ t

0

‖uγ
ε (s, y) − v(s, y)‖2]ds.

Thus,

‖uγ
ε (t, y) − v(t, y)‖2 =

d1∑

m=1

‖uγ
m,ε(t, y) − vm(t, y)‖2

≤ M sup
s∈[T1,T ]

‖ξγ
m,ε(s) − xm(s)‖2 + KρLce

KcT

∫ t

0

‖uγ
ε (s, y) − v(s, y)‖2]ds

and by the Gronwall lemma we get

‖uγ
ε (t, y) − v(t, y)‖2 ≤ Msups∈[T1,T ]αm(s)eM1T

where M = d1[Lρ + KρK1LcT ],M1 = KρLce
KcT . Setting

K = MeM1T eLf [1+Lu]T

and keeping in mind the estimate (41) we derive

sup
t∈[T1,T ]

‖uγ
ε (t, y) − v(t, y)‖2

≤ ε2d1K

∫ T

0

E‖Am(ξγ
m,ε(s), u

γ
ε (s, ξγ

m,ε(s)))‖2ds → 0

as ε → 0 since Am are bounded.
Next we deduce from Theorem 4 that along with the couple (ξγ

m,ε(t), u
γ
ε (t, y))

there exists a couple (ξγ
m,ε(t), μ

γ
ε (t, dy)) satisfying

dξγ
m,ε(s) = fm(ξγ

m,ε(s), ρ∗μγ
ε (s, ξ

γ
m,ε(s)))ds+εAm(ξγ

m,ε(s), ρ∗μγ
ε (s, ξ

γ
m,ε(s)))dwm(s), (42)
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ξm(0) = ξ0m,
∫

Rd

h(y)μγ
m,ε(t, dy) = (43)

E

[∫

Rd

h(ξγ
m,ε(t)) exp

{∫ t

0

cm(ξγ
m,ε(s), ρ ∗ μγ

ε (s, ξγ
m,ε(s)))ds

}]

for any h ∈ Cb(Rd). Since due to the above estimates we know that ξγ
m,ε(t)

with probability 1 converges to xm(t) satisfying (37) we deduce that letting
ε → 0 we obtain that

∫
Rd h(y)μγ

m,ε(t, dy) converge to
∫

Rd h(y)vm(t, y)dy, where
vm(t, y)dy = μm(t, dy) satisfy (38). Thus we prove that μγ

m,ε(t, dy) converge to
μm(t, dy), m = 1, . . . , d1 in a weak sense.
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Abstract. The oversampling approach is often used for binary imbal-
anced classification. We demonstrate that the approach can be inter-
preted as the weighted classification and derived a generalization bound
for it. The bound can be used for more accurate re-balancing of classes.
Results of computational experiments support the theoretical estimate
of the optimal weighting.

Keywords: Imbalanced classification · Generalization bound ·
Resampling amount · Weighted classification

1 Introduction

In this paper, we consider the imbalanced binary classification, i.e. the case of
two-class classification when one class (a minor class) has much less represen-
tatives in the available dataset than the other class (a major class). Many real-
world problems have unavoidable imbalances due to properties of data sources,
e.g. network intrusion detection and maintenance [1–3,8], damage detection from
satellite images [12,13,17], prediction and localization of failures in technical sys-
tems [4,5,7,21,22], etc. In these examples target events (diseases, failures, etc.)
are rare and presented only in a small fraction of available data.

Often the main goal of the imbalanced classification is to accurately detect
the minor class [11]. However, standard classification approaches (logistic regres-
sion, SVM, etc.) are often based on the assumption that all classes as equally
represented [10]. As a consequence the resulting classification model is biased
towards the major class. E.g., if we predict an event occurring in just 1% of all
cases and the classification model always gives a “no-event” prediction, then the
model error is equal to 1%. Therefore, the average accuracy of the classifier is
high, although it can not be used for the minor class detection.

An efficient way to deal with the problem is to resample the dataset in order
to decrease the class imbalance, as it was discussed in [6,20]. In practice we
can perform oversampling, i.e., add synthesized elements to the minor class, or
perform undersampling, i.e., delete particular elements from the major class; or
do the both types of samplings. There also exist other more delicate approaches
to resampling.
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2021
A. N. Shiryaev et al. (Eds.): ICSM-5 2020, PROMS 371, pp. 107–119, 2021.
https://doi.org/10.1007/978-3-030-83266-7_8
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Most of the resampling approaches takes as input the resampling amount,
which defines how many observations we have to add or delete. In [6,20] they
demonstrated that there is no “universal” choice of the resampling amount and
the final classification accuracy significantly depends on a particular value we
select for a dataset at hand.

The authors of [6,20] proposed to use either the cross-validation procedure
[10] or the meta-learning procedure to select the resampling method and the
resampling amount. However, these approaches are purely empirical and require
to spend significant time for additional computational experiments due to the
exhaustive search.

In this work we argue that the resampling approaches can be considered as
a specific variant of the weighted classification: so to deal with a possible class
imbalance when constructing a classifier we use a weighted error (risk) to stress
the most important class. The question is how to select an appropriate weight
value to up-weight the minor class. For that we estimate the theoretical general-
ization ability of the classifier with the weighted loss function and explore how it
depends on the weighting scheme. We discuss how these findings can be used in
practice when solving the imbalanced classification problem. In Sect. 2 we intro-
duce the main notations and provide a theoretical problem statement. In Sect. 3
we prove the main result of the paper, namely, we obtain the generalization
bound for the weighted binary classification and obtain an optimal weighting
scheme. We propose the algorithm for the weighted classification based on the
derived optimal weighting, and evaluate its empirical performance in Sect. 4.
Results of computational experiments demonstrate usefulness of the proposed
approach. We discuss conclusions in Sect. 5.

2 Problem Statement

Let us consider the formal binary classification problem statement, discuss how it
can be interpreted as the weighted classification task in case we use the standard
oversampling technique, and estimate the corresponding excess risk. Thanks to
the estimate, we can characterize the influence of the weight (playing a role of
the resampling amount) on the generalization ability of the classifier.

We denote by

– F ⊆ YX a class of binary classifiers with a multi-dimensional input space
x ∈ X and an output label space Y. Here we consider Y = {−1,+1} for
simplicity. E.g.

F = {fa,b : fa,b(x) = 2I(〈a, x〉 + b ≥ 0) − 1};

– P a distribution on X × Y;
– π a prior probability of a positive class, i.e.

P = πPx|y=+1 + (1 − π)Px|y=−1;

– D = {(xi, yi)}N
i=1 a training sample, xi ∈ X , yi ∈ Y;
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– RN (F) a Rademacher complexity of F [15]. Recall that the empirical Rade-
macher complexity of some family of functions G from Z to [a, b] for a fixed
sample S = (z1, . . . , zm) is equal to

R̂S(G) = Eσ

[
sup
g∈G

1
m

m∑
i=1

σig(zi)

]
,

where σ = (σ1, . . . , σm) are Rademacher random variables. Then the
Rademacher complexity of G w.r.t. some distribution P on Z is defined as

Rm(G) = ES∼Pm

[
R̂S(G)

]
.

We consider a zero-one loss function L(ŷ, y) = Iŷ �=y. The theoretical risk is
equal to EPL(f(x), y), so that the theoretically optimal classifier

f∗ = arg min
f∈F

EPL(f(x), y).

The empirical risk has the form

EDL(f(x), y) =
1
N

N∑
j=1

L(f(xj), yj).

If we perform the oversampling the empirical risk can be represented as

1
N

N∑
j=1

ujL(f(xj), yj),

where uj ≥ 1 is equal to the number of times the object xj from the initial
sample D is selected in the oversampling procedure (we count xj as well). Thus
the binary classification problem in case of the oversampling can be interpreted as
a classification problem with a weighted empirical loss: we optimize the weighted
empirical risk when training a classifier and measure its accuracy using a non-
weighted theoretical risk.

Therefore, we define some (fixed) weighting function

u : (X × Y) → (0,+∞).

The weighted empirical risk is equal to

EDu(x, y)L(f(x), y) =
1
N

N∑
i=1

u(xi, yi)L(f(xi), yi),

so that the empirical classifier

f̂ = arg min
f∈F

EDu(x, y)L(f(x), y). (1)
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We would like to derive an upper bound for the excess risk

Δ(F ,P) = sup
f∈F

(EPL(f(x), y) − EDu(x, y)L(f(x), y)) ,

which characterizes a generalization ability of the classifier. In particular, high
values of the excess risk means that the function class F is “too complex” for
the considered problem.

There exist theoretical results about the classification performance when
the classifier is trained with the weighted loss. E.g. in [9] a bayesian frame-
work for imbalanced classification with a weighted risk is proposed, [19] inves-
tigated the calibration of asymmetric surrogate losses, [16] considered the case
of cost-sensitive learning with noisy labels. The case of weighted risk for the
one-dimensional classification based on probability density functions estimates
is considered in [14].

However, to the best of our knowledge, there is no studied upper bound for
the excess risk with explicitly derived dependence on the class imbalance value
π and the weighting scheme u(·) that quantifies their influence on the overall
classification performance.

3 Generalization Bound

To derive explicit expressions we use an additional assumption, namely, we con-
sider

u(x, y) = (1 + g+(w))I{y=+1} + (1 + g−(w)) I{y=−1}
for some positive weighting functions g+(w) and g−(w) of the weight value w ≥
0. We can tune w to re-balance the proportion between classes and decrease
Δ(F ,P).

Theorem 1. With probability 1 − δ, δ > 0 for D ∼ P
N the excess risk Δ(F ,P)

is upper bounded by

Δ(w) = 3 (g+(w)π + g−(w)(1 − π)) + RN (F) + (2 + g+(w) + g−(w)) αN , (2)

where αN =
√

log δ−1

2N .

Proof. Let
L = {(x, y) → L(f(x), y) : f ∈ F}

be a composite loss class. For any L ∈ L we get that

EPL − EDuL = EPL − EPuL + EPuL − EDuL

≤ EP|(1 − u)L| + (EPuL − EDuL). (3)

Since any L ∈ L is bounded from above by 1 for the first term in (3) we obtain

EP|(1 − u)L| ≤ EPg+(w)I{y=+1} + EPg−(w)I{y=−1}
= g+(w)π + g−(w)(1 − π). (4)
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Thanks to McDiarmid’d concentration inequality [15], applied to the function
class Lu = {uL : L ∈ L}, with probability 1 − δ, δ > 0 for D ∼ P

N we get the
upper bound on the excess risk

sup
L∈L

(EPuL − EDuL) ≤ 2RN (Lu) + max[(1 + g+(w)), (1 + g−(w))]αN ≤

≤ 2RN (Lu) + (2 + g+(w) + g−(w))αN . (5)

Let us find a relation between RN (Lu) and RN (L). We denote by zi a pair
zi = (xi, yi). By the definition (see [15]) the empirical Rademacher complexity

R̂D(Lu) =
1
N

Eσ sup
L∈Lu

N∑
i=1

σiu(zi)L(zi)

≤ 1
N

Eσ sup
L∈Lu

N∑
i=1

σiL(zi) +
g+(w)

N
Eσ sup

L∈Lu

∑
i:yi=+1

σiL(zi)

+
g−(w)

N
Eσ sup

L∈Lu

∑
i:yi=−1

σiL(zi)

≤ R̂D(L) +
g+(w)

N
Eσ sup

L∈Lu

∑
i:yi=+1

σiL(zi)

+
g−(w)

N
Eσ sup

L∈Lu

∑
i:yi=−1

σiL(zi).

For the zero-one loss

Eσ sup
L∈Lu

∑
i:yi=+1

σiL(zi) ≤ #{i : yi = +1},

and
Eσ sup

L∈Lu

∑
i:yi=−1

σiL(zi) ≤ #{i : yi = −1}.

The Rademacher complexity

RN (Lu) = ED∼PN R̂D(Lu)

≤ ED∼PN

[
R̂D(L) +

g+(w)
N

#{i : yi = +1} +
g−(w)

N
#{i : yi = −1}

]
= RN (L) + g+(w)π + g−(w)(1 − π). (6)

Using the fact that RN (L) = 1
2RN (F), substituting inequalities (4), (5) and

(6) into (3), we get that

Δ(F ,P) ≤ 3 (g+(w)π + g−(w)(1 − π)) + RN (F) + (2 + g+(w) + g−(w)) αN .

By collecting the terms with w in Δ(w) (2) we get

g+(w) (3π + αN ) + g−(w) (3(1 − π) + αN ) ,
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and so minimizing this quantity w.r.t. w we can make the upper bound Δ(w)
tighter. For example, in case we set

g+(w) = w g−(w) = 1/w,

the optimal weight

wopt =

√
3(1 − π) + αN

3π + αN
≈

√
1 − π

π
, (7)

where αN ≈ 0 for N � 1. For such optimal wopt we get

Δ
opt

= Δ(wopt) = 6
√

π(1 − π) + RN (F) + αN

(
2 +

1√
π(1 − π)

)
.

Thus we obtain an estimate on how the weighting influences the classification
accuracy: e.g. in the imbalanced case (when π ≈ 0 or π ≈ 1) for N � 1 by
selecting the weight optimally we reduce the generalization gap almost to zero,
as Δ

opt ≈ 0; at the same time not optimal weight can lead to overfitting.
As we already discussed, under some mild modeling assumptions the binary

classification problem in case of the oversampling can be interpreted as the clas-
sification problem with the weighted loss. Therefore not correctly selected resam-
pling amount has the same negative effect as not optimal weight value for the
classification with the weighted loss function. If we know the class imbalance,
we can use the optimal value wopt either to set the weight in case we use the
weighted classification scheme, or as a reference value when selecting the resam-
pling amount in case we use the oversampling approach—this should help to
reduce the number of steps of the exhaustive search, used in [6,20].

4 Empirical Results

Let us perform an empirical evaluation of the obtained estimate (7). We expect
that for the optimal weight value wopt the classifier achieves better accuracy
on the test when being trained by minimizing the weighted empirical loss. We
consider the following protocol of experiments:

1. Consider different values of the weight w ∈ WK = {w1, . . . , wK};
2. Train a classifier fw(x) by minimizing a weighted empirical loss (1) for the

particular weight value w = wi;
3. Estimate accuracy on the test set and find the weight w∗ ∈ WK for which

accuracy is the highest;
4. Compare the best obtained weight with the theoretical weight calculated

using the formula (7).

We generated artificial datasets as pairs of 2D Gaussian samples with various
means and covariance matrices and sample sizes, where each Gaussian sample
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Fig. 1. Example of a toy dataset 1 Fig. 2. Example of a toy dataset 2

Fig. 3. Example of a toy dataset 3 Fig. 4. Example of a toy dataset 4

corresponds to some class. Examples of artificial datasets 1, 2, 3 and 4 are shown
in Figs. 1, 2, 3 and 4.

We took real datasets from Penn Machine Learning Benchmark repository
[18]: we selected diabetes, german, waveform-40, satimage, splice, spambase,
hypothyroid, and mushroom, that have various types of data and features. Due
to multiclass data, we took class 0 for waveform-40 and splice, class 1 for satim-
age and class 2 for diabetes as a positive, whereas other classes were combined
into a negative one.

To obtain a specific balance between classes in experiments, we used under-
sampling of an excess class. In this way we can get learning samples D corre-
sponding to different values of π. Using this method, we varied the positive class
share to test the dependence of the results on π.
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Fig. 5. w∗ (black dot) vs. wopt (red star) for the toy dataset 1 and different values of
π

Fig. 6. w∗ (black dot) vs. wopt (red star) for the toy dataset 2 and different values of
π
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Fig. 7. w∗ (black dot) vs. wopt (red star) for the toy dataset 3 and different values of
π

Fig. 8. w∗ (black dot) vs. wopt (red star) for the toy dataset 4 and different values of
π
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Fig. 9. w∗ (black dot) vs. wopt (red star) for the real dataset waveform-40 and different
values of π

To measure the performance of the method, we conducted 5-fold cross-
validation of a Logistic Regression classifier [10]. We provide examples of typ-
ical results on different datasets and for different positive class shares π: in
Figs. 5, 6, 7, 8 there are results for toy datasets, and in Figs. 9 and 10 there are
results for two real datasets—waveform-40 and hypothyroid). In particular, we
show how the average validation accuracy depends on the weight w; we indi-
cate empirically optimal values of w∗ by black dots, and indicate theoretically
optimal values of wopt by red stars. We can observe that for most of the cases
estimates w∗ and wopt agree rather well. Moreover, although the estimate wopt

is obtained under general conditions from the rather loose bound (2), still the
classifier with w = wopt provides often quite good accuracy even if there is a big
difference between w∗ and wopt.
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Fig. 10. w∗ (black dot) vs. wopt (red star) for the real dataset hypothyroid and different
values of π

5 Conclusion

We considered the binary classification problem in the imbalanced setting. We
showed that the oversampling approach under somewhat realistic assumptions
can be interpreted as the weighted classification. We derived the generation
bound for the weighted classification and discussed what connection the bound
has with the selection of the resampling amount. We proposed the algorithm
based on the derived optimal weighting. Results of the computational experi-
ments demonstrated usefulness of the proposed approach.
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Resonance in Large Finite Particle
Systems
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Abstract. We consider general linear system of Hamiltonian equations.
The corresponding linear operator is assumed to be positive definite for
the particles could not escape to infinity. However, there are also external
driving forces, that could make the solution unbounded. It is assumed
that driving force depends only on time, it can be periodic, almost-
periodic and random. Moreover, it acts only on one coordinate. Our main
problem here is to understand what restrictions on driving force and/or
what dissipative force could be added to escape resonance (unbounded
trajectories). Various conditions for existence and non-existence of reso-
nance are obtained, for any number of particles.

Keywords: Linear systems · Hamiltonian dynamics · Resonance ·
Boundedness

1 The Model

There are extreme models in non-equilibrium statistical physics. First one is the
ideal (or almost ideal) gas where the particles are free that is do not interact
(or almost do not interact) with each other. The second is when the particles
interact but each particle moves inside its own potential well, which also moves
due to interaction of particles. The simplest such model is the general linear
model with quadratic potential interaction energy. However, besides interaction,
there can be also external driving and dissipative forces. There are many different
qualitative phenomena concerning such systems. One of the most important is
resonance phenomena. That is when the particles start to leave their potential
wells, the system becomes unstable and the dynamics becomes unbounded. Here
we study the models with large number of particles where the resonance can
occur even if the external forces act only on one fixed particle.

We consider general linear system of N0 point particles in IRd with N = dN0

coordinates qj ∈ IR, j = 1, .., N . Let

vj = dxj

dt , pj = mjvj , j = 1, .., N,

q = (q1, ..., qN )T , p = (p1, ..., pN )T , ψ(t) = (q1, ..., qN , p1, ..., pN )T .
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A. N. Shiryaev et al. (Eds.): ICSM-5 2020, PROMS 371, pp. 120–130, 2021.
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Here mj is the mass of the particle having qj as one of its coordinate. Further
on we put mj = 1 and thus pj = vj . Potential and kinetic energies are:

U(ψ(t)) =
1
2

∑

1≤j,l≤N

Vj,lqjql =
1
2
(q, V q), T (ψ(t)) =

N∑

j=1

p2j
2

=
1
2
(p, p),

where the matrix V = (Vij) is always assumed to be positive definite. Then
qj(t), vj(t) are bounded for any initial conditions.

If there are also external forces fj(t, vj), acting correspondingly on the coor-
dinates j, then we have the following system of equations:

q̈j = −
∑

l

Vj,lql + fj(t, vj), j = 1, .., N,

or in the first order form:

q̈j = v̇j =
∑

l

Vj,lql + fj(t, vj).

or
ψ̇ = A0ψ + F, (1)

where

A0 =
(

0 E
−V 0

)
, (2)

F = (0, ..., 0, f1(t, v1), ..., fN (t, vN ))T ∈ IR2N .

We shall consider the case:

fj(t, vj) = f(t)δj,n − αvjδj,k, (3)

where the time dependent external force f(t) acts only on fixed coordinate n,
and the dissipative force −αvk acts only on coordinate k.

For fixed initial conditions and parameters (F, V ), we say that resonance
takes place if the solutions xj(t), vj(t) are not bounded in t ∈ [0,∞) at least for
one j = 1, ..., N .

2 Main Results

As matrix V is positively definite, its eigenvalues are strictly positive and it is
convenient to denote them as ak = ν2

k , k = 1, ..., N , furthermore, it is convenient
to consider all νk positive too. Corresponding system of eigenvectors we denote
as {uk, k = 1, ..., N} and this system can always be assumed to be orthonormal.
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2.1 Periodic Driving Force

Here we consider the case (3) with f(t) = a sin ωt and α = 0. And for general
periodic force one could just (due to linearity of equations) consider its Fourier
series.

Denote ΩN the set of all positive-definite (N × N)-matrices. It is an open
subset in RM (the set of all symmetric matrices), where M = N + N2−N

2 =
N(N+1)

2 . It is open because any sufficiently small perturbation does not change
positive definiteness. Denote μ the Lebesgue measure on ΩN , and let (for fixed
ω) Ω(ω) be the subset of ΩN such that ω2 = ν2

l at least for one l ∈ {1, ..., N}.
It is an algebraic manifold in IRM and thus μ(Ω(ω)) = 0.

Theorem 1. 1). Assume that V /∈ Ω(ω) that is, for all j ∈ {1, ..., N}, ν2
j �= ω2.

Then for all j ∈ {1, ..., N} and all t ≥ 0:

|qj(t)| ≤ 2djβ, |pj(t)| ≤ 2djβω,

where

β = max
r

1
|ω2 − ν2

r | , dj = |a|
N∑

k=1

|(uk, en)(uk, ej)|. (4)

In other words, there will not be resonance for almost all matrices V ;
2). Assume ω2 = ν2

l at least for one l ∈ {1, ..., N}. Then qj(t), pj(t) are
bounded uniformly in t ≥ 0 if and only if for this j holds:

∑

k∈I(ω)

(uk, en)(uk, ej)) = 0, (5)

where I(ω) = {k ∈ {1, ..., N} : ω2 = ν2
k}. Otherwise resonance occurs. Moreover,

for all j ∈ {1, ..., N}:

lim inf
t→+∞ qj(t) = −∞, lim sup

t→+∞
qj(t) = +∞,

lim inf
t→+∞ pj(t) = −∞, lim sup

t→+∞
pj(t) = +∞,

and

lim sup
t→+∞

T (ψ(t))
t2

= lim sup
t→+∞

U(ψ(t))
t2

= lim
t→+∞

H(ψ(t))
t2

= C,

where

C =
a2

8

∑

k∈I(ω)

(uk, en)2.
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2.2 Arbitrary Driving Force and Dissipation

Now we consider the force (3), that is the equation:

q̈j = −
∑

l

Vj,lql + f(t)δj,n − αq̇kδj,k, j = 1, .., N, α > 0.

In the vector form it can be written as:

q̇j = pj ,

ṗj = −
∑

l

Vj,lql + f(t)δj,n − αpkδj,k,

or
ψ̇ = Aψ + f(t)gn, (6)

where

A =
(

0 E
−V −αD

)
(7)

is the 2N × 2N -matrix with N × N blocks, E is the unit N × N -matrix,

D = Dk = diag(δ1,k, .., δN,k),

gn = (0, en)T ∈ IR2N , en = (δ1,n, .., δN,n), 0 = (0, ..., 0) ∈ IRN , (8)

and again we consider zero initial conditions.
Put

S =
(

0 0
0 αD

)
.

Then
A = A0 − S,

where A0 was defined in (2). It is known that Reν ≤ 0 for all eigenvalues of A
[see [2]].

Theorem 2. 1). Assume that the function f(t) (defined by (3)) grows in time t
on [0,∞) not faster than the power function. Then if the spectrum of A does not
have pure imaginary eigenvalues, then the solution of the system (6) is bounded
on [0,∞).

2). Let ΛN ⊂ ΩN ⊂ IRM be the set of matrices V such that all eigenvalues of
the matrix A lie inside left halfplane. Then the Lebesgue measure μ(ΩN\ΛN ) = 0,
that is for almost all matrices V the spectrum of the corresponding matrices
A = A(V ) lies inside left halfplane.
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2.3 Almost-Periodic Force

Suppose the force f(t) has the form:

f(t) =
∫

R

a(ω) cos(ωt)dω,

where a(ω) ∈ l1(IR) is a sufficiently smooth function. Then the function f(t) on
IR is almost periodic.

Theorem 3. Assume α = 0, that is there is no dissipative force. Then for any
initial data the solutions {xk(t), vk(t)} are bounded on the time interval [0,∞).

3 Proofs

3.1 Proof of Theorem 1

Note first that the eigenvalues of matrix A0 are ±iν1, ...,±iνN . In fact, if u = uk

- eigenvector of V corresponding to the eigenvalue ν2
k , k = 1, ..., N , (i.e. V u =

ν2
ku) then vector x± =

(
u

λ±u

)
, where λ± = ±iνk is the eigenvector of A0,

corresponding to the eigenvalue λ± = ±iνk:

A0x± =
(

0 E
−V 0

)(
u

λ±u

)
=

(
λ±u
−V u

)
=

(
λ±u
−ν2

ku

)
=

(
λ±u
λ2

±u

)
= λ±x±.

It is well-known that the solution of equation (1) can be written as:

ψ(t) = eA0t(
∫ t

0

f(s)e−A0sgnds + ψ(0)). (9)

It is easy to prove that:

eA0t =
(

cos(
√

V t) (
√

V )−1 sin(
√

V t)
−√

V sin(
√

V t) cos(
√

V t)

)
,

where trigonometric functions of matrices are defined by the corresponding power
series. Then we can find q(t), p(t) explicitely:

q(t) =
∫ t

0
f(s)(

√
V )−1 sin(

√
V (t − s))ends + cos(

√
V t)q(0)

+(
√

V )−1 sin(
√

V t)p(0),
(10)

p(t) =
∫ t

0

f(s) cos(
√

V (t − s))ends −
√

V sin(
√

V t)q(0) + cos(
√

V t)p(0). (11)

Let us expand vectors en, q(0), p(0) in the orthonormal basis of eigenvectors
of V :

en =
N∑

k=1

(uk, en)uk, q(0) =
N∑

k=1

(uk, q(0))uk, p(0) =
N∑

k=1

(uk, p(0))uk.
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Then as

(
√

V )−1uk =
1
νk

uk, sin(
√

V t)uk = uk sin(νkt),

cos(
√

V t)uk = uk cos(νkt),

we have:

q(t) =
N∑

k=1

[(uk, en)(
∫ t

0

f(s)
sin(νk(t − s))

νk
ds)

+ (uk, q(0)) cos(νkt) + (uk, p(0))
sin(νkt)

νk
]uk, (12)

p(t) =
N∑

k=1

[(uk, en)(
∫ t

0

f(s) cos(νk(t − s))ds)

− (uk, q(0))νk sin(νkt) + (uk, p(0)) cos(νkt)]uk. (13)

Thus we reduced the question of boundedness to the question of boundedness of
the functions:

q̃k(t) =
∫ t

0

f(s) sin(νk(t − s))ds,

p̃k(t) =
∫ t

0

f(s) cos(νk(t − s))ds.

For those j ∈ {1, ..., N}, where ω2 �= ν2
j :

q̃j(t) =
∫ t

0

sin(ωs) sin(
√

aj(t − s))ds =
√

aj

ω2 − aj
(sin(ωt) − sin(

√
ajt)),

p̃j(t) =
∫ t

0

sin(ωs) cos(
√

aj(t − s))ds =
ω

ω2 − aj
(cos(

√
ajt) − cos(ωt)).

It follows:

|qj(t)| = |(q, ej)| = |a
N∑

k=1

(uk, en)
1
νk

q̃k(t)(uk, ej)| ≤ 2djβ,

|pj(t)| = |(p, ej)| = |a
N∑

k=1

(uk, en)p̃k(t)(uk, ej)| ≤ 2djβω.

Now consider j ∈ {1, ..., N}, where ν2
j = ν2

l = ω2:

q̃j(t) =
∫ t

0
sin(ωs) sin(

√
aj(t − s))ds = sin(ωt)

2ω
− t cos(ωt)

2
,

p̃j(t) =
∫ t

0
sin(ωs) cos(

√
aj(t − s))ds = t sin(ωt)

2
,

qj(t) = (q, ej) = a
N
∑

k=1

(uk, en) 1
νk

q̃k(t)(uk, ej)

= (a
∑

k∈I(ω)(uk, en)(uk, ej))(− t cos(ωt)
2ω

) + O(1) = Bj(− t cos(ωt)
2ω

) + O(1), t → +∞,
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where I(ω) = {j ∈ {1, ..., N} : ω2 = ν2
j }.

Similarly for pj(t):

pj(t) = (p, ej) = a

N∑

k=1

(uk, en)p̃k(t)(uk, ej)

= (a
∑

k∈I(ω)

(uk,en)(uk, ej))
t sin(ωt)

2
+ O(1) = Bj

t sin(ωt)
2

+ O(1), t → +∞.

The theorem follows.

3.2 Proof of Theorem 2

In [1–3] the following subspaces of

L = {ψ = (q, p), q, p ∈ IRN}
were defined (with H = U + T ):

L− = {ψ ∈ L : H(eAtψ) −→ 0, t −→ +∞},
L0 = {ψ ∈ L : d

dtH(eAtψ) = 0 ∀t},

and was proved that:

1). L−, L0 are linear orthogonal subspaces;
2). L = L− ⊕ L0;
3). both L−, L0 are invariant with respect to dynamics;
4). L0 = {0} iff A does not have pure imaginary eigenvalues;
5). A does not have pure imaginary eigenvalues iff the vectors
en, V en, ..., V N−1en are linear independent.

Note that resonance is possible for pure imaginary eignvalues as in the inte-
grals, introduced below, secular terms like t cos(ωt), t sin(ωt) can appear.

The first statement of the theorem follows from Theorem 4.1. (in [4],p.88),
where the solution of the system:

ψ̇ = Bψ + F (t), (14)

where B is some linear operator and F (t) is vector function, is considered.
We cite this theorem almost literally.

Theorem 4. (see [4], Theorem 4.1, p.88)
In order for there to correspond to any bounded-on-the-real-line continuous

vector function F (t) one and only one bounded-on-the-real-line solution of (14)
it is necessary and sufficient that the spectrum σ(B) not intersect the imaginary
axis.

The solution is given by formula:

x(t) =
∫

IR

GB(t − s)F (s)ds,

where GB(t) is principal Green function for equation.
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In our case F (t) = f(t)gn, t ≥ 0, and

GB(t) = eBtP−,

where P− is the spectral projection corresponding to the spectrum of B in the
left (negative) halfplane.

3.3 Proof of Theorem 3

Using formula (12) we want to prove boundedness in t ∈ [0,∞) of the function

I(t) =
∫ t

0

f(s) sin(νk(t − s))ds.

We have:
∫ t

0
sin(νk(t − s))f(s)ds =

∫
R

a(ω)dω
∫ t

0
sin(νk(t − s)) cos(ωs)ds

= νk

∫
R

a(ω) cosωt−cos νkt
ν2
k−ω2 dω

= 2
∫

R
a(ω) sin((ω+νk)t) sin((ω−νk)t)

(ω+νk)(ω−νk)
dω.

We see that unboundedness in time can only arise when we integrate in a small
neighborhood of νk. Denoting ω = νk + x we get as ε → 0:

2
∫ ε

−ε

a(νk + x)
sin((x + 2νk)t) sin(xt)

(x + 2νk)x
dx ∼ a(νk) sin(2νkt)

νk

∫ ε

−ε

sin xt

x
dx.

At the same time we have that the integral:
∫ ε

−ε

sin xt

x
dx =

∫ tε

−tε

sinx

x
dx

is bounded uniformly in t. Indeed, on arbitrary period (N,N+2π) put x = N+y,
then

1
x

=
1
N

1
1 + y

N

=
1
N

− y

N2
+ ...

The first term gives 0 in the integrals for such periods, and the rest will give a
convergent sum.

4 Conclusion

Note first that the solution boundedness problem with the external force f(t)
was in fact reduced to the problem of boundedness of the integral:

I(t) =
∫ t

0

f(s) sin ωsds. (15)

Now we want to formulate simple and more difficult problems concerning
general situation with resonances.

Let us summarize now how to get rid of resonances without self-isolation
from external influence. If the external force is periodic, there are following
possibilities:
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1). one should choose his own oscillation frequency sufficiently far from the
external frequency;
2). use external “smooth” almost-periodic force like in Theorem 3;
3). if all previous is impossible one should be simultaneously be under influ-
ence of some external dissipative force;
4). what will be if the external force is neither periodic nor almost-periodic.
In particular, what will be if f(s) is a random stationary process.

If it is unbounded then the solution also will be unbounded. If f(s) is bounded,
consider the following cases.
5). If f(s) is stationary with fast correlation function decay, then the solution
will be unbounded. In fact, let τ = 2π

ω be the period in (15). Consider the
sequence of random variables

ξk =
∫ (k+1)τ

kτ

f(s) sin ωsds

and their sums
SN = ξ1 + ... + ξN .

If ξk are independent or have sufficient decay of correlations, then just by
central limit theorem there cannot be boundedness. Interesting question is
to formulate general conditions when, keeping the randomness and wihout
dissipation forces, one can have bounded solutions.
6). Complete different situation will be for infinite collection of particles.
Namely, in many cases there will not be resonance (unbounded graph) due
to phenomenon that energy escaped to infinity.

We consider countable number of point particles (with unit masses) on the
real axis xk ∈ IR, k ∈ ZZ. Intuitively, we would like that each particle xk(t)
were close to ak ∈ IR for some a > 0. That is why we introduce the formal
Hamiltonian:

H(q, p) =
1
2

∑

k∈ZZ

p2k +
1
2

∑

k,j∈ZZ

b(k − j)qkqj ,

where qk = xk − ak, and pk(t) = q̇k(t) are momenta of the particles k. The real
function v(k) is assumed to satisfy the following conditions:

1. symmetry: b(k) = b(−k), b(0) > 0;
2. boundedness of the support, that is there exists r ∈ IN such that b(k) = 0 for

any k, |k| > r;
3. for any λ ∈ IR:

ω2(λ) =
∑

k∈ZZ

b(k)eikλ > 0.

It follows that the linear operator V in l2(ZZ) with elements Vjk = b(k − j)
(in the standard orthonormal basis en ∈ l2(ZZ), en(j) = δj,n) is a positive
definite self-adjoint operator.
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The trajectories of the system are defined by the following system of equa-
tions:

q̈j = −
∑

k

b(k − j)qk + f(t)δj,n, j ∈ ZZ,

where f(t) is some external force which acts only on the particle n, δj,n is the
Kronecker symbol. We will always assume zero initial conditions:

qk(0) = 0, pk(0) = 0, k ∈ ZZ.

We can rewrite it in the Hamiltonian form:

q̇j = pj , ṗj = −
∑

k

b(k − j)qk + f(t)δj,n. (16)

In l2(ZZ × ZZ) define the (state) vector ψ(t) =
(

q(t)
p(t)

)
and the linear operator

A0 which was defined in (2). Then the system can be rewritten as follows:

ψ̇ = A0ψ + f(t)gn, (17)

where gn is defined in (8).
Here we assume that f(t) is a real-valued stationary random process (in the

wider sense) with zero mean and covariance function B(s), so that:

Ef(t) = 0, Ef(t)f(s) = B(t − s).

Also assume that there exist random measure Z(dx) and (spectral) measure
μ(dx) such that for any Borel set D ⊂ IR:

EZ(D) = 0, E|Z|2(D) = μ(D), EZ(D1)Z∗(D2) = 0

for nonintersecting D1 and D2, and moreover:

B(s) =
∫

IR

eisxμ(dx), f(s) =
∫

IR

eisxZ(dx). (18)

We assume also that the support of the random measure is “separated” from
the spectrum of A0. Then the following assertion holds.

Theorem 5. Solution ψ(t) of the system (16) can be presented as the sum of
two centered random processes:

ψ(t) = ζ(t) + η(t),

η(t) = −eA0t
∫
IR

eitxRA0(ix)Z(dx)g,

ζ(t) = eA0t
∫
IR

RA0(ix)Z(dx)g = −eA0tη(0),

where RA(z) = (A0 − zI)−1 is the resolvent of the operator A0 (I is the unit
operator in l2(ZZ × ZZ). Moreover, components of η(t) are stationary (in wider
sense) random processes, and each component of ζ(t) → 0 a.s. as t → +∞.

Proof of this theorem and the development of this theme will be given else-
where.
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Abstract. General Markov chains in an arbitrary phase space are con-
sidered in the framework of the operator treatment. Markov operators
continue from the space of countably additive measures to the space
of finitely additive measures. Cycles of measures generated by the corre-
sponding operator are constructed, and algebraic operations on them are
introduced. One of the main results obtained is that any cycle of finitely
additive measures can be uniquely decomposed into the coordinate-wise
sum of a cycle of countably additive measures and a cycle of purely
finitely additive measures. A theorem is proved (under certain condi-
tions) that if a finitely additive cycle of a Markov chain is unique, then
it is countably additive.

Keywords: General Markov chains · Markov operators · Finitely
additive measures · Cycles of measures · Decomposition of cycles

1 Introduction

The considered general Markov chains (MC) are random processes with an arbi-
trary phase space, with discrete time, and homogeneous in time. MCs are given
by the usual transition probability, countably additive in the second argument,
which generates two Markov operators T and A in the space of measurable func-
tions and in the space of countably additive measures, respectively. Thus, we use
the operator treatment in the theory of general MCs, proposed in 1937 by N.
Kryloff and N. Bogolyuboff, and developed in detail in the article [1]. Later, in
a number of works by different authors, an extension of the Markov operator A
to the space of finitely additive measures was carried out, which turned A into
an operator topologically conjugate to the operator T , and opened up new pos-
sibilities in the development of the operator treatment. Within the framework of
such a scheme, we carry out here the study of cycles of measures of general MC.
In this case, we use a number of information on the general theory of finitely
additive measures from the sources [2] and [3].

In the ergodic theory of MC, one usually distinguishes in the space of its states
ergodic classes and their cyclic subclasses, if such exist (see, for example, [4]).
However, in the general phase space, the study of such sets has its natural
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limitations. Therefore, in some cases it is more convenient to use not cycles of
sets, but cycles of measures generated by the Markov operator A.

In this paper we propose a corresponding construction for cyclic finitely
additive measures of MC on an arbitrary measurable space. We study cycles
of countably additive and purely finitely additive measures, and their relation-
ship. A number of theorems on the properties of cycles are proved. In particular,
an analogue of the Alexandroff-Yosida-Hewitt expansion for cycles of finitely
additive measures is constructed.

In the proof of the theorems presented here, we also use some results of
papers [5] and [6].

2 Finitely Additive Measures and Markov Operators

Let X be an arbitrary infinite set and Σ the sigma-algebra of its subsets con-
taining all one-point subsets from X. Let B(X,Σ) denote the Banach space of
bounded Σ-measurable functions f : X → R with sup-norm.

We also consider Banach spaces of bounded measures μ : Σ → R, with the
norm equal to the total variation of the measure μ (but you can also use the
equivalent sup-norm):

ba(X,Σ) is the space of finitely additive measures,
ca(X,Σ) is the space of countably additive measures.

If μ ≥ 0, then ||μ|| = μ(X).

Definition 1 ([2]). A finitely additive nonnegative measure μ is called purely
finitely additive (pure charge, pure mean) if any countably additive measure λ
satisfying the condition 0 ≤ λ ≤ μ is identically zero. An alternating measure μ
is called purely finitely additive if both components of its Jordan decomposition
are purely finitely additive.

Any finitely additive measure μ can be uniquely expanded into the sum
μ = μ1 + μ2, where μ1 is countably additive and μ2 is a purely finitely additive
measure (the Alexandroff-Yosida-Hewitt decomposition, see [2] and [3]).

Purely finitely additive measures also form a Banach space pfa(X,Σ) with
the same norm, ba(X,Σ) = ca(X,Σ) ⊕ pfa(X,Σ).

Examples 1. Here are two examples of purely finitely additive measures.
Let X = [0, 1] ⊂ R (R = (−∞; +∞)) and Σ = B (Borel sigma algebra).

There is (proved) a finitely additive measure μ : B → R, μ ∈ Sba, such that for
any ε > 0 the following holds:

μ((0, ε)) = 1, μ([ε, 1]) = 0, μ({0}) = 0.

We can say that the measure μ fixes the unit mass arbitrarily close to zero (on
the right), but not at zero. According to [2], such a measure is purely finitely
additive, but it is not the only one. It is known that the cardinality of a family
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of such measures located “near zero (on the right)” is not less than 22
ℵ0 = 2c

(hypercontinuum). And the same family of purely finitely additive measures
exists “near each point x0 ∈ [0, 1] (to the right, or to the left, or both there, and
there)”.

Examples 2. Let X = R = (−∞; +∞) and Σ = B. There is (proved) a finitely
additive measure μ : B → R, μ ∈ Sba, such that for any x ∈ R the following
holds:

μ((x,∞)) = 1, μ((−∞, x)) = 0, μ({x}) = 0.

We can say that the measure μ fixes the unit mass arbitrarily far, “near infinity”.
This measure is also purely finitely additive. And there are also a lot of such
measures.

We denote the sets of measures:
Sba = {μ ∈ ba(X,Σ) : μ ≥ 0, ||μ|| = 1}, Sca = {μ ∈ ca(X,Σ) : μ ≥ 0, ||μ|| =

1},
Spfa = {μ ∈ pfa(X,Σ) : μ ≥ 0, ||μ|| = 1}.
All measures from these sets will be called probabilistic.
Markov chains (MC) on a measurable space (X,Σ) are given by their tran-

sition function (probability) p(x,E), x ∈ X,E ∈ Σ, under the usual conditions:

1. 0 ≤ p(x,E) ≤ 1, p(x,X) = 1,∀x ∈ X,∀E ∈ Σ;
2. p(·, E) ∈ B(X,Σ),∀E ∈ Σ;
3. p(x, ·) ∈ ca(X,Σ),∀x ∈ X.

We emphasize that our transition function is a countably additive measure
in the second argument, i.e. we consider classical MCs.

The transition function generates two Markov linear bounded positive inte-
gral operators:

T : B(X,Σ) → B(X,Σ), (Tf)(x) = Tf(x) =
∫

X

f(y)p(x, dy),

∀f ∈ B(X,Σ),∀x ∈ X;

A : ca(X,Σ) → ca(X,Σ), (Aμ)(E) = Aμ(E) =
∫

X

p(x,E)μ(dx),

∀μ ∈ ca(X,Σ),∀E ∈ Σ.

Let the initial measure be μ0 ∈ Sca. Then the iterative sequence of countably
additive probability measures μn = Aμn−1 ∈ Sca, n ∈ N , is usually identified
with the Markov chain.

Topologically conjugate to the space B(X,Σ) is the (isomorphic) space of
finitely additive measures: B∗(X,Σ) = ba(X,Σ) (see, for example, [3]). More-
over, the operator T ∗ : ba(X,Σ) → ba(X,Σ) is topologically conjugate to the
operator T :

T ∗μ(E) =
∫

X

p(x,E)μ(dx),∀μ ∈ ba(X,Σ),∀E ∈ Σ.
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The operator T ∗ is the only bounded continuation of the operator A to the
entire space ba(X,Σ) while preserving its analytic form. The operator T ∗ has
its own invariant subspace ca(X,Σ), i.e. T ∗[ca(X,Σ)] ⊂ ca(X,Σ), on which it
matches the original operator A. The construction of the Markov operators T
and T ∗ is now functionally closed. We shall continue to denote the operator T ∗

as A.
In such a setting, it is natural to admit to consideration also the Markov

sequences of probabilistic finitely additive measures μ0 ∈ Sba, μn = Aμn−1 ∈
Sba, n ∈ N , keeping the countable additivity of the transition function p(x, ·)
with respect to the second argument.

3 Cycles of Measures and Their Properties

Definition 2. If Aμ = μ holds for some positive finitely additive measure μ,
then we call such a measure invariant for the operator A (and for the Markov
chain).

We denote the sets of all probability invariant measures for the operator A:

Δba = {μ ∈ Sba : μ = Aμ},
Δca = {μ ∈ Sca : μ = Aμ}, Δpfa = {μ ∈ Spfa : μ = Aμ}.

A classical countably additive Markov chain may or may not have invariant
countably additive probability measures, i.e. possibly Δca = ∅ (for example, for
a symmetric walk on Z).

In [7, Theorem 2.2] Šidak proved that any countably additive MC on an
arbitrary measurable space (X,Σ) extended to the space of finitely additive
measures has at least one invariant finitely additive measure, i.e. always Δba �= ∅.
Šidak in [7, Theorem 2.5] also established in the general case that if a finitely
additive measure μ is invariant Aμ = μ, and μ = μ1 + μ2 is its decomposition
into are countably additive and purely finitely additive components, then each
of them is also invariant: Aμ1 = μ1, Aμ2 = μ2. Therefore, it suffices to study
invariant measures from Δca and from Δpfa, separately.

Definition 3. A finite numbered set of pairwise different positive finitely addi-
tive measures K = {μ1, μ2, ..., μm} will be called a cycle measures of an operator
A of a given Markov chain (or a cycle of measures MC) if

Aμ1 = μ2, Aμ2 = μ3, ..., Aμm−1 = μm, Aμm = μ1.

Such cycles will be called finitely additive. The number m ≥ 1 will be called
the cycle period, and the measures μ1, μ2, ..., μm – cyclic measures. Unnormalized
cycles will also be used below.

If K = {μ1, μ2, ..., μm} is a MC cycle, then, obviously,

Amμ1 = μ1, A
mμ2 = μ2, ..., A

mμm = μm,

i.e. all cyclic measures μi are invariant for the operator Am and Am(K) = K.
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The following well-known statement is obvious. Let K = {μ1, μ2, ..., μm} be
a cycle of finitely additive measures. Then the measure

μ =
1
m

m∑

k=1

μk =
1
m

m∑

k=1

Ak−1μ1

is invariant for the operator A, i.e. Aμ = μ (here A0 is the identity operator).

Definition 4. The measure constructed above will be called the mean cycle mea-
sure K.

Definition 5. We call each method of choosing a measure μ1 in K an operation
renumbering a cycle K.

Definition 6. We say that two cycles of the same period K1 and K2are identical
if there is a renumbering of cycles K1 or K2 such that all their cyclic measures
with the same numbers match. In this case, we will write K1 = K2. Instead of
the words “identical cycles”, we will still say the words “equal cycles”.

Obviously, for the cycles to be equal, it is sufficient that their first measures
coincide.

Hereinafter, it is convenient to call cyclic measures μi, i = 1, ...,m, cycle
coordinates K.

Definition 7. By the operation of multiplying a cycle of measures K =
{μ1, μ2, ..., μm} by a number γ > 0 we mean the construction of a cycle of
measures γK = {γμ1, γμ2, ..., γμm}.

Since the operator A is isometric in the cone of positive measures, all cyclic
measures of one cycle K = {μ1, μ2, ..., μm} have the same norm ‖μ1‖ = ‖μ2‖ =,
...,= ‖μm‖ = ‖μ‖, which is naturally called the norm ‖K‖ of the cycle K itself.

To give the cycle a probabilistic meaning, it is sufficient to multiply it coor-
dinatewise by the normalizing factor γ = 1

‖μ‖ : K̂ = γ · K = {γμ1, γμ2, ..., γμm}.

We obtain a probability cycle with the norm ‖K̂‖ = 1, K̂ ⊂ Sba.

Definition 8. Let there be given two cycles of measures of the same MC K1 =
{μ1

1, μ
1
2, ..., μ

1
m} and K2 = {μ2

1, μ
2
2, ..., μ

2
m} of the same period m. We call the

sum of cycles K1 and K2 the following set of measures K = K1 + K2 = {μ1
1 +

μ2
1, ..., μ

1
m + μ2

m} derived from K1 and K2 coordinatewise addition.

The measure spaces are semi-ordered by the natural order relation. In them
one can introduce the notion of infimum inf{μ1, μ2} = μ1 ∧ μ2 and supremum
sup{μ1, μ2} = μ1 ∨ μ2, which are also contained in these spaces. Thus, the
measure spaces ba(X,Σ), ca(X,Σ) and pfa(X,Σ) are lattices (K-lineals).

The exact formulas for constructing the ordinal infimum and supremum of
two finitely additive measures are given, for example, in [2].

Definition 9. Two positive measures μ1, μ2 ∈ ba(X,Σ) are called disjoint if
μ1 ∧ μ2 = 0.
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Definition 10. Two positive measures μ1, μ2 ∈ ba(X,Σ) are called singular
if there are two sets D1,D2 ⊂ X, D1,D2 ∈ Σ, such that μ1(D1) = μ1(X),
μ2(D2) = μ2(X) and D1 ∩ D2 = ∅.

Countably additive measures μ1, μ2 are disjunct if and only if they are sin-
gular (see [2]).

If the measures μ1 and μ2 are singular, then they are also disjoint (see [2]).

Definition 11. A cycle K = {μ1, μ2, ..., μm} is called a cycle of disjoint mea-
sures if all its cyclic measures are pairwise disjoint, i.e. μi ∧ μj = 0 for all
i �= j.

Definition 12. Two cycles of measures K1,K2 are called disjoint, if each mea-
sure from the cycle K1 is disjoint with each measure from the cycle K2.

If the cycle of disjoint measures K = {μ1, μ2, ..., μm} is countably additive,
then all its cyclic measures are pairwise singular and have pairwise disjoint sup-
ports (sets of full measure) D1,D2, ...,Dm ∈ Σ, that is, μi(Di), i = 1, ...,m, and
Di ∩ Dj = ∅ for i �= j.

If we do not require pairwise disjointness (singularity) of the measures of a
countably additive cycle, then new, somewhat unexpected objects may appear
in the state space of a MC. Let’s give a suitable simple example.

Examples 3. Let the MC be finite, having exactly three states X = {x1, x2, x3}
with transition probabilities:

p(x1, x1) = 1, p(x2, x3) = 1, p(x3, x2) = 1.

This means that the MC has in the state space X one stationary state {x1} (we
can say that this is a cycle of period m = 1) and one cycle {x2, x3} of the period
m = 2. Within the framework of the operator approach, it is more convenient
for us to translate what has been said into the language of measures as follows.

Let x ∈ X and E ⊂ X(E ∈ Σ = 2X). Then p(x1, E) = δx1(E), p(x2, E) =
δx3(E), p(x3, E) = δx2(E), where δxi

(·), i = 1, 2, 3, are the Dirac measures at the
points x1, x2, x3. For an operator A such a MC we have: Aδx1 = δx1 , Aδx2 = δx3 ,
Aδx3 = δx2 , i.e. the family of measures K = {δx2 , δx3} is a cycle according to
Definition 3, and the cyclic measures δx2 and δx3 are singular.

Consider one more family of measures K̃ = { 1
2η1,

1
2η2}, where η1 = δx1 +δx2 ,

η2 = δx1 + δx3 . Then Aη1 = A(δx1 + δx2) = Aδx1 + Aδx2 = δx1 + δx3 = η2
and similarly Aη2 = η1. Since the measures η1 and η2 are different, then by
Definition 3, the family of measures K̃ is also a MC cycle different from K.
Moreover, the measures η1 and η2 are not disjoint: η1 ∧ η2 = δx1 �= 0. These
measures are not singular: their supports {x1, x2} and {x1, x3} intersect, i.e.
{x1, x2} ∩ {x1, x3} = {x1} �= ∅.

Remark 1. Such cycles with intersecting cyclic sets of states, as in Example 3,
are usually not considered in the classical theory of MC.
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However, we believe that the study of intersecting cycles of sets is very useful
in general theory. Research of such cycles is more productive for us in terms of
measure cycles. In this case, instead of intersecting sets of measures, one should
consider cycles of measures that are not disjoint. Our Theorems 1, 2, 3, and 5
(proved in Sect. 4) do not require pairwise disjointness (or singularity) of cyclic
measures in measure cycles.

4 Main Results

Theorem 1. Any finitely additive cycle of measures for an arbitrary MC is a
linearly independent set in the linear space ba(X,Σ).

Proof. We prove by induction.
Consider first two arbitrary different measures μ1, μ2 ∈ Sba (not necessarily

cyclic), for which ‖μ1‖ = ‖μ2‖ = 1.
They are obviously linearly independent.
In particular the cycle K = {μ1, μ2} consisting of two different measures

from Sba, is linearly independent.
Now let the cycle consist of three pairwise different measures: K =

{μ1, μ2, μ3} ⊂ Sba. As we found out above, any two measures of them are linearly
independent.

Suppose that one of these three measures is linearly dependent on the other
two, let it be the measure μ3 (the number is not important here). Then there
exist numbers α1, α2, 0 ≤ α1, α2 ≤ 1, α1 + α2 = 1, such that the measure μ3 is
uniquely representable as a linear combination μ3 = α1μ1 + α2μ2.

Let α1 = 0. Then α2 = 1 and μ3 = μ2 which contradicts the pairwise
difference of the three measures. Similarly for α1 = 1. Therefore, we can assume
that 0 < α1, α2 < 1.

By cycle conditions

μ1 = Aμ3 = A(α1μ1 + α2μ2) = α1Aμ1 + α2Aμ2 = α1μ2 + α2μ3.

Since α2 �= 0 from this we get μ3 = 1
α2

μ1 − α1
α2

μ2. Since the decomposition of
μ3 is unique, we have α1 = 1

α2
, α2 = −α1

α2
< 0. Since α1 and α2 are positive,

we obtain a contradiction in the second equality. Therefore, all three measures
μ1, μ2 and μ3 are linearly independent.

We turn to the general case.
Let be a cycle of measures K = {μ1, μ2, ..., μm} with an arbitrary period

m ≥ 3. We assume that the sets of any m − 1 pieces of measures μi from
K are linearly independent. Assume that the measure μm (the number is not
important) depends linearly on the measures μ1, μ2, ..., μm−1. Then the measure
μm is uniquely represented as

μm =
m−1∑

i=1

αiμi,
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where 0 ≤ αi ≤ 1 for i = 1, 2, ...,m,
∑m−1

i=1 αi = 1.
Assume that for some t ∈ {1, 2, ...,m − 1}, αt = 0 is executed. Then the

measure μm is linearly expressed in terms of m − 2 pieces of measures μi, all of
them together with μm will be m−1 piece. This contradicts the assumption that
the sets of any m − 1 pieces of measures μi from K are linearly independent.
Therefore, all αi > 0, i = 1, 2, ...,m − 1.

Now let t ∈ {1, 2, ...,m − 1} be αt = 1. Then all other αi = 0 (i �= t) and
μm = αt · μt = μt, which contradicts the condition of pairwise difference of all
measures from the cycle.

So, for all coefficients in the linear decomposition of the measure μm we have
0 < αi < 1, i = 1, 2, ...,m − 1.

We apply the operator A to this decomposition of the measure μm and obtain:

μ1 = Aμm =
m−1∑

i=1

αiAμi =
m−1∑

i=1

αiμi+1 = α1μ2 + α2μ3 + ... + αm−1μm.

Therefore, we have (αm−1 �= 0):

μm =
1

αm−1
μ1 − 1

αm−1

m−2∑

i=1

αiμi+1.

Since the representation for the measure μm is unique, here and above we
obtain the following relations for the coefficients of the measure μ2:

0 < α2 = − α1

αm−1
< 0.

It follows from the contradiction obtained that the measure μm is linearly
independent of the other measures of the cycle. Consequently, any other measure
μi ∈ K is linearly independent of the other measures of the cycle K. The theorem
is proved.

Theorem 2. Let K = {μ1, μ2, ..., μm} be a finitely additive cycle of measures
for an arbitrary MC. If at least one cyclic measure μi is countably additive,
then all other cyclic measures in K and their mean measures are also countably
additive. Such cycles will be called countably additive.

Proof. Since μi+1 = Aμi, i = 1, 2, ...,m − 1 and μ1 = Aμm then the statement
of the theorem follows from the fact that the operator A has the space ca(X,Σ)
as its invariant subspace in ba(X,Σ), that is, transforms countably additive
measures into countably additive ones. The countable additivity of the mean
measure follows from the fact that ca(X,Σ) is a linear space, i.e. the sum of
countably additive measures is also countably additive and a countably additive
measure multiplied by a number is also countably additive.

The theorem is proved.
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Proposition 1. There exist classical Markov chains with purely finitely additive
cycles of measures with period m ≥ 2.

Examples 4. An example of a classical MC is constructed, for which the exis-
tence of a purely finitely additive cycle of measures is proved.

For simplicity, we take a deterministic MC generated by a point transforma-
tion.

Let X = (0, 1) ∪ (1, 2), Σ = BX (Borel σ-algebra on X). Denote D1 = (0, 1),
D2 = (1, 2). Then D1 ∪ D2 = X, D1 ∩ D2 = ∅.

Let’s define the transition function of the Markov chain according to the
rules:

p(x, {1 + x2}) = 1, if x ∈ (0, 1);
p(y, {(y − 1)2}) = 1, if y ∈ (1, 2).
Then p(x,D2) = 1, if x ∈ D1; p(x,D1) = 1, if x ∈ D2.
Therefore, the sets of states D1 and D2 are cyclic and form a singular cycle

S = {D1,D2} with period m = 2.
Note that for any trajectory of the Markov chain beginning at the point

x0 ∈ (0, 1), its subsequence with even numbers tends to one from the right:

1 + x2
0, 1 + x16

0 , 1 + x64
0 , ... → 1,

and the subsequence with odd numbers tends to zero from the right:

x0, x4
0, x

32
0 , ... → 0

(and vice versa, for x0 ∈ (1, 2)).
By Šidak’s theorem (see [7, Theorem 2.2]) for a given MC there exists an

invariant finitely additive measure μ = Aμ ∈ Sba. It can be shown that for her
μ(D1) = μ(D2) = 1

2 > 0.
We construct two new measures μ1 and μ2 as the restriction of the measure

μ to the sets D1 and D2: μ1(E) = μ(E ∩ D1), μ2(E) = μ(E ∩ D2) for all
E ⊂ X, E ∈ Σ, and μ = μ1 +μ2. The measures μ1 and μ2 are singular and have
supports D1 and D2. It can be proved that Aμ1 = μ2 and Aμ2 = μ1. This means
that the measures μ1 and μ2 form a disjoint cycle of finitely additive measures
K = {μ1, μ2}.

Let 0 < ε < 1 and Dε
1 = (0, ε), Dε

2 = (1, 1 + ε). We can get that for any ε,
μ1(Dε

1) = 1/2, μ2(Dε
2) = 1/2. This means that the measures μ1 and μ2 and their

mean measure are purely finitely additive. The constructed MC has no invariant
countably additive measures.

It can be shown that the singular sets Dε
1 and Dε

2 for any ε form a cycle of
states Sε = {Dε

1,D
ε
2} and are also supports of measures μ1 and μ2.

It can be proved that the family of all pairwise disjoint invariant finitely
additive measures of a given MC has cardinality at least a continuum, i.e. 2ℵ0 .

Let us modify the considered MC - add the points 0 and 1 to X = (0, 1) ∪
(1, 2) and get X = [0, 2). Let us determine the possible transitions from these
points using the same formulas as the original MC. We get:

p(0, {1}) = 1, p(1, {0}) = 1.
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This means that the family of state sets S0 = {{0}, {1}} for the new MC is
a new singular cycle of dimension m = 2.

It corresponds to a new singular cycle of countably additive measures
K0 = {δ0, δ1}, where δ0 and δ1 are Dirac measures at the points 0 and 1, respec-
tively. Their mean measure μ = 1

2δ0 + 1
2δ1 is countably additive and is the only

invariant measure of the modified Markov chain in the class of countably additive
measures.

Note that the whole infinite family of disjoint purely finitely additive cycles
of measures K considered above on X = (0, 1) ∪ (1, 2) remains the same for the
new MC.

Theorem 3. Let K = {μ1, μ2, ..., μm}be a finitely additive cycle of measures for
an arbitrary MC. If at least one cyclic measure μi is purely finitely additive, then
all other cyclic measures in K and their mean measure are also purely finitely
additive. Such cycles will be called purely finitely additive.

