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Abstract The intermolecular non-covalent interactions through van der Waals or
dispersion forces are pervasive in nature and play a fundamental role in regulating
the structure and function of molecular systems ranging from solid state materials
to biological systems. The atomistic modeling of non-covalent interactions is
incredibly difficult, as they often require exact treatment of long-range electron
correlation which in turn demand to go beyond second-order perturbation theory.
As for example, the prediction of induction that stems from the response of a
molecular system to a permanent multipole necessitate the precise evaluation of
molecular polarizabilities. The computation of dispersion interaction also appears to
be a formidable task as they involve Coulomb interaction between the instantaneous
correlated fluctuations of electrons. Therefore, a systematic and unified theoretical
framework for isolating non-covalent interactions is essentially required to reliably
model the structure, energetics, and reactivities of realistic molecular systems.
In this review, the fundamental theoretical principles and computational aspects
for the estimation of strong and weak non-covalent interactions are discussed by
emphasizing studies of classic examples such as hydrogen bonding and related
properties of small water clusters, halide-water clusters, fatty acid dimers and their
amides; several gas-phase and dihydrated cation-π complexes comprising benzene,
p-methylphenol, and 3-methylindole as the π-donor systems and Mg2+, Ca2+,
and NH4

+ cations as the acceptor units; the π-π interactions between benzene
and monosubstituted benzenes in parallel face-to-face stacking configuration, as
well as the supramolecular complexes. A comprehensive picture of the accuracy
of the most widely used first-principles approaches including dispersion-corrected
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density functional approximations, second order Møller-Plesset and symmetry-
adapted perturbation theory, as well as non-canonical coupled cluster theory in
predicting van der Waals and dispersion interactions has also been presented.
The discussion culminates through the conceptual and mathematical ingredients
required to establish structure-property relationships e.g., the correlation between
hydrogen-boning and the vibrational modes, impact of electrostatic interactions on
charge transfer to solvents, and the relation between Hammett substituent constants
and the dispersion interactions in extended π-systems.

3.1 Introduction

Various kind of forces are associated with the formation of molecular structures and
crystals. They can be generally classified in terms of strong and weak interactions.
The strong interactions are responsible for the formation of molecular frame and are
generally classified as covalent and electrostatic forces. There are, of course, two
sub-classes of these two forces and are characterized in terms of co-ordinate and
metallic bonding. Pure electrostatic bond is generally considered as stronger than
the co-ordinate and metallic bonds, while a covalent bond can be much stronger
than these three forces. Such a comparison is, of course, purely qualitative and the
magnitude of such binding forces can vary depending on the bonding condition.
The weak interactions, on the other hand, exert much weaker forces (than these four
strong forces) and are responsible for the shape and properties of various molecular
systems (as well as crystals) and, like strong interactions, are important forces of
nature.

The natures of strong forces are quite well-defined using bonding theories
of quantum chemistry. The covalent bonding, for example, was explained from
Pauling’s hybridization theories [1], and through molecular orbital (MO) theories
[2]. The MO theories were later modified in present day quantum chemistry for very
accurate description of molecular systems in relation to their shape and bonding
characteristics. These are mostly based on Hartree-Fock (HF) theories [3] with
the inclusion of basis set concepts of Roothan and Hall [3, 4]. More accurate HF
based theories, for example Møller-Plesset perturbation theories [5–7], coupled-
cluster theories [6, 8], and configuration interaction (CI) techniques [3, 6, 8] include
electronic correlation effect and are widely used for present-day structure and
bonding analysis of molecular systems. The alternative density functional theory
(DFT) based approaches, which are based on Kohn-Sham variational principle [9,
10], are also very successful and widely used techniques to explain molecular
structures in gas-phase, solvated conditions, and their excited state properties [6,
11, 12]. The DFT techniques find further importance in calculating the structures
and electronic properties of solid systems and in present days are widely used in
the field of materials science research. All the techniques described above are well
developed and could be used directly to explain the nature of the four major strong
forces occurring in different forms of the molecular systems. These are, of course,
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not in the purview of the present article. In the present review, we will discuss
the nature of weak interactions, and the use of the present-day theories (MP, CC,
DFT etc. theories) to assess the various structural and binding characteristics of the
weakly-bonded species.

Weak interactions, also called non-covalent interactions in chemistry, usually
occur between two molecular species. Some molecular systems, for example inert
gas dimers (He2, Ar2 etc.) are also weakly bonded as such. These interactions are
of medium to long range in nature and arise from the charge distribution patterns
around a molecule (or an atom). Such a charge distribution is not constant and
fluctuates due to movement of electrons. In the case of weakly interacting systems,
the transient asymmetry of the charge distribution around one of the component
species can induce a complementary asymmetry in the electronic distribution around
the neighboring partner through electrostatic interactions and produce a weak
attractive force to hold them together. This force of attraction is operative up to
a certain distance r between these two systems and at smaller distance (with respect
to r), the forces become repulsive because of the overlap of the outer electron
clouds. Thus, this attractive force is of long range in nature, but at sufficiently large
separation between the two species (much larger than r), it disappears due to simple
electrostatic law. The important point related to the weakly bound system is that the
individual components retain their characteristics more or less unchanged. This is a
very qualitative oversimplified way to explain the origin of weak interactions. The
actual situation is more complex when someone would try to identify the nature of
such forces through proper quantitative analysis of the operating forces.

The origin of weak interactions, as introduced here, are special forms of electron-
correlation effects and fall under the category of van der Waals interactions.
Dipole-dipole, dipole-induced dipole, and London dispersion forces (r–6 dependent
forces) are mostly responsible for such van der Waals interactions. Although these
terms have their common classical mechanics definitions, they could be explicitly
treated in quantum chemical methods through introduction of electron correlation
effects. Formation of hydrogen boded systems, e.g., water, methanol, ammonia
etc. are mostly due to the van der Waals interactions arising from dipole-dipole
interactions effects, since the individual molecular components in these systems
have permanent dipole moments. The interactions inside the H2-He or noble gas
dimers, on the other hand, has binding forces arising purely through London
dispersion types. The forces are generally weak in nature (0.1–0.2 kcal/mol),
although hydrogen bonding interactions are much stronger (e.g., 2–5 kcal/mol for
hydrogen bonding involving N-H and O-H units).

Long-range π-π and cation-π are two different type of non-covalent interactions,
which are usually stronger than regular hydrogen bonds. In both the cases dispersion
interactions are generally operative, but the interaction-nature cannot be explained
so simply. In the case of cation-π interactions, dipole-induced dipole and higher
order quadrupole-dipole, quadrupole-quadrupole interactions etc. interactions are
also operative. These types of interactions were predicted initially by Kier and
coworkers [13, 14] and, almost 20 years later, were fully established by Dougherty
and coworkers [15, 16]. These interactions have emerged as a very common binding
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force to interpret binding nature between cation and aromatics in various biomolec-
ular systems including proteins, receptor-ligand complexes, molecular recognition,
drug actions and protein folding [15–21]. The π-π dispersion interactions are long
known, and this type of weak interactions are important in many naturally occurring
materials. The most common example is graphite, and multilayered graphene sheets.

The present review is primarily oriented around the quantification of these non-
covalent weak interactions. These would be based on various case specific analyses
to understand the energetics of such interactions. There are, of course, several
other characteristics of such systems which are available through experimental
and theoretical analyses. Low-frequency vibrations along with the high frequency
vibrational modes were found to modulate the strength of hydrogen bonds in
several hydrogen-bonded systems [22]. Furthermore, the weakly bound systems
demonstrate several molecular properties e.g., additive properties of interaction
energies and charge transfer to solvents (CTTS, in halide-water clusters) [23]. In
the case of π-π interactions, Hammett equation criteria was found to be important
to understand the nature of interactions in specific cases, when various π-derivative
systems were allowed to interact with a specific π-scaffold [24]. These properties
have been experimentally studied in weakly bound systems using finite sized weak
clusters [25]. The non-covalent interactions are also the building blocks for the
artificial designing of several bioinspired materials [26]. The present review will
also address these properties of the weakly bound systems with specific examples.
A brief review related to the theoretical background of the energy quantification,
both classical and quantum mechanical, would be presented prior to the discussion
of the individual type of non-covalently bound systems.

3.2 Theoretical Models of Non-covalent Interactions

Non-covalent interactions between atoms or molecules could be treated through
regular molecular interaction calculations. The only difference is that the interaction
energy values are low because of the larger separation of the interacting systems.
Electrostatic interactions are central to all these attractive forces, but it cannot
account for the whole interaction energies. Interactions between the noble gas atoms
are typical examples, since they have no dipole moment or higher moments. On
the other hand, there must be some clear interactions between these atoms. The
molecular beam experiments [27, 28] were used to measure interactions between
the noble gas atoms and Fig. 3.1 schematically shows the nature of such interactions
in the case of argon dimer. The computed interaction energy surface reaches a
minimum at 3.8 Å (i.e., it shows an attractive nature) and this energy tends to vanish
at a very large separation [29]. At shorter distances, this interaction energy curve
shows repulsive character. This trend of non-covalent interactions has already been
discussed in Sect. 3.1 and such an energy curve is general for all the noble gas atoms
dimers also. The force between the atoms, which could be defined as the negative of
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Fig. 3.1 Schematic diagram
of the intermolecular energy
and the force between two
argon (Ar) atoms

the potential energy derivative with respect to the interatomic distances (r) (shown
schematically in Fig. 3.1), also shows similar trend with respect to r.

The curves in Fig. 3.1 are considered as a balance between two forces viz.,
attractive dispersive force and the repulsive force of exchange type. Both forces have
their quantum mechanical origin. The dispersive force arises from the generation
of instantaneous dipole from the fluctuating electron clouds. This instantaneous
dipole can induce a dipole in the neighboring molecule producing an attractive
inductive effect. The dispersive force could be developed from Drude model based
on traditional Schrödinger equation. For two interacting molecules, the Drude model
generates interaction energy of the form,

E(r) = −1

2

α4h̄ω

(4πε0)
2r6

(3.1)

Where α is the polarizability, ω/2π is the frequency of an isolated Drude molecule, r
is the separation between the two molecules, and -h(=h/2π) is the Planck’s constant.
In three dimensions, this energy is given by,

E(r) = −3

4

α4h̄ω

(4πε0)
2r6

(3.2)

The complete derivation of the interaction energies is not needed in this review.
Interested readers can see the ref. [30] for the complete derivation. The Drude
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model described here considers only dipole-dipole interaction term. If higher order
terms arising from dipole-quadrupole, quadrupole-quadrupole etc. interactions are
included, the interaction energy from Drude model could be represented as [30, 31]

E(r) =
∑

n

An

rn
(n = 6, 8, 10, . . . . . . ) (3.3)

The determination of the coefficients (An) is discussed in detail in ref. [31]. These
coefficients are negative due to attractive nature of the interaction terms. If just A6
term is included for Ar case, the computed dispersion is ~25% smaller with respect
to the total interaction energies from experiment.

The interaction energy curve in Fig. 3.1 shows that slight decrease in interatomic
distance between Ar-atoms (~3 Å) causes a large increase in energy to the repulsive
region. This increase has quantum mechanical origin and could be explained from
Pauli’s principle. It formally prevents two electrons in a system having same set
of quantum numbers. The short-range repulsive force here, is arising from electrons
with same spin, and is referred to as exchange forces (also known as overlap forces).
At short r, the interaction energy varies as 1/r due to nuclear repulsion and at larger

r, the energy decays exponentially as exp
(
− 2r

a0

)
(a0 : Bohr Radius).

3.2.1 Modeling van der Waals Interactions

The dispersive and repulsive (exchange-repulsion) interactions between atoms and
molecules could be calculated through quantum mechanics. These calculations are
far from trivial and require electron correlation with large basis sets. We will discuss
such methods in connection with the non-covalent interactions in DFT calculations.
The simpler form of the van der Waals interaction as would be outlined here are
the basis for the interpretation of non-covalent interactions computed through more
complicated quantum-mechanical calculations.

