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Preface

It is an immense pleasure to bring the next volume of Practical Aspects of Compu-
tational Chemistry book series (Vol. 5). Our current volume covers an overview of
current reactive force-field methodologies, application of coarse-grained modeling
in bio- and nanochemistry, application of computational chemistry in the area
relevant to fate and transport on soil surfaces, dataset modelability by QSAR,
application of alkaline hydrolysis for decontamination, surface-enhanced Raman
scattering of organic compounds interacting with silver clusters, modeling of
non-covalent interactions, and radiosensitizers. These topics reviewing current state-
of-the-science research are distributed in eight chapters in this volume.

Success of any computational methodology largely depends upon the suitability
of the applied approach to the problem under investigation. Likewise, the success
and failure of molecular dynamics simulations depends upon the suitability of force
field for the chemical system under investigation. The first chapter of the current
volume, contributed by Bresnahan et al., has reviewed some of the popular reactive
force-field approaches and highlighted their respective advantages and potential
applications. Coarse-grained approaches are required when size- and timescales are
needed to cover systems and phenomena several orders of magnitude larger than
those possible using the all-atom simulation. In the second chapter, Liwo et al.
have discussed coarse-grained force fields and their application in biological and
nanomaterials research.

Non-covalent interactions are prevalent in nature. They play a fundamental
role in regulating the structure and function of a variety of materials ranging
from biological systems to solid-state materials. Samanta et al. have reviewed first
principle approaches to study non-covalent interactions in different systems and
their relative accuracy in the third chapter. Radiosensitizers are used in radiation
therapy due to hypoxia in solid tumors. Zdrowowicz et al. have reviewed several
groups of radiosensitizers geared toward hydrated electrons in the fourth chapter.
Fate, transport, and remediation of environmental contaminants are an important
area of research. In the next chapter, Jenness et al. have provided a brief description
of adsorption of selected munitions compounds on the surface of some components
of arid soil, overview of periodic DFT methodologies, and recent work on reducing
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vi Preface

empiricism in DFTB. In the following chapter, Sviatenko et al. have discussed
suitability of computational approaches to analyze alkaline hydrolysis of selected,
important energetic compounds. The modelability criteria are used to estimate if
predictive QSAR model could be built for a given dataset. Golbraikh et al. have
discussed two of such recently introduced modelability criteria in the seventh
chapter. In the last chapter of this volume, Trang et al. have discussed a model of
silver clusters in order to explain the surface-enhanced Raman scattering of different
molecular systems.

We would like to take this opportunity to thank all contributors for devoting their
time and hard work to make this project a success. We acknowledge the excellent
support from the Presidium of the European Academy of Science as well as editors
at Springer Nature. Of course, many thanks go to our family and friends; without
their support the realization of the book would not have been possible.

Jackson, MS, USA Jerzy Leszczynski
Vicksburg, MS, USA Manoj K. Shukla
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Chapter 1
Introductory Roadmap to Current
Reactive Force-Field Methodologies

Caitlin G. Bresnahan, Glen R. Jenness, Revati Kumar, and Manoj K. Shukla

Abstract Classical molecular dynamics (MD) simulations have led to many dis-
coveries for a wide variety of reactive chemical systems. Conventional classical
potentials are computationally inexpensive and allow for the study of large systems
such as the condensed phase with total inclusion of configurational entropy.
Unfortunately, the classical MD methodology typically does not allow for bond
evolution throughout the simulation. As such, several reactive methods have been
developed to study such chemical phenomena using MD simulations. This review
provides an overview of current popular reactive potentials and outlines their general
framework and current applications.

1.1 Introduction

As the capabilities of computers continue to grow, both in terms of speed and
memory, the possible applications into the field of chemistry further expand to
include larger system sizes, improved system descriptions, as well as precipitating
innovate pathways for approaching chemical problems. Molecular dynamics (MD),
a cornerstone in the field of computational chemistry, involves explicitly modeling
the evolution of a chemical system as a function of time, based on the numerical
integration of the forces in Newton’s classical equation of motion [1–4]. The forces
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2 C. G. Bresnahan et al.

on the particles (atoms in the case of atomistic simulations) are determined from
the potential energy surface of the chemical system that, in turn, is described in
terms of inter-particle interactions that the particles experience from their local
environments.

The accuracy of these simulations is dependent on multiple factors, with the most
essential component consisting of the veracity of the underlying potential energy
function chosen. The ideal description would result from first principles, also known
as an ab initio potential. This approach utilizes a fully quantum mechanical (QM)
description which inherently includes all the essential physics. These high-level
calculations can be used without further parameterization, in principle, to the system
of interest, and are transferable across diverse chemical systems. Ab initio molecular
dynamics (AIMD) can provide the reactivity and high level description required to
look at complex systems, however the computational expense limits the technique to
system sizes of a couple of hundred atoms for around a hundred picoseconds [5, 6].
Essentially, within the AIMD framework, proper sampling to capture all rare events
(e.g., bond breaking/bond forming) and obtain statistically relevant data outside of a
cluster system is often intractable due to the spatial and temporal limits. This renders
AIMD simulations impractical for condensed phases, where configurational entropy
is large and hence sampling for a physically accurate description of many reaction
mechanisms is an insurmountable challenge.

In order to circumvent the computational expense of AIMD, a classical model
potential can be used, which essentially averages the electronic interactions. This
methodology uses classical mechanics in which the potential energy is given as a
sum of interatomic interactions including both bonded and non-bonded interactions.
The latter can be treated using effective pair potentials that often include Lennard
Jones and Coulombic potentials, and may sometimes include the added complexity
of many-body functional forms such as a polarizable interaction that can mimic
the changes in charge distribution as a function of environment. While empirical
two-body potentials provide a rather incomplete representation of interactions,
polarizable force-fields improve upon the description but at the cost of added com-
putational expense. Moreover, most widely used classical force-fields, effective pair
or many-body models, rely on a fixed bond topology, i.e., molecular connectivity is
explicitly defined before the simulations begin and cannot change. An example of
a typical force-field is given below in the CHARMM [7] formalism depicted in Eq.
(1.1).

V (x) =
∑

bonds

ki

2

(
ri − r0

i

)2 +
∑
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kj
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(
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The above classical effective pair potential is an elegant approximation of the ab
initio potential energy surface. The bonded terms are described by the bond length,
bond angle, dihedral angle, and improper angle term, penalizing deviations from the
ideal structures. The non-bonded terms encompass electrostatic and van der Waals
interactions, and in this case, they are described with a Coulomb and Lennard-Jones
potential, respectively.

In order to closely approximate the real potential energy surface with a classical
potential, parameters are optimized using experimental data, high-level ab initio
data, or both. However, a universal force-field has not been determined, and as such,
force-fields tend to be system specific or tailored to a particular system type. Several
popular force-fields have been developed, differing slightly in potential form, for
prominent systems of interest including the Chemistry at HARvard Molecular
Mechanics (CHARMM) [7–9] force-field, seen above, which was generated with
the intention of studying small molecules, and now is used extensively to study
both small and macromolecules. The AMBER (Assisted Model Building with
Energy Refinement) [10, 11] potential was built to investigate protein systems and
DNA. Other widely used force-fields include GROMOS (GROningen Molecular
Simulation) [12–14], parameterized for use on biomolecular systems, and the
Optimized Potential for Liquid Simulations (OPLS) [15–17] which was developed
in order to effectively model ionic liquid systems. While these force-fields are
widely available, they are detailed here in order to appreciate the breadth of
systems to which classical force-fields are applied. However, this list by no means
encompasses the entirety of force-fields which are constantly updated and modified
to better describe systems of interest. Of course, due to the fitting of parameters to
specific systems, force-fields may not perform well across a variety of systems.
Often, in order to utilize a particular force-field, results must be compared and
validated to experimental data, or benchmarked to existing high level ab initio data
for each molecular system of interest.

These classical potentials perform well on large systems and can model ionic
diffusion, protein fluctuation, solvation effects, aggregation events and so on.
However, due to the fixed bond nature of a classical potential, reactive events cannot
be modeled within this framework. QM/MM methods offer an alternative to this
problem by combining the quantum mechanics and molecular mechanics (MM)
approach into one simulation [18, 19]. Within the QM/MM framework a majority
of the system is treated with classical MM potentials, while a small portion of the
system will be treated with high level quantum mechanics (QM). In this ethos,
simulations can include full solvation via MM in order to explicitly model the
condensed phase, extended surfaces, an entire protein, etc., but still include reactive
events (reactive surface, active site, local solvation environment, etc.) via QM at the
same time. QM/MM approaches have widely increased the reactive systems we are
able to study. However, despite these advances, QM/MM has several drawbacks. In
order to effectively use QM/MM, a priori knowledge of the reactive site is required.
This may lead to inadvertently ignoring side reactions that aid in the reactive
process. Additionally, the range of atoms included in the QM sphere is set by the
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user. Defining a large portion of the simulation to undergo high level calculations
defeats the speedup offered by the QM/MM framework, as the limiting factor of the
simulation is the QM contribution calculated at each time step. However, utilizing
a QM region that is too small may also cause issues with the simulation, such
as diffusion of a QM particle into the MM region, which introduces an artificial
interaction. In fact, the conditions governing the boundary between the QM and MM
region can introduce errors or have a wide influence on the energetics calculated in
the system [20]. Adaptive QM/MM methods have been developed which use various
mathematical functions based on geometric criteria in order to keep the QM portion
limited to the reactive sites and the relevant environment of the reactive process
[21–23]. While there has been a significant amount of progress in the QM/MM
fields, which will continue its relevance within the computational chemistry sphere,
several other approaches have been introduced to bring reactivity into MD for large
systems while including the adequate sampling needed for statistical relevance and
rare events.

This review is intended to give the reader an idea of the current state of
reactive modeling, particularly reactive force-fields. First, two of the widely used
bond order methods will be described—REBO and the ReaxFF potential. This
will be followed by an introduction into the quantum mechanics-based empirical
valence bond method and its extension into a multi-state formalism. Each section
will provide the basic outline of how these potentials work, followed by some
recent developments and applications. Lastly, there will be a brief discussion of
parameterization, followed by a comment on some of the other methods available
that are beyond the scope of this review.

1.2 Bond Order Methodologies

Reactive Empirical Bond Order (REBO) Based Potentials One of the first widely
used and successful bond order potentials is the Reactive Empirical Bond Order
(REBO) potential. This formalism was driven by the idea that a classical description
could be used, in which a bond order function would allow for the attractive potential
to be modulated throughout the simulation in order to maintain accuracy while
reducing computational expense. The energy for a bond between two atoms, i and
j, is given as a summation of the attractive (V A

ij ) and repulsive interaction energies

(V R
ij ), where the attractive component is calibrated to the local environment through

the use of a bond order term (bij) [24–28]. This can be seen in Eq. (1.2).

Eij = V R
ij + bijV

A
ij (1.2)



1 Introductory Roadmap to Current Reactive Force-Field Methodologies 5

The bond order term used to describe the effects of the bond between atoms i and
j is given in Eq. (1.3).

bij = 1

2

[
pσπ

ij + pσπ
ji

]
+ πRC

ij + πDH
ij (1.3)

The first two terms, pσπ
ij and pσπ

ji , reflect the atomistic environment for the
reference atom (i and j, respectively) by including the impact of the atoms bonded to
the reference atom. The last two terms contribute to the bonded interaction through
the radical character of the π-bond (πRC

ij ) as well as the dihedral character (πDH
ij ).

The first generation of REBO was initially made for large carbon crystal systems
[25] and had been extended to parameter sets containing silicon [29, 30]. The
original formulation was improved upon in a second iteration which introduced
a Coulomb potential. The fitting scheme was enhanced as the training set was
comprised of more structures within the REBO2 framework, vs. the initial REBO
potential. Due to the modifications, REBO2 can model molecular hydrocarbon
systems in addition to the crystals for which the initial potential was built. This
framework has been further extended to materials containing oxygen [31], fluorine
[32], and silicon [33]. Systems such as graphene and its oxides [34–40], and carbon
nanotubes [41, 42], have been successfully modeled by REBO potentials.

The REBO formalism lacks a description of long-range interactions, however,
which makes it difficult to use in systems where there is a significant amount of
intermolecular interactions. To this end, the approach was extended to the Adaptive
Intermolecular REBO (AIREBO) model [28, 43]. In AIREBO, a 12-6 Lennard-
Jones potential is integrated into the total potential; however, as a reactive force-
field, it is imperative that the non-bonded terms can switch on and off accordingly.
Rather than using a simple switching function that could cause discontinuities, the
function was built to be continuous and depend on distance, interaction strength, and
the bond environment. This introduces adaptivity to the Lennard Jones interactions
so that it is only applied if it is unlikely for a bond to occur, but is within a certain
distance of the atom. Additionally, a torsional potential was added, however it took
the form seen in Eq. (1.4), rather than the typical form of Eq. (1.1).

Vtorsional (ω) = ε

[
256

405
cos10

(ω

2

)
− 1

10

]
(1.4)

In general, the AIREBO potential takes the form seen in Eq. (1.5) with all details
laid out in the original paper by Stuart et al. [43]

EAIREBO = EREBO + ELJ + Etorsional (1.5)

The AIREBO method was further improved so that the bond order takes
into account the immediate environment of the bond, instead of averaging the
environment around the two bonded atoms [26]. This method has been widely used
on amorphous carbon [44], graphene systems [40, 45–47], carbon nanotubes [48],



6 C. G. Bresnahan et al.

and fullerenes [49], and has recently seen code improvements to increase the speed
of these simulations [50]. Additionally, the potential has been used to model gas
collisions with a graphite surface, where the gas to surface interactions took the
form of a Lennard Jones interaction [51]. Other modifications to the REBO potential
include, mod-LJ AIREBO [52], AIREBO-M [53], REBO-S [54], and qAIREBO
[55], which are outside the scope of this review, but an excellent discussion of them
may be found in the review by Harrison et al. [28]

ReaxFF Methodologies The ReaxFF [56] force-field is the most well-known bond
order method available due to its sophistication and successful implementation for
a variety of systems, as well as its integration into several MD packages. In this
formalism, the typical bonded and non-bonded terms of a traditional force-field
were kept. Meanwhile, an elegant bond order term is used to modulate the bond
topologies, allowing it to evolve while the system undergoes a reaction. The energy
is calculated as a sum over the various interaction components as can be seen in Eq.
(1.6) [56].

Esystem = Ebond + Elp + Eover + Eunder + Eval + Epen + Ecoa + EC2

+ Etriple + Etors + Econj + EH−bond + EvdW + ECoulomb (1.6)

Ebond is the is the corrected bond energy after the bond order calculation, Elp is
the energy associated with a lone pair, Eover is an energy penalty associated with an
over coordinated atom, Eunder is related to under coordinated atoms, Eval includes
the valence angle energy and an associated penalty energy Epen is introduced for
the situation when an angle contains two double bonds. Ecoa was introduced in
the initial formalism to describe three-body conjugation. EC2 was integrated into
the formalism to correct the original models inability to reproduce C2. Etriple only
influences C-O systems and is an energy correction that was introduced for carbon
monoxide. Etors is related to the torsional energy, while Econj reflects the energy
related to a conjugated system. EH-Bond was incorporated for hydrogen bonding.
The non-bonded interactions are given by EvdW and ECoulomb which are calculated
for all atomic pairs in the system. An electronegativity equalization method (EEM)
charge scheme is utilized so that charges can fluctuate throughout the simulations
allowing an accurate description of both covalent and electrostatic effects. As of a
2016 review on the state of ReaxFF [57], it was specified that the above equation is
the current formalism released by the van Duin group, and an in depth description
of each term can be found in the 2008 paper by Chenoweth et al. [56] Recent
advances in 2020 have led to the introduction of the atom-condensed Kohn-Sham
DFT approximated to second order (ACKS2) charge model [58]. The introduction
of this charge description requires reparameterization of several parameters and was
used to study Li2O systems.

This potential energy description maintains the accuracy of a typical atomic
description throughout a simulation while also capturing the fluctuations required
to model a reactive event through the bond order term. The bond order term for an
atom pair is given by Eqs. (1.7) and (1.8) [57].
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BOij = BOσ
ij + BOπ

ij + BOππ
ij (1.7)

BOij = exp

[
pbo1

(
rij

rσ
0

)pbo2
]

+ exp

[
pbo3

(
rij

rπ
0

)pbo4
]

+ exp

[
pbo5

(
rij

rππ
0

)pbo6
]

(1.8)

The bond orders are dependent on the distance between atoms, given by rij. Each
r0 is an equilibrium bond length, and pbo# are fit parameters. The above equations
demonstrate the BO inclusion of single, double, and triple bonds for each possible
atomic pair given in a continuous function, so that it may be successfully used within
the workhorse of molecular dynamic simulations.

ReaxFF treats each element the same, regardless of the environment it is in, or
rather, one element has the same description regardless of the species to which it is
connected. Therefore, each pair-wise interaction must be taken into account when
generating parameter sets. Currently three distinct branches exist; the combustion
branch, an aqueous branch, and an independent branch. These branches contain
parameter sets which are not necessarily transferable between different systems
[57]. ReaxFF was initially built for high temperature systems (combustion branch)
in which H2O would only be present in gas phase. Consequently, the combustion
branch did not work well on aqueous descriptions, as it could not mimic liquid water.
This has since been addressed [59], hence the formation of the aqueous branch.
Many groups have modified parameters or adjusted the potential description for their
own uses, (for instance, a recent publication altered the potential description in order
to better describe coordinate bonds [60]), however what has been described thus far
in this review is the formalism pioneered by the van Duin group [56]. The other
parameter sets and potential descriptions may not work correctly with the original
parameter set and should always be validated before use. ReaxFF is available in
platforms such as PuReMD, and LAMMPS [61].

A recent publication has parameterized ReaxFF for Cu/C/H/O for investigating
catalysis on a Cu-metal surface [62]. This paper is intriguing as it used a new
transition state search algorithm to add transition states into the parameter fitting set.
ReaxFF has also been utilized in pathway sampling studies which included effect
of temperature on these pathways, before refining with DFT, showing how versatile
the applications of the force-field have become [63].