Proof. Let the cyclic measure μ1 be purely finitely additive (the number is not
important here) and μ2 = Aμ1.

Suppose that the measure μ2 is not purely finitely additive. We decompose
the measure μ2 into two components μ2 = λca + λpfa where λca is a countably
additive measure, and λpfa is purely finitely additive. By assumption μ2 �= λpfa

whence λca �= 0, λca ≥ 0, λca(X) = γ > 0.
We apply the operator A to the measure μ2

Aμ2 = Aλca + Aλpfa = μ3.

The operator A takes countably additive measures to the same ones and is
isometric in the cone of positive measures. It follows from this that the measure
Aλca is countably additive, positive, and Aλca(X) = γ > 0. This means that
the measure μ3 also has a positive countably additive component Aλca.

Continuing this procedure further at the last step we get the decomposition

μ1 = Aμm = Am−2λca + Am−2λpfa,

where the measure Am−2λca is countably additive, positive, and Am−2λca(X) =
γ > 0.

Thus, the initial measure μ1 has a nonzero countably additive component
and, thus, is not purely finitely additive, which contradicts the conditions of the
theorem. Therefore, the measure μ2 is also purely finitely additive.

Repeating this procedure sequentially for all the other cyclic measures μ3,
μ4, ..., μm we get that they are all purely finitely additive.

It remains to prove that the mean cyclic measure is also purely finitely addi-
tive. But this follows from the fact that the space of purely finitely additive
measures pfa(X,Σ) is also linear, which is proved nontrivially in [2, Theorem
1.17]. The theorem is proved.

Now let us present an extended cyclic analogue of the Alexandroff-Yosida-
Hewitt decomposition given in Sect. 2.
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Theorem 4. Let K = {μ1, μ2, ..., μm} be a finitely additive cycle of measures of
pairwise disjoint measures with period m of an arbitrary MC and μi = μca

i +μpfa
i

a decomposition of cyclic measures into a countably additive component μca
i and a

purely finitely additive component μpfa
i , i = 1, 2, ...,m. Then these components

are also cyclic, form the cycles Kca and Kpfa, the cycle K is the coordinate
sum of these cycles K = Kca + Kpfa, and the mean measure of the cycle K
is uniquely representable as the sum of its countably additive and purely finitely
additive components, which coincide with the mean measures of the cycles Kca

and Kpfa, respectively. Moreover, the cycles Kca and Kpfa consist of pairwise
disjoint measures and are disjoint with each other, i.e. every measure from Kca

is disjoint with every measure from Kpfa.

Proof. We denote tuples of countably additive and purely finitely additive com-
ponents of cyclic measures of a cycle K by the symbols Kca = {μca

1 , μca
2 , ..., μca

m}
and Kpfa = {μpfa

1 , μpfa
2 , ..., μpfa

m }. The coordinate-wise sum of these two tuples
gives the original cycle K = Kca+Kpfa. Now we need to show that the measures
μca

i and μpfa
i are cyclic, that is, the tuples Kca and Kpfa are cycles.

Let us prove the theorem step by step.
Assume that some of the measures μca

i is zero. Then μi = μpfa
i , and according

to Theorem 3 all other measures μj = μpfa
j , i.e., the cycle K = Kpfa, and the

theorem is proved. Similarly, for μpfa
i = 0, the cycle K is countably additive

by Theorem 2, K = Kca, and the present theorem is proved. The main case
remains when all μca

i �= 0 and all μpfa
i �= 0, which is what we assume below.

Take two arbitrary measures μca
i and μca

j (i �= j) from Kca.
Then

0 ≤ μca
i ∧ μca

j ≤ (μca
i + μpfa

i ) ∧ (μca
j + μpfa

j ) = μi ∧ μj .

By the conditions of the theorem, all measures from K are pairwise disjoint.
Therefore, μi ∧μj = 0 and μca

i ∧μca
j = 0, i.e., all measures from Kca are pairwise

disjoint. And since, as we now assume, all measures from the tuple Kca are
nonzero, then they are all pairwise distinct.

Similarly, we obtain that all measures from the tuple Kpfa are also pairwise
disjoint and distinct.

We emphasize that the tuples of measures Kca and Kpfa have dimensions
m, which coincides with the period m of the original cycle K.

By the conditions of the theorem, the cycle K has an (arbitrary) period m ∈
N . Consequently, each cyclic measure μi of the cycle K is an invariant measure
of the operator Am, that is, μi = Amμi, i = 1, 2, ...,m. Take the first cyclic
measure with its Alexandroff-Yosida-Hewitt decomposition [2] μ1 = μca

1 + μpfa
1 .

By Šidak’s Theorem ([7, Theorem 2.5]) both components of the measure μ1 are
also invariant measures for the operator Am, that is, μca

1 = Amμca
1 , μpfa

1 =
Amμpfa

1 .
Each of these components generates its own cycle

K̂ca = {μca
1 , Aμca

1 , ..., Am−1μca
1 },
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K̂pfa = {μpfa
1 , Aμpfa

1 , ..., Am−1μpfa
1 }.

Obviously, the coordinate-wise sum of these two cycles gives the whole cycle
K = K̂ca + K̂pfa.

Since the measure μca
1 is countably additive, then, according to Theorem2, all

other cyclic measures of the cycle K̂ca are countably additive. Since the measure
μpfa
1 is purely finitely additive, then, according to Theorem3, all other cyclic

measures of the cycle K̂pfa are purely finitely additive.
By the uniqueness of the decomposition of any measure into countably addi-

tive and purely finitely additive components (see [2]), we obtain the following
equalities (here the symbol A0 means the identical operator):

μca
1 = A0μca

1 , μca
2 = Aμca

1 , ..., μca
m = Am−1μca

1 ,

where on the left are the measures of the tuple Kca, and on the right are the
cyclic measures of the cycle K̂ca.

Similar equalities are also true for purely finitely additive components.
From this we get that Kca = K̂ca, Kpfa = K̂pfa, i.e. tuples Kca and Kpfa

are cycles, and K = Kca + Kpfa. Note that this decomposition of the cycle K
is unique. The main statement of the theorem is proved.

Now the corresponding equalities for the mean measures of cycles are obvious.
In [2] (Theorem 1.16) it was proved that any countably additive measure is

disjoint with any purely finitely additive measure. Therefore, the cycles of the
measures Kca and Kpfa are disjoint. Above we showed that all measures from
Kca and Kpfa are also pairwise disjoint. The theorem is proved.

Corollary 1. A finitely additive cycle of measures K is countably additive if
and only if its mean measure is countably additive.

Corollary 2. A finitely additive cycle of measures K is purely finitely additive
if and only if its mean measure is purely finitely additive.

Under the conditions of Theorem4 just proved, the requirement of pairwise
disjointness of cyclic measures in the cycle K is essential. If we remove it, then
the theorem becomes incorrect.

Theorem 5. Let an arbitrary MC have one finitely additive cycle of measures
K of any period and its mean measure μ is the only invariant finitely additive
measure for the operator A. Then the cycle K and its mean measure μ are
countably additive.

Proof. Consider a cycle of finitely additive measures K = {μ1, μ2, ..., μm} and
its mean measure μ = 1

m

∑m
i=1 μi. In Sect. 3 shows that the mean measure μ of

the cycle K is invariant for the operator A, i.e. μ ∈ Δba. By the condition of the
theorem, this measure is unique in Δba, i.e. Δba = {μ}.

In ([5], Theorem 8.3), it is proved that if a MC has in Sba a unique invariant
measure μ, i.e. Δba = {μ}, then this measure is countably additive. Therefore,
by Theorem 2 and Corollary 1, the cycle K is countably additive.

The theorem is proved.
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Therefore, it follows (under the above conditions) that there are no “single”
purely finitely additive cycles.

Acknowledgments. This work was supported by the Russian Foundation for Basic
Research (project No. 20-01-00575-a).

References

1. Yosida, K., Kakutani, S.: Operator-theoretical treatment of Markoff’s processes and
mean ergodic theorem. Ann. Math. (2) 42(1), 188–228 (1941)

2. Yosida, K., Hewitt, E.: Finitely additive measures. Trans. Am. Math. Soc. 72(1),
46–66 (1952)

3. Dunford, N., Schwartz, J.: Linear Operatiors, Part I: General Theory. Interscience
Publisher, Geneva (1958)

4. Revuz, D.: Markov Chains. North-Holland Mathematical Library, Oxford (1984)
5. Zhdanok, A.I.: Finitely additive measures in the ergodic theory of Markov chains I.

Sib. Adv. Math. 13(1), 87–125 (2003). Zhdanok, A.I.: Konechno-additivnyye mery v
ergodicheskoy teorii tsepey Markova I. Matematicheskiye trudy 4(2), 53–95 (2001).
(in Russian)

6. Zhdanok, A.I.: Finitely additive measures in the ergodic theory of Markov chains
II. Sib. Adv. Math. 13(2), 108–125 (2003). Zhdanok, A.I.: Konechno-additivnyye
mery v ergodicheskoy teorii tsepey Markova II. Matematicheskiye trudy 5(1), 45–65
(2002). (in Russian)
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Abstract. Branching random walks play a key role in modeling the evo-
lutionary processes with birth and death of particles depending on the
structure of a medium. The branching random walk on a multidimen-
sional lattice with a finite number of branching sources of three types
is investigated. It is assumed that the intensities of branching in the
sources can be arbitrary. The principal attention is paid to the analy-
sis of spectral characteristics of the operator describing evolution of the
mean numbers of particles both at an arbitrary point and on the entire
lattice. The obtained results provide an explicit conditions for the expo-
nential growth of the numbers of particles without any assumptions on
jumps variance of the underlying random walk.

Keywords: Branching random walks · Equations in Banach spaces ·
Non-homogeneous environments · Positive eigenvalues · Population
dynamics

1 Introduction: Model of BRW/r/k/m

We present results for continuous-time branching random walks (BRWs) on the
lattice Zd, d ∈ N, with a finite number of lattice sites in which the generation
of particles can occur, which are called branching sources. By a BRW we mean
a stochastic process that combines branching (birth or death) of particles at
certain points on Zd with their random walk on Zd. The goal of the paper
is to study the distributions of the particle population μt(y) at every point
y ∈ Zd and μt =

∑
y∈Zd μt(y) over the lattice Zd for a BRW with branching

sources of different type without any assumptions on the variance of jumps of
the underlying random walk.

Suppose that there is a single particle at the moment t = 0 on the lattice
situated at the point x ∈ Zd. Each particle moves on the lattice Zd until it
reaches a source where its behavior changes. There are three types of branching
sources, depending on whether branching takes place or not and on whether
random walk symmetry is violated or not. At sources of the first type, particles
die or are born, and random walk symmetry is maintained, see, e.g., [1,2,11].
At sources of the second type, walk symmetry is violated through an increase
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in the degree of branching or walk dominance, see, e.g., [9]. Sources of the third
type should be called “pseudo-sources,” because at these sources only the walk
symmetry is violated, with no particle births or deaths ever occurring. BRWs
with r sources of the first type, k of the second type, and m of the third type are
denoted BRW/r/k/m and introduced in [12]. Particles exist on Zd independently
of each other and of their antecedent history.

We define random walk by its generator

A = A +
k+m∑

j=1

ζjΔuj
A (1)

where A = (a(x, y))x,y∈Zd satisfies the regularity property
∑

y∈Zd a(x, y) = 0 for
all x, where a(x, y) ≥ 0 for x �= y, −∞ < a(x, x) < 0. From this it follows that A
itself satisfies this regularity property [12,13]. Additionally, we assume that the
intensities a(x, y) are symmetric and spatially homogeneous, that is, a(x − y) :=
a(x, y) = a(y, x) = a(0, y − x). Thus we can denote a(y, x), a(0, y − x), that is,
a(x − y) := a(x, y) = a(y, x) = a(0, y − x). The matrix A under consideration is
irreducible, so for any z ∈ Zd there is such a set of vectors z1, . . . , zk ∈ Zd that
z =

∑k
i=1 zi and a(zi) �= 0 for i = 1, . . . , k. It is fairly clear that the irreducibility

property is inherited by the perturbed matrix A. This, however, does not hold
true for the properties of spatial homogeneity and, most importantly, symmetry.
We will, however, make use of the structure of A and the symmetry of the
underlying matrix A in order to overcome this complication.

According to the axiomatics outlined in [3, Ch. III, §2], the probabilities
p(h, x, y) of a particle at x /∈ {v1, v2, . . . , vk+r} to jump to a point y over a
short period of time h can be presented as p(h, x, y) = a(x, y)h + o(h) for y �= x
and p(h, x, x) = 1 + a(x, x)h + o(h) for y = x. From these equalities, see, for
instance, [3, Ch. III], we obtain the Kolmogorov backward equations:

∂p(t, x, y)
∂t

=
∑

x′
a(x, x′)p(t, x′, y), p(0, x, y) = δ(x − y), (2)

where δ(·) is the discrete Kronecker δ-function on Zd.
Infinitesimal generating functions f(u, vi) =

∑∞
n=0 bn(vi)un, 0 ≤ u ≤ 1,

govern branching process at each of the sources v1, v2, . . . , vk+r. We denote source
intensities βi := β

(1)
i = f (1)(1, vi) = (−b1(vi))

(∑
n�=1 nbn(vi)/(−b1(vi)) − 1

)

where the sum is the average number of descendants a particle has at the source
vi.

If the particle is not in the branching source, then its random walk occurs
in accordance with the above rules. Consider a combination of branching and
walking processes observed when a particle is in one of the branching sources
v1, v2, . . . , vk+r. In this case, the following possible transitions, which can occur
in a short period of time h, are as follows: the particle will either move to
a point y �= vi with the probability of p(h, vi, y) = a(vi, y)h + o(h), or will
remain at the source and produce n �= 1 descendants with the probability of
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p∗(h, vi, n) = bn(vi)h + o(h) (we assume that the particle itself is included in
these n descendants and we say that the particle dies if n = 0), or no changes will
occur to the particle at all, which has the probability of 1 − ∑

y �=vi
a(vi, y)h −∑

n�=1 bn(vi)h + o(h). Thus, the time spent by the particle in the source vi is
exponentially distributed with the parameter −(a(vi, vi)+b1(vi)). The evolution
of each new particle obeys the same law and does not depend on the evolution
of other particles.

Let us introduce the moments of the random variables μt(y) and μt as
mn(t, x, y) = Exμn

t (y) and mn(t, x) = Exμn
t , respectively, where n is the order

of the moment and Ex is the mean on condition μ0(·) = δx(·).
In BRW/r/k/m more general multi-point perturbations of the self-adjoint

operator A generated of the symmetric random walk are used than in
BRW/r/0/0 or in BRW/0/k/0, see, e.g., [13]. This follows from the statement,
see [12], that the mean number of particles m1(t) = m1(t, ·, y) at a point y ∈ Zd

in BRW/r/k/m is governed by:

dm1(t)
dt

= Y m1(t), m1(0) = δy,

where

Y = A +

(
r∑

s=1

βsΔzs

)

+

(
k∑

i=1

ζiΔxi
A +

k∑

i=1

ηiΔxi

)

+

⎛

⎝
m∑

j=1

χjΔyj
A

⎞

⎠ . (3)

Here, A : lp(Zd) → lp(Zd), p ∈ [1,∞], is a symmetric operator, Δx = δxδT
x , and

δx = δx(·) denotes a column-vector on the lattice taking the unit value at the
point x and vanishing at other points, βs, ζi, ηi, and χj are some constants. The
same equation is also valid for the mean number of particles (the mean popula-
tion size) over the lattice m1(t) = m1(t, ·) with the initial condition m1(0) = 1
in l∞(Zd). Operator (3) can be written as

Y = A +
k+m∑

i=1

ζiΔui
A +

k+r∑

j=1

βjΔvj
. (4)

In each of the sets U = {ui}k+m
i=1 , and V = {vj}k+r

j=1 , the points are pairwise
distinct, but U and V may have a nonempty intersection. The points from V \U
correspond to r sources of the first type; those from U ∩ V to k sources of the
second type; and those from U \ V to m sources of the third type.

Denote the largest positive eigenvalue of the operator Y by λ0. In contrast
to [7] we consider BRW/r/k/m instead of BRW/r/0/0 and assume that in (4)
the parameters βj are real (βj ∈ R) instead of being positive (βj > 0). Under
this assumption, we conclude that if λ0 exitsts then it is simple, strictly positive
and guarantees an exponential growth of the first moments m1 of particle both
at an arbitrary point y and on the entire lattice.

Theorem 1. Let for BRW/r/k/m under consideration the operator Y have an
isolated eigenvalue λ0 > 0, and let the remaining part of its spectrum be located
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on the halfline {λ ∈ R : λ � λ0 − ε}, where ε > 0. If β
(r)
i = O(r!rr−1) for

all i = 1, . . . , N and r ∈ N, then the following statements hold in the sense of
convergence in distribution

lim
t→∞ μt(y)e−λ0t = ψ(y)ξ, lim

t→∞ μte
−λ0t = ξ, (5)

where ψ(y) is the eigenfunction corresponding to the eigenvalue λ0 and ξ is a
nondegenerate random variable.

One approach to analysing Eqs. (2) and evolutionary equations for mean
numbers of particles m1(t, x, y) and m1(t, x) is to treat them as differential equa-
tions in Banach spaces. To apply this approach to our case, we introduce the
operators

(A u)(x) =
∑

x′
a(x − x′)u(x′), (Δxi

u)(x) = δ(x − xi)u(x), i = 1, . . . , N.

on functions set u(x), x ∈ Zd. We can represent the operator (4) in a more
convenient form:

Y = Yβ1,...,βk+r
= A +

k+r∑

i=1

βiΔvi
(6)

where βi ∈ R, i = 1, . . . , βk+r. All operators in (6) can be considered as linear
continuous operators in any of the spaces lp(Zd), p ∈ [1,∞]. Note that the
operator A is self-adjoint in l2(Zd) [12–14].

Now, treating for each t ≥ 0 and each y ∈ Zd the p(t, ·, y) and m1(t, ·, y) as
elements of lp(Zd) for some p, we can write (see, for example, [12]) the following
differential equations in lp(Zd):

dp(t, x, y)
dt

= (Ap(t, ·, y))(x), p(0, x, y) = δ(x − y),

dm1(t, x, y)
dt

= (Y m1(t, ·, y))(x), m1(0, x, y) = δ(x − y),

and for m1(t, x) the following differential equation in l∞(Zd):

dm1(t, x)
dt

= (Y m1(t, ·))(x), m1(0, x) ≡ 1.

Point out that for large t the asymptotic behaviour of the transition probabilities
p(t, x, y), as well as of the mean particle numbers m1(t, x, y) and m1(t, x) is
tightly connected with operators A and Y spectral properties.

The properties of p(t, x, y) can be expressed in terms of the Green’s func-
tion which can be defined [11, § 2.2] as the Laplace transform of the transition
probability p(t, x, y) or through the resolvent form:

Gλ(x, y) :=
∫ ∞

0

e−λtp(t, x, y)dt =
1

(2π)d

∫

[−π,π]d

ei(θ,y−x)

λ − φ(θ)
dθ, λ ≥ 0.
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where x, y ∈ Zd, λ ≥ 0, and φ(θ) is the transition intensity a(z) Fourier trans-
form:

φ(θ) :=
∑

z∈Zd

a(z)ei(θ,z) =
∑

x∈Zd

a(x) cos(x, θ), θ ∈ [−π, π]d. (7)

The meaning of the function G0(x, y) is as follows: it represents the mean
amount of time spent by a particle at at y ∈ Zd as t → ∞ provided that at the
initial moment t = 0 the particle was at x ∈ Zd. The asymptotic behaviour of the
mean numbers of particles m1(t, x, y) and m1(t, x) as t → ∞ can be described in
terms of the function Gλ(x, y), see, e.g., [11]. Lastly, BRW asymptotic behaviour
depends strongly on whether G0 := G0(0, 0) is finite, it was shown in [10].

The approach presented in this section is based on representing the BRW
evolution equations as differential equations in Banach spaces. It can also be
applied to a wide range of problems, including the description of the evolution
of higher-order moments of particle numbers (see, e.g., [11,12]).

2 Key Equations and Auxiliary Results

We start off with a crucial remark. Since the operator Y is in general not self-
adjoint, the vast analytical apparatus, developed in [13] and relying heavily on
the self-adjointness of the operators involved, is not applicable here directly.
Due to the structure of Y , however, this difficulty can be obviated, to a certain
extent, with relative ease. Indeed, consider the following differential equation in
a Banach space

df(t, x, y)
dt

= Y f(t, x, y)

with Y = A +
∑k+m

i=1 ζiΔui
A +

∑k+r
j=1 βjΔvj

. Let us now introduce the operator

D :=
(

I +
k+m∑

i=1

ζiΔui

)− 1
2

,

which is correctly defined for ζi > −1, and rewrite the equation using this
notation:

df(t, x, y)
dt

=
(

D−2A +
k+r∑

j=1

βjΔvj

)

f(t, x, y),

which is equivalent to

D−1 dDf(t, x, y)
dt

=
(

D−1D−1A D−1 +
k+r∑

j=1

βjΔvj
D−1

)

Df(t, x, y).

By applying D to both parts of the equation above, we obtain

dDf(t, x, y)
dt

=
(

D−1A D−1 +
k+r∑

j=1

βjDΔvj
D−1

)

Df(t, x, y).
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Since the operators D and Δvj
commute, the expression above is equivalent to

dg(t, x, y)
dt

=
(

D−1A D−1 +
k+r∑

j=1

βjΔvj

)

g(t, x, y),

where g := Df . We have thus rewritten the original equation in such a way
that the previously non-self-adjoint operator Y is replaced with the self-adjoint
operator

Y ′ := D−1A D−1 +
k+r∑

j=1

βjΔvj
,

and a one-to-one correspondence between the solutions f to the starting equation
and the solutions g to the new equation can be established through the formula
g = Df . Therefore, when it comes to analysing Cauchy problems, the operator
Y can, for all intents and purposes, be considered self-adjoint.

We introduce the Laplace generating functions of the random variables μt(y)
and μt for z � 0:

F (z; t, x, y) := Exe−zμt(y), F (z; t, x) := Exe−zμt .

where Ex is the mean on condition μ0(·) = δx(·).
Theorem 2. Let the operator A have the form (1). The functions F (z; t, x)
and F (z; t, x, y) are continuously differentiable with respect to t uniformly with
respect to x, y ∈ Zd for all 0 � z � ∞. They satisfy the inequalities 0 �
F (z; t, x), F (z; t, x, y) � 1 and are the solutions to the following Cauchy problems
in l∞

(
Zd

)

dF (z; t, ·)
dt

= AF (z; t, ·) +
k+r∑

j=1

Δvj
fj (F (z; t, ·)) (8)

with the initial condition F (z; 0, ·) = e−z and

dF (z; t, ·, y)
dt

= AF (z; t, ·, y) +
k+r∑

j=1

Δvj
fj (F (z; t, ·, y)) (9)

with the initial condition F (z; 0, ·, y) = e−zδy(·).

Theorem 2 allows us to advance from analysing the BRW at hand to consid-
ering the corresponding Cauchy problem in a Banach space instead. Note that,
contrary to the single branching source case examined in [11], there is not one but
several terms Δvj

fj(F ) in the right-hand side of Eqs. (8) and (9), j = 1, 2, . . . , N .
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Theorem 3. The moments mn(t, ·, y) ∈ l2
(
Zd

)
and mn(t, ·) ∈ l∞

(
Zd

)
satisfy

the following differential equations in the corresponding Banach spaces for all
natural n � 1:

dm1

dt
= Y m1, (10)

dmn

dt
= Y mn +

k+r∑

j=1

Δvj
g(j)n (m1, . . . , mn−1), n � 2, (11)

the initial values being mn(0, ·, y) = δy(·) and mn(0, ·) ≡ 1 respectively. Here
Y mn stands for Y mn(t, ·, y) or Y mn(t, ·) respectively, and

g(j)n (m1, . . . , mn−1) :=
n∑

q=2

β
(q)
j

q!

∑

i1,...,iq>0
i1+···+iq=n

n!
i1! · · · iq!mi1 · · · miq . (12)

Theorem 3 will later be used in the proof of Theorem8 to help determine the
asymptotic behaviour of the moments as t → ∞.

Theorem 4. The moments m1(t, x, ·) ∈ l2
(
Zd

)
satisfy the following Cauchy

problem in l2
(
Zd

)
:

dm1(t, x, ·)
dt

= Y m1(t, x, ·), m1(0, x, ·) = δx(·).

This theorem allows us to obtain different differential equations by making use
of the BRW symmetry.

Theorem 5. The moment m1(t, x, y) satisfies both integral equations

m1(t, x, y) = p(t, x, y) +
k+r∑

j=1

βj

∫ t

0

p(t − s, x, vj)m1(t − s, vj , y)ds,

m1(t, x, y) = p(t, x, y) +
k+r∑

j=1

βj

∫ t

0

p(t − s, vj , y)m1(t − s, x, vj)ds.

The moment m1(t, x) satisfies both integral equations

m1(t, x) = 1 +
k+r∑

j=1

βj

∫ t

0

p(t − s, x, vj)m1(s, vj)ds, (13)

m1(t, x) = 1 +
k+r∑

j=1

βj

∫ t

0

m1(s, x, vj)ds. (14)
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For k > 1 the moments mk(t, x, y) and mk(t, x) satisfy the equations

mk(t, x, y) = m1(t, x, y)

+
k+r∑

j=1

∫ t

0

m1(t − s, x, vj)g
(j)
k (m1(s, vj , y), . . . , mk−1(s, vj , y)) ds,

mk(t, x) = m1(t, x)

+
k+r∑

j=1

∫ t

0

m1(t − s, x, vj)g
(j)
k (m1(s, vj), . . . , mk−1(s, vj)) ds.

This theorem allows us to make transition from differential equations to integral
equations. It is later used to prove Theorem8.

Theorems 3–5 are a generalization to the case BRW/r/k/m of Lemma 1.2.1,
Theorem 1.3.1 and Theorem 1.4.1 from [11], proved there for BRW/1/0/0. The
proofs of Theorems 3–5 differ only in technical details from the proofs of the
above statements from [11] and are therefore omitted here.

3 Properties of the Operator Y

We call a BRW supercritical if μt(y) and μt grow exponentially. As was men-
tioned in Introduction, one of the main results of this work is the numbers of
particles limit behavior (5), from which it follows that the BRW with several
branching sources with arbitrary intensities is supercritical if the operator Y
has a positive eigenvalue λ. For this reason we devote this section to studying
the spectral properties of the operator Y .

We mention a statement proved in [11, Lemma 3.1.1].

Lemma 1. The spectrum σ(A ) of the operator A is included in the half-line
(−∞, 0]. Also, since the operator

∑N
j=1 βjΔvj

is compact, σess(Y ) = σ (A ) ⊂
(−∞, 0], where σess(Y ) denotes the essential spectrum [6] of the operator Y .

The following theorem provides a criterion of there being a positive eigenvalue
in the spectrum of the operator Y .

Theorem 6. A number λ > 0 is an eigenvalue and f ∈ l2
(
Zd

)
is the cor-

responding eigenvector of the operator Y if and only if the system of linear
equations

f(ui) =
1

1 + ζi

(

λ

k+m∑

j=1

ζjf(uj)Iuj−ui
(λ) +

k+r∑

j=1

βjf(vj)Ivj−ui
(λ)

)

(15)

for i = 1, . . . , k + m, and

f(vi) =
(

λ

k+m∑

j=1

ζjf(uj)Iuj−vi
(λ) +

k+r∑

j=1

βjf(vj)Ivj−vi
(λ)

)

(16)
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for i = 1, . . . , k + r, with respect to the variables f(uj) and f(vj), where

Ix(λ) := Gλ(x, 0) =
1

(2π)d

∫

[−π,π]d

e−i(θ,x)

λ − φ(θ)
dθ, x ∈ Zd,

has a non-trivial solution.

Proof. For λ > 0 to be an eigenvalue of the operator Y it is necessary and
sufficient that there be a non-zero element f ∈ l2

(
Zd

)
that satisfies the equation

(Y − λI) f =
(

A +
k+m∑

i=1

ζiΔui
A +

k+r∑

j=1

βjΔvj
− λI

)

f = 0.

Obviously, the solution sets of such an equation for the operators Y and C−1Y C

are the same for any operator C; let us set C :=
(
I +

∑k+m
i=1 ζiΔui

) 1
2
, which

is correctly defined since ζi > −1 for all i. Thus the equation above can be
rewritten as follows:

(

A +
k+m∑

i=1

ζiA Δui
+

k+r∑

j=1

βjΔvj
− λI

)

f = 0

Since (Δvj
f)(x) := f(x)δvj

(x) = f(vj)δvj
(x) and (A Δui

f)(x) := f(x)Aδuj
(x),

the preceding expression can be rewritten as follows:

(A f)(x) +
k+m∑

j=1

ζjf(uj)Aδuj
(x) +

k+r∑

j=1

βjf(vj)δvj
(x) = λf(x), x ∈ Zd.

We apply Fourier transform to this equality and obtain

(Ã f)(θ) +
k+m∑

j=1

ζjf(uj)Ã δuj
(θ) +

k+r∑

j=1

βjf(vj)ei(θ,vj) = λf̃(θ), (17)

for θ ∈ [−π, π]d. The Fourier transform Ã f of (A f)(x) is of the form φf̃ ,
where f̃ is the Fourier transform of f , and φ(θ) is defined by the equality (7),
see [11, Lemma 3.1.1]. With this in mind, and making use of the fact that, by
the definition of the Fourier transform,

Ã δuj
(θ) = φ(θ)δ̃uj

(θ) = φ(θ)
∑

x∈Zd

δuj
(x)ei(x,θ) = φ(θ)ei(uj ,θ),

we rewrite equality (17) as

φ(θ)f̃(θ) +
k+m∑

j=1

ζjf(uj)φ(θ)ei(uj ,θ) +
k+r∑

j=1

βjf(vj)ei(θ,vj) = λf̃(θ),
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or

f̃(θ) =
1

λ − φ(θ)

[k+m∑

j=1

ζjf(uj)φ(θ)ei(uj ,θ) +
k+r∑

j=1

βjf(vj)ei(θ,vj)

]

, (18)

where θ ∈ [−π, π]d. Since λ > 0 and φ(θ) � 0,
∫
[−π,π]d

|λ − φ(θ)|−2dθ < ∞,
which allows us to apply the inverse Fourier transform to equality (18): as

Φ−1

[
1

λ − φ(θ)

k+m∑

j=1

ζjf(uj)φ(θ)ei(uj ,θ)

]

= Φ−1

[

−
k+m∑

j=1

ζjf(uj)ei(ui,θ) +
λ

λ − φ(θ)

k+m∑

j=1

ζjf(uj)ei(uj ,θ)

]

= −
k+m∑

j=1

ζjf(uj)
1

(2π)d

∫

[−π,π]d
e−i(θ,uj−x)dθ + λ

k+m∑

j=1

ζjf(uj)Iuj−x(λ)

= −
k+m∑

j=1

ζjf(uj)I[x = uj ] + λ
k+m∑

j=1

ζjf(uj)Iuj−x(λ)

we obtain

f(x) +
k+m∑

j=1

ζjf(uj)I[x = uj ]

= λ
k+m∑

j=1

ζjf(uj)Iuj−x(λ)φ(θ)ei(uj ,θ) +
k+r∑

j=1

βjIvj−x(λ)f(vj). (19)

By choosing x = ui, where i = 1, . . . , k + m, or x = vi, where i = 1, . . . , k + r,
we can rewrite (19) as follows:

f(ui) =
1

1 + ζi

(

λ

k+m∑

j=1

ζjf(uj)Iuj−ui
(λ) +

k+r∑

j=1

βjf(vj)Ivj−ui
(λ)

)

,

f(vi) = λ

k+m∑

j=1

ζjf(uj)Iuj−vi
(λ) +

k+r∑

j=1

βjf(vj)Ivj−vi
(λ).

We note that any solution of system (15) completely defines f(x) on the entirety
of its domain by formula (19), which proves the theorem. ��

Let among k + r sources, in which branching occurs, in s ≤ k + r sources
intensities are βi > 0, i = 0, . . . , s, and in k + r − s sources intensities are βi ≤ 0,
i = s + 1, . . . , k + r. We represent the operator Y defined by (6) as follows:

Y = A +
k+m∑

i=1

ζiΔui
A +

s∑

i=1

βiΔvi
+

k+r∑

i=s+1

βiΔvi
.
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Define operator

B := λI − A −
k+m∑

i=1

ζiΔui
A −

k+r∑

i=s+1

βiΔvi
,

then the eigenvector h corresponding to the eigenvalue λ of Y satisfies the
equation

Bh =
s∑

i=1

βiδvi
〈δvi

, h〉.

Note that 〈A x, x〉 ≤ 0. Besides, βi < 0 for i = s + 1, . . . , k + r, and therefore

〈
k+r∑

i=s+1

βiΔvi
x, x〉 ≤ 0. Hence, the operator B is reversible. The problem of exis-

tence of positive eigenvalues of the operator Y is converted to the question of the

existence of nonzero solutions for the equation h = B−1
s∑

j=1

βjδvj
〈δvj

, h〉, which,

after introducing auxiliary variables qi = 〈δvi
, h〉 and scalar multiplication on

the left of this equality by δvi
reduces to a finite system of equations

qi =
s∑

j=1

βj〈δvi
,B−1δvj

〉qj , i = 1, 2, . . . , s. (20)

Denote matrix B(λ):

B
(λ)
i,j := βj〈δvi

,B−1δvj
〉, i, j = 1, . . . , s. (21)

So the matrix representation (20) has the following form

q = B(λ)q, (22)

and the problem on positive eigenvalues for Y is reduced to the question of for
which λ > 0 the number 1 is the matrix B(λ) eigenvalue.

Theorem 7. Let λ0 > 0 be the largest eigenvalue of the operator Y . Then λ0

is a simple eigenvalue of Y , and 1 is the largest eigenvalue of the matrix B(λ0).

Proof. Denote ζ := max(0,max
i

(ζi)) ≥ 0 and note that the elements of the
operator

Ã := A +
k+m∑

i=1

ζiΔui
A − a(0, 0)(ζ + 1)I

are non-negative. It follows from Schur’s test [4] that in each of the spaces lp(Zd)
for the operator norm Ã there is an estimation

‖Ã ‖p ≤ −a(0, 0)(ζ + 1). (23)
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Operator B can be represented as follows:

B = λI − a(0, 0)(ζ + 1)I −
k+r∑

i=s+1

βiΔvi
− Ã = Fλ − Ã ,

where the operator

Fλ = λI − a(0, 0)(ζ + 1)I −
k+r∑

i=s+1

βiΔvi

is diagonal with all its diagonal elements no less than −a(0, 0)(ζ + 1) + λ > 0.
Then

‖F−1
λ ‖p ≤ 1

−a(0, 0)(ζ + 1) + λ
. (24)

Then B can be represented in the following form B = Fλ

(
I − F−1

λ Ã
)

and
therefore

B−1 =
(
I − F−1

λ Ã
)−1

F−1
λ . (25)

Here by virtue of (23) and (24) the operator norm of F−1
λ Ã is less than one:

‖F−1
λ Ã ‖p ≤ −a(0, 0)(ζ + 1)

−a(0, 0)(ζ + 1) + λ
< 1,

and therefore the operator
(
I − F−1

λ Ã
)−1

can be represented as a series:

(
I − F−1

λ Ã
)−1

=
∞∑

n=0

(
F−1

λ Ã
)n

.

Hence, by virtue of (25)

B−1 =
∞∑

n=0

(
F−1

λ Ã
)n

F−1
λ . (26)

Note that the right-hand side (26) is the sum of the products of operators
(infinite matrices) with non-negative elements. Therefore, each element of the
operator (infinite matrix) B−1 is non-negative.

Let us prove that each element of the operator B−1 is strictly positive. For
the proof, we use the fact that our random walk is irreducible. Note that, since
the random walk under the action of the operator A is irreducible, for any pair
x, y ∈ Zd there exists n ≥ 1 and the set of points

u0, u1, . . . , un ∈ Zd, u0 = x, un = y, (27)

such that a(u1 − u0)a(u2 − u1) · · · a(un − un−1) > 0, whence follows

a(u1 − u0)a(u2 − u1) · · · a(un − un−1) > 0. (28)
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Note that the elements of the infinite matrix B−1 are indexed by pairs of points
x, y ∈ Zd. In addition, the element with indices (x, y) of the matrix

(
F−1

λ Ã
)n

in (26) is a sum of the form
∑

u0=x, un=y

a(u1 − u0)a(u2 − u1) · · · a(un − un−1)fu0,u1,...,un
(29)

taken over all possible “chains” of n elements, satisfying (27), in which positive
factors fu0,u1,...,un

are formed due to the presence of the diagonal matrix F−1
λ

of
(
F−1

λ Ã
)n

. But by virtue of (28) at least one term in the sum (29) is strictly
positive, while the rest are non-negative. Hence, the entire sum is also strictly
positive, which implies that all elements of the operator (infinite matrix) B−1

are strictly positive. Since the elements of B−1 (see (21)) are positive, the matrix
B(λ) is positive.

The right side of (25) contains the operators F−1
λ , whose elements, mono-

tonically decreasing in λ > 0, tend to zero as λ → ∞. Since in this case all
multiplied and added operators (infinite matrices) are positive, then all their
elements in this case will also decrease monotonically in λ > 0 and tend to zero
as λ → ∞.

We first show that if λ0 is the operator Y largest eigenvalue, then the largest
(absolute) eigenvalue of the matrix B(λ0) is 1. Indeed, assume it is not the case.

It follows from (22) that λ0 > 0 is an eigenvalue of Y if and only if 1 is an
eigenvalue of B(λ0). All elements of B(λ0) are strictly positive. Consequently, by
the Perron-Frobenius theorem, see [5, Theorem 8.4.4], the matrix B(λ0) has a
strictly positive eigenvalue that is strictly greater (by absolute value) than any
other of its eigenvalues.

Let us denote the dominant eigenvalue of B(λ0) by γ(λ0). Since we assumed
that 1 is not the largest eigenvalue of B(λ0), then γ(λ0) > 1. Given that with
respect to λ the functions Ixi−xj

(λ) are continuous, then all elements of B(λ)

and all eigenvalues of B(λ) are continuous functions with respect to λ. All matrix
B(λ) eigenvalues tend to zero as λ → ∞, because for all i and j Ixi−xj

(λ) → 0 as
λ → ∞. Hence there is such a λ̂ > λ0 that γ(λ̂) = 1. Then, as was shown earlier,
this λ̂ has to be an eigenvalue of Y , which contradicts the initial assumption
that λ0 is the largest eigenvalue of the operator Y .

We have just proved that 1 is the largest eigenvalue of B(λ0); then we obtain
from the Perron-Frobenius theorem the simplicity of this eigenvalue. Therefore,
to complete the proof, we have to show the simplicity of the eigenvalue λ0 of Y .

Suppose it is not, and λ0 is not simple. In this case, there are at least two
linearly independent eigenvectors f1 and f2 corresponding to the eigenvalue λ0.
Therefore, we can again applying the equality (19), notice that the linear inde-
pendence of the vectors f1 and f2 is equivalent to the linear independence of the
vectors

f̂i := (fi(u1), . . . , fi(uN )) , i = 1, 2.
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From the definition of B(λ) and Theorem 6 it follows that vectors f̂1 and f̂2
satisfy

(
B(λ0) − I

)
f = 0. It contradicts the simplicity of eigenvalue 1 of B(λ0).

This completes the proof. ��
Lemma 2. Let Y be a self-adjoint continuous operator on a separable Hilbert
space E, the spectrum of which is a disjoint union of two sets: fist one is a finite
(counting multiplicity) set of isolated eigenvalues λi > 0 and second one is the
remaining part of the spectrum which is included in [−s, 0], s > 0. Then the
solution m(t) of the Cauchy problem

dm(t)
dt

= Y m(t), m(0) = m0,

satisfies the condition
lim

t→∞ e−λ0tm(t) = C (m0) ,

where λ0 = maxi λi.

Proof. Let us denote by Vλi
the finite-dimensional eigenspace of Y that corre-

sponds to the eigenvalue λi.
We consider the projection Pi of Y onto Vλi

, see [6]. Let

xi(t) := Pim(t),

v(t) :=

(

I −
∑

i

Pi

)

m(t) = m(t) −
∑

i

xi(t).

All spectral operators Pi and (I − ∑
Pi) commute with Y , see [6]. Therefore

dxi(t)
dt

= PiY m(t) = Y xi(t)

dv(t)
dt

=
(
I −

∑
Pi

)
Y m(t) =

(
I −

∑
Pi

)
Y

(
I −

∑
Pi

)
v(t).

As xi(t) ∈ Vλi
, we can see that Y xi(t) = λixi(t), from which it follows that

xi(t) = eλitxi(0). Since the spectrum of the operator

Y0 :=
(
I −

∑
Pi

)
Y

(
I −

∑
Pi

)

is included into the spectrum of operator Y and Y0 has no isolated eigenvalues
λi, it is included into [−s, 0]. From this for all t � 0 we obtain |v(t)| � |v(0)|,
see [11, Lemma 3.3.5]. Hence

m(t) =
∑

i

eλitPim(0) + v(t), (30)

and the proof is complete. ��
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Remark 1. Let λ0 be the largest eigenvalue of Y . Denote P0m(0) = C(m0)
in (30). Then C(m0) �= 0 if and only if the orthogonal projection P0m(0) of the
initial value m0 = m(0) onto the corresponding to the eigenvalue λ0 eigenspace
is non-zero.

If the eigenvalue λ0 of Y is simple and f is an eigenvector corresponding to
λ0, the projection P0 is defined by the formula P0x = (f,x)

(f,f)f , where (·, ·) denots
scalar product in the Hilbert space E. In cases when this λ0 is not simple,
describing the projection P0 is a significantly more difficult task.

We remind the reader that we proved the simplicity of the largest eigenvalue
of Y above allowing us to bypass this issue.

Theorem 8. Let defined by (6) operator Y with the parameters {ζi}k+r
i=1 and

{βi}k+m
i=1 , has a finite number of positive eigenvalues (counting multiplicity). We

denote by λ0 the largest of them, and the corresponding to λ0 normalized vector
by f . Then for t → ∞ and all n ∈ N the following statements hold:

mn(t, x, y) ∼ Cn(x, y)enλ0t, mn(t, x) ∼ Cn(x)enλ0t, (31)

where

C1(x, y) = f(y)f(x), C1(x) = f(x)
1
λ0

k+r∑

j=1

βjf(vj),

and the functions Cn(x, y) and Cn(x) > 0 for n � 2 are defined as follows:

Cn(x, y) =
k+r∑

j=1

g(j)n (C1(vj , y), . . . , Cn−1(vj , y)) D(j)
n (x),

Cn(x) =
k+r∑

j=1

g(j)n (C1(vj), . . . , Cn−1(vj)) D(j)
n (x),

where D
(j)
n (x) are certain functions satisfying the estimate |D(j)

n (x)| � 2
nλ0

for

n � n∗ and some n∗ ∈ N and g
(j)
n are the functions defined in (12).

Proof. For n ∈ N we consider the functions νn := mn(t, x, y)e−nλ0t. From The-
orem 3 (see Eqs. (10) and (11) for mn) we obtain the following equations for
νn:

dν1
dt

= Y ν1 − λ0ν1,

dνn

dt
= Y νn − nλ0νn +

k+r∑

j=1

Δvj
g(j)n (ν1, . . . , νn−1) , n � 2,

the initial values being νn(0, ·, y) = δy(·), n ∈ N.
Since λ0 is the largest eigenvalue of Y , the spectrum of Yn := Y − nλ0I for

n � 2 is included into (−∞,−(n − 1)λ0]. As it was shown, for example, in [11,
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p. 58], that if the spectrum of a self-adjoint continuous operator Ỹ on a Hilbert
space is included into (−∞,−s], s > 0, and also f(t) → f∗ as t → ∞, then the
solution of the equation

dν

dt
= Ỹ ν + f(t)

satisfies ν(t) → −Ỹ −1f∗ condition. For this reason for n � 2 we obtain

Cn(x, y) = lim
t→∞ νn = −

k+r∑

j=1

(
Y −1

n Δvj
g(j)n (C1(·, y), . . . , Cn−1(·, y))

)
(x)

= −
k+r∑

j=1

g(j)n (C1(vj , y), . . . , Cn−1(vj , y))(Y −1
n δvj

(·))(x)).

Now we prove the existence of such a natural number n∗ that for all n � n∗
the estimates

D(j)
n (x) := |(Y −1

n δvj
(·))(x)| � 2

nλ0

hold. We evaluate the operator Y −1
n norm. For this, let us consider two vectors

u and x such that u = Ynx = Y x − nλ0x. Then ‖u‖ � nλ0‖x‖ − ‖Y x‖ �
(nλ0 − ‖Y ‖)‖x‖, hence ‖Y −1

n u‖ = ‖x‖ � ‖u‖/ (nλ0 − ‖Y ‖), and for all n �
n∗ = 2λ−1

0 ‖Y ‖ the estimate ‖Y −1
n ‖ � 2

nλ0
holds. From this we conclude that

|(Y −1
n δvj

(·))(x)| � ‖Y −1
n δvj

(·)‖ � ‖Y −1
n ‖‖δvj

(·)‖ � 2
nλ0

, n � n∗.

Now we have to estimate the particle number moments asymptotic behaviour.
It follows from (14) that as t → ∞ the following asymptotic equivalences hold:

m1(t, x) ∼
k+r∑

j=1

βj

∫ t

0

m1(s, x, vj) ds ∼
k+r∑

j=1

βj

λ0
m1(t, x, vj). (32)

The function m1(t, x, 0) exhibits exponential growth as t → ∞ and m1(t, x) will
display the same behaviour.

We can now infer the asymptotic behaviour of the higher moments mn(t, x)
for n � 2 from Eqs. (11) in a similar way to how it was done above for mn(t, x, y).

We proceed to prove the equalities for C1(x, y) and C1(x). The eigenvalue λ0

is simple by Corollary 7 and it follows, according to Remark 1, that

C1(x, y) = lim
t→∞ e−λ0tm1(t, x, y) = Pm0 = (m1(0, x, y), f) f(x).

But m1(0, x, y) = δy(x), hence

C1(x, y) = (m1(0, x, y), f) f(x) = f(y)f(x).

We also obtain from (32) that

C1(x) =
1
λ0

k+r∑

j=1

βjC1(x, vj) = f(x)
1
λ0

k+r∑

j=1

βjf(vj),

which concludes the proof. ��
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Corollary 1. Cn(x, y) = ψn(y)Cn(x), where ψ(y) = λ0f(y)
∑k+r

j=1 βjf(vj)
.

Proof. We prove the corollary by induction on n. For n = 1 the induction basis
holds due to Theorem8. Let us now deal with the induction step: according to
Theorem 8,

Cn+1(x, y) =
k+r∑

j=1

g
(j)
n+1 (C1(vj , y), . . . , Cn(vj , y)) D

(j)
n+1(x),

Cn+1(x) =
k+r∑

j=1

g
(j)
n+1 (C1(vj), . . . , Cn(vj)) D

(j)
n+1(x);

therefore, it suffices to prove that for all j the equalities

g
(j)
n+1 (C1(vj , y), . . . , Cn(vj , y)) = ψn+1(y)g(j)n+1 (C1(vj), . . . , Cn(vj))

hold. As a consequence of the definition and hypothesis of induction,

g
(j)
n+1 (C1(vj , y), . . . , Cn(vj , y))

=
n+1∑

r=2

β
(r)
j

r!

∑

i1,...,ir>0
i1+···+ir=n+1

n!
i1! · · · ir!Ci1(vj , y) · · · Cir (vj , y)

= ψn+1(y)
n+1∑

r=2

β
(r)
j

r!

∑

i1,...,ir>0
i1+···+ir=n+1

n!
i1! · · · ir!Ci1(vj) · · · Cir (vj),

which proves the corollary. ��

4 Proof of Theorem 1

Let us introduce the function

f(n, r) :=
∑

i1,...,ir>0
i1+···+ir=n

ii11 · · · iirr , 1 � r � n.

The following auxiliary lemma is proved in [7, Lemma 9].

Lemma 3. There is such a constant C > 0 that f(n, r) < C nn

rr−1 for all n �
r � 2.

We now turn to proving Theorem1.

Proof. Let us define the functions

m(n, x, y) := lim
t→∞

mn(t, x, y)
mn

1 (t, x, y)
=

Cn(x, y)
Cn

1 (x, y)
,
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m(n, x) := lim
t→∞

mn(t, x)
mn

1 (t, x)
=

Cn(x)
Cn

1 (x)
;

as follows from Theorem 8 and Gλ(x, y) being positive, these definitions are
sound. Corollary 1 yields

m(n, x, y) = m(n, x) =
Cn(x)
Cn

1 (x)
=

Cn(x, y)
Cn

1 (x, y)
.

From the above equalities and the asymptotic equivalences (31) we have The-
orem 1 statements in terms of convergence of moments of the random variables
ξ(y) = ψ(y)ξ and ξ.

The distributions of the limit random variables ξ(y) and ξ to be uniquely
determined by their moments if, as was shown in [11], the Carleman condition

∞∑

n=1

m(n, x, y)−1/2n = ∞,

∞∑

n=1

m(n, x)−1/2n = ∞ (33)

We establish below that the series for the m(n, x) diverges and that, therefore,
said moments define the random variable ξ uniquely; the statement concerning
ξ(y) and its moments can be proved in much the same manner.

Since β
(r)
j = O(r!rr−1), there is such a constant D that for all r � 2 and

j = 1, . . . , k + r the inequality β
(r)
j < Dr!rr−1 holds. Without loss of generality

we assume that for all n

Cn(x) � max
j=1,...,k+r

Cn(vj) = Cn(v1).

Let γ := 2NCDE λ0β2
2 C2

1 (v1), where C is defined in Lemma 3, and the constant
E is such that Cn(v1) � γn−1n!nn for n � max{n∗, 2}, where n∗ is defined in
Theorem 8.

From this point on, the proof follows to the scheme of proof of [7, Th. 1] and
is included only for readability.

Let us show by induction that

Cn(x) � Cn(v1) � γn−1n!nn.

The induction basis for n = 1 is valid due to the C choice. In order to prove
the step of induction, we will show that

Cn+1(x) � Cn+1(v1) � γn(n + 1)!(n + 1)n+1.

It follows from Cn+1(v1) formula and the estimate for D
(j)
n (x) from Theorem 8

that

Cn+1(v1) �
N∑

j=1

n+1∑

r=2

β
(j)
r

r!

∑

i1,...,ir>0
i1+···+ir=n+1

(n + 1)!
i1! · · · ir!Ci1(v1) · · · Cir (v1)

2
λ0(n + 1)

.
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By the induction hypothesis

(n + 1)!
i1! · · · ir!Ci1(0) · · · Cir (0) � γn+1−r(n + 1)!ii11 · · · iirr ;

which, added to the fact that β
(r)
j < Dr!rr−1 and γn+1−r � γn−1, yields

N∑

j=1

n+1∑

r=2

β
(r)
j

r!

∑

i1,...,ir>0
i1+···+ir=n+1

(n + 1)!
i1! · · · ir!Ci1(v1) · · · Cir (v1)

� Nγn−1D(n + 1)!
n+1∑

r=2

rr−1
∑

i1,...,ir>0
i1+···+ir=n+1

ii11 · · · iirr

= Nγn−1D(n + 1)!
n+1∑

r=2

rr−1f(n + 1, r).

We infer from Lemma 3 that

Nγn−1D(n + 1)!
n+1∑

r=2

rr−1f(n + 1, r) � Nγn−1(n + 1)!DC

n+1∑

r=2

(n + 1)n+1

� Nγn−1DC(n + 1)!(n + 1)n+2.

Hence, by referring to the γ definition we obtain

Cn+1(x) � γn(n + 1)!(n + 1)n+1,

which completes the proof of the step of induction.
Since n! �

(
n+1
2

)n, Cn(x) � γn

2n (n + 1)2n. Thus,

m(n, x) =
Cn(x)
Cn

1 (x)
�

(
γ

2C1(x)

)n

(n + 1)2n,

from which we obtain that

∞∑

n=1

m(n, x)−1/2n �
√

2C1(x)
γ

∞∑

n=1

1
n + 1

= ∞.

The condition (33) is satisfied, and the corresponding Stieltjes moment prob-
lem for the moments m(n, x) has a unique solution [8, Th. 1.11]. Hence, state-
ments (5) are valid in terms of convergence in distribution and Theorem1 is
proved. ��
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Abstract. We study a robust adaptive nonparametric estimation prob-
lem for periodic functions observed in discrete fixed time moments with
non-Gaussian Ornstein–Uhlenbeck noises. For this problem we develop
a model selection method, based on the shrinkage (improved) weighted
least squares estimates. We found constructive sufficient conditions for
the observations frequency under which sharp oracle inequalities for the
robust risks are obtained. Moreover, on the basis of the obtained oracle
inequalities we establish for the proposed model selection procedures the
robust efficiency property in adaptive setting. Then, we apply the con-
structed model selection procedures to estimation problems in Big Data
models in continuous time. Finally, we provide Monte - Carlo simulations
confirming the obtained theoretical results.

Keywords: Nonparametric regression · Non-Gaussian
Ornstein–Uhlenbeck process · Discrete observations · Improved model
selection method · Sharp oracle inequality · Asymptotic efficiency

1 Introduction

In this paper we consider the following nonparametric regression model in con-
tinuous time

dyt = S(t)dt + dξt, 0 ≤ t ≤ T, (1)

where S is an unknown 1-periodic R → R function from L2[0, 1], the duration
of observations T is integer and (ξt)t≥0 is defined by a Ornstein – Uhlenbeck –
Lévy defined as

dξt = aξtdt + dut, ut = �1 wt + �2 zt, ξ0 = 0. (2)

Here (wt)t≥0 is a standard Brownian motion, zt is a pure jump Lévy process
defined through the stochastic integral with respect to the compensated jump
measure μ(ds, dx) with deterministic compensator μ̃(dsdx) = dsΠ(dx), i.e.

zt = x ∗ (μ − μ̃)t =
∫ t

0

∫

R∗

v (μ − μ̃)(dsdv) and R∗ = R \ {0},

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2021
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Π(·) is the Lévy measure on R∗, (see, for example in [2]), such that
∫

R∗

z2 Π(dz) = 1 and
∫

R∗

z8 Π(dz) < ∞.

We assume that the unknown parameters a ≤ 0, �1 and �2 are such that

− amax ≤ a ≤ 0, 0 < � ≤ �2
1

and σQ = �2
1

+ �2
2

≤ ς∗. (3)

Moreover, we assume that the bounds amax, � and ς∗ are functions of T , i.e.
amax = amax(T ), � = �

T
and ς∗ = ς∗

T
, for which for any ε > 0

lim
T→∞

amax(T ) + ς∗
T

T ε
= 0 and lim inf

T→∞
T ε �

T
> 0. (4)

We denote by QT the family of all distributions of process (1)–(2) on the Sko-
rokhod space D[0, n] satisfying the conditions (3)–(4). It should be noted that
the process (2) is conditionally-Gaussian square integrated semimartingale with
respect to σ-algebra G = σ{zt, t ≥ 0} which is generated by the jump process
(zt)t≥0.

The problem is to estimate the unknown function S in the model (1) on the
basis of observations

(ytj
)0≤j≤n, tj = jΔ and Δ =

1
p
, (5)

where n = Tp and the observations frequency p is some fixed integer number.
For this problem we use the quadratic risk, which for any estimate ̂S, is defined
as

RQ(̂S, S) := EQ,S ‖̂S − S‖2 and ‖f‖2 :=
∫ 1

0

f2(t)dt, (6)

where EQ,S stands for the expectation with respect to the distribution PQ,S of
the process (1) with a fixed distribution Q of the noise (ξt)0≤t≤n and a given
function S. Moreover, in the case when the distribution Q is unknown we use
also the robust risk

R∗
T
(̂S, S) = sup

Q∈QT

RQ(̂S, S). (7)

Note that if (ξt)t≥0 is a Brownian motion, then we obtain the well known white
noise model (see, for example, [7] and [13]). Later, to take into account the
dependence structure in the papers [6] and [10] it was proposed to use the Orn-
stein – Uhlenbeck noise processes, so called color Gaussian noises. Then, to study
the estimation problem for non-Gaussian observations (1) in the papers [9,11]
and [12] it was introduced impulse noises defined through the compound Pois-
son processes with unknown impulse distributions. However, compound Poisson
processes can describe the impulse influence of only one fixed frequency and,
therefore, such models are too restricted for practical applications. In this paper
we consider more general pulse noises described by the Ornstein – Uhlenbeck –
Lévy processes.
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Our main goal in this paper is to develop improved estimation methods for the
incomplete observations, i.e. when the process (1) is available for observations
only in the fixed time moments (5). To this end we propose adaptive model
selection method based on the improved weighted least squares estimates. For
nonparametric estimation problem such approach was proposed in [15] for Lévy
regression model.

2 Improved Estimation Method

First, we chose the trigonometric basis (φj)j≥1 in L2[0, 1], i.e. φ1 ≡ 1 and for
j ≥ 2

φj(x) =
√

2

⎧

⎨

⎩

cos(2π[j/2]x) for even j;

sin(2π[j/2]x) for odd j,
(8)

where [a] denotes the integer part of a. Note that if p is odd, then for any
1 ≤ i, j ≤ p

(φi, φj)p =
1
p

p
∑

l=1

φi(tl)φj(tl) = 1{i=j}. (9)

We use this basis to represent the function S on the lattice Tp = {t1, ..., tp} in
the Fourier expansion form

S(t) =
p

∑

j=1

θjφj(t) and θj = (S, φj)p :=
1
p

p
∑

k=1

S(tk)φj(tk).

The coefficients θj can be estimated from the discrete data (5) as

̂θj =
1
T

∫ T

0

ψj(t) dyt and ψj(t) =
n

∑

k=1

φj(tk)1(tk−1,tk](t).

We note that the system of the functions {ψj}1≤j≤p is orthonormal in L2[0, 1].
Now we set weighted least squares estimates for S(t) as

̂Sγ(t) =
p

∑

j=1

γ(j)̂θjψj(t) (10)

with weights γ = (γ(j))1≤j≤p from a finite set Γ ⊂ [0, 1]p. Now for the weight
coefficients we introduce the following size characteristics

ν = #(Γ ) and ν∗ = max
γ∈Γ

p
∑

j=1

γ(j),

where #(Γ ) is the number of the vectors γ in Γ .
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Definition 1. Function g(T ) is called slowly increasing as T → ∞, if for any
ε > 0

lim
T→∞

T−ε gT = 0.

H1) For any vector γ ∈ Γ there exists some fixed integer 7 ≤ d = d(γ) ≤ p
such that their first d components are equal to one, i.e. γ(j) = 1 for 1 ≤ j ≤
d. Moreover, we assume that the parameters ν and ν∗ are functions of T , i.e.
ν = ν(T ) and ν∗ = ν∗(T ), and the functions ν(T ) and T−1/3ν∗(T ) are slowly
increasing as T → ∞.

Using this condition, we define the shrinkage weighted least squares estimates
for S

S∗
γ
(t) =

p
∑

j=1

γ(j)θ∗
j
ψj(t), θ∗

j
=

⎛

⎝1 − cT
√

∑d
j=1

̂θ2
j

1{1≤j≤d}

⎞

⎠ ̂θj , (11)

where

cT =
�

T
(d − 6)

2
(

r +
√

2dς∗/T
)

T

and the radius r > 0 may be dependent of T , i.e. r = rT as a slowly increasing
function for T → ∞. To compare the estimates (10) and (11) we set

d0 = inf {d ≥ 7 : 5 + ln d ≤ ǎd} and ǎ =
1 − e−amax

4amax

.