The basic criteria of the dispersive and repulsive forces in a non-covalent
interaction between two molecules or atoms should fit to the general functional
form,

EVW

(
rIJ

)
= Erepulsive

(
rIJ

)
− CIJ

(
rIJ

)6
(3.4)

It is not possible to classically derive the functional form of the repulsive
interactions. The interaction energy should go to zero as (rIJ) → ∞ and should
approach zero faster than (rIJ)−6 term.
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The most popular potential, which satisfy this requirement, is the Lennard-Jones
(LJ) potential [32]. Here, the repulsive part has (rIJ)−12 dependence,

ELJ (r) = C1
(
rIJ

)12 − C2
(
rIJ

)6 (3.5)

where, C1 and C2 are suitable constants. The alternative form of LJ potential has the
following form,

ELJ (r) = ε

[( r0

rIJ

)12 − 2
( r0

rIJ

)6
]

(3.6)

Where, r0 is the minimum distance, and ε is the depth of the minimum. There is no
theoretical basis for the choice of the repulsive part, this is purely for computational
convenience. Sometimes exponent of 9 or 10 can generate better results.

Considering the exponential decay of the repulsive term, a EVW potential, known
as Buckingham or Hill type potential [33] was developed in the following form,

EVW (r) = C1exp
(
−C2r

IJ
)

− C3
(
rIJ

)6 (3.7)

Here, C1, C2 and C3 are suitable constants. Equation (3.7) is sometimes written
in the following convoluted form also.

EV W(r) = ζ

[
6

α − 6
exp

{
α

(
1 − rIJ

r0

)}
− α

α − 6

( r0

rIJ

)6
]

(3.8)

Where, α is a force parameter and choosing α = 12, Eq. (3.8) generates LJ
potential. Figure 3.2 schematically shows the attractive part of the LJ(12-6), LJ(9-6)
and Buckingham potentials for the H2–He interactions. The Buckingham potential
shows a better description of the attractive part with respect to the other two
potentials, which may be due to the presence of three parameters (Eq. 3.7) in the
potential. The LJ-potentials have only two adjustable parameters in this respect.

The hydrogen bond interaction potential can also be represented in terms of LJ
potentials, but this potential needs some adjustments in the attractive part, as the
interaction energies are stronger in such cases. The function form of EVW (r) is
commonly represented in such cases through the following 12-10 potential (Eq.
3.9).

EHB = ε

[( r0

rIJ

)12 − 6
( r0

rIJ

)10
]

(3.9)

EHB represents the hydrogen bond potential. In some cases of hydrogen bond
potential, directional terms like (1 − cos θ ) or simply cosθ [34] (θ : a HB angle)
are multiplied with the distance dependent part of Eq. (3.9). The various EVW terms
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Fig. 3.2 Schematic
representations of
Buckingham, Lennard-Jones
(12-6) and Lennard-Jones
(9-6) potentials

discussed here comprise only the basic form of the potentials to be used in molecular
mechanics (MM) or more commonly known force field calculations. These force
fields are central to the classical molecular dynamics (MD) simulations and there are
many different forms of such force fields in dealing with diverse molecular systems
including simple molecules to more complex systems like proteins, enzymes,
nucleic acids, membranes, polysaccharides etc. This is not a place to discuss these
large collection of force fields applicable to various diverse systems, since they are
not the objective of the present review article. We will discuss only several forms
of dispersion potentials related to their use in combination with quantum chemical
methods to show the diversity of the force field parameters.

Let us start with the rare gas interaction cases. The interactions between the rare
gas atoms are usually very weak. The potential energy for interactions varies from
0.08 kcal/mol (1.29 × 10−4a. u.) for He2 to 0.78 kcal/mol (12.5 × 10−4a. u.) for the
Rn2 dimers. Such interaction energy calculations need specially designed van der
Waals potentials to account for the binding distance and energies of such dimers.
In recent times, Tang-Toennies (TT) potentials were developed [35] to account such
interactions. The potential has usual attractive and repulsive parts. The repulsive
potential part is short-ranged Born-Mayer type, while the long-range attractive
potential is added as damped dispersion series [36]. Mathematically, it is written
as,

EV W(r) = Erep + Eatt = Ae−brIJ −
N∑

n=3

f2n

(
brIJ

) C2n
(
rIJ

)2n
(3.10)

where C2n terms are dispersion coefficients. The term b is the Born-Mayer range
parameter and the only parameter in the damping function f2n(brIJ). This function
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Fig. 3.3 Potential energy
curves of the homogeneous
rare gas dimers calculated
with the Tang–Toennies (TT)
potential model (reprinted
from ref. [35], with the
permission of AIP
Publishing)
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can be expressed as

f2n

(
brIJ

)
= 1 − e−brIJ

2n∑

i=0

(
brIJ

)i

i! (3.11)

This function can be computed from incomplete gamma function also [35]. It is
to be noted that the function has some similarity with the Eq. (3.3) originating from
Drude model. With proper knowledge of the parameters in Eq. (3.10), potential
energy curves for the rare atom dimers could be very accurately computed. The
example related to the dimers He2 through Rn2 are shown in Fig. 3.3. The details
related to the other different rare gas atom interactions are also available in ref. [35].

3.2.2 Quantum Chemical Approaches for Non-covalent
Interactions

The calculations of non-covalent interaction energies between two interacting
systems A and B to form the weakly bound complex is straightforward and
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given by,

ΔEAB = EAB − EA − EB (3.12)

Since the binding energy is experimentally observable quantity (negative of
the experimentally measured dissociation energy), the EAB, EA and EB should
be calculated for the lowest energy structures of the individual species for its
measurement. Moreover, because of the weak nature of the binding force, the
energies should have basis set superposition energy (BSSE) correction, if large basis
sets (preferably triple zeta type) are not used in the energy computations. The energy
should further be zero-point energy (ZPE) corrected. Thus, Eq. (3.12) would be like
Eq. (3.13) in the final form,

ΔEAB = EAB − EA − EB − ΔBSSE − ΔZPE (3.13)

There is, of course, one caveat in such strategy. If the techniques involved do
not provide dispersion energy effect, the results from Eq. (3.13) will not provide
proper ΔEAB value with respect to the experiments. Pure HF and Kohn-Sham
density functional theories (KS-DFT) do not have dispersion correction to the total
interaction energies. Generally, higher order HF-wavefunction based techniques
involving perturbation theory, e.g., MP2, CC-techniques (CCSD, CCSD(T)) etc.,
include high electron-correlation effects (consequently dispersion effects), and
could be directly used for such computations. The DFT-calculations become
successful when a proper density functional is augmented with empirical dispersion
term. The quantum chemical methods also provide the techniques to breakdown
the total interaction energies in terms of dispersion, exchange, electrostatic etc.
to understand the role of such interaction energy components to shape up a non-
covalently bound system. In the following subsections we will discuss these features
in more detail.

3.2.3 Dispersion Computations in DFT

The KS-DFT functionals mostly include Grimme’s D2 [37], D3 [38], or D3BJ
[39] dispersion terms to compute dispersion energy part in DFT calculations. The
total energy through any dispersion modified density functional could be expressed
as,

E (DFT − D) = E (KS − DFT ) + ED (3.14)

Here, E(KS − DFT) is usual Kohn-Sham energy as obtained from a chosen
density functional, and ED is the empirical dispersion correction.

The D2, D3 or D3BJ empirical dispersion terms are similar to TT-potentials,
as discussed earlier, but generate the dispersion part of the non-covalent molecular
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interactions in a different way. The D2 dispersion correction is written as [37],

ED = −S6

Natom−1∑

I=1

Natom∑

J=I+1

CIJ
6

(rIJ )6 f (rIJ ) (3.15)

Here, Natom is the number of atoms in the system; CIJ
6 is the dispersion

coefficient for the atom pair IJ; S6 is the global scaling factor (that depends on
the density functional used) and rIJ is the distance between the atom pair I and J.
The f (rIJ) term is a damping function, and it is important to avoid near-singularities
for small rIJ . The f term is expressed as,

f (rIJ ) = 1

1 + e
−d

(
rIJ
R

−1
) (3.16)

Where, R is the sum of atomic van der Waals radii. The term d is a preset parameter
and d = 20 is usually set here to provide larger corrections at intermediate distances
and generating negligible dispersion energy at covalent binding region.

Further developments of these dispersion potentials in DFT calculations were
introduced later in the D3 and D3BJ techniques [38, 39]. The basic equation is
the same as Eq. (3.14); only the dispersion calculations were modified. The D3
calculation [37] uses the following form of E(D),

E(D) = E(2) + E(3) (3.17)

The E(2) and E(3) are the two-body and three-body dispersion interaction terms,
respectively. The philosophy for using such equation comes from the definition of
interaction energies in terms of many body interactions [40].

The term E(2) and E(3) are usually expressed as follows,

E(2) =
∑

IJ

∑

n=6,8,10...

Sn
CIJ

n

rn
IJ

fd,n (rAB) (3.18)

fd,n (rAB) = 1

1 + 6

(
rIJ

Sr,nrIJ
0

)−αn
(3.19)

E(3) =
∑

IJK

fd,(3) (rIJK) EIJK (3.20)

f terms in Eqs. (3.18) and (3.20) are damping terms and the terms given in Eq.
(3.19). The nonadditive dispersion term EIJK in Eq. (3.20) is computed from the
third-order perturbation theory for the three atoms I, J, K and is discussed in detail
in the ref. [38]. The three-body term is insignificant for small molecular systems, and
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usually has some contribution when the system is quite large. The D3BJ potential is
similar to D3 potential. It differs from D3 only in the contribution of damping factor
[39]. The detailed discussions related to these methods are available in the respective
papers, and they include the determination of such factor (Sn) and assignment of the
proper values of CIJ

n and rIJ
0 terms. We will discuss below only the basic features

of the D3BJ potential to show its difference with D3.
Becke and Johnson (BJ) [41] proposed a rational damping procedure for the

dispersion potential in the following form,

E(D) = −1

2

∑

I �=J

CIJ
n

rn
IJ + const.

(3.21)

Based on such a damping approach, the modified form of DFT-D3 method could
be represented in the following form of Eqs. (3.22) and (3.23).

E(D) = −1

2

∑

I �=J

S6
CIJ

6

r6
IJ + f

[
rIJ

0

]6 + S8
CIJ

8

r8
IJ + f

[
rIJ

0

]8 (3.22)

with

f
(
rIJ

0

)
= x1r

IJ
0 + x2 (3.23)

Where, x1 and x2 are the fit parameters introduced by BJ [40]. The BJ-damping
leads to a constant contribution of E(D) to the total correlation energy for each
bonded atom-pairs. This damping procedure seems theoretically more justified over
a normal zero-damping [42], although it was found to change the thermochemical
description of the underlying density functional (DF). Adjustment of standard
correlation functionals are required to overcome such a problem. The related
computer codes are usually equipped with these parameters for the computation
of the dispersion terms for the proper thermochemical description of DF. It has been
shown that, although the damping procedures in D3BJ differs from D3, both the
procedures produce almost equivalent results [39].

3.2.4 Dispersion Computation Through MP2 and Higher
Correlation Methods

The binding energy of non-covalently bound complexes could be computed through
MP2, CCSD, CCSD(T) etc. type of quantum chemical techniques using Eq. (3.13).
In such techniques, it is not needed to include the dispersion term separately. This
energy is already included in these methods through higher electron-correlation
effects. Let us consider, the case of MP2 method. We begin with the consideration
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of the effect of perturbation λV̂ on the generalized Hamiltonian Ĥλ.

Ĥλ = Ĥ0 + λV̂ (3.24)

Here, Ĥ0 is the unperturbed HF Hamiltonian. The Rayleigh-Schrödinger pertur-
bation theory tells us that the effect of perturbation renders the following expansion
effect on the wave function (ψλ) and energy (Eλ) corresponding to Ĥλ.