Recent studies within the ReaxFF framework include supercritical conditions
such as acetic acid water mixtures at high temperatures and pressures [64], sol-gel
condensation of silica (where the effect of parameterization set had a large influence)
[65], applicability to subcritical and supercritical water [66], phase separation in
relation to explosive events [67, 68], energetic materials [69], biological systems
[70], liquid metals [71], MOFs [72], lithium cation in electrolyte solution [73],
and polymer crosslinking using accelerated ReaxFF [74, 75]. This list, while not
exhaustive, highlights the versatility of chemical investigations to which ReaxFF
may be successfully applied.
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However, many systems require reparameterization before use to capture system
specific interactions. For instance, in 2019 there have been several reparame-
terizations in order to handle C/H/O/N polymers and its carbonization process
[76], AlFx compounds [77] and liquid metals [71]. This list is not complete but
illustrates examples in which ReaxFF parameters may require refinement. Indeed,
Bertels et al. [78] recently tested several ReaxFF parameter sets to benchmark
them against hydrogen combustion systems, and offer a close examination of the
performance of several parameter sets. Additionally, another recent study compared
ReaxFF parameter sets to the previously described AIREBO model highlighting the
problems and advantages of each method [79]. These studies are included to show
how the performance of the model depends on which parameter set is used, and to
highlight the importance of selecting a parameter set that can accurately model the
system of interest.

A recent paper looked at the numerical stability of the force-field and suggested
utilizing more tapering functions, particularly on the bond order terms, to allow for
smoother transitions. They found that the newly tapered functions allowed for better
chemical minimization without effecting the overall accuracy of the energetic terms
[80].

A note on some specialized ReaxFF examples:

ReaxFF-lg In order to properly simulate energetic materials such as explosives, the
ReaxFF-lg model was created. These materials tend to be crystalline solids; thus, the
ReaxFF-lg integrated a van der Waals like term in the form of a low-gradient model
to describe the long range dispersion interactions that are commonplace within these
solids [81]. The energy calculated in the ReaxFF-lg model is shown in Eq. (1.9),
where the Ereax term is the ReaxFF description and Elg term is described in Eq.
(1.10).

EReax−lg = Ereax + Elg (1.9)

Elg = −
N∑

ij,i<j

Clg,ij

r6
ij + dR6

eij

(1.10)

In Eq. (1.10), Clg,ij is a parameter for the dispersion correction, rij refers to the
interatomic distance between the atoms i and j, d is a scaling factor, and Reij is the
equilibrium van der Waals distance. This addition required a new parameterization,
which restricts is transferability to other ReaxFF parameter sets. The ReaxFF-lg
has seen several parameterizations and uses on nitroamine systems [82–89], and
pyrolysis of carbon oxide systems [90].

eReaxFF While force-fields essentially coarse grain the electronic degrees of
freedom, eReaxFF was created in order to include an explicit electron when
necessary, so that the force-field could be used for redox reactions [91]. In this way,
the electron is treated as a particle where it can either be an electron (–1 charge)
or a hole (+1 charge) and several modifications are included to properly model
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the electron behavior and its affects. Additionally, the EEM charge scheme used in
the original ReaxFF force-field was altered to ACKS2 to have a better description
of the charge throughout the simulations. This method has been applied to study
electron transfer from lithium [92]. Recently, the method was expanded to look
at Ag nanoclusters [93]. This system is significantly more complicated as several
electron states are possible, and as such, a function was added to determine the
number of electrons that are associated with the Ag.

1.3 Valence Bond Models

Empirical Valence Bond (EVB) Framework Thus far the current review has focused
on the popular bond order methodologies in the field. As discussed in detail above,
these calculations tend to involve seamlessly turning the bond strength up or down
based on a geometric criteria, and tuning the intramolecular terms accordingly. An
alternative to this method is the more quantum inspired method of the empirical
valence bond (EVB) formalism.

This sophisticated method was initially introduced by Arieh Warshel in 1980
[94]. Warshel was interested in combining the ionic and covalent resonance forms
so that the environmental effects on bond breaking could be seen. In this case, a
reactant species of XY would become the product system of X– + Y+. This is a
standard elementary decomposition reaction; however, these reactions are abundant
in biological systems where a full QM treatment is still intractable. Using the idea
of valence bond theory, Warshel envisioned a methodology where reactivity could
be realized with a classical potential description, via writing the total energy as a
linear combination of states.

An example of the two state method is given from the water/HCl system in the
gas phase and is depicted in Fig. 1.1. The system can be described by two states:
state |1> consisting of one water and HCl, while state |2> consists of H3O+ and
Cl-. The real system has both covalent and ionic character and can be described as
a linear combination of these two states. In this description, the coordinates are the
same in both states, but the bonding topology differs by one bond. The potential for
state |1> is simply the classical force-field which comprises all intermolecular and
intramolecular interactions given in Eq. (1.11) as H11. State two is described by a
force-field which describes hydroniums interaction with chloride given as H22 given
in Eq. (1.12).

H11 =
∑

V intramolecular
water +

∑
V intramolecular

HCl +
∑

V intermolecular
HCl−water (1.11)

H22 =
∑

V intramolecular
H3O

+ +
∑

V intermolecular
H3O+−Cl− (1.12)
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Fig. 1.1 The top half shows two states with the same coordinates but differing by connectivity.
The lower left quadrant illustrates the potential energy well of both bonding types before coupling.
The lower right quadrant depicts the coupled EVB potential energy surface

The total Hamiltonian is written as a linear combination of the two states, which
can be seen in Eq. (1.13). The states are now coupled through the off-diagonal
element.

H =
[

H11 H12

H21 H22

]
(1.13)

The matrix is Hermitian so H12=H21. Upon diagonalization of the matrix, the
lowest eigenvalue will correspond to the energy of the system and the square of the
elements of the corresponding eigenvector will correspond to the weight of each
state, or the probability of the system existing in that state. The potential energy
surface of the EVB model for the HCl-water system is given in the lower right
quadrant of Fig. 1.1 where the system can propagate through both states with a
seamless transition. This methodology, coined by Warshel [94, 95], allowed for
countless investigations into two-state, reactant-product systems in the condensed
phase.

The off-diagonal term is essential for the EVB formalism to accurately reproduce
the potential energy surface. The simplest method is to add a constant value,
however this is not always a sufficient method. Warshel and Weiss used a Morse
function to describe V12 in the original formalism [94]. Vuilleumier and Borgis
modeled the excess proton in water using another physically motivated and straight
forward coupling term which includes an exponential function dependent on the
distance between oxygens sharing the excess proton, and the position of the proton
compared to the O-O bond [96–98]. Chang and Miller adopted a distributed Gaus-
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sian function to describe V12(q)2 where the vector q depends on the configuration
[99]. This method was extended so that the distributed Gaussians were multiplied by
a quadratic polynomial that did improve the accuracy of the off-diagonal potential
[100, 101]. The current MS-EVB3.2 formulation (discussed in the next section) uses
a complex function which includes the Zundel ion interaction with the other species
in the system [102]. Currently, common forms include a simple Gaussian based on a
reaction coordinate descriptive of the reactivity used (i.e., bond distance) [103, 104]
or a spline interpolation [105].

EVB methodologies have seen successful usage across a multitude of sys-
tems/investigations. Many have focused on proton transfer such as that of 2-
pyridone to 2-hydroxypyridine [106] and charge delocalization in water wires and
water clusters [96, 107]. Other systems include Claisen rearrangement in allyl
vinyl ethers and a methane and chlorine system [106, 108]. Perhaps one of the
greatest applications can be seen in biological systems where simple reactivity can
be brought into a large condensed system and solvent effects can be studied [95, 103,
109–113]. The Amber package has been successfully used to run EVB simulations
[111, 114].

Multi-state Empirical Valence Model The EVB model was further extended to
more comprehensively model Grotthuss shuttling in aqueous systems. The Grot-
thuss shuttling mechanism describes the ability of an excess proton to hop or
shuttle over several water molecules in a very brief window of time through
bond breakage/formation within the hydrogen bonded network [115–117]. In these
systems, the excess charge is effectively delocalized over its solvation shell and
hence the two state model was extended to a multi-state approach by the Voth
group [102, 117–129], to the so called multi-state empirical valence bond method
(MS-EVB). In this expansion, rather than writing the Hamiltonian as a linear
combination of just two states, the system is described as a combination of several
states involving waters in the solvation shell of the excess charge. A simple example
is shown in Fig. 1.2 for the HCl(H2O)3 system. In order to properly describe all
possible bonding topologies, four states are included. The coordinates in each state
are the same, however the bonding topology is different. Only one HCl state is
considered, as the other two water molecules are too far to see proton transfer with
the chlorine atom (state |1>). Three possible hydronium states are also depicted
(states |2> through |4>).

As before, the total Hamiltonian is written as a linear combination of states,
however states that do not share a bonded atom are not coupled and therefore have
no off-diagonal term. This leaves a sparse matrix, which is quite quick to calculate
and is depicted in Eq. (1.14).

H =

⎡
⎢⎢⎣

H11 H12 0 0
H12 H22 H23 H24

0 H23 H33 0
0 H24 0 H44

⎤
⎥⎥⎦ (1.14)
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Fig. 1.2 Configuration of the HCl(H2O)3 system. Each state has the same coordinates, but differs
in bonding topology. Percent contribution of each state is included

The square of the elements of the eigenvector corresponding to the lowest energy
eigenvalue depicts the weight of each state. Figure 1.2 has the contribution labeled
for each state showing that while the HCl is the predominant state, there is a
significant amount of hydronium character to that configuration as well.

In order to accurately model systems with rapid proton diffusion, a search
algorithm must identify all states to include. Wu et al. [125] generated an extremely
comprehensive search algorithm for the MS-EVB3 model for proton transport
in neat water, which has been re-parameterized in the latest MS-EVB3.2 model
[102]. The algorithm includes every possible hydronium state within three solvation
shells of the pivot hydronium (otherwise known as the hydronium with the highest
contribution calculated from the eigenvector).

The MS-EVB formalism has been widely used to study proton transfer in many
different aqueous systems, especially to understand the influence of the environment
on the transport process. For instance, it has been used extensively to study the effect
of the excess proton in bulk water and small water clusters [102, 117, 120–125, 130–
132]. It is also quite useful for studying interfaces, ion behavior around an interface,
the excess proton in a water channel, acidic groups in proteins, membranes,
concentrated acid solutions, and other systems of biological interest [102, 104, 105,
118, 119, 122, 124, 126, 128, 129, 133–139]. As the formalism depends on the
underlying classical description, water anharmonicity can be included through the
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use of an anharmonic force field [140]. In fact, the anharmonic SPC/FW/ice model
was used as the underlying potential energy surface in order to study the surface
of ice and properties of the quasi-liquid layer [141]. Not only can the MS-EVB
formalism model the initial dissociation, it can determine how the presence of other
groups affects the proton transport, and give an accurate picture of the chemistry
at an active site. Additionally it has been used in systems like liquid imidazole
[142, 143] and hydroxy groups [138]. In the above examples proton shuttling to the
ionic Cl– counterion is not considered, however this can become important in water
clusters with HCl as well as at air-solution interface of concentrated HCl solutions.
Two models exist in the literature which model explicit shuttling of the acidic proton
to the chloride in water including the work of Wick for HCl accommodation to a
bulk water surface [105] and Bresnahan et al. [104] on HCl water clusters. It was
found that in the cluster systems, explicit incorporation of the covalent HCl states
improves the energetics for contact ion pairs, and the MS-EVB-HCl model truly
captures the covalent HCl interactions.

The MS-EVB formalism has further been expanded by Voth and co-workers
[121, 123, 125] for the movement of large molecules, rather than modeling chemical
reactions. Here a multi-configurational method is used to simulate the folding
of dodeca-alanine, using a coarse-grained approach [144]. Additionally, the Voth
group [145] has recently published a method called RCG, for reactive coarse-
grained, which allows for chemical reactions of coarse-grained molecules which
was validated on an SN2 reaction mechanism.

1.4 Parameterization

One common feature in all of these methods is the requirement of parameters
to closely approximate the potential energy surface. This can be quite difficult,
particularly for methods like ReaxFF, in which a system containing only C/H/O
atoms has over 600 parameters that must be optimized [146]. The EVB methods
require less parameters but does necessitate an appropriate function to describe the
coupling between states.

Several steps are required for parameterization. The first step is to generate
data representative of the problem you are trying to solve. Generally, that includes
structural data on configurational motifs for the system of interest. Typically, one
chooses global minimum structures and may also require a detailed potential energy
surface in which to match the force-field to. In the case of the MS-EVB-HCl model,
however, the purpose was to describe both covalent and ionic forms of HCl water-
clusters of various sizes [104]. Given that its intended purpose was for atmospheric
aerosols which can experience configurations that are quite high in energy, it was
essential that parameters were fit to local minima as well as the global minima.
Furthermore, the parameterization set included various configurations with covalent
HCl, contact ion pairs of hydronium and Cl– as well as solvent separation ion pairs
(where the ions are separated by one water molecule) of various hydration levels .
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Once a parameterization set has been identified, the next step involves a
parameter search and a fit criterion. The fit criterion is a measure of the force-fields
ability to reproduce the higher level ab initio calculations to a desired accuracy. The
parameter search is used to generate parameters which are tested via the fit criterion.
Unfortunately, parameter space is expansive. In theory, one could determine the
parameters by starting with a best guess, and refining one parameter at a time,
iteratively. However, this approach is time consuming and so several expedient and
automated processes have been developed.

One extensively used parameterization search method for reactive force-fields is
the genetic algorithm. In this method, the user inputs bounds for each parameter
and genetic operations occur over a set amount of iterations in order to determine
the best fit based on the fit criteria. Genetic operations include mating and mutations
of the parameter set throughout a given amount of iterations.

While the genetic algorithm is a popular parameter optimization scheme, an
abundance of other schemes exist in which parameter space is traversed. In fact,
Shchygol et al. [147] compared the performance two other schemes, a Monte-
Carlo FF (MCFF) optimizer, and a covariance matrix adaption evolutionary strategy
(CMA-ES) with the genetic algorithm. The MCFF scheme borrows from the idea of
simulated annealing where a system at a very high temperature is cooled down; all
while introducing random changes to the parameter set. By cooling very slowly, the
optimizer is able to sample the parameter space. In the CMA-ES method parameters
are allowed to evolve in regards to a multivariate normal distribution. The authors
found that a single optimization run may not be sufficient, as the reproducibility
between runs were low or convergence was not ideal. While CMA-ES performed
well in local minimums, the genetic algorithm by nature, is less likely to be caught
in a local minima. The list of parameter optimization schemes is not exhaustive
but rather is included in order to illustrate how different methods can traverse
parameter space. While seemingly straightforward, there are many issues with
parameterization, such as getting stuck within a local minima or poor convergence.
The matter of generating parameters for a force-field is far from trivial.

1.5 Other Reactive Methods

RexPoN Several other reactive methods have also been developed. For instance
RexPoN is being developed for both reactive and nonreactive simulations [148,
149]. Its functional form is depicted in Eq. (1.15) [148]. Ebond includes the bonding
terms, Eangle includes bond angles, Eelect is the electrostatic energy, Evdw is the pure
van der Waals term, and EHB is included for hydrogen bond energy.

Etotal = Ebond + Eangle + Eelect + EvdW + EHB (1.15)

RexPoN uses a polarizable charge equilibration method, allowing dynamic
evolution of the charge, and has the van der Waals terms trained to single element
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crystals. In this manner, the non-bonded terms have been separated and trained to
the quantum data. This is a developing bond order formalism that is aiming for
improved transferability.

LEWIS Reactive Force Field The Herzfeld group [150–155] has published several
papers on a reactive force-field that is inspired by the breakdown of a molecule into
Lewis structures. In the initial formalism a water molecule is decomposed into its
Lewis features, which can be described by six pairwise interactions [150–152]. The
oxygen of the water molecules exists as O–2. That species would be broken down
into separate pieces as seen in a Lewis dot structure; The core of the oxygen would
be describe by a core particle (O+6), and then four valence electron pairs would be
explicitly modeled while the hydrogen of water is then described by H+ particles.
While the specific requirements of the model are described in more detail in the
original publications [150, 151] a quick overview of the charge with respect to the
Lewis model is presented. The charge description also reflects the Lewis structure,
where the core oxygen particle maintains a charge of 6, the valence electron pairs
are described by a –2 charge, and the hydrogen particles round out the molecular
neutrality with a charge of +1.

In itself, this formalism is pseudo-classical. Electrons are being explicitly treated
as core electrons, and valence electrons. Unlike the reactive-force fields previously
described, there is no standard potential in which to describe these interactions,
and as such, the physically motivated potentials seen before are set aside for a
more heuristic approach where the potential that performs the best on the system is
searched for [150, 151]. Around 300 combinations of potential forms were analyzed
with the final functional form described in Kale et al. [151] The potentials describe
the pair-wise interactions between the particles, inherently allowing for polarization
and reactivity as the valence electrons are explicitly modeled [150, 151]. Training
sets included neutral water, as well as variations with protonated or deprotonated
species allowing the model to accurately describe both hydronium and hydroxide
[152, 154, 155].

The original model offered significant flexibility, however was limited by the
valence electrons being described as an electron pair. In order to address this,
the LEWIS· method was introduced, where each valence electron was treated
individually [153]. A spin description was added via a pair interaction to describe
interactions between particles of the same and opposing spin. Additionally, another
coordinate, which describes the spread of the electron, or rather its cloud diameter,
was integrated into the formalism. In theory, this addition will create a more
transferable model. These interactions are described in more detail in Ekesan et
al. [153] Furthermore, the model was extended to include carbon interactions [155].

Chebyshev Interaction Model for Efficient Simulation (ChIMES) The initial moti-
vation behind the ChIMES force field was to apply force matching to generate a
force-field to model reactivity in water in which the thermodynamic conditions were
extreme [156]. The original method used a pairwise interactions in conjunction with
an over coordination term. Future iterations, however, would focus on a pairwise
interaction with the addition of a three-body term as seen in Eq. (1.16) [157–160].
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EChIMES =
N∑

i

N∑

j>i

Eij +
N∑

i

N∑

j>i

N∑

k>j

Eijk (1.16)

There is no topology dependence in this method, making it a reactive force-field
where the total energy of ChIMES comes from the pairwise interaction of the total N
particles between atoms i and j as well as the three body interaction between atoms
i, j and k. The two body potential is described in Eq. (1.17), and is dependent on the
use of Chebyshev Polynomials.