Now we can compare the estimators (10) and (11) in mean square accuracy
sense.

Theorem 1. Assume that the condition H1) holds with d ≥ d0. Then for any
p ≥ d and T ≥ 3

sup
Q∈QT

sup
‖S‖≤r

(

RQ(S∗
γ
, S) − RQ(̂Sγ , S)

)

< −c2
T
. (12)

Remark 1. The inequality (12) means that non-asymptotically, uniformly in p ≥
d the estimate (11) outperforms in square accuracy the estimate (10). Such
estimators are called improved. Note that firstly for parametric regression models
in continuous time similar estimators were proposed in [14] and [12]. Later, for
Lévy models in nonparametric setting these methods were developed in [15].

3 Adaptive Model Selection Procedure

To obtain a good estimate from the class (11), we have to choose a weight vector
γ ∈ Γ . The best way is to minimize the empirical squared error

Errp(γ) = ‖S∗
γ

− S‖2
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with respect to γ. Since this quantity depends on the unknown function S and,
hence, depends on the unknown Fourier coefficients (θj)j≥1, the weight coeffi-
cients (γj)j≥1 cannot be found by minimizing one. Then, one needs to replace
the corresponding terms by their estimators. For this change in the empirical
squared error, one has to pay some penalty. Thus, one comes to the cost func-
tion of the form

Jp(γ) =
p

∑

j=1

γ2(j)(θ∗
j
)2 − 2

p
∑

j=1

γ(j)
(

θ∗
j

̂θj − σ̂T

T

)

+ ρ ̂PT (γ). (13)

Here ρ is some positive penalty coefficient, ̂PT (γ) is the penalty term is defined
as

̂PT (γ) =
σ̂T

T

p
∑

j=1

γ2(j),

where σ̂T is the estimate for the variance σQ which is chosen for
√

T ≤ p ≤ T
in the following form

σ̂T =
T

p

p
∑

j=[
√

T ]+1

̂θ2
j
. (14)

The substituting the weight coefficients, minimizing the cost function (13), in
(11) leads to the improved model selection procedure, i.e.

S∗ = S∗
γ∗ and γ∗ = argmin

γ∈Γ
Jp(γ). (15)

It will be noted that γ∗ exists because Γ is a finite set. If the minimizing sequence
γ∗ is not unique, one can take any minimizer. Unlike Pinsker’s approach [16],
here we do not use the regularity property of the unknown function to find the
weights sequence γ∗, i.e. the procedure (15) is adaptive.

Now we study non-asymptotic property of the estimate (15). To this end we
assume that

H2) The observation frequency p is a function of T , i.e. p = p(T ) such that√
T ≤ p ≤ T and for any ε > 0

lim
T→∞

T ε−5/6p = ∞.

First, we study the estimate (14).

Proposition 1. Assume that the conditions H1) and H2) hold and the unknown
function S has the square integrated derivative Ṡ. Then for T ≥ 3 and

√
T <

p ≤ T

EQ,S |σ̂T − σQ| ≤ KT T−1/3
(

1 + ‖Ṡ‖2
)

, (16)

where the term KT > 0 is slowly increasing as T → ∞.

Using this Proposition, we come to the following sharp oracle inequality for
the robust risk of proposed improved model selection procedure.
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Theorem 2. Assume that the conditions H1) – H2) hold and the function S
has the square integrable derivative Ṡ. Then for any T ≥ 3 and 0 < ρ < 1/2 the
robust risk (7) of estimate (15) satisfies the following sharp oracle inequality

R∗
T
(S∗, S) ≤ 1 + 5ρ

1 − ρ
min
γ∈Γ

R∗
T
(S∗

γ
, S) +

1
ρT

UT (1 + ‖Ṡ‖2),

where the rest term UT is slowly increasing as T → ∞.

We use the condition H1) to construct the special set Γ of weight vectors
(γ(j))j≥1 as it is proposed in [4] and [5] for which we will study the asymp-
totic properties of the model selection procedure (15). For this we consider the
following grid

AT = {1, . . . ,k} × {r1, . . . , rm},

where ri = iδ, i = 1, m with m = [1/δ2]. We assume that the parameters k ≥ 1
and 0 < δ ≤ 1 are functions of T , i.e. k = kT and δ = δ(T ), such that

lim
T→∞

(

1
kT

+
kT

ln T

)

= 0 and lim
T→∞

(

δ(T ) +
1

T εδ(T )

)

= 0

for any ε > 0. One can take, for example,

δ(T ) =
1

ln(T + 1)
and k(T ) = k0 +

√

ln(T + 1),

where k0 ≥ 0 is a fixed constant. For α = (β, r) ∈ AT we define the weights
γα = (γα(j))j≥1 as

γα(j) = 1{1≤j≤j∗(α)} +
(

1 − (j/ωα)β
)

1{j∗(α)<j≤ωα},

where j∗(α) = ωα/ ln(T + 1),

ωα =
(

(β + 1)(2β + 1)
π2ββ

r vT

)1/(2β+1)

and vT = T/ς∗.

Finally, we set
Γ = {γα, α ∈ AT }. (17)

Remark 2. It should be noted, that in this case the condition H1) holds true with
d = [j∗(α)] (see, for example, [15]). Therefore, the model selection procedure (15)
with the coefficients (17) satisfies the oracle inequality obtained in Theorem 2.

4 Asymptotic Efficiency

To study the efficiency properties we use the approach proposed by Pinsker
in [16], i.e. we assume that the unknown function S belongs to the functional
Sobolev ball Wk,r defined as
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Wk,r =

⎧

⎨

⎩

f ∈ C(k)
per

[0, 1] :
k

∑

j=0

‖f (j)‖2 ≤ r

⎫

⎬

⎭

, (18)

where r > 0 and k ≥ 1 are some unknown parameters, Ck
per

[0, 1] is the space of k
times differentiable 1-periodic R → R functions such that for any 0 ≤ i ≤ k − 1
the periodic boundary conditions are satisfied, i.e. f (i)(0) = f (i)(1). It should
be noted that the ball Wk,r can be represented as an ellipse in R

∞ through the
Fourier representation in L2[0, 1] for S, i.e.

S =
∞
∑

j=1

τjφj and τj =
∫ 1

0

S(t)φj(t)dt.

In this case we can represent the ball (18)

Wk,r =

⎧

⎨

⎩

f ∈ L2[0, 1] :
∑

j≥1

ajτ
2
j

≤ r

⎫

⎬

⎭

, (19)

where aj =
∑k

i=0
‖φ(i)‖2 =

∑k

i=0
(2π[j/2])2i.

To compare the model selection procedure (15) with all possible estimation
methods we denote by ΣT the set of all estimators ̂ST based on the observations
(ytj

)0≤j≤n. According to the Pinsker method, firstly one needs to find a lower
bound for risks. To this end, we set

lk(r) = ((2k + 1)r)1/(2k+1)

(

k

(π(k + 1))

)2k/(2k+1)

. (20)

Using this coefficient we obtain the following lower bound.

Theorem 3. The robust risks (7) are bounded from below as

lim inf
T→∞

v
2k/(2k+1)
T inf

̂ST ∈ΣT

sup
S∈Wk,r

R∗
T
(̂ST , S) ≥ lk(r), (21)

where vT = T/ς∗.

Remark 3. The lower bound (21) is obtained on the basis of the Van - Trees
inequality obtained in [15] for non-Gaussian Lévy processes.

To obtain the upper bound we need the following condition.
H3) The parameter ρ in the cost function (13) is a function of T , i.e. ρ = ρ(T ),

such that limT→∞ ρ(T ) = 0 and

lim
T→∞

T ερ(T ) = +∞

for any ε > 0
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Theorem 4. Assume that the conditions H2) – H3) hold. Then the model selec-
tion procedure (15) constructed through the weights (17) has the following upper
bound

lim sup
T→∞

v
2k/(2k+1)
T sup

S∈Wk,r

R∗
T
(S∗, S) ≤ lk(r).

It is clear that these theorems imply the following efficient property.

Theorem 5. Assume that the conditions of Theorems 3 and 4 hold. Then the
procedure (15) is asymptotically efficient, i.e.

lim
T→∞

v
2k/(2k+1)
T sup

S∈Wk,r

R∗
T
(S∗, S) = lk(r)

and

lim
T→∞

inf
̂ST ∈ΣT

sup
S∈Wk,r

R∗
T
(̂ST , S)

sup
S∈Wk,r

R∗
T
(S∗, S)

= 1. (22)

Remark 4. Note that the parameter (20) defining the lower bound (21) is the
well-known Pinsker constant, obtained in [16] for the model (1) with the Gaus-
sian white noise process (ξt)t≥0. For general semimartingale models the lower
bound is the same as for the white noise model, but generally the normal-
ization coefficient is not the same. In this case the convergence rate is given
by

(

T/ς∗
T

)−2k/(2k+1) while in the white noise model the convergence rate is
(T )−2k/(2k+1). So, if the upper variance threshold ς∗

T
tends to zero, the conver-

gence rate is better than the classical one, if it tends to infinity, it is worse and,
if it is a constant, the rate is the same.

Remark 5. It should be noted that the efficiency property (22) is shown for the
procedure (15) without using the Sobolev regularity parameters r and k, i.e. this
procedure is efficient in adaptive setting.

5 Statistical Analysis for the Big Data Model

Now we apply our results for the high dimensional model (1), i.e. we consider
this model with the parametric function

S(t) =
q

∑

j=1

βjuj(t), (23)

where the parameter dimension q more than number of observations given in
(5), i.e. q > n, the functions (uj)1≤j≤q are known and orthonormal in L2[0, 1].
In this case we use the estimator (11) to estimate the vector of parameters
β = (βj)1≤j≤q as

β∗
γ

= (β∗
γ,j

)1≤j≤q and β∗
γ,j

= (uj , S
∗
γ
).



172 E. Pchelintsev and S. Pergamenshchikov

Moreover, we use the model selection procedure (15) as

β∗ = (β∗
j
)1≤j≤q and β∗

j
= (uj , S

∗). (24)

It is clear that

|β∗
γ

− β|2
q

=
q

∑

j=1

(β∗
γ,j

− βj)
2 = ‖S∗

γ
− S‖2

and
|β∗ − β|2

q
= ‖S∗ − S‖2.

Therefore, Theorem 2 implies

Theorem 6. Assume that conditions H1) - H2) hold and the function (23) has
the square integrable derivative Ṡ. Then for any T ≥ 3 and 0 < ρ < 1/2

sup
Q∈QT

EQ,β |β∗ − β|2
q

≤ 1 + 5ρ

1 − ρ
min
γ∈Γ

sup
Q∈QT

EQ,β |β∗ − β|2
q

+
1

ρT
UT (1 + ‖Ṡ‖2),

where the term UT is slowly increasing as T → ∞.

Theorems 3 and 4 imply the efficiency property for the estimate (24) based on
the model selection procedure (15) constructed on the weight coefficients (17)
and the penalty threshold satisfying the condition H3).

Theorem 7. Assume that the conditions H2) – H3) hold. Then the estimate
(24) is asymptotically efficient, i.e.

lim
T→∞

v
2k/(2k+1)
T sup

S∈Wk,r

sup
Q∈QT

EQ,β |β∗ − β|2
q

= lk(r) (25)

and

lim
T→∞

inf
̂βT ∈ΞT

sup
S∈Wk,r

sup
Q∈QT

EQ,β |̂βT − β|2
q

sup
S∈Wk,r

sup
Q∈QT

EQ,β |β∗ − β|2
q

= 1,

where ΞT is the set of all possible estimators for the vector β.

Remark 6. In the estimator (15) doesn’t use the dimension q in (23). Moreover,
it can be equal to +∞. In this case it is impossible to use neither LASSO method
nor Dantzig selector which are usually applied to similar models (see, for exam-
ple, [17] and [1]). It should be emphasized also that the efficiency property (25)
is shown without using any sparse conditions for the parameters β = (βj)1≤j≤q

usually assumed for such problems (see, for example, [3]).

6 Monte-Carlo Simulations

In this section we give the results of numerical simulations to assess the per-
formance and improvement of the proposed model selection procedure (15). We
simulate the model (1) with 1-periodic functions S of the forms

S1(t) = t sin(2πt) + t2(1 − t) cos(4πt) (26)
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and

S2(t) =
+∞
∑

j=1

1
1 + j3

sin(2πjt) (27)

on [0, 1] and the Ornstein – Uhlenbeck – Lévy noise process ξt is defined as

dξt = −ξtdt + 0.5 dwt + 0.5 dzt, zt =
Nt
∑

j=1

Yj ,

where Nt is a homogeneous Poisson process of intensity λ = 1 and (Yj)j≥1 is i.i.d.
N (0, 1) sequence (see, for example, [11]). We use the model selection procedure
(15) constructed through the weights (17) in which k = 100 +

√

ln(T + 1),

ri =
i

ln(T + 1)
, m = [ln2(T + 1)], ρ =

1
(3 + lnT )2

and ς∗ = 0.5 We define the empirical risk as

R(S∗, S) =
1
p

p
∑

j=1

̂EΔ2
T
(tj) and ̂EΔ2

T
(t) =

1
T

N
∑

l=1

Δ2
T,l

(t),

where ΔT (t) = S∗
T
(t) − S(t) and ΔT,l(t) = S∗

T,l
(t) − S(t) is the deviation for the

l-th replication. In this example we take p = T/2 and N = 1000.

Table 1. The sample quadratic risks for different optimal weights

T 200 500 1000 10000

R(S∗
γ∗ , S1) 2.8235 0.8454 0.0626 0.0024

R(̂Sγ̂ , S1) 6.0499 1.8992 0.4296 0.0419

R(̂Sγ̂ , S1)/R(S∗
γ∗ , S1) 2.1 2.2 6.9 17.7

R(S∗
γ∗ , S2) 2.3174 1.0199 0.0817 0.0015

R(̂Sγ̂ , S2) 7.1047 3.6592 0.8297 0.0299

R(̂Sγ̂ , S2)/R(S∗
γ∗ , S2) 3.1 3.6 10.2 19.9

Tables 1 and 2 give the sample risks for the improved estimate (15) and the
model selection procedure based on the weighted least squares estimates (10)
from [11] for different observation period T . One can observe that the improve-
ment increases as T increases for the both models (26) and (27).

Remark 7. The figures show the behavior of the procedures (10) and (11) in the
depending on the observation time T . The continuous lines are the functions
(26) and (27), the dotted lines are the model selection procedures based on the
least squares estimates ̂S and the dashed lines are the improved model selection
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Table 2. The sample quadratic risks for the same optimal weights

T 200 500 1000 10000

R(S∗
γ̂ , S1) 3.2017 0.9009 0.1284 0.0076

R(̂Sγ̂ , S1) 6.0499 1.8992 0.4296 0.0419

R(̂Sγ̂ , S1)/R(S∗
γ̂ , S1) 1.9 2.1 3.3 5.5

R(S∗
γ̂ , S2) 4.1586 1.9822 0.1032 0.0036

R(̂Sγ̂ , S2) 7.1047 3.6592 0.8297 0.0299

R(̂Sγ̂ , S2)/R(S∗
γ̂ , S2) 1.7 1.8 8.0 8.3

Fig. 1. Behavior of the regression functions and their estimates for T = 200 (a) – for
the function S1 and b) – for the function S2).

Fig. 2. Behavior of the regressions function and their estimates for T = 500 (a) – for
the function S1 and b) – for the function S2).
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Fig. 3. Behavior of the regression functions and their estimates for T = 1000 (a) – for
the function S1 and b) – for the function S2).

Fig. 4. Behavior of the regression functions and their estimates for T = 10000 (a) –
for the function S1 and b) – for the function S2).

procedures S∗. From the Table 2 for the same γ with various observations num-
bers T we can conclude that theoretical result on the improvement effect (12) is
confirmed by the numerical simulations. Moreover, for the proposed shrinkage
procedure, from the Table 1 and Figs. 1, 2, 3 and 4, one can be noted that the
gain is significant for finite periods T .

7 Conclusion

In the conclusion we would like emphasized that in this paper we studied the
following issues:

– we considered the nonparametric estimation problem for continuous time
regression model (1) with the noise defined by non-Gaussian Ornstein–Uhlen-
beck process with unknown distribution under the condition that this process
can be observed only in the fixed discrete time moments (5);
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– we proposed adaptive robust improved estimation method via model selection
approach and we developed new analytical tools to provide the improvement
effect for the non-asymptotic estimation accuracy. It turns out that in this
case the accuracy improvement is much more significant than for parametric
models, since according to the well-known James–Stein result [8] the accuracy
improvement increases when dimension of the parameters increases. It should
be noted, that for the parametric models this dimension is always fixed, while
for the nonparametric models it tends to infinity, that is, it becomes arbitrarily
large with an increase in the number of observations. Therefore, the gain from
the application of improved methods is essentially increasing with respect to
the parametric case;

– we found constructive conditions for the observation frequency under which
we shown sharp non-asymptotic oracle inequalities for the robust risks (7).
Then, through the obtained oracle inequalities we provide the efficiency prop-
erty for the developed model selection methods in adaptive setting, i.e. when
the regularity of regression function is unknown;

– we apply the developed model selection procedure to the estimation prob-
lem for the Big Data model in continuous time without using the parameter
dimension and without assuming any sparse condition for the model param-
eters ;

– finally, we give Monte - Carlo simulations which confirm the obtained theo-
retical results.
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Abstract. Two–sided bounds are constructed for a probability density
function of a weighted sum of chi-square variables. Both cases of cen-
tral and non-central chi-square variables are considered. The upper and
lower bounds have the same dependence on the parameters of the sum
and differ only in absolute constants. The estimates obtained will be use-
ful, in particular, when comparing two Gaussian random elements in a
Hilbert space and in multidimensional central limit theorems, including
the infinite-dimensional case.

Keywords: Two–sided bounds · Weighted sum · Chi-square variable ·
Gaussian element

1 Introduction

In many statistical and probabilistic applications, we have to solve the problem
of Gaussian comparison, that is, one has to evaluate how the probability of a ball
under a Gaussian measure is affected, if the mean and the covariance operators
of this Gaussian measure are slightly changed. In [1] we present particular exam-
ples motivating the results when such “large ball probability” problem naturally
arises, including bootstrap validation, Bayesian inference and high-dimensional
CLT, see also [2]. The tight non-asymptotic bounds for the Kolmogorov distance
between the probabilities of two Gaussian elements to hit a ball in a Hilbert space
have been derived in [1] and [3]. The key property of these bounds is that they
are dimension-free and depend on the nuclear (Schatten-one) norm of the dif-
ference between the covariance operators of the elements and on the norm of
the mean shift. The obtained bounds significantly improve the bound based on
Pinsker’s inequality via the Kullback–Leibler divergence. It was also established
an anti-concentration bound for a squared norm ||Z − a||2, a ∈ H, of a shifted
Gaussian element Z with zero mean in a Hilbert space H. The decisive role in
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proving the results was played by the upper estimates for the maximum of the
probability density function g(x, a) of ||Z − a||2, see Theorem 2.6 in [1]:

sup
x≥0

g(x, a) ≤ c (Λ1Λ2)−1/4, (1)

where c is an absolute constant and

Λ1 =
∞∑

k=1

λ2
k, Λ2 =

∞∑

k=2

λ2
k

with λ1 ≥ λ2 ≥ . . . are the eigenvalues of a covariance operator Σ of Z.
It is well known that g(x, a) can be considered as a density function of a

weighted sum of non-central χ2 distributions. An explicit but cumbersome rep-
resentation for g(x, a) in finite dimensional space H is available (see, e.g., Sect. 18
in Johnson, Kotz and Balakrishnan [4]). However, it involves some special char-
acteristics of the related Gaussian measure which makes it hard to use in specific
situations. Our result (1) is much more transparent and provides sharp uniform
upper bounds. Indeed, in the case H = Rd, a = 0, Σ is the unit matrix, one has
that the distribution of ||Z||2 is the standard χ2 with d degrees of freedom and
the maximum of its probability density function is proportional to d−1/2. This
is the same as what we get in (1).

At the same time, it was noted in [1] that obtaining lower estimates for
supx g(x, a) remains an open problem. The latter problem was partially solved
in [5], Theorem 1. However, it was done under additional conditions and we took
into account the multiplicity of the largest eigenvalue.

In the present paper we get two–sided bounds for supx g(x, 0) in the finite-
dimensional case H = Rd, see Theorem 1 below. The bounds are dimension-free,
that is they do not depend on d. Thus, for the upper bounds (1), we obtain
a new proof, which is of independent interest. And new lower bounds show
the optimality of (1), since the upper and lower bounds differ only in absolute
constants. Moreover, new two-sided bounds are constructed for supx g(x, a) with
a �= 0 in the finite-dimensional case H = Rd, see Theorem 2 below. Here we
consider a typical situation, where λ1 does not dominate the other coefficients.

2 Main Results

For independent standard normal random variables Zk ∼ N(0, 1), consider the
weighted sum

W0 = λ1Z
2
1 + · · · + λnZ2

n, λ1 ≥ · · · ≥ λn > 0.

It has a continuous probability density function p(x) on the positive half-axis.
Define the functional

M(W0) = sup
x

p(x).
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Theorem 1. Up to some absolute constants c0 and c1, we have

c0(A1A2)−1/4 ≤ M(W0) ≤ c1(A1A2)−1/4, (2)

where

A1 =
n∑

k=1

λ2
k, A2 =

n∑

k=2

λ2
k

and
c0 =

1
4e2

√
2π

> 0.013, c1 =
2√
π

< 1.129.

Theorem 1 can be extended to more general weighted sums:

Wa = λ1(Z1 − a1)2 + · · · + λn(Zn − an)2 (3)

with parameters λ1 ≥ · · · ≥ λn > 0 and a = (a1, . . . , an) ∈ Rn.
It has a continuous probability density function p(x, a) on the positive half-

axis x > 0. Define the functional

M(Wa) = sup
x

p(x, a).

Remark. It is known that for any non-centred Gaussian element Y in a Hilbert
space, the random variable ||Y ||2 is distributed as

∑∞
i=1 λi(Zi − ai)2 with some

real ai and λi such that

λ1 ≥ λ2 ≥ · · · ≥ 0 and
∞∑

i=1

λi < ∞.

Therefore, the upper bounds for M(Wa) immediately imply the upper bounds
for the probability density function of ||Y ||2.

Theorem 2. If λ2
1 ≤ A1/3, then one has a two-sided bound

1
4
√

3
1√

A1 + B1

≤ M(Wa) ≤ 2√
A1 + B1

,

where

A1 =
n∑

k=1

λ2
k, B1 =

n∑

k=1

λ2
ka2

k.

Moreover, the left inequality holds true without any assumption on λ2
1.

Remark. In Theorem 2 we only consider a typical situation, where λ1 does not
dominate the other coefficients. Moreover, the condition λ2

1 ≤ A1/3 necessarily
implies that n ≥ 3. If this condition is violated, the behaviour of M(Wa) should
be studied separately.
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3 Auxiliary Results

For the lower bounds in the theorems, one may apply the following lemma, which
goes back to the work by Statulyavichus [6], see also Proposition 2.1 in [7].

Lemma 1. Let η be a random variable with M(η) denoting the maximum of its
probability density function. Then one has

M2(η)Var(η) ≥ 1
12

. (4)

Moreover, the equality in (4) is attained for the uniform distribution on any
finite interval.

Remark. There are multidimensional extensions of (4), see e.g. [8,9] and Section
III in [10].

Proof. Without loss of generality we may assume that M(η) = 1.
Put H(x) = P(|η − Eη| ≥ x), x ≥ 0.
Then, H(0) = 1 and H ′(x) ≥ −2, which gives H(x) ≥ 1 − 2x, so

Var(η) = 2
∫ ∞

0

xH(x) dx ≥ 2
∫ 1/2

0

xH(x) dx

≥ 2
∫ 1/2

0

x(1 − 2x) dx =
1
12

.

Lemma is proved.
The following lemma will give the lower bound in Theorem 2.

Lemma 2. For the random variable Wa defined in (3), the maximum M(Wa)
of its probability density function satisfies

M(Wa) ≥ 1
4
√

3
1√

A1 + B1

, (5)

where

A1 =
n∑

k=1

λ2
k, B1 =

n∑

k=1

λ2
ka2

k.

Proof. Given Z ∼ N(0, 1) and b ∈ R, we have

E (Z − b)2 = 1 + b2, E (Z − b)4 = 3 + 6b2 + b4,

so that Var((Z − b)2) = 2 + 4b2. It follows that

Var(Wa) =
n∑

k=1

λ2
k (2 + 4a2

k) = 2A1 + 4B1 ≤ 4(A1 + B1).

Applying (4) with η = Wa, we arrive at (5).
Lemma is proved.
The proofs of the upper bounds in the theorems are based on the following

lemma.
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Lemma 3. Let
α2
1 + · · · + α2

n = 1.

If α2
k ≤ 1/m for m = 1, 2, . . . , then the characteristic function f(t) of the random

variable
W = α1Z

2
1 + · · · + αnZ2

n

satisfies

|f(t)| ≤ 1
(1 + 4t2/m)m/4

. (6)

In particular, in the cases m = 4 and m = 3, W has a bounded density with
M(W ) ≤ 1/2 and M(W ) < 0.723 respectively.

Proof. Necessarily n ≥ m. The characteristic function has the form

f(t) =
n∏

k=1

(1 − 2αkit)−1/2,

so

− log |f(t)| =
1
4

n∑

k=1

log(1 + 4α2
kt2).

First, let us describe the argument in the simplest case m = 1.
For a fixed t, consider the concave function

V (b1, . . . , bn) =
n∑

k=1

log(1 + 4bkt2)

on the simplex

Q1 =
{

(b1, . . . , bn) : bk ≥ 0, b1 + · · · + bn = 1
}

.

It has n extreme points bk = (0, . . . , 0, 1, 0, . . . , 0). Hence

min
b∈Q1

V (b) = V (bk) = log(1 + 4t2),

that is, |f(t)| ≤ (1 + 4t2)−1/4, which corresponds to (6) for m = 1.
If m = 2, we consider the same function V on the convex set

Q2 =
{

(b1, . . . , bn) : 0 ≤ bk ≤ 1
2
, b1 + · · · + bn = 1

}
,

which is just the intersection of the cube [0, 1
2 ]n with the hyperplane. It has

n(n − 1)/2 extreme points

bkj , 1 ≤ k < j ≤ n,
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with coordinates 1/2 on the j-th and k-th places and with zero elsewhere. Indeed,
suppose that a point

b = (b1, . . . , bn) ∈ Q2

has at least two non-zero coordinates 0 < bk, bj < 1/2 for some k < j. Let x be
the point with coordinates

xl = bl for l �= k, j, xk = bk + ε, and xj = bj − ε,

and similarly, let y be the point such that

yl = bl for l �= k, j, yk = bk − ε, and yj = bj + ε.

If ε > 0 is small enough, then both x and y lie in Q2, while

b = (x + y)/2, x �= y.

Hence such b cannot be an extreme point. Equivalently, any extreme point b of
Q2 is of the form

bkj , 1 ≤ k < j ≤ n.

Therefore, we conclude that

min
b∈Q2

V (b) = V (bkj) = 2 log(1 + 2t2),

which is the first desired claim.
In the general case, consider the function V on the convex set

Qm =
{

(b1, . . . , bn) : 0 ≤ bk ≤ 1
m

, b1 + · · · + bn = 1
}

.

By a similar argument, any extreme point b of Qm has zero for all coordinates
except for m places where the coordinates are equal to 1/m. Therefore,

min
b∈Qm

V (b) = V
( 1

m
, . . . ,

1
m

, 0, . . . , 0
)

= m log(1 + 4t2/m),

and we are done.
In case m = 4, using the inversion formula, we get

M(W ) ≤ 1
2π

∫ ∞

−∞
|f(t)| dt ≤ 1

2π

∫ ∞

−∞

1
1 + t2

dt =
1
2
.

Similarly, in the case m = 3,

M(W ) ≤ 1
2π

∫ ∞

−∞

1
(1 + 4

3 t2)3/4
dt < 0.723.

Lemma is proved.
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4 Proofs of Main Results

Proof of Theorem 1. In the following we shall write W instead of W0.
If n = 1, then the distribution function and the probability density function

of W = λ1Z
2
1 are given by

F (x) = 2Φ

(√
x

λ1

)
− 1, p(x) =

1√
2πλ1

e−x/(2λ1) (x > 0),

respectively. Therefore, p is unbounded near zero, so that M(W ) = ∞. This is
consistent with (2), in which case A1 = λ2

1 and A2 = 0.
If n = 2, the density p(x) is described as the convolution

p(x) =
1

2π
√

λ1λ2

∫ 1

0

1√
(1 − t)t

exp
{

− x

2

[1 − t

λ1
+

t

λ2

]}
dt (x > 0). (7)

Hence, p is decreasing and attains maximum at x = 0:

M(W ) =
1

2π
√

λ1λ2

∫ 1

0

1√
(1 − t)t

dt =
1

2
√

λ1λ2

.

Since A1 = λ2
1 + λ2

2 and A2 = λ2
2, we conclude, using the assumption λ1 ≥ λ2,

that
1
2

(A1A2)−1/4 ≤ M(W ) ≤ 1
23/4

(A1A2)−1/4.

As for the case n ≥ 3, the density p is vanishing at zero and attains maximum
at some point x > 0.

The further proof of Theorem 1 is based on the following observations and
Lemma 3.

By homogeneity of (2), we may assume that A1 = 1.
If λ1 ≤ 1/2, then all λ2

k ≤ 1/4, so that M(W ) ≤ 1/2, by Lemma 3. Hence,
the inequality of the form

M(W ) ≤ 1
2

(A1A2)−1/4

holds true.
Now, let λ1 ≥ 1/2, so that A2 ≤ 3/4. Write

W = λ1Z
2
1 +

√
A2 ξ, ξ =

n∑

k=2

αkZ2
k , αk =

λk√
A2

.

By construction, α2
2 + · · · + α2

n = 1.
Case 1: λ2 ≥ √

A2/2. Since the function M(W ) may only decrease when
adding an independent random variable to W , we get using (7) that

M(W ) ≤ M(λ1Z
2
1 + λ2Z

2
2 ) =

1
2
√

λ1λ2

≤ c (A1A2)−1/4,
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where the last inequality holds with c = 1. This gives the upper bound in (2)
with constant 1.

Case 2: λ2 ≤ √
A2/2. It implies that n ≥ 5 and all α2

k ≤ 1/4 for k > 1.
By Lemma 3 with m = 4, the random variable ξ has the probability density
function q bounded by 1/2. The distribution function of W may be written as

P{W ≤ x} =
∫ x/

√
A2

0

P
{

|Z1| ≤ 1√
λ1

(x − y
√

A2)1/2
}

q(y) dy, x > 0,

and its density has the form

p(x) =
1√

2πλ1

∫ x/
√

A2

0

1√
x − y

√
A2

e−(x−y
√

A2)/(2λ1) q(y) dy.

Equivalently,

p(x
√

A2) =
1√

2πλ1

A
−1/4
2

∫ x

0

1√
x − y

e−(x−y)
√

A2/(2λ1) q(y) dy. (8)

Since λ1 ≥ 1/2, we immediately obtain that

M(W ) ≤ A
−1/4
2

1√
π

sup
x>0

∫ x

0

1√
x − y

q(y)dy.

But, using q ≤ 1/2, we get
∫ x

0

1√
x − y

q(y)dy =
∫

0<y<x, x−y<1

1√
x − y

q(y)dy

+
∫

0<y<x, x−y>1

1√
x − y

q(y)dy

≤ 1
2

∫ 1

0

1√
z

dz + 1 = 2.

Thus,

M(W ) ≤ 2A
−1/4
2

1√
π

.

Combining the obtained upper bounds for M(W ) in all cases we get the upper
bound in (2).

For the lower bound, one may apply the inequality (4) in Lemma 1. Thus,
we obtain that

M(W ) ≥ 1
2
√

6

due to the assumption A1 = 1 and the property Var(Z2
1 ) = 2.

If λ2
1 ≤ 1/2, we have A2 ≥ 1/2. Hence,

M(W ) ≥ 1
2
√

6
≥ c0 (A1A2)−1/4, (9)



186 S. G. Bobkov et al.

where the last inequality holds true with

c0 =
1

25/4
√

6
≥ 0.171.

In case λ2
1 ≥ 1

2 , we have A2 ≤ 1/2. Returning to the formula (8), let us choose
x = Eξ + 2 and restrict the integration to the interval

Δ : max(Eξ − 2, 0) < y < Eξ + 2.

On this interval necessarily
x − y ≤ 4.

Therefore, (8) yields

M(W ) ≥ A
−1/4
2

2
√

2πλ1

· e−2
√

A2/λ1 P{ξ ∈ Δ}.

Here,
A2

λ2
1

=
1
λ2
1

− 1 ≤ 1,

and we get

M(W ) ≥ A
−1/4
2

2
√

2π
· e−2 P{ξ ∈ Δ}.

Now, recall that ξ ≥ 0 and Var(ξ) = 2 (α2
2 + · · · + α2

n) = 2. Hence, by
Chebyshev’s inequality,

P{|ξ − Eξ| ≥ 2} ≤ 1
4

Var(ξ) =
1
2
.

That is, P{ξ ∈ Δ} ≥ 1/2, and thus

M(W ) ≥ (A1A2)−1/4

4
√

2π
e−2 ≥ 0.013 · (A1A2)−1/4.

Theorem 1 is proved.

Proof of Theorem 2. In the following we shall write W instead of Wa.
The lower bound in Theorem 2 immediately follows from (5) in Lemma 2

without any assumption on λ2
1.

Our next aim is to reverse this bound up to a numerical factor under suitable
natural assumptions.

Without loss of generality, let A1 = 1. Our basic condition will be that
λ2
1 ≤ 1/3, similarly to the first part of the proof of Theorem 1. Note that if

λ2
1 ≤ 1/3 then necessarily n ≥ 3.

As easy to check, for Z ∼ N(0, 1) and a ∈ R,

E eit (Z−a)2 =
1√

1 − 2it
exp

{
a2 it

1 − it

}
, t ∈ R,
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so that ∣∣∣E eit (Z−a)2
∣∣∣ =

1
(1 + 4t2)1/4

exp
{

− 2a2 t2

1 + 4t2

}
.

Hence, the characteristic function f(t) of W satisfies

− log |f(t)| =
1
4

n∑

k=1

log(1 + 4λ2
kt2) + 2

n∑

k=1

a2
k

λ2
kt2

1 + 4λ2
kt2

.

Since λ2
1 ≤ 1

3 , by the monotonicity, all λ2
k ≤ 1

3 as well. But, as we have
already observed, under the conditions

0 ≤ bk ≤ 1
3
, b1 + · · · + bk = 1,

and for any fixed value t ∈ R, the function

ψ(b1, . . . , bn) =
n∑

k=1

log(1 + 4bkt2)

is minimized for the vector with coordinates

b1 = b2 = b3 =
1
3

and bk = 0 for k > 3.

Hence,
ψ(b1, . . . , bn) ≥ 3 log(1 + 4t2/3) ≥ 3 log(1 + t2).

Therefore, one may conclude that

|f(t)| ≤ 1
(1 + t2)3/4

exp
{

− 2
n∑

k=1

a2
k

λ2
kt2

1 + 4λ2
kt2

}
. (10)

It is time to involve the inversion formula which yields the upper bound

M(W ) ≤ 1
π

∫ ∞

0

|f(t)| dt. (11)

In the interval
0 < t < T =

1
2λ1

,

we have λ2
kt2 ≤ 1/4 for all k, and the bound (8) is simplified to

|f(t)| ≤ 1
(1 + t2)3/4

e−B1t2 .

This gives ∫ T

0

|f(t)| dt ≤ I(B1) ≡
∫ ∞

0

1
(1 + t2)3/4

e−B1t2 dt.
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If B1 ≤ 1,

I(B1) ≤
∫ ∞

0

1
(1 + t2)3/4

dt < 3,

while for B1 ≥ 1,

I(B1) ≤
∫ ∞

0

e−B1t2 dt =
√

π

2
√

B1

<
1√
B1

.

The two estimates can be united by

I(B1) ≤ 3
√

2√
1 + B1

.

To perform the integration over the half-axis t ≥ T , a different argument is
needed. Put pk = a2

kλ2
k/B1, so that pk ≥ 0 and p1 + · · · + pk = 1. By Jensen’s

inequality applied to the convex function V (x) = 1/(1 + x) for x ≥ 0 with points
xk = 4λ2

kt2, we have
n∑

k=1

a2
k

λ2
kt2

1 + 4λ2
kt2

= B1t
2

n∑

k=1

pkV (xk)

≥ B1t
2 V (p1x1 + . . . pnxn)

=
B1t

2

1 + 4t2

B1

∑n
k=1 a2

kλ4
k

≥ B1t
2

1 + 4t2

3B1

∑n
k=1 a2

kλ2
k

=
B1t

2

1 + 4
3 t2

,

where we used the property λ2
k ≤ 1/3. Moreover, since

t2 ≥ 1
(2λ1)2

≥ 3
4
,

necessarily
t2

1 + 4
3 t2

≥ 3
8
.

Hence, from (10) we get

|f(t)| ≤ 1
(1 + t2)3/4

e−3B1/4, t ≥ T,

and
∫ ∞

T

|f(t)| dt ≤ e−3B1/4

∫ ∞
√
3/2

1
(1 + t2)3/4

dt < 1.68 e−3B1/4 <
1.85√
1 + B1

.

Combining the two estimates together for different regions of integration with
(3

√
2 + 1.85)/π < 1.94, the bound (11) leads to

M(W ) <
2√

A1 + B1

.

Thus, this inequality, together with Lemma 2, completes the proof of the theo-
rem.
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On the Chromatic Number of a Random
3-Uniform Hypergraph
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Dolgoprudnyi, Moscow Region, Russia
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3 HSE University, Moscow, Russian Federation

Abstract. This paper is devoted to the problem concerning the chro-
matic number of a random 3-uniform hypergraph. We consider the bino-
mial model H(n, 3, p) and show that if p = p(n) decreases fast enough
then the chromatic number of H(n, 3, p) is concentrated in 2 or 3 consec-
utive values which can be found explicitly as functions of n and p. This
result is derived as an application of the solution of an extremal problem
for doubly stochastic matrices.

Keywords: Random hypergraphs · Colorings · Second moment
method · Doubly stochastic matrices

1 Introduction

The theory of random graphs and hypergraphs was always in the focus of study
in probabilistic combinatorics. Recall that a hypergraph H is a pair of sets H =
(V,E), where V is a finite set whose elements are called vertices, and E is a
family of subsets of V that are called edges of the hypergraph. If every edge
consists of k vertices then a hypergraph is called k-uniform. An r-coloring of a
vertex set is an arbitrary mapping f : V → {1, . . . , r} . It is said to be proper if
no edge is monochromatic. The chromatic number χ(H) of a hypergraph H is
the minimum number of colors required for a proper coloring of H.

One of main stochastic models of random hypergraphs is the well-known
binomial model of a random k-uniform hypergraph H(n, k, p), which can be
viewed as the Bernoulli scheme on k-subsets of an n-element set: every subset is
included into H(n, k, p) as an edge independently with probability p. We study
the asymptotic behaviour of the chromatic number of H(n, k, p) for large n,
when k is fixed, and p = p(n) is a function of n.

1.1 Related Work

The chromatic numbers of random graphs and hypergraphs have been intensively
studied since the 1970s. For known results concerning χ(H(n, k, p)) in the graph
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2021
A. N. Shiryaev et al. (Eds.): ICSM-5 2020, PROMS 371, pp. 190–203, 2021.
https://doi.org/10.1007/978-3-030-83266-7_14
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case, k = 2, the reader is referred to the recent paper [6]. In the current paper we
concentrate only on the case k ≥ 3. The asymptotics of the chromatic number of
H(n, k, p) in the dense case, when the expected number of edges is much larger
than the number of vertices, i.e. when pnk−1 → +∞, was obtained by Shamir
with coauthors [8,10] and by Krivelevich, Sudakov [7]. But we know much more
about the limit distribution of χ(H(n, k, p)) in the sparse case, when the expected
number of edges is a linear function of n, i.e. p = cn/

(
n
k

)
and c > 0 does not

depend on n. Dyer, Frieze and Greenhill [5] proved that in this case χ(H(n, k, p))
is concentrated in two consecutive numbers, moreover, for some values, there is
a concentration in exactly one number. For given c > 0, let us denote rc =
min{r ∈ IN : c < rk−1 ln r}. Clearly, c ∈ [(rc − 1)k−1 ln(rc − 1), rk−1

c ln rc). The
authors of [5] established that

– if c > rk−1
c ln rc − 1

2 ln rc then

P(χ(H(n, k, p)) = rc + 1) → 1 as n → ∞;

– if c < rk−1
c ln rc − rc−1

rc
(1 + ln rc) − O

(
k2r1−k

c ln rc

)
then

P(χ(H(n, k, p)) = rc) → 1 as n → ∞;

– if c ∈ [rk−1
c ln rc − rc−1

rc
(1 + ln rc)−O

(
k2r1−k

c ln rc

)
, rk−1

c ln rc − 1
2 ln rc] then

P(χ(H(n, k, p)) ∈ {rc, rc + 1}) → 1 as n → ∞. (1)

So, in many cases we obtain the exact limit distribution of the chromatic number.
Later, the bounds in the third ambiguous case (1) were improved by Ayre, Coja–
Oghlan and Greenhill [2] and by Shabanov [9]. They proved that up to the value
rk−1
c ln rc − 1

2 ln rc − O(1) we still have the chromatic number equal to rc.
The non-sparse case when pnk−1 → +∞ is not studied so well. Krivelevich

and Sudakov showed that if additionally p → 0 then

χ(G(n, p)) ·
(

(k − 1)d
k ln d

)− 1
k−1

P−→ 1 as n → +∞, (2)

where d = p
(
n−1
k−1

)
. But they did not investigate the concentration effect. The

authors of the current paper study the chromatic number of the random hyper-
graph H(n, k, p) for k ≥ 4 [4] and proved the following theorem.

Theorem 1 ([4]). Let k ≥ 4 and ε > 0 be fixed. Denote rp = rp(n) = min{r ∈
IN : c < rk−1 ln r} and c = c(n) = p

(
n
k

)
1
n . Suppose also that c ≤ n

k−1
2k+4−γ for

some positive fixed γ, but c → +∞ as n → ∞. Then we have the following
concentration values for the chromatic number of H(n, k, p):

1. if c ≤ rk−1
p ln rp − 1

2 ln rp − rp−1
rp

− O

(
k2 ln rp

r
k/3−1
p

)
then

P (χ(H(n, k, p)) ∈ {rp, rp + 1}) −→ 1 as n → ∞;



192 Y. A. Demidovich and D. A. Shabanov

2. if c > rk−1
p ln rp − 1

2 ln rp + ε for some fixed positive ε > 0 then

P (χ(H(n, k, p)) ∈ {rp + 1, rp + 2}) −→ 1 as n → ∞.

3. finally, if

c ∈
(

rk−1
p ln rp − 1

2
ln rp − rp − 1

rp
− O

(
k2 ln rp

r
k/3−1
p

)

, rk−1
p ln rp − 1

2
ln rp + ε

]

then
P (χ(H(n, k, p)) ∈ {rp, rp + 1, rp + 2}) −→ 1 as n → ∞.

So, we see almost the same picture as in the sparse case but every time we have
one more value.

1.2 Extremal Problem for Doubly Stochastic Matrices

The key ingredient of the proof of Theorem 1 is some result concerning the
doubly stochastic matrices. Suppose that r ≥ 3 is an integer. Let Mr denote
the set of r × r real-valued matrices M = (mij , i, j = 1, . . . , r) with nonnegative
elements satisfying the following conditions:

r∑

i=1

mij =
1
r
, for any j = 1, . . . , r;

r∑

j=1

mij =
1
r
, for any i = 1, . . . , r. (3)

So, for any M ∈ Mr, the matrix r · M is doubly stochastic. Now, denote the
following functions

Hr(M) = −
r∑

i,j=1

mij ln(r · mij); Er,k(M) = ln

⎛

⎝1 − 2
rk−1

+
r∑

i,j=1

mk
ij

⎞

⎠ . (4)

Denote for c > 0, Gc,r,k(M) = Hr(M)+c·Er,k(M). It is known that if c = c(r, k) is
not too large then Gc,r,k(M) reaches its maximal value at the matrix Jr which has
all entries equal to 1/r2. The first result of this type was obtained by Achlioptas
and Naor in the breakthrough paper [1] for the graph case k = 2. Recently, it
was improved by Kargaltsev, Shabanov and Shaikheeva [6]. For k ≥ 4, Shabanov
[9] proved the following.

Theorem 2 ([9]). There exists an absolute constant d such that if k ≥ 4,
max(r, k) > d and

c < rk−1 ln r − 1
2

ln r − r − 1
r

− O(k2r1−k/3 ln r) (5)

then for any M ∈ Mr, Gc,r,k(M) ≤ Gc,r,k(Jr).

The aim of our work was to generalize Theorems 1 and 2 to the missed case
k = 3.
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1.3 New Results

The first new result of the paper provides the solution for the extremal problem
concerning Gc,r,k in the case k = 3.

Theorem 3. There exists an absolute constant r0 such that if r ≥ r0 and

c < r2 ln r − 1
2

ln r − 1 − r−1/6 (6)

then for any M ∈ Mr, Gc,r,3(M) ≤ Gc,r,3(Jr).

Note that the obtained result is best possible in the following sense: if for some
fixed ε > 0, it holds that c > r2 ln r − 1

2 ln r − 1 + ε then for any large enough r,
there is M ∈ Mr such that Gc,r,3(M) > Gc,r,3(Jr).

Theorem 3 and the second moment method allow us to estimate the chro-
matic number of the random 3-uniform hypergraph from above when p = p(n)
does not decrease too slowly.

Theorem 4. Let 0 < γ < 1/5 be fixed. Denote c = c(n) = p
(
n
k

)
1
n and rp =

rp(n) = min{r ∈ IN : c < rk−1 ln r}. Suppose that c ≤ n
1
5−γ and c → ∞ as

n → ∞. If

c < r2p ln rp − 1
2

ln rp − 1 − r−1/6
p , (7)

then
P (χ (H (n, 3, p)) ≤ rp + 1}) −→ 1 as n → ∞.

Together with a theorem from [4] (see Theorem 1 in [4]) our second theorem
extends Theorem 1 to the missed case k = 3. For c ≤ n

1
5−γ , we obtain the

following values of the chromatic number of a random 3-uniform hypergraph:

1. if c ≤ r2p ln rp − 1
2 ln rp − 1 − r

−1/6
p then

P (χ(H(n, 3, p)) ∈ {rp, rp + 1}) −→ 1 as n → ∞;

2. if c > r2p ln rp − 1
2 ln rp + ε for some fixed positive ε > 0 then

P (χ(H(n, 3, p)) ∈ {rp + 1, rp + 2}) −→ 1 as n → ∞.

3. if c ∈
(
r2p ln rp − 1

2 ln rp − 1 − r
−1/6
p , r2p ln rp − 1

2 ln rp + ε
]

then

P (χ(H(n, 3, p)) ∈ {rp, rp + 1, rp + 2}) −→ 1 as n → ∞.

In the next section we will prove Theorem 3.
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2 Proof of Theorem 3

Note that (3) implies that the total sum of mij is equal to 1. Since Gc,r,3(Jr) =
ln r + c · ln

(
1 − 1

r2

)2, we have

Gc,r,3(Jr) − Gc,r,3(M) = Hr(Jr) − Hr(M) − c (Er,3(M) − Er,3(Jr))

= ln r +
r∑

i,j=1

mij ln(r · mij) + c

⎛

⎝ln

⎛

⎝1 − 2
r2

+
r∑

i,j=1

m3
ij

⎞

⎠ − ln
(

1 − 1
r2

)2
⎞

⎠

=
r∑

i,j=1

mij ln(r2 · mij) − c · ln

(

1 +

∑r
i,j=1 m3

ij − r−4

(
1 − 1

r2

)2

)

. (8)

We need to show that this value is nonnegative for any M ∈ Mr. In fact, we prove
a more precise statement and show that there exist some function a = a(r) > 0
such that given the condition (6) the following inequality holds for any M ∈ Mr,

Gc,r,3(Jr) − Gc,r,3(M) ≥ a(r) ·
r∑

i,j=1

(
mij − 1

r2

)2

. (9)

Our proof strategy follows the proof of Theorem 2 from [9], however we need to
make some changes that allow to extend the result to the case k = 3.

2.1 Row Functions

Let us denote εij = mij − 1/r2. Due to (3), for any i, j = 1, . . . , r, we have

εij ∈
[
− 1

r2
,
1
r

− 1
r2

]
,

r∑

j′=1

εij′ = 0,

r∑

i′=1

εi′j = 0. (10)

Let us also define the following “row” functions: for any i = 1, . . . , r,

Hi(M) =
r∑

j=1

mij ln(r2 · mij) =
r∑

j=1

(
1
r2

+ r2εij

)
ln(1 + r2εij),

Ei(M) =

∑r
j=1 m3

ij − r−5

(
1 − 1

r2

)2 =
(

1 − 1
r2

)−2
⎛

⎝ 3
r2

r∑

j=1

ε2ij +
r∑

j=1

ε3ij

⎞

⎠ . (11)

Clearly,

Hr(Jr) − Hr(M) =
r∑

i=1

Hi(M), Er,3(M) − Er,3(Jr) ≤
r∑

i=1

Ei(M). (12)

Now we are going to estimate the differences Hi(M) − c · Ei(M), i = 1, . . . , r, in
various cases. The value Hi(M) − c · Ei(M) depends only on the i-th row of the
matrix M . The classification of rows is the following. The row Mi = (mij ; j =
1, . . . , r) is said to be
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1. central if
max

j=1,...,r
mij <

1
r

− 1
r
√

ln r
;

2. good if

max
j=1,...,r

mij ∈
[
1
r

− 1
r
√

ln r
,
1
r

− r−11/4

]
;

3. bad if
max

j=1,...,r
mij >

1
r

− r−11/4.

Now let us consider these three types of rows separately. Throughout the
paper we use the estimates from [9] whenever it is possible. We also assume that
r is large enough.

2.2 Central Rows

Proposition 1. For any central row Mi,

Hi(M) − c · Ei(M) ≥ r2

4

∑

j:εij<0

ε2ij +
(
2r

√
ln r + O (r ln ln r)

) ∑

j:εij≥0

ε2ij . (13)

Proof. First, let us estimate the value c ·Ei(M). Since every εij < 1
r − 1

r2 − 1
r
√
ln r

and c < r2 ln r, we have

c · Ei(M) = c ·
(

1 − 1
r2

)−2
⎛

⎝ 3
r2

r∑

j=1

ε2ij +
r∑

j=1

ε3ij

⎞

⎠

≤ r2 ln r

(
1 − 1

r2

)−2
⎛

⎝ 3
r2

∑

j:εij<0

ε2ij +
(

3
r2

+
1
r

− 1
r2

− 1
r
√

ln r

) ∑

j:εij>0

ε2ij

⎞

⎠

≤ 4 ln r
∑

j:εij<0

ε2ij +
(
r ln r − r

√
ln r + O(ln r)

) ∑

j:εij>0

ε2ij . (14)

Now proceed to Hi. We need to estimate the value of
(

1
r2 + εij

)
ln(1 + r2εij)

from below. In [9] it was proved that

1. if εij < 0 then (see (34) in [9])
(

1
r2

+ εij

)
ln(1 + r2εij) ≥ εij +

r2

2
ε2ij ; (15)

2. if εij ≥ 0 and εij ≤ 1
r ln r − 1

r2 then (see (34) in [9])
(

1
r2

+ εij

)
ln(1 + r2εij) ≥ εij +

3r ln r

2(1 + 2 ln r/r)
ε2ij . (16)
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Assume that εij > 1
r ln r − 1

r2 . Then
(

1
r2

+ εij

)
ln(1 + r2εij) ≥ εij ln

( r

ln r

)
= εij + εij(ln r − ln ln r − 1)

≥ εij + rε2ij

(
1 − 1

r
− 1√

ln r

)−1

(ln r − ln ln r − 1)

= εij + r ln r · ε2ij

(
1 +

1√
ln r

+ O

(
ln ln r

ln r

))
. (17)

The obtained bounds (15), (16), (17) imply that for all large enough r,

Hi(M) ≥ r2

2

∑

j:εij<0

ε2ij +
(
r ln r + r

√
ln r + O (r ln ln r)

) ∑

j:εij≥0

ε2ij . (18)

Together (14) and (18) provide the required estimate:

Hi(M) − c · Ei(M) ≥ r2

4

∑

j:εij<0

ε2ij +
(
2r

√
ln r + O (r ln ln r)

) ∑

j:εij≥0

ε2ij .

2.3 Good Rows

For good or bad row Mi, its maximal element is very close to 1
r . So, it is conve-

nient to define the value

mi =
1
r

− max
j=1,...,r

mij . (19)

The inequality (28) from [9] estimates the value Hi(M) in terms of the value mi

as follows:

Hi(M) ≥ ln r

r
+ mi ln mi + mi ln

(
r

r − 1

)
− mi. (20)

Note that these bounds hold for any row. We will use it very often in the remain-
ing proof.

Proposition 2. For any good row Mi,

Hi(M) − c · Ei(M) ≥ 1
4
r−11/4 ln r. (21)

Proof. Let us estimate c·Ei(M). For a good row, we have mi ∈ [r−11/4, 1/r
√

ln r],
so mi = o(r−1) and mi = ω(r−3). Suppose that mij0 = 1/r −mi is the maximal
element of Mi. Then (3) implies that

∑
j �=j0

mij = 1/r − mij0 = mi. Thus,
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c · Ei(M) = c ·
(

1 − 1
r2

)−2
⎛

⎝
r∑

j=1

m3
ij − r−5

⎞

⎠ ≤ c ·
(

1 − 1
r2

)−2 r∑

j=1

m3
ij

= c ·
(

1 − 1
r2

)−2
⎛

⎝
(

1
r

− mi

)3

+
r∑

j �=j0

m3
ij

⎞

⎠

≤ c ·
(

1 − 1
r2

)−2 (
1
r3

− 3mi

r2
+

3m2
i

r

)
.

Here we use the fact that
∑r

j �=j0
m3

ij ≤ m3
i . Since mi = o(r) and c < r2 ln r we

obtain that

c · Ei(M) ≤ c ·
(

1
r3

− 3mi

r2
+

3m2
i

r
+ O

(
1
r5

))

≤ ln r

r
− 3mi ln r(1 + o(1)) + O

(
ln r

r3

)
. (22)

The general estimate (20) and the condition mi ≥ r−11/4 imply that

Hi(M) ≥ ln r

r
+ mi ln mi(1 + o(1)) ≥ ln r

r
− 11

4
mi ln r(1 + o(1)). (23)

The bounds (22) and (23) provide the required inequality:

Hi(M) − c · Ei(M) ≥ 1
4
mi ln r(1 + o(1)) + O

(
ln r

r3

)

≥ 1
8
mi ln r ≥ 1

4
r−11/4 ln r.

2.4 Bad Rows

Now it is time to deal with bad rows. Recall that in every bad row Mi there is
an index j0 such that mij0 = maxj=1,...,r > 1

r − r−11/4. The main problem here
is that in this case the difference Hi(M) − c · Ei(M) can be negative. For k ≥ 4,
this negative value can be compensated by the bounds (13), (21) for central and
good rows, if there is at least one non-bad row (see [9]). So, it remains to consider
the case when all the rows are bad. Unfortunately, this is not the way for k = 3.
Here we had to consider all the bad rows simultaneously.

Let D ⊂ {1, . . . , r} denote the set of indices of the bad rows in M . Introduce
the following values:

HD(M) =
∑

i∈D

Hi(M), ED(M) = ln

(

1 +
∑

i∈D

Ei(M)

)

. (24)

The following statement estimates their difference.
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Proposition 3. Under the condition (6) the following inequality holds:

HD(M) − c · ED(M) ≥ −|D| ln r

2r3
+

|D|2 ln r

2r4
+

|D|
r19/6

+ O
(
r−3

)
. (25)

Proof. For Hi(M), i ∈ D, we have the bound (20). So, it remains to estimate
c · ED(M). Again, for any i ∈ D, we consider the maximal element of Mi,

mij0(i) = max
j=1,...,r

mij =
1
r

− mi,

where mi ∈ [0, r−11/4]. Using (11) we get

∑

i∈B

Ei(M) =
(

1 − 1
r2

)−2 ∑

i∈D

⎛

⎝
r∑

j=1

m3
ij − 1

r5

⎞

⎠

=
(

1 − 1
r

)−2 ∑

i∈D

⎛

⎝
(

1
r

− mi

)3

+
∑

j �=j0(i)

m3
ij − 1

r5

⎞

⎠ .

Note that
∑

j �=j0(i)
m3

ij ≤ m3
i = O(r−33/4). Therefore,

∑

i∈B

Ei(M) =
(

1 − 1
r2

)−2 ∑

i∈D

(
1
r3

− 3mi

r2
+

3m2
i

r
− 1

r5
+ O(r−33/4)

)

=
∑

i∈D

(
1
r3

− 3mi

r2
− 1

r5
+ O(r−13/2)

) (
1 +

2
r2

+ O(r−4)
)

.

Now, we have
(

1
r3

− 3mi

r2
− 1

r5
+ O(r−13/2)

) (
2
r2

+ O(r−4)
)

=
2
r5

+ O(r−27/4).

Consequently,

∑

i∈D

Ei(M) =
∑

i∈D

(
1
r3

− 3mi

r2
+

1
r5

+ O(r−13/2)
)

=
|D|
r3

− 3
r2

∑

i∈D

mi +
|D|
r5

+ O(|D|r−13/2). (26)

Now, we want to estimate the square of this expression. Since |D| ≤ r, the last
three summands have the order O(r−15/4). Therefore, (26) implies that

(
∑

i∈D

Ei(M)

)2

=
|D|2
r6

+ O(r−23/4),

(
∑

i∈D

Ei(M)

)3

= O(r−6). (27)
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Now we are ready to estimate c · ED(M). Using (26), (27) and applying Taylor
expansion for the logarithm, we obtain

c · ED(M) = c · ln

(

1 +
∑

i∈D

Ei(M)

)

= c ·
⎛

⎝
∑

i∈D

Ei(M) − 1
2

(
∑

i∈D

Ei(M)

)2

+ O

⎛

⎝

(
∑

i∈D

Ei(M)

)3
⎞

⎠

⎞

⎠

= c ·
(

|D|
r3

− 3
r2

∑

i∈D

mi +
|D|
r5

+ O(|D|r−13/2) − |D|2
2r6

+ O(r−23/4) + O(r−6)

)

= c ·
(

|D|
r3

+
|D|
r5

− |D|2
2r6

− 3
r2

∑

i∈D

mi + O(r−11/2)

)

.

The condition (6) states that c < r2 ln r − 1
2 ln r − 1 − r−1/6. Thus,

c · ED(M) <

(
r2 ln r − 1

2
ln r − 1 − r−1/6

)

×
(

|D|
r3

+
|D|
r5

− |D|2
2r6

− 3
r2

∑

i∈D

mi + O(r−11/2)

)

=
|D| ln r

r
+

|D| ln r

r3
− |D|2 ln r

2r4
− (3 ln r)

∑

i∈D

mi + O

(
ln r

r7/2

)

− |D| ln r

2r3
− |D|

r3
− |D|

r19/6
+ O

(
ln r · r−15/4

)

=
|D| ln r

r
+

|D| ln r

2r3
− |D|2 ln r

2r4
− |D|

r3
− |D|

r19/6
− (3 ln r)

∑

i∈D

mi + O

(
ln r

r7/2

)
.

(28)

Let us complete the proof. Due to (20) we have the following lower bound
for HD(M):

HD(M) ≥ |D| ln r

r
+

∑

i∈D

[
mi ln mi + mi ln

(
r

r − 1

)
− mi

]
.