ψλ = ψ(0) + λψ(1) + λ2ψ(2) + . . . (3.25)

Eλ = E(0) + λE(1) + λ2E(2) + . . . (3.26)

The Møller-Plesset (MP) energy up to the first order perturbation term is the HF-
energy. The second order contribution (E(2)) to the MP-energy could be written as
[5–7],

E(2) =
occ∑

i<j

∑ virt∑

a<b

∑ 〈 ij | |ab〉2
(
εa + εb − εi − εj

) (3.27)

Here, ε terms are orbital energies of the occupied (i, j) and virtual (a, b) orbitals
and 〈ij|| ab〉 is a two-electron integral over spin-orbitals (and obviously involves
double substitution). Now, if we consider non-covalent interactions between two
molecular systems or atoms, E(2) is the correlation correction to the HF-energy
and represents the effect of dispersion energy (with higher correlation terms). The
dispersion interaction energy at the MP2 level could then be written as [43, 44],

ε
(2)
MP = E

(2)
AB − E

(2)
A − E

(2)
B (3.28)

Where, AB is the overall system generated from the species A and B. The Pure
HF-interaction energy in such a case could be written as

ΔEHF = EAB
HF − EA

HF − EB
HF (3.29)

This �EHF could be partitioned further into Heitler-London
(
ΔEex

HL

)
energy

components as

ΔEex
HL = ε

(10)
EL + ε

(10)
EX (3.30)

where ε
(10)
EL and ε

(10)
EX are the electrostatic and exchange contribution to the ΔEex

HL.
The difference between �EHF and �EHL generates the delocalization component
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of the total HF interaction energies. Thus,

ΔEdel
HF = ΔEHF − ΔEex

HL (3.31)

Such partitioning implies that total MP2 interaction energy �EMP2 could be
partitioned into four components in the following way [43, 44].

ΔEMP2 = ε
(10)
EL + ε

(10)
EX + ΔEdel

HF + ε
(2)
MP (3.32)

The ε
(10)
EL can further be divided into short-range penetration and long-range

multipolar components [44]. Thus, in quantum chemical analysis, the interaction
energies can not only be computed with accuracy but also the various energy
components affecting the interactions can be deduced from energy-component
analysis as outlined here. The details of such analyses are available in the refs.
[43, 44]. The coupled cluster level of computations can be used for binding energy
calculations through Eq. (3.13) for additional accuracy, and energy components
can also be measured for the total interaction energies through symmetry adopted
perturbation analysis (SAPT) [45]. In recent times, SAPT analysis has also been
developed for energy component measurements for DFT techniques [46]. The
DFT energy component analysis computes total interaction energy as the sum of
�ED + �Eex + �Eind (�Eex: exchange component; �Eind: induction component).
The �Eex in DFT and ΔEex

HL in the MP2 energy component analysis [as in Eq.
(3.32)] are similar. The ΔEdel

HF in Eq. (3.31) and �Eind in DFT-SAPT calculations
are closely related. The difference is, while ΔEdel

HF is associated with the relaxation
of electron densities of monomers upon interactions restrained by Pauli principle
[47] (charge delocalization with charge transfer interactions), �Eind represents
interactions arising from the charges due to deformation of the monomer units.

We have so far narrated a brief description of the various quantum chemical
techniques used to analyze the non-covalent interactions between two molecular
units. The rest part of the review article would be devoted to various non-covalent
weak interaction analysis based on techniques described in this section.

3.3 Non-covalent Interactions in Hydrogen-Bonded (HB)
Systems

A hydrogen bond is formed when hydrogen atom covalently bound to an elec-
tronegative atom or group, generally termed as donor (D) group that interacts with
another electronegative atom with lone pair of electrons (the so-called acceptor (A)
group) forming a non-covalent interaction of the type D-H . . . A. The hydrogen bond
formed is often described as electrostatic (dipole-dipole type), although it has some
features of covalent bonding. The interaction distance is usually shorter than the
sum of the van der Waals radii of the interacting components. The hydrogen bond
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strength depends on the electronegativities of D and A, and such bond could be
as strong as 38.6 kcal/mol [48]. Examples of very weak hydrogen bond are also
found in cases of S, Cl and C (~1.0 kcal/mol) [48, 49]. They are also ubiquitous and
have importance in control of receptor-ligand interactions in medicinal chemistry,
and intra-/intermolecular interactions in materials science [50, 51]. Most common
examples of hydrogen bonding are found in water, ammonia, hydrogen fluoride,
organic fatty acids, alcohols etc. Hydrogen bonding in such solvent systems is
important in manifestation of several physical properties viz., melting point, boiling
point, solubility, viscosity, and azeotropic properties of solvent mixtures. Such
interactions are also one of the most important building blocks in various polymeric
materials including DNA, proteins, cellulose, synthetic polymers, and the bonding
features in these systems are explored mostly through crystallography, NMR, and
IR experiments [52, 53].

Quantum chemical (QC) techniques and molecular dynamics (MD) simulations
are important in silico methods to understand the nature of hydrogen bonding. The
theoretical findings are important in explaining various experimental observations
in this context. Small clusters are usually important to understand such interaction
phenomenon, since these clusters are generated in recent times in gas phase and their
structural and bonding features could be observed through IR spectra. For example,
gas phase IR spectroscopic techniques viz., extensive terahertz laser vibration-
rotation-tunneling (VRT) spectra and mid-IR laser spectra [54–57] were used to
understand the origin of hydrogen bond formation in small water clusters. QC-
techniques are very effective in elucidating structural behavior and in the present
section we will discuss two such examples. The discussions would be oriented
around the structural, binding, and spectroscopic properties of several small water
clusters and fatty acid dimers. The discussions on water clusters would also include
the effect of inclusion of halide ions in several of such water clusters and their charge
transfer properties to solvent (CTTS) [23]. The fatty acid dimers were generated in
gas phase and apart from their binding properties, they have unique low and high
frequency vibrational modes which are involved in the relative stability of such
clusters [22]. Furthermore, these fatty acid clusters have unique fragment energy
additive properties, which could be used to predict the binding energies of higher
fatty acids. This characteristic is unique to such fatty acids and were not explored
before.

3.3.1 Hydrogen Bonding and Related Properties of Small
Water Clusters

The change of structural and spectroscopic properties of small water clusters with
increasing cluster size have been investigated through theory and experiments for
a long time [23, 54–63]. The primary objectives of such instigations were to
understand the nature of hydrogen bonding in such clusters, how such changes
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are related to their vibrational characteristics, effect of adding halide ions to such
clusters [23, 64] and related changes in hydrogen bonding and spectroscopic
properties. Experimental structure analysis of the small water clusters, (H2O)n,
n = 2–6, have been reported from the VRT spectroscopy [54–57], while the
vibrational spectra of n = 1–8 water clusters bound the benzene and water clusters
of n = 7–10 are available for their O-H vibrational modes [59, 60, 63]. The
water dimer is linearly hydrogen bonded [65], while water trimer to pentamer
are cyclic rings [61, 62]. The higher clusters starting from n = 8 and above are
multiring types [59, 60]. These structures were ascertained from the theoretical and
experimental results. The low-energy structures of water hexamer and heptamer are
also mostly multiring type, although they can have two-dimension (2D) and three-
dimensional (3D) structures. A 3D-cage structure of (H2O)6 is believed to be the
lowest energy structure from both theory and experiments [57, 58, 61]. On the other
hand, extensive QC calculations on water hexamer has also suggested the presence
of open-book like structure [65].

With this brief resumé on the structural aspect of the small water clusters, we turn
our attention to the more specific properties related to the hydrogen bonding, i.e.,
relative stabilities and IR characteristics arising from hydrogen bonds. We are taking
the specific example of water heptamer, as the low energy water clusters formed
in this case show various structural possibilities including directional hydrogen
bond properties due to the formation of 3D structures. The small water clusters
fall under two broad structural types viz., 2D ring and 3D cage (e.g., prism, or
cube). Furthermore, the water monomers inside a water cluster could be of single
proton donor–single acceptor (da), single donor–double acceptor (daa), double
donor–single acceptor (dda), and double donor–double acceptor (ddaa) types. In
the water hexamer, for example, these types of water monomers were found to be
related to the O–H spectra [66]. Water clusters presented in Fig. 3.4 tries to explain
these features through specific examples of (H2O)7-clusters [67]. It contains twelve
optimized water heptamer structures (C to R7, all in C1-symmetry) together with
four stable hexamer (cage, prism, book, and ring in C1-symmetry) [66] and two
stable octamer clusters (D2d, S4) [59, 60]. These hexamer and octamer structures
are shown here, since they are geometrically related to the heptamer structures for
their formation. The cage and prism structures of (H2O)6-clusters can generate
the C, D, E, and F structures through addition of a water molecule. The octamer
structure could also affect these structure formations in an alternative way. The
global minima D2d and S4 octamers are degenerate and contain dda and aad types
of water monomers. Exclusion of these water molecules from S4 would generate
the C and D structures, whereas removal of similar water molecules from the D2d
cluster would be responsible for the E and F cluster formation. The formation of
the G and H structures could similarly be explained from the S4 structure. The ring
structures R5, R4 and R7 could be generated from the ring and book structures of
water hexamers through addition of one water molecule [67].

The number of hydrogen bonds (HBs) play a major role in relative stability and
strength of hydrogen bond in water clusters. As a result, such properties together
with the polarity of hydrogen bonds can influence the observed –OH frequencies of
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Fig. 3.4 The optimized geometries of water heptamer (C–R7), hexamer (ring, book, cage, and
prism), and octamer (D2d and S4) clusters. All the structures are in C1 symmetry except D2d, S4,
and ring (S6). The sequential numbers in each figure represent the direction of the unidirectional
H orientations (reprinted from ref. [67], with the permission of AIP Publishing)

these clusters. The number HBs in C, D, E, F, G, and J are ten, while they are nine
in H, I, and K, eight in R5, R4, and seven in R7. The average HB distances vary
between 2.84 Å (cluster F) to 2.76 Å (cluster R4). These results were available from
the fully optimized structures of these clusters (MP2/TZ2P++ calculations) and are
slightly shorter than the normal O . . . O distance (2.98 Å) in water. These average
bond distances of the individual clusters together with the number of hydrogen
bonds determine the following relative stability order of the clusters.

C2.82
10 > D2.82

10 > G2.83
10 > H 2.83

9 > E2.83
10 > F 2.84

10 > J 2.82
10 > I2.80

9 > R52.76
8 > R42.76

9

The subscripts in the cluster notation indicate the number of HBs, and the
superscript represents average HB-length in Å (in terms of O-H-O distance). There
are few deviations in the above stability order in relation to the aforementioned
hypothesis. This could be attributed to the strain in the structure (Fig. 3.4), which
alters the stability order in terms of average HB-number and length considerations.
The relative stability order was verified through Gibbs free energy change mea-
surements in molecular beam experiments [54–58]. The energy difference between
C and D is only 0.5 kcal/mol and the other clusters except R7 and K are within
2.5 kcal/mol. The average HB energies for the lowest energy clusters C and D were
found to be 3.8 and 3.7 kcal/mol respectively (MP2/TZ2P++) and these values are
weaker than normal hydrogen bond energy in water (~5.0 kcal/mol). The average
HB-energy in other clusters is all within 4.2 kcal/mol (MP2//B3LYP/6-311++G**
level) [67].

Unidirectionality of HBs also determine the relative stability of the water
clusters. The low-energy clusters C, D, and R5 in Fig. 3.4 show that their HB
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orientations are unidirectional. This is also true for the hexa- and octamer (n = 6, and
n = 8) clusters in Fig. 3.4. The lower clusters with n = 3, 4 and 5 with unidirectional
HBs (cyclic structures) are the most stable [61]. This is also true for the n = 9, and
10 clusters with nine- and ten-membered cyclic rings [60].

3.3.2 Nature of O-H Stretching Modes

The proton donor and acceptor properties of water monomers inside a water cluster
controls the O-H stretching modes of a (H2O)n cluster. Generally, most of the O-
H stretching modes in a water cluster are red shifted with respect to the water
monomer stretching modes. This is because these donor-acceptor properties of
water monomers in a cluster control the HB-strengths. We will discuss this case
for the low-energy water clusters with n = 6, 7, and 8. Figure 3.5 shows the
calculated vibrational spectra of these clusters (B3LYP/6-311++G**) [67]. The
spectra are presented with respect to the water monomer frequencies computed at
the same level of theory (3921 cm–1, 3816 cm–1, and 1603 cm–1). As it could be
seen from the spectra (Fig. 3.5), the H2O)n clusters have n number of asymmetric
(n3) and symmetric (n1) O-H stretching modes. Most of these peaks are red shifted
with respect to the monomer frequencies, except one (slightly blue shifted). The
classification of water monomers based on their donor-acceptor properties in n = 7
cluster, as discussed earlier, are as follows: C, D, E, F, G (1 da, 3 aad, and 3 daa);
H, I (3 da, 2 aad, 2 daa); J (2 da, 2 aad, 2 dda, 1 ddaa); K (5 da, 2 ddaa); R5, R4
(5 da, 1 aad, 1 dda); R7 (7 da). The general principle is that the n3-band of the dda
or ddaa types are lower (in energy) than those of the da types. On the other hand, in
the case of n1-band, the dda and ddaa type O-H stretches are higher than those of
the da and aad types. The spectral shifts in the whole spectral data in Fig. 3.5 can
be explained from this principle.