Eij = f
ei,ej
p

(
rij
)+ f

ei,ej
s

(
rij
)O2B∑

n=1

c
ei,ej
n Tn

(
s
ei ,ej

ij

)
(1.17)

fp(rij) is a penalty term which keeps the bond distance from falling under a
minimum value. fs(rij) allows for a smooth transition to zero for a given cutoff
distance. The order of the polynomial is given by O2B=n, where the Tn is the
Chebyshev polynomial, modulated by its lead coefficient, c

ei,ej
n . The symbols ei

is representative of the element of atom i, and ej describes the element of atom j.
A more detailed discussion of these terms is given in the work of Lindsey et al.
[157–160]

The three body term is an extension of the two body term, without the penalty
function listed in Eq. (1.17), because this penalty is already included in the two
body term. Equation (1.18) shows the three body potential with analogous terms
and coefficients. Lindsey et al. [158] mention that this model can easily expand to
higher many body effects.
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)
(1.18)

This three body method has been used for nonreactive dynamics of water at ambient
conditions [158], studying molten carbon [157, 159], and was recently extended for
carbon-oxygen systems to look at condensation [160].

An advantage to the ChIMES model is its linearity, which allows for fitting to
different systems to be executed quickly [157–160]. While several parameters are
part of the fitting scheme, the user of the model is given flexibility in inputting
certain parameters such as the order of the polynomial, cut off distances, and a
Morse variable [159]. While parameters would likely need to be generated for the
system of interest, the quick fitting scheme and flexibility afforded the model by the
input parameters allows for the model to quickly be tuned to a particular system of
interest. The breadth of environments studied with this force-field show its unique
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ability to the application of a wide variety of problems, particularly in extreme
conditions.

RGATS Another method under development is RGATS, which stands for restrained
geometries and topology switching [161]. In this strategy, standard restraints were
used, and a scan of the topologies for potential reactive states occurs. In this scan
the reactive species is not connected to either the reactant or the product, rather
a harmonic restraint is utilized to describe the transition. The publication outlines
the systematic approach but mentions a user patch is required to have the topology
switch occur. By construct, all dynamical properties of the system are lost, such
as the activation barrier, however it gives an idea of the system response to the
reactivity.

Density Functional Theory Tight Bonding (DFTB) For the sake of completeness,
the DFTB method will be discussed. The formalism found its origins in semi-
empirical tight-binding electronic structure methods that treated a crystal as a series
of isolated atoms, with the crystal density subsequently being the summation of
these isolated atomic densities. However, the parameters were highly empirical,
and suffered from a lack of transferability. The pioneering work of Foulkes and
Haydock [162], however, demonstrated that the parameters required for tight-
binding calculations can be derived directly from DFT; giving rise to what is now
known as density functional tight-binding (DFTB).

The DFTB formalism assigns a set of basis functions to each atom. The
traditional approach uses Slater functions [162–168], however recent work has also
used grid-based basis functions [169–171]. Once done, the atomic parameters are
determined by solving Eq. (1.19) self-consistently to generate what is known as the
pseudo-atom.

[
T + V pseudo−atom(r)

]
φv (r) = εpseudo−atom

v φv (r) (1.19)

While the terms in the above equation have their usual meaning (for a detailed
discussion on Eq. (1.19), we refer the reader to Chap. 5 by Jenness et al. contained
in this volume), the potential of the pseudo-atom is defined in Eq. (1.20).

V pseudo−atom(r) = Vnuclear + VHartree [n(r)] + V LDA
XC [n(r)] + Vconf inement (r)

(1.20)

The confinement term transforms the atomic Schrodinger equation into the
pseudo-atom one, and becomes parameter dependent. Following the construction of
the pseudo-atoms, a zeroth-order molecular Hamiltonian is constructed, as depicted
in Eq. (1.21).

H 0
μυ =

⎧
⎪⎨

⎪⎩

ε
f ree−atom
μ , if μ = υ〈

φA
μ |T̂ + V A

0 + V B
0 |φB

υ

〉
, if A �= B

0, Otherwise.

(1.21)

http://dx.doi.org/10.1007/978-3-030-83244-5_5
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A repulsive potential is then added to the solution of the Hamiltonian. Within
a fitting scheme, this repulsive potential is defined as the difference between the
DFT energy of the molecule and the DFTB Hamiltonian [163–168]. A second-order
Hamiltonian can be formed by consideration of atomic charges [164] as shown in
Eq. (1.22) in which the charges (�qα) are determined in a self-consistent manner
via Mulliken charge analysis.

ESCC−DFT B =
occupied∑

i

〈
φi |Ĥ0|φi

〉
+ 1

2

N∑

α,β

γαβΔqαΔqβ + Erepulsion (1.22)

The self-consistent charge (SCC) approach allows for fluctuations in the atomic
environment arising from the molecular environment to be accounted for. More
recently, third-order terms have been included (SCC-DFTB3) [172–175].

The Hamiltonian and overlap terms are pre-computed and stored into Slater-
Koster tables for each atomic pair as a function of atom-atom distance, which are
read in at the start of the DFTB calculation. Through interpolation the values at
any distance can be generated rapidly allowing DFTB to be orders of magnitude
faster than DFT; however interactions for each atom pair needs to be calculated a
priori. Consequently, this limits applicability as the majority of DFTB codes do not
allow for the calculation of the relevant matrix elements. Additionally, the repulsion
terms are also dependent on both atom-atom pairs and having a ready data-base of
DFT repulsive curves. This makes for a rather arduous parameterization process,
and there has been a lot of work into automatic generation of these potentials [176–
180]. Recently, three of the authors on the current report have utilized combination
rules in conjunction with exponential repulsion potentials in an effort to allow for
heterogeneous repulsive terms to be generated from homogeneous repulsive curves
[171].

Machine Learning Methods Lastly, the authors of the review would like to mention
machine learning (ML) based methods. ML techniques have seen a surge in the field
of chemistry. They can be trained to quantum data to act as a reactive potential, and
have been known to reproduce ab initio calculations far better than a classical force-
field [181–183]. There are several steps required in order to gain accuracy within
a ML model [184]. First is the creation of reference data; unfortunately, the ML-
potentials require a plethora of data to accurately train to a system, more so than the
traditional force-field fitting methods. One must take care that the data set include
all relevant configurations and interactions to a given system. Additionally, it is
essential that the training set consist of unique configurations so that one area of the
potential energy surface is not over sampled, and subsequently over trained to that
area. From the dataset, one needs to be able to describe the data going in through a
fingerprint—a description of the configurational space. Lastly, a learning algorithm
is required to reach from the input (molecular configurations) to the desired output.

ML potentials have yet to exhibit real transferability outside the system upon
which they were trained. To circumvent this issue, some groups have looked into
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ML with the atoms in molecules approach for property prediction [185]. Other
researchers have implemented ML into the QM/MM formalism, the so called
QM/ML model [186].

The Accurate NeurAl networK engINe for Molecular Energies (ANAKIN-ME,
or ANI) method was created in order to develop highly accurate and transferable
neural network potentials (NNP) [187]. Utilizing this method, the AN1-1 potential
was generated for systems containing carbon, hydrogen, nitrogen, and oxygen
[187]. Rather than using an AIMD simulation to generate data, Normal Mode
Sampling was utilized to avoid biasing to a specific trajectory. In order to test the
transferability of the model, the fitting set included molecules with up to eight
heavy atoms, and an extensive amount of data, which is discussed in more detail
by Smith et al. [187] The model performed well on molecules that had more than
eight heavy atoms. ANI was improved in the AN1-1x iteration which used an
automated data generation scheme with active learning [188]. This reduced the
datasets by searching for and removing redundant data followed by subsequent
data generation via normal mode sampling as well as via molecular dynamics. This
method increased the amount of configurational space explored in the dataset. As
can be seen from the work by Smith et al. [187–189], ML potentials are a highly
data driven process and significant care has to be taken when generating datasets.
While the previous models had used DFT methods to describe the energetics, higher
accuracy was desired. To this end, Smith et al. [190] used transfer learning to
improve the accuracy to the AN1-ccx potential. Briefly, data is generated using
DFT and is then used to train the neural network. Next, a smaller data set was
created using the CCSD(T)/CBS level. By retraining the neural network from the
large data set at a lower level of theory followed by a small data set at a higher level
of theory, the retrained AN1-ccx potential performs at a higher level of accuracy
than the original DFT calculations in their benchmarking.

1.6 Conclusion

The current methods reviewed herein bring reactivity into MD simulations in an
efficient manner so that the simulations can properly sample rare events, and reach
large system sizes to include condensed phase, extended surfaces, proteins, and
so on. The intent is not to prioritize or argue for one method over another, but
rather highlight the advantages and disadvantages of each. The REBO/AIREBO
methods are extremely fast, however have limited use outside of the solid systems
for which they were developed. ReaxFF has the capability to model several different
types of system environments, and has extended their parameter sets to an extensive
portion of the periodic table. However, the method is considerably slower than a
typical conventional force-field calculation. MS-EVB methodologies have fewer
parameters and have shown great success in modeling proton transport. That
being said, a priori knowledge of the reaction mechanism is required in the EVB
methodologies, unlike in the bond order framework.
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Several methods were discussed in detail including REBO, AIREBO, ReaxFF,
ReaxFF-lg, eReaxFF, EVB, MS-EVB, ChIMES, LEWIS, and even DFTB. Appli-
cations of all models were presented, as well as their general framework. A brief
statement on parameterization and genetic algorithms was included in order to drive
home the extensive parameterization that goes into the reactive methodology. Lastly,
several other methods outside the scope of this review were briefly mentioned with
the intent to impart the reader with awareness and further resources regarding the
methodologies that may be most applicable to their research goals.
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114. Duboué-Dijon E, Pluhařová E, Domin D, Sen K, Fogarty AC, Chéron N, Laage D (2017)
Coupled valence-bond state molecular dynamics description of an enzyme-catalyzed reaction
in a non-aqueous organic solvent. J Phys Chem B 121(29):7027–7041

115. Agmon N (1995) The Grotthuss mechanism. Chem Phys Lett 244(5):456–462
116. Cukierman S (2006) Et tu, Grotthuss! and other unfinished stories. Biochimica et Biophysica

Acta (BBA) Bioenerg 1757(8):876–885
117. Knight C, Voth GA (2012) The curious case of the hydrated proton. Acc Chem Res 45(1):101–

109
118. Wang F, Izvekov S, Voth GA (2008) Unusual “amphiphilic” association of hydrated protons

in strong acid solution. J Am Chem Soc 130(10):3120–3126

https://doi.org/10.1002/0470845015.cu0002
https://doi.org/10.1002/0470845015.cu0002


26 C. G. Bresnahan et al.

119. Taraphder S, Maupin CM, Swanson JMJ, Voth GA (2016) Coupling protein dynamics with
proton transport in human carbonic anhydrase II. J Phys Chem B 120(33):8389–8404

120. Biswas R, Carpenter W, Voth GA, Tokmakoff A (2016) Molecular modeling and assignment
of IR spectra of the hydrated excess proton in isotopically dilute water. J Chem Phys
145(15):154504
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Chapter 2
Physics-Based Coarse-Grained Modeling
in Bio- and Nanochemistry
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Abstract Coarse-grained approaches, in which groups of atoms are represented
by single interaction sites, are very important in biological and materials sciences
because they enable us to cover the size- and time-scales by several orders of
magnitude larger than those available all-atom simulations, while largely keeping
the details of the systems studied. The coarse-grained approaches differ by the
scheme of reduction and by the origin and parameterization of the respective force
fields. Both statistical (database-derived) and physics-based potentials are used, the
physics-based potentials enabling us to bridge the coarse-grained level with the
all-atom level, which is necessary when carrying out the simulations at multiple
resolutions (multiscale simulations). The physics-based potentials originate from
the potential of mean force (PMF) of a system under study, in which the degrees
of freedom that are not considered in the model are averaged out. For tractability
and transferability the PMF has to be expressed as a sum of contributions that
constitute the effective energy terms. These terms are often assigned analytical
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A. S. Karczyńska
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expressions imported from all-atom force fields or engineered to reproduce certain
structural patterns (e.g., the secondary structures of proteins or nucleic acids).
Tabulated (model-free) potentials are also applied. Approaches also exist in which
the effective energy terms are derived systematically by splitting the potential of
mean force into transferable terms, e.g., by expressing the PMF by the Kubo cluster-
cumulant functions. Two approaches, or a combination thereof, are applied in the
parameterization of the coarse-grained force fields: the bottom-up one, in which the
potentials of mean force are determined from atomistically-detailed calculations and
then used to parameterize the respective expressions, and the top-down approach,
in which the force field is tuned to fit the experimental data. In this chapter, the
theory and parameterization of the physics-based coarse-grained force fields, along
with the corresponding methods of conformational search are reviewed. Examples
of physics-based coarse-grained force fields applied to study biomolecules and their
assemblies and nanosystems are discussed.

2.1 Introduction

Computer simulations of soft matter are nowadays of unquestionable importance
in biology, biophysics, medical sciences and materials sciences [1–7]. This way
of research enables us to understand the mechanisms of functioning of elements
of living cells, cancer and hereditary diseases, pathogen attack and, ultimately, to
design new drugs and therapies. Materials (including nanomaterials) modeling is
important in materials science (see, e.g., https://emmc.info), while the modeling
of the interactions of man-engineered nanostructures (nanotubes, fullerenes, etc.)
with biological macromolecules contributes to finding the best way of drug delivery
and enables us to study the impact of man-introduced nanostructures on the living
organisms (in particular, nanotoxicity) and the environment.

The simulation community makes a great effort to evaluate the existing mod-
eling approaches, the best example being the Community Wide Experiments on
the Critical Assessment of Techniques for Protein Structure Prediction (CASP;
http://www.predictioncenter.org) [8], which are conducted, since 1994, every other
year. Following this initiative, the Critical Assessment of PRediction of Inter-
actions (CAPRI; https://www.ebi.ac.uk/msd-srv/capri/) [9], RNA-Puzzles (http://
www.rnapuzzles.org/) [10], and crystal-structure prediction [11] experiments have
been established.

Depending on the size of a system, time scale, and required accuracy, different
modeling approaches are used [12]. The most accurate modeling is carried out at
the quantum mechanics (QM) level, with the use of Schrödinger-equation [13] or
Density Functional Theory (DFT) [14] based approaches. This level covers systems
with up to nanometer size and up to picosecond time scales and is the most accurate
and general one, enabling us to study chemical reactions that occur in a system
(e.g., enzymatic catalysis or polymerization processes). Another advantage of the
QM approach is its high transferability, which is 100% for the ab initio methods
and still high for the semiempirical QM methods [15].

https://emmc.info
http://www.predictioncenter.org
https://www.ebi.ac.uk/msd-srv/capri/
http://www.rnapuzzles.org/
http://www.rnapuzzles.org/
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In order to handle larger systems at longer time scales, the QM Hamiltonian
needs to be replaced with a classical one, the classical Hamiltonians being termed
force fields [2]. The force fields can be considered as parameterized QM potential-
energy surfaces (PESs) and, consequently, the electron degrees of freedom are
averaged out, the degrees of freedom that are kept being the nuclear coordinates.
Switching to the classical approach enables us to extend the time- and size-
scales to micrometers and microseconds, respectively. However, the accuracy, the
scope of applications, and transferability are reduced compared to those of the
QM approaches. Chemical reactions cannot be studied, except for using specially
designed reactive force fields, and force fields become specific for the systems
studied with many, often engineered, energy terms and many parameters, the
physical meaning of which is often not clear.

Owing to the use of graphical processing units (GPUs) [16], worldwide dis-
tributed computing [17] and the construction of dedicated machines, such as the
ANTON supercomputer developed by the D.E. Shaw company [18, 19], the size-
and timescale of all-atom simulations become gradually extended. Nevertheless,
for larger systems such as proteins, nucleic acids and their complexes, as well as
fragments of cellular organelles, the use of the atomistically-detailed approaches is
still infeasible and higher degree of reduction must be sought. Such an approach
is termed coarse graining (CG) and involves merging several atoms or even whole
entities (e.g., entire proteins) into extended interaction sites [4, 12, 20–38]. This
approach can be understood as averaging over the positions and momenta of
individual atoms, leaving only those of the entire sites [12, 38]. Consequently, the
physical origin of a CG effective energy function is the potential of mean force
(PMF) of a system [24, 35, 39]. When carried out to the limit, coarse graining
becomes the mesoscale or even continuous modeling.

With coarse graining, the time scale can be extended to seconds and systems
with even millimeter size can be treated, depending on the degree of reduction [12].
The extension of the time scale in coarse-grained molecular dynamics simulations
is a consequence of averaging out the degrees of freedom that are not present in the
reduced representation. On one hand, it enables us to cover much larger time scales
compared to all-atom simulations but, on the other hand, the relationship between
the time unit in all-atom and CG dynamics can only be estimated by comparing the
simulation times in which well-defined events (e.g., helix formation) occur [40, 41].

It should be noted that a given system needs to be treated at different resolution
and accuracy at the same time. For example, when studying a chemical reaction that
takes place in the enzyme’s active center, QM is needed, in principle. However, the
QM description needs to be applied only to the center, while the rest of the proteins
can be treated at the classical level; this is known as the QM/MM approach [42].
In general, such an approach is termed multiscale modeling [5, 24] and has been
originated by the year 2013 Nobel Prize laureates in Chemistry [43–45].

The design of coarse-grained approaches has two dimensions. The first of them
is the top-down vs. the bottom-up approach. In the top-down approach, the model
is constructed and parameterized to reproduce the structures and properties of
training systems. In the bottom-up approaches, one starts from the atomistically-
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detailed representation of a system to construct the effective site-site interaction
potentials by averaging over secondary degrees of freedom. The second dimension
is the source of parameterization, which divides the coarse-grained force fields into
knowledge-based (statistical) and physics-based ones, depending on whether the
potentials are obtained by Boltzmann inversion of the distribution or correlation
functions extracted from structural databases or by integrating all-atom PESs or
using thermodynamic data. The physical meaning of the statistical potentials is
not clear [46]; however, they are quite successful in ab initio protein structure
prediction and protein-folding simulations [12]. The most advanced CG force fields
combine the bottom-up approach, regarding the design and parameterization of
specific energy terms, with the top-down approach, executed as the last step of
parameterization, as well as physics-based and statistical data for parameterization.