Using (28), we obtain that

HD(M) − c · ED(M) ≥ −|D| ln r

2r3
+

|D|2 ln r

2r4
+

|D|
r3

+
|D|

r19/6
+ O

(
ln r

r7/2

)

+
∑

i∈D

[
mi lnmi + mi ln

(
r

r − 1

)
− mi + 3mi ln r

]
.

The function f(x) = x ln x + x ln
(

r
r−1

)
− x + 3x ln r is minimized when x =

(r − 1)/r4 ∈ [0, r−11/4). So, the minimal value is attained when mi = (r − 1)/r4

for any i ∈ D. Hence,
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∑

i∈D

[
mi ln mi + mi ln

(
r

r − 1

)
− mi + 3mi ln r

]

≥
∑

i∈D

(
r − 1
r4

(
ln

(
r − 1
r4

)
+ ln

(
r

r − 1

)
− 1 + 3 ln r

))

= −
∑

i∈D

r − 1
r4

= − (r − 1)|D|
r4

= −|D|
r3

+ O(r−3).

This finally implies the required inequality

HD(M) − c · ED(M) ≥ −|D| ln r

2r3
+

|D|2 ln r

2r4
+

|D|
r19/6

+ O
(
r−3

)
.

2.5 Completion of the Proof

It remains to summarize the obtained information. Now everything depends on
the number of bad rows |D| in the matrix M . Let C,G ⊂ {1, . . . , r} denote the
set of indices of central and good rows, respectively. Recall (see (8), (11), (24))
that

Gc,r,3(Jr) − Gc,r,3(M) =
r∑

i=1

Hi(M) − c · ln

(

1 +
r∑

i=1

Ei(M)

)

≥
∑

i∈C∪G

(Hi(M) − c · Ei(M)) + HD(M) − c · ED(M). (29)

Note that it is sufficient to show that Gc,r,3(Jr) − Gc,r,3(M) ≥ b for some b =
b(r) > 0. This also implies the required inequality (9), because

∑r
i,j=1(mij −

r−2)2 < 1.
Let us consider the following four cases.

1. If |D| = 0 then (9) follows from (13) and (21).
2. If |D| ≥ r − r5/6

ln r then (25) implies that the total contribution of bad rows is
positive. Indeed, for large enough r,

HD(M) − c · ED(M) ≥ |D| ln r

2r3

( |D|
r

− 1
)

+
|D|

r19/6
+ O

(
r−3

)

≥ |D| ln r

2r3

(
− 1

r1/6 ln r

)
+

|D|
r19/6

+ O
(
r−3

)
=

|D|
2r19/6

+ O
(
r−3

)
>

1
3
r−13/6.

Hence, again (9) follows from (13) and (21).
3. Suppose |D| < r − r5/6

ln r , but |G| ≥ r4/5. Then

HD(M) − c · ED(M) ≥ −|D| ln r

2r3
+ O

(
r−3

) ≥ − ln r

2r2
+ O

(
r−3

)
> − ln r

r2
.
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The inequality (29) and the obtained bounds (13), (21) imply that for large
enough r,

Gc,r,3(Jr) − Gc,r,3(M) ≥
∑

i∈G

(Hi(M) − c · Ei(M)) + HD(M) − c · ED(M)

≥ r4/5 1
4
r−11/4 ln r − ln r

r2
≥ 1

5
r−39/20 ln r.

4. It remains to consider the situation when |G| < r4/5 and 0 < |D| < r − r5/6

2 ln r .
In this case there is at least r5/6

ln r − r4/5 central rows in M . Suppose that
i1, i2 ∈ D are two indices corresponding to bad rows. Recall that any bad
row has an element greater than r−1 − r−11/4. Suppose that mi1j1 and mi2j2

are both greater than 1/r − r−11/4. Then it is straightforward to verify that
the double stochastic property (3) implies that j1 	= j2. So, the maximal
elements of bad rows should be in different columns of matrix M . Without
loss of generality we may assume that these elements are diagonal, i.e. for
any i ∈ D,

mii = max
j=1,...,r

mij >
1
r

− r−11/4.

Recall the notation εij = mij − 1
r2 . If j ∈ D then due to (10) we obtain that

∑

i∈C

εij = −εjj −
∑

i∈G∪D;i�=j

εij .

We know that εjj = mjj − 1
r2 ≥ 1

r − 1
r2 − r−11/4 and any other element is at

least −r−2. Hence,
∑

i∈C

εij ≤ −1
r

+
1
r2

+ r−11/4 +
1
r2

(|G| + |D|) .

In our case |G| < r4/5 and |D| < r − r5/6

ln r , so, we get

∑

i∈C

εij ≤ −1
r

+
1
r2

+ r−11/4 +
1
r2

(
r4/5 + r − r5/6

ln r

)

= −r−7/6

ln r
(1 + o(1)) < −r−7/6

2 ln r
< 0.

Hence, the sum over all negative summands is also less than − r−7/6

2 ln r :

∑

i∈C:εij<0

εij ≤ −r−7/6

2 ln r
.

By Cauchy–Schwarz inequality

∑

i∈C:εij<0

ε2ij ≥ 1
r

(
r−7/6

2 ln r

)2

=
r−10/3

4(ln r)2
. (30)
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Finally, by using (13), (21), (25), (29) and (30) we establish the required
estimate

Gc,r,3(Jr) − Gc,r,3(M) ≥
∑

i∈C

(Hi(M) − c · Ei(M)) + HB(M) − c · EB(M)

≥
∑

i∈C

r2

4

∑

j:εij<0

ε2ij − |D| ln r

2r3
+

|D|2 ln r

2r4
+

|D|
r19/6

+ O
(
r−3

)

≥ r2

4

∑

i∈C

∑

j:εij<0

ε2ij − |D| ln r

2r3
+ O

(
r−3

)

≥ r2

4

∑

i∈C

∑

j∈D:εij<0

ε2ij − |D| ln r

2r3
+ O

(
r−3

)

=
r2

4

∑

j∈D

∑

i∈C:εij<0

ε2ij − |D| ln r

2r3
+ O

(
r−3

)

≥ r2

4
|D| · r−10/3

4(ln r)2
− |D| ln r

2r3
+ O

(
r−3

)

= |D| · r−4/3

16(ln r)2
(1 + o(1)) + O

(
r−3

)
.

Since |D| ≥ 1, the obtained value is at least r−4/3

16 ln2 r
(1 + o(1)).

Theorem 3 is proved.

3 Sketch of the Proof of Theorem 4

In the last section we give a short sketch of the proof of Theorem 4. We just
follow the proof of Theorem 1 which can be found in [4]. The general scheme
was first developed by Coja-Oghlan, Panagiotou and Steger [3] in the case of
graphs.

First of all, we have to estimate from below the probability that the chromatic
number of the random hypergraph does not exceed rp. By using the second
moment method and Theorem 3 we prove the following lemma.

Lemma 1. Suppose pn2 → +∞ and p → 0 as n → +∞. If the condition (7)
holds then for all large enough n,

P (χ(H(n, 3, p)) ≤ rp) ≥ n−2r2
p .

Lemma 1 helps to estimate the proportion of vertices of our hypergraph that
can be properly colored with rp colors. Let Vn denote the set of vertices of
H(n, 3, p). The following statement is true.

Lemma 2. Suppose that the conditions of Lemma 1 hold. Then with probability
tending to 1, there exists a vertex subset U0 with size at most 2rp

√
n ln n such

that the chromatic number of the subhypergraph induced by H(n, 3, p) on Vn \U0

does not exceed rp.
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Finally, we need to estimate the number of edges in any small induced sub-
hypergraph in H(n, k, p). Here we prove the following.

Lemma 3. Suppose the conditions of Theorem 4 hold. Suppose that fixed δ =
δ(γ) > 0 satisfies the inequality

δ <
25γ

18 + 60γ
.

Then with probability tending to 1, any vertex subset U in H(n, 3, p) with size
at most rp

√
n(ln n) has at most

(
2
3 − δ

) |U | edges inside.

Theorem 4 is easily deduced from Lemmas 1–3. So, we know that with prob-
ability tending to 1, almost whole hypergraph can be properly colored with rp

colors. The remained small vertex subset U has size at most 2rp

√
n ln n. There-

fore, there is a small number of edges inside U .
Now we can increase this set U in such a way that there are no edges in

the set of neighbors of the extended set U ′ and the size of U ′ is still less than
rp

√
n(ln n). By Lemma 3 the set U ′ can be properly colored with colors {1, 2},

its neighborhood W—with reserved color rp + 1 and the remaining subset Vn \
(U ∪W )—with colors {1, 2, . . . , rp}. Clearly, this is a proper coloring of H(n, 3, p)
with rp + 1 colors. Theorem 4 is proved.
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On Asymptotic Power of the New Test
for Equality of Two Distributions

Viatcheslav Melas(B) and Dmitrii Salnikov
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Abstract. The paper introduces a new test for equality of two distribu-
tions in a class of models. We proved analytically and by stochastic sim-
ulation that the test possesses high efficiency. For the case of normal and
Cauchy distributions that differ only by shift the asymptotic power of the
test appears to be approximately the same as for the Wilcoxon-Mann-
Whitney, the Kolmogorov-Smirnov and the Anderson-Darling tests. But
if the distributions differ by scale parameters the power of the new test
is considerably better.

Keywords: Test for equality of two distributions · Asymptotic
power · Cauchy distribution · Normal distribution

1 Formulation of the Problem

Let us consider the classical problem of testing hypothesis on the equality of two
distributions

H0 : F1 = F2 (1)

against the alternative
H1 : F1 �= F2 (2)

in the case of two independent samples X = (X1, . . . , Xn) and Y = (Y1, . . . , Ym)
with the distributions functions F1 and F2 respectively.

It is well known (see e.g. [1]) that in the case when both distributions differ
only by the means and are normal the classical Student test has a few optimal
properties. If the distributions are not normal but still differs only by means
a widely popular Wilcoxon-Mann-Whitney (WMW) U-statistic is often used
instead. However, it can be shown that if two normal populations differ only
in variances, the power of WMW test is very low. If distributions are arbitrary
there are some universal techniques such as tests by Kolmogorov-Smirnov and
Cramer-von Mises (see [2]) and the Anderson-Darling test (see [3]) that can be
applied but in many cases these tests can be not powerful.

Recently, Zech and Aslan [4] suggested the test based on U-statistics with
the logarithmic kernel and provided its numerical justification for one and many
dimensional cases in comparison with a few alternative techniques. However, to
the best authors knowledge there are no analytical results about its asymptotic
power. Here we introduce a similar but different test and provide a few analytical
results on its power.
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2 The New Test and Its Statistical Motivation

Assume that the distribution functions F1 and F2 belongs to the class of distri-
bution functions of random variables ξ, such that

E[ln2(1 + ξ2)] < ∞. (3)

Many distributions and, in particular, the Cauchy distribution have this prop-
erty.

Among all distributions with given left hand side of (3) the Cauchy’s one has
the maximum entropy.

Consider the following test

ΦA = − 1
n2

∑

1≤i<j≤n

g(Xi − Xj), ΦB = − 1
m2

∑

1≤i<j≤m

g(Yi − Yj), (4)

ΦAB = − 1
nm

n∑

i=1

m∑

j=1

g(Xi − Yj), Φnm = ΦAB − ΦA − ΦB , (5)

where
g(u) = − ln(1 + |u|2),

g(x) is under a constant term precision the logarithm of the density of the
standard Cauchy distribution. (Note that Zech and Aslan (2005) took g(u) =
− ln(|u|)).

We would like to have a test that is appropriate for the case where the basic
distribution belongs to a rather general class of distributions and the alternative
distribution differs only by shift and scale transformations.

In particular, we consider the class of distributions satisfying (3), but the
approach can be generalized for other classes of distributions.

Consider the class of distributions given by the property (3). Note that if the
parameters are known the test based on likelihood ratio is the most powerful
among tests with given parameters.

The test suggested above can be considered as an approximation of logarithm
of this ratio for the Cauchy distribution. We suppose that it will be very efficient
for all distributions with property (3).

3 The Analytical Study of Asymptotic Power

Let us consider the case of two distributions having the property (3) and, in
particular, the two that differ only by a shift. To simplify notations assume that
m = n. The case m �= n is similar. Now the criterion (4)–(5) assumes the form

Tn = Φnn =
1
n2

n∑

i,j=1

ln(1 + (Xi − Yj)2) − 1
n2

∑

1≤i<j≤n

ln(1 + (Xi − Xj)2) (6)
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− 1
n2

∑

1≤i<j≤n

ln(1 + (Yi − Yj)2). (7)

Denote by C(u, v) the Cauchy distribution with the density function

v/(π(v2 + (x − u)2)).

Let f(x) denotes the density of F1. Denote

Jh =
∫

R

−g(x − y − |h|/√
n)f(x)f(y)dxdy,

where g(u) = − ln(1 + |u|2).
By expending the function g(u) = ln(1+|u|2) into the Taylor series we obtain

that for arbitrary density function f(x) there exists the finite limit

J∗(h) = limn→∞n(Jh − J0) (8)

and it is equal to

(1/2)h2

∫

R

g′′
θ (x − y − θ)f(x)f(y)dxdy|θ=0.

(Note that the differentiation under integral is justified since the derivative
g′′

θ (x − y − θ)|θ=0 is less than 2.) That is

J∗(h) = h2

∫

R

1 − (x − y)2

(1 + (x − y)2)2
f(x)f(y)dxdy.

Denote
b̄ =

√
J∗(h)/h2.

The basic analytical result of the present paper is the following

Theorem 1. Consider the problem of testing hypothesis on the equality of two
distributions (1)–(2) where both functions have the property (3). Then

(i) under the condition n → ∞ the distribution function of nTn converges under
H0 to that of the random variable

(aL)2, (9)

where L has the normal distribution with zero expectation and variance equal
to 1, a > 0 is some number.

(ii) Let F1(x) = F (x), F2 = F (x + θ), where F is an arbitrary distribution
function that is symmetric around a point and possess property (3), θ =
h/

√
n, h is an arbitrary given number. Then the distribution function of

nTn converges under H1 to that of the random variable

(aL + b)2,
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where b = 0 for the case of H0 and b = b̄h for H1. In this case the power of
the criterion Tn with significance α is asymptotically equal to that is given
by the formula

Pr{L ≥ z1−α/2 − b̄h/a} + Pr{L ≤ −z1−α/2 − b̄h/a},

where z1−α/2 is such that

Pr{L ≥ z1−α/2} = α/2.

If F1 = C(ν, 1), F2 = C(ν + θ, 1) then b = h/3.

Note that the analytical presentation for the coefficient a is a difficult problem
that is not solved up to now. However this coefficient can be easily found by
stochastic simulation. In the case of Cauchy distribution we found a heuristic
formula 3a2 = J0, that means a =

√
(2/3) ln 3. This formula provide a very exact

approximation for empirical power (see Tables 1, 2 and 3 in the next section).
Thus in the case of Cauchy distributions with scale parameter equal to 1 the

power of the criterion Tn with significance α is approximately equal to

Pr{L ≥ z1−α/2 − (1/
√

6 ln 3)h} + Pr{L ≤ −z1−α/2 − (1/
√

6 ln3)h}.

The proof of the theorem is given in the Appendix.

4 Simulation Results

In this section we present numerical results of the efficiency of new criterion in
comparison with a few alternative criteria.

At the Tables 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11 and 12 results for cases n = 100,
500, 1000 and different values of h with α = 0.05 are given for normal and Cauchy
distributions that differ either by shift or by scale parameters. The critical values
were calculated in two ways: by simulation of the initial distribution and by
random permutations (we used 800 random permutation in all cases). It worth
to be noted that the results are very similar. Since the permutation technique is
more universal, it can be recommended for practical applications.

Note that in all these cases when the distributions differ only in the shift
parameters the power of Tn and that of the Wilcoxon-Mann-Whitney, the Kol-
mogorov-Smirnov and the Anderson-Darling tests were approximately equal to
each other. It can be pointed out also that if the variances are not standard
but are known we should simply make the corresponding normalisation. But for
the cases where the distributions differ in scale parameters the Wilcoxon-Mann-
Whitney is not appropriate at all and the power of the Kolmogorov-Smirnov and
the Anderson-Darling tests is considerably lower.
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Table 1. Cauchy distribution, X ∼ C(0, 1), Y ∼ C(h/
√
n, 1), n = 100

h Tn, perm Tn, sim formulae wilcox.test ks.test ad.test

1 6.4 6.3 6.8 6.6 6.3 7.1

2 10.1 10.6 12.2 11.9 11.1 11.6

3 19.6 20.3 21.5 20.5 20.2 20.7

5 50.9 50.5 49.5 48.5 53.1 52.2

7 82 82.3 77.8 77.2 83.6 80.7

9 96.7 96.8 93.9 91.5 96.5 95.2

Table 2. Cauchy distribution, X ∼ C(0, 1), Y ∼ C(h/
√
n, 1), n = 500

h Tn, perm Tn, sim formula wilcox.test ks.test ad.test

1 5.8 6.1 6.8 6.4 6.4 7.1

2 11.6 11.6 12.2 12.6 13.9 12.2

3 21 21.8 21.5 22.2 24.3 22.8

5 50.9 51 49.5 48 57.9 50.3

7 82.2 82.4 77.8 75.6 85.9 81.1

9 96.2 96.5 93.9 93.2 97.2 96.0

Table 3. Cauchy distribution, X ∼ C(0, 1), Y ∼ C(h/
√
n, 1), n = 1000

h Tn, perm Tn, sim formula wilcox.test ks.test ad.test

1 6.3 6 6.8 6.8 8.1 6.8

2 11.4 11.9 12.2 12.9 13.4 12.9

3 21 20.9 21.5 22.8 26.2 22.2

5 53.6 53.6 49.5 50.8 59.6 54.2

7 84 84.5 77.8 79.5 87.6 84.4

9 96.6 96.6 93.9 93.2 98.3 96.3

Table 4. Cauchy distribution, X ∼ C(0, 1), Y ∼ C(0, 1 + h/
√
n), n = 100

h Tn, perm Tn, sim wilcox.test ks.test ad.test

2 10.6 11.9 5.4 5.4 6.9

4 27.6 29.8 5.5 8.7 11.3

6 49.4 53.6 5.5 15.9 22.2

8 68.8 73.5 5.5 25 37.7

10 84.2 87.1 5.2 36.4 55.4



On Asymptotic Power of the New Test for Equality of Two Distributions 209

Table 5. Cauchy distribution, X ∼ C(0, 1), Y ∼ C(0, 1 + h/
√
n), n = 500

h Tn, perm Tn, sim wilcox.test ks.test ad.test

2 9.4 10 4.5 6.3 6.2

4 28.5 30.6 4.8 14 12.3

6 54.5 56.5 5 26.1 29.7

8 79.5 80.5 5.2 43.3 51.0

10 93 94 5.2 62.2 74.2

Table 6. Cauchy distribution, X ∼ C(0, 1), Y ∼ C(0, 1 + h/
√
n), n = 1000

h Tn, perm Tn, sim wilcox.test ks.test ad.test

2 10.2 10.5 5 7.6 7.3

4 32.4 33.8 5.2 13.8 14.9

6 61.1 62.8 5.2 27.9 32.8

8 84.8 85.6 5.2 47.4 59.7

10 96.1 97.1 5.4 67.9 82.8

Table 7. Normal distribution, X ∼ N(0, 1), Y ∼ N(h/
√
n, 1), n = 100

h Tn, perm Tn, sim wilcox.test ks.test ad.test

1 11.1 11.3 12.5 9.5 12.2

2 29.3 29 31.1 20.5 29.6

3 52.4 53.4 55.8 42 55

4 77.5 77.5 80.6 64.9 78.9

5 91.9 92.5 93.1 84.7 93.1

Table 8. Normal distribution, X ∼ N(0, 1), Y ∼ N(h/
√
n, 1), n = 500

h Tn, perm Tn, sim wilcox.test ks.test ad.test

1 9.2 8.9 9.6 8.3 9.0

2 23.9 23.9 26.3 20.6 25.4

3 47.3 48.9 51.7 41.4 49.7

4 75.3 75.1 77.8 66.9 76.9

5 91.1 91 92.8 86.1 92.6



210 V. Melas and D. Salnikov

Table 9. Normal distribution, X ∼ N(0, 1), Y ∼ N(h/
√
n, 1), n = 1000

h Tn, perm Tn, sim wilcox.test ks.test ad.test

1 11 11.3 11.5 10 11.6

2 26.4 27.4 28.5 22 27.7

3 51.3 51.6 54.2 44.6 52.9

4 76.7 77 79.3 68.9 77.9

5 91.6 91.2 92.7 86.6 92.1

Table 10. Normal distribution, X ∼ N(0, 1), Y ∼ N(0, 1 + h/
√
n), n = 100

h Tn, perm Tn, sim wilcox.test ks.test ad.test

1 8.1 8.7 6.4 5.3 7.3

2 15 17.4 6.3 7.2 12.7

3 30.5 34.2 6.6 10.7 24.0

4 50.6 57.1 6.7 16.7 39.9

5 70.8 76.7 6.5 24.8 59.9

Table 11. Normal distribution, X ∼ N(0, 1), Y ∼ N(0, 1 + h/
√
n), n = 500

h Tn, perm Tn, sim wilcox.test ks.test ad.test

1 8.3 8.4 5 7.4 7.7

2 15.4 16.7 5.1 10.3 12.8

3 33.2 34.7 5.4 16.4 28.3

4 60 63.3 5.6 25.3 52.6

5 83.1 86.3 5.5 40.4 78.1

Table 12. Normal distribution, X ∼ N(0, 1), Y ∼ N(0, 1 + h/
√
n), n = 1000

h Tn, perm Tn, sim wilcox.test ks.test ad.test

1 6.7 6.9 5.4 6 6.7

2 15.1 16.4 5.5 9.9 13.1

3 33.2 36 5.4 16.1 30.6

4 62.2 64 5.6 27.5 56.8

5 84.6 86.6 5.4 43.6 81.1



On Asymptotic Power of the New Test for Equality of Two Distributions 211

5 Conclusion

In this paper we suggested a new test for equality of two distributions. In a wide
class of distributions it was proved that the limiting distribution is the square
of a Normal distribution. It allows to find asymptotic power analytically for the
case of distributions that differ only by shift up to unknown parameter that can
be found by stochastic simulation. The high efficiency of the test was confirmed
by stochastic simulations.

Acknowledgments. The authors are indebted to professor Yakov Nikitin for the help
in calculating the integrals. Work of Viatcheslav Melas was supported by RFBR (grant
N 20-01-00096).

6 Appendix

Proof of Theorem 1. Let us consider the test (4)–(5) with the function g(u) =
−u2 that is the logarithm of the density of the standard Normal distribution.

Lemma 1. For g(x) = x2 the following identity holds

Φnn = (x̄ − ȳ)2

where

x̄ = (
n∑

i=1

Xi)/n, ȳ = (
n∑

i=1

Yi)/n.

Denote

Z = (X,Y ) = (X1, . . . , Xn, Y1, . . . , Yn), V (Z) =
1
2

2n∑

i=1

2n∑

j=1

(Zi − Zj)2.

The proof follows from the known formula [see e.g. [5], p. 296]

1
n(n − 1)

∑

1≤i<j≤n

(Xi − Xj)2 =
1

(n − 1)

n∑

i=1

(Xi − x̄)2 (10)

and the obvious identity

2n∑

i=1

2n∑

j=1

(Zi −Zj)2 =
n∑

i,j=1

(Xi −Xj)2+
n∑

i,j=1

(Yi −Yj)2+2
n∑

i=1

n∑

j=1

(Xi −Yj)2, (11)

by direct but non trivial calculations.
Really, let us use the standard notation

S2
x =

1
(n − 1)

n∑

i=1

(Xi − x̄)2
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And S2
y and S2

z will be understood in the similar way. Denote

Sxy =
1
n2

n∑

i=1

n∑

j=1

(Xi − Yj)2.

Note that due to formula (10) for X replaced by Z

V (Z) = 2n[
n∑

i=1

(Xi−(x̄+ȳ)/2)2+
n∑

j=1

(Yi−(x̄+ȳ)/2)2] = 2n(n−1)(S2
x+S2

y)+n2(x̄−ȳ)2.

(12)
From (10) and (11) we obtain

n2Sxy = V (Z) − n(n − 1)(S2
x + S2

y). (13)

Therefore
Sxy =

1
n

(n − 1)(S2
x + S2

y) + (x̄ − ȳ)2,

and we obtain

Φnn = Sxy − 1
n

(n − 1)(S2
x + S2

y) = (x̄ − ȳ)2.

Thus Lemma 1 is proved. It follows from this lemma, that the criterion Φnn in
this case is equivalent to the criterion (x̄ − ȳ)2.

Let us turn to the proof of the theorem.
Assume that either H0 or H1 holds. Then due to the law of large numbers

for U−statistics [5] each of the sums

ΦAB =
1
n2

n∑

i,j=1

ln(1 + (Xi − Yj)2),

ΦA + ΦB =
1
n2

∑

1≤i<j≤n

ln(1 + (Xi − Xj)2) +
1
n2

∑

1≤i<j≤n

ln(1 + (Yi − Yj)2)

tends to J0.
Moreover,

ΦAB = J0 + o(n2),

ΦA + ΦB = J0(1 − 1
n

) + o(n2).

Note that
nTn = n[ΦAB − J0] − n[ΦA − 1

2
J0] − n[ΦB − 1

2
J0].

Let us apply the limit theorem for U -statistics (see Theorem 7.1 [5]) to each of
the three terms in brackets. We obtain that nTn tends to a random variable with
a finite variance. Note that the conditions of the limit theorem are fulfilled for
distributions F1 with the property (3).
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Note that 0 ≤ ln(1 + x2) ≤ x2. By this reason ΦAB is between 0 and Sxy.
Due to theorem about the mean it is equal to cnSxy, 0 < cn < 1 and cn tends
to a constant c with n → ∞. In a similar way, ΦA + ΦB = c1n( n

n−1 (S2
x + Sy)2)

and c1n tends to c1 while c1 = c.
Let C be an arbitrary positive number,

X̃ = (X̃1, . . . , X̃n), Ỹ = (Ỹ1, . . . , Ỹn),

where X̃i = Xi, if |Xi| ≤ C and X̃i = C if Xi > 0, X̃i = −C if Xi < 0 otherwise.
And Ỹi are determined similarly.

Consider the function

n{ 1
n2

n∑

i,j=1

ln(1 + (X̃i − Ỹj)2 − 1
n2

∑

i<j

ln(1 + (X̃i − X̃j)2)− (14)

1
n2

∑

i<j

ln(1 + (Ỹi − Ỹj)2)}. (15)

Due to the presentations for ΦAB , ΦA and ΦB derived above it can be checked
that there exists a value tn that depends on X̃ and Ỹ and numbers Bn such that
it is equal to

t(
n∑

i=1

X̃i/
√

n −
n∑

i=1

Ỹi/
√

n)2 + Bn, (16)

and Bn is o(1).
Consider expression (14)–(15). Note that for distributions F1 and F2 sat-

isfying (3) with X̃i and Ỹi replaced by Xi and Yi, respectively, its variance is
bounded from above due to that nTn tends to a random variable with a finite
variance. Therefore the expression (14)–(15) tends with n → ∞ to a random
variable with a finite variance for arbitrary C. Passing to the limit with n → ∞
we obtain due to the central limit theorem that (16) has the limit distribution of
the form (9), where L has the standard normal distribution. Since C is arbitrary
we obtain that the limiting distribution has the required form.
For determining b in the part (ii) of the theorem we now can use the equality

(aL + b)2 = lim
n→∞ nTn, (17)

that follows from the equality between (14)-(15) and (16). If H0 take place we
obviously have b = 0. In the case when H1 take place EnTn is asymptotically
equivalent to

(n(Jh − J0))2 + EnT̂n

where T̂n received from Tn by replacing Yi by Yi − b/
√

n, i = 1, . . . , n and we
obtain by passing to the limit with n → ∞ that

b = b̄h, b̄ =
√

J∗(h)/h2.

And the asymptotic behaviour of the power announced in (ii) follows from the
asymptotic normality of

√
nTn. In order to calculate b̄ in the case when F1 is

the standard Cachy distribution the following result is crucial.
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Lemma 2. If X and Y are independent random variables with the distribution
C(0, 1), then

E ln(1 + (X − Y )2) = ln 9, E ln(1 + (X − Y − θ)2) − ln 9 = ln(1 + θ2/9).

In order to prove this Lemma we need the following integrals
∫

R

ln(1 + (x − y)2)
π(1 + y2)

dy = ln(4 + x2),

∫

R

ln(4 + x2)
π(1 + x2)

dx = ln 9,

([6] 4.296.2 and 4.295.7.)
∫

R

ln(4 + (x + θ)2)
π(x2 + 1)

dx = ln(9 + θ2),

[see [7], formula (2.6.14.19)]. Using these integrals we obtain

E ln(1 + (X − Y − θ)2) − ln 9 = 2
∫

R

∫

R

ln(1 + (x − y − θ)2)
π2(1 + x2)(1 + y2)

dxdy − ln 9

=
∫

R

ln(4 + (y + θ)2)
π(1 + y2)

dy − ln 9 = ln(9 + θ2) − ln 9 = ln(1 + θ2/9).

Submitting here θ = 0 we obtain both formulas of the Lemma. Note that θ2 =
nh2 and

lim
n→∞ n ln(1 + θ2/9) = (1/9)h2.

Therefore we obtain b̄ = 1/3 that completes the proof of the theorem.
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Abstract. A first investigation of high-dimensional low-sample-size
(HDLSS) asymptotics, Hall, Marron and Neeman (2005) discovered a
surprisingly rigid geometric structure. A sample of size k taken from
the standard m-dimensional normal distribution is for large m close to
the vertices of the k-dimensional simplex in m-dimensional vector space.
It follows from the analysis of three geometric statistics: the length of
an observation, the distance between any two independent observations
and the angle between these vectors. We generalize and refine the results
constructing the second order Chebyshev-Edgeworth expansions under
assumption that the data dimension is random and different scaling fac-
tors are chosen.

Keywords: HDLSS data · Chebyshev-Edgeworth expansions ·
Random dimension · Student’s t-distribution · Laplace approximation

1 Three Geometric Statistics of Gaussian Vectors

We continue to study properties of high-dimensional Gaussian random vectors.
In our earlier papers Christoph, Prokhorov and Ulyanov [8] and Bobkov, Naumov
and Ulyanov [5] two-sided bounds were constructed for a probability density
function of the distance of a Gaussian random element Y with zero mean from
a point a in a Hilbert space H. We get new results for basic geometric statistics
connected with high-dimensional random normal vectors.

Let X1 = (X1,1, ...,X1,m)T ,..., Xk = (Xk,1...,Xk,m)T be a random sample.
In a high-dimension low-sample-size (HDLSS) data it is assumed that dimen-

sion m tends to infinity and sample size k is fixed.
One of the first investigation of HDLSS data was done in Hall, Marron and

Neeman (2005) [14]. It became the basis of research in high-dimensional math-
ematical statistics. See a recent survey on HDLSS asymptotics and its applica-
tions in Aoshima et al. [1]. Further development see e.g. in Fujikoshi, Ulyanov
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and Shimizu [12] when both m and k may tend to infinity. This is an important
framework of the current data analysis called Big data. In [14] it was discovered
a surprisingly rigid geometric structure. A sample of size k taken from the stan-
dard m-dimensional normal distribution is close for large m to the vertices of
the k-dimensional simplex in R

m. It follows from the analysis of three geometric
statistics:

the length ||Xi||m of an observation,

the distance ||Xi − Xj ||m between any two independent observations,
and the angle θm = ang(Xi,Xj) between these vectors.

We generalize and refine the results constructing the second order Chebyshev-
Edgeworth expansions under assumption that the data dimension is random and
different scaling factors are chosen.

In case of dimH < ∞ we consider a sample of size k when the dimension of
the observations is a random variable Nn with values in N+ = {1, 2, . . .}.

The present work continues our investigations in Christoph and Ulyanov [9]
on these three geometric statistics of Gaussian vectors with randomly distributed
dimension Nn which depends on parameter n ∈ N+ and Nn → ∞ in prob-
ability as n → ∞. Let the vectors X1, ...,Xk and N1, N2, ... be defined on
one and the same probability space and it is assumed that they are indepen-
dent. If Tm := Tm (X1, ...,Xk) is some statistic of the vectors X1, ...,Xk with
non-random dimension m ∈ N+ then the random variable TNn

= TNn
(ω) is

defined as:

TNn
(ω) := TNn(ω) (X1(ω), ...,Xk(ω)) , ω ∈ Ω and n ∈ N+.

Therefore, the statistics TNn
based on statistics Tm are constructed from the

sample {X1, ...,Xk}, where these vectors have the dimension Nn.
In [9], the distribution function of the normalized angle θm = ang(Xi,Xj)

was approximated by a second order Chebyshev-Edgeworth expansion with a
bound ≤ Cm−2 for all m ∈ N+. Furthermore, the fixed dimension m of the
Gaussian vectors was substituted by a random number Nn and expansions for
statistics θNn

were proved.
A natural question arises whether similar results hold for the length ||Xi||Nn

and the distance ||Xi −Xj ||Nn
of Gaussian vectors with random dimension Nn.

Two cases of random dimensions (or random sample sizes) Nn are considered
as e.g. in Bening, Galieva and Korolev [2], Christoph, Monakhov and Ulyanov [7]
and Christoph and Ulyanov [9]:

i) The random dimension Nn = Nn(r) ∈ N+ has negative binomial distribution
displaced by 1 with probability of success 1/n, positive parameter r > 0 and
probabilities

P(Nn(r) = j) =
Γ (j + r − 1)
Γ (j)Γ (r)

(
1
n

)r (
1 − 1

n

)j−1

, j ∈ N+. (1)
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ii) The random dimension Nn = Nn(s) ∈ N+ is discrete Pareto-like distributed
with parameters n ∈ N+, s > 0 and distribution function

P(Nn(s) ≤ k) =
(

k

s + k

)n

where Nn(s) = max
1≤j≤n

Yj(s), (2)

and Y (s), Y1(s), Y2(s), ..., are independent discrete Pareto II distributed ran-
dom variables with the common distribution

P
(
Y (s) ≤ k

)
=

k

s + k
and P(Y (s) = k) =

s

(s + k) (s + k − 1)
, k ∈ N+.

(3)
The discrete Y (s) on integers is the discretized continuous Pareto II (Lomax)
random variable, see Buddana and Kozubowski [6].

Both cases of random dimensions of the Gaussian vectors are also interesting
because ENn(r) = r(n − 1) + 1 < ∞ and ENn(s) = ∞, which has an influence
on the normalization factors.

The rest of the paper is organized as follows: In Sect. 2, Chebyshev-Edgeworth
expansions are proved for the geometric statistics of Gaussian vectors with fixed
dimension m. Section 3 presents the transfer theorem for results with fixed sam-
ple size (in our case the dimension of the vectors) m to those with random
sample size Nn. The main results are given in Sects. 4 and 5 when the random
sample size is negative binomial Nn(r) or discrete Pareto-like Nn(s) distributed,
respectively. In Sect. 6 the main results are proved.

2 Approximation for Geometric Statistics
of m-Dimensional Normal Vectors

Let Xi = (Xi,1, ...,Xi,m)T ,..., Xj = (Xj,1...,Xj,m)T be m-dimensional vectors
chosen from a sample {X1, ....,Xk} of normal distribution N (0m, Im) with mean
vectors EXk = 0m and covariance matrix Im for 1 ≤ i < j ≤ k ≤ m.

The length of the vector Xj is defined by the Euclidean distance || · ||m:

||Xi||m = S1/2
m with Sm =

∑m

k=1
X2

i,k . (4)

and similarly the distance ||Xi − Xj ||m between any two independent vectors

||Xi − Xi||m =
∑m

k=1
(Xi,k − Xj,k)2 . (5)

The distribution of distance ||Xi − Xj ||m is closely linked to the distribution
of length ||Xi||m, since (Xi,k − Xj,k)/

√
2 has also standard normal distribution

Φ(x). Therefore

P(||Xi − Xj ||m/
√

2 ≤ x) = P(||Xi||m ≤ x). (6)
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The angle θm = ang(Xi,Xj) between these two independent vectors with ver-
tex at the origin and the sample correlation coefficient Rm(Xi,Xj) are
connected by:

cos θm =
||Xi||2m + ||Xj ||2m − ||Xi − Xj ||2m

2 ||Xi||m ||Xj ||m = Rm(Xi,Xj) = Rm. (7)

Hall, Marron and Neeman [14] showed

• for the length ||Xi||m =
√

m + Op(1),
• for the distance ||Xi − Xj ||m =

√
2m + Op(1) with i �= j and

• for the θm = angle ang(Xi,Xj) = 1
2π + Op(m−1/2) with i �= j,

where 1 ≤ i < j ≤ k ≤ m and Op refers to the stochastic boundedness.

The length of the vector Xi drawn from an m-dimensional normal distribu-
tion N (0, Im) is defined in (4) as ||Xi||m = S

1/2
m , where the statistics Sm as

a sum of the squares of m independent standard normal random variables has
chi-square distribution with m degrees of freedom and

Vm =
Sm − m√

2m
(8)

is asymptotically standard normally distributed. With the two-term Chebyshev-
Edgeworth expansions in the central limit theorem for the distribution function
of Vm, the following inequality results for all m ∈ N∣∣∣∣P

(
Vm ≤ x

)
− Φ(x) − ϕ(x)

(λ3 H2(x)
6
√

m
+

λ2
3 H5(x)
72m

+
λ4 H3(x)

24m

)∣∣∣∣ ≤ C

m3/2

where H2(x) = x2 − 1, H3(x) = x3 − 3x, H5(x) = x5 − 10x3 + 15x are the
Chebyshev-Hermite polynomials, skewness λ3 =

√
8 and excess kurtosis λ4 = 12

of S1, see Petrov [19, Sec. 5.7, Theorem 5.18].
Then Sm = m(1 +

√
2/m Vm) and Tayor expansion of (1 + u)1/2 lead to

||Xi||m = S1/2
m =

√
m

(
1 +

1√
2m

Vm − 1
4m

V 2
m +

√
2

8m3/2
V 3

m + ...

)
(9)

Define the statistics

Zm =
√

2
( ||Xi||m√

m
− 1

)
and Z∗

m =
√

2
( ||Xi − Xj ||m√

2m
− 1

)
, (10)

then (6) results in

P
(√

m Zm ≤ x
)

= P
(√

mZ∗
m ≤ x

)
. (11)

It follows from (9) that the statistic T1 =
√

mZm holds

T1 =
√

mZm = Vm −
√

2
4
√

m
V 2

m +
√

1
4m

V 3
m + ... (12)
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Following the sketch of the proof in Kawaguchi, Ulyanov and Fujikoshi [16, The-
orem 1] (The coefficients in the polynomial l2(x) are incorrect.) and calculating
the characteristic function fT1(t), we obtain

fT1(t) = E

[
eitVm

(
1 −

√
2(it)

4
√

m
V 2

m +
(it)
4m

V 3
m +

(it)2

16m
V 4

m + Op(m−3/2)

)]

= e−t2/2

(
1 −

√
2((it)3 + 3(it))

12
√

m
+

(it)6 − 6(it)4 − 9(it)2

144m
)

)
+ O(m−3/2). (13)

This results in the related expansion of the corresponding distribution function:

Proposition 1. Let Xi be a vector drawn from an m-dimensional normal dis-
tribution N (0m, Im). Then with the asymptotic expansion for the distribution of

normalized length Zm =
√

2
( ||Xi||m√

m
− 1

)
we obtain the following inequality for

all m ∈ N:∣∣∣∣P
(√

m Zm ≤ x
)

− Φ(x) − ϕ(x)
( x2 − 4

6
√

2m
+

x5 − 16x3 + 24x

144m

)∣∣∣∣ ≤ C

m3/2
. (14)

Corollary 1. Let Xi and Xj, i �= j be independent random vectors with an m-
dimensional normal distribution N (0m, Im). Due to (11), distribution function

of the normalized distance Z∗
m =

√
2
( ||Xi − Xj ||m√

2m
−1

)
has the same asymptotic

expansion as the distribution of normalized length Zm and inequality (14) with
replacing Zm by Z∗

m.

Second order Chebyshev-Edgeworth expansion of the angle θm =
ang(Xi,Xj) between independent vectors Xi and Xj with vertex at the ori-
gin and the corresponding sample correlation coefficient Rm(Xi,Xj) with com-
putable error bounds of approximation are shown in Christoph and Ulyanov [9,
Section 2], using results of Konishi [17, Sect. 4], Johnson, Kotz and Balakrishnan
[15, Chap. 32], Christoph, Ulyanov and Fujikoshi [11]:

supx

∣∣∣∣P
(√

m Rm ≤ x
)

− Φ(x) − x3 − 5x

4m
ϕ(x)

∣∣∣∣ ≤ B1

m2
(15)

and

supx

∣∣∣P (√
m(θm − π

2
) ≤ x

)
− Φ(x) − x3 − 15x

12m
ϕ(x)

∣∣∣ ≤ B2

m2
. (16)

The estimates (15) and (16) were used in Christoph and Ulyanov [9] to obtain
second order approximations the statistics RNn

and ΘNn
= θNn

−π/2 when the
non-random dimension m of the vectors is replaced be a random dimension
Nn, where the random dimension Nn → ∞ in probability when the parameter
n → ∞.

Analogous results for the statistics ||Xi||m and ||Xi − Xj ||m are proven in
Sects. 4 and 5 below, when the non-random dimension m is replaced be a random
dimension Nn.
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3 Auxiliary Proposition

In this section, expansions for the distribution function of statistics TNn
obtained

from samples with random sample size (here with random dimension Nn of the
considered vectors Xi) are obtained. These depend directly on the expansions
concerning statistics Tm based on non-random samples size m and expansions
regarding the random sample size Nn.

First we formulate the conditions determining expansions for the statistic Tm

with ETm = 0 and the normalized random dimension Nn:

Assumption A: Given γ ∈ {−1/2, 0, 1/2}, a > 1, C1 > 0 and differentiable
functions f1(x), f2(x) with bounded derivatives f ′

1(x), f ′
2(x) such that

supx

∣∣∣P(
mγTm ≤ x

) − Φ(x) − f1(x)√
m

− f2(x)
m

∣∣∣ ≤ C1

ma
for all m ∈ N. (17)

Remark 1. Statistics satisfying Assumption A are shown in (14), (15) and (16).

Assumption B: Given constants b > 0 and C2 > 0, real numbers gn with
0 < gn ↑ ∞ if n → ∞, a distribution function H(y) with H(0+) = 0 and a
function h2(y)of bounded variation that

sup
y≥0

∣∣∣∣P
(

Nn

gn
≤ y

)
− H(y) − h2(y) I{b>1}(b)

n

∣∣∣∣ ≤ C2

nb
for all n ≥ 1. (18)

where IA(x) =
{

1, x ∈ A
0, x /∈ A

defines the indicator function of a set A ⊂ R.

Remark 2. The random dimensions Nn(r) and Nn(s) given in (1) and (2),
respectively, fulfill Assumption B as shown in [9, Propositions 1 and 2], see
(29) and (39) below.

Proposition 2. Let γ ∈ {1/2, 0, −1/2} and both Assumption A and B as well
as the following requirements on H(.) and h2(.) are fulfilled

i : H(1/gn) ≤ c1 g−b
n for b > 0,

ii :
∫ 1/gn

0
y− 1/2dH(y) ≤ c2 g

−b+1/2
n for b > 1/2,

iii :
∫ 1/gn

0
y− 1dH(y) ≤ c3 g−b+1

n for b > 1,

⎫⎪⎬
⎪⎭ (19)

i : h2(0) = 0, and |h2(1/gn)| ≤ c4 n g−b
n for b > 1,

ii :
∫ 1/gn

0
y− 1|h2(y)|dy ≤ c5 n g−b

n for b > 1,

}
(20)

where b is the convergence rate in (18). Then for all n ≥ 1 is valid:

sup
x∈R

∣∣∣P(
gγ

nTNn
≤ x

)
− Gn,2(x)

∣∣∣ ≤ C1 E
(
N−a

n

)
+ (C3Dn + C4)n−b + In, (21)
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where with a > 1, b > 0, f1(z), f2(z), h2(y) are given in (17) and (18)

Gn,2(x) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

∞∫
0

Φ(x yγ)dH(y), 0 < b ≤ 1/2,

∞∫
0

(
Φ(xyγ) + f1(x yγ)√

gny

)
dH(y) =: Gn,1(x), 1/2 < b ≤ 1,

Gn,1(x) +
∞∫
0

f2(x yγ)
gny dH(y) +

∞∫
0

Φ(x yγ)
n dh2(y), b > 1,

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

(22)

Dn = sup
x

∫ ∞

1/gn

∣∣∣∣ ∂

∂y

(
Φ(xyγ) +

f1(xyγ)√
gny

+
f2(xyγ)

ygn

)∣∣∣∣ dy, (23)

In = supx (|I1(x, n)| + |I2(x, n)|) , (24)

I1(x, n) =
∫ ∞

1/gn

(f1(x yγ) I(0,1/2](b)√
gny

+
f2(x yγ)

gn y

)
dH(y), b ≤ 1, (25)

and

I2(x, n) =
∫ ∞

1/gn

(f1(x yγ)
n

√
gny

+
f2(x yγ)
n gny

)
dh2(y), b > 1. (26)

The constants C1, C3, C4 are independent of n.

Proof. The proof is based on the statement in [2, Theorem 3.1] for γ ≥ 0. Since
in Theorems 1 and 2 in the present paper as well as in Christoph and Ulyanov [9,
Theorems 1 and 2] the case γ = −1/2 is also considered, therefore the proof was
adapted to γ ∈ {1/2, 0, −1/2} in [9]. The conditions (19) and (20) guarantee
integration range (0,∞) of the integrals in (22). The approximation function
Gn,2(x) in (22) is now a polynomial in g

−1/2
n and n−1/2. Present Proposition 2

differs from Theorems 1 and 2 in [9] only by the term f1(xyγ) (gny)−1/2 and
the added condition (19ii) to estimate this term. Therefore here the details are
omitted. ��
Remark 3. The domain [1/gn,∞) of integration depends on gn in (23), (25) and
(26). Some of the integrals in (25) and (26) could tend to infinity with 1/gn → 0
as n → ∞ and thus worsen the convergence rates of the corresponding terms.
See (47) in Sect. 6.

In the next two sections we consider the statistics Zm and Z∗
m defined in (10)

and the cases when the random dimension Nn is given in either (1) or (2).
We use Proposition 2 when the limit distributions of scaled statistics ZNn

are
scale mixtures Gγ(x) =

∫ ∞
0

Φ(x yγ)dH(y) with γ ∈ {1/2, 0, −1/2} that can be
expressed in terms of the well-known distributions. We obtain non-asymptotic
results for the statistics ZNn

and Z∗
Nn

, using second order approximations the
statistics Zm and Z∗

m given in (14) as well as for the random sample size Nn. In
both cases the jumps of the distribution function of the random sample size Nn

only affect the function h2(y) in formula (18).
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4 The Random Dimension Nn(r) is Negative Binomial
Distributed

The negative binomial distributed dimension Nn(r) has probability mass func-
tion (1)) and gn = E(Nn(r)) = r (n − 1) + 1. Schluter and Trede [21] (Sect. 2.1)
underline the advantage of this distribution compared to the Poisson distribution
for counting processes. They showed in a general unifying framework

limn→∞ supy |P(Nn(r)/gn ≤ y) − Gr,r(y)| = 0, (27)

where Gr,r(y) is the Gamma distribution function with the identical shape and
scale parameters r > 0 and density

gr,r(y) =
rr

Γ (r)
yr−1 e−ry

I(0 , ∞)(y) for all y ∈ R. (28)

Statement (27) was proved earlier in Bening and Korolev [3, Lemma 2.2].
In [9, Proposition 1] the following inequality was proved for r > 0:

sup
y≥0

∣∣∣∣P
(

Nn(r)
gn

≤ y

)
− Gr,r(y) − h2;r(y) I{r>1}(r)

n

∣∣∣∣ ≤ C2(r)
nmin{r,2} , (29)

where h2;r(y) = 1
2 r gr,r(y)

(
(y − 1)(2 − r) + 2Q1

(
gn y

))
for r > 1,

Q1(y) = 1/2 − (y − [y]) and [y] is the integer part of a value y. (30)

Both Bening, Galieva and Korolev [2] and Gavrilenko, Zubov and Korolev [13]
showed the rate of convergence in (29) for r ≤ 1. In Christoph, Monakhov and
Ulyanov [7, Theorem 1] the Chebyshev-Edgeworth expansion (29) for r > 1 is
proved.

Remark 4. The random dimension Nn(r) satisfies Assumption 2 of the Transfer
Propositions 2 with gn = ENn(r), H(y) = Gr,r(y), h2(y) = h2;r(y) and b = 2.

In (21), negative moment E(Nn(r))−a is required where m−a is rate of con-
vergence of Chebyshev-Edgeworth expansion for Tm in (17). Negative moments
E(Nn(r))−a fulfill the estimate:

E
(
Nn(r)

)−a ≤ C(a, r)
{

n−min{r, a}, r �= a
ln(n)n−a, r = a

for all r > 0 and a > 0. (31)

For r = a the factor ln n cannot be removed. In Christoph, Ulyanov and Bening
[10, Corollary 4.2] leading terms for the negative moments of E

(
Nn(r)

)−p were
derived for any p > 0 that lead to (31).

The expansions of the length of the vector Zm in (14) as well as of the
sample correlation coefficient Rn in (15) and the angle θm in (16) have as limit
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distribution the standard normal distribution Φ(x). Therefore, with gn = ENn(r)
and γ ∈ {1/2, 0, −1/2}, limit distributions for

P

(
gγ

n(Nn(r))1/2−γZNn(r) ≤ x
)

are Gγ(x, r) =
∫ ∞

0

Φ(x yγ)dGr,r(y).

These scale mixtures distributions Gγ(x, r) are calculated in Christoph and
Ulyanov [9, Theorems 3–5]. We apply Proposition 2 to the statistics

TNn(r) = Nn(r)1/2−γ ZNn(r) with the normalizing factor gγ
n = E(Nn(r))γ .

The limit distributions are:

• for γ = 1/2 and r > 0 the Student’s t-distribution S2 r(x) with density

s2 r(x) =
Γ (r + 1/2)√

2 rπ Γ (r)

(
1 +

x2

2 r

)−(r+1/2)

, x ∈ R, (32)

• for γ = 0 the normal law Φ(x),
• for γ = −1/2 and r = 2 the generalized Laplace distributions L2(x) with

density l2(x):

L2(x) =
1
2

+
1
2

sign(x) (1 − (1 + |x|) e−2 |x|) and l2(x) =
(

1
2

+ |x|
)

e−2 |x|.

For arbitrary r > 0 Macdonald functions Kr−1/2(x) occur in the density lr(x),
which can be calculated in closed form for integer values of r.

The standard Laplace density with variance 1 is l1(x) = 1√
2

e−√
2 |x|.

Theorem 1. Let Zm and Nn(r) with r > 0 be defined by (10) and (1), respec-
tively. Suppose that (14) is satisfied for Zm and (29) for Nn(r). Then the fol-
lowing statements hold for all n ∈ N+:

(i) Student’s t approximation using scaling factor
√
ENn(r) by ZNn(r)

supx

∣∣P (√
gn ZNn(r) ≤ x

) − S2r;n(x)
∣∣ ≤ Cr

{
n−min{r,3/2}, r �= 3/2,
ln(n)n−3/2, r = 3/2,

(33)

where

S2r;n(x) = S2r(x) + s2r(x)

(√
2 ((2r − 5)x2 − 8r)

12 (2r − 1)
√
gn

I{r>1/2}(r)

+
96r2x+ (−64r2 + 128r)x3 + (4r2 − 32r + 39)x5

(x2 + 2r)(2r − 1) gn
I{r>1}(r)

)
, (34)
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(ii) Normal approximation with random scaling factor Nn(r) by ZNn(r)

supx

∣∣∣P(
√

Nn(r) ZNn(r) ≤ x) − Φn , 2(x)
∣∣∣ ≤ Cr

{
n−min{r,3/2}, r �= 3/2,
ln(n)n−3/2, r = 3/2,

(35)
where

Φn , 2(x) = Φ(x) +
√

2 r Γ (r − 1/2)
12Γ (r)

√
gn

(x2 − 4)ϕ(x) I{r>1/2}(r)

+
x5 − 16x3 + 24x

144 gn

(
r

r − 1
I{r>1}(r) + ln n I{r=1}(r)

)
. (36)

(iii) Generalized Laplace approximation if r = 2 with mixed scaling factor
g

−1/2
n Nn(2) by ZNn(2)

supx

∣∣∣P(
g−1/2

n Nn(2)ZNn(2) ≤ x
)

− Ln;2(x)
∣∣∣ ≤ C2 n−3/2 (37)

where

Ln;2(x) = L2(x) − 1
3
√

gn

(
1√
2

+
√

2|x| − x2

)
e−2|x|

+
1

33 gn
(12

√
2 x − 15|x|x + 2x3) e−2|x| . (38)

5 The Random Dimension Nn(s) is Discrete Pareto-Like
Distributed

The Pareto-like distributed dimension Nn(s) has probability mass function (2)
and E(Nn(s)) = ∞. Hence gn = n is chosen as normalizing sequence for Nn(s).

Bening and Korolev [4, Sect. 4.3] showed that for integer s ≥ 1

limn→∞ supy>0 |P(Nn(s) ≤ n y) − Hs(y)| = 0.

where Hs(y) = e−s/y
I(0 , ∞)(y) is the continuous distribution function of the

inverse exponential W (s) = 1/V (s) with exponentially distributed V (s) having
rate parameter s > 0. As P(Nn(s) ≤ y), so Hs(y) is heavy tailed with shape
parameter 1 and EW (s) = ∞.

Lyamin [18] proved a bound |P(Nn(s) ≤ n y) − Hs(y)| ≤ C/n and C < 0.37
for integer s ≥ 1.

In [9, Proposition 2] the following results are presented for s > 0:

sup
y>0

∣∣∣∣P
(

Nn(s)
n

≤ y

)
− Hs(y) − h2;s(y)

n

∣∣∣∣ ≤ C3(s)
n2

, for all n ∈ N+, (39)

with Hs(y) = e−s/y and h2;s(y) = s e−s/y
(
s−1+2Q1(n y)

)
/
(
2 y2

)
for y > 0,

where Q1(y) is defined in (30). Moreover

E
(
Nn(s)

)−p ≤ C(p)n−min{p,2}, (40)

where for 0 < p ≤ 2 the order of the bound is optimal.
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The Chebyshev-Edgeworth expansion (39) is proved in Christoph, Mon-
akhov and Ulyanov [7, Theorem 4]. The leading terms for the negative moments
E

(
Nn(s)

)−p were derived in Christoph, Ulyanov and Bening [10, Corollary 5.2]
that lead to (40).

Remark 5. The random dimension Nn(s) satisfies Assumption 2 of the Transfer
Propositions 2 with Hs(y) = e−s/y, h2(y) = h2;s(y), gn = n and b = 2.

With gn = n and γ ∈ {1/2, 0, −1/2}, the limit distributions for

P

(
nγNn(s)1/2−γZNn(s) ≤ x

)
are now Gγ(x, s) =

∫ ∞

0

Φ(x yγ)dHs(y).

These scale mixtures distributions Gγ(x, s) are calculated in Christoph and
Ulyanov [9, Theorems 6–8]. We apply Proposition 2 to statistics

TNn(s) = Nn(s)1/2−γ ZNn(s) with the normalizing factor nγ .

The limit distributions are:

• for γ = 1/2 Laplace distributions L1/
√

s(x) with density

l1/
√

s(x) =
√

s/2 e−√
2 s|x|,

• for γ = 0 the standard normal law Φ(x) and
• for γ = −1/2 the scaled Student’s t-distribution S∗

2 (x;
√

s) with density

s∗
2(x;

√
s) =

1
2
√

2 s

(
1 +

x2

2 s

)−3/2

.

Theorem 2. Let Zm and Nn(s) with s > 0 be defined by (10) and (2), respec-
tively. Suppose that (14) is satisfied for Zm and (39) for Nn(s). Then the fol-
lowing statements hold for all n ∈ N+:

(i) Laplace approximation with non-random scaling factor nγ by ZNn(s):

supx

∣∣P (√
n ZNn(s) ≤ x

) − L1/
√

s;n(x)
∣∣ ≤ Cs n−3/2 (41)

where

L1/
√

s;n(x) = L1/
√

s(x) + l1/
√

s(x)

( √
2

12 s
√

n
(sx2 − 2 (1 +

√
2 s |x|)

+
s

72n

(
x3 |x|√

2 s
− 8x2

s
+

6x

s2
(1 +

√
2 s |x|)

))
(42)

,
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(ii) Normal approximation with random scaling factor
√

Nn(s) by ZNn(r):

supx

∣∣∣P(√
Nn(s) ZNn(s) ≤ x

)
− Φn,2(x)

∣∣∣ ≤ Cs n−3/2, (43)

where

Φn,2(x) = Φ(x) + ϕ(x)

(√
2π(x2 − 4)

24
√

n
+

x5 − 16x3 + 24x

144 s n

)
(44)

(iii) Scaled Student’s t-distribution with mixed scaling factor by ZNn(s)

supx

∣∣∣P(
n−1/2 Nn(s)ZNn(s) ≤ x

)
− S∗

n;2(x)
∣∣∣ ≤ Cs n−3/2, (45)

where

S∗
n;2(x;

√
s) = S∗

2 (x;
√

s) + s∗
2(x;

√
s)

(
−

√
2 (x2 + 8 s)

12(2 s + x2)
√

n

+
1

144n

(
105x5

(2 s + x2)3
+

240x3

(2 s + x2)2
+

72x

2 s + x2

))
. (46)

6 Proofs of Main Results

Proof. The proofs of Theorems 1 and 2 are based on Proposition 2. The structure
of the functions f1, f2 and h2in Assumptions A and B is similar to the structure of
the corresponding functions in Conditions 1 and 2 in [9]. Therefore, the estimates
of the term Dn and of the integrals I1(x, n) and I2(x, n) in (23), (25) and (24)
as well as the validity of (19) and (20) in Proposition 2 when H(y) is Gr,r(y)
or Hs(y) can be shown analogously to the proofs for Lemmas 1, 2 or 4 in [9].
In Remark 3 above it was pointed out that the integrals in (25) and (25) can
degrade the convergence rate. Let r < 1. With |f2(x yγ | ≤ c∗ we get

∫ ∞

1/gn

|f2(x yγ)|
gn y

dGr,r(y) ≤ c∗rr

Γ (r) gn

∫ ∞

1/gn

yr−2dy ≤ c∗rr

(1 − r)Γ (r)
g−r

n . (47)

The additional term f1(xyγ) (gny)−1/2 in (17) in Assumption A is to be
estimated with condition (19ii).

Moreover, the bounds for E(Nn)−3/2 follow from (31) and (40), since a = 3/2
in Assumption A, considering the approximation (14).

The integrals in (22) in Proposition 2 are still to be calculated. Similar inte-
grals are calculated in great detail in the proofs of Theorems 3–8 in [9]. To obtain
(34), we compute the integrals with Formula 2.3.3.1 in Prudnikov et al. [20]

Mα(x) =
rr

Γ (r)
√

2π

∞∫
0

yα−1e−(r+x2/2)ydy =
Γ (α) rr−α

Γ (r)
√

2π

(
1 + x2/(2r)

)−α (48)

for α = r − 1/2, r + 1/2, r + 3/2 and p = r + x2/2.
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Lemma 2 in [9] and
∫ ∞
0

y−1dGr,r(y) = r/(r − 1) for r > 1 lead to (36).
To show (38) we use Formula 2.3.16.2 in [20] with n = 0, 1 and Formula

2.3.16.3 in [20] with n = 1, 2 and p = 2 and q = x2/2.
To obtain (42), we calculate the integrals again with Formula 2.3.16.3 in [20],

with p = x2/2 > 0, q = s > 0, n = 0, 1, 2.
Lemma 4 in [9] and

∫ ∞
0

y−a−1e−s/ydy = s−aΓ (a) for a = 3/2, 2 lead to (44).
Finally, in

∫ ∞
0

fk(x/ yγ)y−2−k/2e−s/ydy we use the substitution s/y = u to
obtain, with (48), the terms in (46). ��
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Abstract. For an isotropic random vector xp in R
p and an independent

of xp random variable η, consider a sample covariance matrix associated
with ηxp. We show that with probability one, the empirical spectral
distribution of this matrix has a weak limit μ and its smallest eigenvalue
tends to the left edge of the support of μ, when p grows at the same rate
as the sample size, quadratic forms of xp satisfy a weak concentration
property, and a uniform integrability condition holds for xp.