The experimental determination of the IR spectra of (H2O)7-cluster [63] indi-
cated two structural isomers. These are based on the number of experimental
peaks These peaks in terms of frequency shift with respect to the experimental
average O-H stretching frequencies of the water monomers, are –757 (2), –627
(2), 397, 287 (2), –147 (4), –57, and 13 cm–1) (the numbers within parentheses
are splitting pattern of the peaks). These spectral shifts are similar to the calculated
shifts of the mixture of C and D isomers (Fig. 3.4), indicating the presence to two
competitive lowest energy structures of the water heptamer. It is to be mentioned
in this connection that the computed absolute values of frequencies were not in
very good agreement with experiment, since anharmonicity effect was not explicitly
considered in such calculations. The anharmonicity effect, of course, do not alter the
binding energy (also the HB-energy) of these clusters, as was found in a later study
for n = 2–10 clusters [68].
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Fig. 3.5 Computed IR spectra for various low energy clusters of the water heptamer, hexamer, and
octamer at the B3LYP/6-311++G** level of theory (reprinted from ref. [67], with the permission
of AIP Publishing)

3.3.3 Effect of Halide Ion Interactions with Small Water
Clusters

The structural characteristics of the halide ion inclusions in water clusters were
monitored effectively through photoelectron spectroscopy (PES) [69, 70]. The PES
analysis showed that X(H2O)n (X = F–, Cl–, Br–, and I–), surface structures are
favored for X= Cl–, and Br– form small n. On the other hand, for X = I–, the n = 6
cluster has an internal state with first solvation layer of 6. The QC calculations on
X(H2O)n (X = Cl–, Br–, and I–) [64, 71] indicated that for n = 2–6, the Cl–, and
Br– ions resides on the surface of the cluster, while the I– resides on the surface
for n = 2–5, but for the n = 6 cluster, the I– tends to move from the surface to
the interior site. The F–(H2O)n clusters are different from the other halide-water
clusters, since the F– ion interactions are much stronger than the rest of the halide
ions. Because of the exceptionality of HB-interactions, we have chosen to discuss
the structural features and binding characteristic of such clusters in more details.
Moreover, all these halide-water clusters show CTTS properties [23]. These special
features of X(H2O)n (n = 1–4) would also be reviewed here.

The F–(H2O)n (n = 1–6) clusters were analyzed through QC calculations using
various approaches, and F–-binding energies of these clusters are experimentally
available. Figures 3.6 and 3.7 contain different structural possibilities of these
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Fig. 3.6 Optimized
geometries of the F–(H2O)n,
n = 1–5, clusters obtained by
using MP2 method (reprinted
from ref. [72], with the
permission of AIP
Publishing)
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Fig. 3.7 Optimized
geometries of the F–(H2O)6
clusters predicted by
employing MP2 method
(reprinted from ref. [72], with
the permission of AIP
Publishing)

clusters in different QC calculations [72]. There were not many disagreements
related to the cluster properties, and most of the calculations agreed on the minimum
energy structures, and these are important to compute the parameters related to
experiments. We have chosen to discuss the results based on DFT/B3LYP and MP2
calculations using large basis sets (6-311++G**). The results do not differ much
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with respect to the higher level MP2 (and larger basis set) and CCSD(T) [72, 73]
computations. Figure 3.6 shows the cluster arrangements for n = 1–5, while Fig. 3.7
contains the structural possibilities for n = 6. The F– ion in the higher clusters could
orient on the surface or inside the cluster. A specific (n1 + n2) notation is chosen,
together with the overall molecular symmetries, to represent such possibilities of F–

ion arrangements. The numbers n1 and n2 represent the number of water molecules
in the primary and secondary hydration shells, and when n2 = 0, the structure is
simple represented as n1. As it could be seen from the structures of (H2O)6 clusters
(Fig. 3.4), the insertion of F– ion changes the structural patterns. This is true for the
other clusters (different n) also.

The lowest energy clusters of F–(H2O)n (n = 1–6) are 1(Cs) (n = 1), 2(C2)
(n = 2), 3(C3) (n = 3), 4(C1) (n = 4), 5(C1) (n = 5), and (4 + 2)(C2) (n = 6) (Figs.
3.6 and 3.7). The clusters with higher symmetry are mostly high-energy or transition
states. The smaller sized clusters (n ≤ 3) show very small energy difference between
the low-lying isomers (~0.2 kcal/mol). The cases of n = 3 and 4 are quite interesting.
The 3(C3h) isomer of n = 3 has slightly lower energy than 3(C3), although careful
analysis showed that the higher symmetry structure is a transition state. The 4(C1)
(n = 4) cluster, on the other hand, is not an unambiguous global minimum. The
(3 + 1)(Cs) is actually a competitive minimum energy isomer. In the case of higher
clusters (N = 5, 6), global minimum (as assigned above) is unambiguous through
both DFT and MP2 analysis [72], and in more recent calculations also [73]. Further
details of the energetics of these isomers are available in ref. [72].

The F . . . H, F . . . O, and O-H distances and related H-O-H bond angle are
important parameters to understand the strength of F– ion interactions in these
F–(H2O)n clusters. The variations of these parameters with increasing n represent
how F– ion interacts with the water cluster part. Figure 3.8 represents such variations
with respect to the cluster size (n). The variations are related to the lowest energy
clusters of different n. The graphs containing the variations of different bond-lengths
reflect the variation of F– ion interactions. The shortest F . . . H, F . . . O and O-H
bond lengths represent higher interactions in this respect. The variation of the H-O-
H angle with respect to the cluster size is a result of such interactions, and this angle
is always smaller than free water.

The actual variations of F–-ion binding energies with respect to the cluster
size are presented in Fig. 3.9 in terms of enthalpy (�H298K) and Gibbs free
energy (�G298K) of binding. These are MP2-level data and are compared with the
experimental results from two different sources (marked as Expt. a [74] and Expt.
b [75]), and the trends of both types of estimations are consistent. The MP2 results
(6-3111++G**) are presented with both BSSE-corrected and uncorrected ways,
and it could be observed that BSSE-corrected values somewhat underestimate the
binding energies for n ≥ 4. The interactions could also be analyzed through many-
body interaction theories [72], since they are quite important for bigger systems
(especially n = 5 and 6 clusters) to estimate interactions as well as binding energies.
Both 2-body and 3-body interactions contribute to the total binding energies in these
clusters. The higher body interactions (4 and above) are not important. These are in
nut-shell the nature of F–-ion non-covalent interactions in F–(H2O)n clusters. Such
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Fig. 3.8 Variation of the lengths r(F . . . H), r(F . . . O), and r(O–H) and H–O–H angle [θ(H–O–H)]
with increasing water molecules in clusters F–(H2O)n. The parameters are chosen for the minimum
energy (MP2) geometries of each cluster. The dotted lines indicate the values for the minimum
energy n1 cluster (n2 = 0) of n = 5 and 6 clusters (reprinted from ref. [72], with the permission of
AIP Publishing)

interactions have significant effect on the ionization potential and O-H vibrational
characteristics of these clusters. A specific effect is the higher red-shift of the O-H
stretching frequencies more than the normal water clusters. The detailed discussion
is available in ref. [72]. We will conclude this section after a general discussion of
the CTTS properties of halide-water cluster as HB-properties influence such CT-
spectra.

3.3.4 CTTS Properties of Halide-Water Clusters

The UV-spectra of halide ions in water demonstrates a unique type of charge-
transfer spectra. These specific spectral characteristics occur due to the electron
injection from the halide to the solvent in the UV region and generated excited state
is known as CTTS state. Thus, it is not the property of halide ion itself. The bound
CTTS state is created due to the stabilizing potential of the surrounding solvent
molecules. The non-covalent interactions of halide ions with the surrounding solvent
are an operative factor for such a CTTS phenomenon. For example, the aqueous
solution of iodine exhibits broad charge transfer band due to electron ejection from
iodide to the solvent. The spectrum consists of two bands at ~ 2100 Å separated by
characteristic spin-orbit splitting (0.94 eV) of neutral iodine [76].
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Fig. 3.9 Plots of
experimental and calculated
(MP2) �H and �G values of
F–(H2O)n clusters with
increasing n (n = 1–6)
(reprinted from ref. [72], with
the permission of AIP
Publishing)
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The measurements of the CTTS bands of I–(H2O)n (n = 1–4) through photo-
detachment spectra [77], and studies on the dynamics of electron solvation in
the photo excited states of the I–(D2O)n (n = 4–6) and I–(H2O)n (n = 2–
4) [78] unraveled the importance of water-cluster . . . halide ion interactions. The
experimental CTTS spectra of Cl–, and Br– are only available in bulk water [79].
The theoretical calculations determined the CTTS spectra of X–(H2O)n (X = F,
Cl, Br, I; n = 1–4) using their lowest energy clusters [80, 81]. The excited state
calculations at the TD-DFT level produced sufficiently accurate results. The first
excited singlet state (S1) of these clusters were found to represent the CTTS states
through computed charge transfer (�q) data from S0 → S1 states (Table 3.1). The
computed CTTS states were verified with respect to the experiment for the case of
I–(H2O)n (n = 1–4) clusters (Table 3.1). The minimum energy clusters used in such
calculations have halide ions on the surface of the water cluster networks. All these
structures are similar to the those of F–(H2O)n (n = 1–4) clusters in Fig. 3.4. The
only difference is that the F–(H2O)2 cluster is a 2(C2) isomer, while the rest of the
minimum energy n = 2 halide-water clusters are 2(C1) isomers (Table 3.1). The
further details of these structures are available in ref. [81].
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Table 3.1 Computed vertical transition energies [ΔEVT (S1), eV], experimental ΔECTTS(eV),
enthalpy of binding (ΔH, kcal/mol), dipole moment (μ, Debye) and charge transfer from S0 to S1
(Δq, a. u.) for the clusters X−(H2O)n (X = F, Cl, Br, I; n = 1 − 4)

Ion n Cluster ΔEVT (S1) ΔECTTS −ΔH μ(H2O) Δq

F– 1 1(Cs) 4.61 (4.69) – 26.3 2.35 0.518
2 2(C2) 5.34 (5.34) – 44.8 0.14 0.048
3 3(C3) 5.77 (6.07) – 60.1 1.35 0.002
4 4(C4) 6.02 (6.02) – 39.1 1.24 0.001

Cl– 1 1(Cs) 4.28 (4.28) – 13.9 2.33 0.857
2 2(C1) 4.52 (4.52) – 24.7 3.85 0.828
3 3(C3) 5.21 (5.21) – 36.2 3.33 0.715
4 4(C4) 5.45 (5.50) – 46.8 3.91 0.654

Br– 1 1(Cs) 4.00 (4.04) – 12.2 2.32 0.496
2 2(C1) 4.19 (4.19) – 23.5 3.93 0.561
3 3(C3) 4.78 (4.78) – 35.3 3.98 0.493
4 4(C4) 5.01 (5.01) – 46.3 4.19 0.495

I– 1 1(Cs) 3.74 (3.78) 3.60 10.1 2.32 0.395
2 2(C1) 4.08 (3.82) 3.95 20.0 4.13 0.487
3 3(C3) 4.29 (4.29) 4.25 30.9 3.98 0.439
4 4(C4) 4.44 (4.44) 4.50 41.6 4.84 0.466

All the values are reproduced from refs. [80, 81], with the permission of AIP Publishing

The CTTS bands of I–(H2O)n (n = 1–4) show blue-shift with respect to the
stepwise increment of n (Table 3.1) in both experiment and theoretical calculations.
The computed CTTS bands of other halide-water clusters also show similar trends,
indicating the role of water . . . halide interactions in such spectra. It has been argued
that CTTS bands of iodide-water cluster correspond to the excitation of electron
from an orbital localized in I– to a delocalized state with support from the water
network. Generally, a neutral molecule with around 2.5 D dipole moment can bind
an electron in a dipole-state through exchange repulsion between excess electron
and electrons in molecules [82, 83]. Considering the dipole moments of water
molecules induced by halide (Table 3.1), it can be safely assumed that the initial
upper state of I–(H2O)n (n = 1–4) cluster could be a short-lived I(3P2).[(H2O)n]–

(n = 1–4) state in pump-pulse experiment. Here electron is transferred from iodide
to the dipole-bound state of the water network. This argument could also be
generally applied to the CTTS spectra other halide-water clusters. The formation of
X.[(H2O)n]– actually might take place through several steps involving dissociation
of X–(H2O)n to X– and (H2O)n, followed by recapture of electron from X– to
the water network. A thermodynamic cycle was proposed [23] in this respect
and was found to work well to interpret CTTS spectral positions [80]. This is a
way to interpret the CTTS bands (vertical S1-state energy) through its dissociation
into several thermodynamic components, indicating the importance of non-covalent
interactions of halide-water clusters in such phenomena.