This chapter is devoted to the physics-based CG approaches. In what follows,
we describe the construction of CG energy functions, including the scale-consistent
approach developed in our laboratory [35, 39], the methods of force-field param-
eterization, and the methods for the search of the conformational space, including
the use of information from structural databases and experimental data. Lastly, we
briefly describe some of the physics-based CG force fields and their applications.
We conclude with summarizing the present status and outlining the perspectives of
the field.

2.2 Designing Coarse-Grained Models and Force Fields

2.2.1 Potential of Mean Force as the Origin of CG Force Fields

A coarse-grained effective energy function of a system originates from its potential
of mean force (PMF), with all degrees of freedom that are not present in the
coarse-grained representation averaged out [24, 35, 39]. The variables describing the
geometry of the system, including the surrounding solvent molecules if applicable,
are divided into the primary variables (X), which describe the coarse-grained
degrees of freedom, and the secondary variables (Y) that are averaged over. The
secondary variables often include the solvent degrees of freedom; with such a
choice, the solvent is implicit in an effective CG energy function. For polymer
chains, it is natural to identify the dominant secondary degrees of freedom with the
dihedral angles λ for the rotation of the atoms comprising the extended sites about
the respective virtual-bond axes [35] (Fig. 2.1). Consequently, the PMF [F(X; T )]
is expressed by Eq. 2.1.

F(X; T ) = − 1

β
ln

⎧
⎪⎨

⎪⎩
1

VY

∫

�Y

exp [−βE(X; Y)] dVY

⎫
⎪⎬

⎪⎭
(2.1)
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Fig. 2.1 Illustration of the primary (kept in the CG representation) and secondary (averaged out)
degrees of freedom with a fragment of a polypeptide chain containing an L-lysine residue (which
has position i in the sequence) in the UNited RESidue (UNRES) [48] CG representation. The
only interaction sites are the united peptide groups (p), the centers of which are located in the
middle of the Cα · · · Cα virtual-bond axes and marked as small light-blue circles, and the united
side chains (SC), the lysine side-chain center being located on the top of the Cα · · · SC virtual bond
and marked with a small yellow circle. The virtual bonds are marked with black dashed lines and
the atoms that belong to the centers are contained in light-blue (peptide groups) and light-orange
(side chain) spheroids, respectively. The primary degrees of freedom are the positions of the Cα

and the side-chain centers (SC); these constitute the variables X in Eq. 2.1. The degrees of freedom
averaged over (variables Y in Eq. 2.1) are, primarily, the collective rotation angles λ of the atoms
of the united groups about the Cα · · · Cα (λpi−1 and λpi

in the Figure) and Cα · · · SC (λSCi
in the

Figure) virtual-bond axes, respectively; they are marked with curved arrows perpendicular to the
virtual-bond axes, and the coordinates of the solvent molecules (not shown in the Figure). These
secondary variables undergo the greatest variation. Additionally, the atoms of the united groups
and those of the water molecules oscillate about the equilibrium values determined by valence
geometry. It should be noted that averaging implies that the shape and interaction potentials of the
united groups have the axial and not the spherical symmetry

where E(X; Y) is the original (all-atom) energy function, equivalent to the Born-
Oppenheimer potential-energy surface, in which the electron degrees of freedom
are averaged out, �Y is the region of the Y subspace of variables over which
the integration is carried out, VY = ∫

�Y
dVY is the volume of that region, and

β = 1/RT , R being the universal gas constant and T the absolute temperature.
From Eq. 2.1 it also follows that a CG energy function depends on temperature (in
other words, it contains both the energy and the entropy components); however, this
dependence is rarely taken into account in the CG force fields [47].

It can be noted at this point that the PMF (Eq. 2.1) defines the prototype of coarse-
grained energy functions in the same way as the Born-Oppenheimer potential energy
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defines all-atom energy functions; in the second case averaging is done over electron
degrees of freedom.

The choice of the PMF as a prototype of coarse-grained energy functions is
motivated by the fact that the probability density, P(X; T ) of a given coarse-grained
structure is directly related to it (Eq. 2.2) and also any ensemble and thermodynamic
averages can be computed using the PMF or PMF and its temperature derivatives
[35].

P(X; T ) =

∫

�Y

exp [−βE(X; Y)] dVY

∫

�X

∫

�Y

exp [−βE(X; Y)] dVYdVX
= exp [−βF(X; Y)]∫

�X

exp [−βF(X; Y)] dVX

(2.2)

2.2.2 Derivation of CG Force Fields from PMF Surfaces

The PMF defined by Eq. 2.1 cannot be applied as it is because, except for very
simple systems, its evaluation would be much more expensive than doing the
atomistically-detailed simulations of a system and, moreover, it would be system-
specific. Therefore, as in the case of the construction of all-atom force fields from
the Born-Oppenheimer potential-energy surfaces, a simplified form must be sought.
Generally, the PMF can be split into local, pairwise, and multibody terms, as
expressed by Eq. 2.3.

F(X) =
∑

i

Ui +
∑

i<j

Uij +
∑

i<j<k

Uijk + . . . (2.3)

The local terms (Ui) correspond to virtual-bond stretching, virtual-bond bending,
etc., the pairwise (Uij ) terms are site-site interaction potentials. The multibody terms
(Uijk and higher) are the most difficult to derive and, therefore, are present in few
force fields, although their presence is mandatory in principle, because the potential
of mean force is not expressible in terms of pairwise terms except for systems
composed of isolated pairs of sites. A systematic method of splitting the PMF into
components, including the multibody terms, will be outlined later in this section
[35, 39].

The terms in Eq. 2.3 can be introduced as tabulated potentials or as parameter-
izable analytical expressions. The tabulated potentials are effectively restricted to
functions in one variable, e.g., a site-site distance. Such potentials can be applied
directly in Monte Carlo simulations, although spline functions are used to make
them suitable for CG molecular dynamics [49].

The analytical expressions for the local and pairwise terms are usually imported
from all-atom force fields, which include the harmonic bond-, bond-angle, and
torsional terms for local interactions and the Coulomb-electrostatic and van der
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Waals terms for long-range interactions; this is the case of the most widely
used MARTINI force field [50]. However, such neoclassical expressions are not
necessarily relevant for coarse-grained models, because the long-range potentials
depend not only on distance but also on orientation. An example of introducing
the dependence on site orientation are the Gay-Berne potentials [51], which were
initially developed for liquid-crystal simulations.

In our laboratory, we have developed a systematic method for the derivation of
effective coarse-grained energy terms [35, 38, 39]. First, the atoms are assigned
to the CG interaction sites and the interaction energies are divided into the
contributions ascribed to single sites, pairs of sites, and clusters of sites, the latter
corresponding to all-atom multibody terms. The respective groups of site, site-site,
and site-cluster energies are termed the component energies. Subsequently, the PMF
is rewritten in terms of Kubo cluster cumulant functions [52], termed factors, which
correspond to Boltzmann integrals over combinations of the component energies.
Each factor is a potential of mean force or a combination of potentials of mean forces
corresponding to a respective section of the system and can be treated as a force-
field term. Because the factors correspond to repeated units (e.g., amino-acid side
chains and their pairs or higher clusters), they are transferable between systems just
as all-atom force-field terms are. The order of a factor is the number of component
energies that enter into the respective Boltzmann integrals and summing all the
factors restores the original PMF. For practical reasons, the factor expansion needs
to be truncated. Factors of order 1 correspond to site-local (virtual-bond potentials),
site-pair local (virtual-bond-angle potentials) and long-range pairwise potentials,
while higher-order factors correspond to multibody terms. Specifically, the second
order-factors composed of the local interactions of three consecutively bonded sites,
but excluding the interactions between the first and the third site, correspond to the
torsional potentials [35, 39]. We found that expansion of up to order 3 is sufficient
for a force field to work [35, 38]. The neoclassical CG force fields contain mostly
the first-order factors, the only second-order factors being the torsional potentials.

To get approximate analytical expressions for the effective CG energy terms
(PMF factors), we expand them into Kubo’s generalized-cumulant series [52]. The
lowest-order cumulants serve as parameterizable analytical energy-term expressions
[35, 39]. Further, by expressing the energy of a system at the all-atom level in
terms of interatomic distances, expressing the interatomic distances in terms of the
distances between the coarse-grained-site centers, the orientation of the virtual-bond
axes, and the angles for collective rotation of the atoms of the coarse-grained groups
about the virtual-bond axes λ (cf. Fig. 2.1), and averaging over λs to compute the
cumulants, we derived scale-consistent expressions for the effective energy terms,
which embed the details of the all-atom geometry that are not present explicitly
when passing to a coarse-grained representation [35]. The above approach enables
us to obtain the energy expressions that exhibit correct dependence on orientation
and the multibody energy terms that account for the coupling between the coarse-
grained degrees of freedom through the fine-grained degrees of freedom, which are
omitted from a coarse-grained model. In particular, we found that the torsional
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potentials depend not only on the virtual-bond-dihedral angles but also on the
virtual-bond angles [35].

2.2.3 Solvent Treatment in CG Force Fields

Water is the most common solvent in biomolecular simulations. Its role in protein
folding is not limited to that of a medium. Water molecules often become part of
the biomolecule’s structure [53] and can be found in the interior of the proteins
[54]. They are known to play an essential role in protein folding [55]. In particular,
when studying protein-ligand interactions, it is essential to simulate the nearby water
molecules[56], because they participate in protein-ligand hydrogen-bond-network
formation.

Explicit water molecules or water clusters are considered in many CG force fields
such as, e.g., MARTINI [31, 50], SIRAH (South American Initiative for a Rapid and
Accurate Hamiltonian) [57, 58], and in the family of force fields developed by Voth
and coworkers [24, 49]. In the latter, a single water molecule is considered as an
extended interaction site [49]. Several (4 or 8) water molecules are merged into
a single CG bead in the MARTINI force field [50, 59]. More sophisticated water
models with polarizable beads have also been proposed [60]. A good review about
explicit representation of the water molecules is presented in ref [61].

In most of the CG force fields, including a variant of MARTINI termed “dry
Martini” [62], the interactions with water are absorbed into the CG potentials,
which is formally accomplished by treating the water degrees of freedom as the
degrees of freedom averaged out in the expression for the PMF (Eq. 2.1). This
simplification significantly reduces the number of degrees of freedom of the system
and speeds up the simulations; however, its disadvantage is that structural water
cannot be considered. In dry MARTINI [62], only the well-depths (ε) and radii
(σ ) in the Lennard-Jones potential are modified to account for the interactions with
water molecules implicitly. A similar approach has been implemented in the early
version of UNited RESidue (UNRES) CG force field for proteins [63], in which
the interactions with water are implicit in the side-chain-interaction potentials. A
more sophisticated model, in which the effective interactions with the solvent are
handled through a cavity term and a Generalized-Born term, similar to that of all-
atom implicit-solvent models [64] was later implemented in UNRES [65]. This
model also takes into account side-chain anisotropy. An analytical formula, which is
based on differential Gaussian overlap for the cavity term was proposed [66], which
has been subsequently generalized to sites with axial symmetry [67]. This formula
is easier to handle and more stable numerically compared to those based on the
molecular surface area. The model was successfully applied in protein simulations
[68].
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2.2.4 Force-Field Parameterization

The data for parameterization are the PMFs of model systems and the experimental
data, which include thermodynamical and structural properties and the struc-
tures themselves. Additionally, the distribution functions derived from structural
databases are used to parameterize statistical potentials. In this section we describe
briefly the methods of parameterization.

2.2.4.1 Direct Computation of PMF Surfaces

This approach is a bottom-up one and is particularly suitable to determine the PMF
factors in the factor-expansion approach (see Sect. 2.2.4). The respective model
systems correspond exactly to the evaluated PMF factors, e.g., single or connected
sites (to evaluate the local potentials), pairs of disconnected sites (to evaluate
pairwise potentials), or clusters of sites or interacting fragments of polymer chains
(to evaluate multibody terms). This approach has been originated by Levitt [44] and
also used later by Pincus and Scheraga [69] to determine the CG potentials from
atomistically-detailed potentials.

For small systems such as, e.g., fragments of polypeptide backbone, the PMF
can be evaluated by numerical integration of the PESs calculated at the QM
level. For example, in the computation of the virtual-bond-stretching PMF of the
peptide group, taking into account drastic virtual-bond-length change upon cis-trans
isomerization, the PES was evaluated at the MP2/6-31G** ab initio QM level, (300
grid points only) [70]. The calculations were carried out at the same high level to
derive the virtual-bond-angle bending and the virtual-bond-dihedral-angle torsional
potentials of polypeptide chains for the UNRES force field [71]. However, to derive
the side-chain-rotamer potentials [72], which require about 700,000 grid points for
the largest side chains, the AM1 semi-empirical QM method [15] was used.

For systems with more degrees of freedom such as, e.g., the pairs of interacting
sites in water or the fragments of polysaccharide or saccharide derivative chains
in water, where the solvent degrees of freedom need to be considered, the PMFs
must be evaluated by umbrella-sampling MD simulations. In these simulations,
biasing potentials are imposed on the reaction coordinate (e.g., the distance between
site centers) to cover the whole range, which are removed by using the Weighted
Histogram Analysis Method (WHAM) [73] in the post-processing step to obtain the
PMF. This approach has been implemented in determining the potentials of side-
chain–side-chain interactions [65], the potentials of interaction of heparin units [74]
and the torsional potentials of polysaccharides [75] and heparin [74].
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2.2.4.2 Force Matching

Force matching (FM) is a bottom-up approach, in which the forces acting on CG
sites are determined to fit the average forces computed from the respective all-
atom forces, which are usually obtained by carrying all-atom MD simulations. This
method was first applied to develop coarse-grained force fields by the Voth group
[24, 49, 76] and termed Multiscale Coarse Graining (MSCG) method. Originally
the MSCG/FM method was designed for radial pairwise potentials, the site centers
being their centers of mass. This is accomplished by linear least-squares fitting,
following Eq. 2.4.

M∑

i=1

N∑

j=1

||FCG
ij − FMD

ij ||2 = min (2.4)

where FCG
ij is the vector of CG forces acting on the center of the mass of site j in

MD snapshot i, FMD
ij is the respective vector of CG forces computed from all-atom

MD simulations, which is defined by Eq. 2.5.

FMD
ij =

∑

k∈{j}
fijk (2.5)

where fijk is the all-atom force acting at atom k of site j in snapshot i. The CG
forces are further expressed in terms of radial pairwise contributions (Eq. 2.6).

FCG
ij =

∑

k �=j

ϕjk(rijk) (2.6)

where ϕjk is the effective CG force acting between sites j and k and rijk is the
distance between the centers of the masses of sites j and k for snapshot i. The ϕs are
binned, the values at the bins being determinable parameters, hence minimization of
the target function given be Eq. 2.4 is a linear least-squares problem. Even though
the multibody terms are not considered directly, they are implicit in the pairwise
potentials [76].

Once the ϕjk profiles have been determined, the respective PMFs are obtained by
numerical integration over site-site distance, thus giving the force-field components,
which can be used in CG simulations [77]. However, the potentials are specific to
the systems they have been derived with and, thus, weakly transferable.

Recently, we developed another variant of the FM approach [78], in which
the analytical formulas for the CG forces derived by using the scale-consistent
methodology [35, 38] are fitted to the MD forces, which improves transferability.
Our method also covers the CG models in which the interaction potentials are
axially- and not radially-symmetric, this enabling more extensive coarse graining.
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Application of this approach to the UNRES force field resulted in a transferable
force field that is able to predict protein structures [78].

2.2.4.3 Iterative Boltzmann Inversion and Inverse Monte Carlo Iteration

These two approaches are similar to FM in that they extract the effective potentials
based on Monte Carlo or MD simulations of multicomponent systems. In the
iterative Boltzmann inversion (IBI) method [79, 80], starting from an initial CG
energy function (which can have a tabulated or analytical form), its parameters
are refined given the probability distribution function obtained from all-atom
simulations, as expressed by Eq. 2.7.

U(i+1) = U(i) + RT ln
P (i)

Pref

(2.7)

where U(i) and P (i) are the CG energy function and the respective probability
distribution obtained in the ith iteration and Pref is the reference probability
distribution (in CG variables) obtained from all-atom simulations.

In the inverse Monte Carlo (IMC) method [81, 82], the CG Hamiltonian of a
system, H({q}), is defined in terms of basis functions Sα({q}), q being a selected
CG coordinate and {q} denoting the set of coordinates used in parameterization, as
given by Eq. 2.8.

H({q}) =
N∑

α=1

VαSα({q}) (2.8)

where Vα is the coefficient corresponding to the basis function Sα and N is the
number of the basis functions. Usually the basis functions are associated with the
bins of a reaction coordinate (e.g., the site-site distance), being 1 inside and 0
outside a bin. From all-atom simulations, the averages over the basis functions 〈Sα〉
(proportional to the counts of points in the bins if the basis functions are bin-based)
can be obtained, which can also be computed using the Vαs (Eq. 2.8). Thus, the Vαs
can be iteratively updated using the Newton iteration, as expressed by Eq. 2.9.

N∑

γ=1

∂〈Sα〉
∂Vγ

�Vγ = 〈Sref
α − SCG

α 〉, α = 1, 2, . . . , N (2.9)

where the derivatives are defined by Eq. 2.10.

∂〈Sα〉
∂Vγ

= 1

RT

(〈Sα〉〈Sγ 〉 − 〈SαSγ 〉) (2.10)
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Both the IBI and IMC methods have been implemented in the MAGIC package
for automatic parameterization of CG force fields [37, 83].

2.2.4.4 Fitting Force-Field Parameters to Reproduce the Experimental
Data

In this top-down approach, the force-field parameters are adjusted to reproduce
the thermodynamical and mechanical properties such as hydration free energies of
model compounds, partition coefficients or interfacial tensions. This approach has
been used to parameterize the MARTINI force field [27, 31]. Other properties to use
are the free energies of DNA hybridization or protein folding-unfolding transition
and transition heat capacities; these quantities were used as part of parameterization
of the UNRES [47] and NARES-2P [84] coarse-grained force fields for proteins and
nucleic acids, respectively.

2.2.4.5 Calibration with Experimental Structures

This top-down approach is used to parameterize the force fields aimed at reproduc-
ing the structures of the systems studied, e.g., physics-based prediction of protein
structures, protein-protein docking, protein dynamics, prediction of RNA structure
and dynamics, etc. The underlying principle is to make the native-like structures the
most probable in simulations.