Keywords: Random matrices · Bai-Yin theorem

1 Introduction

This paper contributes to the recent literature on the smallest eigenvalues of
sample covariance matrices. Under various dependence and moment conditions,
lower bounds on the smallest eigenvalues are obtained in [1,2,8,10–12,14,17–
19,21,22,24], among others.

In this paper, we consider sample covariance matrices of the form

̂Σn =
1
n

n
∑

k=1

η2
kxpkx�

pk,

hereinafter {(xpk, ηk)}n
k=1 are i.i.d. copies of (xp, η), η is a random variable,

and xp, p ∈ N, is a random vector in R
p such that it is independent of η and

Expx�
p = Ip for the identity matrix Ip ∈ R

p×p. Following [8] and [20], we impose
uniform integrability conditions on xp and assume that quadratic forms of xp

satisfy a weak concentration property (see Sect. 2 for details). As is shown in [26],
a version of this property is a necessary and sufficient condition for the limiting
spectral distribution of ̂Σn to be the Marchenko-Pastur distribution when η ≡ 1.
Our conditions on xp are general enough to cover many models of interest, in
particular, xp having either a centred log-concave distribution, or independent
centred entries with uniformly integrable squares.
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Due to the weak concentration property for quadratic forms, our setting can
be considered as an extension of the case of spherical distributions corresponding
to ηxp with xp/

√
p uniformly distributed over the unit sphere Sp−1 in R

p.
Our main result is that with probability one, the empirical spectral distri-

bution of ̂Σn has a nonrandom weak limit μ and the smallest eigenvalue of ̂Σn

tends to the left edge of the support of μ when n → ∞ and p = p(n) is such that
p/n → y ∈ (0, 1). These results are new, as we do not assume the existence of
moments of order higher than 2. Our results improve the results of [8], where it
is shown (for η ≡ 1) that the smallest eigenvalues converge in probability. In the
proofs, we will use the method of Srivastava and Vershynin [17] (going back to
[6]) with the modifications from [8] that allow to apply the weak concentration
property for quadratic forms efficiently.

The paper is structured as follows. Section 2 presents main results. Proofs
are given Sect. 3. An Appendix contains some technical lemmas.

2 Main Results

Let us introduce some notation and assumptions. Denote the spectral norm
of A ∈ C

p×p by ‖A‖ and the smallest eigenvalue of symmetric A ∈ R
p×p by

λmin(A). Set C
+ = {z ∈ C : Im(z) > 0}. Let also I(B) = 1 if B holds and

I(B) = 0 otherwise. Assume further that R
p is equipped with the standard

Euclidean norm. For any p ∈ N, we say that xp is an isotropic random vector in
R

p if Expx�
p = Ip for the identity matrix Ip ∈ R

p×p.
Our main assumptions are as follows.

(A1) For every sequence of orthogonal projectors (Πp)∞
p=1 with Πp ∈ R

p×p,

x�
p Πpxp = tr(Πp) + oP(p), p → ∞,

where oP(·) stands for o(·) in probability.
(A2) The family {(xp, vp)2 : vp ∈ Sp−1, p ∈ N} is uniformly integrable, where
Sp−1 is the unit sphere in R

p .
Assumption (A1) is a form of the weak concentration property for quadratic

forms. Namely, we have the following proposition.

Proposition 1. If (A1) holds and xp is an isotropic random vector in R
p for

all p ∈ N, then

supE|x�
p Apxp − tr(Ap)| = o(p), p → ∞,

where sup is taken over symmetric positive semi-definite matrices Ap ∈ R
p×p

with ‖Ap‖ � 1.

Assumption (A1) holds in any of the following cases:
(C1) each xp has a centred isotropic log-concave distribution,
(C2) each xp has independent entries (Xpk)p

k=1 such that EXpk = 0, EX2
pk = 1,

and the following Lindeberg condition holds:

lim
p→∞

1
p

p
∑

k=1

EX2
pkI(|Xpk| > ε

√
p) = o(p) for all ε > 0.
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This is shown in Lemma 2.5 of [15] for (C1) and in Proposition 2.1 of [25] for
(C2). For more general classes of xp satisfying (A1), we refer to [3,23,27].

For log-concave xp, (A2) also holds (see [8]). For xp with independent entries,
(A2) follows from the elementary proposition below.

Proposition 2. If (C2) holds and {X2
pk : p ∈ N, 1 � k � p} is a uniformly

integrable family, then (A2) holds.

The main result of this paper can be stated as follows.

Theorem 1. Let xp be an isotropic random vector in R
p for all p ∈ N and let η

be a random variable independent of xp. If p = p(n) is such that p/n → y ∈ (0, 1)
and (A1)–(A2) hold, then with probability one,

λmin( ̂Σn) → max{0, sup
s>0

λ(s)}, n → ∞,

where λ(s) = −ys−1 + Eη2/(1 + η2s), s > 0.

When η ≡ 1 and the entries of all xp are i.i.d. centered random variables
with unit variance, Theorem 1 reduces to the Bai-Yin theorem [4] (in the form
of [19]) stating that with probability one,

λmin( ̂Σn) → (1 − √
y)2.

The proof of Theorem 1 consists of two parts. The first part is a lower bound on
lim λmin( ̂Σn) that is derived using the method of Srivastava and Vershynin [17]
with the modifications from [8] and [21]. The second part is an upper bound on
lim λmin( ̂Σn), which follows from the theorem below.

Theorem 2. Let xp be an isotropic random vector in R
p for all p ∈ N and let

η be a random variable independent of xp. If (A1) holds and p = p(n) is such
that p/n → y > 0, then with probability one, the empirical spectral distribution

μn =
1
p

p
∑

k=1

δλk

weakly converges to a probability measure μ, whose Stieljes transform s = s(z),
z ∈ C

+, is a unique solution in C
+ of the equation z = −s−1+y−1

Eη2/(1+η2s).
Here λk = λk(n), 1 � k � p, are eigenvalues of n ̂Σn/p.

Theorem 2 extends Theorem 19.1.8 in [16] when H(0) is the null matrix,
c = 1/y, and τα = η2

α. The latter uses a stronger version of (A1) with the
convergence in L2 instead of convergence in probability.

Notes and Comments. The lower edge of the support of μ from Theorem 2 is
equal to a = max{0, sup{λ(s)/y : s > 0}} for λ = λ(s) given in Theorem 1 (see
the proof of Lemma 3.2 in [22]). This implies that λmin( ̂Σn) � ay + o(1) a.s.
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3 Proofs

Proof of Proposition 1. By (A1), if Πp ∈ R
p×p are orthogonal projectors for all

p � 1, then for Zp = 1 + (x�
p Πpxp − tr(Πp))/p, we have EZp = 1, Zp � 0 a.s.,

and Zp
P→ 1 as p → ∞. Hence, Zp → 1 in L1 for any sequence of orthogonal

projectors {Πp}∞
p=1. Thus,

sup
Πp

E|x�
p Πpxp − tr(Πp)| = o(p)

with sup taken over all orthogonal projectors Πp ∈ R
p×p. Any non-zero diagonal

matrix D ∈ R
p×p with diagonal entries ‖D‖ = λ1 � . . . � λp � 0 can be written

as
D

λ1
=

p
∑

k=1

wkDk,

where λp+1 = 0, wk = (λk −λk+1)/λ1 � 0 are such that
∑p

k=1 wk = 1, and each
Dk is a diagonal matrix with diagonal entries in 1, . . . , 1, 0, . . . , 0 (k ones). Hence,
any (non-zero) symmetric positive semi-definite matrix Ap with ‖Ap‖ � 1 can
be written as a convex combination of some orthogonal projectors up to a factor
‖Ap‖ . As a result, by the convexity of the L1-norm,

sup
Ap

(E|x�
p Apxp − tr(Ap)|/‖Ap‖) � sup

Πp

E|x�
p Πpxp − tr(Πp)| = o(p),

where Ap as above. This finishes the proof of the lemma.

Proof of Proposition 2. Denote by G the class of convex non-decreasing functions
F : R+ → R+ such that F (0) = 0, F (x)/x → ∞ as x → ∞, and

there is c > 0 such that F (2x) � cF (x) for all x � 0. (1)

By the lemma on page 770 in [13], the family A =
⋃

p�1{X2
pk}p

k=1 is uniformly
integrable iff there is G ∈ G such that sup{EG(X) : X ∈ A} = M < ∞.

Note also if F ∈ G, then H(x) = F (x2) also belongs to G, since F is non-
decreasing and convex, f(x) = x2 is convex, and F (4x2) � c2F (x2) for all
x � 0 and c > 0 from (1). In addition,

{ ∑k
j=1 vjXpj

}p

k=1
is a martingale for

all v = (v1, . . . , vp) ∈ R
p. Therefore, by the Burkholder-Davis-Gundy inequality

(see Theorem 1.1 in [7]), and the convexity of G(x) and G(x2),

EG((xp, v)2) � CEG
(

p
∑

k=1

v2
kX2

pk

)

� C

p
∑

k=1

v2
kEG(X2

pk) � CM

when
∑p

k=1 v2
k = 1, where C > 0 depends only on G. Thus, using again the

lemma on page 770 in [13], we conclude that the family defined in (A2) is uni-
formly integrable.

Proof of Theorem 1. As follows from the remark after Theorem 2,

λmin( ̂Σn) � max{0, sup
s>0

λ(s)} + o(1) a.s.



Limit of the Smallest Eigenvalue of a Sample Covariance Matrix 233

as n → ∞. If sups>0 λ(s) � 0, then λmin( ̂Σn) � o(1) a.s. Since λmin( ̂Σn) � 0,
we conclude that λmin( ̂Σn) → 0 a.s.

Assume that sups>0 λ(s) > 0. The function λ = λ(s), s > 0, is continuous
(by the dominated convergence theorem) and such that λ(s) → 0, s → ∞, and

λ(s) = −y

s
+

1
s
E

η2

s−1 + η2
= −y

s
+

o(1)
s

→ −∞, s → 0 + .

Hence, sups>0 λ(s) = λ(ϕ) for some ϕ > 0.
We now describe the method of Srivastava and Vershynin [17] with the mod-

ifications proposed in [8]. Let A0 ∈ R
p×p be the zero matrix and

Ak = Ak(n) =
k

∑

j=1

η2
jxjx�

j , k = 1, . . . , n,

where xj is a short-hand for xpj . Further, let mA(l) = tr(A − lIp)−1. Let now
l0 = −p/ϕ for ϕ given above. Then mA0(l0) = ϕ.

Suppose for a moment that lk, Δk, and ΔR
k , k = 1, . . . , n, are such that:

(a) Δk,ΔR
k � 0; (b) lk = lk−1 + Δk − ΔR

k ; (c) λmin(Ak−1) > lk−1 + Δk; (d)
mAk

(lk−1 + Δk) � mAk−1(lk−1) � ϕ. Here and in what follows, Δk,ΔR
k , and

lk may implicitly depend on p and n, but for brevity, we do not indicate this
dependence in our notation. Explicit constructions will be given below.

Since ΔR
k � 0, then (a)–(c) imply that λmin(Ak) > lk and (d) implies that

mAk
(lk) � mAk−1(lk−1) � ϕ. As a result,

nλmin( ̂Σn) = λmin(An) � ln = l0 +
n

∑

k=1

Δk −
n

∑

k=1

ΔR
k

Following [8], we fix ε ∈ (0, 1) and set

ΔR
k = min{l ∈ Z+ : mAk

(lk−1+Δk − l)−mAk
(lk−1+Δk − l−1) � (εp)−1}. (2)

By such definition, mAk
(lk) − mAk

(lk − 1) � (εp)−1 for 1 � k � n. Further,
we will also assume that ε < ϕ−2 and, as a result, mA0(l0) − mA0(l0 − 1) =
ϕ2/(p + ϕ) � (εp)−1. We have the following upper bound on

∑n
k=1 ΔR

k .

Lemma 1. If (a)–(d) hold and {ΔR
k }n

k=1 are defined in (2), then

n
∑

k=1

ΔR
k � εϕp.

In addition, λmin(Ak) − lk � √
εp − 1 for all k = 1, . . . , n.

The proof of Lemma 1 can be found in the Appendix. By the lemma (recall also
l0 = −p/ϕ),

λmin( ̂Σn) � −ϕ−1 p

n
+

1
n

n
∑

k=1

Δk − εϕ
p

n
.
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Denoting Ek = E[·|Fk] for Fk = σ(x1, . . . ,xk), 1 � k � n, and the trivial
σ-algebra F0, we arrive at the bound

λmin( ̂Σn) � − p

n
ϕ−1 +

1
n

n
∑

k=1

Ek−1Δk +
Zn√

n
− εϕ

p

n
,

where

Zn =
1√
n

n
∑

k=1

(Δk − Ek−1Δk).

We need one more lemma (see Lemma 4.4 in [21]).

Lemma 2. Let (Dk)n
k=1 be a sequence of non-negative random variables adapted

to a filtration (Fk)n
k=1 such that E(D2

k|Fk−1) � 1 a.s., k = 1, . . . , n, where F0 is
the trivial σ-algebra. If

Z =
1√
n

n
∑

k=1

(Dk − E(Dk|Fk−1)),

then P(Z < −t) � exp{−t2/2} for all t > 0.

If we choose Δk being uniformly bounded by a positive constant, then, by
Lemma 2, we will have that

∑∞
n=1 P(Zn < − log n) < ∞ and in view of the Borel-

Cantelli lemma, Zn < − log n infinitely often with zero probability. In addition,
using p/n = y + o(1), we will get that

λmin( ̂Σn) � − y

ϕ
+

1
n

n
∑

k=1

Ek−1Δk − εϕy + o(1) a.s.

To choose Δk, we need a version of Lemma 3.2 from [8] (for a proof, see the
Appendix).

Lemma 3. Let A ∈ R
p×p be symmetric, x ∈ R

p, t, l ∈ R, ϕ > 0, and ε ∈ (0, 1).
Let also

Q(x, l) = x�(A − lIp)−1x and q(x, l) =
x�(A − lIp)−2x

tr(A − lIp)−2
.

If tr(A−1) � ϕ, λmin(A) � 2ε−2, and

Δ = (1 − ε)2
t2q(x, 0)I(q(x, 0) < ε−1)

1 + t2(1 + 2ε)ϕ
I(Q(x, ε−1) < (1 + 2ε)ϕ),

then λmin(A) > Δ and tr(A + t2xx� − ΔIp)−1 � tr(A−1).

For k = 1, . . . , n, define Δk and lk inductively by lk = lk−1 + Δk − ΔR
k with

ΔR
k from (2) and

Δk =(1 − ε)2
η2

kqk(xk, lk−1)I(qk(xk, lk−1) < ε−1)
1 + η2

k(1 + 2ε)ϕ
·

· I(Qk(xk, lk−1 + ε−1) < (1 + 2ε)ϕ),
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where (Qk, qk) are defined as (Q, q) in Lemma 3 with A = Ak−1. Taking now
p � ε−1(2ε−2 + 1)2 + 2ϕε−2 and using Lemma 1 and 3, we will guarantee that

λmin(A0) − l0 = p/ϕ � 2ε−2 and λmin(Ak) − lk � √
εp − 1 � 2ε−2,

λmin(Ak−1) > lk−1 + Δk, and mAk
(lk) � mAk−1(lk−1) for k = 1, . . . , n.

To finish the proof, we need to bound Ek−1Δk from below.

Lemma 4. Under the conditions of Lemma 3, let t = η and x = xp. Assume
also that mA(0) − mA(−1) � (εp)−1. Then

EΔ = (1 − ε)2E
η2

1 + η2(1 + 2ε)ϕ
(1 − Eq(xp, 0)I(B))

and P(B) � δ(ε, p), where for Lp given in Proposition 1,

δ(ε, p) = ε +
1
εϕ

[

2(ε2 + (εp)−1)(1 + ε) +
Lp

ε3 − (εp)−1

]

and B = {q(xp, 0) � ε−1} ∪ {Q(xp, ε
−1) � (1 + 2ε)ϕ}.

Lemma 5. If (A2) holds, then

Mp(δ) = sup
1

tr(Ap)
E(x�

p Apxp)I(B) → 0, δ → 0+,

uniformly in p, where sup is taken over all nonzero symmetric positive semi-
definite matrices Ap ∈ R

p×p and all events B with P(B) � δ.

Combining Lemma 4 and 5 yields

1
n

n
∑

k=1

Ek−1Δk � (1 − ε)2E
η2

1 + η2(1 + 2ε)ϕ
(1 − Mp(δp))

and

λmin( ̂Σn) � − y

ϕ
+ (1 − ε)2E

η2

1 + η2(1 + 2ε)ϕ
(1 − M(δp)) − εϕy + o(1) a.s.,

where δp = δ(ε, p) and M(δ) = sup{Mp(δ) : p � 1}. Now, by Proposition 1,
δp → δ(ε) as p → ∞ for δ(ε) = ε + 2ε(1 + ε)/ϕ. As a result,

lim
n→∞

λmin( ̂Σn) � − y

ϕ
+ (1 − ε)2E

η2

1 + η2(1 + 2ε)ϕ
(

1 − M(2δ(ε))
) − εϕy a.s.

for all ε ∈ (0,min{ϕ−2, 1}). Taking ε → 0+, we get via Lemma 5 and the domi-
nated convergence theorem that M(2δ(ε)) → 0 and with probability one,

lim
n→∞

λmin( ̂Σn) � λ(ϕ) = − y

ϕ
+ E

η2

1 + η2ϕ
.
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We have proved in the beginning that with probability one,

lim
n→∞ λmin( ̂Σn) � λ(ϕ).

As a result, P(λmin( ̂Σn) → λ(ϕ)) = 1.

Proof of Theorem 2. If each xp has the standard normal distribution, then the
result follows from Theorem 7.2.2 in [16]. Consider now the general case. We will
use the Stieltjes transform method. However, instead of Stieltjes transforms of
the form sν(z) =

∫

R
(λ − z)−1ν(dλ), z ∈ C

+, for a finite measure ν on the Borel
σ-algebra of R, it is easier to work with Stieltjes transforms defined by

Sν(t) =
∫ ∞

0

ν(dλ)
λ + t

, t > 0,

when the support of ν belongs to R+.
Let μ be the probability measure such that sμ = sμ(z), z ∈ C

+, is a unique
solution in C

+ of z = −s−1 + y−1
Eη2/(1 + η2s). The existence of such solution

and the corresponding probability measure μ is established in Lemma 7.2.4 in
[16] (see also Step 3 of the proof of Theorem 4.3 on page 88 in [5]). In addition,
μ(R+) = 1, since μ can be obtained as a weak limit of probability measures with
support in R+ (when any xp has the standard normal distribution).

By continuity, Sμ = Sμ(t), t > 0, is a unique positive solution of

− t = −S−1 + y−1
Eη2/(1 + η2S) or 1 = tS +

1
y
E

η2 S

1 + η2S
. (3)

In addition, by Lemma 3.1 in [26], if {μn}n�1 are random probability measures
with support in R+, then P(μn → μ weakly) = 1 iff P(Sμn

(t) → Sμ(t)) = 1 for
all t > 0, hereinafter all limits with respect to n mean that n passes to infinity.

For n � 1, let μn be the empirical spectral distribution of n ̂Σn/p. Then

Sn(t) =
1
p
tr(n ̂Σn/p + tIp)−1 = tr(n ̂Σn + tpIp)−1, t > 0,

is its Stieltjes transform. We will prove P(μn → μ weakly) = 1 by showing that
Sn(t) → Sμ(t) a.s. for all t > 0. Applying the standard martingale argument
(see Step 1 in the proof of Theorem 3.10 on page 54 in [5]) and the bound

w�(A + tIp)−2w/(1 + w�(A + tIp)−1w) � t−1

valid for all symmetric positive semi-definite A ∈ R
p×p, w ∈ R

p, and t > 0, we
derive that

Sn(t) − ESn(t) → 0 a.s. (4)

We finish the proof by checking that ESμn
(t) converges to Sμ(t).

Let (xp, η) = (xp,n+1, ηn+1) be such that {(xpk, ηk)}n+1
k=1 are i.i.d. Put

An = n ̂Σn =
n

∑

k=1

η2
kxpkx�

pk and Bn = An + η2xpx�
p =

n+1
∑

k=1

η2
kxpkx�

pk.
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We have

p = tr
(

(Bn + tpIp)(Bn + tpIp)−1
)

=
n+1
∑

k=1

η2
kx

�
pk(Bn + tpIp)−1xpk + tp tr(Bn + tpIp)−1.

Taking the expectation and using the exchangeability of {(xpk, ηk)}n+1
k=1 ,

p =(n + 1)E(η2x�
p (Bn + tpIp)−1xp) + tpEtr(Bn + tpIp)−1. (5)

Recall the Sherman-Morrison formula

(A + ww�)−1 = A−1 − A−1ww�A−1

1 + w�A−1w

valid for all symmetric positive definite A ∈ R
p×p and w ∈ R

p. The latter implies
that

tr(A + ww�)−1 = tr(A−1) − w�A−2w

1 + w�A−1w
and w�(A + ww�)−1w =

w�A−1w

1 + w�A−1w
.

Therefore,

Etr(Bn + tpIp)−1 = Etr(An + tpIp)−1 + E
η2xptr(An + tpIp)−2xp

1 + η2xptr(An + tpIp)−1xp

= ESn(t) + O(1/p)

and Etr(Bn + tpIp)−1 � t−1. Further, we will show that

E(η2x�
p (Bn + tpIp)−1xp) = E

η2
ESn(t)

1 + η2ESn(t)
+ o(1). (6)

Suppose for a moment that (6) holds. As p/n = y + o(1), (5) reduces to

1
y
E

η2
ESn(t)

1 + η2ESn(t)
+ tESn(t) = 1 + o(1).

Note that (ESn(t))∞
n=1 is a bounded positive sequence. By (3), S = Sμ(t) is a

unique solution in R+ of the limiting equation y−1
E(η2S)/(1 + η2S) + tS = 1

when t > 0. As a result, any converging subsequence of (ESn(t))∞
n=1 tends to

S(t). Hence, ESn(t) → Sμ(t). By (4), we conclude that Sn(t) → Sμ(t) a.s. for
all t > 0 and μn → μ weakly a.s.

To finish the proof, we need to check (6). By the Sherman-Morrison formula,

η2x�
p (Bn + tpIp)−1xp = η2x�

p (An + η2xpx�
p + tpIp)−1xp

=
η2x�

p (An + tpIp)−1xp

1 + η2x�
p (An + tpIp)−1xp

.
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By Proposition 1 and the independence of xp and An, we get

x�
p (An + tpIp)−1xp − Sn(t) P→ 0.

By (4), we also have Sn(t) − ESn(t) P→ 0. Hence,
∣

∣

∣

∣

η2x�
p (An + tpIp)−1xp

1 + η2x�
p (An + tpIp)−1xp

− η2
ESn(t)

1 + η2ESn(t)

∣

∣

∣

∣

�

� η2|x�
p (An + tpIp)−1xp − ESn(t)| P→ 0.

Now, (6) follows from the last inequality the dominated convergence theorem.
This finishes the proof of Theorem2.

Appendix

Proof of Lemma 1. By the definition of ΔR
k , for all 0 � l < ΔR

k ,

mAk
(lk−1 + Δk − l) − mAk

(lk−1 + Δk − l − 1) >
1
εp

.

Hence, using lk = lk−1 + Δk − ΔR
k and (d) in the proof of Theorem1, we get

ΔR
k

εp
�

ΔR
k −1
∑

l=0

(mAk
(lk−1 + Δk − l) − mAk

(lk−1 + Δk − l − 1)) =

= mAk
(lk−1 + Δk) − mAk

(lk) � mAk−1(lk−1) − mAk
(lk)

and
n

∑

k=1

ΔR
k � εp

n
∑

k=1

(mAk−1(lk−1) − mAk
(lk)) � εp mA0(l0) � εϕp.

Let us prove the second inequality. By definition, mAk
(l) = tr(Ak − lIp)−1.

Hence, it follows from λmin(Ak) > lk−1 + Δk, lk = lk−1 + Δk − ΔR
k , and the

definition of ΔR
k that

0 � 1
λmin(Ak) − lk

− 1
λmin(Ak) − lk + 1

� mAk
(lk) − mAk

(lk − 1) � 1
εp

.

Hence, (λmin(Ak) − lk)(λmin(Ak) − lk + 1) � εp and, as a result,

λmin(Ak) − lk � √
εp − 1.

Lemma 1 is proved.

Proof of Lemma 3. We have tr(A−1) � ϕ and Δ � ε−1 < λmin(A). Due to
Lemma 2.2 in [17], we will get that tr(A+ t2xx� −ΔIp)−1 � tr(A−1) if we check
that Δ(1 + t2Q(x,Δ)) = Δ(1 + Q(tx,Δ)) � q(tx,Δ) = t2q(x,Δ).



Limit of the Smallest Eigenvalue of a Sample Covariance Matrix 239

It follows from Δ � ε−1 < λmin(A) that Q(x,Δ) � Q(x, ε−1) and

1 + t2Q(x,Δ)
1 + t2(1 + 2ε)ϕ

I(Q(x, ε−1) < (1 + 2ε)ϕ) � 1.

Therefore, Δ(1 + t2Q(x,Δ)) � (1 − ε)2t2q(x, 0). In addition,

q(x, 0) =
x�A−2x

tr(A−2)
� x�(A − ΔIp)−2x

tr(A−2)
=

tr(A − ΔIp)−2

tr(A−2)
q(x,Δ).

We only need to check that (1 − ε)−2tr(A−2) � tr(A − ΔIp)−2. Writing
A =

∑p
i=1 λieie

�
i for some λi ∈ R and orthonormal ei ∈ R

p, i = 1, . . . , p, we
rewrite the last inequality as

1
(1 − ε)2

p
∑

i=1

1
λ2

i

�
p

∑

i=1

1
(λi − Δ)2

. (7)

For any λ � ε−2,

1
(λ − Δ)2

� 1
(λ − ε−1)2

=
1

(1 − (λε)−1)2λ2
� 1

(1 − ε)2λ2
.

Noting that λi � λmin(A) � ε−2, we arrive at (7). This finishes the proof of
Δ(1 + t2Q(x,Δ)) � t2q(x,Δ). Lemma 3 is proved.

Proof of Lemma 4. The first inequality follows from the definition of Δ and the
independence of η and xp. Let us prove the second inequality.

Since λmin(A) � 2/ε2 and 0 < ε < 1, we have for λ � λmin(A),

(1 + ε)(λ − 1/ε) � λ or λ � 1 + ε

ε2

and, as a result, mA(1/ε) � (1 + ε)mA(0) � (1 + ε)ϕ. Therefore,

P(B) � P(q(xp, 0) � ε−1) + P(Q(xp, ε
−1) � (1 + 2ε)ϕ)

� Eq(xp, 0)
ε−1

+ P(Q(xp, ε
−1) − mA(1/ε) � εϕ)

� ε +
1
εϕ

E|Q(xp, ε
−1) − mA(1/ε)|,

where we take into account that Eq(xp, 0) = 1 for isotropic xp. Writing A =
∑p

i=1 λieie
�
i for some λi ∈ R and orthonormal ei ∈ R

p, i = 1, . . . , p, we get

E|Q(xp, ε
−1) − mA(1/ε)| � R1 + R2,

where

R1 =
∑

i:λi�ε3p

E(xp, ei)2 + 1
λi − 1/ε

, R2 = E

∣

∣

∣

∑

i:λi>ε3p

(xp, ei)2 − 1
λi − 1/ε

∣

∣

∣.
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Using inequalities (1 + ε)(λi − 1/ε) � λi, we deduce that

R1 � 2(1 + ε)
∑

i:λi�ε3p

1
λi

� 2(1 + ε)
p

∑

i=1

ε3p + 1
λi(λi + 1)

� 2(ε2 + (εp)−1)(1 + ε),

R2 � Lp

ε3 − (εp)−1
,

where Lp is given in Proposition 1 and we have also used that

p
∑

i=1

1
λi(λi + 1)

= mA(0) − mA(−1).

Combining the above bounds, we obtain the second inequality in Lemma4.

Proof of Lemma 5. By (A2), the family G = {(xp, vp)2 : vp ∈ Sp−1, p ∈ N}
is uniformly integrable. The same can be said about its convex hull (e.g., see
Theorem 20 on page 23-II in [9]). For any nonzero symmetric positive semi-
definite Ap ∈ R

p×p, x�
p Apxp/tr(Ap) belongs to the convex hull of G and the

desired property follows from the standard properties of uniformly integrable
families (e.g., see Theorem 19 on page 22-II in [9]).

References

1. Adamczak, R., Litvak, A.E., Pajor, A., Tomczak-Jaegermann, N.: Quantitative
estimates of the convergence of the empirical covariance matrix in log-concave
ensembles. J. Amer. Math. Soc. 23(2), 535–561 (2010)

2. Adamczak, R., Litvak, A.E., Pajor, A., Tomczak-Jaegermann, N.: Sharp bounds
on the rate of convergence of the empirical covariance matrix. C. R. Math. Acad.
Sci. Paris 349(3–4), 195–200 (2011)

3. Anatolyev, S., Yaskov, P.: Asymptotics of diagonal elements of projection matrices
under many instruments/regressors. Economet. Theor. 33(3), 717–738 (2017)

4. Bai, Z., Yin, Y.-O.: Limit of the smallest eigenvalue of a large-dimensional sample
covariance matrix. Ann. Probab. 21(3), 1275–1294 (1993)

5. Bai, Z., Silverstein, J.: Spectral Analysis of Large Dimensional Random Matrices,
2nd edn. Springer, New York (2010). https://doi.org/10.1007/978-1-4419-0661-8

6. Batson, J.D., Spielman, D.A., Srivastava, N.: Twice-Ramanujan sparsifiers. In:
STOC’09-Proceedings of the 2009 ACM International Symposium on Theory of
Computing, pp. 255–262. ACM, New York (2009)

7. Burkholder, D.L., Davis, B.J., Gundy, R.F.: Integral inequalities for convex func-
tions of operators on martingales. In: Proceedings of the Sixth Berkeley Sympo-
sium on Mathematical Statistics and Probability, vol. 2: Probability Theory, pp.
223–240. Univ. of Calif. Press (1972)
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Abstract. Positive recurrence of one-dimensional diffusion with switch-
ing, with an additive Wiener process, and with one recurrent and one
transient regime is established under suitable conditions on the drift
in both regimes and on the intensities of switching. The approach is
based on an embedded Markov chain with alternating jumps: one jump
increases the average of the square norm of the process, while the next
jump decreases it, and under suitable balance conditions this implies
positive recurrence.

Keywords: 1D diffusion · Switching · Positive recurrence

1 Introduction

On a probability space (Ω,F , (Ft),P) with a one-dimensional (Ft)-adapted
Wiener process W = (Wt)t≥0 on it, a one-dimensional SDE with switching is
considered,

dXt = b(Xt, Zt) dt + dWt, t ≥ 0, X0 = x, Z0 = z,

where Zt is a continuous-time Markov process on the state space S = {0, 1}
with (positive) intensities of respective transitions λ01 =: λ0, &λ10 =: λ1; the
process Z is assumed to be independent of W and adapted to the filtration (Ft).
We assume that these intensities are constants; this may be relaxed. Under the
regime Z = 0 the process X is assumed positive recurrent, while under the regime
Z = 1 its modulus may increase in the square mean with the rate comparable to
the decrease rate under the regime Z = 0. This vague wording will be specified
in the assumptions. Denote

b(x, 0) = b−(x), b(x, 1) = b+(x).
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The problem addressed in this paper is to find sufficient conditions for the
positive recurrence (and, hence, for convergence to the stationary regime) for
solutions of stochastic differential equations (SDEs) with switching in the case
where not for all values of the modulating process the SDE is recurrent, and
where it is recurrent, this property is assumed to be “not very strong”. Earlier a
similar problem was tackled in [2] in the exponential recurrent case; its method
apparently does not work for the weaker polynomial recurrence. A new approach
is offered. Other SDEs with switching were considered in [1,4,5,7], see also the
references therein. Neither of these works address exactly the problem which is
attacked in this paper: some of them tackled an exponential recurrence, some
other study the problem of a simple recurrence versus transience.

2 Main Result: Positive Recurrence

The existence and pathwise uniqueness of the solution follows easily from [9],
or from [6], or from [8], although, neither of these papers tackles the case with
switching. The next theorem is the main result of the paper.

Theorem 1. Let the drift b be bounded and let there exist r−, r+,M > 0 such
that

xb−(x) ≤ −r−, xb+(x) ≤ +r+, ∀ |x| ≥ M, (1)

and

2r− > 1 & κ−1
1 :=

λ0(2r+ + 1)
λ1(2r− − 1)

< 1. (2)

Then the process (X,Z) is positive recurrent; moreover, there exists C > 0 such
that for all M1 large enough and all x ∈ R

ExτM1 ≤ C(x2 + 1), (3)

where
τM1 := inf(t ≥ 0 : |Xt| ≤ M1).

Moreover, the process (Xt, Zt) has a unique invariant measure, and for each
nonrandom initial condition x, z there is a convergence to this measure in total
variation when t → ∞.

3 Proof

Denote ‖b‖ = supx |b(x)|. Let M1 	 M (the value M1 will be specified later);
denote

T0 := inf(t ≥ 0 : Zt = 0),

and
0 ≤ T0 < T1 < T2 < . . . ,
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where each Tn is defined as the next moment of switch of the component Z; let

τ := inf(Tn ≥ 0 : |XTn
| ≤ M1).

It suffices to evaluate from above the value Exτ because τ ≥ τM1 . Let us choose
ε > 0 such that

λ0(2r+ + 1 + ε) = qλ1(2r− − 1 − ε) (4)

with some q < 1 (see (2)). Note that for |x| ≤ M there is nothing to prove; so
assume |x| > M .

Lemma 1. Under the assumptions of the theorem for any δ > 0 there exists M1

such that

max

[
sup

|x|>M1

Ex

(∫ T1

0

1( inf
0≤s≤t

|Xs|≤M)dt|Z0=0

)
,

(5)

sup
|x|>M1

Ex

(∫ T0

0

1( inf
0≤s≤t

|Xs|≤M)dt|Z0=1

)]
< δ.

Proof. Let Xi
t , i = 0, 1 denote the solution of the equation

dXi
t = b(Xi

t , i) dt + dWt, t ≥ 0, Xi
0 = x.

Let Z0 = 0; then T0 = 0. The processes X and X0 coincide a.s. on [0, T1] due
to uniqueness of solution. Therefore, due to the independence of Z and W , and,
hence, of Z and X0, we obtain

Ex

(∫ T1

0

1( inf
0≤s≤t

|Xs| ≤ M)dt|Z0 = 0

)
= Ex

∫ T1

0

1( inf
0≤s≤t

|X0
s | ≤ M)dt

= Ex

∫ ∞

0

1(t < T1)1( inf
0≤s≤t

|X0
s | ≤ M)dt =

∫ ∞

0

Ex1(t < T1)P( inf
0≤s≤t

|X0
s | ≤ M)dt

=

∫ ∞

0

exp(−λ0t)P( inf
0≤s≤t

|X0
s | ≤ M)dt.

Let us take t such that ∫ ∞

t

e−λ0sds < δ/2.

Now, by virtue of the boundedness of b, it is possible to choose M1 > M such
that for this value of t we have

tPx( inf
0≤s≤t

|X0
s | ≤ M) < δ/2.

The bound for the second term in (5) follows by using the process X1 and the
intensity λ1 in the same way. QED
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Lemma 2. If M1 is large enough, then under the assumptions of the theorem
for any |x| > M1 for any k = 0, 1, . . .

Ex(X2
T2k+1∧τ |Z0 = 0,FT2k) ≤ Ex(X2

T2k∧τ |Z0 = 0,FT2k)
(6)

−1(τ > T2k)λ−1
0 ((2r− − 1) − ε),

Ex(X2
T2k+2∧τ |Z0 = 1,FT2k+1) ≤ Ex(X2

T2k+1∧τ |Z0 = 1,FT2k+1)
(7)

+1(τ > T2k+1)λ−1
1 ((2r− + 1) + ε).

Proof. 1. Recall that T0 = 0 under the condition Z0 = 0. We have,

T2k+1 = inf(t > T2k : Zt = 1).

In other words, the moment T2k+1 may be treated as “T1 after T2k”. Under
Z0 = 0 the process Xt coincides with X0

t until the moment T1. Hence, we have
on [0, T1] by Ito’s formula

dX2
t − 2XtdWt = 2Xtb−(Xt)dt + dt ≤ (−2r− + 1)dt,

on the set (|Xt| > M) due to the assumptions (1). Further, since 1(|Xt| > M) =
1 − 1(|Xt| ≤ M), we obtain

∫ T1∧τ

0

2Xtb−(Xt)dt

=
∫ T1∧τ

0

2Xtb−(Xt)1(|Xt| > M)dt +
∫ T1∧τ

0

2Xtb−(Xt)1(|Xt| ≤ M)dt

≤ −2r−
∫ T1∧τ

0

1(|Xt| > M)dt +
∫ T1∧τ

0

2M‖b‖1(|Xt| ≤ M)dt

= −2r−
∫ T1∧τ

0

1dt +
∫ T1∧τ

0

(2M‖b‖ + 2r−)1(|Xt| ≤ M)dt

≤ −2r−
∫ T1∧τ

0

1dt + (2M‖b‖ + 2r−)
∫ T1∧τ

0

1(|Xt| ≤ M)dt.

Thus, always for |x| > M1,

Ex

∫ T1∧τ

0

2Xtb−(Xt)dt

≤ −2r−E

∫ T1∧τ

0

1dt + (2M‖b‖ + 2r−)Ex

∫ T1∧τ

0

1(|Xt| ≤ M)dt
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= −2r−E
∫ T1∧τ

0

1dt + (2M‖b‖ + 2r−)Ex

∫ T1∧τ

0

1(|Xt| ≤ M)dt

≤ −2r−E
∫ T1∧τ

0

1dt + (2M‖b‖ + 2r−)Ex

∫ T1

0

1(|Xt| ≤ M)dt

≤ −2r−E
∫ T1∧τ

0

1dt + (2M‖b‖ + 2r−)δ.

For our fixed ε > 0 let us choose δ = λ−1
0 ε/(2M‖b‖+2r−). Then, since |x| > M1

implies T1 ∧ τ = T1 on (Z0 = 0), we get

ExX2
T1∧τ − x2 ≤ −(2r− − 1)Ex

∫ T1

0

dt + λ−1
0 ε = −λ−1

0 ((2r− − 1) − ε).

Substituting here XT2k instead of x and writing Ex(·|FT2k) instead of Ex(·), and
multiplying by 1(τ > T2k), we obtain the bound (6), as required.
2. The condition Z0 = 1 implies the inequality T0 > 0. We have,

T2k+2 = inf(t > T2k+1 : Zt = 0).

In other words, the moment T2k+2 may be treated as “T0 after T2k+1”. Under
Z0 = 1 the process Xt coincides with X1

t until the moment T0. Hence, we have
on [0, T0] by Ito’s formula

dX2
t − 2XtdWt = 2Xtb+(Xt)dt + dt ≤ (2r+ + 1)dt,

on the set (|Xt| > M) due to the assumptions (1). Further, since 1(|Xt| > M) =
1 − 1(|Xt| ≤ M), we obtain ∫ T0∧τ

0

2Xtb+(Xt)dt

=
∫ T0∧τ

0

2Xtb+(Xt)1(|Xt| > M)dt +
∫ T0∧τ

0

2Xtb+(Xt)1(|Xt| ≤ M)dt

≤ 2r+

∫ T0∧τ

0

1(|Xt| > M)dt +
∫ T0∧τ

0

2M‖b‖1(|Xt| ≤ M)dt

= 2r+

∫ T0∧τ

0

1dt +
∫ T1∧τ

0

(2M‖b‖ − 2r+)1(|Xt| ≤ M)dt

≤ 2r+

∫ T0∧τ

0

1dt + 2M‖b‖
∫ T0∧τ

0

1(|Xt| ≤ M)dt.

Thus, always for |x| > M1,

Ex

∫ T0∧τ

0

2Xtb+(Xt)dt
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≤ 2r+E

∫ T0∧τ

0

1dt + 2M‖b‖Ex

∫ T0∧τ

0

1(|Xt| ≤ M)dt

= 2r+E

∫ T0∧τ

0

1dt + 2M‖b‖Ex

∫ T1∧τ

0

1(|Xt| ≤ M)dt

≤ 2r+E

∫ T0∧τ

0

1dt + 2M‖b‖Ex

∫ T0

0

1(|Xt| ≤ M)dt

≤ 2r+E

∫ T0∧τ

0

1dt + 2M‖b‖δ.

For our fixed ε > 0 let us choose δ = λ−1
0 ε/(2M‖b‖). Then, since |x| > M1

implies T0 ∧ τ = T0 on (Z0 = 1), we get

ExX2
T1∧τ − x2 ≤ −(2r− − 1)Ex

∫ T1

0

dt + λ−1
0 ε = −λ−1

0 ((2r− − 1) − ε).

Substituting here XT2k+1 instead of x and writing Ex(·|FT2k+1) instead of Ex(·),
and multiplying by 1(τ > T2k+1), we obtain the bound (7), as required. QED

Lemma 3. If M1 is large enough, then under the assumptions of the theorem
for any k = 0, 1, . . .

Ex(X2
T2k+2∧τ |Z0 = 0,FT2k+1) ≤ Ex(X2

T2k+1∧τ |Z0 = 0,FT2k+1)
(8)

+1(τ > T2k+1)λ−1
1 ((2r+ + 1) + ε)),

and

Ex(X2
T2k+1∧τ |Z0 = 1,FT2k) ≤ Ex(X2

T2k∧τ |Z0 = 1,FT2k)
(9)

−1(τ > T2k)λ−1
0 ((2r+ − 1) − ε)).

Proof. Let Z0 = 0; recall that it implies T0 = 0. If τ ≤ T2k+1, then (8) is trivial.
Let τ > T2k+1. We will substitute x instead of XT2k for a while, and will be
using the solution X1

t of the equation

dX1
t = b(X1

t , 1) dt + dWt, t ≥ T1, X1
T1

= XT1 .

For M1 large enough, since |x| ∧ |XT1 | > M1 implies T2 ≤ τ , and due to the
assumptions (1) we guarantee the bound

1(|XT1 | > M1)(EXT1
X2

T2∧τ − X2
T1∧τ )

≤ 1(|XT1 | > M1)(EXT1
(T2 − T1)((2r+ + 1) + ε))
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= +1(|XT1 | > M1)(λ−1
1 ((2r+ + 1) + ε))

in the same way as the bound (7) in the previous lemma. In particular, it follows
that for |x| > M1

(EXT1
X2

T2∧τ − X2
T1∧τ ) ≤ 1(|XT1 | > M1)(EXT1

(T2 − T1)((2r+ + 1) + ε))

= +1(|XT1 | > M1)(λ−1
1 ((2r+ + 1) + ε)),

since |XT1 | ≤ M1 implies τ ≤ T1 and EXT1
X2

T2∧τ − X2
T1∧τ = 0. So, on the set

|x| > M1 we have,

Ex(EXT1
X2

T2∧τ − X2
T1∧τ )

≤ Ex1(|XT1 | > M1)(λ−1
1 ((2r+ + 1) + ε)) ≤ λ−1

1 ((2r+ + 1) + ε).

Now substituting back XT2k in place of x and multiplying by 1(τ > T2k+1), we
obtain the inequality (8), as required.

For Z0 = 1 we have T0 > 0, and the bound (9) follows in a similar way. QED

Now we can complete the proof of the theorem. Consider the case Z0 = 0
where T0 = 0. Note that the bound (6) of the Lemma 2 together with the bound
(8) of the Lemma 3 can be equivalently rewritten as follows:

ExX2
T2k+1∧τ − ExX2

T2k∧τ ≤ −((2r− − 1) − ε)Ex(T2k+1 ∧ τ − T2k ∧ τ), (10)

and

ExX2
T2k∧τ − ExX2

T2k−1∧τ ≤ ((2r+ + 1) + ε)Ex(T2k ∧ τ − T2k−1 ∧ τ). (11)

We have the identity

τ ∧ Tn = T0 +
n−1∑
m=0

((Tm+1 ∧ τ) − (Tm ∧ τ)).

Therefore,

Ex(τ ∧ Tn) = ExT0 + Ex

n−1∑
m=0

((Tm+1 ∧ τ) − (Tm ∧ τ)),

Since Tn ↑ ∞, by virtue of the monotonic convergence in both parts and due to
Fubini theorem we obtain,

Exτ = ExT0 +
∞∑

m=0

Ex((Tm+1 ∧ τ) − (Tm ∧ τ)) (12)
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= ExT0 +
∞∑

k=0

Ex((T2k+1 ∧ τ) − (T2k ∧ τ))

+
∞∑

k=0

Ex((T2k+2 ∧ τ) − (T2k+1 ∧ τ)).

Due to (10) and (11) we have,

Ex(T2k+1 ∧ τ − T2k ∧ τ) ≤ ((2r− − 1) − ε)−1
(
ExX2

T2k+1∧τ − ExX2
T2k∧τ

)

ExX2
T2m+2∧τ − x2

≤ ((2r+ + 1) + ε)
m∑

k=0

Ex(T2k+2 ∧ τ − T2k+1 ∧ τ)

−((2r− − 1) − ε)
m∑

k=0

Ex(T2k+1 ∧ τ − T2k ∧ τ)

=
m∑

k=0

(−((2r− − 1) − ε)(Ex(T2k+1 ∧ τ − T2k ∧ τ)

+((2r+ + 1) + ε)Ex(T2k+2 ∧ τ − T2k+1 ∧ τ)) .

By virtue of Fatou’s lemma we get

x2 ≥ ((2r− − 1) − ε)
m∑

k=0

(Ex(T2k+1 ∧ τ − T2k ∧ τ)

(13)

−((2r+ + 1) + ε)
m∑

k=0

Ex(T2k+2 ∧ τ − T2k+1 ∧ τ).

Note that 1(τ > T2k+1) ≤ 1(τ > T2k). So, P(τ > T2k) ≥ P(τ > T2k+1). Hence,

λ0Ex(T2k+1 ∧ τ − T2k ∧ τ) − λ1Ex(T2k+2 ∧ τ − T2k+1 ∧ τ)

= λ0Ex(T2k+1 ∧ τ − T2k ∧ τ)1(τ ≥ T2k)
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−λ1Ex(T2k+2 ∧ τ − T2k+1 ∧ τ)1(τ ≥ T2k+1)

= λ0Ex1(τ > T2k)EXT2k
(T2k+1 ∧ τ − T2k ∧ τ)

−λ1Ex1(τ > T2k+1)EXT2k+1
(T2k+2 ∧ τ − T2k+1 ∧ τ)

= λ0Ex1(τ > T2k)λ−1
0 − λ1Ex1(τ > T2k+1)λ−1

1

= Ex1(τ > T2k) − Ex1(τ > T2k+1) ≥ 0.

Thus,

Ex(T2k+2 ∧ τ − T2k+1 ∧ τ) ≤ λ0

λ1
Ex(T2k+1 ∧ τ − T2k ∧ τ).

Therefore, we estimate

((2r+ + 1) + ε)
m∑

k=0

Ex(T2k+2 ∧ τ − T2k+1 ∧ τ)

≤ ((2r+ + 1) + ε)
λ0

λ1

m∑
k=0

Ex(T2k+1 ∧ τ − T2k ∧ τ)

= q((2r− − 1) − ε)
m∑

k=0

Ex(T2k+1 ∧ τ − T2k ∧ τ).

So, (13) implies that

x2 ≥ ((2r− − 1) − ε)
m∑

k=0

(Ex(T2k+1 ∧ τ − T2k ∧ τ)

−((2r+ + 1) + ε)
m∑

k=0

Ex(T2k+2 ∧ τ − T2k+1 ∧ τ)

≥ (1 − q)((2r− − 1) − ε)
m∑

k=0

(Ex(T2k+1 ∧ τ − T2k ∧ τ)

≥ 1 − q

2
((2r− − 1) − ε)

m∑
k=0

(Ex(T2k+1 ∧ τ − T2k ∧ τ)
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+
1 − q

2q
((2r+ + 1) + ε)

m∑
k=0

Ex(T2k+2 ∧ τ − T2k+1 ∧ τ).

Denoting c := min
(

1 − q

2q
((2r+ + 1) + ε),

1 − q

2
((2r− − 1) − ε)

)
, we conclude

that

x2 ≥ c

2m∑
k=0

Ex(Tk+1 ∧ τ − Tk ∧ τ).

So, as m ↑ ∞, by the monotone convergence theorem we get the inequality

∞∑
k=0

Ex(Tk+1 ∧ τ − Tk ∧ τ) ≤ c−1x2.

Due to (12), it implies that (in the case T0 = 0)

Exτ ≤ c−1x2, (14)

as required. Recall that this bound is established for |x| > M1, while in the case
of |x| ≤ M1 the left hand side in this inequality is just zero.

In the case of Z0 = 1 (and, hence, T0 > 0), we have to add the value
ExT0 = λ−1

1 to the right hand side of (14), which leads to the bound (3), as
promised.

In turn, this bound implies existence of the invariant measure, see [3,
Section 4.4]. Convergence to it in total variation follows due to the coupling
method in a standard way. So, this measure is unique. The details and some
extensions of this issue will be provided in another paper. QED
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Abstract. We consider a model of the evolution of a population in the
presence of epistatic lethal alleles. A model which describes the evolu-
tion of lethal and non-lethal alleles based on two-type branching random
walks on multidimensional lattices is presented. We study this model
in terms of subpopulations of particles generated by a single particle of
each type located at every lattice point. The differential equations for
the generating functions and factorial moments for the particle subpop-
ulations are obtained. For the first moments we get explicit solutions for
cases significant in the genetic context. The asymptotic behaviour for
the first moments of particle distribution at lattice points is obtained for
a random walk with finite variance of jumps.

Keywords: Branching random walks · Two-type processes ·
Multidimensional lattices · Generating functions · Population genetics ·
Epistasis · Lethal alleles

1 Introduction

In population genetics it is common to consider five main features of the evo-
lution process: mutation, selection, population structure, gene transfer method,
and drift, see [5]. To correctly model the evolution process, it is important to
consider each of them. Therefore, in this Section, we briefly describe all these
five features. We need to recall a few definitions. A locus is the physical location
of a gene on a chromosome. Alleles are alternative forms or versions of a gene
at a particular locus, see [7]. Consider a population of organisms with a single
set of chromosomes, i.e., haploid organisms. Let these organisms differ only in
one locus, denote alternative alleles in this locus by A and a. Let WA and Wa

be the average number of offsprings of an organism with the alleles A and a
respectively. These values are sometimes referred to as fitness [5].

Now let us go back to the five basic concepts of evolution. A mutation is
a persistent change in the genome. For humans, the probability of mutation of
nucleotide per generation is approximately 10−8 (see [10]) which is small com-
pared to the number of pairs of nucleotides in DNA (this number is equal to
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2021
A. N. Shiryaev et al. (Eds.): ICSM-5 2020, PROMS 371, pp. 255–268, 2021.
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3 ·109). The selection mechanism reflects the change in the frequency pA = pA(t)
of the allele A in the population. Note that the frequency of the alternative
allele is equal to pa = pa(t) = 1 − pA. In the simplest case of an infinite
population continuous-time selection can be described by a deterministic equa-
tion of the form dpA

dt = spA(1 − pA) with initial condition pA(0) ∈ [0, 1] and
s = 1 − Wa/WA, see [5]. The structure of a population is primarily a config-
uration of the space in which this population is located. We should also note
that introducing a spatial structure into the model of evolution is a complex
and important problem. One of the classical models of spatial structure is the
Fischer-Kolmogorov-Petrovskii-Piskunov equation ∂p

∂t = sp(1− p)+D ∂2p
∂x2 which

is the selection equation described earlier with one-dimensional shift according
to diffusion coefficient D ∈ R, see [9]. The fourth concept that we have to explain
is the gene transfer method. In particular, the transfer method can be divided
into asexual and sexual. In asexual reproduction, the offspring is an identical
copy of the parent. During sexual reproduction, the offspring inherits half of the
genetic material from each of the parents. One of the important characteristics
of sexual reproduction is crossover. Crossover is the process of exchanging sec-
tions of homologous chromosomes. Finally drift is the phenomenon of random
changes in allele frequencies in a population. For example, drift can be modelled
by the discrete-time Bienaymé-Galton-Watson process, see [2].

We have finished reviewing the five main characteristics of the evolutionary
process. Note that branching processes can describe all characteristics except the
spatial structure. Mutations can be modeled by multi-type processes, selection
can be modeled by different intensities of particle branching, and the stochastic
nature of the process itself is responsible for drift. The method of gene transfer
can also be described in the population structure, but in a slightly more com-
plex way, see [8]. As we have discussed, the spatial structure of a population is
essential. The stochastic process which combines the properties of a branching
process and random walk is called branching random walk (BRW). In contrast
to branching processes, BRWs seemingly have not been widely applied in evo-
lutionary biology. The presented work partially fills this gap. In particular, we
focus on the problem of missing heritability which is the fact that single genetic
variations cannot account for much of the heritability of diseases, behaviours,
and other phenotypes, see [15]. One of the possible candidates for the solution to
this problem is epistatic interaction. Epistasis is the phenomenon when one gene
masks or alters the effect of another one, see [7]. The study of such variants is
important in the context of the missing heritability problem. Epistatic variants
may carry a significant part of undiscovered heritability. In the present paper
we show how consideration of BRW with several types of particles allowes us to
describe the evolution of a population with carriers of epistatic lethal mutations.

The structure of paper is as follows. In Sect. 2 we describe the model of
the evolution of epistatic lethal mutations and give its description in genetic
terms. In Sect. 3 we present the model of two-type BRWs on multidimensional
lattice Z

d, d ∈ N and obtain differential equations for the generating functions
of subpopulations generated by a single particle of each type. In Sect. 4 we get
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differential equations for the factorial moments of subpopulations. In Sect. 5 we
study the solutions for the equations for the first moments.

2 Description of Genetic Models

In this Section we describe a model of the evolution of organisms with epistat-
ically lethal mutations on chromosomes in genetic terms. Consider a diploid
organism, i.e. organism with a double set of chromosomes. Consider two loci L1

and L2 on the same chromosome of a diploid organism. Combination of alle-
les on the same chromosome is sometimes called a haplotype. We assume that
the organisms do not differ in loci except (L1, L2). Denote two various alleles
in locus L1 by L′

1 and L′′
1 and two various alleles in locus L2 by L′

2 and L′′
2 .

Denote haplotype L′
1L

′
2 as O, haplotype L′′

1L′
2 as B, haplotype L′

1L
′′
2 as C, and

haplotype L′′
1L′′

2 as D. Consider a population in which the haplotypes under con-
sideration have reached equilibrium frequencies (pO, pB , pC , pD) for types O, B,
C and D respectively, see [5]. In addition we assume that this distribution does
not change in time. Note that the genotype of an organism in our assumptions
and notations can be indicated by two labels x/y, where x, y ∈ {O,B,C,D} and
x/y is the same as y/x.

Lethal alleles (or lethals) are alleles that prevent survival (see [6]). In the
present paper, we consider dominant and incomplete dominant epistatic lethals.
We consider a dominant epistatic lethal allele as an allele that leads to nonviabil-
ity of the organism if there is at least one copy of the D haplotype. We consider
an incomplete dominant epistatic lethal as an allele that leads to nonviability of
the organism if there are two copies of the D haplotype. Besides, this lethal can
lead to a partial loss of reproductive function in carriers of one copy of the D
haplotype.

Let us firstly describe the model of organism reproduction in terms of birth
and death of particles with corresponding labels in case of alleles that do not
affect fitness. Consider an organism (particle) with labels x/y, where x, y ∈
{O,B,C,D}. We assume that during small time dt the following transformations
are possible:

1. a particle can die with the probability μdt + o(dt);
2. a particle can produce copy of itself and a particle with label x1/y1 with the

probability λbx1/y1dt + o(dt), where

bx1/y1 =
1
2
py1I(x1 ∈ {x, y}),

and I(·) is indicator function and x1, y1 ∈ {O,B,C,D}. We assume that
offsprings start their evolution processes independently of the others with the
same birth and death intensities.

Remark 1. From a biological point of view, the branching process presented
above represents the following process. In the process of transformation, the
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organism either dies or forms a pair with a random organism from the population.
The offspring of this pair inherits the random haplotype from each parent. Let
us assume that the second organism from the pair “returns” to the population
and, from now on, we consider only the two remaining particles. Also we assume
that there is no inbreeding and that recombination between loci L1 and L2 does
not occur. Note that for simplicity of notation, we considered the case of binary
splitting, i.e. particle can produce two offsprings. Although we can consider an
arbitrary number of offsprings by introducing appropriate intensities. This more
general model will be discussed in Sect. 3.

As we have already mentioned in the problems of evolutionary biology, it
is important to consider the spatial structure. In our research the space is the
multidimensional lattice Z

d, d ∈ N. A particle located at any point in a short
time can go through the branching process described earlier, or move to another
point on the lattice with a specified probability depending on both starting and
finishing points. We will describe the random walk in Sect. 3 in details.

Let us examine how the BRW model reformulates in the case of dominant
epistatic lethales. Particles with at least one D haplotype are lethal, and parti-
cles without D haplotype are all identical to each other. Therefore all particles
labelled as x/y, x, y ∈ {O,B,C} can be combined together and studied in the
framework of single-type BRW. This problem is investigated under various initial
conditions, branching source configurations, and conditions on the underlying
walk, e.g. see [1,3,11,14].

However, from a biological point of view, the case of incomplete dominant
epistatic lethales is more interesting. In this case, the particles without haplo-
type D are unaffected while particles with one copy of D have altered fitness.
Moreover, two carriers of D haplotype can produce a particle with labels D/D,
which immediately dies. Straightforward consideration of the particle reproduc-
tion scheme under these conditions allows one to notice that the particles can be
divided into three classes concerning conditional probabilities of splitting. Let
us denote particles with labels x/y, where x, y ∈ {O,B,C} as type I particles,
particles with labels {O/D,B/D,C/D} as type II particles, and D/D as type
III particles. Type I represents healthy organisms, type II represents carriers,
and type III represents unviable organisms. In the condition of splitting type I
particles can produce particles of type I with the probability 1 − pD and par-
ticles of type II with the probability pD. During splitting type II particles can
produce particles of type I with the probability 1

2 (1 − pD), particles of type
II with the probability 1

2 , and particles of type III with the probability 1
2pD.

Thus, in this case, the branching intensities introduced earlier can be rewritten
as follows. Note that we introduce additional notation β(·, ·) to facilitate the
transition to the model in the next section. During a small time dt the following
transformations for type I particle are possible:

1. a particle can die with the probability μ1dt + o(dt), μ1 ≥ 0;
2. a particle can produce two newborn particles of type I with the probability

β1(2, 0)dt + o(dt), β1(2, 0) = λ1(1 − pD) ≥ 0;
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3. a particle can produce a particle of type I and a particle of type II with the
probability β1(1, 1)dt + o(dt), β1(1, 1) = λ1pD ≥ 0.