96 P. N. Samanta et al.

3.3.5 Effect of Low-Frequency Vibrations of HBs in Fatty Acid
Dimers and Their Amides

HB is associated with interesting vibrational properties in molecular systems.
They are related to the relative stabilities of various hydrogen bonded isomers
generated through intermolecular interactions between the monomers of the same
species. Generally, high-frequency vibrations of the O-H/N-H bond, associated
with HB formation, are considered to influence the HB-strengths. Specific low-
frequency vibrations of several molecular systems, forming polymeric hydrogen
bonded systems through OH/NH bonds, were also found to correlate with the
HB-strengths/binding energies (�EB) of such systems through coupling with the
with the associated high-frequency modes. These correlations could be verified in
systems where several hydrogen bonded isomers could be identified. Small organic
fatty acids like, formic acid, acetic acid and their amides form hydrogen bonded
dimers. Involvement of low-frequency mode/s in the stabilities of such dimers were
identified through experiments and QC calculations [22, 84–86]. These correlations
further facilitated the development of a local fragment energy-based (related to the
HB) additive property to predict binding energies of such dimers. The concept is
extendable to other homologs of these acids, e.g., propionic, and n-butyric acids
[86].

Formic acid monomer predominantly exists in trans-form [87–89], although the
less common rotamer cis-form has also been characterized [89]. This conforma-
tional behavior of formic acid has opened up the possibilities of this molecule to
form several dimeric forms through hydrogen bonding. These include trans-trans,
trans-cis, and cis-cis combination of monomers, and experiments based on the
vibrational excitations of ground state trans-formic acid has detected most of these
isomers [90–92]. Acetic acid, like formic acid, exhibits rotational isomerism through
C-OH bond. Trans-form is the predominant rotamer, while the less probable cis-
variety also exists in the gas-phase [93, 94]. The cis-form is ~5.3 kcal/mol above the
trans-form with trans to cis conversion barrier of 13.2 kcal/mol. Thus, this cis-form
is unlikely to take part in dimer formation. Six dimers in trans-trans combination
could be constructed, three of them were found to exist through experiments [84,
95].

QC calculations are available on the various trans-trans and trans-cis isomers
of formic acid dimer and the global minimum was ascertained to be trans-trans
(TT-1, Fig. 3.10) [85]. This structure is similar to the other theoretical results [96]
and experiment [22, 90]. As it could be seen from Fig. 3.10, most of the isomers
have dihydrogen bond with a few exceptions (TC-3 and TC-4). High level QC
calculations are usually needed for accurate estimation of the �EB of such hydrogen
bonded dimers. A �EB value of 13.4 kcal/mol (MP2/aug-cc-pVTZ) [85] was found
to be comparable with the experiment (14.2 ± 0.2 kcal/mol) [97]. The theoretical
result was estimated using anharmonicity corrections and CCSD(T) (aug-cc-pVTZ)
calculations in this respect also generated satisfactory answer (13.23 kcal/mol).
The trans-trans dimer of acetic acid (AA-1, Fig. 3.11), out of the six probable
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Fig. 3.10 Optimized structures of formic acid dimers (at the CCSD level) with the computed
hydrogen-bond distances (Å). These dimers are formed through trans–trans (TT-1 to TT-6) and
trans–cis (TC-1 to TC-5) combinations of the monomers (reprinted with permission from ref. [85]
Copyright (2013) American Chemical Society)

isomers, is of lowest energy [86]. This isomer was also found to be the most
stable isomer through experiment [84, 98]. All these probable acetic acid dimers
have dihydrogen bonds, i.e., they form a closed ring system. The computed �EB

at different theoretical levels using aug-cc-pVTZ basis sets generate similar results
(DFT/B3LYP: –14.7 kcal/mol, MP2: –14.4 kcal/mol, CCSD(T): –14.8 kcal/mol).
The observed dissociation energy in this context is a combined theoretical and
experimental data (16.2 kcal/mol) [98]. It has been argued that if experimental
thermal contribution (~0.7 kcal/mol) is considered, the computed values would be
compatible with experiment.

The amides of these fatty acids do not possess the rotamerism properties
of the corresponding acids. The situation limits the formation of the hydrogen-
bonded dimers to five [85, 86]. In the case of formamide, two of the constructed
structures have been characterized through IR spectra (FMAD-A and FMAD-C,
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Fig. 3.11 Optimized
structures of acetic acid
dimers (at the
MP2/aug-cc-pVDZ level)
with the computed
hydrogen-bond distances (Å).
These dimers are formed
through trans–trans (AA-1 to
AA-6) combinations of the
monomers (reproduced from
ref. [86] with permission
from the PCCP Owner
Societies)

Fig. 3.12) [99], the rest of them are predicted structures. These isomers, like formic
acid dimers, are mostly formed through dihydrogen bond (except FMAD-D). The
FMAD-A is the minimum energy isomer and the computed �EB (MP2/aug-cc-
pVTZ: –12.86 kcal/mol, CCSD(T)/aug-cc-pVTZ: –12.92 kcal/mol) is close to that
of AA-1 (Fig. 3.11). The weaker NH . . . O HB-strength (with respect to O-H . . . O)
is reflected in these �EB values. The experimental binding energy of formamide
dimer is not known. The presence and abundance of FMAD-A isomer was predicted
from strong red-shift of the ns(NH2) (~387 cm–1) and nas(NH2) (~171 cm–1) modes
with respect to the monomer frequencies [99]. Acetamide dimer also does not have
experimental �EB values. Five possible isomers (Fig. 3.13) were assigned as the
probable acetamide dimers, and AMD-1 was found to be the most abundant isomer
from the strong red-shift data of ns(NH2) (~299 cm–1) and nas(NH2) (~37 cm–1)
modes with respect to the corresponding monomer frequencies [100]. The computed
red-shift data of the AMD-1 (ns(NH2): ~299 cm–1) and nas(NH2) : ~37 cm–1)
compares [86] well with the experiment, and this isomer was found to be the global
minimum also. The �EB values (MP2/aug-cc-pVTZ: –12.5 kcal/mol, CCSD(T): –
14.3 kcal/mol) are close to the formamide dimer. The structural details related to
the other isomers of formic acid, acetic acid, formamide and acetamide dimers are



3 First-Principles Modeling of Non-covalent Interactions in Molecular. . . 99

Fig. 3.12 Optimized structures of formamide dimers (at the CCSD level) with the computed
hydrogen-bond distances (Å). These dimers are formed through different orientations of the
monomers (FMAD-A to FMAD-E) (reprinted with permission from ref. [85] Copyright (2013)
American Chemical Society)

available in refs. [85, 86]. We will discuss only the effect of vibrational frequencies
on the relative stabilities of these dimers through the �EB values.

The primary characteristics of formic acid, acetic acid and their amide dimers is
that they form dihydrogen bonded ring structures in their lowest energy geometry
and except a few cases all the isomeric forms of these dimers maintain this HB
geometry. These specific non-covalent interaction patterns among these isomers
generate unique vibrational characteristics related to their relative stabilities and
provide information about the local properties of the hydrogen bonded groups. The
computed stretching vibrational data of –OH (n(OH)) group of the acid dimers
(TT-1 and AA-1) and –NH2 (ns(NH2)) group of their amide dimers (FMAD-A
and AMD-1) are presented in Table 3.2. These data show that these frequencies
are red shifted with respect to the acid (trans-formic and acetic acids) and amide
(formamide and acetamide) monomers. The intensities (I) of such modes are
substantially enhanced in these respects (Table 3.2), and the computed values
are compatible with respect to the experimental vibrational data [85, 86]. The
vibrational data for the rest of the isomers of these dimers (not discussed here) are
available in refs. [85, 86], and they have the same characteristics of the minimum
energy isomers in Table 3.2. These modes are usually called marker bands for
such dimers as their intensities decrease regularly with respect to their binding
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Fig. 3.13 Optimized
structures of acetamide
dimers (at the
MP2/aug-cc-pVDZ level)
with the computed
hydrogen-bond distances (Å).
These dimers are formed
through different orientations
of the monomers (AMD-1 to
AMD-4) (reproduced from
ref. [86] with permission
from the PCCP Owner
Societies)

characteristics (�EB) and main linear correlations (Eqs. 3.33–3.36).

Formic acid dimers : I = −164.0ΔEB − 359.0 R = 0.97 (3.33)

Acetic acid dimers : I = −248.0ΔEB − 729.0 R = 0.98 (3.34)

Formamide dimers : I = −107.0ΔEB − 333.0 R = 0.96 (3.35)

Acetamide dimers : I = −233.0ΔEB − 1150.0 R = 1.00 (3.36)

These correlations are at the MP2 level. It could be seen from the regression
coefficients (R) that these correlations are quite convincing to predict linear
correlations.

Experimentally six low-frequency vibrational modes were observed for formic
acid lowest energy dimer TT-1 [22]. The modes with u-symmetry (two Au and
one Bg) are IR-active and three g-symmetry modes (two Ag and one Bg) are
Raman active. These low-frequency modes were determined theoretically for TT-1
isomer through anharmonicity corrections, since these vibrations were experimen-
tally assigned as the lowest fundamentals of the overtone band. For example, n1
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Table 3.2 –OH and NH2 stretching modes (ν(OH) and νS(NH2) cm–1) of the lowest energy
isomers of TT-1, FMAD-A, AA-1, and AMD-1. The table also includes intensities (I, KM/MOL),
red-shift (�ν, cm–1) and change of intensity (�I) of each mode with respect to monomers of
formic acid, acetic acid, formamide and acetamide

Isomer Stretching mode ν I �ν �I

TT-1 ν(OH) 3119 1998 –473 1923
FMAD-A νS(NH2) 3276 1078 –251 1019
AA-1 ν(OH) 2950 3437 –593 2880
AMD-1 νS(NH2) 3104 1789 –335 1743

All the values are reproduced with permission from ref. [85] Copyright (2013) American Chemical
Society and ref. [86] with permission from the PCCP Owner Societies

Table 3.3 Low frequency
vibrations of TT-1 and
FMAD-A (ν1 − ν6), AA-1
and AMD-1 (ν1 − ν8)
dimers. The intensities (I,
KM/MOL) of the vibrational
modes responsible for
hydrogen bonding are also
included. The results are
presented at the
MP2/6-311++G** level and
the values within parentheses
are experimental data

TT-1 FMAD-A AA-1 AMD-1

ν1 65 (Au)(69) 64 (Au) 45 (Au)(–) –
ν2 162 (Au)(169) 144 (Au) 65 (Au)(56) –
ν3 237 (Bu)(248) 195 (Bu) 66 (Au)(~50) 24 (Au)
ν4 182 (Ag)(174) 134 (Ag) 173 (Bu)(170) 78 (Au)
ν5 150 (Ag)(194) 154 (Ag) 60 (Bg)(73) 145 (Bu)
ν6 234 (Bg)(242) 194 (Bg) 114 (Bg)(99) 84 (Bg)
ν7 – – 150 (Ag)(152) 125 (Ag)
ν8 – – 169 (Ag)(163) 144 (Ag)
I 57 (ν3) 84 (ν3) 30 (ν4) 45 (ν5)

All the values are reproduced with permission from ref. [85]
Copyright (2013) American Chemical Society and ref. [86] with
permission from the PCCP Owner Societies

band was determined as the lowest fundamental (n1, Au) of the experimentally
assigned overtone band ([2n1], Ag). Table 3.3 contains all these six low-frequency
fundamentals along with their theoretically determined values (MP2 level). The
computed values for the rest of the isomers are available in ref. [85]. It is only
important to note here that the intensities of the in-plane-bending mode (n3), related
to the low-frequency OH-bending of various formic acid dimers, show regular
change with respect to their �EB through the following linear correlation (Eq. 3.37).