Wolynes and coworkers [85–88] developed a method based on maximizing the
ratio of the folding-transition and the glass-transition temperature (Tf /Tg). With
this condition satisfied, a system achieves the native structure at a temperature higher
than the glass-transition temperature, this enabling efficient folding. Maximization
of the Tf /Tg ratio can be approximated by the requirement for obtaining the most
negative value of the Z-score of the energy distribution, which is the difference
between the native-structure energy and the mean energy scaled by the standard
deviation of the energy, as given by Eq. 2.11.

Z = Enat − 〈E〉√〈E2〉 − 〈E〉2
(2.11)

Another approach is the maximization of the energy gap between the native
structure and the lowest-energy alternative structure, which was first developed
by Crippen and coworkers [89]. We generalized this approach to develop a
hierarchical optimization method [90, 91], in which free-energy gaps, determined
from unfolding experiments if possible, are set between subensembles with various
degree of folding. We applied this method to the UNRES force field, obtaining its
predictive variants [47, 90, 91].

An undesirable feature of the approaches described above is that they heavily
rely on a small (and, thereby, volatile) subset of simulated conformations, which
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are classified as native-like or belonging to a certain level of the folding hierarchy.
Since the procedure consists of iterations, in which the energy-function parameters
are determined by optimization of the target function of choice computed by using
the ensembles of conformations simulated in a previous iteration, the procedure
is unstable. To overcome this instability, recently we developed the maximum-
likelihood approach [92], in which the simulated conformational ensembles of the
training systems are fitted to the corresponding experimental ensembles (usually
determined by NMR), at best at a range of temperatures bracketing the folding-
unfolding transition. Because optimization is based on whole ensembles, the
instability is removed. This method has been used with success to produce predictive
variants of the UNRES force field [93, 94] for proteins and of the NARES-2P force
field for nucleic acids [84].

2.3 Methods of Conformational Search

Because the multidimensional energy surfaces of complex systems possess zillions
of local energy minima, even if the coarse-grained models are used, exploring the
configurational space in order to locate stable structures is a challenge [95, 96].
Local energy minimization is not suitable as a search tool except for very simple
systems. Moreover, low energy does not guarantee that a structure is stable; it needs
to be located in a wide enough energy basin. Furthermore, computing structural and
thermodynamic averages requires a wider search.

Regarding their purpose, the methods of conformational search can be divided
into those aimed at finding canonical averages; these are canonical Monte Carlo
(MC) [97] and canonical molecular dynamics (MD) methods [1], and methods
for finding the lowest-energy minima in the potential-energy surface (global
minimization methods) [95]. Methods of the first class also enable the researchers
to study the time evolution of a system. Multi-canonical extensions of these
methods, such as those based on replica exchange (REMC and REMD, respectively)
enable us to perform even a wider search at many temperatures simultaneously,
and make it possible to find structures with the lowest energy. Although global
energy minima are not necessarily the most stable structures because of neglecting
the entropy component, the global minimization methods [95] are useful because
they usually lead to low-energy structures faster than the canonical sampling even
with the multicanonical extension. They are often used in data-assisted structure
determination.

In Sects. 2.3.1–2.3.4 the basic conformational-search techniques used with CG
force fields are discussed, while the use of experimental and database-derived
information is described in Sect. 2.3.5.
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2.3.1 Canonical Monte Carlo

The basic canonical MC algorithm [97] consists of a sequence of steps, in each
of which the current conformation is randomly perturbed and the energy of the
perturbed conformation is computed. If the energy is lower, the old conformation is
replaced with the new one. If not, the new conformation is accepted with probability
exp(−�E/RT ), where �E is the difference between the energy of the new and the
old conformation, R is the universal gas constant, and T is the absolute temperature.
The process is iterated until the ensemble averages converge. The ensemble averages
are updated every given number of steps. The MC approach requires only energy
evaluation but its efficiency is reduced by small perturbation-step size that must be
taken to achieve a sufficient acceptance rate.

Except for simulations of model Lennard-Jones systems, Cartesian coordinates
are rarely used as the variables of choice. For polymers, it is common to sample in
the dihedral-angle space or even to introduce collective many-bond motions [98].
However, care must be taken, because the use of angular variables makes it only too
easy to introduce a bias in the sampling [1]. Also, the use of lattice representation
of polymer chains, which enables us to precompute many energy terms is common
[98].

2.3.2 Molecular Dynamics

Molecular dynamics is based on numerical integration of Newton’s equations of
motion [1, 6]. For the all-atom representation, the construction of these equations
is straightforward because the atomic nuclei can be treated as point objects with
masses, whose coordinates are the variables. This scheme is carried over to most
of the coarse-grained MD approaches by assuming that the CG beads are spherical.
Consequently, each bead can be represented as a point mass positioned at the center
of the mass of the bead [24]. However, this assumption precludes extensive coarse
graining, in which case it is impossible to keep the spherical shape of the CG beads.

In our work [99], we proposed a general MD scheme, in which each site is
characterized by the position of its center and the direction of its axis, identified
with the virtual-bond axis. Assuming such axial symmetry is natural for polymer
chains. Consequently, the system is composed of stretchable rods, with the mass of
each rod smeared over the rod, according to the distribution of the atoms along the
direction of the virtual-bond axis. The resulting equations of motion do contain a
non-diagonal matrix of inertia (G) but this matrix is constant, which enables us to
compute its inversion only once [99]. Moreover, with an appropriate choice of CG
coordinates (q), the matrix of inertia becomes a five-diagonal matrix, which makes
the memory requirements and compute costs liner in system size. Thus, in general,
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the equations of motion for a CG system can be expressed by Eq. 2.12.

Gq̈ = −∇qU(q) + ff ric + frand (2.12)

where q̈ are the accelerations, U is the effective CG potential energy, and ff ric

and frand are the friction and stochastic forces, respectively which, apart from
accounting for part of the interactions with the usually implicit solvent, serve
to maintain a constant average temperature, a condition necessary for canonical
simulations. The system of differential equations given by Eq. 2.12 corresponds to
Langevin dynamics; without the friction and stochastic term the system maintains
constant total energy (microcanonical mode).

The Langevin thermostat (inclusion of the friction and stochastic forces) is rec-
ommended even with explicit solvent [100]; however, the weak-coupling (Berend-
sen) [101], Nosé-Hoover [102] or Nosé-Poincaré [103] thermostats can also be used.
It should be noted, though, that the Berendsen thermostat, although the simplest
to implement and exhibiting stable behavior, results in too narrow a temperature
distribution.

A variety of algorithms have been developed for numerical integration of the
equations of motion, the most popular belonging to the Verlet algorithm family;
these are the Verlet, the leap-frog, and the velocity-Verlet algorithm [6]. Except
for the velocity-Verlet algorithm, they require the estimation of the position or
velocity, respectively, prior to the initial step, which can be accomplished by doing
a backward step of a simple Euler integration. All three algorithms are symplectic
algorithms, which means that the total energy undergoes only small oscillations (the
extent of which depends on time-step size) about the average value. The equations
of motion with the Nosé-Hoover and Nosé-Poincaré thermostats, on the other hand,
are symplectic regarding the kinetic energy (kinetic temperature) [102, 103].

Compared to MC methods, MD usually results in a faster (in terms of compute
time) evolution of the system. The size of the time step in MD cannot be too
large and a value 1 or 2 fs is taken. With a larger time step, the simulations often
exhibit unstable behavior due to rapid change of acceleration and, consequently,
the calculated structures and properties become unreliable. The time step can be
extended even up to 20 fs when the multiple-time-step (MTS) algorithms are used
[6, 104–107], in which the forces are divided into the short-range and fast-varying
ones and the slow-varying forces. The fast-varying forces, which are less expensive
to compute, are integrated with a time step which is an integer fraction of the
original time step, while the slow forces, which are more expensive to compute,
are integrated with the original time step. The number of divisions of the original
time step is termed the split number. With a fixed split number, this algorithm is
time reversible, however, setting a large split number (which might be needed for
bumpy energy landscapes) reduces the efficiency. We developed [107] the Adaptive
Multiple Time Step (A-MTS) algorithm, in which the split number is adjusted
depending on acceleration change. This algorithm is not time reversible but more
efficient than the original MTS algorithms.
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As mentioned in the Introduction, the time scale of CG simulations is dilated
compared to the all-atom time scale, owing to pre-averaging over the secondary
degrees of freedom. This dilatation amounts to 3–4 orders of magnitude when the
solvent degrees of freedom are also averaged out in the CG model [40]. Therefore, 1
time unit of CG simulations corresponds to about 1000 units of all-atom simulations.

2.3.3 Extensions of MC and MD

To enhance the search of the conformational space, the replica-exchange variants
of the canonical Monte Carlo and molecular dynamics approaches, also known as
parallel tempering, have been developed [108, 109]. These extensions are called
replica-exchange MC (REMC) or replica-exchange MD (REMD), respectively. In
these methods, a number of parallel MC or MD simulations (replicas) are carried
out at different temperatures (T0, T1, · · · , TMT ). The replicas evolve independently
and, after a certain number of MC or MD steps, an exchange of temperatures
between neighboring replicas (with indices i and i + 1, respectively) is attempted,
the acceptance of the exchange following the Metropolis criterion with the exchange
probability ω expressed by Eq. 2.13, which reflects the fact that the effective CG
energy function can depend on temperature [47, 110]:

ω(qi → qj ) = min[1, exp(−�)] (2.13)

with

� = [βjU(qj ; βj) − βiU(qj ; βi)
]− [βjU(qi; βj) − βiU(qi; βi)

]
(2.14)

where βi = 1/RTi , Ti being the absolute temperature corresponding to the ith
trajectory, and qi denotes the variables of the conformation of the ith trajectory
at the attempted exchange point. The multiplexed variants of the REMC/REMD
methods (MREMC/MREMD) [111, 112] differ from the REMC/REMD method in
that several trajectories are run at a given temperature. Each set of trajectories run at
a different temperature constitutes a layer. Exchanges are attempted not only within
a single layer but also between layers.

In the Hamiltonian Replica Exchange extensions of canonical MC and MD
(HREMC and HREMD, respectively) [113–115], M canonical MC/MD simulations
are carried out simultaneously at different temperatures and with different potential-
energy functions (V ), which can differ by the repulsive Lennard-Jones terms, if
the purpose is to allow the system to overcome sterical clashes or with different
restraint functions, if the purpose is to explore different ranges of order parameters
[47, 115]. Usually the Hamiltonian replicas are combined with temperature replicas.
Thus, the replicas constitute a two-dimensional (Ti, Vj ) grid. For each replica, an
exchange is attempted with its neighboring replica in one or two dimensions (up,
down or diagonal on the grid, the direction being selected at random). The exchange
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is accepted based on the probability ω expressed by Eq. 2.15:

ω
(
qij → qkl

) = min[1, exp(−�)], (k, l) ∈ {(i + 1, j ), (i, j + 1), (i + 1, j + 1)}
(2.15)

with

� = [βkVl(qkl; βk) − βiVj (qkl; βi)
]− [βkVl(qij ; βk) − βiVj (qij ; βi)

]
(2.16)

where Vj is the potential-energy function (including the restraining potential)
corresponding to the (Ti, Vj ) trajectory, and qij denotes the variables of the
respective conformation of this trajectory at the attempted exchange point.

Multicanonical algorithms [116, 117], also known as entropy sampling [117], are
another class of methods, in which the energy is replaced in the Metropolis criterion
by the logarithm of the density of states (the microcanonical entropy). A simulation
is converged when all energies are sampled with the same frequency; therefore,
this method is well suited to overcome energy barriers. Once the density of states
is obtained, all ensemble averages can be computed. The multicanonical methods
have been applied with the UNRES CG force field [118].

2.3.4 Global Energy Minimization

The methods for finding the global minimum in the potential-energy surface can
be divided into deterministic and stochastic ones [95, 119, 120], the deterministic
methods being nowadays only of historic significance. An elegant deterministic
approach to global optimization are the deformation methods [121–124], in which
the original energy surface is deformed to reduce the number of minima, ideally
to one minimum, which can easily be found by local minimization. The original
energy surface is subsequently restored by means of a reversal procedure, the global
minimum in the deformed surface being traced to the global minimum in the original
energy surface. The respective methods include the Diffusion Equation Method
(DEM) [121, 122], the Distance Scaling Method (DSM) [124], and the imaginary-
time Schrödinger equation method [123]. Because of difficulties in determining
the appropriate extent of deformation and designing the reversal procedure, these
methods have been applied to small systems only, except for DSM which was
combined with a stochastic search in the reversal process and was applied to the
UNRES CG force field [124].

The stochastic methods combine the Monte-Carlo concept with a systematic
search. Monte Carlo Minimization (MCM) is the most straightforward and, at the
same time, a very efficient method of this class [125]. In this method, one starts from
a local energy minimum, which is perturbed using a large step and the resulting
conformation is energy minimized. If a different energy minimum is reached, the
new conformation is accepted unconditionally, if the new energy is lower and
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accepted with the Boltzmann probability, if it is higher. It should be noted that the
sampling scheme in MCM violates the detailed-balance condition and, therefore,
this method cannot be readily applied to compute ensemble averages. MCM was
applied in coarse-grained modeling [126]. More advanced variants of MCM are the
basin-hopping [127] and αBB (a branch-and-bound method) [128].

Genetic algorithms are the most efficient in the global-minimum search. The
Conformational Space Annealing (CSA) method [129] is one of the most successful
algorithms of this class. It combines essential aspects of the build-up procedure and
a genetic algorithm. In the early stages of the search, the whole conformational
space is explored, and the search is gradually narrowed to smaller regions with
low energy. CSA has been adapted to carry out the conformational search with
the UNRES [130] and NARES-2P [131] force fields, leading to many outstanding
predictions of the protein structures in the CASP exercises [132–134].

2.3.5 Use of Geometrical Restraints in CG Simulations

The present force fields alone, both all-atom and coarse-grained ones, do not yet
have a sufficient accuracy to model the structures of biomolecules in the unassisted
or ab initio mode. Therefore, incorporating information from low-resolution experi-
mental data and bioinformatics is highly advisable. Several experimental techniques
can be used [135]. The chemical crosslinking/mass spectrometry (XL-MS) and
Fluorescence Resonance Energy Transfer (FRET) experiments provide information
about the distance distribution between specific amino-acid residues. Small/Wide-
Angle X-ray/Neutron scattering (SAXS, SANS and WAXS) can determine the
shape of a molecular system and distance distribution. Nuclear magnetic resonance
(NMR) and electron paramagnetic resonance (EPR) allow for the mapping of
the interacting regions of biomolecules at the residue/atomic level. Mutagenesis
and hydrogen-deuterium exchange experiments provide useful information on the
residues that are exposed to the solvent and those which are involved in interactions
within complexes. In contrast to the X-ray crystallography, the above-mentioned
approaches are not that demanding in terms of time, cost, and sample specificity.
The determined observables are included in a penalty function added to the potential
energy, which drives the search at the regions of the conformational space consistent
with the experimental data.

Different experimental techniques have their strengths and limitations and,
therefore, combining them as, e.g., in the Integrative/Hybrid Structure Modeling
can give better results than using them individually [136, 137]. In particular, hybrid
structural modeling reduces the danger of obtaining wrong structures when only
sparse or ambiguous data are available.
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2.3.5.1 Chemical Cross-Link Mass-Spectroscopy and Fluorescence
Energy Transfer

The data obtained from the XL-MS and FRET experiments provide information
on the inter- and intra-molecular contacts or distance distributions between specific
atoms (residues) in the system [138, 139]. In the XL experiment, the samples are
treated with a reagent that can bridge two amino-acid residues, if they are at a
relatively close distance (up to 25 Å). There are specific and nonspecific cross-
linking reagents, the specific ones bridging the residues that possess free acidic or
basic groups. After an about 30–60 min incubation period, the reaction is quenched
by removing the reagent from the solution. Afterwards, the protein is unfolded
by urea, the existing disulfide bonds are reduced, the free thiol groups of the
cysteine residues are alkalized and the whole molecule is subjected to the process
of digestion. At the end, the digested protein samples are purified and analysed
by Liquid Chromatography (LC) and Mass Spectroscopy (MS) [140]. The peptide
fragments attached to the XL reagent are identified and knowing the size and kind
of XL reagent, the distance distribution between specific residues and the surface
residues can be estimated.

The XL-MS data can be used to derive distance restraints, if only distance
ranges can be estimated or, if the distance distribution can be obtained, they can
be converted into pseudopotentials added to the energy function. They can also be
used as a filter to select the models compatible with these data.

The distances can be confined within a range determined by XL-MS experiments
by using a flat-bottom penalty function, such as that defined by Eq. 2.17 [141–143].

Vcont (d, dl, du,A) =

⎧
⎪⎪⎨

⎪⎪⎩

A
(d−dl)

4

σ 4+(d−dl)4 for d < dl

0 for dl ≤ d ≤ du

A (d−du)4

σ 4+(d−du)4 for d > du

(2.17)

where d is the distance between the Cα atoms of the two crosslinked residues in
the computed structure and dl and du are the lower and upper contact-distance
boundaries, respectively (usually dl = 2.5 Å, du = 25 Å), σ is the width of the
transition region between zero and the maximum restraint height, and A is the height
of the restraint wall, which can also be considered as the confidence of a crosslink.
This function quickly approaches the asymptote A, contributing virtually no force
when d � du. Thus, the penalty terms do not force incompatible restraints (which
usually correspond to false cross-links), preventing a simulation from producing
non-protein-like structures.

When the distance distributions can be determined, they are usually approxi-
mated by a sum of Gaussians, resulting in the log-Gaussian pseudopotentials such
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as those expressed by Eq. 2.18 [144].

V (d) = −A log

{
∑

i

ai

σi

√
2

π
exp

[
−1

2

(
d − d0i

σi

)2
]}

(2.18)

where d is the distance between the Cα atoms of two crosslinked residues, d0i and
σi , and ai are the parameters of the ith Gaussian, and A is the confidence of a
crosslink. The parameters of the log-Gaussian function vary based on the type of
XL experiment (reagent specificity, length of the linker).