During small time dt the following transformations for type II particle are
possible:

1. a particle can die with the probability (μ2 + λ2
2 pD)dt + o(dt), μ2 ≥ 0, λ2 ≥ 0;

2. a particle can produce two newborn particles of type II with the probability
β2(0, 2)dt + o(dt), β2(0, 2) = λ2

2 ;
3. a particle can produce a particle of type I and a particle of type II with the

probability β2(1, 1)dt + o(dt), β2(1, 1) = λ2
2 (1 − pD).

In this model, the number of particles of both types is of interest. The num-
ber of particles of the first type describes the number of healthy offsprings of
organisms that were on Z

d at the initial time moment. The number of particles
of the second type describes the number of offsprings who are carriers of the
mutation. In Sect. 3 we introduce the formal definition of the model.

3 Two-Type BRWs on Z
d

In this Section we consider continuous-time BRW with two types of particles on
Z

d, d ∈ N. The objects of the study are subpopulations which can be represented
as the following column-vectors:

n1(t, x, y) = [n11(t, x, y), n12(t, x, y)]T ,

n2(t, x, y) = [n21(t, x, y), n22(t, x, y)]T .

Here ni(t, x, y), i = 1, 2 is the vector of particles at the time moment t > 0 at
the point y ∈ Z

d, generated by a single particle of type i which at time moment
t = 0 was at the site x ∈ Z

d. Its components nij(t, x, y), j = 1, 2 are the numbers
of particles at the point y ∈ Z

d of type j, generated by a single particle of type
i at x ∈ Z

d at the moment t = 0. We assume that

nij(0, x, y) = δj
i δx(y), (1)

where the first δm
l is the Kronecker function on R, that is for l, m ∈ R

δm
l =

{
1, l = m;
0, l �= m

and the second δu(v) is the Kronecker function on Z
d, that is for u, v ∈ Z

d

δu(v) =

{
1, u = v;
0, u �= v.

We will assume that the evolution of particles of each type consists of several
opportunities. A particle of each type stays at some point on Z

d exponentially
distributed time up to the first transformation. After that there can be the
following transformations:
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1. Firstly, a particle of type i, i = 1, 2, can die with the rate μi ≥ 0, so that
particle can die with the probability μidt+o(dt) during small time period dt;

2. Secondly, each particle of type i can produce new particles of both types.
Denote by βi(k, l) ≥ 0, k + l ≥ 2, the rate of a particle of type i to produce
k particles of type i = 1 and l particles of type i = 2. Then we define the
corresponding generating function of branching (without particle death) for
i = 1, 2 (see [13]):

Fi(z1, z2) =
∑

k+l≥2

zk
1zl

2βi(k, l); (2)

3. Finally, particles can jump between the points on the lattice. We assume that
the probability of jump from a point x ∈ Z

d to a point x + v ∈ Z
d during the

small time period dt is equal to κiai(x, x + v)dt + o(dt), i = 1, 2. Here κi > 0
is the diffusion coefficient. In what follows we consider a symmetric random
walk, that is the case when ai(x, y) = ai(y, x). Moreover, random walk will
be assumed to be homogeneous in space: ai(x, x+v) =: ai(v) and irreducible,
so that span{v : ai(v) > 0} = Z

d. Also ai(0) = −1,
∑

v ai(v) = 0. Then the
migration operator has the form

Liψ(x) = κi

∑
v

[ψ(x + v) − ψ(x)]ai(v). (3)

The aim of research is to study the behaviour of each subpopulation
ni(t, x, y). Then given z = (z1, z2), let us introduce the generating function

Φi(t, x, y; z) = Ez
ni1(t,x,y)
1 z

ni2(t,x,y)
2 . (4)

This generating function specifies the evolution of a single particle of type
i = 1, 2. Let us consider what can happen to this particle (later, using this
we can obtain a differential equation for the generating functions). Firstly, the
initial particle at a point x can die with the probability μidt+o(dt) (then the sub-
population of this particle will disappear). Secondly, this particle can produce k
particles of type 1 and l particles of type 2 with the probability βi(k, l)dt+o(dt).
Thirdly, the particle can jump with the probability κiai(v)dt+o(dt) from a point
x ∈ Z

d to a point x + v ∈ Z
d. Finally, there can happen nothing with a particle

during time dt. From this we get the following Lemma.

Lemma 1. The generating functions Φi(t, x, y; z), i = 1, 2, specified by (4) sat-
isfy the differential equation

∂Φi(t, x, y; z)
∂t

= LiΦi(t, x, y; z) + μi(1 − Φi(t, x, y; z))

+ Fi(Φ1(t, x, y; z), Φ2(t, x, y; z))

−
∑

k+l≥2

βi(k, l)Φi(t, x, y; z); (5)

Φi(0, x, y; z) =

{
1, x �= y;
zi, x = y.

(6)
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Proof. Given an i = 1, 2, consider the generating function Φi(·, x, y; z) at the
time moment t + dt:

Φi(t + dt, x, ·; ·) =
(
1 − κidt − μidt −

∑
k+l≥2

βi(k, l)dt
)
Φi(t, x, ·; ·)

+ κi

∑
v

Φi(t, x + v, ·; ·)ai(v) dt + μidt

+
∑

k+l≥2

βi(k, l)Φk
1(t, x, ·; ·)Φl

2(t, x, ·; ·) dt + o(dt).

Then

Φi(t + dt, x, ·; ·) − Φi(t, x, ·; ·) = −
(
κi + μi +

∑
k+l≥2

βi(k, l)
)
Φi(t, x, ·; ·) dt

+ κi

∑
v

Φi(t, x + v, ·; ·)ai(v) dt + μidt

+
∑

k+l≥2

βi(k, l)Φk
1(t, x, ·; ·)Φl

2(t, x, ·; ·) dt + o(dt).

Therefore,

∂Φi(t, x, y; z)
∂t

= LiΦi(t, x, y; z) + μi(1 − Φi(t, x, y; z))

+
∑

k+l≥2

βi(k, l)(Φk
1(t, x, y; z)Φl

2(t, x, y; z) − Φi(t, x, y; z)).

Here, according to formula (2), we have∑
k+l≥2

βi(k, l)Φk
1(t, x, y; z)Φl

2(t, x, y; z) = Fi(Φ1(t, x, y; z), Φ2(t, x, y; z)),

and hence

∂Φi(t, x, y; z)
∂t

= LiΦi(t, x, y; z) + μi(1 − Φi(t, x, y; z))

+ Fi(Φ1(t, x, y; z), Φ2(t, x, y; z)) −
∑

k+l≥2

βi(k, l)Φi(t, x, y; z)).

The initial condition for the latter equation follows from (1):

Φi(0, x, y; z) = Ez
ni1(0,x,y)
1 z

ni2(0,x,y)
2 = Ez

δ1
i δx(y)

1 z
δ2

i δx(y)
2

= z
δ1

i δx(y)
1 z

δ2
i δx(y)

2 = z
δx(y)
i .

So, we obtain the desired results (5), (6) which completes the proof of
Lemma 1.
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4 Factorial Moments

In BRWs one of the ways to study the behaviour of the process is to study the
behaviour of its moments. Let us define for all r ≥ 1 and i, j = 1, 2

m
(r)
ij (t, x, y) = E

[
nij(t, x, y)

(
nij(t, x, y) − 1

)
. . .

(
nij(t, x, y) − r + 1

)]
.

Here m
(r)
ij (t, x, y) is the factorial moment for the subpopulation nij(t, x, y) of the

order r.
To obtain the differential equation for m

(r)
ij (t, x, y), firstly, note that

∂rΦi(t, x, y; z)
∂zr

j

=
∂rEz

ni1(t,x,y)
1 z

ni2(t,x,y)
2

∂zr
j

= E
[
nij(t, x, y)

(
nij(t, x, y) − 1

)
. . .

(
nij(t, x, y) − r + 1

)
× z

ni1(t,x,y)−rδ1
j

1 z
ni2(t,x,y)−rδ2

j

2

]
Then by fixing z = (1, 1) we have

∂rΦi(t, x, y; z)
∂zr

j

∣∣∣
z=(1,1)

= m
(r)
ij (t, x, y).

Therefore, to obtain the differential equation for the factorial moment of the
r-th order we differentiate r times both sides of Eq. (5) from Lemma 1 over zj :

∂r+1Φi(t, x, y; z)
∂zr

j ∂t
= ∂zr

j

(
LiΦi(t, x, y; z) + μi(1 − Φi(t, x, y; z))

+ Fi(Φ1(t, x, y; z), Φ2(t, x, y; z))

−
∑

k+l≥2

βi(k, l)Φi(t, x, y; z)
)
.

Taking here z = (z1, z2) we obtain the representation of the left hand side of
Eq. (5)

∂r+1Φi(t, x, y; z)
∂zr

j ∂t

∣∣∣
z=(1,1)

=
∂

∂t

∂rΦi(t, x, y; z)
∂zr

j

∣∣∣
z=(1,1)

=
∂m

(r)
ij (t, x, y)

∂t
.

while the right hand side of the same equation equals to

∂zr
j

(
LiΦi(t, x, y; z) + μi(1 − Φi(t, x, y; z)) +

∑
k+l≥2

βi(k, l)
(
Φk
1(t, x, y; z)

× Φl
2(t, x, y; z) − Φi(t, x, y; z)

))∣∣∣
z=(1,1)

=
(
Li

(
∂zr

j
Φi(t, x, y; z)

)
− μi

(
∂zr

j
Φi(t, x, y; z)

) −
∑

k+l≥2

βi(k, l)
(
∂zr

j
Φi(t, x, y; z)

)
+

∑
k+l≥2

βi(k, l)

× (
∂zr

j
(Φk

1(t, x, y; z)Φl
2(t, x, y; z))

))∣∣∣
z=(1,1)

.
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Apply the Leibniz’s formula

∂tn

(
f(t)g(t)

)
=

n∑
k=0

(
n

k

)
∂tk

(
f(t)

)
∂tn−k

(
g(t)

)

to the last term. Then we continue the previous relation and obtain(
Li

(
∂zr

j
Φi(t, x, y; z)

) − μi

(
∂zr

j
Φi(t, x, y; z)

) −
∑

k+l≥2

βi(k, l)
(
∂zr

j
Φi(t, x, y; z)

)

+
∑

k+l≥2

βi(k, l)
r∑

s=0

(
r

s

)(
∂zs

j
Φk
1(t, x, y; z)

)(
∂zr−s

j
Φl
2(t, x, y; z)

))∣∣∣
z=(1,1)

.

To differentiate terms ∂zs
j
Φl

i(t, x, y; z) we apply Faà di Bruno’s formula (see [4])

(
f(g(t))

)(n) =
n∑

k=1

(
f(g(t))

)(k)
Bn,k

(
g′(t), . . . , g(n−k+1)(t)

)
,

where Bn,k(x1, . . . , xn−k+1) is Bell polynomial which is defined as

Bn,k(x1, . . . , xn−k+1) =
∑ n!

j1! . . . jn−k+1!

(x1

1!

)j

1
. . .

( xn−k+1

(n − k + 1)!

)jn−k+1

,

where sum is taken for all sets of parameters {j1, . . . , jn−k+1}, so that

j1 + . . . jn−k+1 = k, j1 + 2j2 + . . . (n − k + 1)jn−k+1 = n.

Continuing the previous relation we have
(
Li

(
∂zr

j
Φi(t, x, y; z)

) − ( ∑
k+l≥2

βi(k, l) + μi

)(
∂zr

j
Φi(t, x, y; z)

)

+
∑

k+l≥2

βi(k, l)
[(

∂zr
j
Φk

1(t, x, y; z)
)
Φl

2(t, x, y; z) + Φk
1(t, x, y; z)

(
∂zr

j
Φl

2(t, x, y; z)
)]

+
∑

k+l≥2

r−1∑
s=1

(
r

s

)
βi(k, l) ×

[min(r−s,k)∑
q=1

k(k − 1) . . . (k − q + 1)Φk−q
1 (t, x, y; z)

× Br−s,q

(
Φ′

1(t, x, y; z), . . . , Φ
(r−s−q+1)(t,x,y;z)
1

)] ×
[min(l,s)∑

p=1

l(l − 1) . . . (l − p + 1)

× Bs,p

(
Φ′

2(t, x, y; z), . . . , Φ
(s−l+1)
2 (t, x, y; z)

)])∣∣∣
z=(1,1)

.

Let us define

x̄ =

{
1, x = 2;
2, x = 1
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then we obtain the differential equation for the factorial moment m
(r)
ij (t, x, y):

∂m
(r)
ij (t, x, y)

∂t
= Lim

(r)
ij (t, x, y) +

( ∑
k+l≥2

(k − 1)βi(k, l) − μi

)
m

(r)
ij (t, x, y)

+
∑

k+l≥2

lm
(r)

īj
(t, x, y) +

∑
k+l≥2

r−1∑
s=1

(
r

s

)
βi(k, l)

×
[min(r−s,k)∑

q=1

k(k − 1) . . . (k − q + 1)

× Br−s,q(m
(1)
ij (t, x, y), . . . ,m(r−s−q+1)

ij (t, x, y))
]

×
[min(l,s)∑

p=1

l(l − 1) . . . (l − p + 1)

× Bs,p(m
(1)

īj
(t, x, y), . . . ,m(s−l+1)

īj
(t, x, y))

]
with initial condition

m
(r)
ij (0, x, y) = E

[
nij(0, x, y)

(
nij(0, x, y) − 1

)
. . .

(
nij(0, x, y) − r + 1

)]
= E

[
δj
i δx(y)

(
δj
i δx(y) − 1

)
. . .

(
δj
i δx(y) − r + 1

)]
= δr

1δ
j
i δx(y).

Remark 2. BRWs with two types of particles (or more common models with
arbitrary finite number of particle types) can generalise widely studied models
with one type. To obtain models with one type we should assume in our model,
for example, that intensities β1(k, l) = 0 for all k + l ≥ 2 and l > 0. In this case
particles of the first type can produce only the offsprings of the first type. Such
models were studied, for instance, in [12,14].

5 Solutions of Differential Equations for the First
Moments

In this Section we consider the solutions of differential equations for the first
moments mij(t, x, y) = m

(1)
ij (t, x, y) = Enij(t, x, y), i, j = 1, 2, in case when

generators of random walk for both particle types are equal, so that L1 = L2 = L,
where L acts by formula (3). We are going to omit the calculus as they are pretty
huge and introduce only obtained results.

But firstly, we consider the following parabolic problem

∂p(t, x, y)
∂t

= Lp(t, x, y), p(0, x, y) = δx(y), (7)
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and introduce some designations:

b =
∑

k+l≥2

lβ1(k, l), c =
∑

k+l≥2

kβ2(k, l),

β1 =
∑

k+l≥2

(k − 1)β1(k, l), β2 =
∑

k+l≥2

(l − 1)β2(k, l).

We assume that b < ∞, c < ∞, and βi < ∞, i = 1, 2, and consider the solutions
for the first moments with regard to the values b and c. As b ≥ 0 and c ≥ 0
we consider three cases: 1. b = 0 and c ≥ 0; 2. b = 0 and b ≥ 0 and c = 0; 3.
b > 0 and c > 0. The fact that the first two of these conditions intersect does not
interfere with further considerations. In future formulae we assume that p(t, x, y)
is the solution of Cauchy problem (7).

1. Case b = 0, c ≥ 0. Here we have that β1 = 0 then

m11(t, x, y) = e−μ1tp(t, x, y);

m21(t, x, y) =

{
c(e−μ1t−e(β2−μ2)t)

μ2−β2−μ1
p(t, x, y), if μ1 �= μ2 − β2,

cte−μ1tp(t, x, y), if μ1 = μ2 − β2;

m12(t, x, y) = 0;

m22(t, x, y) = e(β2−μ2)tp(t, x, y).

⎫⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎭

(8)

2. Case b ≥ 0, c = 0. Here we have that β2 = 0 then

m11(t, x, y) = e(β1−μ1)tp(t, x, y);
m21(t, x, y) = 0;

m12(t, x, y) =

{
b(e(β1−μ1)t−e−μ2t)

μ2−β2−μ1
p(t, x, y), if μ1 − β1 �= μ2,

bte−μ2tp(t, x, y), if μ1 − β1 = μ2;

m22(t, x, y) = e−μ2tp(t, x, y).

⎫⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎭

(9)

3. Case b > 0, c > 0. Here

m11(t, x, y) =
eC1t

2C2

((
β1 − μ1 − C1 + C2

)
eC2t

+
(
C1 + C2 − β1 + μ1

)
e−C2t

)
p(t, x, y);

m21(t, x, y) =
ceC1t

2C2

(
eC2t − e−C2t

)
p(t, x, y);

m12(t, x, y) =
beC1t

2C2

(
eC2t − e−C2t

)
p(t, x, y);

m22(t, x, y) =
eC1t

2C2

((
C1 + C2 − β1 + μ1

)
eC2t

+
(
C1 − C2 − β1 + μ1

)
e−C2t

)
p(t, x, y),

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(10)
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where

C1 =
1
2

(
β1 + β2 − μ1 − μ2

)
, C2 =

1
2

[(
(β1 − β2) − (μ1 − μ2)

)2 + 4bc
]1/2

.

Remark 3. In this case we also can find the asymptotic behaviour for the first
moments mij(t, x, y), i = 1, 2, j = 1, 2, for t → ∞. Their behaviour essentially
depends on the properties of the underlying random walk. For example, if the
condition is valid ∑

v �=0

ai(v)|v|2 < ∞, i = 1, 2, (11)

where | · | denotes the vector norm, then underlying random walk has finite
variance of jumps. It was obtained, e.g. see [14], that p(t, x, y) ∼ γd/td/2, t → ∞,
where the constant γd > 0.

Let us discuss some obtained results under the assumption (11). Consider
the case b = 0, c ≥ 0, which describes the processes when particles of the first
type cannot produce offsprings. Let us assume that μ1 = μ2 − β2 = 0. It means
that particles of the first type can only jump between lattice points. According
to formula (8), as t → ∞, we get

d = 1 d = 2 d ≥ 3

mii(t, x, y) ∼ γ1√
t
, mii(t, x, y) ∼ γ2

t
m

(1)
ii (t, x, y), ∼ γd

td/2
, i = 1, 2

m21(t, x, y) ∼ cγ1
√

t, m21(t, x, y) ∼ cγ2, m
(1)
21 (t, x, y) ∼ cγd

td/2−1
.

Note that when d = 2 the value m21(t, x, y) tends to constant, so that we have
steady state in terms of the first moments for subpopulations. In contrast to this
case, when d = 1 mean nummber of particles of subpopulation n21(t, x, y) grows
with the rate

√
t. However when d ≥ 3 the same subpopulation degenerates at

each lattice point. The same results can be obtained in case b ≥ 0, c = 0, see (9).
The only difference is that in this case particles of the second type can only jump
between lattice points.

In case b > 0, c > 0 the parameter C2 > 0 for all βi, μi ∈ R, i = 1, 2.
From (10), as t → ∞, we get the asymptotic behaviour of the first moments

m11(t, x, y) ∼ γde
(C1+C2)t

2C2td/2

(
β1 − μ1 − C1 + C2

)
;

m21(t, x, y) ∼ cγde
(C1+C2)t

2C2td/2
;

m12(t, x, y) ∼ bγde
(C1+C2)t

2C2td/2
;

m22(t, x, y) ∼ γde
(C1+C2)t

2C2td/2

(
C1 + C2 − β1 + μ1

)
.

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

The asymptotic behaviour of the moments depend on the value C1 + C2.
If C1 + C2 > 0 when all subpopulations nij(t, x, y), i, j = 1, 2 will grow with



Two-Type BRW and Genetic Modeling 267

exponential rate while if C1 +C2 ≤ 0 subpopulations will degenerate with either
exponential rate (C1 + C2 < 0) or polynomial rate (C1 = −C2).

Subpopulations of particle offsprings for i = 1, 2, j = 1, 2 defined as

nij,x(t) :=
∑
y∈Zd

nij(t, x, y), nij,y(t) :=
∑
x∈Zd

nij(t, x, y),

may be of particular interest for the models considered in Sect. 2.
Let mij,x(t) = Enij,x(t), mij,y(t) = Enij,y(t), i = 1, 2, j = 1, 2. From here we

get
mij,x(t) =

∑
y∈Zd

mij(t, x, y), mij,y(t) =
∑
x∈Zd

mij(t, x, y).

Hence, summing the left and right sides of the equations for mij(t, x, y) for y or
x in virtue of the equality

∑
y∈Zd p(t, x, y) =

∑
x∈Zd p(t, x, y) = 1, see, e.g. [14],

we obtain the following results for the first moments that mij,x(t) = mij,y(t) =:
mij(t) for all x, y ∈ Z

d, i = 1, 2, j = 1, 2. Due to the fact that the dependence on
spatial coordinates in systems (8)–(10) is contained only in the function p(t, x, y),
so in consequence of the homogeneity of the branching medium and the initial
conditions of the BRW model the right-hand side of the systems for mij(t) is
defined only by properties of the branching process at the sources.

Remark 4. Let us sum up the results from the genetic point of view. The case
β2 = 0 corresponds to the model of incomplete dominant epistatic lethals in
the assumption that carriers of a single copy of the D haplotype (considered in
Sect. 2) are viable, but cannot produce offsprings. In this case, the mean num-
ber of particles of the second type (carriers) located at y ∈ Z

d generated by a
particles of the first type (healthy organisms) is determined by m12(t, x, y) from
Eq. (9). The behaviour of m12(t, x, y) depends on ratio between mortality rate
μ2 and difference μ1 − β1. Of particular interest is the case of μ2 = μ1 − β1 in
which the asymptotic behaviour of moments differs sharply depending on lattice
dimension d. In the general case, when particles of the second type (carriers
of haplotype D) are viable, the behaviour of the first moments of subpopula-
tions is described by Eqs. (10). The asymptotic behaviour of the first moments
mij(t, x, y) and mij(t) depends on parameters C1, C2 based on the birth and
death intensities of both types of organisms.
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of the Scheme of Metric Analysis
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Abstract. The problem of the reconstruction of a multivariable func-
tion whose values with chaotic errors are given at a finite number of
points is considered in the paper. The problems of this kind arise when
solving applied problems in various fields of research, including physics,
engineering, economics, etc. We propose a new approach for solving this
problem with the help of a metric analysis. The paper gives numerical
two examples of the solution of the problem of the reconstruction of
multivariable function, demonstrating the effectiveness of the proposed
scheme. In the first example, the results of estimating the exact value of
the function at the points where the values of the function with errors are
known, in the second example, the results of reconstructing the physical
characteristics of the core of a nuclear reactor are presented.

Keywords: Multivariable function · Reconstruction · Metric analysis

1 Metric Analysis Interpolation Scheme

The problem of the reconstruction of a multivariable function is a key problem
to solving many applied tasks [1–7].

In this paper we propose the computational scheme for solving the problem
of the reconstruction of multivariable function.

This approach uses information about the location of the points X1,...,Xn

of the function F (X), X = (X1...,Xm)T at which the values Yk, k = 1, ..., n of
the function are given.

The proposed in this paper scheme can be used even in those cases when the
number n of points, in which the values of the function are given, is less than
the number m of its arguments.

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2021
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Interpolation schema presented in this paper is based on the metric analy-
sis [5–7].

Consider the problem of determining the value of an unknown function

Y = F (X), (1)

for which its values Yk, k = 1, ..., n are given with chaotic errors in the knots
Xk = (Xk1, ...,Xkm)T , k = 1, ..., n, and the desired value of the function (1)
must be restored at the point X∗.

According to the method of interpolation, based on metric analysis, the inter-
polation value Y ∗ is found as a solution of problems of minimum of the measure
of metric uncertainty at the point X∗ = (X∗

1 , ...,X∗
m)T [8–10].

σ2
ND(Y ∗; z∗) = (Wz∗, z∗), (2)

where W is a matrix of the metric uncertainty and the interpolation value is
determined by a linear combination

Y ∗ =
n∑

k=1

z∗
k · Yk,

n∑

k=1

z∗
k = 1 (3)

and is given by

Y ∗ =
(W−1Y,1)
(W−11,1)

. (4)

The matrix of the metric uncertainty W is defined by

W =

⎛

⎜⎝
ρ2(X1,X∗) . . . (X1,Xn)

...
. . .

...
(Xn,X1) . . . ρ2(Xn,X∗)

⎞

⎟⎠ (5)

where ρ2(X1,X∗) =
∑m

l=1 Vl·(Xil−X∗
l )2, (Xi,Xj) =

∑m
l=1(Xil−X∗

l )·(Xjl−X∗
l ),

i �= j, i, j = 1, ..., n,, where V(l), l = 1, . . . ,m,
∑m

l=1 Vl = m are metric weights.

Theorem 1 (on convergence [9]). The interpolation value of the function Y ∗

converges to the exact value Yk, as X∗ → Xk, k = 1, ..., n.

From Theorem 1 it follows that the interpolation function obtained using the
metric analysis scheme is the continuous function of m variables.

When forming the matrix of metric uncertainty (5) its elements can be deter-
mined in some ways, in particular, the scalar product (Xi,Xj) can be introduced
in different ways. As a result, you can get different convergence rates of the inter-
polation function to the function values at the interpolation nodes. You can, for
example, introduce the dot product as (Xi,Xj) =

∑m
l=1(Xil−X∗

l )α ·(Xjl−X∗
l )α,

i �= j, i, j = 1, ..., n,, where α > 1 is a parameter. In this case, the rate of conver-
gence will be of order ρα. This approach is often convenient when the considered
applied problem has a requirement on the rate of convergence.
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Note that the presented multivariable function interpolation scheme, based
on metric analysis (unlike many other interpolation schemes), does not use any
general representation of the interpolated function. This scheme allows to cal-
culate the interpolated values of the function at each given point X∗ separately,
taking into account the location of the point X∗ in the m-dimensional space Em

with respect to the points Xk, k = 1, . . . , n in which the values of the function
are known.

The meaning of metric weights is that they take into account the degree of
change of the function under study when its arguments change. In this case,
the metric uncertainty matrix will take into account not only the geometric
arrangement of points in the original geometric space, but also the different
level of change in the function relative to different function arguments.

From
∑m

l=1 Vl = m it follows that if Vl > 1 (Vl < 1), then this indicates a
larger (smaller) level of change in the function when changing the l-th argument
with respect to the same degree of sensitivity of the function to changes in
arguments.

The interpolation scheme of multivariable functions of metric analysis allows
one to consider the different level of sensitivity of changes in the function to
changes in the arguments with the help of metric weights Vl, l = 1, ...,m. In our
previous works to find the metric weights wl the scheme, based on the successive
elimination of arguments and taking into account the changes in the function,
was used (see [8–11]).

The quality of solving the problems of separating deterministic and chaotic
components for multivariable functions largely depends on the quality of the
definition of metric weights.

2 Metric Analysis Reconstruction Scheme

Consider the problem of restoring the functional dependence Y =
F (X1, ...,Xm) = F (X) in the presence of chaotic deviations from the exact
values at given points.

In this paper we propose the more effective scheme for determining the metric
weights Vl, l = 1, ...,m, based on a multifactor linear model of the relationship
between the values of the function Y and its arguments Xl, l = 1, ...,m.

The new scheme for determining metric weights Vl, l = 1, ...,m is based on
the calculation of weighting factors ul, l = 1, ...,m of the linear regression model:

Y = u0 +
m∑

l=1

ul · Xl + ε, (6)

where ε is random noise.
According to the LSM, the parameter estimates u = (u1, ..., um)T of

model (6) are given by:
u = K−1

X cov(Y,X), (7)
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where K−1
X is the inverse matrix, and the elements of the covariance matrix KX

are defined by:

cov(Xi,Xj) =
1

n − 1

n∑

k=1

(Xki − X̄i) · (Xkj − X̄j), (8)

and vector components cov(Y,X) = (cov(Y,X1)...cov(Y,Xm))T are calculated
according to equations: cov(Y,Xj) = 1

n−1

∑n
k=1(Yk − Ȳ ) · (Xkj − X̄j), X̄i =

1
n

∑n
k=1 Xki, Ȳ = 1

n

∑n
k=1 Yk.

Then the values of the metric weights vl, l = 1, ...,m are calculated by the
formulas:

vl =
|ul|∑m

j=1 |uj | · m, l = 1, ...,m. (9)

Remark 1. Since the metric weights depend on the values of the function at
the interpolation nodes, the interpolation values obtained by the metric analysis
method, in the general case, will nonlinearly depend on the given values Yk,
k = 1, ..., n of the function.

Thus, the above scheme for choosing a weighting metric makes it possible to
identify the degree of influence of each of the arguments and takes into account
the different degree of influence by moving to a new metric with corresponding
unequal weights.

Let us consider the degenerate case when an argument (factor) is introduced
in the function under study, on which the function does not depend. Then,
when implementing the scheme for finding the weights of the new metric an
unambiguous result will be obtained: the metric weight corresponding to the
above factor will be zero and this factor will be automatically excluded from
further consideration. Therefore, the above scheme for the transition to a metric
with weights makes it possible to take into account, just as it is done in factor
analysis, the influence of arguments on the change in the function and to exclude
insignificant ones from them, lowering the dimension of the factor space.

Let us consider the degenerate case when an argument (factor) is introduced
in the function under study, on which the function does not depend. In this
case, an unambiguous result will be obtained: the metric weight corresponding
to the above factor will be zero, and this factor will be automatically excluded
from further consideration. The above scheme for the transition to a metric with
weights makes it possible to take into account, just as it is done in factor analysis,
the influence of factors on the change in the function and exclude insignificant
ones from them, reducing the dimension of the factor space.

Remark 2. In the conditions of a strong correlation of part of the arguments Xk =
(Xk1, ...,Xkm)T , k = 1, ..., n, and, thus, a singular or ill-conditioned matrix KX

it is necessary to carry out regularization by replacing the matrix KX by the
regularized matrix, for example, the matrix KX,β = KX+β∗diag(K11, ...,Kmm),
β > 0, where Kij , i, j = 1, ...,m is the regularized matrix, for example, the matrix
KX.
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Function values Yk, k = 1, ..., n are known with errors at points Xk =
(Xk1, ...,Xkm)T , k = 1, ..., n.

Thus, we have the system of equations:

Yk = Ykdet + εk, k = 1, ..., n, (10)

where Ydet = (Y1det, ..., Yndet)T is the sought vector of deterministic components
(estimates of the values of the function) at points Xk = (Xk1, ...,Xkm)T , k =
1, ..., n and ε = (ε1, ..., εn)T is the vector of chaotic components.

For any point X∗ we are looking for value Yα

Yα =
n∑

i=1

zi · Yi = (z,Y) , (11)

where vector z is the solution of the following problem of minimum of total
uncertainty:

(Wz, z) + α · (KYz, z) − min, (z,1) = 1, (12)

α ≥ 0 is the smoothing parameter, KY is the covariance matrix of the vector of
random components ε = (ε1, ..., εn)T , and the matrix of metric uncertainty W
is calculated with respect to the point X∗ (see (5)).

Expression (Wz, z) represents the metric uncertainty in the restored value of
the function, and expression α · (KYz, z) represents the stochastic uncertainty
of the recovered value.

The problem (12) can be solved by means of Lagrange multipliers.
The solution of problem (12) is defined by the equality:

Yα =
(
(W + α · KY)−1 1,Y

)
/
(
(W + α · KY)−1 1,1

)
. (13)

When α → ∞ the value Yα for the point Xk is defined by the equality:

Y∞ =
(K−1

Y 1,Y)
(K−1

Y 1,1)
. (14)

When α → +0 the value Y ∗ for the point Xk is defined by the equality:

Y0 =
(W−11,Y)
(W−11,1)

. (15)

The value of Y ∗ in the point X∗ is given by:

Y ∗ = Yα∗ , (16)

where α∗ is found from the equality

‖Y − Yα∗‖2 = n · σ2, (17)

where Yα∗ = (Y1α∗ , ..., Ynα∗)T , σ2 is the mean value of variances of chaotic
components εk, k = 1, ..., n.
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Consider the restoration of the functional dependence, when the values of
the function at each given point are known with different levels of errors. In
such cases, reconstruction should be performed with the value of found using
the generalized residual principle.

Let at points X1, ..,Xn the values of the function Yk, k = 1, ..., n are given
with errors, the variances of which are equal to σ2

1 , ..., σ
2
1 , respectively.

In this case, the covariance matrix has a diagonal form:

KY = diag
(
σ2
1 , ..., σ

2
1

)
. (18)

We introduce the residual functional

δ(α) =
1
n

·
n∑

k=1

(Y ∗
k (α) − Yk)2

σ2
k

− 1, (19)

where Y ∗
k (α) are the reconstructed values at the nodes Xk, where the values of

the function are given.
To restore the original functional dependence a value of α0 is chosen for which

δ(α0) = 0, (20)

By the found value of α0 for points X1, ..,Xn are the recovered values Y ∗
k (α0),

k = 1, ..., n.
The quantity Ych(Xk) = Yk−Y ∗

k (α0) is the chaotic component of the function
value at the point Xk.

The actual finding of a suitable value of 0 according to the residual method
is reduced to the sequential finding of the restored values Y ∗

k (α), k = 1, .., n for
different α and the choice of such reconstructed values for which equality (20)
is most accurately satisfied.

Since the parameter α is continuous, in the numerical implementation it is
possible to find a suitable value of α0 in such a way that equality (20) is fulfilled
with a predetermined accuracy.

We note once again that interpolation and restoration of functional depen-
dencies by the method of metric analysis does not imply setting the basis system
of functions, and at each point where the interpolation or reconstructed value is
calculated, its location relative to the interpolation nodes is individually taken
into account.

The total measure of uncertainty σ2
sum(Y/X∗) of the value of Y at the point

X∗ is determined by the equality

σ2
sum (Y/X∗) = (Wz, z) + α · (KYz, z) = (Vsumz, z) , (21)

where Vtot = (Wz, z) + α · (KYz, z) is a symmetric positive definite (n × n) –
matrix.

The matrix Vtot from (21) will be called the matrix of the total uncertainty
of the value of the function Y at the point X∗.
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Consider the inverse matrix V −1
tot . The quantity I(Y/X∗) =

(
V −1

tot 1,1
)

> 0
will be called information about the value of the function at the point X∗ from
the values Y of the function, known with errors at points X1, ...,Xn [9].

3 Numerical Results

The numerical results for restored values (deterministic components) of the mul-
tivariable function, using a metric analysis for a test case, are given below.

The values of the function were restored at the same points in which the
noisy values of the function were known. Chaotic values were generated using a
normally distributed random variable N(0, σ2).

The following indicators for restoring the original function were calculated:

1. deterministic components Ykdet, k = 1, ..., n;
2. chaotic components εk, k = 1, ..., n;
3. initial relative errors Δk =

∣∣∣Y ∗
k −Yk

Y ∗
k

∣∣∣, k = 1, ..., n;

4. mean initial error Δ = 1
n · ∑n

k=1 Δk;

5. relative recovery errors δk =
∣∣∣Y ∗

k −Ykdet

Y ∗
k

∣∣∣, k = 1, ..., n;

6. mean recovery error δ = 1
n · ∑n

k=1 δk.

Here Y ∗
k are exact values of the function; Yk are noisy function values, Yk =

Ykdet + εk, εk ∼ N(0, σ2) is a normally distributed random variable; Ykdet are
restored values of the deterministic component of our function.

Example. The function Y of four variables x = (x1, x2, x3, x4)T has the form
Y = (V x,x) + (c,x), where

V =

⎛

⎜⎜⎝

5 0 0 0
0 3 0 0
0 0 6 0
0 0 0 0.3

⎞

⎟⎟⎠ ,

c = (−0.8, 2.0, 1.0, 0.5)T , and the values of arguments lie in the unit four-
dimensional domain D: 0 ≤ xi ≤ 1, i = 1, 2, 3, 4.

The exact values of the function were calculated at randomly chosen 24 points
(n = 24) in the domain D. The exact values of the function are given in the first
column of Table 1. Then, using a normally distributed random variable with
σ = 1.2, chaotic components εk, k = 1, ..., 24, were generated and added in
sequence to 24 exact values of the function. Thus obtained noisy values of the
original function are presented in the second column of Table 1. The third column
of Table 1 shows the values of the relative errors.

The separation of the deterministic and chaotic components is realized
according to the scheme presented above. The optimum value α∗ of parame-
ter α according to (20) was determined using equality

α∗ = argmin

∣∣∣∣∣
1
24

24∑

k=1

(Yk − Ykα)2 − 1.44

∣∣∣∣∣ .
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Table 1. Values of selected deterministic and chaotic components

Exact
value Y ∗

k

Value with
chaotic
component Yk

Initial relative
error
Δk =

∣
∣
∣
Y ∗
k −Yk

Y ∗
k

∣
∣
∣

Restored
value
Ykdet

Chaotic
value εk

Relative
recovery error

δk =
∣
∣
∣
Y ∗
k −Ykdet

Y ∗
k

∣
∣
∣

11.114 11.049 0.006 10.587 0.463 0.047

6.484 4.017 0.381 6.700 −2.684 0.033

4.574 3.866 0.155 4.722 −0.857 0.032

5.486 4.045 0.263 4.951 −0.907 0.098

3.552 4.164 0.172 3.624 0.540 0.020

9.581 9.211 0.039 9.41 −0.197 0.018

5.486 5.348 0.025 4.951 0.397 0.098

3.552 1.612 0.546 3.624 −2.012 0.020

9.581 8.543 0.108 9.41 −0.937 0.018

5.212 5.769 0.107 5.396 0.373 0.035

6.937 5.864 0.155 6.299 −0.435 0.092

6.233 6.452 0.035 6.691 −0.239 0.074

11.332 12.411 0.095 10.576 1.836 0.067

8.764 10.173 0.161 8.660 1.512 0.012

10.146 11.741 0.157 10.070 1.672 0.008

7.687 8.227 0.070 8.328 −0.100 0.083

7.466 6.238 0.165 6.963 −0.726 0.067

5.973 5.047 0.155 5.690 −0.643 0.047

9.560 12.300 0.287 9.762 2.539 0.021

12.935 13.551 0.048 12.733 0.819 0.016

5.866 6.488 0.106 5.770 0.718 0.016

7.524 7.166 0.048 8.010 −0.845 0.065

10.028 9.503 0.052 10.003 −0.500 0.003

6.283 5.531 0.120 6.093 −0.562 0.030

In Table 1 the values of selected deterministic and chaotic components are
presented in the fourth and fifth columns respectively. Finally, the sixth column
of Table 1 gives the relative error values of restored function.

The following indicators for deterministic component were obtained: α∗ =
4.2; Δ = 0.144; δ = 0.077.

Below there are the numerical results of reconstruction using the proposed
schemes for metric analysis of physical indicators of the state of the active zone
of the nuclear reactor using the accumulated data on the reactor operation.

The important physical indicator is considered: the macroscopic generation
cross section in thermal group and the macroscopic cross section for scattering
from the fast group to the thermal group, which depends on controlled physical
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parameters of the components of the metric analysis of physical indicators of the
state of the active zone.

The numerical results of the reconstruction were compared with the known
values of the indicators, the errors of the reconstruction values were calculated.
They are presented in the two tables below.

Tables 2 and 3 show the results of reconstruction using the scheme for deter-
mining the metric weights presented in this paper.

Table 2. Macroscopic generation cross section in thermal group

Recovery performance indicator Equal weight scheme Scheme with weights

Amount of points 6 12 18 6 12 18

Error share < 5% 97,1 99,3 100,0 98,2 100,0 99,6

Error share < 1% 81,3 89,7 89,3 83,1 91,9 91,9

Error share < 0,5% 62,5 74,3 76,1 64,7 77,6 75,0

Error share < 0,1% 24,6 36,8 34,6 33,8 38,2 37,1

Maximum error 13,11 5,57 4,82 11,05 3,70 5,43

Average error 0,777 0,491 0,486 0,689 0,389 0,398

Table 3. Macroscopic generation cross section for scattering from the fast group to
thermal group

Recovery performance indicator Equal weight scheme Scheme with weights

Amount of points 6 12 18 6 12 18

Error share < 5% 99,3 100,0 100,0 99,7 100,0 100,0

Error share < 1% 86,4 89,2 89,2 86,4 90,2 88,5

Error share < 0,5% 68,5 76,6 76,6 71,0 77,3 78,7

Error share < 0,1% 30,8 35,0 38,1 33,9 39,2 42,0

Maximum error 6,272 3,529 3,003 5,508 3,418 2,943

Average error 0,487 0,380 0,365 0,368 0,389 0,347

Tables 4 and 5 show for comparison the results of restoration using the
sequential exclusion of arguments scheme (scheme no. 1) and the scheme pre-
sented in this paper (scheme no. 2).

4 Conclusion

Based on the metric analysis, the scheme and algorithm for solving the prob-
lem of the reconstruction of multivariable function, whose values are given at a
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Table 4. Macroscopic cross section for scattering from thermal group to thermal group

Recovery
performance
indicator

Equal weight scheme Scheme no 1 Scheme no 2

Amount of points 6 12 18 6 12 18 6 12 18

Error share < 5% 100,0 100,0 100,0 100,0 100,0 100,0 100,0 100,0 100,0

Error share < 1% 99,1 100,0 100,0 98,7 100,0 100,0 99,7 100,0 100,0

Error share < 0,5% 96,9 99,7 100,0 95,3 99,4 100,0 96,2 100,0 100,0

Error share < 0,1% 66,4 81,4 88,1 71,4 83,6 88,1 75,5 93,7 97,2

Maximum error 1,561 0,747 0,360 1,795 0,692 0,410 1,374 0,362 0,156

Average error 0,116 0,058 0,041 0,114 0,055 0,041 0,096 0,034 0,027

Table 5. Macroscopic cross-section of fission in the thermal group

Recovery
performance
indicator

Equal weight scheme Scheme no 1 Scheme no 2

Amount of points 6 12 18 6 12 18 6 12 18

Error share < 5% 97,3 99,3 99,3 98,7 99,7 99,7 98,3 99,7 99,7

Error share < 1% 80,1 88,2 86,9 83,2 90,2 90,6 83,2 91,6 90,2

Error share < 0,5% 63,3 74,1 76,1 69,7 78,8 78,1 65,3 79,5 76,1

Error share < 0,1% 28,3 39,7 40,7 33,0 46,1 46,1 32,3 42,8 41,1

Maximum error 12,372 7,247 5,718 15,829 6,151 5,704 8,790 7,000 5,199

Average error 0,825 0,488 0,468 0,662 0,389 0,395 0,661 0,378 0,395

finite number of the points, are proposed. In this scheme, a priori information
about the form of the functional dependence is not used (only information on
the continuity of the reconstructed function is used). Numerical experiments on
the reconstruction of multivariable function for a number of multivariable func-
tions with the help of the proposed schemes have shown that the scheme allows
one to the reconstruction of multivariable function even in the presence of a
small number of points at which values of the being analyzed function are given.
Moreover, the number of such points can be less than the number of arguments.
For the examples presented in the paper, the mean errors of the reconstruction
of multivariable considered functions were calculated. Numerical experiments on
the reconstruction for a number of functions of many variables using the pro-
posed scheme where conducted. The results of experiments have shown that the
proposed scheme allows one to restore the values of function even in the situation
when we have a small number of points. From a comparison of average errors
Δ and δ for the example given by us one can see that the new scheme allows
reducing relative errors δk twice.
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Application of Deep Learning Methods
for the Identification of Partially
Observable Subgraphs Under the

Conditions of a Priori Uncertainty and
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Example of the Problem of Recognizing
Constellations)
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117977 Moscow, Russia

Abstract. This paper demonstrates the effective capabilities of deep
neural networks in solution of the problem of structural identification
on graphs in conditions of a priori uncertainty, incomplete observability
and stochastic disturbances which is also knows as subgraph detection
or recovery. The problem of identification of observed constellations in
a photo of the night sky was considered as a test. The solution with
quality of 0.927 F1 is obtained. In this work we synthesized original
ResNet architecture of the convolution neural network with 26 trainable
layers, 415 193 configurable parameters, carried out statistical analysis of
structural characteristics of the dataset and adapted the standard binary
cross entropy loss function, developed a special strategy for learning the
neural network. Moreover, an adequate criterion of observability of the
constellation in the image was formed. We also studied the influence of
noise on the quality and stability of the received solutions.

Keywords: Deep learning · Graph identification · Stochastic
disturbances

1 Introduction

Let’s introduce an undirected graph

Γ S =
〈
VS, ES

〉
, VS �= ∅, ES �= ∅,

∣∣VS
∣∣ = KV

S � ∞,
∣∣ES

∣∣ = KE
S � ∞,

(1)
with the nodes and edges set by sets of VS and ES respectively. According to this
topology, the Γ S graph does not contain multiple edges, has no loops, and has
the only connected component. Each node and edge of the Γ S graph is associated

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2021
A. N. Shiryaev et al. (Eds.): ICSM-5 2020, PROMS 371, pp. 280–291, 2021.
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with their property vectors: PV
S i – of the i node, i = 1, KV

S and PE
S ij – of the

edge linking the i and j nodes, i �= j, j = 1, KV
S .

The solution of various structural identification tasks like detection or recov-
ery of subgraphs on graphs like Γ S, is relevant from both an applied and theo-
retical point of view. There are two classical groups of algorithms for searching
and selection of subgraphs:

• In a completely observed graph: modularity optimization (Newman
2006), stochastic block models (Airoldi et al. 2008), spectral graph-
partitioning (Newman 2013), clique percolation (Du et al. 2007), cluster-
ing (Chen and Saad 2010), and label propagation (Li et al. 2020).

• Under the conditions of incomplete observability of nodes and edges of the
source graph: based on the incorporated additional information (Yang et al.
2013), the similarity of topological structures (Yan and Gregory 2012; Yan
and Gregory 2011), and a hierarchical gamma process (Zhou 2015).

Recently, deep learning methods have been actively used in solution various
problems on the graphs in the conditions of a priori uncertainty and stochastic
disturbances (Goodfellow et al. 2016). It can be seen from scientific and informa-
tion resources, that main focus is on tasks of evaluating certain characteristics
of graphs, subgraphs and nodes (Lin et al. 2018; Zügner et al. 2018).

This work demonstrates the possibility of effective application of deep neu-
ral networks for the solution of structural identification problem on graphs in
conditions of a priori uncertainty, incomplete observability and stochastic dis-
turbances. The problem of identification of constellations in a photo of the night
sky is considered as a test one. The priori uncertainty arises due to the lack of
information about the time and coordinates of the survey and the direction of
the optical axis. Incomplete observability could be formed by partial shielding
stars by clouds. Stochastic disturbances form “false stars” due to the instrument
noise of the photo registration equipment.

2 Statement of the Problem and Related Work

Let ΓN graph similar to Γ S graph is available for the observation. In general,
the observed ΓN graph has a non-zero intersection with Γ S graph:

Γ S ∩ ΓN �= ∅, Γ S �= ΓN. (2)

It’s also possible to present the ΓN graph as

ΓN = ΓN
◦ ∪ Γ ∗, (3)

where ΓN
◦ ≈ Γ S

◦ addition or distribution the observable subgraph of the Γ S

graph, and the Γ ∗ graph represents the stochastic addition or distribution form-
ing false nodes and edges. Characteristics of PV

N◦ i and PE
N◦ ij also include random

misrepresentations according to their true identities PV
S◦ i and PE

S◦ ij .
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The final test problem can be formulated as highlighting the most effective
assessment of the ΓN graph from the observed Γ S

◦ graph:

L
[
ΓN

∣∣(PV
N, PE

N

)
, Γ S◦∣∣(PV

S◦, PE
S◦

)] → min, (4)

where L describes an error function. And the solution of the problem (4) implies
the identification of the nodes of the Γ S graph which are part of ΓN.

In the test task defined above, the nodes of Γ S graph represent clusters of
stars called constellations, the edges describe relations between constellations
with common borders on the celestial sphere. Characteristics of the nodes stand
for the corresponding astronomical properties of constellations and their borders.
The sky with stars is the observed part of the celestial sphere in a horizontal
coordinate system is fixed to a location on Earth. It’s worth to note that the con-
stellation “Serpens” is divided into two: “Serpens Caput” and “Serpens Cauda”.
In this way, the total number of constellations KV

S is equal to 89 and KE
S = 264.

The graph described above is shown in Fig. 1.

Fig. 1. Constellation graph Γ S. Node number (starting with 0) – constellation numbers
in alphabetical order.

In the stated statement, besides theoretical, the problem has a high applied
importance for solving the problems of identification of stars and astronomical
navigation.

Solution based on the comparison of templates is presented in work (Ji et
al. 2015). Accuracy on the test images formed 74% with correct constellation
detection share of about 92.8%, but the average recognition time is 85 s, which
is not applicable in real time conditions.
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In our work, we use approach of developing and training a deep convolutional
neural network which is able to approximate unknown mapping of the observed
sky to the constellation space.

3 Raw Data and Dataset Preparation

3.1 Images of the Starry Sky

In this task, the observed data are images of the starry sky, which are parts of the
celestial sphere in the horizontal coordinate system. The horizontal coordinate
system is connected to the Earth (or another celestial object) and participates
in the Earth’s own rotation. As a result, distant celestial bodies such as stars,
move in circles with a period of time equal to the Earth’s period of rotation and
are motionless relative to each other, provided that their proper motions are not
taken into account.

In order to create an astronomical dataset where the neural network is being
trained and tested, we have developed our software based on the Tycho-2 star
catalog. The dataset was created using an iterative algorithm based on Earth
observer parameters (location of the observer, viewing angles and GMT). Stars
with a magnitude value of no more than 6.5, which corresponds to stars visible
to the eye, were used in the construction of images of the starry sky. Also, the
spectral properties of stars were not taken into account, i.e. a photo of the starry
sky is a binary image. This decision was made in order to solve the problem of
identification constellations only by the geometric pattern of the observed starry.

Thus, a training and testing dataset was formed with a total size of 1 284 780
and 48 772 samples respectively. It should be noted that the samples presented
do not overlap with the earth observer parameters to avoid leakage of data during
the testing phase.

The characteristics of the images of the starry sky are as follows:

1. size 240 × 240 pixels;
2. the field of view angle 20◦ × 20◦, as with modern star sensors;

3.2 Constellation Labels

To train the neural network, a marked dataset is essential, i.e. each input image
requires an answer that contains the marks of the constellations depicted in
the starry sky photo. In this task, an obvious and natural criterion for the
observability of constellations can be formed, namely an entry criterion based
on the current boundaries of the constellations. In other words, a constellation
is observable if any part of the image is part of a constellation on a celestial
sphere. An example of how this criterion is used is given in Figs. 2 and 3. Thus
the resulting binary vector of length 89 is formed from the colors of the built
mask.

However, as will be shown in the future, this observability criterion is not
optimal and is not suitable for the problem solution. The adequate criterion for
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Fig. 2. Original image of the starry sky
built in the developed software

Fig. 3. A mask corresponding to Fig. 2,
based on the current constellation
boundaries.

the observability of constellations into images of the starry sky will be based on
the observation of stars in a photo from the constellation. A comparative analysis
of the two criteria, as well as the reasonableness of the choice of criteria, will be
investigated during an exploratory data analysis.

4 Exploratory Data Analysis

In order to obtain a priori information on the generated dataset for further use
in improving the solution, we will carry out an exploratory data analysis. The
main tool for exploratory analysis of data is to empirically extract features,
explore their relationship and identify anomalies. We have identified two types
of features: the features of constellations, which are part of the node property
vector, and the statistical characteristics of the dataset.

• The feature of constellations:
1 number of bordering constellations;
2 constellation area in the equatorial coordinate system (deterministic

value);
3 number of stars in the constellation;

• Statistical characteristics of the dataset:
4 distribution of class labels by observability criterion based on modern

constellation boundaries;
5 relative area of the constellation in the data set - the percentage of peaks

in all instances;
6 distribution of class labels by observability criterion based on the entry

of at least one star from constellations into the image of a starry sky;
7 percentage of constellation labels in the entire dataset that are observed

on the basis of modern boundaries but do not contain any of their own
stars;
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At the beginning of the exploratory analysis, a number of images were
obtained for each constellation, where the constellation is observed and unob-
served. By averaging all constellations, we obtained a ratio of 97% : 3%, where 3%
is the percentage of samples where the constellation appears in the image,
and 97% of pictures where the constellation does not appear in the image. Thus,
there is a class imbalance in the data, which makes it difficult to solve the prob-
lem. It is therefore necessary to change the learning and evaluation strategy for
the network. It should also be noted that it is impossible to balance the data by
adding images and augmenting them, due to the intersection of classes in the
starry sky images. The imbalance of classes must therefore be taken into account
by weighting the loss function.

The next step is to study the number of boundary constellations in the
selected constellation, in other words, the number of boundary constellations
is the node degree of the graph of the starry sky. Median number of boundaries
for all constellations is 6, but there are abnormal constellations where:

1. The number of neighbors is 2 or 3. These are rare constellations, the recog-
nition of which is particularly difficult.

2. The number of bordering constellations is 10 and 14 (“Eridan”, “Hydra”
respectively). These constellations are located at the center of the equatorial
coordinate system, have a large number of stars, a large area and are less
difficult to recognize.

Here is the percentile distribution of stars within the constellations. The
numerical values of this distribution are shown in Table 1.

Table 1. Percentile distribution of the number of stars

Percentile 0 5 25 50 75 95 100

The number of the star 17 23 42 67 145 224 276

The total number of stars in a constellation determines the amount of infor-
mation available for recognition. So, the more stars, the more recognizable the
constellation pattern is, and the number of stars also determines the stability of
the recognition of the constellation. However, this fact is beyond the scope of this
chapter and will be explained in the further talk. It should also be noted that
the maximum number of stars in the image in the dataset is 152, that means
that constellations with large numbers of stars never appear entirely in dataset
photographs, making it difficult to form a pattern of these constellations in the
latent space of the neural network.

One of the key areas of exploratory analysis is the adequate selection of con-
stellation labelling criteria. For this step, we will calculate the following charac-
teristic – the percentage of constellation labels that are observed on the basis
of the criteria based on constellation boundaries, while containing at least one
star of that constellation. Let us denote this characteristic for λ. The percentile
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distribution of this characteristic is given in Table 2. It can be seen that, due to
the high sparseness of the stars in the image, the prevailing majority of labels
formed on the basis of modern constellation boundaries do not contain their own
stars at all, i.e. there will be no information for the neural network to make a
decision. Therefore, the criterion of constellation observability by boundaries is
not optimal and is not applicable in this task. The number of observable stars
of the constellation must be taken into account when forming the labels.

Table 2. Percentile distribution of λ

Percentile 0 5 25 50 75 95 100

λ 14.686% 21.326% 29.473% 32.623% 44.041% 63.703% 75.714%

Finally, let’s examine the relationship of the highlighted characteristics. To
do this, let us consider the linear relationship between the features, namely, let
us calculate correlation coefficients in pairs. The matrix of paired correlation:

C =

⎛

⎜⎜⎜⎜
⎜⎜⎜⎜
⎝

1 0.723 0.627 0.643 0.639 0.670 0.285
0.723 1 0.844 0.761 0.772 0.906 0.171
0.627 0.844 1 0.674 0.693 0.783 0.183
0.643 0.761 0.674 1 0.994 0.945 0.709
0.639 0.772 0.693 0.994 1 0.954 0.709
0.670 0.906 0.783 0.945 0.954 1 0.508
0.285 0.171 0.183 0.709 0.709 0.508 1

⎞

⎟⎟⎟⎟
⎟⎟⎟⎟
⎠

.

Let’s visualise the resulting pairwise correlations in a form of a weighted
undirected graph and pairwise scatter plots. The corresponding graphs are shown
on the Figs. 4 and 5.

Fig. 4. Weighted feature correlation
graph

Fig. 5. Pair diagrams of feature scat-
tering
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The main advantage of the built up pairwise correlations is the following: the
resulting dependency matrix can be substituted for the resulting neural network
errors during training and the weight of the loss function can be adjusted so
as to “knock down” the correlation between the error and the output so as to
achieve an even distribution of the error, while the overall quality and stability
of the neural network will increase.

5 Experiment Results

5.1 Neural Network Architecture

To solve the problem of recognition of constellations, the architecture of a deep
convolution neural network was designed, which is a modification of the classic
ResNet architecture (He et al. 2016). Software implementation of the neural
network is carried out in the pytorch framework version 1.6.0. The depth of
the network is equal to 26 trained layers. The size of the network input 1 ×
240 × 240 is a single-channel image, the output size of the resulting vector is 89.
Activation function on the output layer is a sigmoid function, characterizing
the probability of class appearance (observation of the constellation). The total
number of configurable network parameters is 415 193. To estimate the quality
of network approximation F1 score was used (Goodfellow et al. 2016).

5.2 Reference Solution

In order to obtain a starting point for the solution of the task with which the
comparison will be made in the future, we received a reference solution, which
was carried out under simplified conditions.

Initially, binary cross entropy (Goodfellow et al. 2016) was used to learn the
neural network, which was further weighted by the number of class samples (in
which the constellation is observed) to neutralize class imbalances. The Adam
optimizer was used for learning for 15 epochs with a standard learning speed
and 256 mini-batch size. In this experiment, constellation labels were formed
based on constellation boundaries. The results of testing the resulting solution
are shown in Table 3.

Table 3. Accuracy of the reference solution on the test dataset.

F1, min F1, median F1, max

0.234 0.450 0.799

The results presented in Table 3 show that the neural network is actually
non-functional. Based on the fact that a deep neural network is a universal
approximator (Cybenko 1989) the solution is possible. For this reason, we apply
the information obtained from the exploratory analysis of the data, namely,
change the observability criterion of the constellations in the image.
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5.3 The Research of the Constellation Observability Criterion
Based on the Entry of Stars from the Constellations

In this section let’s learn the neural network under the same conditions as in
Sect. 5.2, but change the condition for the formation of the resulting labels. A
constellation is observed if the image contains at least k stars. In this criterion,
parameter k characterizes the information threshold sufficient for the neural
network to make a decision about the observability of the constellation.

In order to determine the minimum value of sufficient information, we will
train the neural network, provided that the constellation is observed in the image
of the starry sky, if the constellation:

1. includes at least 7 constellation stars;
2. includes at least 5 constellation stars;
3. includes at least 3 constellation stars;
4. includes at least 1 constellation stars;

The results of the experiment are presented in Table 4. It can be seen that
reducing of the k parameter (reducing the amount of information to make a
decision) not only does not lead to a degradation in the accuracy of the network,
but also improves its quality.

Table 4. Neural network accuracy on the test dataset at different values of parameter k
of observability criterion of constellations.

Criterion F1, min F1, median F1, max

At least 7 stars 0.623 0.915 0.986

At least 5 stars 0.554 0.884 0.980

At least 3 stars 0.688 0.912 0.984

At least 1 stars 0.862 0.954 0.992

The condition for a single star constellation to enter is the weakest require-
ment compared to the other options presented, so it is with this value of the
parameter that experiments will be conducted later.

Also, when substituting neural network errors into the feature correlation
graph, the correlation between the network error and the constellation’s relative
area was observed when at least one star from the constellation was observed.
We will therefore adjust the weighting of the loss function to balance the relative
area of the constellation instead of the number of instances in order to continue
the task.

5.4 Constellation Recognition Solution

This section provides a final solution to the task of recognising constellations,
taking into account the previous stages of work. We will also study the effect of
noise generated by star sensors on the accuracy of the solution.
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To train the neural network, we developed our own loss function based on the
binary cross entropy weighted by relative constellation areas. The basic learning
strategy was changed: for the first 7 epochs, the Adam optimizer with standard
parameters was used, then, for 15 epochs, the SGD optimizer was used, with an
initial learning rate of 0.05, which is then reduced by 2 times every 3 epochs.
Moreover, starting from the 15th epoch SGD optimizer was used with the change
of the loss function to a logarithmically weighted product of the constellation
area and number of stars in it, binary cross entropy. For all the components of
the presented training strategy, the mini-batch size is 256 samples.