I = −4.62ΔEB − 8.49 R = 0.96 (3.37)

Formamide dimer (FMAD-A) also have six low-frequency modes and only the
intensities of the stretch-bend mode (n3, Bu) (related to the ns(NH2) mode) (Table
3.3) together with the intensities of the similar modes of the other isomers [85] show
linear correlation with their �EB,

I = −9.54ΔEB − 34.8 R = 0.99 (3.38)

These correlations were validated using other high-level QC techniques including
DFT/B3LYP, G4MP2, CBS-QB3, and G2MP2 methods [85].
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Acetic acid dimers have eight such low-frequency vibrational modes [84, 86],
and these modes with their symmetries are shown in Table 3.3 for the lowest energy
AA-1 isomer. These bands are either IR-active (u-symmetry) or Raman-active (g-
symmetry). The acetamide dimer do not have any experimental data and six such
modes (instead of eight) could be computationally assigned through theoretical
computations (Table 3.3). They are also IR and Raman active and shown in Table
3.3 for the lowest energy AMD-1 isomer. The data for the other isomers of acetic
acid and formic acid dimers are available in ref. [86]. Analysis of such data revealed
that the in-plane-bending or stretch-bend (in plane) modes of AA-1 (Raman active
n7(Ag) and n8(Ag) and the IR-active n4(Bu)) modes showed importance in hydrogen
bonding. The n7 and n8 bands have very low intensities, while the n4 band have quite
large intensity (Table 3.3). The n4 band also showed regular change of intensities
for various acetic acid dimers and maintain a linear correlation with corresponding
ΔEB values (Eq. 3.39, MP2 results).

I = −2.52ΔEB − 6.41 R = 0.99 (3.39)

Similar analysis for the acetamide dimers generated the following correlation
(Eq. 3.40, MP2) using intensities of the IR-active n5 band.

I = −5.79ΔEB − 22.5 R = 0.91 (3.40)

These correlations, like formic acid and formamide dimers, were validated using
similar high-level QC techniques [86].

3.3.6 Empirical Additive Relations of ΔEB for Fatty Acid
and Amide Dimers

The important aspect of the individual linear correlations between the �EB of the
fatty acid (and amides) dimers and intensities (I) of the high frequency n(OH)-
modes, as discussed above, could be extended for their combined cases. For
example, the I-values of both trans-trans formic acid (TT-1–TT-5, Fig. 3.10) and
acetic acid (AA-1–AA-6, Fig. 3.11) dimers, when combinedly plotted against
their respective �EB values, a linear correlation is again prevailed (R= 0.97,
MP2 results). Similar linear correlation was also observed for the formamide and
acetamide dimers (R = 0.96; for the I [ns(NH2)] and �EB plot: MP2 results).
The low-frequency hydrogen bonding mode also showed similar features [85,
86]. These linear dependencies led to an empirical additivity relation of �EB

among these dimers due to transferable local character of the individual hydrogen
bonding fragments. Such relations were established through analysis of the local
hydrogen-bonding/binding energies of the fragments (EX . . .Y) (X and Y are the
atoms or groups involved in hydrogen bonding). It is assumed that the �EB values



3 First-Principles Modeling of Non-covalent Interactions in Molecular. . . 103

are originating solely due to the contribution of EX . . . Y terms and they are also
transferable. In the case of formic acid and acetic acid dimers these fragments
are OH . . . O, CH . . . O, OH . . . O(H), and CH . . . O(H), while for formamide and
acetamide dimers these fragments are NH . . . O and CH . . . O (see Figs. 3.10,
3.11, 3.12, and 3.13 for the definition of these fragments). The hydrogen within
parentheses belong to the O-H group not involved in hydrogen bonding. The
EX . . .Y values of the fragments could be evaluated by inspecting the nature of HB
interactions and �EB values of an individual dimer and setting a simple additive
relation from these data. The procedure could be explained using the following
examples of the different dimers.

In the case of formic acid dimers, the hydrogen bonds in TT-1 and TT-5 isomers
are solely due to OH . . . O and CH . . . O fragment interactions (Fig. 3.10). Thus
EOH . . .O and ECH . . .O fragment energies in these cases are simply half of their �EB

values. The evaluations of the EOH . . .O(H) and ECH . . . O(H) fragment energies could
be computed directly from the following relations for TT-4 and TT-6 isomers (Eqs.
3.41 and 3.42)

ECH...O + EOH...O(H) = ΔEB (T T − 4) (3.41)

ECH...O + ECH...O(H) = ΔEB (T T − 6) (3.42)

Once the fragment energies are known, the �EB values of the other dimers could
be easily evaluated using these key EX . . .Y values. In the case of trans-cis dimers,
the trans- to cis-formic acid conversion energy (ETC) would be needed to evaluate
the binding energies. The following Eq. (3.43) could be used as an example for the
use of ETC data to compute �EB of TC-1 isomer (Fig. 3.10).

ECH...O + EO...HO + ET C = ΔEB (T C − 1) (3.43)

The predicted �EB values (MP2 level) of the isomers TT-2 (–8.28 kcal/mol),
TC-1 (–4.20 kcal/mol), TC-3 (–2.60 kcal/mol = TC-4), and TC-5 (–1.66 kcal/mol)
were within 0.5 kcal/mol of the computed results at the MP2/aug-cc-pVTZ level.
The computed ETC value of 4.08 kcal/mol (MP2 level) was used in such calculations
for the trans-cis isomers [85].

The acetic acid dimers (Fig. 3.10), like formic acid dimers, have OH . . . O (AA-
1), CH . . . O (AA-5), and OH . . . O(H) (AA-4) fragments involved in hydrogen
bonding. The evaluations of the related fragment energies, like formic acid dimers,
are quite straight forward. These values are not the same with respect to the formic
acid dimers due to the difference of �EB values. The AA-3 dimer in this respect
presents a special hydrogen bonding situation. Here, O-H center on fragment is
bound to O (O-H . . . O) and O-H (HO . . . HO) centers of the second fragment (Fig.
3.11). This HO . . . HO fragment is not like OH...O(H) fragment of AA-4 and is
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marked as OH . . . O1. The �EB of AA-3 isomer is used to evaluate the OH . . . O1
fragment energy using the value of EOH . . .O(H) in the following relation (3.44).

EOH...O1 + EOH...O(H) = ΔEB (AA − 3) (3.44)

These known values of fragments energies predict the �EB AA-2 and AA-
6 isomers within 1.0 kcal/mol of the computed values using MP2/aug-cc-pVTZ
technique [86]. These additive relations were used in cases of formamide and
acetamide dimers also. They needed knowledge of the fragment energies of
NH . . . O and CH . . . O fragment energies from the structural patterns of formamide
(FMAD-A and FMAD-E) and acetamide (AMD-1, and AMD-4) dimers. These
fragment energy values differ slightly because of the differences of structures, and
�EB values of these two different amides. The predicted values for the other isomers
using these fragment values were quite satisfactory [85, 86].

The results discussed so far are not restricted to the dimers of specific fatty acids
and their amides. The idea was found to be useful to other homologs also, provided
they have similar hydrogen bonding features. The propionic acid and n-butyric acid
dimers have similar dihydrogen bonded structures of AA-1. They differed only
in the size of the alkyl group (-C2H5 for propionic acid and –C3H7 for n-butyric
acid). Considering the difference of binding energies of TT-1 (–13.4 kcal/mol) and
AA-1 (–14.4 kcal/mol) isomers at the MP2/aug-cc-pVTZ level [85], the fragment
energy of two –CH3

(
ECH3

)
is estimated to be 1.0 kcal/mol (since rest parts of the

two dimers are similar). Assuming the fragment energies –C2H5 and –C3H7 to be
equivalent to two and three –CH3 groups, the �EB of propionic acid and n-butyric
acid dimers could be predicted to be –15.4 and –16.4 kcal/mol [86]. These results
are very impressive against the respective experimental values of 15.2 ± 0.2 and
17.2 ± 0.8 kcal/mol. Thus, the additive nature of binding energies, as discussed here,
seems quite natural for such dimers. It shows some predictive nature on binding
energies in a homologous series as well.

3.4 Molecular Modeling of Strong and Weak Cation-π
Interactions

The cation-π interactions, which were fundamentally coined by Kier and coworkers
[13, 14] as a non-covalent interaction mediated by ion-induced dipole foreseeable
via the molecular modeling of acetylcholinesterase inhibition reactions and subse-
quently rationalized by Dougherty and coworkers [15, 16] in diverse chemical and
biological systems, have appeared as a very prevalent restraining force to explicate
the crucial factor responsible for non-covalent binding in small gas-phase ion–
molecule complexes as well as macromolecular protein-ligand systems. There are
mainly two types of cation-π interactions that falls into the category of weak and
strong interactions for the sake of essence of electrostatics in molecular fragments.
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The quantitative estimation of such cation-π interactions in biological systems is
the paramount concern to comprehend the underlying factors for the molecular
recognition processes. To interpret the molecular recognition pattern contributed by
the cation-π interactions stemming from the side chain of phenylalanine, tyrosine,
and tryptophan with arginine and lysine in 1718 typical protein structures, Minoux
and Chipot [17] performed quantum mechanical calculations by accounting the
interactions of ammonium and guanidinium ions with the toluene, p-cresol, and
methyl-indole as prime models of large molecular assemblies. The inclusion of
polarization effects in predicting cation-π interactions seems to be indispensable,
as evident by the computed binding energies with the basis-set superposition
error (BSSE)-corrected MP2/6-311++G(d,p)//MP2/6-31G(d,p) level of approxi-
mation. Furthermore, the commercial force field such as Amber is demonstrated
to be a reliable and efficient approach for evaluating the cation-π interactions in
macromolecular assemblies of biological concern. The trends in calculated binding
energies for the non-covalent interactions of toluene, p-cresol, and methyl-indole
with the ammonium and guanidinium ions using the Amber force field compare
well with the MP2 results even though the molecular mechanics method based on
Amber force field predicts shorter interaction distances between the cations and the
centroid of the aromatic ring with respect to the quantum mechanical calculations.

The cation-π interactions also play a critical role in stabilizing the coordination
complexes of alkali-metal cations together with the aromatic systems. Nicholas et
al. [101] have estimated the strength of cation-π interaction between the alkali-
metal cations (Li+ to Cs+) and the benzene ring by accounting the consequences
of incomplete basis sets within the framework of restricted Hartree-Fock (RHF)
and second-order Møller-Plesset perturbation theory (MP2) levels. The predicted
binding energies for the three heavier cations at the SVWN/TZ94p level are found
to be 15–20% higher compared to the MP2 results, while the computed binding
energies using BP96/TZ94p level are shown to be ~20% reduced when compared
with the MP2 data. For such cation-π interactions, the binding enthalpies are usually
underestimated compared to the experimental measurement, albeit the calculated
binding enthalpies using BP96/TZ94p level are in accordance with the MP2 results.
In another study by Sunner et al. [102], the ion-quadrupole and ion-induced dipole
attractions due to the interaction between the potassium ion and benzene were
evaluated by performing ab initio calculations (at the STO-3G level) as well as
the classical electrostatic calculations, and the consideration of quadrupole moment
of the aromatic ring is suggested to be the pivotal parameter to describe the
electrostatics of cation-π interaction. In practice, the total electrostatic interaction
could be judged as the sum of charge–charge, charge-dipole, charge–quadrupole,
charge–octupole, and higher order terms. Kim et al. [103] have estimated charge-
dipole, charge–quadrupole and charge-polarizability interactions using MP2 level
in conjunction with 6-311+G(d,p) basis sets, to comprehend the nature of cation-π
interactions for the binding of ammonium and tetramethylammonium cations with
benzene and water. The obtained results clearly demonstrate that the interaction
between tetramethylammonium cation and benzene ring is crucially contributed
by the charge-quadrupole and charge-polarizability interactions. However, the
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contribution of other electrostatic terms has not been properly accounted in such
cation-π interactions involving charged amino group or metal ions and aromatic
systems.