FRET is mostly used to study the dynamics of macromolecules (e.g., domain
movement or the dynamics of the loops or C- and the N-ends) and in molecular-
assembly prediction. Here, it is necessary to know in advance the approximate
structure of a molecule, its domain structure or have a reliable theoretical (template-
based) model. In the FRET experiments, energy donor and acceptor fluorophores
(dyes) are attached to carefully selected sites in the target molecule [145, 146].
The donor dye is excited by a laser pulse, and part of the excitation energy is
transferred to the acceptor dyes, which are at a sufficiently close distance. The
measured intensities of dye fluorescence provide the information of the distance
distribution between them, because the transfer efficiency depends on the distance
between the donor and the acceptor fluorophores [147–149].

The information derived from FRET is the average distance or the distance
distribution between two residues to which the dyes were attached. Based on
several distance distributions from strategically selected labeled pairs of amino-acid
residues it is possible to determine the dynamics of the protein.

2.3.5.2 Small Angle X-ray/Neutron Scattering

In a SAXS experiment, a collimated monochromatic X-ray beam is passed through
the solution of the target macromolecules and the scattering intensity is measured
after passing through the sample. The same procedure is repeated for the solvent
alone. The obtained radiation intensities for the reflection angle for the pure solvent
are subtracted from those for the sample in the solvent to obtain a distribution of
reflected radiation intensities for the sample itself. In the simplest instance, the
information obtained from the SAXS experiment enables us to determine a low-
resolution shape outline of a molecule [150, 151].

The results of SAXS measurements are used in the form of the radiation scatter-
ing intensity [152–156] (which is the Fourier transform of the distance distribution),
distance distribution [157, 158] or as the area occupied by a molecule obtained by
adjusting the distribution of dummy atoms to obtain same as experimental curve of
radiation intensity as a function of scattering vector (shape envelope). Theoretical
and practical concepts of using molecular-modeling techniques combined with the
scattering data to determine high-resolution structures are described in the literature
[151]. Methods of using the scattering data in the determination of biomolecule
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structure and dynamics are still under development [159, 160]. The scattering-
intensity profiles are calculated from atomic or CG-site coordinates by using the
Debye formula [152, 153], which has been implemented in the CRYSOL program
[161]. A newer version of the CRYSOL program maps the experimental scattering
intensities and the associated errors onto a sparser grid [162]. The Pepsi-SAXS
program uses cubic-spline interpolation to represent the scattering profiles [154].
FoXS uses a linear approximation to the Debye scattering equation [155, 156].

Because the water molecules of the hydration shell are involved in scattering,
they must be taken into account in calculating scattering intensity or distance
distribution. Hydration shell can be modelled explicitly [152, 154, 163–165] or
implicitly [157, 158, 164]. The explicit approaches include that of Yang et al. [152],
in which nonhomogeneous distribution within the hydration layer is obtained by
assigning a different scaling factor for dummy water molecules. Zheng et al. [164]
model the hydration shell implicitly by combining each residue and its nearby
implicit water molecules into a composite representation [164]. In the SASSIM
method, the hydration shell is defined in terms of spherical harmonics and is
calculated using a Lebedev grid [166]. Watson and Curtis [165] implemented
the Euler formula to compute the rotationally averaged scattering intensity. The
orientations of the wavevectors (q) are taken from a quasi-uniform spherical
grid. The Pepsi-SAXS program [154] computes the scattering contribution of the
hydration shell of the molecule by constructing a grid approximation using the
linked-cell approach [167]. Several methods use a very simplistic representation
of the hydration shell of the sample; e.g., a two-dimensional angular function has
been implemented in the CRYSOL program [163]. In the approaches in which the
distance distributions are used instead of scattering profiles, the contribution from a
given pair of amino-acid residues is approximated by a Gaussian distribution with
the standard deviation calculated from the Stokes radii of these residues [157, 158].

There are several ways to combine molecular dynamics simulations with the
SAXS data [157, 168–170]. Larsen et al. [169] used the Bayesian/Maximum
Entropy method [171] and the pre-calculated SAXS and SANS intensities to
reweight the trajectories. Bowerman at al. [170] used Bayesian Analysis of Accel-
erated Molecular Dynamics Simulations. In the conformational search approach,
SAXS restraints can be incorporated in the form of maximum-likelihood function
[157] where sampling is guided directly by scattering data. A molecular-docking
approach directed by the SAXS-determined shape of a protein complex has also
been proposed [172].

2.3.5.3 Mutagenesis and Hydrogen-Deuterium Exchange (HDX)

These two techniques are used to determine the pattern of protein-protein interac-
tions.

In the mutagenesis analysis, the residues potentially responsible for interactions
are mutated to interaction-prone residues (usually alanines). If a mutation of a
residue results in reduced binding, the residue is likely to be involved in the



52 A. Liwo et al.

interactions. This information can be used to map the interfaces or binding sites
of interacting macromolecules [173–175].

In the hydrogen-deuterium exchange (HDX) experiments, the sample is treated
with D2O and then NMR or MS measurements are carried out, giving the informa-
tion about solvent-exposed residues (whose protons are exchanged for deuterons)
[176–179]. Consequently, it can also provide information about docking sites.

The information from the mutagenesis and HDX experiments can be used in
molecular-docking simulations or as a filter to select the structures of the complexes
which are compatible with the experimental data.

2.3.5.4 Nuclear Magnetic Resonance

The nuclear magnetic resonance (NMR) spectroscopy provides atom-atom (usually
proton-proton) distance and dihedral-angle restraints. Its advantage is that the
measurements are carried out in solution, under nearly-physiological conditions.
The first NMR-derived protein structures were reported in the 1980s [180]. NMR
restraints are usually quite sparse, therefore the force field used for refinement can
have a large impact on the quality of NMR structures [181].

Use of NMR-derived restraints in simulations with coarse-grained force fields
is straightforward only with those, which keep some atomistic details such as,
e.g., Rosetta in which the all-atom representation of the backbone is used [182].
NMR protein structure refinement based on Monte Carlo minimization has been
implemented with the Rosetta force field [183, 184], which incorporates elements
of statistical and physical parameter sets. It has been shown to improve the quality
and accuracy of the protein structures determined by NMR [185, 186].

For fully coarse-grained simulations, one approach is to reconstruct all-atom
structures from the CG representation and then to evaluate the restraints. This
approach was used by Latek et al. [187] in connection with the CABS statistical
force field [188]. Another approach is to estimate the proton-proton distance based
on the site-site distances (e.g., by adding 2 Å to the Cα · · · Cα distances to obtain
the upper limit). This approach is used with the UNRES force field [189]. In that
implementation, the dihedral-angle restraints are also considered, by converting
the (φ,ψ) backbone angles to the Cα · · · Cα · · · Cα · · · Cα backbone virtual-bond-
dihedral angles (γ ), by using the formulas derived by Nishihawa et al. [190].
The flat-bottom function defined by Eq. 2.17 (ref [141]) is used to handle possible
false assignments and another extension has been introduced to treat multiple peak
assignments (Eq. 2.19).

VNMR({d}; dl, du,A) = − 1

α
ln

{
namb∑

i=1

exp[−αV (di; dl, du,A)]
}

(2.19)

where {d} is the set of distances potentially corresponding to a given ambiguous
restraint, dl and du being the lower and the upper distance limits, respectively, and
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A is the wall-height of the restraint (cf. Eq. 2.17). With α large enough, this function
takes a value of nearly 0 independent of whether one only or all restraints of the
ambiguous set are satisfied, thus naturally eliminating the restraints of an ambiguous
set, which are incompatible with the structure.

2.3.6 Contact-Distance and Template-Based Restraints

Contact-assisted simulations play an increasing role in modeling protein [191, 192]
and RNA structure [193]. The contacts can be obtained from XL-MS, fluorescence-
resonance spectroscopy or NMR experiments, as described in Sects. 2.3.5.1
and 2.3.5.4, respectively. However, most of the contact information is acquired
through contact prediction [194–196]. One of the most successful methods of
contact prediction and implementation of the predicted contacts in protein-structure
modeling has been developed by the Zhang group [195, 197, 198]. In this approach,
weakly scoring threading templates are reordered by the structural similarity to the
ab initio folding models, which are then reassembled [197] based on fragment-
assembly simulations. The robustness of this approach can stem from the composite
fragment-assembly simulations that combine structures from both ab initio folding
and threading template refinements. Nevertheless, long-range β-strand folding still
remains a challenge [195, 198]. This method is used in the I-TASSER [197] and
Zhang servers [195].

In the approach used in the CoinFold server [194], a better contact-prediction
accuracy was achieved, without using any templates, owing to the integration of a
joint multi-family evolutionary coupling analysis and supervised machine learning.
This approach is unique because it uses residue coevolution information in the target
protein family, and also the related families which may have divergent sequences
but similar folds. The supervised learning further improves contact prediction
accuracy by making use of sequence profile, contact (distance) potential and other
information [194].

In our laboratory, we developed a method of utilizing contact prediction, in
which it is assumed that some of the predicted contacts can be false [141]. For
this purpose, we implemented the flat-bottom restraint function defined by Eq. 2.17.
This approach scored some success in the CASP13 exercise [189].

The deep neural networks are also used in DeepCDpred (deep contact distance
prediction) to predict inter-residue contacts and distances. The distances are pre-
dicted with a higher accuracy than that of most of contact prediction techniques.
The addition of distance restraints improved de novo prediction of protein structures,
compared to using the best contact prediction methods alone. Moreover, the use of
distance prediction allows for the selection of better models without an external
model-assessment tool [196].

Recently, another promising approach, termed AlphaFold [199, 200], has been
proposed, which is based on estimating residue-residue distance distribution through
machine learning. This approach outperformed other methods in the CASP13
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experiment. In AlphaFold, a neural network is trained to make accurate predictions
of residue-residue distances, which convey more information about the structure
than contact predictions. Using this information, a pseudopotential is constructed.
The authors claim that local gradient minimization of this potential plus local
terms leads to the final structure, without the need of using sophisticated sampling
algorithms. The method has achieved high accuracy, even for targets with weak
homology to known structures [200].

2.4 Examples of Physics-Based CG Force Fields and Their
Applications

In this section, selected physics-based force fields are characterized briefly. For more
extensive reviews of physics-based and statistical force fields the reader is referred
to the literature [4, 12, 23, 28, 29, 32–34, 36, 201]. The coarse-graining schemes of
the models discussed below are shown in Fig. 2.2.

Fig. 2.2 Illustration of the CG schemes implemented in the AWSEM [201], OPEP [202],
MARTINI [31], SIRAH [57], and UNRES [48] models of polypeptide chains with the example
of an L-lysine residue in the context of the immediate backbone surroundings. Each model is
labelled at the bottom of the respective panel. The interaction sites are represented with colored
spheres or spheroids centered at the centers of the sites and covering the atoms that are assigned
to a site. The virtual bonds linking the site centers are shown as black dashed lines. In AWSEM
and OPEP, the backbone is in the all-atom representation, while the side chain is represented as a
single spherical particle. In MARTINI, a single spherical particle of polar type encompasses the H,
N, Cα , Hα , C’, and O backbone atoms of a given residue, an apolar spherical particle contains the
carbon and hydrogen atoms of the side chain, while the protonated amino group is represented by
a charged particle. In SIRAH, the division of the side chain is similar as in MARTINI, while the
backbone is split into the Cα-H, N-H, and C’=O spherical particles. In UNRES, the backbone site
encompasses the C’, O, N, and H atoms of a peptide group, while the side-chain site encompasses
all side-chain atoms and the Cα-Hα group. The peptide-group and side-chain particles in UNRES
have the axial and not the spherical symmetry
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2.4.1 AWSEM

The Associative memory, Water mediated, Structure and Energy Model (AWSEM)
[201] has been developed in the Wolynes and Papoian labs. The force field applies
to polypeptide chains. The geometry of the chain is defined in terms of Cα , Cβ

and backbone carboxyl-oxygen atoms, which are interaction sites; the positions
of backbone N and H atoms are calculated assuming ideal trans-peptide-group
geometry. The energy function is expressed by Eq. 2.20.

Utotal = Ubackbone + Ucontact + Uburial + UHB + UAM + UDSB (2.20)

where Ubackbone is the backbone potential, which consists of the connectivity,
Ramachandran, chirality, and excluded-volume terms, Ucontact is the contact poten-
tial that consists of the pairwise Cβ · · · Cβ (Cβ replaced with Cα for Gly) and the
water-mediated potentials. This potential was optimized to maximize the ratio of
the folding-transition to the glass-transition temperature (Tf /Tg) [203]. Uburial is
the many-body residue-burial potential, UHB is the hydrogen-bonding potential
that depends on the oxygen-nitrogen and oxygen-hydrogen distances, peptide-group
orientation, and an explicit helical term. UAM is the knowledge-based associative-
memory term [204], which encodes alignments to proteins with known structures,
and UDSB is the desolvation-barrier term. Most of these terms are sums of Gaussians
or Heaviside-like functions in the respective geometric parameters.

The conformational-search engine in AWSEM is coarse-grained molecular
dynamics, which is performed using the LAMMPS [205] general MD package,
into which AWSEM has been integrated. AWSEM has been used successfully in
protein-structure prediction and simulations of protein folding and assembly [206],
including protein aggregation [207].

2.4.2 MARTINI

MARTINI [31] is probably the most popular CG force field. Originally designed to
simulate lipid systems [50], it has been extended to proteins [27], polysaccharides
[208], and nucleic acids [209]. A big advantage of MARTINI is a standardized
coarse-graining scheme, in which chain fragments are coarse-grained into sites
comprising 4 non-hydrogen atoms on average, while rings are divided into 3-
atom fragments. Depending on character, each CG particle is assigned a polar (P),
nonpolar (N), apolar (C) or charged (Q) type, with standardized parameters. This
scheme enables automatic coarse-graining without user intervention. Water and
lipid environments are treated at granular level except for the variant termed dry-
MARTINI [62]. Four or eight water molecules are assembled into an extended site.
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The MARTINI force field is of neoclassical type, with the same kind of terms as
in all-atom force fields, as given by Eq. 2.21.

Utotal = Ubond + Ubend + Utor + Unb + Ucoul (2.21)

where the consecutive terms stand for the virtual-bond-stretching, virtual-bond-
angle-bending, virtual-bond-torsional, nonbonded, and Coulomb-electrostatic
terms, respectively.

The conformational search with MARTINI is performed by means of molecular
dynamics. MARTINI was originally developed with the GROMACS MD suite [210]
but is also used with other standard MD packages.

MARTINI has been used worldwide to simulate a variety of biological systems
[31]. It has also been successfully applied in scoring the docked protein structures
[211] and in protein-RNA docking [212]. However, the force field is not predictive
and, consequently, secondary-structure restraints have to be imposed when simulat-
ing systems containing proteins and nucleic acids.

2.4.3 OPEP and HiRe-RNA

Optimized Potential for Efficient protein structure Prediction (OPEP) [30, 202, 213]
is a CG force field, which was initially developed to perform simulations of
polypeptides. Like in AWSEM, the all-atom representation of polypeptide backbone
is used, while each side chain is represented by a single spherical bead. The
effective energy function consists of local (bond-stretching, bond-angle, torsional)
and long-range term, which include the sidechain-sidechain contact potentials and
a sophisticated backbone-hydrogen-bonding term, which reflect the nearly-linear
arrangement of the N-H· · · O groups as observed in experimental structures. The
H-bond potentials also include four-body terms that promote the formation of
regular hydrogen-bond patterns. The force field has been parameterized using a
combination of bottom-up and top-down approaches, (cf. Sect. 2.2.4). A variety
of conformational-search techniques are used, including Monte Carlo, molecular
dynamics and their replica-exchange extensions [30]. Recently [214], the model has
been extended to run constant-pH simulations, which is accomplished by Monte
Carlo sampling of protonation states.

Owing to careful design and parameterization, unrestrained folding simulations
can be performed with OPEP. Based on OPEP, the PEP-FOLD3 server [215]
was created, which enables the user to run peptide- and small protein folding
simulations.

Based on the concept of OPEP, the HiRe-RNA model of nucleic acids [216] was
developed, in which 4 interaction sites (P, O5’, C5’, C4’, and C1’) are assigned
per backbone unit, a pyrimidine base is represented by 1 bead and a purine base is
represented by 2 beads. A special orientation-dependent potential has been designed
to keep paired nucleic-acid bases at appropriate geometry.
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OPEP/HiRe-RNA have been used in investigating protein dynamics, including
the effect of hydrodynamics interactions, small protein and RNA folding, and in
investigating protein aggregation, including amyloid formation [30]. The OPEP
force field, after training, was able to score structures of protein-protein complexes
with higher accuracy than that of ZDOCK [217].

2.4.4 oxDNA and oxRNA

The oxDNA/oxRNA force field developed by Ouldridge, Louis and Doye [218–223]
is a low-resolution DNA and RNA model with three beads per nucleotide. These
sites are the backbone-repulsion site, the base-repulsion site, and the base hydrogen-
bonding/stacking site, respectively, and form a linear fragment perpendicular to
the direction of the chain. The interaction potentials have been engineered to
reproduce base pairing but depend on the kinds of interacting bases and not
on their position in the sequence. Salt effects have been included [222]. The
model has been parameterized to reproduce the geometry and thermodynamics
of DNA hybridization and has been used with success to model the formation
and rearrangements of DNA and RNA nanostructures [223]. The model has been
included in the oxDNA package [222]. Both MC and MD simulations can be carried
out.

2.4.5 SIRAH

SIRAH [57, 58] is a CG force field to treat proteins, later extended to nucleic acids
[224], lipids, and polysaccharides. There are 3 interaction sites per polypeptide
backbone, located at the amide-N (GN), Cα (GC), and carbonyl-O (GO) atoms,
while each side chain is represented by 1 (for Gly) to 7 (for Arg and Trp)
beads. Water is explicit in the model. Each “water” particle (WT4) represents 11
tetrahedrally-coordinated water molecules and is comprised of 4 beads. Hydrated
ions: Na+, K+, and Cl− are considered explicitly, each extended ion particle
comprising the actual ion and the 6 water molecules constituting the first hydration
shell.

As in OPEP, the interaction potential consists of local and long-range terms.
Coulombic interactions are calculated explicitly and partial charges are present
on the beads of the WT4 particles, which results in the appropriate handling of
hydration. The parameters have been determined to reproduce the structural and
thermodynamic properties of model systems.

SIRAH has been ported to GROMACS [210] and AMBER [225] and, conse-
quently, the conformational-search engine is molecular dynamics. It has been used
in the simulations of natively-unfolded proteins and protein aggregation.