The results of the training and the test after the above modifications are
presented in Table 5, where experiment №1 is performed on “pure data”, and
experiment №2 on noisy data (the training and the test). It is necessary to state
that introduced noise disturbances physically correspond to influences to which
in a reality the star sensor is exposed, namely:

1. Noise with normal distribution law – corresponds to the noise of the image
quantization.

2. Impulse noise distributed by binomial law – corresponds to impulse effects
that lead to “false stars”.

3. Closing a random part of the image is equivalent to obstructing the vision of
the part of the stars that are actually in view.

4. Random rotation of the image related to the center can be regarded as rota-
tion of the camera around the line of sight.

5. Random mirroring - image orientation errors in the star sensor.

An example of a starry sky image noise is shown in the Figs. 6 and 7.

Table 5. Accuracy of the modified solution on a test set of data. Experiment: №1 –
“clear images”, №2 – images with superimposed noise.

F1, min F1, median F1, max

Experiment №1 0.940 0.981 0.996

Experiment №2 0.81 0.927 0.971

5.5 Outcome Analysis

From the presented results it follows that the artificial neural network success-
fully approximates the mapping between the image of the starry sky and the
space of constellations, and also has a generalizing ability and copes with the
solution of the problem in conditions of a priori uncertainty, incomplete observ-
ability and stochastic disturbances.

It is necessary to notice that in experiment №2, with noisy images of the star
sky, on an input of a neural network any “pure image” during training did not
arrive. That is the neural network did not observe the ΓN

◦ graph, but formed its
representation in its latent space and successfully identified on the new images.
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Fig. 6. The example of the image of the
starry sky

Fig. 7. Photo of the starry sky under
the conditions of noise

6 Conclusion

In the presented work the possibility of effective application of deep neural net-
works to the solution of structural identification problem on graphs in conditions
of a priori uncertainty, incomplete observability and stochastic disturbances was
shown. The problem of identification of constellations on a photo of the night sky
was considered as a test. The quality of solution 0.927 by metric F1 is obtained.
To achieve the result, the original ResNet (He et al. 2016) similar neural network
architecture was synthesized (26 trainable layers, 415 193 configurable parame-
ters), statistical analysis of structural characteristics of the dataset was carried
out, and a special neural network training strategy was developed to form an
adequate criterion of the constellation observability in the image. Besides, the
study of noise influence on the quality and stability of the solution was carried
out and it is shown that it has a pronounced adaptability.

In contrast to a number of other works (Spratling and Mortari 2009; Rijlaars-
dam et al. 2020) on identification of stars and constellations, which require only
and/or mainly empirical (manual) synthesis of informative features, methods
of deep machine learning require significantly less development efforts, and,
most importantly, they allow very flexible algorithm tuning in case of significant
changes in the structure of input data, conditions of observability of objects, sets
of recognized characteristics, etc.

Further research of this question assumes movement in two directions. Firstly,
the study of theoretical aspects of the neural network approach to structural
identification on graphs in conditions of a priori uncertainty, incomplete observ-
ability and stochastic disturbances. Secondly, the analysis of the obtained con-
stellation identification solution and its integration into the astronomical navi-
gation and orientation problems.
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Abstract. Asymptotic estimates parameters residual lifetime of the
Weibull-Gnedenko and Gompertz distributions for long-term operation
of the object are obtained. It is found that domain of attraction of expo-
nential distribution includes residual lifetime of the Gnedenko extreme
distributions.
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1 Introduction and Background

The remaining operating time of the system and its characteristics are becom-
ing a popular tool for solving equipment maintenance tasks. In reliability theory,
Mean Residual Life - MRL as a function of time may be a more relevant char-
acteristic of aging processes than the uptime function or failure rate (hazard
function). Average residual operating time (mean residual life) is an important
characteristic of aging processes in applications of reliability theory. Its theoret-
ical properties were considered by Cox in 1962. An overview of the theory and
applications of average residual operating time is available in the book Chin-Die
Lai, Min Xie [1]. The average remaining operating time sums up the distribution
of the remaining resource over time, while the failure rate is a characteristic of
immediate failure. Muth E. in [2] has established also that the average residual
operating time is more informative and useful than the failure rate. The study
of the limit distributions of the residual operating time goes back to the classical
work of B. V. Gnedenko [3]. B. V. Gnedenko found the only possible limiting dis-
tributions: the Weibull-Gnedenkol and Gompertz distributions, which are often
used as distribution models in reliability theory and insurance theory.

The study of the limit distributions of the residual life time of such extreme
distributions is a topical issue, both for the general theory and for applications.
De Haan L. in [4] and Meilijson I. in [5] proposed to use MRL to describe the
domain of attraction of limit distributions. The description of the domain of
attraction of the exponential distribution in terms of the convergence of the
moments was obtained by Balkema A. A., De Haan L. see [6]. Banjevic D. in
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[7] noticed that under some general conditions on the failure rate, which include
the Weibull - Gnedenko distribution with the shape parameter >1, the limit
distribution is exponential.

1.1 Definitions and Basic Properties

Let T be a nonnegative random variable with probability distribution F , abso-
lutely continuous so that its density function f(t), and its hazard function λ(t)
exist. Consider the conditional random variable Xt = (T − t |T > t), which is
called the residual life time (remaining useful life). The mathematical expecta-
tion of random variable Xt, i.e. the function of the average residual time before
failures (MRL) is defined as

μ(t) = E(T − t |T > t ) =

+∞∫

t

P (x)dx

P (t)
,

where P (x) = 1 − F (x) is the survival function or reliability function. The
following relations shows the equivalence of the mean residual life function μ(t),
the hazard function λ(t) and the reliability function P (t):

λ(t) =
1 + μ′(t)

μ(t)
; P (t) =

μ(0)
μ(t)

· e
−

t∫

0

dz
μ(z)

.

Calabria and Pulcini in [8] derived the relationship

lim
t→∞ μ(t) = lim

t→∞
1

λ(t)
,

provided the latter limit exists and is finite.
The function λ(t) has an obvious visual meaning, but the statistical estima-

tion of λ(t) is very unstable. On the contrary, the statistical properties of the
estimated averages μ(t) are much more stable than the characteristics λ(t).

2 Analytical Representation MRL and Residual Variance
for the Weibull-Gnedenko Model

Let T denotes a random variable equal to the element uptime and satisfying the
two-parameter Weibull-Gnedenko distribution law with the distribution func-
tion:

F (t;α, β) = 1 − e−(αt)β

, t ≥ 0

with α > 0, β > 0 and expected value

ET = T0 =

+∞∫

0

e−(αt)β

dt = α− 1 · Γ

(

1 +
1
β

)

, (1)

where Γ (·) is the Euler gamma function.
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The analytical representation μ(t) in case of the Weibull-Gnedenko distribu-
tion law looks as follows:

μ(t) =

+∞∫

t

(1 − F (x)) dx

1 − F (t)
= e(αt)β ·

+∞∫

t

e−(αx)β

dx

= e(αt)β ·
⎛

⎝
+∞∫

0

e−(αx)β

dx −
t∫

0

e−(αx)β

dx

⎞

⎠

= e(αt)β ·
⎡

⎣α− 1 · Γ

(

1 +
1
β

)

−
t∫

0

e−(αx)β

dx

⎤

⎦ .

The analytical representation of the MRL can also be obtained via the Kummer-
Pochhammer function. Using formula 8.351(2), see [9] we get the following
expression:

t∫

0

e−(αx)β

dx = t · e−(αt)β · 1F1

(

1;
1
β

+ 1; (αt)β

)

, (2)

where 1F1 (ρ; γ; x) is the standard notation for a degenerate hypergeometric
function of the 1st kind or the Kummer-Pochhammer function from the class of
special functions. Consequently,

μ(t) = e(αt)β ·
[

α− 1 · Γ

(

1 +
1
β

)

− t · e−(αt)β · 1F1

(

1;
1
β

+ 1; (αt)β

)]

. (3)

Using the representation of the Kummer-Pochhammer function as a series, we
obtain

μ(t) = T0 ·
+∞∑

k=0

(αt)βk

k!

⎛

⎝1 − α · t · k!

Γ
(
k + 1 + 1

β

)

⎞

⎠, (4)

where (a)k the Pochhammer symbol:

(a)k =
Γ (a + k)

Γ (a)
.

We use the incomplete gamma function γ (a, z) =
z∫

o

ya−1e−ydy. By formula

3.381 (8) in [9] we get

μ(t) = e(αt)β · 1
α

[

Γ

(

1 +
1
β

)

− 1
β

· γ

(
1
β

, (αt)β

)]

. (5)
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We transform (5) using the properties of the Euler gamma function:

μ(t) = e(αt)β · 1
αβ

[

Γ

(
1
β

, (αt)β

)]

, (6)

through the incomplete gamma function Γ (a, z) =
+∞∫

z

ya−1e−ydy by 8.350(2)

in [9].
Note that there is a generalization (5) for a more general exponentiated

Weibull distribution [10].

Numerical Analysis. For numerical analysis, we set without loss of general-
ity the scale parameter α = 1. Let’s apply the mathematical package Wolfram
Mathematica using the functions: incomplete gamma functions and Kummer’s
hypergeometric function, respectively. There is an oscillation of the values cal-
culated using the Wolfram Mathematica, according to formulas (3), (5) for the
value β = 2 shape parameter.

Fig. 1. Mean residual life graphics for different analytical representations

Using the formula

σ2(t) = E(X2
t ) − μ2(t) =

2
P (t)

+∞∫

t

P (x)μ(x) dx− μ2(t),
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we derive an analytical representation for the residual variance of the Weibull -
Gnedenko distribution.

σ2(t) = 2e(αt)β

+∞∫

t

e−(αx)β

e(αx)β

+∞∫

x

e−(αz)β

dz dx − μ2(t)

= 2e(αt)β

+∞∫

t

dx

+∞∫

x

e−(αz)β

dz − μ2(t)

= 2e(αt)β

+∞∫

t

dz

z∫

t

e−(αz)β

dx − μ2(t)

= 2e(αt)β

+∞∫

t

e−(αz)β

(z − t)dz − μ2(t)

= 2e(αt)β

⎛

⎝
+∞∫

t

e−(αz)β

zdz − t

+∞∫

t

e−(αz)β

dz

⎞

⎠ − μ2(t).

Since
+∞∫

t

e−(αx)β

dx =
μ(t)

e(αt)β ,

+∞∫

t

zβe−(αz)β

dz =
t + μ(t)

αββe(αt)β ,

then

σ2(t) = 2e(αt)β

⎛

⎝
+∞∫

t

e−(αz)β

zdz − t
μ(t)

e(αt)β

⎞

⎠ − μ2(t)

= 2e(αt)β

+∞∫

t

e−(αz)β

zdz − 2tμ(t) − μ2(t),

and by the formula

+∞∫

t

e−(αz)β

zdz =
1

α2β
Γ

(
2
β

, (αt)β

)

so that

σ2(t) = 2e(αt)β 1
α2β

Γ

(
2
β

, (αt)β

)

− 2tμ(t) − μ2(t). (7)
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3 Asymptotic Expansion for the MRL and Residual
Variance

In this section explicit asymptotic expressions for the mean, variance of residual
lifetime Weibull - Gnedenko and Gompertz distributions are found. Residual
lifetime distribution is discussed in terms of its mean, variance and behavior of
those quantities as t tends to infinity.

Theorem 1. Let T be a random variable with the two-parameter Weibull-
Gnedenko distribution, then ∀α > 0, ∀β > 0

μ(t) =
t

β(αt)β

(

1 +
1 − β

β(αt)β
+

(1 − β)(1 − 2β)

β2(αt)2β
+ O

(
1

t3β

))

, t → +∞, (8)

σ2(t) =
1

β2α2βt2(β−1)

(
1 +

4(1 − β)

β(αt)β
+

(1 − β)(11 − 17β)

β2(αt)2β
+ O

(
1

t3β

))
, t → +∞.

(9)

Proof. We use asymptotic expansions 8.357 in [9] and formula 6. Then

Γ

(
1
β

, (αt)β

)

=
(αt)1−β

e(αt)β [1 +
1 − β

β
· 1

(αt)β
+

1 − β

β
· 1 − 2β

β
· 1

(αt)2β

+
1 − β

β
· 1 − 2β

β
· 1 − 3β

β
· 1

(αt)3β
+ O

(
1

t4β

)

],

μ(t) = e(αt)β 1
αβ

(αt)1−β

e(αt)β [1 +
1 − β

β
· 1

(αt)β
+

1 − β

β
· 1 − 2β

β
· 1

(αt)2β

+
1 − β

β
· 1 − 2β

β
· 1 − 3β

β
· 1

(αt)3β
+ O

(
1

t4β

)

].

Let ξ = 1
(αt)β , ρ = 1

β . Then

μ(t) = ρtξ
[
1 + (ρ − 1)ξ + (ρ − 1)(ρ − 2)ξ2 + (ρ − 1)(ρ − 2)(ρ − 3)ξ3 + O(ξ4)

]
,

hence,
μ2(t) = (ρtξ)2

[
1 + (ρ − 1)ξ + (ρ − 1)(ρ − 2)ξ2 + O(ξ3)

]2

= (ρtξ)2
[
1 + 2(ρ − 1)ξ + (ρ − 1)(3ρ − 5)ξ2 + O(ξ3)

]

= ρ2t2ξ2 + 2ρ2(ρ − 1)t2ξ3 + ρ2(ρ − 1)(3ρ − 5)t2ξ4 + O(ξ5).

Then
μ2(t) + 2tμ(t) = 2ρt2ξ + ρ(3ρ − 2)t2ξ2 + 4ρ(ρ − 1)2t2ξ3

+ ρ(ρ − 1)(5ρ2 − 15ρ + 12)t2ξ4 + O(ξ5).
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Since

2e(αt)β 1
α2β

Γ

(
2
β

, (αt)β

)

= 2ρt2ξ
[
1 + (2ρ − 1)ξ + (2ρ − 1)(2ρ − 2)ξ2 + (2ρ − 1)(2ρ − 2)(2ρ − 3)ξ3 + O(ξ4)

]
= 2ρt2ξ+2ρ(2ρ−1)t2ξ2+2ρ(2ρ−1)(2ρ−2)t2ξ3+2ρ(2ρ−1)(2ρ−2)(2ρ−3)t2ξ4+O(ξ5),

then from (7) follows

σ2(t) = ρ2t2ξ2 + 4ρ2(ρ − 1)t2ξ3 + ρ2(ρ − 1)(11ρ − 17)t2ξ4 + O(ξ5)

= ρ2t2ξ2
[
1 + 4(ρ − 1)ξ + (ρ − 1)(11ρ − 17)ξ2 + O(ξ3)

]
,

or

σ2(t) =
1

β2α2βt2(β−1)

(

1 +
4(1 − β)

β(αt)β
+

(1 − β)(11 − 17β)

β2(αt)2β
+ O

(
1

t3β

))

.

Remark. This result makes more precise asymptotic expansions for the MRL
and residual variance in [11], but the second and third terms of the asymptotic
expansion (9) for the variance have differences with [11].

Theorem 2. Let T be a random variable with the Gompertz distribution, then

μ(t) = e−t
(
1 − e−t + 2e−2t − 6e−3t + 24e−4t + o(e−4t)

)
, t → +∞, (10)

σ2(t) = e−2t
(
1 − 4e−t + 17e−2t − 84e−3t + o(e−3t)

)
t → +∞. (11)

Proof. It is known

μ(t) =

+∞∫

t

e−ex

dx

e−et , σ2(t) =
2

e−et

+∞∫

t

e−ex

μ(x)dx − μ2(t).

By integration by parts, the integral is obtained as follows:

+∞∫

t

e−ex

dx =

+∞∫

et

e−ξ

ξ
dξ = −

+∞∫

et

1
ξ
d

(
e−ξ

)
= e−et

e−t −
+∞∫

et

e−ξ · ξ−2dξ.

We assume that In =
+∞∫

et

e−ξ

ξn dξ, n = 1, 2, .... Then similarly,

In =

+∞∫

et

e−ξ

ξn
dξ = −

+∞∫

et

de−ξ

ξn
= e−et

e−nt − nIn+1.
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By applying the recurrence relation several times, it is found that

I1 = e−et

e−t − (e−et

e−2t − 2(e−et

e−3t − 3(e−et

e−4t − 4(e−et

e−5t − 5I6))))

= e−et

e−t − e−et

e−2t + 2e−et

e−3t − 2 · 3e−et

e−4t + 2 · 3 · 4e−et

e−5t − 2 · 3 · 4 · 5I6

= e−et

e−t
(
1 − e−t + 2e−2t − 6e−3t + 24e−4t + o(e−4t)

)
.

The general case:

+∞∫

t

e−ex

dx = e−et

e−t
+∞∑

n=0

(−1)n
n!e−nt.

Hence
μ(t) = e−t

[
1 − e−t + 2e−2t − 6e−3t + 24e−4t + o(e−4t)

]

= e−t − e−2t + 2e−3t − 6e−4t + 24e−5t + o(e−5t), (t → +∞).

Then
μ2(t) = e−2t

[
1 − e−t + 2e−2t − 6e−3t + 24e−4t + o(e−4t)

]2

= e−2t − 2e−3t + 5e−4t − 16e−5t + o(e−5t), (t → +∞).
+∞∫

t

e−ex

μ(x)dx =

+∞∫

t

e−ex

e−x
(
1 − e−x + 2e−2x − 6e−3x + 24e−4x + o(e−4x)

)
dx

=

+∞∫

t

e−ex [
e−x − e−2x + 2e−3x − 6e−4x + 24e−5x + o(e−5x)

]
dx

=

+∞∫

t

e−ex

e−xdx −
+∞∫

t

e−ex

e−2xdx + 2

+∞∫

t

e−ex

e−3xdx − 6

+∞∫

t

e−ex

e−4xdx+ · · ·.

Note that

+∞∫

t

e−ex

e−nxdx =

+∞∫

et

e−ξ

ξn

dξ

ξ
=

+∞∫

et

e−ξ

ξn+1
dξ = In+1.

We find
+∞∫

t

e−ex

μ(x)dx = I2 − I3 + 2I4 − 6I5 + 24I6 + ...,

applying the recurrence relation several times

I2 = e−et

e−2t − 2(e−et

e−3t − 3(e−et

e−4t − 4(e−et

e−5t + ...)))

= e−et

(e−2t − 2e−3t + 6e−4t − 24e−5t + ...),
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I3 = e−et

e−3t −3(e−et

e−4t −4(e−et

e−5t + ...)) = e−et

(e−3t −3e−4t +12e−5t + ...),

I4 = e−et

e−4t − 4(e−et

e−5t + ...) = e−et

(e−4t − 4e−5t + ...),

I5 = e−et

e−5t − 5(e−et

e−6t + ...) = e−et

(e−5t + ...).

Hence

+∞∫

t

e−ex

μ(x)dx = e−et

(e−2t − 2e−3t + 6e−4t − 24e−5t + ...)

− e−et

(e−3t−3e−4t+12e−5t+...)+2e−et

(e−4t−4e−5t+...)−6e−et

(e−5t+...)+...

= e−et

(e−2t − 3e−3t + 11e−4t − 50e−5t + ...).

We derive asymptotic expansion for the residual variance:

σ2(t) =
2

e−et · e−et

(e−2t − 3e−3t + 11e−4t − 50e−5t + o(e−5t))

− (e−2t − 2e−3t + 5e−4t − 16e−5t + o(e−5t))

= e−2t −4e−3t +17e−4t −84e−5t +o(e−5t) = e−2t(1−4e−t +17e−2t −84e−3t +o(e−3t)).

Theorems 1 and 2 make it possible to find the asymptotic expansions of the
coefficient of variation.

Theorem 3. Let μ(t) be residual mean life, σ2(t) is the residual variance
function and cv(t) = σ(t)

μ(t) is the coefficient of variation of residual life time
Xt = (T − t |T > t).

1) If T be a random variable with the two-parameter Weibull-Gnedenko dis-
tribution, then ∀α > 0, ∀β > 0

cv(t) = 1 +
1 − β

β(αt)β
+ o

(
1
tβ

)

t → +∞. (12)

2) If T be a random variable with the Gompertz distribution, then

cv(t) = 1 − e−t + o(e−t), t → +∞. (13)

Proof. By putting ξ = 1
(αt)β , ξ → 0, (t → +∞). By analytical representation

MRL and residual variance for the Weibull-Gnedenko distribution

μ(t) = e(αt)β · 1

αβ
·Γ

(
1

β
, (αt)β

)
=

1

β
· t · ξ

(
1 +

1 − β

β
ξ +

1 − β

β
· 1 − 2β

β
ξ2 + O(ξ3)

)
,

σ2(t) = 2e(αt)β · 1
α2β

· Γ

(
2
β

, (αt)β

)

− 2μ(t) · t − μ2(t),
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we have

(cv(t))2 =
σ2(t)
μ2(t)

= 2

⎛

⎝e(αt)β

α2β
·
Γ

(
2
β , (αt)β

)

μ2(t)
− t

μ(t)

⎞

⎠ − 1

= 2 ·
(

1
β t2ξ

(
1 + 2−β

β ξ + 2−β
β · 2−2β

β ξ2 + O(ξ3)
)

− tμ(t)
)

μ2(t)
− 1.

And after simplification

(cv(t))2 = 2·
1 + 3(1−β)

β ξ + o(ξ)
(
1 + 1−β

β ξ + 1−β
β · 1−2β

β ξ2 + o(ξ2)
)2 −1 = 2·

1 + 3(1−β)
β ξ + o(ξ)

1 + 2(1−β)
β ξ + o(ξ)

−1

=
2

(
1 + 2(1−β)

β ξ + 1−β
β ξ + o(ξ)

)

1 + 2(1−β)
β ξ + o(ξ)

− 1 = 2

(

1 +
1−β

β ξ + o(ξ)

1 + 2(1−β)
β ξ + o(ξ)

)

− 1

= 1 + 2 ·
1−β

β ξ + o(ξ)

1 + 21−β
β ξ + o(ξ)

, ξ → 0.

Hence

cv(t) =

(

1 +
2 1−β

β ξ + o(ξ)

1 + 21−β
β ξ + o(ξ)

) 1
2

= 1 +
1
2

·
2 1−β

β ξ + o(ξ)

1 + 21−β
β ξ + o(ξ)

= 1 +
1 − β

β
· ξ + o(ξ)
1 + 21−β

β ξ + o(ξ)
= 1 +

1 − β

β
(ξ + o(ξ)), ξ → 0,

cv(t) = 1 +
1 − β

β
· 1

(αt)β
+ o

(
1
tβ

)

, t → +∞.

To prove 2) we use next formulas from Theorem 2:

μ(t) = e−t
(
1 − e−t + 2e−2t + o(e−2t)

)
, t → +∞,

σ2(t) =
2

e−et

+∞∫

t

e−ex

μ(x)dx − μ2(t)

= 2
(
e−2t − 3e−3t + o(e−3t)

) − μ2(t), t → +∞
Then

(cv(t))2 =
σ2(t)
μ2(t)

= 2 · e−2t − 3e−3t + o(e−3t)
(e−t (1 − e−t + 2e−2t + o(e−2t)))2

− 1
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= 2 · e−2t (1 − 3e−t + o(e−t))
e−2t(1 − e−t + 2e−2t + o(e−2t))2

− 1 = 2 · 1 − 3e−t − e−t + o(e−t)
1 − 2e−t + o(e−t)

− 1

= 2 · 1 − 2e−t − e−t + o(e−t)
1 − 2e−t + o(e−t)

− 1 = 2 ·
(

1 − e−t + o(e−t)
1 − 2e−t + o(e−t)

)

− 1

= 1 − 2e−t + o(e−t)
1 − 2e−t + o(et)

= 1 − 2e−t + o(e−t), t → +∞.

So

cv(t) =
(
1 − 2e−t + o(e−t)

) 1
2 = 1−2e−t · 1

2
+o(e−t) = 1−e−t +o(e−t), t → +∞.

Corollary 1. The exponential distribution is the limiting distribution for the
residual operating time for random variable T that have a two-parameter
Weibull-Gnedenko distribution with ∀α > 0, ∀β > 0 or Gompertz distribution,
i.e.

lim
t→∞ P

{
T − t

μ(t)
≤ x |T > t

}

= 1 − e−x.

Proof. The proof of the theorem follows from the obtained asymptotic formulas
and the criterion (Theorem 8. Corollary) see [6].

3.1 The General Case. The Distributions with Heavy Tails

We are interested now in behavior of cv(t) = σ(t)
μ(t) for general distributions.

Theorem 4. If an absolutely continuous distribution F (x) on [0, ∞) has den-
sity f(x) and hazard function λ(t) , then

lim
t→+∞ (cv(t))2 = lim

t→+∞

⎛

⎜
⎜
⎜
⎝

λ(t) ·

+∞∫

t

dx
+∞∫

x

(1 − F (ξ)) dξ

+∞∫

t

(1 − F (x)) dx

⎞

⎟
⎟
⎟
⎠

, (14)

lim
t→+∞ (cv(t))2 = lim

t→+∞

⎛

⎜
⎜
⎜
⎝

λ(t) ·

+∞∫

t

(1 − F (ξ)) (ξ − t) dξ

+∞∫

t

(1 − F (x)) dx

⎞

⎟
⎟
⎟
⎠

. (15)

Proof. It is known that

λ(t) =
f(t)

1 − F (t)
, (16)

μ(t) =

+∞∫

t

(1 − F (x)) dx

1 − F (t)
, (17)
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σ2(t) =
2

1 − F (t)

+∞∫

t

(1 − F (x)) · μ(x)dx − μ2(t), (18)

hence

(cv(t))
2
=

σ2(t)

μ2(t)
= 2 ·

+∞∫

t

(1 − F (t))μ(x)dx

(1 − F (t)) · μ2(t)
− 1 = 2 ·

(1 − F (t)) ·
+∞∫

t

(1 − F (x))μ(x)dx

(
+∞∫

t

(1 − F (x)) dx

)2 − 1,

lim
t→+∞

[cv(t)]
2
= 2 · lim

t→+∞

(1 − F (t)) ·
+∞∫

t

(1 − F (x))μ(x)dx

(
+∞∫

t

(1 − F (x)) dx

)2 − 1

By applying L’Hospital’s rule and combining (17) one derive the relationship

= 2 lim
t→+∞

F ′(t)
+∞∫

t

(1 − F (x)) μ(x)dx + (1 − F (t))2 · μ(t)

2 · (1 − F (t))
+∞∫

t

(1 − F (x)) dx

− 1

= lim
t→+∞

F ′(t)
+∞∫

t

(1 − F (x)) μ(x)dx + (1 − F (t))
+∞∫

t

(1 − F (x)) dx

(1 − F (t))
+∞∫

t

(1 − F (x)) dx

− 1.

So

lim
t→+∞ (cv(t))2 = lim

t→+∞

⎛

⎜
⎜
⎜
⎝

f(t)
1 − F (t)

·

+∞∫

t

(1 − F (x)) μ(x)dx

+∞∫

t

(1 − F (x)) dx

+ 1

⎞

⎟
⎟
⎟
⎠

− 1

= lim
t→+∞

⎛

⎜
⎜
⎜
⎝

λ(t) ·

+∞∫

t

(1 − F (x)) μ(x)dx

+∞∫

t

(1 − F (x)) dx

⎞

⎟
⎟
⎟
⎠

.

Then and from (17) we get (14). If we transform the integral

+∞∫

t

dx

+∞∫

x

(1 − F (ξ)) dξ =

+∞∫

t

dξ

ξ∫

t

(1 − F (ξ)) dx =

+∞∫

t

(ξ − t) (1 − F (ξ)) dξ,

then from (14) we get (15).
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Example. The Distributions with Heavy Tails. Let T denotes a random
variable satisfying the two-parameter Pareto distribution law with the reliability
function:

P (t) =
(a

t

)b

, t ≥ a > 0, b > 2

with hazard function λ(t) = b
t . We derive for Pareto distribution

+∞∫

t

(1 − F (x)) dx =

+∞∫

t

(a

x

)
b

dx =
ab

b − 1
t1−b, b �= 1,

+∞∫

t

dx

+∞∫

x

(1 − F (ξ)) dξ =

+∞∫

t

ab

b − 1
x1−bdx =

ab

(b − 1)(b − 2)
t2−b, b �= 2.

From (14) it follows

lim
t→+∞ (cv(t))2 = lim

t→+∞

b
t · abt2−b

(b−1)(b−2)

ab

b−1 t1−b
=

b

b − 2
�= 1.

Following Theorem 8. Corollary in [6], the limiting distribution of residual life
time for Pareto distribution can not to be exponential distribution, i.e. the
domain of attraction of exponential distribution doesn’t include Pareto distri-
bution.

Practical Applications. As an application, an assessment of the reliability of the
“well - pump” system in terms of MRL is proposed. The paper [12] showcases a
case study of modelling “well - pump” system failure using Weibull - Gnedenko
distribution on life-failure-data samples collated from oil producing region. MRL
of submersible equipment elements was obtained. The reliability of submersible
equipment of oil wells with various failures that led to the lifting of pumps is
estimated.
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Abstract. The paper presents a combined approach of using machine
learning methods to select an effective trading strategy on the currency
exchange. The presented approach uses the calculation of the linear
regression angle coefficient by log return indicators and determination of
the currency pair quotes trend in the next period based on the calculated
coefficient sign. The multilayer feed-forward neural network predicts the
angular coefficient value in the next 10-min period for the current 20-
min period. The research contains practical experiments that estimate
the ratio of effective strategies to non-effective ones based on the linear
regression coefficients predicted values.

Keywords: Deep learning · Machine learning · Neural network ·
Financial time series prediction · Trading strategy · Linear regression
coefficients · Logarithmic return

1 Introduction

Predicting the behavior of financial time series is an essential part of invest-
ment activity. A rational choice of trading strategy at the currency exchange
significantly increases the return on investment.

Recent studies of many authors address the applicability and effectiveness of
machine learning methods to predict financial time series behavior. The paper
[1] presents a solution to the problem of predicting the trend of the Shanghai
Stock Exchange composite index at the close of the trading period based on
Deep Learning technologies using an LSTM neural network. Researches [2] and
[3] are also devoted to studying the possibilities to use the LSTM neural net-
work for modeling financial time series behavior. In the study [4], the support
vector regression predicts the financial time series and generates reasonable pre-
diction uncertainty estimates to tackle flexible real-world financial time series
prediction problems effectively. The possibility of predicting the realized volatil-
ity of cryptocurrency quotes using a neural network is considered in [5]. The
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2021
A. N. Shiryaev et al. (Eds.): ICSM-5 2020, PROMS 371, pp. 306–317, 2021.
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study [6] conducted the effectiveness comparison of predicting the financial time
series behavior in several ways. The forecasting accuracy was measured using
the LSTM neural network and the integrable autoregressive model. The sec-
ond model under consideration was the moving average model (ARIMA). The
authors concluded that the developing of a model of time series behavior based
on a neural network gives a more accurate forecast result.

Despite the large number of studies carried out in this field of research, the
problem of predicting the behavior of a financial time series remains relevant
and necessary in the practice of traders in the foreign exchange market.

The current research is devoted to studying effectiveness of combining
machine learning methods in solving the problem of predicting the behavior
of cryptocurrency quotes. The study’s goal is to develop a methodology for a
reasonable choice of a trading strategy on the currency exchange in the next
10-min period, based on the data of the current 20-min trading period. This
research continues the study [7], in which a model for classifying the behavior
of a financial time series based on indicators of the logarithmic return of the
BTC/USD currency pair implements in the form of a neural network.

2 Preparing Data for Developing a Trading Strategy
Based on Linear Regression Indicators of Logarithmic
Returns

The real-time historical trading data of the BTC/USD currency pair with a
minute interval is using as initial information. The price at the moment of open-
ing (OPEN), the price at the moment of closing (CLOSE), the highest (HIGH)
and lowest (LOW) prices in the current period, as well as the amount of currency
sold (VOLUME) in the period, are known for each one minute.

In the current study, trading strategies are developed based on the close price
(CLOSE). In the works devoted to predicting the financial time series behavior,
indicators of logarithmic returns are often used instead of price themselves [8],
[9] and [10]. The logarithmic returns are close to zero and do not change dramat-
ically from period to period, which gives the best result when training a neural
network. Notice, the logarithmic return expresses the price change’s dependence
in the current period on the price in the previous period.

Based on the initial data, we calculate the logarithmic return indicator (the
natural logarithm of the trading closing price ratio at the next minute to the
trading closing price at the current minute) using the formula (1) where i is the
number of the current minute.

LOGRETi = LN

(
CLOSEi

CLOSEi−1

)
(1)

The research assumes that the logarithmic return indicators during the cur-
rent 20-min period determine the logarithmic return indicators in the next 10-
min period.
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To prove this assumption, we build a model for predicting the value of the
linear regression coefficient of logarithmic returns in the next 10-min period
based on the known indicators of logarithmic returns in the previous 20-min
period. The linear regression equation used in the presented work has the form
(2):

Y = A + B · X, (2)

where

– X is an independent variable (indicators of logarithmic returns),
– A is Y-intercept (level of Y when X is 0),
– B is a linear regression coefficient (slope).

Fig. 1. Logarithmic returns changes chart in 10 min with a plotted trendline

The greater the absolute value of the coefficient B, the more noticeable the
line slope and the more pronounced the quotes change. If the coefficient B value
is positive, then the numerical series’s values are expected to be increased. Oth-
erwise, the values in the numerical series are expected to be decreased.

A trend line is plotted for every twenty minutes in the initial data on the
column of calculated logarithmic returns (LOG RETURN). Figure 1 shows the
result of plotting the logarithmic yield changes in ten minutes (values in the
LOG RETURN column from 21 to 30 periods) and plotting a trend line for a
series of logarithmic returns.

In the ten minutes from 21 to 30 min, the linear regression coefficient B is
positive. Therefore, the logarithmic return values may increase in this period.
There is a chance that a higher price will appear during the next 9-min period
than in the first minute of the analyzed period. The highest price (HIGH column)
values in the next 10-min period on historical data prove this assumption.

Figure 2 shows the data on price changes in the analyzed 2-min period. The
column of the highest prices from 21 to 30 min (column HIGH) contains a price
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Fig. 2. Price values behavior in 10 min with a positive linear regression coefficient B
for the observed period

Fig. 3. Price values behavior in 10 min with a negative linear regression coefficient B
for the observed period

higher in value than the price at the close of the first minute of the analyzed
10-min period.

The linear regression coefficient B of the logarithmic return trend line in
the observed 10-min period turns out to be negative. Thus, we should expect a
decrease in trading indicators in this period.

Figure 3 shows an example of when the coefficient B of the trend line equa-
tion is negative. Simultaneously, the lowest price column (LOW column) in the
observed 10-min period contains a value that will be lower than the price at the
close of the first minute of the target 10-min period.

There were added two columns to the original data table: a column for cal-
culating the linear regression coefficient and a column for calculating the loga-
rithmic return.
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In the presented work, the linear regression coefficient for the logarithmic
returns values is calculated using the LINEST function of the MS Excel spread-
sheet, as shown in Fig. 4.

Fig. 4. Formulas for calculating indicators of logarithmic returns and linear regression
coefficients

Thus, as the initial data for building a model for predicting changes in
BTC/USD quotes, the indicators of logarithmic returns, calculated at prices at
the time of the closing of minute periods, and linear regression coefficients, calcu-
lated according to indicators of logarithmic returns in the next 10-min periods,
are used. We use the linear regression coefficients calculated from historical data
to train the prediction model and check its adequacy to the simulated process
of the observed currency pair’s behavior.

The neural network trains using a vector X = {X1,X2, . . . , Xm} of inde-
pendent variables and a vector Y = {Y1, Y2, . . . , Ym} of dependent variables (m
is the number of 10-min intervals in the initial data for which the trend line
coefficients were calculated). Both vectors defined as follows:

– Xn = {LOGRETn+1, LOGRETn+2, . . . , LOGRETn+20};
– Yn = {LINREGBn+21,n+30},
where

– LOGRETi – logarithmic return at the ith minute (i ≥ 1);
– LINREGBj,k—coefficient B of the linear regression equation based on loga-

rithmic returns LOGRETj , . . . , LOGRETk, (k > j);
– n—number of the observed period (n ≥ 0).
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3 An Approach for Choosing a Trading Strategy Based
on Linear Regression of the Logarithmic Return

Predicting the direction of the observed currency pair quotes trend in the next
10-min period is carried out for the current 20-min period using the sign of the
coefficient B in the linear regression equation.

Figure 5 and Fig. 6 show the calculations’ results to choose a trading strategy
based on historical data. When choosing a trading strategy, it is assumed that
the results of trading in the previous 20-min period are known, the logarithmic
returns of the closing price (LOG RETURN column) are calculated, and the
linear regression coefficient is predicted for the logarithmic returns in the next
10-min period (column LIN REG COEF B).

Fig. 5. A trading strategy determination with a positive linear regression coefficient B

If the linear regression coefficient B, obtained by plotting a trend line for ten
logarithmic returns, is positive, then it is assumed that logarithmic returns will
grow in these ten minutes. In this case, the strategy of selling the currency at
the closing price of the first minute of the current 10-min period turns out to be
efficient to buy the currency in the next nine minutes at the first higher price.

In Fig. 5, the linear regression coefficient B for the next 10-min period is
determined to be positive at the end of the 20-min period (PERIOD = 20)
(the SIGN column B value is one). The historical trading data for the next ten
minutes shows that there will be a higher price in the next nine minutes than the
one at which the purchase was made at the first minute. Thus, buying currency
in the first minute to sell the currency in the next nine minutes at the first higher
price that comes across is effective.

If the linear regression coefficient calculated from the logarithmic returns
in the observed 10-min period is negative, then it can be supposed that the
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logarithmic returns will fall in these ten minutes (the SIGN column B value is
zero).

Figure 6 shows a situation when the trend line slope coefficient of logarithmic
returns from 81 to 90 min (PERIOD = 90) is negative. Among the lowest prices
in these ten minutes, there is a lower price than the one at which we sold at the
first minute. Thus, selling the currency in the first minute to buy the currency
in the next nine minutes at the first lower price that comes across is effective.

Fig. 6. A trading strategy determination with a negative linear regression coefficient
B

The analysis of the logarithmic returns and the sign of the linear regression
B coefficient historical data allows making the following conclusion: if B >=
0, then the price increase of the cryptocurrency is predicted (signal to buy),
otherwise the price of the cryptocurrency is predicted to fall (signal to sell).

Thus, the conditions for deciding to buy or sell in the next 10-min period are
determined in the following way:

– strategy 1: if at the end of the current 20-min period the coefficient B ≥ 0,
then at the first minute of the next 10-min period, we buy the cryptocurrency
at the current price and sell at the first higher price in the next nine minutes;

– strategy –1: if at the end of the current 20-min period the coefficient B < 0,
then at the first minute of the next 10-min period, we sell the cryptocurrency
at the current price and buy at the first lower price in the next nine minutes.

4 Including a Waiting Strategy in Trading to Improve
the Reliability of the Strategies Choice

The chosen strategy may be ineffective if the price at the beginning of the next
10-min period is the highest for a buy signal or the lowest for a sell signal.

Figure 7 shows the signal’s failure to sell the currency at the first minute and
then to buy it at a higher price during the next 9-min period. We see that the



The Application of a Neural Network and Elements of Regression Analysis 313

maximal price presents at the first minute of the observed period. Thus, there
is no possibility to sell and then buy the currency at a profit.

Fig. 7. An example of a failure of the signal to sell based on a positive linear regression
coefficient

We check the efficiency of the strategies by the following criteria:

– if the coefficient B ≥ 0 at the first minute of the next 10-min period, then
the opening price should be less than one of the highest minute quotes in the
next 10-min period. In this case, we consider the strategy 1 to be efficient;

– if the coefficient B < 0 at the first minute of the next 10-min period, then
the closing price should be higher than one of the lowest minute quotes in the
next 10-min period. In this case, we consider the strategy –1 to be efficient.

Checking the effectiveness of trading strategies based on the linear regression
angular coefficient sign is implemented as follows. For the column of maximal
prices (HIGH), the highest price is calculated within every ten minutes (column
MAX NEXT 10 PERIOD); for the column of minimal prices (LOW), the lowest
price is calculated within every ten minutes (MIN NEXT 10 PERIOD). If for a
signal to sell (B SIGN = 1), the opening price at the first minute is less than the
maximum of all price values in the current 10-min period, we put the value 1
into the WORKING STRATEGY column. With a buy signal (B SIGN = 0), the
closing price at the first minute must be less than the minimum price values in
the next ten minutes. In that case, WORKING STRATEGY takes the value 1.
In all other cases, WORKING STRATEGY takes on the value 0, which indicates
the failure of the chosen strategy.

Checking the formulated criteria for historical data shows one failure for every
five successful strategies. It means that it is possible to make an unprofitable
decision to buy or sell cryptocurrency in every sixth case.

We use the strategy 0 (a wait strategy) to minimize the number of unprof-
itable decisions. In this case, the trader performs no actions to buy or sell cryp-
tocurrency.
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The waiting strategy introduction is based on the coefficient B’s absolute
value in the linear regression equation. Figure 8 demonstrates the case when the
chosen strategy turns out to be ineffective, while the coefficient B modulo was
equal to 0.000019602.

Fig. 8. Results of testing the selling strategy effectiveness with a positive linear regres-
sion coefficient

We choose the strategy 0 if the value of the coefficient B in the first minute of
the next 10-min period is insignificant. It means that the coefficient B modulo is
less than the specified parameter h. In the current research, the value selection
of the parameter h was performed empirically on historical data and is equal to
0.0003, which made it possible to increase the number of profitable strategies.
The wrong decision to buy or sell cryptocurrency is making in every eighth case
when strategy 0 is using as a third alternative of behavior on the trade market.

5 Implementation and Results of Training a Neural
Network to Predict Linear Regression Coefficients

Within current research, the neural network is implementing and training on
the Rapid Miner analytical platform. Figure 9 demonstrates the process chain of
training and testing the linear regression coefficients predictive model. The Deep
Learning block implements a multilayer feed-forward artificial neural network
trained with stochastic gradient descent using back-propagation.

The neural network uses four hidden layers. Each odd layer contains 100
neurons, and each even layer contains 50 neurons. Each hidden layer uses a
linear rectification function (ReLU) to activate neurons. These neural network
parameters are chosen empirically to obtain greater forecasting accuracy. The
mean square prediction error (RMSE) with given parameters is 0.000086186.

Figure 10 demonstrates the comparative chart of actual and predicted linear
regression coefficients. The chart shows that the constructed regression model
based on the log-return trend slopes is consistent with the observed process.
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Fig. 9. The process of training and testing the forecasting model in Rapid Miner

6 Evaluating the Effectiveness of Using a Trading
Strategy Based on Linear Regression Indicators

The neural network predicts the values of the linear regression coefficients for
1000 min periods (16.5 h of trading). The effectiveness of the proposed trading
methodology was compared to historical and predicted values.

In the current research, the correct prediction of the linear regression coef-
ficient sign is the goal. For 1000 predicted values, 768 values have a sign corre-
sponding to the value calculated from historical data. Thus, the coincidence of
the actual and forecast values by sign is about 77.

The methodology’s effectiveness for choosing a trading strategy decreases
due to a decrease in the sign determination accuracy of the linear regression
coefficient in the forecasting values. For every three successful strategies on the
forecasting values of coefficient B, there is one ineffective one. It means that it is
possible to make an unprofitable decision to buy or sell cryptocurrency in every
fourth case.

Checking the effectiveness of introducing strategy 0 (waiting) on the pre-
dicted values showed that the indicator of significance h of the linear regression
coefficient modulo, which was selected empirically on historical data, should be
revised due to the low forecasting accuracy of the linear regression coefficient
value.

The choice of the significance indicator h should take into account the esti-
mates of the model’s accuracy. In this work, the significance indicator h for
the linear regression coefficients’ predicted values is 0.00005, which reduces the
number of both ineffective and effective strategies.

Nevertheless, the introduction of the 0 (waiting) strategy made it possible to
somewhat increase trading efficiency according to the proposed method. With
the introduction of strategy 0 on forecasting values for every four successful
strategies, there is one ineffective one. That is, in every fifth case, the chosen
strategy turns out to be unprofitable.
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Fig. 10. Comparison of actual and predicted values of linear regression coefficients

7 Conclusion

The current paper proposes a methodology for choosing a strategy for trading on
the currency exchange in the next 10-min period, based on the current 20-min
trading period. The proposed approach identifies three trading activities: buying
at the beginning of the next period to sell at the first higher price (strategy 1), sell
at the beginning of the next period to buy at the first lower price (strategy –1).
The third strategy is inaction (strategy 0), when the linear regression coefficient’s
value at the beginning of the next 10-min period is insignificant for the chosen
criterion.

As the experiments on historical data show, every sixth decision in choosing
a strategy leads to losses without introducing strategy 0, and when strategy 0
is applying, every eighth decision is unprofitable.

The feed-forward neural network is using to predict future values of the linear
regression coefficients. Neural network parameters were selected empirically to
improve forecasting accuracy.

The neural network model predicts the values of linear regression coefficients
and has an accuracy of 77% in predicting the sign, which affects the overall prof-
itability of trading according to the proposed method. Nevertheless, the exper-
iments on historical and forecasting data prove the proposed trading method-
ology’s effectiveness on the currency exchange. When entering the strategy of
waiting on the predicted linear regression coefficient values, there is one ineffec-
tive one for every four successful strategies, which generally implies a break-even
trade according to the methodology proposed in the current research.
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Abstract. We consider a Jackson network with regenerative input flows
in which every server is subject to a random environment influence gen-
erating breakdowns and repairs. They occur in accordance with two inde-
pendent sequences of i.i.d. random variables. We are using a theorem on
the strong approximation of the vector of queue lengths by a reflected
Brownian motion in positive orthant to establish a consistent estimates
construction and present an approach to recognize bottlenecks.
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Unreliable systems · Reflected Brownian motion · Asymptotic
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1 Introduction

Jackson networks are among the most fundamental and complicated objects in
the queueing theory. Such networks were introduced in Jackson in 1957 [12].
This type of queueing systems models have long been used for a wide range of
applications in transportation, production, distributed computing systems, team
workflows, social networks etc., so results concerning their asymptotic behavior
present a practical interest. Within the wide set of problems concerning Jackson
networks specifically interesting research directions include the evaluation of the
limit distribution and its product forms in the case when this limit distribution
exists and consideration of the systems with heavy traffic. These studies provide
a motivation to estimate limit traffic cases and bottleneck conditions.

Heavy traffic and overloaded system cases are analytically non-trivial and
at the same time the most crucial, as overloading may lead to breakdowns,
production shutdown, losses from downtime, repair costs and other overheads.

So, a lot of papers were devoted to the heavy traffic limit analysis. Harrison
[9] considered tandem queueing systems and proved a heavy traffic limit theo-
rem for the stationary distribution of the sojourn times. His limit was also given
as a complicated function of multidimensional Brownian motion. Harrison later
again considered tandem queueing systems, and introduced reflected Brownian
motion on the non-negative orthant as the diffusion limit. Further investigation
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2021
A. N. Shiryaev et al. (Eds.): ICSM-5 2020, PROMS 371, pp. 318–328, 2021.
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in the areas of heavy traffic limit theorems and diffusion approximations is sur-
veyed in Whitt [21] and Lemoine [14]. Additionally, Reiman [17] presented heavy
traffic limit theorems for the queue length and sojourn time processes associated
with open queueing networks. To sum it up, limit theorems state that properly
normalized sequences of queue length and sojourn time converge to a reflected
Brownian motion in an orthant.

In this paper we employ a more powerful limit theorem, namely strong invari-
ance principle or strong Gaussian approximation. This huge exploration area saw
pioneering investigation in the classical paper by Strassen [20]. This was followed
by many beautiful results, with the most complete overview of which for the
i.i.d. case has been done in Zaytsev [22]. Markov Chains result was presented in
Merlevede, Rio[15], that studied strong approximation for additive functionals
of geometrically ergodic Markov chain. These results typically allow to replace
a complex random system for which some almost sure convergence is needed
by one given by (possibly transformed) Gaussian family. Concerning Jackson
networks, strong (almost sure) approximation with infinite time horizons and
reliable server networks were considered by Chen and Yao [5].

It is natural to generalize results to networks with unreliable servers. There
has been a growing literature on queues with an unreliable server. To empha-
size the significance of queueing models with unreliable servers in applications
we will refer to some crucial works [7,8,13,18]. Particularly one should mention
Gaver’s [8] research in which the input flow is a compound Poisson process,
the interruptions appear at random in the sense that if the system is currently
free of interruptions, then the time until the next interruption is exponentially
distributed. Gaver introduced completion time that is the generalization of the
service time. This notion made it possible to apply results for M |G|1 to investi-
gate a system subjected to interruptions, i.e. with an unreliable server. So, total
basic results were expressed in terms of the distribution function (d.f.) of the
completion time. The systems with unreliable servers and general input flow was
considered in Afanasyeva, Bashtova [1]. An interesting interpretation of unreli-
able servers emerged while modeling of unregulated crossroads. The simplest
model of a vehicle crossing problem in probabilistic terms was considered in
[10]. There is a one-lane road S1 which is intersected on one side by a single-lane
secondary road S2. A car waiting on the secondary road S2 will turn right only
if there is at least distance J between the intersection and the first car on S1.
We may consider the crossroads with respect to cars arriving on the secondary
road S2 as a queueing system with an unreliable server. The server is in working
state when there are no cars within a distance J of the crossroads on the road
S1 and it becomes out of order when the first car appears on this interval. By
the nature of the system we have to suppose that the breakdown of the server
can occur at any time, even when the server is free. Note that a queueing system
with an unreliable server may also be considered in the stochastic analysis of
crossroads with traffic lights.

Estimation of the asymptotic variance (or covariance matrix in the vector-
valued case) in complex random systems is a well-known problem. Corresponding
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estimates provide a natural way to establish limit theorems with random nor-
malization and thereby to testing the hypotheses on the unknown mean. We
apply the local averaging techniques initiated by Peligrad and Shao [16], known
to be applicable to many stationary dependent families of random variables and
having good asymptotic properties.

One research direction which is especially interesting in practice is the bot-
tleneck recognition. The aim of this statistical inference problem is to detect the
buffers in which the queue length will systematically approach infinity, as well as
those for which it is stochastically bounded. This class of real problems usually
relies on the following assumptions: for each station one should know the gen-
eral input flow (cumulated input streams from outside of the system and streams
being transferred from other stations) and queue length vector. Unreliable server
concept implies that the breakout and repair times also being observable. As for
the routing matrix, we assume that it is an attribute of the system and either is
known or is estimated on another data.

Under these assumptions we give strongly consistent estimates of the traffic
coefficients, drift coefficients and the covariance matrix. Using these estimates
as building blocks, we provide an algorithm for the identification of strict bot-
tlenecks and non-bottlenecks.

2 System Description

The queuing network N we study has K single server stations, and each of them
has an associated infinite capacity waiting room. At least one station has an
arrival stream from outside the network, and the vector A(·) of arrival streams
is assumed to be a multi-dimensional regenerative flow. Recall

Definition 1. A multi-dimensional coordinatewise càdlàg stochastic process
A(t) is called regenerative one if there exists an increasing sequence of random
variables {θi, i ≥ 0}, θ0 = 0 such that the sequence

{κi}∞
i=1 = {A(θi−1 + t) − A(θi−1), θi − θi−1, t ∈ [0, θi − θi−1)}∞

i=1

consists of independent identically distributed random elements. The random
variable θj is said to be the jth regeneration point of A, and τj = θj − θj−1

(where θ0 = 0) to be the jth regeneration period.

From Smith [19] it is known that we can define the asymptotic intensity vector
λ = lim

t→∞
A(t)

t a.s., and the asymptotic covariance matrix V = lim
t→∞

VarA(t)
t .

Each station’s service times {ηi
j}∞

i=1, j = 1, . . . ,K, are mutually independent
sequences of i.i.d. random variables with mean 1/μj and variance σ2

j . After being
served at station k, the customer is routed to station j (j = 1, . . . ,K) with
probability pkj . The routing matrix P = ‖pkj‖K

k,j=1 is assumed to have spectral
radius strictly less than unity, i.e. there is always a positive probability than a
served customer leaves the system immediately. For i = 1, 2, . . . and k = 1, . . . K,
define ϕi

k to be a random variable equal to j = 1, . . . ,K whenever ith customer
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served on station k is routed to station j, and ϕi
k = 0 if this customer exits

the network. Routing vectors are defined by φi
k = eϕi

k
, where ej is the K-vector

whose jth component is 1 and other components are 0, if j = 1, . . . , K, and
e0 = 0. Customers routing happens independently and immediately.

In our model the service on every channel is influenced by a random envi-
ronment which causes breakdowns of the server (falling into OFF state from
ON state) at random moments. The repair of the server also takes a random
time. We suppose that consecutive time intervals of states ON and OFF form
two independent sequences of i.i.d. random variables and, for jth server, denote
them by {ui

j}∞
i=1 and {vi

j}∞
i=1 respectively.

Let for j = 1, . . . ,K

aj = Eu1
j , bj = Ev1

j , αj = aj(bj + aj)−1, s2j = Varu1
j , d

2
j = Varvi

j .

We suppose that the service that was interrupted by the breakdown is continued
upon repair from the point at which it was interrupted.

Let Q(t) = (Q1(t), . . . , QK(t)) be the vector of number of customers in each
channel at time t. Next we need vector-valued busy time processes B(t) =
(B1(t), . . . , BK(t)). The jth component of B(t), where j = 1, . . . ,K, indicates
the amount of time up to t the server at station j is busy (i.e. in state ON and
serving jobs). Then,

Q(t) = A(t) +
K∑

j=1

Lj(Bj(t)),

where

Lj(u) =
Sj(u)∑

i=1

(φi
j − ej), 1 ≤ k ≤ K.

Next, we consider a system of equations

γj = λj +
k∑

i=1

(γi ∧ αiμi)pij , j = 1, . . . , K. (1)

In the Jackson networks theory, the systems like above play a significant role
and are known as the traffic equations. Due to Theorem 7.3 in Chen and Yao
[5] our traffic equation (1) has a unique solution γ = (γ1, . . . , γK). Therefore we
may define a jth station traffic coefficient

ρj =
γj

αjμj
,

j = 1, . . . ,K.
Buffer j is called a nonbottleneck if ρj < 1, a bottleneck if ρj ≥ 1, a balanced

bottleneck if ρj = 1, and a strict bottleneck if ρj > 1.
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3 Reflected Brownian Motion in Orthant and Strong
Approximation

Reflected Brownian motion (RBM) was initially investigated in Harrison,
Reiman (1981) [10]. A lot of RBM’s useful properties were derived in Chen, Yao
[5]. Unfortunately, in multidimensional case there is no explicit form of marginal
distributions as it takes place for RBM on real line. However it is possible to
model multidimensional RBM as was shown in Blanchet, Murthy (2018) [3].

Consider a pair of K-dimensional processes Z = {Z(t); t ≥ 0} and Y =
{Y (t); t ≥ 0} which jointly satisfy the following conditions:

Z(t) = W (t) + Y (t)(I − P ), t ≥ 0,

where W = {W (t); t ≥ 0} is a K-dimensional Brownian motion with covariance
matrix Γ , drift vector b and W (0) ∈ IRK

+ ; Z(t) takes values in IRK
+ , t ≥ 0; Yj(.) is

continuous and nondecreasing with Yj(0) = 0; and Yj(.) increases only at those
times t where Zj(t) = 0, j = 1, . . . K. It was shown in [10] that for any given
Brownian motion W there exists a unique pair of processes Y and Z satisfying
conditions above.

In the language of [10] and [5], Z is a reflected Brownian motion on IRK
+ with

drift b, covariance matrix Γ , and reflection matrix (I − P ).
In this paper instead of approximation by Wiener process we are using an

approximation by a Reflected Brownian motion. Such a problem for a system
with reliable server was investigated in Chen, Yao [5], further results for a system
with unreliable server were presented in Bashtova, Lenena [2].

Definition 2. We say that a vector-valued random process ζ = {ζt, t ≥ 0}
admits a r-strong approximation by some process ζ = {ζt, t ≥ 0}, if there exists
a probability space (Ω,F ,P) on which one can define both ζ and ζ in such a way
that

sup
0≤u≤t

‖ζu − ζu‖ = o(t1/r), a.s., when t → ∞.

The following theorem was proved in Bashtova, Lenena [2].

Theorem 1. Let Eτp
i < ∞, E‖A(θi+1) − A(θi)‖p < ∞, E(ηi

j)
p < ∞ for i ∈ IN

and any j = 1, . . . ,K. Then Q admits p′-strong approximation by a reflected
Brownian motion on IRK

+ with drift λ − αμ(I − P ), reflected matrix (I − P ),
covariance matrix Γ = ||Γkl||Kk,l=1,

Γkl = Vkl +

K∑

j=1

(γj ∧αjμj)pjk(δkl −pjl)+ (σ2
jμ3

jαj +μ2
jDj)(ρj ∧ 1)(pjk − δjk)(pjl − δjl),

where

Dj =
a2

jd
2
j + b2js

2
j

(aj + bj)3

and p′ = p for p < 4 and p′ is any number less than 4 for p ≥ 4.
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4 Parameters Estimation

For the statistic inference we assume, for each station k = 1, . . . ,K, the follow-
ing data to be known: a general input flow (both input streams: from outside of
the system and transferred from another station), queue length, breakdown and
repair times. Moreover, the routing matrix is also considered to be known by the
structure of the system or to be estimated based on the other considerations.
Realistically, for systems with unreliable servers it is doubtful that the two flows
(outside input flow and inter-system transferring input flow) are known sepa-
rately. As every station is operating as a single-server queuing system, we know
input flow, queue length, breakdowns and repair time, so that service time is
known too.

Service time calculation logic is the following: it equals either the time
between the customer arrival to the empty system and the first following drop
in Q(t), or the difference between the time from one drop of the process Q(t) to
the next one during the busy period and the lengths of the intervals breakdowns
within a given period of time.

Thus we can produce consistent estimates

γ̂k =
Xk(t)

t
; μ̂k =

⎛

⎝ 1
lk(t)

lk(t)∑

i=1

η
(i)
k

⎞

⎠
−1

α̂k =
Ck(t)

t

where Ck(t) and lk(t) equal the total time kth server being in the state ON
before t and the number of customers served before t respectively, X(t) is total
input flow (both internal and external).

Accordingly, for kth traffic coefficient we have

ρ̂k =
γ̂k

α̂kμ̂k

One can now estimate the intensity of incoming flow and the drift vector of the
approximating Brownian motion, making use of the traffic equation:

λ̂k = γ̂k −
K∑

i=1

(γ̂i ∧ α̂iμ̂i)pik; θ̂ = λ̂ − α̂μ̂(I − P ).

Let us tackle covariance matrix Γ estimation. To this end we introduce the
random sums

Γ̂Q
k = t

3α
2 −1

[t1−α]∑

j=1

∣∣∣Q(j)

k − Qk

∣∣∣ ,

Γ̂Z
k = t

3α
2 −1

[t1−α]∑

j=1

∣∣∣Z(j)
k − Zk

∣∣∣ , Γ̂W
k = t

3α
2 −1

[t1−α]∑

j=1

∣∣∣W (j)
k − W k

∣∣∣ , k = 1, . . . , K,

where α ∈ (0, 1) and for any process

ζ(t) = {(ζ1(t), . . . , ζk(t)), t ≥ 0}
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one has set

ζ
(j)

k =
ζk(jtα) − ζk((j − 1)tα)

tα
; ζk =

ζk(t)
t

.

Define also

Γ̂Q
k,m = t

3α
2 −1

[t1−α]∑

j=1

∣∣∣Q(j)

k + Q
(j)

m − Qk − Qm

∣∣∣

for k,m = 1, . . . , K.