The pertinency of computing various multipolar electrostatic energy terms in
describing both the strong and weak cation-π interactions has been critically
analyzed by Kadlubanski et al. [104]. The nature of cation-π interactions is
assessed via the comprehensive survey of two-body interaction energy decom-
position components of several gas-phase and dihydrated cation-π complexes
comprising benzene, p-methylphenol, and 3-methylindole as the π-donor systems
and Mg2+, Ca2+, and NH4

+ cations as the acceptor units by implementing a hybrid
variational–perturbational interaction energy decomposition scheme. The first-order
electrostatic and higher order delocalization energy components of the interaction
energy are indicated to be the critical parameters in elucidating the strong and weak
binding of cation-π complexes. To ascertain the reliability of the computational
approach for evaluating the energetics of cation-π interactions, the computed
interacting distances between the donor and acceptor units, binding energies, and
thermochemical properties such as enthalpy and Gibbs free energy of binding for
each complex using local DFT method at the B3LYP level after the counterpoise
(CP) and zero-point energy (ZPE) corrections are further compared with those
obtained from the G4MP2 and CCSD(T) level of theory in combination with
the aug-cc-pVDZ basis sets. The calculated binding energies and thermochemical
properties for the gas-phase cation-π complexes using DFT/B3LYP level are in the
immediate vicinity of the G4MP2 results. However, in case of dihydrated cation-
π complexes, the predicted binding energies using G4MP2 method are usually
lowered by 3–7 kcal/mol compared to those obtained by the DFT/B3LYP level,
which is in accordance with the calculated shorter interaction distance using G4MP2
method. The binding energies are further improved by the CCSD(T) level of
approximation especially for the binding of dihydrated Ca2+ ion with benzene
and 3-methylindole. The Mulliken population analysis manifests that a significant
amount of electronic charge is transferred from the aromatic systems to the Mg2+
and Ca2+ ions. Furthermore, a linear correlation between the calculated binding
energy and the charge transport is obtained, thereby, indicating identical provenance
of electrostatics of the cation-π interactions and demanding meticulous assessment
of diverse electrostatic interaction components to untangle the dominating factors
for the strong and weak cation-π interactions. Within the framework of Onsager
reaction field model, the total energy of such a cation-π complex in the presence
of a homogeneous electric field (V) induced by the acceptor atoms of the complex
could be expressed as,

E = E0 − μ0
i Vi − 1

2αijViVj − 1
3!βijkViVjVk − 1

4!γijklViVjVkVl . . .
1

3
Ai,jkVi∇Vjk · · · − 1

6
Bij,klViVj∇Vkl · · · − 1

15
Ci,jklVi∇2Vjkl

(3.45)

where E0 refers to the energy of the molecular system in the absence of external
perturbation; μ0 and α are the dipole moment and polarizability, and β and γ
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represent the higher-order polarizabilities, respectively. Ai, jk defines the dipole–
dipole-quadrupole hyperpolarizability. The dipole–quadrupole and dipole–octupole
polarizabilities are denoted by Bij, kl and Ci, jkl, respectively.

The essence of total electrostatic interaction energies (T-El) and the multipolar
components of electrostatic terms including charge–charge (C–C), dipole-charge
(D–C), quadrupole-charge (Q–C), and octupole–charge (O–C) as a function of
interacting distance (r) in the cation-π complexes of Mg2+, Ca2+, and NH4

+ are
delineated in Figs. 3.14 and 3.15. The T-El curves corresponding to the cation-
π complexes of Mg2+ exhibit a minimum, while those curves are dispersive in
nature for the binding of Ca2+ ion with benzene and 3-methylindole (Fig. 3.14).

Fig. 3.14 Plots of total electrostatic interaction energies (T-El) and its other multipolar com-
ponents as a function of r for the complexes of Mg2+ and Ca2+ ions with benzene (Bz),
p-methylphenol (PMP), and 3-methylindole (3MI). Panels a and b represent the curves for the
Mg2+ complexes, while panels c and d are for the Ca2+ ion complexes. In the figures, C–C,
D–C, Q–C, and O–C represent the multipolar electrostatic interaction energy components (C–C,
charge–charge; D–C, dipole–charge; Q–C, quadrupole–charge; O–C, octopole–charge) (reprinted
with permission from ref. [104] Copyright (2013) American Chemical Society)
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Fig. 3.15 Plots of total electrostatic interaction energies (T-El) and their multipolar components
as a function of r for the complexes of NH4

+ ion with benzene (Bz) (a), p-methylphenol (PMP)
(b), and 3-methylindole (3MI) (c) (reprinted with permission from ref. [104] Copyright (2013)
American Chemical Society)

The stabilities of strong and weak cation-π complexes of these ions are substantially
guided by the repulsive or attractive contributions of the Q–C and O–C components,
as manifested by the calculated curves of multipolar components of the Mg2+- and
Ca2+-complexes shown in Fig. 3.14. The distinct nature of cation-π interactions for
the NH4

+-complexes is certainly evident by the T-El curves as well as anisotropic
potential expansion of the multipolar components around the equilibrium distance
r as displayed in Fig. 3.15. The contribution of multipolar components of the
interaction energy is further demonstrated to be intrinsically linked to the cation-π
vibrational modes specifically the intramolecular stretching frequency (Sz) assigned
to the back-and-forth motion of the cation coupled with out-of-plane twisting
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mode of the aromatic moiety, and the out-of-plane C-H bending mode of the
π-system (νopCHb). The augmentation of IR intensity of a particular mode in a
cation-π complex could be further estimated from the alteration in dipole derivative
expressed as

∂

(
∂μ

∂Q

)
=

(
∂μ

∂Q

)

complex

−
(

∂μ

∂Q

)

isolated

(3.46)

where Q corresponds to the normal coordinates of the cation–π mode; and the dipole
derivative for a given vibrational mode of the molecular system could be computed
by neglecting higher order induced moment terms as follows,

(
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∂Q

)
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∂βijk
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)
+

(
αij

∂Vi

∂Q
+ βijk

∂Vi

∂Q
Vk + . . .

)

(3.47)

The predicted intramolecular stretching mode of the respective cation-π complex
corroborates well with the binding strength of the studied systems (Fig. 3.16a).
The increase in IR intensities of these vibrational modes is found to correlate
well with the multipolar electrostatic comportment of cation-π interactions as
anticipated from the computed higher order quadrupolar and octupolar terms (Fig.
3.16c, d), albeit the linear correlation between the calculated blue shift of the
C-H bending mode with respect to the isolated π-system (�νopCHb) and the
binding energy (�EB) shows strong dependence on the nature of π-system (Fig.
3.16b).

3.5 Molecular Modeling of π-π Interactions

The estimation of non-covalent interaction between π-systems constitute a basis for
understanding binding mechanism of protein-ligand systems [105, 106]. The arene-
arene interactions resulting from the edge-to-face or the parallel-displaced stacking
orientations are found to play a leading role in stabilizing organic heterostructures
and bio-macromolecules [107–109]. The high-level quantum mechanical calcula-
tions [110–115] anticipate that these arene-arene interactions are primarily assisted
by the dispersion forces, although an earlier investigation led by Hunter and Sanders
demonstrated that the essential contributions to the π-π interactions emanate
from the electrostatic interactions [116]. A detailed theoretical investigation of the
interactions between benzene and monosubstituted benzenes in parallel face-to-face
stacking configuration revealed that the computed binding energies using hybrid
DFT method correlate well with the Hammett σm values for the substituents. The
parity of stacking interaction energies with the σm parameters could be further
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Fig. 3.16 (a, b) Correlation of �EB with the intermolecular stretching (Sz, panel a) and blue-
shifted out-of-plane CH bending mode of aromatic moiety (�νopCHb, panel b) modes of various
cation–π complexes. (b) Red, blue, and green lines respectively, represent the complexes of the
cations with benzene, p-methylphenol, and 3-methylindole. (c, d) Correlation of �EB with IRI for
the respective Sz (panel c) and the intensity enhancement for the respective �νopCHb (panel d)
modes of the various cation–π complexes. The red line in panel c represents the correlation with
all the complexes, while the blue line represents correlation excluding the hydrated metal ions. The
red, blue, and green lines in panel d represent correlations for the similar cases in panel b (reprinted
with permission from ref. [104] Copyright (2013) American Chemical Society)

explicated from the direct electrostatic and dispersive interactions of the benzene
and substituted benzene systems as evident by the symmetry-adapted perturbation
theory (SAPT) results. Recently, the influences of electrostatic and dispersive
interactions in establishing the correlation between binding energies and Hammett
σ-parameters for the offset face-to-face (OSFF) stacking interactions of diverse
nitrobenzene derivatives with the model graphene systems have been assessed by
Khan et al. [117]. An extensive comparative study of the arene-arene interactions
is conducted for the interactions of substituted nitrobenzene dimers, X–C6H4–NO2
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(X= H, CH3, OCH3, OC2H5, Cl, Br, I, OH, CN, and NH2 substituents at m- and
p-positions) as well as di- and tri-substituted nitrobenzene derivatives [3-NO2-4-
OH, 3,5-di-NO2-4-OH, and 3,5-di-NO2-4-CH3] with the model 5,5-graphene (GR)
and its B- and N-doped scaffolds (3BGR and 3NGR) within the framework of
DFT using M06 exchange-correlation functional and accounting the impact of large
basis sets namely cc-pVDZ, cc-pVTZ and sp-aug-cc-pVTZ. The calculated BSSE-
and ZPE-corrected binding energies (ΔEB) and related thermodynamic parameters
(ΔH 0

B and ΔG0
B) using DFT methods are further compared with those obtained

from the MP2 level. Albeit the estimated binding energies at higher basis sets and
the perturbative MP2 technique are found to be somewhat lower compared to the
results derived from the M06/cc-pVDZ level, the predicted trends in ΔEB values at
diverse levels closely resemble to each other. The computed values of ΔEB for the
interaction of m- and p-substituted nitroaromatics with GR/BGR/NGR are revealed
to be remarkably higher than that of benzene as well as pristine nitrobenzene.
The changes in ΔH 0

B and ΔG0
B are shown to be enhanced with the rise in the

number of substituents in the nitroaromatic ring. It is noteworthy to mention that the
predicted values of ΔG0

B for the adsorption of nitrobenzene, m-nitrobenzene, and
p-nitrotoluene on the graphene surface compare well with the experimental results
obtained from the Freundlich and Langmuir isotherms. The small disagreement
in magnitude with respect to the experimental adsorption free energies is mainly
attributable to the overestimated CP correction via double-ζ basis set. The robust
interaction of these extended π-systems stems from the electrostatic and dispersion
interactions, as manifested by the molecular electrostatic potential (MEP) maps.
The correlation between computed binding energy and Hammett parameter (

∑|σm|
or

∑|σ p|) is further illustrated in Fig. 3.17a, b. The values of calculated ΔEB

using M06/cc-pVDZ level of theory are in conformity with the
∑|σm| for all the

nitroaromatics involved in π-π interactions with the GR/3BGR/3NGR scaffold, and
the estimated correlation coefficient is found to be > 0.92 for each scaffold. The
correspondence between ΔEB and

∑|σm| is retained to a greater or lesser extent for
using diverse DFT methods and MP2 approach. The linear correlation between ΔEB

and
∑|σ p| parameters is also conserved but to a slightly lesser extent compared to

the
∑|σm| parameters especially for the interaction of nitrobenzene derivatives with

the 3NGR. Similar correlations are maintained for the computed thermodynamic
parameters ΔH 0

B and ΔG0
B with the Hammett constants

∑|σm| and
∑|σ p|, as

portrayed in Fig. 3.18.
Moreover, the dominant contribution of dispersion and electrostatic components

to the ΔEB is justified from the multiple regression analysis by accounting the
molar refractivity (

∑
Mr) or the changes in polarizability (Δα) (with respect to

benzene) in conjunction with the
∑|σm| and

∑|σ p| parameters. The contributions

of electrostatic
(
E

(10)
el

)
, and dispersive interactions (ΔEdisp: obtained from MP2)

together with empirical dispersion stemming from the M06/cc-pVDZ level are
further evaluated to explicate the nature of π-π interaction due to the attachment of
nitroaromatics on the surface of GR, 3BGR and 3NGR, as represented in Fig. 3.19.
The involvement of E