58 A. Liwo et al.

2.4.6 UNICORN

The UNIfied COarse gRaiNed model (UNICORN) [38, 48] is the most heavily
coarse-grained model of those described in this section. It has been created by
merging the models specific for proteins (UNRES) [39, 48, 63], nucleic acids
(NARES-2P) [226], and for polysaccharides (SUGRES-1P) [48, 74, 75]. Recently,
its extension to treat protein-nucleic-acid complexes has been developed [227].
For each macromolecule type, one bead is placed in the middle of the backbone
virtual bond (peptide group, phosphate group or sugar ring, respectively), and one
on the side group, if applicable. The respective potentials have been derived by
using the recently developed scale-consistent theory [35] (see Sect. 2.2.1), which
was evolving together with UNRES [35, 39, 228].

The energy function consists of local (virtual-bond-stretching, virtual-bond-
angle-bending, virtual-bond-torsional, side-chain chirality), and long-range terms.
The torsional terms depend both on virtual-bond-dihedral angles and on the virtual-
bond angles, which is a consequence of the application of the scale-consistent theory
[35]. The long-range terms are distance- and orientation-dependent [35, 39, 48, 63]
and they also include the terms that couple the long-range and local interactions.
Owing to these features, UNICORN can model regular secondary-structure patterns
without engineering specific potentials. Solvent is implicit in the interaction poten-
tials. The force field has recently been extended to lipid-bilayer environment, which
is treated as a continuous medium [229].

The potentials were parameterized by using a combination of the bottom-up
and top-down approaches (see Sect. 2.2.4) [35, 48, 94, 226]. The latest version of
UNRES was calibrated with the maximum-likelihood method, by using a set of
9 training proteins with various structural classes [38]. NARES-2P was calibrated
with the structural and melting-thermodynamics data of small DNA molecules [84].
UNICORN is probably the only coarse-grained force field in which the effective
energy function depends on temperature [47], which is a consequence of the fact
that a CG energy function is a simplified and parameterized potential of mean force
and not potential energy (Eq. 2.2.1).

Originally UNRES was used with methods of global optimization such as
MCM [125] and CSA [129], which enabled us only to find the lowest-energy
structures. With introducing coarse-grained molecular dynamics [40, 99, 107] and
its REMD and MREMD extensions [112], it became capable of simulating protein
folding, association, and functionally-importantmotions. MD and its extension were
implemented from the beginning in NARES-2P [226] and SUGRES-1P [48, 74, 75].
The MD algorithm has been specifically designed for the model, which implies
solving the equations of motion with a non-diagonal (albeit constant) inertia matrix
(see Sect. 2.3.2) [99, 107].

UNRES has very good prediction capacity in unassisted mode, as proved over the
years in CASP exercises [129, 134, 141, 230, 231], which is even more enhanced
when calculations are run in data- [232] or bioinformatics-assisted mode [233, 234].
UNRES handles proteins with D-amino-acid residues [71, 94], phosphorylated
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residues [235] and also takes into account the breaking and formation of disulfide
bonds during the course of simulations [236]. An extension to treat the binding of
proteins to nanoparticles has also been developed [237]. Recently [238] the UNRES
web server was developed with which the users can run the simulations with this
force field. Inspired by the success of the CABS-Dock server for coarse-grained
protein-peptide docking with the statistical CABS force field [239, 240], we have
recently extended UNRES to perform peptide-protein and protein-protein docking
simulations with adjustable level of flexibility, achieving satisfactory accuracy with
proper sampling [241].

UNRES was used to study protein folding [242], free-energy landscapes [243],
and to solve a variety of biological problems [48, 244, 245], including the formation
of oligomers and fibrils of amyloidogenic peptides [246–249].

NARES-2P not only reproduces the double-helix structure and folding thermo-
dynamics of DNA and RNA molecules but also the pre-melting transition in DNA
[84, 226]. With limited restraints, NARES-2P is capable of modeling complex DNA
and RNA folds [131]. NARES-2P was used to investigate telomere stability [250]
and the influence of single-strand breaks on the mechanical stability of various DNA
chains [251].

SUGRES-1P is still under development [74, 75]. It is being extended [74] to
include glycosaminoglycans (GAGs), which are not present in other CG force fields
despite their high biological significance. These molecules constitute a special class
of linear anionic polysaccharides comprised of disaccharide periodic units that
contain an uronic acid and an N-acetylated aminosugar [252]. GAGs are located
in the extracellular matrix, where they participate in a number of biologically
relevant processes as cell signaling, cell proliferation, cell adhesion, anticoagulation
and angiogenesis, by interacting with their protein targets such as collagen [253],
growth factors [254], chemokines [255], cathepsins [256], etc. Due to the diversity
of these compounds and lack of definite structure, the best way to learn about their
interactions with the target proteins and, consequently, the details of their biological
functions is through large-scale physics-based coarse-grained simulations.

2.4.7 Structure-Based and Elastic-Network Potentials

The structure-based models, also known as Gō-like models [257, 258], employ a
simple interaction model in which the native structure is, by design, the global
energy minimum. The long-range interaction potentials between residues that are at
contact in the native structure possess a minimum and are modeled by the Lennard-
Jones formula. Conversely, the interaction potentials for the pairs of residues,
which are not at contact in the native structure do not possess a minimum and,
consequently, consist only of the repulsive terms. These models have been used to
study protein folding [259–261], the underlying assumption being that the folding
pathway is determined by the native-structure topology. Despite their simplicity,
the Gō-like models were used to solve important biological problems such as the
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folding and unfolding of knotted proteins [262] or the mechanostability of virus
capsids [263]. In other structure-based models, specific restraints are imposed only
on secondary structure [264, 265]. An advantage of the Gō-like models is that they
are not expensive computationally and can readily be constructed for a given system.

In the elastic-network models, harmonic or anharmonic (sometimes double-
well) potential is imposed on the native structure. Consequently, this method is
used to study the fluctuations around the native structures, in particular finding the
functionally-important motions [266–268].

2.5 Conclusions and Outlook

Since the original idea of Levitt and Warshel [43], coarse-grained approaches
have evolved tremendously and have become a necessary tool with which to
model nanoscale systems, including the biological systems [4, 12, 36], enabling
the extension of the time- and size-scale of simulations by 3 and more orders
of magnitude [12]. Physics-based CG force fields are gradually becoming more
popular, which is reflected in the increasing number of workshops and conferences
dedicated to their development and applications, e.g., the CECAM workshops in
Leiden (The Netherlands), Tel Aviv (Israel), and Clifden (Ireland) in year 2019.

Most of the coarse-grained force fields are still being developed by analogy to the
all-atom force fields [12, 31, 36], this resulting in their reduced modeling capacity.
However, with carefully implemented restraints on the local (secondary) structure
and distances, it is practical to run large-scale simulations with the CG models.
Also, despite their simplicity and limitations, the structure-based CG models (the
Gō-like and the elastic-network models) are very useful in simulating the structural
transformations and dynamics of large systems.

The recently developed scale-consistent theory of the construction of coarse-
grained force fields [35, 38], with the resulting analytical expressions embedding
the averaged out atomistic details of a system and, thereby, achieving correct
dependence of the effective energy expressions on orientation and coupling of
the long-range and local interactions necessary to reproduce regular structures,
is likely to result in the development of more powerful and accurate CG force
fields. Moreover, owing to their rooting in the potential of mean force, the energy
expressions derived in such a way will enable us to bridge the coarse-grained
representation with the all-atom representation of a system, thus making possible
physics-based multiscale simulations.

Apart from the development of the CG force fields and associated methodologies,
evaluation of existing approaches to determine their shortcoming, directions of
improvement, and needs of the simulation community is necessary. CASP [8] is
probably the most extensive initiative undertaken in this direction, which has been
followed by the CAPRI [9] and RNA-Puzzles [10] experiments. With the addition
of other bio- and nano-system and also mechanical and thermodynamical properties
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to compare with their simulated counterparts, these initiatives have the potential to
result in a standard system of force-field evaluation.
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at the Interdisciplinary Center of Mathematical and Computer Modeling (ICM), University of
Warsaw (grant GA71-23), (c) the Polish Grid Infrastructure (PL-GRID; grants unres19, unres2021,
and gagstr), and (d) our 488-processor Beowulf cluster at the Faculty of Chemistry, University of
Gdańsk.
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Ślusarz R, Wirecki T, Yin Y, Zaborowski B (2014) J Mol Model 20:2306

49. Izvekov S, Voth GA (2005) J Phys Chem B 109:2469–2473
50. Marrink SJ, Risselada HJ, Yefimov S, Tieleman DP, de Vries AH (2007) J Phys Chem B

111:7812–7824
51. Gay JG, Berne BJ (1981) J Chem Phys 74:3316–3319
52. Kubo R (1962) J Phys Soc Japan 17:1100–1120
53. Ball P (2008) Chem Rev 108:74–108
54. Buckle AM, Henrick K, Fersht AR (1993) J Mol Biol 234:847–860
55. Rhee YM, Sorin EJ, Jayachandran G, Lindahl E, Pande VS (2004) Proc Natl Acad Sci USA

101:6456–6461
56. Ladbury JE (1996) Chem Biol 3:973–980
57. Darré L, Machado MR, Brandner AF, González HC, Ferreira S, Pantano S (2015) J Chem

Theory Comput 11:723–739
58. Machado MR, Barrera EE, Klein F, Sóñora M, Silva S, Pantano S (2019) J Chem Theory

Comput 15:2719–2733
59. Elezgaray J, Laguerre M (2006) Comp Phys Commun 175:264–268
60. Yesylevskyy SO, Schäfer LV, Sengupta D, Marrink S-J (2010) PLOS Comput Biol

6:e1000810
61. Hadley KR, McCabe C (2012) Mol Simul 38:671–681
62. Arnarez C, Uusitalo JJ, Masman MF, Ingólfsson HI, de Jong DH, Melo MN, Periole X,

de Vries AH, Marrink S-J (2015) J Chem Theory Comput 11:260–275
63. Liwo A, Ołdziej S, Pincus MR, Wawak RJ, Rackovsky S, Scheraga HA (1997) J Comput

Chem 18:849–873
64. Bashford D, Case DA (2000) Annu Rev Phys Chem 51:129–152
65. Makowski M (2018) Physics-based modeling of side chain-side chain interactions in the

UNRES force field. In: Liwo A (ed) Computational methods to study the structure and
dynamics of biomolecules and biomolecular processes from bioinformatics to molecular
quantum mechanics. Springer Nature Switzerland AG, Cham, pp 89–115

66. Makowski M, Liwo A, Scheraga HA (2007) J Phys Chem B 111:2910–2916
67. Makowski M, Sobolewski E, Czaplewski C, Ołdziej S, Liwo A, No JH, Scheraga HA (2007)

J Phys Chem B 111:2925–2931
68. Makowski M, Liwo A, Scheraga HA (2017) J Phys Chem B 121:379–390
69. Pincus MR, Scheraga HA (1977) J Phys Chem 81:1579–1583
70. Sieradzan AK, Scheraga HA, Liwo A (2012) J Chem Theor Comput 8:1334–1343
71. Sieradzan AK, Niadzvedtski A, Scheraga HA, Liwo A (2014) J Chem Theory Comput

10:2194–2203
72. Kozłowska U, Maisuradze GG, Liwo A, Scheraga HA (2010) J Comput Chem 31:1154–1167
73. Kumar S, Bouzida D, Swendsen RH, Kollman PA, Rosenberg JM (1992) J Comput Chem

13:1011–1021



64 A. Liwo et al.

74. Samsonov SA, Lubecka EA, Bojarski KK, Ganzynkowicz R, Liwo A (2019) Biopolymers
110:e23269

75. Lubecka EA, Liwo A (2017) J Chem Phys 147:115101
76. Izvekov S, Voth GA (2005) J Chem Phys 123:134105
77. Thorpe IF, Goldenberg DP, Voth GA (2011) J Phys Chem B 115:11911–11926
78. Liwo A, Czaplewski C (2020) J Chem Phys 152:054902
79. Soper AK (1996) Chem Phys 202:295–306
80. Reith D, Püt M, Müller-Plathe F (2003) J Comput Chem 24:1624–1636
81. Lyubartsev AP, Laaksonen A (1995) Phys Rev E 52:3730–3737
82. Lyubartsev AP, Naômé A, Vercauteren DP, Laaksonen A (2015) J Chem Phys 143:243120
83. Mirzoev A, Lyubartsev AP (2013) J Chem Theory Comput 9:1512–1520
84. He Y, Liwo A, Scheraga HA (2015) J Chem Phys 143:243111
85. Brungelson JD, Wolynes PG (1987) Proc Natl Acad Sci USA 84:7524–7528
86. Eastwood MP, Hardin C, Luthey-Schulten Z, Wolynes PG (2002) J Chem Phys 117:4602–

4615
87. Eastwood MP, Hardin C, Luthey-Schulten Z, Wolynes PG (2003) J Chem Phys 118:8500–

8512
88. Fujitsuka Y, Takada S, Luthey-Schulten ZA, Wolynes PG (2004) Proteins Struct Funct Genet

54:88–103
89. Seetharamulu P, Crippen GM (1991) J Math Chem 6:91–110
90. Ołdziej S, Liwo A, Czaplewski C, Pillardy J, Scheraga HA (2004) J Phys Chem B 108:16934–

16949
91. Ołdziej S, Ła̧giewka J, Liwo A, Czaplewski C, Chinchio M, Nanias M, Scheraga HA (2004)

J Phys Chem B 108:16950–16959
92. Zaborowski B, Jagieła D, Czaplewski C, Hałabis A, Lewandowska A, Żmudzińska W, Ołdziej
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229. Ziȩba K, Ślusarz M, Ślusarz R, Liwo A, Czaplewski C, Sieradzan AK (2019) J Phys Chem B

22:4758
230. He Y, Mozolewska MA, Krupa P, Sieradzan AK, Wirecki TK, Liwo A, Kachlishvili K,
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241. Krupa P, Karczyńska AS, Mozolewska MA, Liwo A, Czaplewski C (2021) Bioinformatics

37:1613–1615
242. Zhou R, Maisuradze GG, Sunol D, Todorovski T, Macias MJ, Xiao Y, Scheraga HA,

Czaplewski C, Liwo A (2014) Proc Natl Acad Sci USA 111:18243–18248
243. Maisuradze GG, Senet P, Czaplewski C, Liwo A, Scheraga HA (2010) J Phys Chem A

114:4471–4485
244. Golas EI, Maisuradze GG, Senet P, Ołdziej S, Czaplewski C, Scheraga HA, Liwo A (2012) J

Chem Theor Comput 8:1334–1343
245. Mozolewska M, Krupa P, Scheraga HA, Liwo A (2015) Proteins: Struct, Funct, Bioinf

83:1414–1426
246. Rojas A, Liwo A, Browne D, Scheraga HA (2010) J Mol Biol 404:537–552
247. Rojas A, Liwo A, Scheraga HA (2011) J Phys Chem B 115:12978–12983
248. Rojas AV, Maisuradze GG, Scheraga HA (2018) J Phys Chem B 122:7049–7056



2 Coarse-Grained Modeling in Bio- and Nanochemistry 69

249. Nguyen HL, Krupa P, Hai NM, Linh HQ, Li MS (2019) J Phys Chem B 123:7253–7269
250. Sieradzan AK, Krupa P, Wales DJ (2017) J Phys Chem B 121:2207–2219
251. Krupa P, Wales DJ, Sieradzan AK (2018) J Phys Chem B 122:8166–8173
252. Esko JD, Kimata K, Lindahl U (2009) Proteoglycans and sulfated glycosaminoglycans. In:

Varki A, Cummings RD, Esko JD, Freeze HH, Stanley P, Bertozzi CR, Hart GW, Etzler ME
(eds) Essentials of Glycobiology, 2nd ed. Cold Spring Harbor Laboratory Press, Cold Spring
Harbor

253. Peng Y, Yu Y, Lin L, Liu X, Zhang X, Wang P, Hoffman P, Kim SY, Zhang F, Linhardt RJ
(2018) Glycoconj J 35:119–128

254. Shute J (2012) Handb Exp Pharmacol 207:307–324
255. Li Z, Yasuda Y, Li W, Bogyo M, Katz N, Gordon RE, Fields GB, Brömme D (2004) J Biol

Chem 279:5470–5479
256. Sankaranarayanan NV, Nagarajan B, Desai UR (2018) Curr Opin Struct Biol 50:91–100
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Chapter 3
First-Principles Modeling
of Non-covalent Interactions in Molecular
Systems and Extended Materials

Pabitra Narayan Samanta, Devashis Majumdar, Szczepan Roszak,
and Jerzy Leszczynski

Abstract The intermolecular non-covalent interactions through van der Waals or
dispersion forces are pervasive in nature and play a fundamental role in regulating
the structure and function of molecular systems ranging from solid state materials
to biological systems. The atomistic modeling of non-covalent interactions is
incredibly difficult, as they often require exact treatment of long-range electron
correlation which in turn demand to go beyond second-order perturbation theory.
As for example, the prediction of induction that stems from the response of a
molecular system to a permanent multipole necessitate the precise evaluation of
molecular polarizabilities. The computation of dispersion interaction also appears to
be a formidable task as they involve Coulomb interaction between the instantaneous
correlated fluctuations of electrons. Therefore, a systematic and unified theoretical
framework for isolating non-covalent interactions is essentially required to reliably
model the structure, energetics, and reactivities of realistic molecular systems.
In this review, the fundamental theoretical principles and computational aspects
for the estimation of strong and weak non-covalent interactions are discussed by
emphasizing studies of classic examples such as hydrogen bonding and related
properties of small water clusters, halide-water clusters, fatty acid dimers and their
amides; several gas-phase and dihydrated cation-π complexes comprising benzene,
p-methylphenol, and 3-methylindole as the π-donor systems and Mg2+, Ca2+,
and NH4

+ cations as the acceptor units; the π-π interactions between benzene
and monosubstituted benzenes in parallel face-to-face stacking configuration, as
well as the supramolecular complexes. A comprehensive picture of the accuracy
of the most widely used first-principles approaches including dispersion-corrected
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density functional approximations, second order Møller-Plesset and symmetry-
adapted perturbation theory, as well as non-canonical coupled cluster theory in
predicting van der Waals and dispersion interactions has also been presented.
The discussion culminates through the conceptual and mathematical ingredients
required to establish structure-property relationships e.g., the correlation between
hydrogen-boning and the vibrational modes, impact of electrostatic interactions on
charge transfer to solvents, and the relation between Hammett substituent constants
and the dispersion interactions in extended π-systems.