Theorem 2. If ρk ≥ 1 for all k = 1, . . . ,K, α > 2
p′ , then for any k,m =

1, . . . ,K one has

Γ̂Q
k

a.s.−−−→
t→∞

√
2
π

Γkk,

Γ̂Q
k,m

a.s.−−−→
t→∞

√
2
π

(Γkk + Γmm + 2Γkm).

Proof. We prove the first statement only (second one being proved analogously),
and its proof relies on four lemmas below.

Lemma 1. For any α ∈ (0, 1) and k = 1, . . . ,K one has

Γ̂W
k

a.s.−−−→
t→∞

√
2
π

Γkk.

Proof. First, we note that we can assume EWt = 0, t ≥ 0; in which case one has

t
3α
2 −1

∣∣∣∣∣∣

[t1−α]∑

j=1

∣∣∣W (j)
k − W

∣∣∣ −
[t1−α]∑

j=1

∣∣∣W (j)
k

∣∣∣

∣∣∣∣∣∣
≤ |Wt|

t1−α/2

a.s.−−−→
t→∞ 0

due to the law of the iterated logarithm. Therefore, we have to prove that

t
3α
2 −1

[t1−α]∑

j=1

∣∣∣W (j)
k

∣∣∣ a.s.−−−→
t→∞

√
2
π

Γkk. (2)

As for a given t, random variables βj = t
α
2

∣∣∣W (j)
k

∣∣∣ , j = 1, . . . , [t1−α] are inde-
pendent and distributed as |N (0, Γkk)| , convergence (2) follows from Theorem
2 of Hu, Móricz and Taylor [11].

Let Ψ be the mapping of the trajectory of a Wiener process to the trajectory
of Y appearing in the definition of reflected Brownian motion (see § 7.2 in Chen,
Yao [5]).

Lemma 2. Let θ = (θ1, . . . , θk) be a nonnegative vector, and B = {Bt, t ≥ 0}
be a K-dimensional Wiener process with zero drift and an arbitrary covariance
matrix Γ ; Bθ(t) = Bt + θt. Then

EΨ(B(t))k ≥ EΨ(Bθ(t))k, t ≥ 0, k = 1, . . . , K.
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Proof. Let us build Y = Ψ(B) and Y θ = Ψ(Bθ) as in the proof of Theorem 7.2
in Chen, Yao [5]. Namely, we set iteratively Y(0) = Y θ

(0) ≡ 0 and

Y(n+1)(t) = sup
0≤u≤t

[−B(u) + (I − PT )−1Y(n)(t)
]+

,

Y θ
(n+1)(t) = sup

0≤u≤t

[
−B(u) + (I − PT )−1Y θ

(n)(t)
]+

, n ∈ IN.

Then clearly Y(n)(t) ≥ Y θ
(n)(t) coordinate-wisely, hence the same is true for the

limit processes.

Lemma 3. For any α ∈ (0, 1) and k = 1, . . . , K

∣∣∣Γ̂Z
k − Γ̂W

k

∣∣∣ a.s.−−−→
t→∞ 0.

Proof. The definition of reflected Brownian motion in orthant leads us to

∣∣∣Γ̂Z
k − Γ̂W

k

∣∣∣ ≤ t
3α
2 −1

[t1−α]∑

j=1

∣∣∣
[
(I − P )

(
Y

(j) − Y
)]

k

∣∣∣ .

Furthermore,

∣∣∣
[
(I − P )

(
Y

(j) − Y
)]

k

∣∣∣ ≤
K∑

m=1

(∣∣∣Y (j)

m

∣∣∣ +
∣∣∣Y m

∣∣∣
)

,

so by monotonicity of Y

∣∣∣Γ̂Z
k − Γ̂W

k

∣∣∣ ≤ t
3α
2 −1

K∑

k=1

(
Yk(t)
tα

+
Yk(t)

t
t1−α

)
=

K∑

k=1

2Yk(t)
t1−α/2

.

As by Theorem’s condition the drift of W is coordinate-wise nonnegative, due
to Lemma 2 we can consider only the case of zero drift (corresponding to all
the buffers being balanced bottlenecks). As proved in § 7.2 in Chen, Yao [5], the
mapping Y = Ψ(W ) is a Lipschitz continuous one with respect to the uniform
topology (the Lipschitz constant being determined by the matrix P ). Thus for
some C = C(P ) > 0

∣∣∣Γ̂Z
k − Γ̂W

k

∣∣∣ ≤
C max

k=1,...,K
sup

0≤u≤t
|Wk(u)|

t1−α/2
,

which tends to 0 almost surely due to the law of the iterated logarithm.

Lemma 4. For any α > 2
p′ , and k = 1, . . . , K

∣∣∣Γ̂Q
k − Γ̂Z

k

∣∣∣ a.s.−−−→
t→∞ 0.
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Proof.
∣∣∣Γ̂Z

k − Γ̂W
k

∣∣∣ ≤ t
3α
2 −1

[t1−α]∑

j=1

∣∣∣∣∣

∣∣∣Z(j)

k − Zk

∣∣∣ −
∣∣∣Q(j)

k − Qk

∣∣∣

∣∣∣∣∣

≤ t
3α
2 −1

[t1−α]∑

j=1

∣∣∣Q(j)

k − Z
(j)

k

∣∣∣ + t
α
2 −1 |Qk(t) − Zk(t)|

Therefore applying Theorem 1, one can see that
∣∣∣Γ̂Q

k − Γ̂Z
k

∣∣∣ = o(t
1
p′ − α

2 ), t → ∞.

Theorem 2 now follows from Lemmas 1, 3 and 4.

Remark 1. One can consider a more general parametric family of local averaging
estimates, for s ∈ [1, 2] letting

Γ̂Q
k =

tαs/2

t1−α

[t1−α]∑

j=1

∣∣∣Qk
(j) − Q

∣∣∣
s

(and defining similar quantities for W and Z). While we are studying in detail
the case s = 1 as being the most robust one, other cases attract interest as well
[4,6].

Remark 2. Under any condition on the traffic coefficients vector ρ, the statistics
Γ̂kk (k = 1, . . . ,K) obeys the relations

Γ̂kk√
t

→ 0,
√

tΓ̂kk → ∞.

5 Application to Bottlenecks Recognition

Theorems 1 and 2 give us an opportunity to decide which of the nodes are
bottlenecks and which are not, based on observing the vector of queue lengths.

In the paper Blanchet, Murthy (2018) [3] an algorithm for modelling of a mul-
tidimensional RBM with zero drift and identity covariance matrix is proposed.
This algorithm in fact is valid for modelling RBM with arbitrary covariance
matrix, allowing to approximate the marginal distribution of RBM at a given
point by empirical distributions.

Now consider a statistics Q(t)√
t

. If all the nodes are balanced bottlenecks (what
we will consider as a null hypothesis), then Theorem 1 implies that it is asymptot-
ically distributed like Z(t)√

t
, which has the same distribution as Z(1) (by Property

3 on p. 165 in Chen, Yao [5]). Consequently, it is reasonable to expect the values
of this statistics to lie (coordinate-wisely) within 2.5% and 97.5% quantiles of
the said distribution, which depends on the estimated covariance matrix Γ.
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Our Theorems 1–2 and Remark 2 imply that the violation of the lower quan-
tile bound in kth coordinate supports the evidence that ρk < 1. Indeed, the
strict bottleneck case means a positive drift in the kth coordinate of the approx-
imating reflected Brownian motion, which would over-weigh the possible rate at
which Γ̂kk tends to infinity.

Similarly, a strong intersection of the upper quantile boundary substanti-
ates the existence of positive drift. Thus our proposed algorithm of bottlenecks
detection is to construct the statistics Q(t)√

t
and Γ̂ and mark the buffers having

substantial lower (respectively upper) violations in the coordinate-wise compar-
ison procedure as non-bottlenecks (respectively strict bottlenecks).
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research project 20-01-00487 at the Department of Mechanics and Mathematics,
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Abstract. The paper is devoted to applications of the probability the-
ory to the maintenance of the engineering systems of residential build-
ings. FIrstly, we consider a single-server queueing system with vacations
and close-down times that operates in the following manner. When the
server returns from a vacation it observes the following rule. If there is
at least one customer in the system, the server commences service. If the
server finds the system empty a close-down period begins. If no customers
have arrived during this period the server commences a vacation. Other-
wise the server begins service of the first arrived customer at the instant
of this arrival. The input flow is supposed to be a Poisson one outside
of the vacation period and the flow of arrivals during vacation period
has a single jump at the end of this period. Under general assumptions
with respect to distributions of the service time, vacation and close-down
periods the distribution and the mean of the number of customers at the
system in the stationary regime are obtained. The proposed system is
considered as the mathematical model for estimation of the number of
emergency calls q(t) which the service team has to respond to at time
t. Another function for servicing housing is the scheduling of preventive
inspections and repairs. Based on the renewal theory we estimate the
number of completed preventive inspections and repairs during a time
interval (0, t) for large t.

Keywords: Queueing systems · Vacations · Close-down times ·
Residential buildings

1 Introduction

A vacation queueing system is one in which a server may become unavailable
for a random period of the time from a primary service center. The time away
from the primary service center is called a vacation. There are various types
of behavior of the server on the vacation period. In classical models the server
completely stops service or is switched off when he is on a vacation. Many new
vacation queueing systems have been proposed in literature. For example, Servi
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2021
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https://doi.org/10.1007/978-3-030-83266-7_25

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-83266-7_25&domain=pdf
https://doi.org/10.1007/978-3-030-83266-7_25


330 E. A. Korol and G. A. Afanasyev

and Finn [1] introduced the working vacation scheme, in which the server works
at a different rate rather than completely stopping service during a vacation. A
vacation can be the result of many factors. In particular, it can be a deliberate
action taken to utilize the server in a secondary service center when there are no
customers present at the primary service center. Namely, this situation occurs
in the model for technical operation of residential buildings. We assume that the
service team can begin a scheduled preventive inspection and repair only once
all breakdowns are reduced. If this time period starts the service of new arrived
sudden calls are shutdowned. Therefore this period is called vacation. Queueing
systems with server vacations have attracted the attention of many researchers
since the idea was first discussed in the paper of Levy and Yechiali [2]. Several
excellent surveys on these vacation models have been done by Doshi [3,4] and
the books by Tacagi [5] and Zhang [6] are devoted to the subject.

Many new vacation queueing systems have been proposed in literature.
Among them queueing systems with close-down times [7] or timeout [8]. The
proposed paper is devoted to vacation systems of this kind. The main novelty of
the paper is the assumption that the input flow during a vacation has a unique
jump at the end of the vacation period. There are no other essential conditions
with respect to this flow. We obtain the stationary distribution and the mean
of the number of customers at the system. It also makes it possible to find the
lower and upper bounds for the mean of the number of customers at the system
under enough general assumptions.

2 Model Description and Main Results

We consider a vacation single-server queueing system M |G|∞ with close-down
times [7]. This system operates in the following manner. Customers are served by
the single server until the system becomes empty. If the server finds no customers
in the system at a customer departure, it enters the close-down phase ζ. If a
customer arrives at the system before the close-down phase ζ expires the server
immediately goes back to the busy phase. If no customers arrive during the close-
down period, the server goes to the vacation period η. When the server returns
from a vacation, it observes the following rule. If there is at least one customer
in the system the server commences service. If the server finds the system empty
a close-down phase begins and the situation described above takes place. The
close-down period, the vacation and the service times are assumed to be generally
distributed with distribution functions F (x), G(x) and B(x) with LSTs (Laplace-
Stiltjes transforms) f(s), g(s), β(s), respectively, and corresponding means by
ζ, η and b. The input flow is supposed to be a Poisson one with rate λ outside
the vacation period.

Let ηn be the nth vacation period, Tn the moment of the nth vacation start
and τn = Tn+1 −Tn (n = 1, 2, . . .). Define the random process Yn(t) as the num-
ber of customers which are present in the system at time Tn + t. The sequence
{Yn(t), t ≤ ηn}∞

n=1 consists of identically distributed independent random ele-
ments. We do not assume that Yn(t) is a Poisson process with rate λ. It allows
us to study many new vacation queueing models mentioned above.



Vacation Queues 331

Define the function

V (z, t) = EzY (t)
I(η > t) =

∞∑

j=0

zjP (Y (t) = j, η > t),

G(z, s) = EZY (η)esη,

G(t) = P (η ≤ t)

C(z) = EzY (η) = G(z, 0) =
∞∑

j=0

cjz
j ,

(|z| ≤ 1, Res ≥ 0).

Here and later we omit the index n when it does not involve difficulties in the
understanding.

3 Stability Theorem

We study the process q(t) that is the number of customers in the system at the
instant t assuming that sample paths are right continuous functions.

Condition 1. Y 1 = EY (η) < ∞, η = Eη < ∞.

Theorem 1. Let Condition 1 be fulfilled and ρ = λb.
If ρ < 1 then q(t) is a stable process, i.e. for any initial state there exists

lim
t→∞ Ezq(t) = π(z)

and π(1) = 1, (|z| ≤ 1).
If ρ ≥ 1 then

q(t) P−→
t→∞ ∞.

Proof. The second statement is the simple corollary results for the classical
model M |G|1|∞ without vacations, i.e. η = 0. It is enough to remark that
for the number of customers q0(t) being in this system at time t we have the
stochastic inequality

q0(t) ≤ q(t) (t ≥ 0).

Of course we assume identical initial conditions for the both systems. Since
q(t) P−→

t→∞ ∞ if ρ ≥ 1 (see e.g. [9]), the process q(t) is unstable one in this case.

Consider the case ρ < 1. Let as note that q(t) is a regenerative process and
as points of regeneration we take the sequence {θn}∞

n=1 such that

θn = inf{t > θn−1 : q(t − 0) > 0, q(t) = 0}, θ0 = 0. (1)

According to Smith’s Theorem [10] q(t) is a stable process if the mean of the
regeneration period κ̂n = θn+1 − θn is finite, i.e. Eκn < ∞. For the system
M |G|1|∞ let βk0 be the busy period which starts when there are k−1 customers
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in the queue (k = 1, 2, ...). It is well known (see e.g. [11]) that Eβ10 = b(1−ρ)−1

and therefore Eβk0 = kb(1 − ρ)−1.
Let ζn be the first close-down period, an - the time of the next customer

arrival after the moment θn. Then in distribution the following equality takes
place

κn = (an + β10)I(ζn ≥ an) +
n∑

k=0

(ζn + ηn + βk0)I(Yn(ηn) = k, ζn < an) +

+ κ̃nI(Yn(ηn) = 0, ζn < an). (2)

Here I(A) is an indicator function and in distribution κn = κ̃n.
In view of independence random variables an, ζn, βk0 (k = 1, 2, ...), κ̃n and

(Yn(ηn), ηn) we obtain from (2)

Eκ = E min(a, ζ) + EηP (ζ < a) + Eβ10P (ζ ≥ a) +
+ Eβ10EY (η)P (ζ < a) + Eκ̃P (Y (η) = 0)P (ζ < a). (3)

Since
P (ζ < a) = f(λ) =

∫ ∞

0

e−λxdF (x)

and
E min(a, ζ) = λ−1(1 − f(λ)),

we have from (3)

Eκ =
1 − f(λ) + λf(λ)(η(1 − ρ) + bY 1)

λ(1 − ρ)(1 − c0f(λ))
, (4)

where η = Eη, Y 1 = EY (η), c0 = P (Y (η) = 0).
Hence if ρ < 1 then Eκ < ∞ and in accordance with Smith’s theorem q(t)

is a stable process. ��
Under some additional assumptions we may obtain the stationary distribu-

tion for q(t). Here we consider the model S assuming that the following condition
is fulfilled.

Condition 2. The sample paths of Y have a unique jump at the point η.

This condition means that all customers arriving on a vacation period come
at the end of this period. Now we give the main result.

4 Limit Theorem and Corollaries

Theorem 2. Let Conditions 1 and 2 be fulfilled and ρ < 1. Then

lim
t→∞ Ezq(t) = π(z) = π0 +

+ (1 − π0)
(1 − ρ)(1 − c0f(λ))
1 − f(λ)(1 − Y 1)

z(1 − P1(z))
β(λ − λz) − z

1 − β(λ − λz)
ρ(1 − z)

, (5)
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where

π0 =
(1 − ρ)(1 − f(λ) + λf(λ)η)

1 − f(λ)(1 − λ(1 − ρ)η − ρY 1)
(6)

and

P1(z) =
(1 − f(λ))z + f(λ)(C(z) − c0)

1 − f(λ)c0
, (7)

c0 = P (Y (η) = 0).

Proof. First we prove (6). Without loss of generality we assume that θ0 = 0
is a point of regeneration for the process q(t). In view of the condition 2 the
regeneration period consists of the interval vn in which there are no customers
in the system (free period) and the busy period un.

According to Smith’s theorem [10] there exists

lim
t→∞ P (q(t) = 0) = π0 =

Ev

Eκ

, (8)

Since Eκ is defined by formula (4) and Ev = Eκ − Eu we need to find Eu.
Let ξn be the number of customers in the system at the moment when the

busy period starts on the n-th regeneration period, i.e. at time θn + vn.
Analogously formula (2) with the proceeding notation we have the following

equality

P (ξn = 1) = P (an ≤ ζn) + P (an > ζn, Yn(ηn) = 1) +
+ P (an > ζn, Yn(ηn) = 0, ξ̃n = 1) = P1, (9)

where ξ̃n = ξn in distribution and does not depend on an, ζn, Yn(ηn), ηn.
Analogously for j > 1

P (ξn = j) = P (an > ζn, Yn(ηn) = j)
+ P (an > ζn, Yn(ηn) = 0, ξ̃n = j) = Pj . (10)

Since
P (a > ζ, Y (η) = 0, ξ̃ = j) = c0f(λ)Pj (j = 1, 2, ...)

we have from (9) and (10)

P1(z) = Ezξ =
∞∑

j=1

zjPj =
f(λ)(C(z) − z) + zc0f(λ)

1 − c0f(λ)
. (11)

Therefore

Eξ = P ′
1(1) =

1 − f(λ) + f(λ)Y 1

1 − c0f(λ)
. (12)

Since the mean of the busy period in the system M |G|1|∞ with unique customer
at the beginning is equal to b(1−ρ)−1 [11], from (12) we get Eu = Eξb(1−ρ)−1.
Now (6) follows from (4) and (8).



334 E. A. Korol and G. A. Afanasyev

To prove (5) we introduce two auxiliary systems Ŝ and S̃ by identification
points θn + vn and θn+1 for Ŝ and points θn and θn + vn for S̃.

Then Ŝ and S̃ describe the behavior of S on the close-down and vacation
periods (if there is) and on the busy period respectively. In view of Condition 2
the number of customers q̂(t) = 0 in the system Ŝ for any t. The system S̃ has a
Poisson input flow with rate λ and in addition at the end of the n-th busy period
ξn customers arrive at the system (ξ > 0). Let q̃(t) be the number of customers
in the system S̃ and P̃ (z) = limt→∞ Ezq̃(t).

Putting p̂ = Ev
Eκ

and p̃ = 1 − p̂ = Eu
Eκ

we obtain from renewal Theorem

π(z) = p̂ + (1 − p̂)P̃ (z) = π0 + (1 − π0)P̃ (z). (13)

To obtain P̃ (z) we introduce the embedded process q̃n, putting q̃n = q̃(tn).
Here {tn}∞

n=1 are sequential moments of service completion times in the system
S̃ . Since q̃(t) > 0 for any t the sequence {tn}∞

n=1 is a renewal process and
P (tk+1 − tk ≤ x) = B(x). Therefore {q̃n}∞

n=1 is a Markov chain with state space
{1, 2, ...}.

Lemma 1. Under Conditions 1 and 2 and ρ < 1 there exists the limit

lim
n→∞ Ezq̃n = P̃ ∗(z)

and

P̃ ∗(z) =
(1 − ρ)(1 − c0f(λ))
1 − f(λ)(1 − Y1)

· z(1 − P1(z))
K(z) − z

, (14)

were

K(z) = β(λ − λz) =
∞∑

j=1

kjz
j

and P1(z) is defined by (11).

Proof. Transient probabilities {P̃ij} for Markov chain q̃n can be written as fol-
lows

P̃1j = kj + k0Pj (j = 1, 2, ...)

and for i > 1

P̃ij =
{

kj−i+1 if j ≥ i − 1,
0 if j < i − 1.

Therefore stationary probabilities

P̃ ∗
j = lim

n→∞ P (q̃n = j) (j = 1, 2, ...)

satisfy the system of equations

P̃ ∗
j = k0PjP̃

∗
1 + kjP̃

∗
1 + kj−1P̃

∗
2 + ... + k0P̃

∗
j+1 for j = 1, 2, ....

For the generating function P̃ (z) =
∑∞

j=1 zjP̃ ∗
j these equations give

P̃ ∗(z) = k0P̃
∗
1

z(1 − P1(z))
K(z) − z

. (15)
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The normalization condition P̃ ∗(1) = 1 gives

k0P̃
∗
1 =

1 − ρ

P ′
1(1)

.

Therefore (14) follows from this equality, (11) and (15). ��
Now we have to express P̃ (z) by means of P̃ ∗(z). We use results from renewal

theory. Let
n(t) = min{k : tk < t}

and γt = t − n(t). According to the renewal theorem [10] there exists

lim
t→∞ P (γt ≤ x) =

1
b

∫ x

0

(1 − B(y))dy. (16)

If ξ(t) the number of customers arrived at the system S̃ during interval
(tn(t), tn(t) + γt), then

P (ξ(t) = j) =
∫ ∞

0

(λy)j

j!
e−λydP (γt ≤ y).

In view of (16) there exists

lim
t→∞ P (ξ(t) = j) =

1
b

∫ ∞

0

(λy)j

j!
e−λy[1 − B(y)]dy = δj .

and the generating function

δ(z) =
∞∑

j=1

zjδj =

=
1
b

∫ ∞

0

e−λ(1−z)y[1 − B(y)]dy =
1 − K(z)
ρ(1 − z)

. (17)

Since P̃ (z) = P̃ ∗(z)δ(z) from (15) and (17) we have

P̃ (z) =
(1 − ρ)(1 − c0f(λ))
1 − f(λ)(1 − Y1)

· z(1 − P (z))
β(λ − λz) − z

· 1 − β(λ − λz)
ρ(1 − z)

. (18)

Substituting this formula in (13) with regard equalities P̂ = π0, P̂ (z) = 1 proves
the theorem. ��

Differentiating π(z) with respect to z and assuming z = 1, from (5) we obtain
the formula for the mathematical expectation q of the number of customers in
the system in the stationary regime.

Corollary 1. Let Conditions 1 and 2 be fulfilled, ρ < 1 and

Y 2 = EY 2(η) < ∞, b2 < ∞. (19)

Then

q = π′(1) = (1 − π0)
(

1 +
f(λ)Y 2

1 − f(λ)(1 − Y 1)
+

λ2b2
2ρ(1 − ρ)

)
. (20)
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If f(λ) = 0 we have a queueing system M |G|1|∞ without vacations. From (20)
we obtain a well-known result [11] .

q = ρ +
λ2b2

2(1 − ρ)
.

When Condition 2 is not fulfilled (20) gives the lower bound for the average
number q of customers in the system. To obtain the upper bound we take the
random variables τn = Tn+1 − Tn (n = 1, 2, . . .), where {Tn}∞

n=1 are defined in
Sect. 3.

Lemma 2. Let Condition 1 be fulfilled and ρ < 1 then

τ = Eτn =
1 − f(λ) + λf(λ)(η(1 − ρ) + bY 1)

λf(λ)(1 − ρ)
. (21)

The proof of Lemma 2 is given in Appendix.

Condition 3. Process {Yn(t), t ≥ 0} and the duration of the nth vacation ηn

are independent ones (n = 1, 2, . . .).

Corollary 2. Let conditions 1 and 3 be fulfilled. Then the average number q of
customers in the system satisfies the inequalities

q ≤ q ≤ q +
1
τ

∫ ∞

0

tEY (t)dG(t), (22)

where q and τ are defined by (20) and (21) respectively.

Proof. Consider an auxiliary system S∗ which is the same as S with a unique
distinction: all customers arriving during vacation period come at the beginning
of this period. Let q∗ be the number of customers in the system S∗ in the
stationary regime. In just the same way as for the system S we obtain the
following equality

Eq∗ = q +
1
τ

∫ ∞

0

tEY (t)dG(t).

Since Eq ≤ Eq∗ the corollary is proved. ��
As an example consider the case when Y (t) is a Poisson process with rate λ.

Then from formulas (20), (21) and (22) we have

q = ρ +
λ2b2

2(1 − ρ)
+

ρf(λ)(λ2Eη2 + λη)
1 − f(λ) + f(λ)λη

and

q ≤ q ≤ ρ +
λ2b2

2(1 − ρ)
+

λf(λ)(λEη2 + ρη)
1 − f(λ) + f(λ)λη

.
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5 Application to Maintenance of Residential Buildings

At this point we will show that the mathematical models we constructed can
be used for organisation of the management company (MC) of housing and
community services.

We assume that the whole area for which MC is responsible is split into some
districts. In each one there is a team of technicians responsible for servicing the
objects in the district. Each team has two main objectives.

1. Regular preventive services of the objects in the district.
2. Repairs of the faulty objects.

The latter may occur as a result of random breakdown of the equipment as
a result of many random factors including old age of the object.

Let us note that in recent years there was a sharp increase in the interest
to applications of the theory of probability, in particular, queueing theory, to
analysis of the activities of the managing companies of residential properties.

These applications usually start from collection of statistical data with the
objective of constructing statistical estimations of the parameters and functions
defined in the mathematical model in use.This is a quite complex problem. It is
based on various methods of mathematical statistics.

In order to describe the process q(t) representing the number of breakdowns
requiring urgent repairs at time t we use queueing systems with vacations,
described in paragraph 2. The following assumptions are made.

– The flow of requests for emerging repairs is a Poisson process with rate λ.
– The times required for the emergency repairs are independent random vari-

ables with distribution function B(x) and mean b.
– The team of the technicians can work on preventive services only if there are

no calls for urgent services.

When the team is free of urgent calls the close down period starts and lasts
time α. If there are no urgent calls during this period when this period ends the
preventive service (vacation) starts. The length of the vacation η is a random
variable with distribution function G(x). If during the close down period the
urgent call occurs then the period is interrupted and the repair of the call starts.
During the vacation period η the urgent calls come in accordance to Poisson flow
with rate λ.

Suppose that MC wants to organise the activity of the technicians’ team in
a such way that average number of urgent calls q would not exceed some level
δ > 0, and expected value of the number n(T ) of finished preventive services
during time T would be not less than N(T ), i.e.

q ≤ δ, n(T ) ≥ N(T ). (23)

To solve this problem, we need to express q and n(T ) in terms of previously
introduced parameters λ, α and functions G and B. For the average number of
calls q the lower and upper bounds are given by (22). We have to take



338 E. A. Korol and G. A. Afanasyev

η =
∫ ∞

0

xdG(x), Y 1 = λη, f(λ) = e−λα,

Y 2 = λ2

∫ ∞

0

x2dG(x) + λη,

b =
∫ ∞

0

xdB(x), b2 =
∫ ∞

0

x2dB(x).

Then we calculate τ , π0 and q by means of formulas (21), (6), (20) respectively.
If

q +
λ2(1 − ρ)Eη2

eαλ − 1 + λη
< δ (24)

the first condition in (23) may be considered realized.
A formula for the average number of completed scheduled repairs (or vaca-

tions) n(T ) for sufficiently large T follows from the elementary renewal theorem
[10]

n(t) =
t

τ
(1 + o(1)), t → ∞,

where τ is defined by (21). For the second inequality in (23) we set N(T ) = γT .
Then this inequality is satisfied if

τ ≤ γ−1. (25)

If the system parameters λ, α, b, b2, Eη2 satisfy the inequalities (24) and
(25), then we can assume that the team satisfactorily copes with the tasks. If one
of the conditions (24), (25) is not satisfied, managing actions should be taken.

6 Conclusion

In the present paper a vacation queueing system with close-down times is con-
sidered. Under enough general assumptions limit distribution for the number
of customers in the system was obtained. The proposed model is an essential
generalization of vacation systems described in literature. Nevertheless, one may
think that our assumption to the process Y may be restrictive in applications.
Therefore, we give the upper and lower bounds for the mean of the number of
customers in the system and employ our results for organisation of the manage-
ment company of housing and community services.

Acknowledgments. This work is supported by Russian Foundation for Basic research
project 20-01-00-487.
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7 Appendix

Proof. (of Lemma 2)
Denote by {θ

(1)
n }∞

n=1 the sequence of close-down period starts. Let ζn be the
duration of the n-th close-down period and ãn the time of the first customer
arrival after θ

(1)
n . Assuming that θ

(1)
1 = 0 define the sequence

ν(n) = min{k > ν(n − 1) : ζk < ãk}(ν(1) = 1).

Then Tn = θ
(1)
ν(n) − ζν(n) and therefore

τn = Tn+1 − Tn = θ
(1)
ν(n+1) − ζν(n+1) − θ

(1)
ν(n) + ζν(n). (26)

From (26) we obtain the equality in distribution

τn = ζν(n) + ηn + τ0(Yν(n)(η)) +
k(n)∑

j=1

δj . (27)

There k(n) = ν(n+1)−ν(n)−1, τ0(k) is the busy period in the system M |G|1|∞
which starts when there are k − 1 customers in a queue. Random variable δj in
distribution has a form (j = 1, 2, ..., kn)

δ = aI(a < ζ) + τ0(1).

Since

E(a | a ≤ ζ) =
1
λ

+
f ′(λ)

1 − f(λ)
,

E(ζ | ζ < a) = −f ′(λ)
f(λ)

, (28)

Eτ0(Yν(n)(η)) = b(1 − ρ)−1Y1

and

Ek(n) =
1 − f(λ)

f(λ)
,

taking mathematical expectation from (28) we obtain (21) with the help
of (28). ��
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Output Process of Retrial Queue with
Two-Way Communication Under Low

Rate of Retrials Limit Condition

Ivan L. Lapatin(B) and Anatoly A. Nazarov

Tomsk State University, 36 Lenina ave., Tomsk, Russia

Abstract. In this paper, we consider retrial queue with MAP input
and two-way communication. Upon arriving, an incoming call makes
the server busy for an exponentially distributed time if it’s idle at the
moment. Otherwise, the incoming call goes to the orbit and repeat its
request for service after random delay. In its idle time the server also
makes an outgoing calls. We use asymptotic analysis method under low
rate of retrials limit condition to derive characteristic function of the
number of calls in the output flow of the system

Keywords: Output process · Retrial queue · Markovian arrival
process · Asymptotic analysis method

1 Introduction

Mathematical modeling is effectively used in various spheres of modern human
activity. The queuing theory [10] considers models of claim service nodes. The
configuration of these models is very diverse, which allows to choose the one
necessary for a specific applied problem. In this regard, the study of various
characteristics of the proposed models makes it possible to effectively simulate
the operation of various service nodes. In telecommunication systems, automated
call-centers, computer networks, etc., one of the most important characteristics
of great practical interest is the number of requests served.

The main results on the analytical study of the outflows of classical models
were made in the second half of the 20th century such scientists as Burke [5],
Reich [16], Mirasol [13]. The study of output proccess was continued in the future
[4,6,9].

The paper proposes to consider the output proccess of the system with
repeated calls [1] and two-way communication. Retrial phenomenon arises from
various communication systems with random access [2,8]. Such a system can be
interpreted as a node of a communication network with random multiple access,
which in its free time from processing requests can request a self-test or another
procedure that will continue for a random time. Retrial queues with two-way
communication have been extensively studied recently [3,15,17].

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2021
A. N. Shiryaev et al. (Eds.): ICSM-5 2020, PROMS 371, pp. 341–352, 2021.
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Individual nodes form a communication network model in which the outgoing
flow of one node is incoming for another, therefore the results of the study
of outgoing flows of queuing systems are widely applicable for designing real
data transmission systems and analyzing complex processes consisting of several
stages.

We used the method of asymptotic analysis to find the approximation of the
distribution of the number of serviced calls of the incoming flow for some time t
under low rate of retrial condition.

The results of this article for the two-way communication model generalize
the results of the article cite lapatin 2019 asymptotic, in which the device served
only arrival calls. In the two-way communication model when the server is free
it makes outgoing calls and serves such calls. This changes the distribution of
the output process.

The remainder of the paper has follows structure. In Sect. 2, we describe the
model in detail. Section 3 contains the derivation of the Kolmogorov equations
and the transition to characteristic functions. In Sect. 4, we present the main
results, which are formulated in three theorems. Section 5 presents main results.

2 Mathematical Model

We consider a single server retrial queue with two types of calls: incoming calls
and outgoing calls. Incoming calls form a Markov Arrival Process (MAP). MAP
is determed by matrixs Q, Λ and D.

The matrix Q of qij elements is the infinitesimal generator of underlying
process of MAP k(t). k(t) is a continuous time Markov chain with finite set of
states k = 1, 2, . . . ,K Diagonal matrix Λ contains conditional arrival rates λk.
Matrix D contains probabilities dij of that an event will come at the moment of
changing the state of the Markov chain k(t) from i to j.

Upon arrival a incomming call occupies the server if it is free. Duration of the
service time of incomming calls is an exponentially distributed random variable
with rate μ1. If the incomming call arrival finds the server busy, this call joins
the orbit. After a random exponentially distributed time with rate σ repeats his
request for service. When the server is free it makes outgoing calls with rate α
and serves such calls for an exponentially distributed time with parameter μ2.

Denote random processes: i(t) - the number of calls in the orbit at the time
t; k(t) - the state of the underlying process of the MAP at time t; n(t) - the
state of server at the moment t:

n(t) =

⎧
⎪⎨

⎪⎩

0, server is free;
1, server is busy serving an incoming call;
2, server is busy serving an outgoing call,

the process m(t) is the number of served incomming calls at the moment t.
The problem is to find the probability characteristics of the number of ser-

viced incomming calls in the system by the time t.
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3 Kolmogorov System of Equations and Characteristic
Function

Four-dimensional random process is determined by the probability distribution

P {n(t) = n, k(t) = k, i(t) = i,m(t) = m} = Pn(k, i,m, t). (1)

For the probability distribution (1) of the Markovian process {n(t), k(t),
i(t),m(t)} we can write Kolmogorov system of differential equations

∂P0(k, i,m, t)
∂t

= −(λk + iσ + α)P0(k, i,m, t) + μ1P1(k, i,m − 1, t)

+μ2P2(k, i,m, t) +
K∑

ν=1

P0(ν, i,m, t)qνk(1 − dνk),

∂P1(k, i,m, t)
∂t

= −(λk+μ1)P1(k, i,m, t)+(i+1)σP0(k, i+1,m, t)+λkP0(k, i,m, t)

+λkP1(k, i − 1,m, t) +
K∑

ν=1

P1(ν, i,m, t)qνk(1 − dνk) +
K∑

ν=1,ν �=k

P0(ν, i,m, t)qνkdνk

+
K∑

ν=1,ν �=k

P1(ν, i − 1,m, t)qνkdνk,

∂P2(k, i,m, t)
∂t

= −(λk + μ2)P2(k, i,m, t) + αP0(k, i,m, t) + λkP2(k, i − 1,m, t)

+
K∑

ν=1

P2(ν, i,m, t)qνk(1 − dνk) +
K∑

ν=1,ν �=k

P2(ν, i − 1,m, t)qνkdνk. (2)

Let Hn(k, u1, u, t) denotes the partial characteristic functions

Hn(k, u1, u, t) =
∞∑

i=0

∞∑

m=0

eju1iejumPn(k, i,m, t), (3)

where j =
√−1. System (2) for functions (3) can be rewritten

∂H0(k, u1, u, t)
∂t

= −(λk + α)H0(k, u1, u, t) + jσ
∂H0(k, u1, u, t)

∂u1

+μ1e
juH1(k, u1, u, t) + μ2H2(k, u1, u, t) +

K∑

ν=1

H0(k, u1, u, t)qνk

−
K∑

ν=1

H0(k, u1, u, t)qνkdνk,
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∂H1(k, u1, u, t)
∂t

= −(λk + μ1)H1(k, u1, u, t) − jσe−ju1
∂H0(k, u1, u, t)

∂u1

+λkH0(k, u1, u, t) + λkejuH1(k, u1, u, t)

+eju
K∑

ν=1,ν �=k

H1(ν, u1, u, t)qνkdνk +
K∑

ν=1,ν �=k

H0(ν, u1, u, t)qνkdνk

+
K∑

ν=1

H1(ν, u1, u, t)qνk(1 − dνk),

∂H2(k, u1, u, t)
∂t

= −(λk + μ2)H2(k, u1, u, t) + αH0(k, u1, u, t)

+λkejuH2(k, u1, u, t) +
K∑

ν=1

H2(ν, u1, u, t)qνk

+ eju
K∑

ν=1,ν �=k

H2(ν, u1, u, t)qνkdνk. (4)

Denoting

Hn(u1, u, t) = {Hn(1, u1, u, t),Hn(2, u1, u, t), ..,Hn(K,u1, u, t)},

we rewrite the system in following form

∂H0(u1, u, t)
∂t

= H0(u1, u, t)(Q − B − αI) + μ1e
juH1(u1, u, t)

+μ2H2(u1, u, t) + jσ
∂H0(u1, u, t)

∂u1
,

∂H1(u1, u, t)
∂t

= H0(u1, u, t)B + H1(u1, u, t)(Q + (eju1 − 1)B − μ1I)

−jσe−ju1
∂H0(u1, u, t)

∂u1
,

∂H2(u1, u, t)
∂t

= αH0(u1, u, t) + H2(u1, u, t)(Q + (eju − 1)B − μ2I) (5)

where B = Λ + Q ∗ D, here ∗ means the product of Hadamard, I is unit matrix
of K dimension.

System of equations (5) we will solved using asymptotic analysis method
under low rate of retrials condition (σ → 0).
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4 Asymptotic Solution

Denoting σ = ε we introduce the following notations in the system (5)

u1 = εw, Hn(u1, u, t) = Fn(w, u, t, ε),

and write the system (6)

∂F0(w, u, t, ε)
∂t

= F0(w, u, t, ε)(Q − B − αI) + μ1e
juF1(w, u, t, ε)

+μ2F2(w, u, t, ε) + j
∂F0(w, u, t, ε)

∂w
,

∂F1(w, u, t, ε)
∂t

= F0(w, u, t, ε)B + F1(w, u, t, ε)(Q + (ejwε − 1)B − μ1I)

−jejwε ∂F0(w, u, t, ε)
∂w

,

∂F2(w, u, t, ε)
∂t

= αF0(w, u, t, ε) + F2(w, u, t, ε)(Q + (ejwε − 1)B − μ2I). (6)

An asymptotic solution of the system of equations was carried out (6) .

Theorem 1. Let i(t) is the number of customers in MAP/M/1 retrial queue
with two-way communication, then in the stationary regime we obtain

lim
ε→0

{F0(w, 0, t, ε) + F1(w, 0, t, ε) + F2(w, 0, t, ε)} = lim
σ→0

Mejwσi(t) = ejwκ, (7)

where κ is the positive root of the equation

κR0(κ)e = [R1(κ) + R2(κ)]Be. (8)

Furthermore, vectors Rn(κ) are defined by
⎧
⎪⎪⎨

⎪⎪⎩

R0(κ) = r
{
I + [B + κI](μ1I − Q)−1 + α(μ2I − Q)−1

}−1
,

R1(κ) = R0(κ)[B + κI](μ1I − Q)−1,

R2(κ) = αR0(κ)(μ2I − Q)−1.

(9)

r is the stationary probability distribution of the underlying process k(t).

Proof. Consider the system (6) in the stationary mode and set u = 0. We
obtain a system of equations for the probability distribution of the process
{k(t), n(t), i(t)}.

Denoting
Fn(w, ε) = lim

t→∞ Fn(w, 0, t, ε),

in order to get the following system:

F0(w, ε)(Q − B − αI) + jF′
0(w, ε) + μ1F1(w, ε) + μ2F2(w, ε) = 0,
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F1(w, ε)(Q + (ejwε − 1)B − μ1I) + F0(w, ε)B − je−jwεF′
0(w, ε) = 0,

F2(w, ε)(Q + (ejwε − 1)B − μ2I) + αF0(w, ε) = 0. (10)

Considering the limit as ε → 0 in the system (10) yields

F0(w)(Q − B − αI) + jF′
0(w) + μ1F1(w) + μ2F2(w) = 0,

F1(w)(Q − μ1I) + F0(w)B − jF′
0(w) = 0,

F2(w)(Q − μ2I) + αF0(w) = 0, (11)

where
lim
ε→0

Fn(w, ε) = Fn(w).

The key idea of our proof is to look for the solution of (11) in form of

Fn(w) = Φ(w)Rn, (12)

where Rn is the server state probability distribution. Substituting (12) into (11)
yields

R0(Q − B − αI) + j
Φ′(w)
Φ(w)

R0 + μ1R1 + μ2R2 = 0,

R1(Q − μ1I) + R0B − j
Φ′(w)
Φ(w)

R0 = 0,

R2(Q − μ2I) + αR0 = 0. (13)

Because Φ′(w)
Φ(w) does not depend on w, the scalar function Φ(w) is obtained in the

following form
Φ(w) = exp jwκ1,

We have j Φ′(w)
Φ(w) = −κ. Substituting this expression into the system (13) yields

R0(Q − B − αI) − κR0 + μ1R1 + μ2R2 = 0,

R1(Q − μ1I) + r0B + κR0 = 0,

R2(Q − μ2I) + αR0 = 0. (14)

Let us write the normalization condition for the stationary server state prob-
ability distribution

R0 + R1 + R2 = r.

From this equation and the last two equations in (14), we obtain
⎧
⎪⎨

⎪⎩

R1 = R0[B + κI](μ1I − Q)−1,

R2 = αR0(μ2I − Q)−1,

R0 + R1 + R2 = r.

(15)
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By summing equations in (10), we will get the following equation

[F0(w, ε) + F1(w, ε) + F2(w, ε)]Q

+F1(w, ε)(ejwε − 1)B + F2(w, ε)(ejwε − 1)B + je−jwε(ejwε − 1)F′
0(w, ε) = 0.

Multiplying this equation by a single column vector e yields

{F1(w, ε) + F2(w, ε)}Be + je−jwεF′
0(w, ε)e = 0.

Substituting the product (12) into this equation, we obtain

[R1 + R2]Be + j
Φ′(w)
Φ(w)

R0e = 0

and then
[R1 + R2]Λe − κR0e = 0. (16)

From (16) we can find the expression of κ in terms of R0, R1 and R2.
Furthermore, we rewrite (15) as follows:

⎧
⎪⎪⎨

⎪⎪⎩

R0(κ) = r
{
I + [B + κI](μ1 − Q)−1 + α(μ2I − Q)−1

}−1
,

R1(κ) = R0(κ)[B + κI](μ1I − Q)−1,

R2(κ) = αR0(κ)(μ2I − Q)−1.

The equations for κ and Rn(κ) coincide with the equalities (8) and (9).
The theorem is proved.

Theorem 1, only defines the mean asymptotic value κ of the number of calls in
an orbit and the server state probability distributionin Rn the limit situation
where σ is close to zero. This result was obtainted in [14] for MMPP/M/1
retrial queue with two-way communications. We generalized this result for MAP
input.

The results of Theorem 1 are auxiliary for our article. The main results are
formulated in Theorem2.

Theorem 2. Let m(t) is the number of served customers in MAP/M/1 retrial
queue with two-way communications, then

lim
ε→0

{F0(0, u, t, ε) + F1(0, u, t, ε) + F2(0, u, t, ε)}e

= lim
σ→0

Mejum(t) = ReG(u)tee, (17)

where the block matrix mathbfG(u) has dimension 3K times3K and has the
following form

G(u) =

⎡

⎣
Q − (B + (κ + α)I) B + κI αI

μ1e
juI Q − μ1I 0

μ2I 0 Q − μ2I

⎤

⎦ ,
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vector R = {R0,R1,R2} has 3K dimensions and its blocks R0, R1, R2 are
two-dimensional probability distribution of the random process {k(t), n(t)}, κ
- normalized mean number of calls in orbit, e and ee unit column vectors of
dimensions K and 3K.

Proof. Let us make the limiting transition ε → 0 in the system (6), denoting the
following functions

Fn(w, u, t) = lim
ε→0

Fn(w, u, t, ε)

then we obtaine the system in the following form

∂F0(w, u, t)
∂t

= F0(w, u, t)(Q − B − αI) + μ1e
juF1(w, u, t)

+μ2F2(w, u, t) + j
∂F0(w, u, t)

∂w
,

∂F1(w, u, t)
∂t

= F0(w, u, t)B + F1(w, u, t)(Q − μ1I)

−j
∂F0(w, u, t)

∂w
,

∂F2(w, u, t)
∂t

= αF0(w, u, t) + F2(w, u, t)(Q − μ2I). (18)

We will write a solution to the (18) system in the following form

Fn(w, u, t) = Φ(w)Fn(u, t).

Then we rewrite this system as follows

∂F0(u, t)
∂t

= F0(u, t)(Q − B − αI) + μ1e
juF1(u, t)

+μ2F2(u, t) + j
Φ′(w)
Φ(w)

,

∂F1(u, t)
∂t

= F0(u, t)B + F1(u, t)(Q − μ1I)

−j
Φ′(w)
Φ(w)

,

∂F2(u, t)
∂t

= αF0(u, t) + F2(u, t)(Q − μ2I). (19)

Φ′(w)
Φ(w) does not depend on w, the scalar function Φ(w) is obtained in the following
form

Φ(w) = exp jwκ,

then
Φ′(w)
Φ(w)

= jκ.
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Then the system (19) can be written as

∂F0(u, t)
∂t

= F0(u, t)(Q − B − (α + κ)I) + μ1e
juF1(u, t)

+μ2F2(u, t),

∂F1(u, t)
∂t

= F0(u, t)B + F1(u, t)(Q − (μ1 + κ)I),

∂F2(u, t)
∂t

= αF0(u, t) + F2(u, t)(Q − μ2I). (20)

denote vector FF(u, t) = {F0(u, t),F1(u, t),F2(u, t)}, which has 3K dimention,
and matrix G(u)

G(u) =

⎡

⎣
Q − (B + (κ + α)I) B + κI αI

μ1e
juI Q − μ1I 0

μ2I 0 Q − μ2I

⎤

⎦ .

We rewrite system (20) in matrix form

∂FF(u, t)
∂t

= FF(u, t)G(u), (21)

with the initial condition
FF(u, 0) = R. (22)

Vector R = {R0,R1,R2} has 3K dimensions and its blocks R0, R1, R2 are
two-dimensional probability distribution of the random process {k(t), n(t)}.

Solution to the Cauchy problem (21), (22) has the form

FF(u, t) = ReG(u).

From where we write the asymptotic characteristic function of the number of
serviced claims

lim
σ→0

Mejum(t) = lim
ε→0

{F0(0, u, t, ε) + F1(0, u, t, ε)}e

= ReG(u)tee,

which coincides with (17), e and ee unit column vectors of dimensions K and
3K. The theorem is proved.

The expression (17) has the same form as the formulas for the characteristic
function of the number of events in the Markov arrival process [7,12]. Let us
bring the matrix G(u) to the appropriate form and formulate Theorem3.



350 I. L. Lapatin and A. A. Nazarov

Theorem 3. Output process of retrial queue with two-way communication and
MAP input under low rate of retrials condition (σ → 0) is synchronous Marko-
vian arrival process [12] defined by infinitesimal generator Q1 of underlying
Markov chain of 3K dimensions

Q1 =

⎡

⎣
Q − (B + (κ + α)I) B + κI αI

μ1I Q − μ1I 0
μ2I 0 Q − μ2I

⎤

⎦ ,

and probability matrix D1 of event occurrence in MAP at the moment of state
changes of underlying Markov chain

D1 =

⎡

⎣
0 0 0
I 0 0
0 0 0

⎤

⎦ ,

Proof. In the work [12], it is shown that the equation that determines the charac-
teristic function of the probability distribution of the number of events occurring
in the MAP flow for some time t has the form (17). In this case, the matrix G(u)
is defined in terms of the matrices defining the MAP flow as follows

G(u) = Q1 + (eju − 1)[Λ1 + Q1 ∗ D1].

Matrix Q1 - matrix of infinitesimal characteristics of the control Markov chain;
Λ1 is the matrix of conditional intensities of the occurrence of events on the
intervals of constancy of states of the control Markov chain; D1 matrix of prob-
abilities of occurrence of events when the state of the control Markov chain
changes. Transform the matrix G(u) to this form

G(u) =

⎡

⎣
Q − (B + (κ + α)I) B + κI αI

μ1e
juI Q − μ1I 0

μ2I 0 Q − μ2I

⎤

⎦

=

⎡

⎣
Q − (B + (κ + α)I) B + κI αI
((eju − 1)μ1I + μ1I) Q − μ1I 0

μ2I 0 Q − μ2I

⎤

⎦

=

⎡

⎣
Q − (B + (κ + α)I) B + κI αI

μ1I Q − μ1I 0
μ2I 0 Q − μ2I

⎤

⎦

+(eju − 1)

⎛

⎝

⎡

⎣
0 0 0
0 0 0
0 0 0

⎤

⎦ +

⎡

⎣
0 0 0

μ1I 0 0
0 0 0

⎤

⎦

⎞

⎠

That is, in our problem we got that

Q1 =

⎡

⎣
Q − (B + (κ + α)I) B + κI αI

μ1I Q − μ1I 0
μ2I 0 Q − μ2I

⎤

⎦ ,
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and probability matrix D of event occurrence in MAP at the moment of state
changes of underlying Markov chain

D1 =

⎡

⎣
0 0 0
I 0 0
0 0 0

⎤

⎦ ,Q1 ∗ D1 =

⎡

⎣
0 0 0

μ1I 0 0
0 0 0

⎤

⎦ ,Λ1 =

⎡

⎣
0 0 0
0 0 0
0 0 0

⎤

⎦

where sign ∗ is Hadamard product.
We have expressed the matrix G(u) in terms of matrices defining some map

flow. The matrix of conditional intensities Λ1 in this process is equal to zero.
Consequently, the output process of the system under consideration, when the
asymptotic condition of large delay in the orbit is satisfied, belongs to the class
of synchronous MAP. The theorem is proved.

5 Conclusion

In this paper, we have considered the output of MAP/M/1 retrial queue with
two-way communication using asymptotic analysis method under low rate of
retrials condition. We have formulated and proved Theorem2, where we obtained
an explicit formula (7) for the characteristic function of the number of served
customers in the system. We have shown that the output process in the system is
synchronous Markovian arrival process. This result was formulated and proved
in Theorem 3.
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Abstract. In this article, we introduce the concept of stochastic lists
and pseudo-lists and apply them to analyze a loss system with Poisson
arrivals, exponential service times, and multiple positive and negative
resources. For this system, we prove that the total volumes of resources in
the stochastic list and pseudo-list have the same stationary distribution.

Keywords: Multi-resource loss system · Negative customers ·
Stochastic list

1 Introduction

Lists are widely used in programming [1] and when defining computer and com-
munication systems [2]. In this paper we show how lists can be adopted in queue-
ing theory to study multi-resource loss systems, in which resources of multiple
types are allocated to customers for the total length of their service times and
then released. In such systems, an arriving customer that finds the required
amounts of resources unavailable is lost. Once service completed, a customer
releases the exact amounts of resources that have been allocated to it upon
arrival. Thus, for each customer in service we must “remember” the vector of
its allocated resource amounts, which greatly complicates stochastic processes
modeling the behavior of such systems.

The analysis of these systems can be facilitated by its simplification [3]. Sim-
plified loss system is identical to the original one, except that the amounts of
resources released upon a departure are assumed random and may differ from the
amounts allocated to the departing customer upon its arrival. Given the totals
of allocated resources and the number of customers in service, the amounts of
resources released upon a departure are independent of the system’s behavior
prior to the departure instant and have an easily calculable CDF. Stochastic pro-
cesses representing the behavior of such simplified systems are easier to study
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since there is no need to remember the amounts of resources used by each cus-
tomer: the totals of allocated resources suffice. In [4] it was shown that for a
multi-resource loss system with Poisson arrivals and exponential service times,
simplified and original systems have the same stationary distribution of the totals
of allocated resources.

In this paper we formalize notion of simplified system by introducing stochas-
tic lists and pseudo-lists. We will show that for the system studied in [4] lists
and pseudo-lists yield the same stationary distribution of the totals of allocated
resources. We allow the quantities of resources requested by customers to be pos-
itive or negative and observe that requests for a negative quantity of a resource
increase the amount of the resource available to customers requesting positive
quantities of it. The notion of positive and negative customers was introduced
in [5,6]. Positive customers can represent resource requests whereas negative cus-
tomers can increase the amount of available resources by canceling some requests.
We study a system with a different behavior of negative customers. Here, instead
of requests cancelation, negative customers temporary increase the amount of
resources available to positive customers.

2 Stochastic Lists

Let S ⊂ R
M represent a nonempty measurable subset of the real M-space.

We will refer to the elements of Sk as lists of length k and denote the set

of all such lists by S̄ =
L∑

k=0

Sk, where L represents the maximum list length.

Denote by [ξ] the length of list ξ ∈ S̄. The set S0 is assumed to consist of a
single list () of zero length. The operation of deleting the ith element from a
list ξ = (s1, s2, ..., sk) results in the list Deli(ξ) = (s1, . . . , si−1, si+1, . . . , sk),
1 ≤ j ≤ k., while the operation of inserting u ∈ S as the jth element yields the
list Insj(ξ, u) = (s1, . . . , sj−1, u, sj , . . . , sk), 1 ≤ j ≤ k + 1..

Let ξ(t) ∈ S̄, t ≥ 0, be a right-continuous jump stochastic process with jumps
at random times 0 < τ1 < τ2 < . . .. Let τ0 = 0 and denote ξn = ξ(τn),, n ≥ 0.
We call the process ξ(t) a stochastic list if, for any n ≥ 1, the values of the
process before and after time τn are related as either

1) ξn = Delj(ξn−1) for some index j, 1 ≤ j ≤ [ξn−1], or
2) ξn = Insj(ξn−1, u) for some u ∈ S and j, 1 ≤ j ≤ [ξn].

Put simply, a process ζ(t) ∈ S̄ is a stochastic list if each of its states is obtained
from the previous one either through insertion or deletion of some element.

Let v ∈ R
M be some nonnegative vector.

A stochastic list ξ(t) = (ζ1(t), ..., ζn(t)(t)) is said to be a list of resources of
capacity v, if at any time t we have σ(t) = ζ1(t) + ... + ζn(t)(t) ≤ v. Vector σ(t)
contains the totals of allocated resources at time t, while the difference v− σ(t)
represents a vector of idle resources. Since σ(t) ≤ v for all t, at insertion times
τk we have n(τk − 0) < L and σ(τk − 0) + rk ≤ v, while at deletion times
n(τk − 0) > 0 and σ(τk − 0) − ζβk

(τk − 0) ≤ v.
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If some element rk(i) of rk is positive, then the amount of idle resources of
the ith type decreases when rk is inserted into the list and increases once rk is
deleted. If, on the contrary, rk(i) < 0 then the amount of idle type i resources
increases when inserting rk and decreases upon its deletion. Thus, vectors with
negative entries, while present in a list, increase the capacity of resources of the
corresponding types.

The process σ(t) is similar to the stochastic storage processes studied in [7],
with a major difference that only elements which are present in the list can be
deleted. Consequently, only vectors that have been previously added to σ(t) are
subtracted. This is why even if we are interested only in the totals of allocated
resources, we still have to deal with all elements of a list of resources.

3 Stochastic Pseudo-Lists

To evaluate the totals of allocated resources, instead of ξ(t), one can use a simpler
jump process (κ(t),ϑ(t)), which we will refer to as the pseudo-list of resources of
capacity v. This process has an integer component κ(t) ∈ N, which we will call
the pseudo-list’s length, and a vector component ϑ(t) ≤ v called the pseudo-
list’s volume. At an insertion time its length κ(t) increases by 1 and its volume
increases by a vector rk ∈ S. At a deletion time κ(t)decreases by 1 and ϑ(t)
decreases by a vector δk.

The vectors δk correspond to the elements ζβk
(bk − 0) of the list of resources

ξ(t). Given the state (n,y) of the pseudo-list before time bk, vector δk is inde-
pendent of the pseudo-list’s behavior prior to bk and has the CDF

P{δk ≤ x|κ(bk − 0) = n,ϑ(bk − 0) = y} = Fn(x|y).

F1(x|y) is a CDF of a constant vector y, and it follows from the definition of
the conditional probability [8] that for k ≥ 2 the function Fk(x|y) solves

∫

z≤y

∫

u≥z−x

Fk(du|z)F (k)(dz) =
∫

z≤x

F (y − z)F (k−1)(dz), x,y ∈ R
M .

The pseudo-list of resources (κ(t),ϑ(t)) imitates the process (n(t),σ(t)) in
the list of resources ξ(t) = (ζ1(t), ..., ζn(t)(t)), however, instead of previously
inserted vectors rk, we subtract from ϑ(t) the random vectors δk distributed
with the CDFs Fn(x|y).

4 Multi-resource Loss System

Consider a loss system with L servers, a Poisson arrival process of rate λ and
service times exponentially distributed with parameter μ. Assume the system
to possess M types of resources, each of which has limited capacity. Let each
customer require a variable amount of each resource. A customer is lost if upon
its arrival the idle service capacity of some resource is less than the amount
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required by the customer. Once service begins, the idle capacity of each resource
decreases by the amount required by the newly arrived customer.

Denote by v(m) the total service capacity of the type m resource, v =
(v(1), . . . , v(M)), and by rj = (rj(1), . . . , rj(M)) the vector of resource amounts
required by the jth customer, j = 1, 2, . . .. We assume vectors rj indepen-
dent of the arrival and service processes, mutually independent and identically
distributed with CDF F (x), F (v) > 0.

The state of the system at time t can be described by a stochastic list ξ(t) =
(ζ1(t), . . . , ζn(t)(t)), consisting of vectors ζi(t) ∈ S of resource amounts allocated
to customers in service.

Theorem 1. Limit distribution of the process ξ(t) = (ζ1(t), . . . , ζn(t)(t)), p0 =
lim

t→∞ P{n(t) = 0}, Pk(x1, . . . ,xk) = lim
t→∞ P{ n(t) = k, ζ1(t) ≤ x1, . . . , ζk(t) ≤

xk}, is given by

p0 =

(

1 +
L∑

k=1

F (k)(v)
ρk

k!

)−1

,

Pk(x1, . . . ,xk) =

= p0
ρk

k!

∫

y1≤x1,...,yk≤xk

y1+...+yk≤v

F (y1) . . . F (yk),x1, . . . ,xk ∈ R
M , 1 < k ≤ L,

where ρ = λ/μ and F (k)(x) is the k-fold convolution of F (x).

Corollary. Limit distribution of the process (n(t),σ(t)) is given by

lim
t→∞ P{n(t) = k , σ(t) ≤ x} = p0F

(k)(x)
ρk

k!
,x ∈ R

M , 0 ≤ k ≤ L.

Theorem 2. Limit distribution of the process (κ(t),ϑ(t)) is given by

lim
t→∞ P{κ(t) = k , ϑ(t) ≤ x} = p0F

(k)(x)
ρk

k!
,x ∈ R

M , 0 ≤ k ≤ L.

Therefore, in this case an approximation of the process (n(t),σ(t)) by the
pseudo-list (κ(t),ϑ(t)) gives correct limit distribution.

5 Conclusion

Each random list ξ(t) = (ζ1(t), ..., ζn(t)(t)) can be associated with a process
of total volumes of allocated resources X(t) = (n(t),σ(t)) and a pseudo-list
Y (t) = (κ(t),ϑ(t)). We will call a list ξ(t) simplifiable if X(t) and Y (t) have
the same stationary distribution. The example above shows that the class of
simplifiable lists is not empty. The question arises as to how wide this class
is and would the list simplificability be a consequence of the product form of
its stationary distribution. These questions are to be answered in subsequent
studies.
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