(10)
el and ΔEdisp terms appear to be substantial in stabilizing
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Fig. 3.17 Correlations of �EB with �|σm| (panel a) and �|σp| (panel b) for the interactions
between GR, 3BGR, and 3NGR with various m-, p- and several di- and tri-substituted nitrobenzene
derivatives at the DFT/M06/cc-pVDZ level. Panel a: correlations of GR (blue line and black
dots; r = 0.9), 3BGR (red line; r = 0.91) and 3NGR (green line; r = 0.87) (r: correlation
coefficient) interacting with m-, and other higher substituted nitrobenzene derivatives. Panel b:
correlations of GR (blue line; r = 0.91), BGR (red line; r = 0.91) and NGR (green line;
r = 0.80) interacting with p-, and other higher substituted nitrobenzene derivatives (reprinted
with permission from ref. [117] (https://pubs.acs.org/doi/10.1021/acsomega.7b01912), Copyright
(2018) American Chemical Society; “Further permissions related to the material excerpted should
be directed to the ACS”)

offset face-to-face stacking interactions in such extended π-systems. The E
(10)
el term

is found to increase with the stronger electron-withdrawing and electron-donating
substituents and furnish approximately equal contribution when compared with the
sum of energy components emanating from the ΔEdisp, the delocalization term(
ΔEHF

del

)
, and the repulsive Heitler–London exchange term

(
EHL

x

)
. The energy

decomposition analysis further anticipates that the E
(10)
el contribution crucially

originates from the charge–charge interactions even though the higher-order energy
components associated with the dipole–dipole, dipole–quadruple, and quadruple–
quadruple interactions are found to be important to determine the stabilizing factors
for the π-π interactions. Thus, the obtained results substantiate the necessity of∑

Mr and Δα together with the
∑|σm| or

∑|σ p| parameters in the multiple
regression analysis to evaluate the binding energies in extended π-systems in gas
phase.

https://pubs.acs.org/doi/10.1021/acsomega.7b01912
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Fig. 3.18 Correlations of �HB
0 and �GB

0 with �|σm| (panels a and b) �|σp| (panels c
and d) for the interactions of GR, 3BGR, and 3NGR with various m-, p- and several di-
and tri-substituted nitrobenzene derivatives at the DFT/M06/cc-pVDZ level. Correlations in
panel (a): GR . . . nitrobenzenes (blue): r = 0.93; 3BGR . . . nitrobenzenes (red): r = 0.92;
3NGR . . . nitrobenzenes (green): r = 0.92. Correlations in panel (b): GR . . . nitrobenzenes (blue):
r = 0.93; 3BGR . . . nitrobenzenes (red): r = 0.94; 3NGR . . . nitrobenzenes (green): r = 0.95. Corre-
lations in panel (c): GR . . . nitrobenzenes (blue): r = 0.85; 3BGR . . . nitrobenzenes (red): r = 0.90;
3NGR . . . nitro-benzenes (green): r = 0.86. Correlations in panel (d): GR . . . nitrobenzenes (blue):
r = 0.86; 3BGR . . . nitrobenzenes (red): r = 0.92; 3NGR . . . nitrobenzenes (green): r = 0.95
(reprinted with permission from ref. [117] (https://pubs.acs.org/doi/10.1021/acsomega.7b01912),
Copyright (2018) American Chemical Society; “Further permissions related to the material
excerpted should be directed to the ACS”)

https://pubs.acs.org/doi/10.1021/acsomega.7b01912
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Fig. 3.19 Bar chart graphs
comparing the contributions
of Eel

(10) and �Edisp in GR
(panel a)/3BGR (panel
b)/3NGR (panel c)
interactions with various m-
and several di- and
tri-substituted nitrobenzene
derivatives through energy
decomposition analysis. The
red and blue bars respectively
represent �Edisp (MP2) and
Eel

(10) contributions. The
empirical dispersion
contributions at the
M06/cc-pVDZ level (green
bars) are also included for
comparison (reprinted with
permission from ref. [117]
(https://pubs.acs.org/doi/10.
1021/acsomega.7b01912),
Copyright (2018) American
Chemical Society; “Further
permissions related to the
material excerpted should be
directed to the ACS”)

3.6 Modeling Non-covalent Interactions in Bio-inspired
Supramolecular Systems

Hierarchical molecular self-assembly, also called supramolecular polymerization,
is prevalent in nature, and the molecular recognition pattern of such naturally
occurring biomolecules can be exploited convincingly in vitro to generate functional

https://pubs.acs.org/doi/10.1021/acsomega.7b01912
https://pubs.acs.org/doi/10.1021/acsomega.7b01912
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nanomaterials with distinctive electronic, mechanical, and biological properties
[118–123]. The potential applications of supramolecular assemblies in diverse
fields including nanotechnology, biotechnology, and medicine necessitate a com-
prehensive understanding of the mechanism of molecular assembly [124–128].
Experimental techniques such as electron microscopy (scanning and transmission),
nuclear magnetic resonance (NMR), X-ray diffraction (XRD), and in situ atomic
force microscopy (AFM) fail to provide a detailed overview of the atomic inter-
actions and the molecular driving forces that essentially promote the formation
of macroscopic structures [129]. The design of tailored hierarchical soft materials
using molecular dynamics simulations is also a formidable task, since a broad array
of conformational sampling is necessary for the convergence of thermodynamic and
structural quantities. The supramolecular polymerization is assisted by the delicate
balance of attractive forces between the building blocks including hydrogen bonding
and van der Waals interactions.

By performing atomistic MD simulations for a cylindrical nanofiber comprising
144 peptide amphiphile (PA) molecules (Fig. 3.20a) in water with physiological ion
concentration and employing CHARMM force field, Schatz and co-workers have
shown that the self-assembly of PAs into nanofiber is aided by the electrostatic
interaction between the PAs and the sodium counterions as well as the van
der Waals interaction between the PA units (Fig. 3.20b) [130]. Furthermore, the
formation of β-sheets parallel to the fiber axis through the hydrogen-bonding

Fig. 3.20 (a) Snapshot of self-assembled PAs at 40 ns. The hydrophobic core is represented by a
blue surface: R-helixes are in red, β-sheets are in yellow, turns are in cyan, and coils are in gray.
(b) Intermolecular interaction energies between PAs are shown in the left column, and interaction
energies between sodium ion and PA are shown in the right column. The sum of electrostatic (open
blue circle) and van der Waals energies (open red circle) is shown as a filled purple circle (adapted
with permission from ref. [130] Copyright (2011) American Chemical Society)
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network is predicted to be the critical factor for the ordered structure of cylindrical
nanofiber. In another study [131], the pertinency of plane-wave (PW)-based DFT
computations in determining the driving forces for the experimentally perceived
cooperativity in the hydrogen-bond-mediatedsupramolecular polymerization of C3-
symmetrical trialkylbenzene-1,3,5-tricarboxamides (BTAs) has been assessed by
analyzing the function of electrostatic interactions on the total cooperativity. The
calculated interaction energy for the BTA dimer derived from PW-DFT using PBE
functional is found to be –38.7 kJ/mol, which further enhances to –116 kJ/mol
for the BTA oligomer holding seven monomers, and thereby leading to the total
cooperative effect of 200%. The escalation of binding strength for the higher
oligomers corroborates well with the shortening of hydrogen-bond length. The
key interactions accounted for the cooperativity include long-range dipole-dipole
interactions, short-range polarization, and resonance-assisted hydrogen bonding.
The contribution of long-range dipole-dipole interactions for the self-assembled
supramolecular polymer comprising seven BTA monomers is predicted to be 43%
within a framework of pairwise dipole-dipole model. The remainder 71% of the
interaction energy was assigned to the short-range polarization and resonance-
assisted hydrogen bonding accompanied by electron redistribution along the BTA
chain. The electron-density difference maps further manifest that the polariza-
tion of electron density alters substantially around the amide hydrogen bond
with the augmentation of chain length of BTA oligomer, as delineated in Fig.
3.21.

Later, by performing classical MD simulations, Kang et al. [132] have demon-
strated the impact of both the π-π stacking and the hydrogen bonding network on
the growth of chiral filaments through the self-assembly of a peptide-drug conjugate,
where a β-sheet forming peptide (CGVQIVYKK, or Tau) is conjugated with the
anticancer drug camptothecin (CPT) by dint of disulfide linker (disulfylbutyrate,
buSS). As revealed by the MD simulations, the π-π stacking between the CPT
moieties, that emanates from the planar pentacyclic structure of the drug molecules,
harnesses the initial phases of self-assembly process. The π-π stacking of the
planar drug molecules of the neighboring peptide-drug conjugate is diverse in nature
and exhibits both the displaced parallel and sandwiched configurations. The pre-
assembled system accommodates a higher proportion of van der Waals interactions
(31%) and lower contribution of electrostatic interactions (69%) between the drug
amphiphiles (DAs) in contrast to the random system even though the calculated total
interaction energies per DA are found to be comparable. Moreover, the fraction
of intermolecular hydrogen bonds is found to escalate from 46% in the random
system to 77% in the preassembled system, leading to a substantial cooperative
rearrangement of the hydrogen bonding network prior to the commencement of
nanofilament structure.
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Fig. 3.21 Electron-density differences calculated (a) by subtracting the electron density of the
individual monomers from the electron density of the constituting oligomer (dimer, trimer, and
hexamer) and (b) by subtracting the electron density of two trimers within a hexamer from the
electron density of the constituting hexamer. Values are in electrons/Å3. Red regions denote
accumulation of electron density, and blue regions correspond to depletion of electron density upon
formation of the hydrogen-bond complex (reprinted with permission from ref. [131] Copyright
(2010) American Chemical Society)
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3.7 Conclusions

The non-covalent interactions play a significant role in diverse chemical and
biological systems as well as the rational design of functional nanomaterials and
drug discovery. The structure and conformational dynamics of complex molecular
systems are influenced by the delicate interplay of non-covalent interactions encom-
passing hydrogen bonding, dipole-dipole interactions, steric repulsion, and London
dispersion. The interaction of non-polar molecules is impacted by the dispersive
forces, while the interaction of charged or highly polar molecules is chiefly
emerged from the electrostatic interaction including Coulombic interaction and
induction. The energetics of hydrogen-bonded systems, especially where polymeric
hydrogen-bonding network are formed via O-H/N-H bonds, are demonstrated to
be influenced by the specific low-frequency vibrations of the molecular systems
in combination with the high-frequency modes. The reckoning of non-covalent
interactions of halide ions with the surrounding solvent is turned out to be important
to interpret the CTTS bands that are characteristics of charge-transfer spectra of
halide-water clusters. As evident by the numerous theoretical investigations, the
quantitative characterization of dispersion-dominated interactions such as the π-
π and the cation-π interactions demand advanced correlated ab initio methods or
empirical treatment. The understating of origin of cation-π interactions relies on
the accurate description of the dipole-induced dipole as well as higher order terms
like quadrupole-dipole, quadrupole-quadrupole interactions etc. The Hammett sub-
stituent constants are manifested to be critical parameters to comprehend the nature
of interactions and their impact in predicting reaction thermodynamics for those
molecular systems which are stabilized by the π-π interactions. The stability of
the self-assembled structure in proteins and protein-mimetic materials is mainly
attributable to the subtle balance between different non-covalent interactions like
electrostatic, hydrophobic, hydrogen bonding, and van der Waals as revealed by the
atomistic MD simulations; and the ability to estimate and comprehend the nature of
non-covalent interactions is thus essential to elucidate the structure and function of
hybrid materials.

The high-level wave function-based methods such as CCSD(T) or MP2 together
with large basis sets like aug-cc-pVTZ and anharmonicity corrections are found to
yield reliable predictions of weak and strong non-covalent interactions. However,
the practical implementations of such approximate methods for large molecular
systems are categorically hindered by their slow convergence with the basis set
size and associated large basis set superposition errors. The dispersion-corrected
DFT-based methods or range-separated functionals with a long-range correlation
contribution from wave function methods followed by ZPE and BSSE corrections
appear to be effective approach to trade-off between computational cost and
accuracy.
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