3.1 Introduction

Various kind of forces are associated with the formation of molecular structures and
crystals. They can be generally classified in terms of strong and weak interactions.
The strong interactions are responsible for the formation of molecular frame and are
generally classified as covalent and electrostatic forces. There are, of course, two
sub-classes of these two forces and are characterized in terms of co-ordinate and
metallic bonding. Pure electrostatic bond is generally considered as stronger than
the co-ordinate and metallic bonds, while a covalent bond can be much stronger
than these three forces. Such a comparison is, of course, purely qualitative and the
magnitude of such binding forces can vary depending on the bonding condition.
The weak interactions, on the other hand, exert much weaker forces (than these four
strong forces) and are responsible for the shape and properties of various molecular
systems (as well as crystals) and, like strong interactions, are important forces of
nature.

The natures of strong forces are quite well-defined using bonding theories
of quantum chemistry. The covalent bonding, for example, was explained from
Pauling’s hybridization theories [1], and through molecular orbital (MO) theories
[2]. The MO theories were later modified in present day quantum chemistry for very
accurate description of molecular systems in relation to their shape and bonding
characteristics. These are mostly based on Hartree-Fock (HF) theories [3] with
the inclusion of basis set concepts of Roothan and Hall [3, 4]. More accurate HF
based theories, for example Møller-Plesset perturbation theories [5–7], coupled-
cluster theories [6, 8], and configuration interaction (CI) techniques [3, 6, 8] include
electronic correlation effect and are widely used for present-day structure and
bonding analysis of molecular systems. The alternative density functional theory
(DFT) based approaches, which are based on Kohn-Sham variational principle [9,
10], are also very successful and widely used techniques to explain molecular
structures in gas-phase, solvated conditions, and their excited state properties [6,
11, 12]. The DFT techniques find further importance in calculating the structures
and electronic properties of solid systems and in present days are widely used in
the field of materials science research. All the techniques described above are well
developed and could be used directly to explain the nature of the four major strong
forces occurring in different forms of the molecular systems. These are, of course,
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not in the purview of the present article. In the present review, we will discuss
the nature of weak interactions, and the use of the present-day theories (MP, CC,
DFT etc. theories) to assess the various structural and binding characteristics of the
weakly-bonded species.

Weak interactions, also called non-covalent interactions in chemistry, usually
occur between two molecular species. Some molecular systems, for example inert
gas dimers (He2, Ar2 etc.) are also weakly bonded as such. These interactions are
of medium to long range in nature and arise from the charge distribution patterns
around a molecule (or an atom). Such a charge distribution is not constant and
fluctuates due to movement of electrons. In the case of weakly interacting systems,
the transient asymmetry of the charge distribution around one of the component
species can induce a complementary asymmetry in the electronic distribution around
the neighboring partner through electrostatic interactions and produce a weak
attractive force to hold them together. This force of attraction is operative up to
a certain distance r between these two systems and at smaller distance (with respect
to r), the forces become repulsive because of the overlap of the outer electron
clouds. Thus, this attractive force is of long range in nature, but at sufficiently large
separation between the two species (much larger than r), it disappears due to simple
electrostatic law. The important point related to the weakly bound system is that the
individual components retain their characteristics more or less unchanged. This is a
very qualitative oversimplified way to explain the origin of weak interactions. The
actual situation is more complex when someone would try to identify the nature of
such forces through proper quantitative analysis of the operating forces.

The origin of weak interactions, as introduced here, are special forms of electron-
correlation effects and fall under the category of van der Waals interactions.
Dipole-dipole, dipole-induced dipole, and London dispersion forces (r–6 dependent
forces) are mostly responsible for such van der Waals interactions. Although these
terms have their common classical mechanics definitions, they could be explicitly
treated in quantum chemical methods through introduction of electron correlation
effects. Formation of hydrogen boded systems, e.g., water, methanol, ammonia
etc. are mostly due to the van der Waals interactions arising from dipole-dipole
interactions effects, since the individual molecular components in these systems
have permanent dipole moments. The interactions inside the H2-He or noble gas
dimers, on the other hand, has binding forces arising purely through London
dispersion types. The forces are generally weak in nature (0.1–0.2 kcal/mol),
although hydrogen bonding interactions are much stronger (e.g., 2–5 kcal/mol for
hydrogen bonding involving N-H and O-H units).

Long-range π-π and cation-π are two different type of non-covalent interactions,
which are usually stronger than regular hydrogen bonds. In both the cases dispersion
interactions are generally operative, but the interaction-nature cannot be explained
so simply. In the case of cation-π interactions, dipole-induced dipole and higher
order quadrupole-dipole, quadrupole-quadrupole interactions etc. interactions are
also operative. These types of interactions were predicted initially by Kier and
coworkers [13, 14] and, almost 20 years later, were fully established by Dougherty
and coworkers [15, 16]. These interactions have emerged as a very common binding
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force to interpret binding nature between cation and aromatics in various biomolec-
ular systems including proteins, receptor-ligand complexes, molecular recognition,
drug actions and protein folding [15–21]. The π-π dispersion interactions are long
known, and this type of weak interactions are important in many naturally occurring
materials. The most common example is graphite, and multilayered graphene sheets.

The present review is primarily oriented around the quantification of these non-
covalent weak interactions. These would be based on various case specific analyses
to understand the energetics of such interactions. There are, of course, several
other characteristics of such systems which are available through experimental
and theoretical analyses. Low-frequency vibrations along with the high frequency
vibrational modes were found to modulate the strength of hydrogen bonds in
several hydrogen-bonded systems [22]. Furthermore, the weakly bound systems
demonstrate several molecular properties e.g., additive properties of interaction
energies and charge transfer to solvents (CTTS, in halide-water clusters) [23]. In
the case of π-π interactions, Hammett equation criteria was found to be important
to understand the nature of interactions in specific cases, when various π-derivative
systems were allowed to interact with a specific π-scaffold [24]. These properties
have been experimentally studied in weakly bound systems using finite sized weak
clusters [25]. The non-covalent interactions are also the building blocks for the
artificial designing of several bioinspired materials [26]. The present review will
also address these properties of the weakly bound systems with specific examples.
A brief review related to the theoretical background of the energy quantification,
both classical and quantum mechanical, would be presented prior to the discussion
of the individual type of non-covalently bound systems.

3.2 Theoretical Models of Non-covalent Interactions

Non-covalent interactions between atoms or molecules could be treated through
regular molecular interaction calculations. The only difference is that the interaction
energy values are low because of the larger separation of the interacting systems.
Electrostatic interactions are central to all these attractive forces, but it cannot
account for the whole interaction energies. Interactions between the noble gas atoms
are typical examples, since they have no dipole moment or higher moments. On
the other hand, there must be some clear interactions between these atoms. The
molecular beam experiments [27, 28] were used to measure interactions between
the noble gas atoms and Fig. 3.1 schematically shows the nature of such interactions
in the case of argon dimer. The computed interaction energy surface reaches a
minimum at 3.8 Å (i.e., it shows an attractive nature) and this energy tends to vanish
at a very large separation [29]. At shorter distances, this interaction energy curve
shows repulsive character. This trend of non-covalent interactions has already been
discussed in Sect. 3.1 and such an energy curve is general for all the noble gas atoms
dimers also. The force between the atoms, which could be defined as the negative of
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Fig. 3.1 Schematic diagram
of the intermolecular energy
and the force between two
argon (Ar) atoms

the potential energy derivative with respect to the interatomic distances (r) (shown
schematically in Fig. 3.1), also shows similar trend with respect to r.

The curves in Fig. 3.1 are considered as a balance between two forces viz.,
attractive dispersive force and the repulsive force of exchange type. Both forces have
their quantum mechanical origin. The dispersive force arises from the generation
of instantaneous dipole from the fluctuating electron clouds. This instantaneous
dipole can induce a dipole in the neighboring molecule producing an attractive
inductive effect. The dispersive force could be developed from Drude model based
on traditional Schrödinger equation. For two interacting molecules, the Drude model
generates interaction energy of the form,

E(r) = −1

2

α4h̄ω

(4πε0)
2r6

(3.1)

Where α is the polarizability, ω/2π is the frequency of an isolated Drude molecule, r
is the separation between the two molecules, and -h(=h/2π) is the Planck’s constant.
In three dimensions, this energy is given by,

E(r) = −3

4

α4h̄ω

(4πε0)
2r6

(3.2)

The complete derivation of the interaction energies is not needed in this review.
Interested readers can see the ref. [30] for the complete derivation. The Drude
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model described here considers only dipole-dipole interaction term. If higher order
terms arising from dipole-quadrupole, quadrupole-quadrupole etc. interactions are
included, the interaction energy from Drude model could be represented as [30, 31]

E(r) =
∑

n

An

rn
(n = 6, 8, 10, . . . . . . ) (3.3)

The determination of the coefficients (An) is discussed in detail in ref. [31]. These
coefficients are negative due to attractive nature of the interaction terms. If just A6
term is included for Ar case, the computed dispersion is ~25% smaller with respect
to the total interaction energies from experiment.

The interaction energy curve in Fig. 3.1 shows that slight decrease in interatomic
distance between Ar-atoms (~3 Å) causes a large increase in energy to the repulsive
region. This increase has quantum mechanical origin and could be explained from
Pauli’s principle. It formally prevents two electrons in a system having same set
of quantum numbers. The short-range repulsive force here, is arising from electrons
with same spin, and is referred to as exchange forces (also known as overlap forces).
At short r, the interaction energy varies as 1/r due to nuclear repulsion and at larger

r, the energy decays exponentially as exp
(
− 2r

a0

)
(a0 : Bohr Radius).

3.2.1 Modeling van der Waals Interactions

The dispersive and repulsive (exchange-repulsion) interactions between atoms and
molecules could be calculated through quantum mechanics. These calculations are
far from trivial and require electron correlation with large basis sets. We will discuss
such methods in connection with the non-covalent interactions in DFT calculations.
The simpler form of the van der Waals interaction as would be outlined here are
the basis for the interpretation of non-covalent interactions computed through more
complicated quantum-mechanical calculations.

The basic criteria of the dispersive and repulsive forces in a non-covalent
interaction between two molecules or atoms should fit to the general functional
form,

EVW

(
rIJ
)

= Erepulsive

(
rIJ
)

− CIJ

(
rIJ
)6 (3.4)

It is not possible to classically derive the functional form of the repulsive
interactions. The interaction energy should go to zero as (rIJ) → ∞ and should
approach zero faster than (rIJ)−6 term.
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The most popular potential, which satisfy this requirement, is the Lennard-Jones
(LJ) potential [32]. Here, the repulsive part has (rIJ)−12 dependence,

ELJ (r) = C1
(
rIJ
)12 − C2

(
rIJ
)6 (3.5)

where, C1 and C2 are suitable constants. The alternative form of LJ potential has the
following form,

ELJ (r) = ε

[( r0

rIJ

)12 − 2
( r0

rIJ

)6
]

(3.6)

Where, r0 is the minimum distance, and ε is the depth of the minimum. There is no
theoretical basis for the choice of the repulsive part, this is purely for computational
convenience. Sometimes exponent of 9 or 10 can generate better results.

Considering the exponential decay of the repulsive term, a EVW potential, known
as Buckingham or Hill type potential [33] was developed in the following form,

EVW (r) = C1exp
(
−C2r

IJ
)

− C3
(
rIJ
)6 (3.7)

Here, C1, C2 and C3 are suitable constants. Equation (3.7) is sometimes written
in the following convoluted form also.

EV W(r) = ζ

[
6

α − 6
exp

{
α

(
1 − rIJ

r0

)}
− α

α − 6

( r0

rIJ

)6
]

(3.8)

Where, α is a force parameter and choosing α = 12, Eq. (3.8) generates LJ
potential. Figure 3.2 schematically shows the attractive part of the LJ(12-6), LJ(9-6)
and Buckingham potentials for the H2–He interactions. The Buckingham potential
shows a better description of the attractive part with respect to the other two
potentials, which may be due to the presence of three parameters (Eq. 3.7) in the
potential. The LJ-potentials have only two adjustable parameters in this respect.

The hydrogen bond interaction potential can also be represented in terms of LJ
potentials, but this potential needs some adjustments in the attractive part, as the
interaction energies are stronger in such cases. The function form of EVW (r) is
commonly represented in such cases through the following 12-10 potential (Eq.
3.9).

EHB = ε

[( r0

rIJ

)12 − 6
( r0

rIJ

)10
]

(3.9)

EHB represents the hydrogen bond potential. In some cases of hydrogen bond
potential, directional terms like (1 − cos θ ) or simply cosθ [34] (θ : a HB angle)
are multiplied with the distance dependent part of Eq. (3.9). The various EVW terms
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Fig. 3.2 Schematic
representations of
Buckingham, Lennard-Jones
(12-6) and Lennard-Jones
(9-6) potentials

discussed here comprise only the basic form of the potentials to be used in molecular
mechanics (MM) or more commonly known force field calculations. These force
fields are central to the classical molecular dynamics (MD) simulations and there are
many different forms of such force fields in dealing with diverse molecular systems
including simple molecules to more complex systems like proteins, enzymes,
nucleic acids, membranes, polysaccharides etc. This is not a place to discuss these
large collection of force fields applicable to various diverse systems, since they are
not the objective of the present review article. We will discuss only several forms
of dispersion potentials related to their use in combination with quantum chemical
methods to show the diversity of the force field parameters.

Let us start with the rare gas interaction cases. The interactions between the rare
gas atoms are usually very weak. The potential energy for interactions varies from
0.08 kcal/mol (1.29 × 10−4a. u.) for He2 to 0.78 kcal/mol (12.5 × 10−4a. u.) for the
Rn2 dimers. Such interaction energy calculations need specially designed van der
Waals potentials to account for the binding distance and energies of such dimers.
In recent times, Tang-Toennies (TT) potentials were developed [35] to account such
interactions. The potential has usual attractive and repulsive parts. The repulsive
potential part is short-ranged Born-Mayer type, while the long-range attractive
potential is added as damped dispersion series [36]. Mathematically, it is written
as,

EV W(r) = Erep + Eatt = Ae−brIJ −
N∑

n=3

f2n

(
brIJ

) C2n
(
rIJ
)2n

(3.10)

where C2n terms are dispersion coefficients. The term b is the Born-Mayer range
parameter and the only parameter in the damping function f2n(brIJ). This function
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Fig. 3.3 Potential energy
curves of the homogeneous
rare gas dimers calculated
with the Tang–Toennies (TT)
potential model (reprinted
from ref. [35], with the
permission of AIP
Publishing)
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can be expressed as

f2n

(
brIJ

)
= 1 − e−brIJ

2n∑

i=0

(
brIJ

)i

i! (3.11)

This function can be computed from incomplete gamma function also [35]. It is
to be noted that the function has some similarity with the Eq. (3.3) originating from
Drude model. With proper knowledge of the parameters in Eq. (3.10), potential
energy curves for the rare atom dimers could be very accurately computed. The
example related to the dimers He2 through Rn2 are shown in Fig. 3.3. The details
related to the other different rare gas atom interactions are also available in ref. [35].

3.2.2 Quantum Chemical Approaches for Non-covalent
Interactions

The calculations of non-covalent interaction energies between two interacting
systems A and B to form the weakly bound complex is straightforward and
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given by,

ΔEAB = EAB − EA − EB (3.12)

Since the binding energy is experimentally observable quantity (negative of
the experimentally measured dissociation energy), the EAB, EA and EB should
be calculated for the lowest energy structures of the individual species for its
measurement. Moreover, because of the weak nature of the binding force, the
energies should have basis set superposition energy (BSSE) correction, if large basis
sets (preferably triple zeta type) are not used in the energy computations. The energy
should further be zero-point energy (ZPE) corrected. Thus, Eq. (3.12) would be like
Eq. (3.13) in the final form,

ΔEAB = EAB − EA − EB − ΔBSSE − ΔZPE (3.13)

There is, of course, one caveat in such strategy. If the techniques involved do
not provide dispersion energy effect, the results from Eq. (3.13) will not provide
proper ΔEAB value with respect to the experiments. Pure HF and Kohn-Sham
density functional theories (KS-DFT) do not have dispersion correction to the total
interaction energies. Generally, higher order HF-wavefunction based techniques
involving perturbation theory, e.g., MP2, CC-techniques (CCSD, CCSD(T)) etc.,
include high electron-correlation effects (consequently dispersion effects), and
could be directly used for such computations. The DFT-calculations become
successful when a proper density functional is augmented with empirical dispersion
term. The quantum chemical methods also provide the techniques to breakdown
the total interaction energies in terms of dispersion, exchange, electrostatic etc.
to understand the role of such interaction energy components to shape up a non-
covalently bound system. In the following subsections we will discuss these features
in more detail.

3.2.3 Dispersion Computations in DFT

The KS-DFT functionals mostly include Grimme’s D2 [37], D3 [38], or D3BJ
[39] dispersion terms to compute dispersion energy part in DFT calculations. The
total energy through any dispersion modified density functional could be expressed
as,

E (DFT − D) = E (KS − DFT ) + ED (3.14)

Here, E(KS − DFT) is usual Kohn-Sham energy as obtained from a chosen
density functional, and ED is the empirical dispersion correction.

The D2, D3 or D3BJ empirical dispersion terms are similar to TT-potentials,
as discussed earlier, but generate the dispersion part of the non-covalent molecular
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interactions in a different way. The D2 dispersion correction is written as [37],

ED = −S6

Natom−1∑

I=1

Natom∑

J=I+1

CIJ
6

(rIJ )6 f (rIJ ) (3.15)

Here, Natom is the number of atoms in the system; CIJ
6 is the dispersion

coefficient for the atom pair IJ; S6 is the global scaling factor (that depends on
the density functional used) and rIJ is the distance between the atom pair I and J.
The f (rIJ) term is a damping function, and it is important to avoid near-singularities
for small rIJ . The f term is expressed as,

f (rIJ ) = 1

1 + e
−d
(

rIJ
R

−1
) (3.16)

Where, R is the sum of atomic van der Waals radii. The term d is a preset parameter
and d = 20 is usually set here to provide larger corrections at intermediate distances
and generating negligible dispersion energy at covalent binding region.

Further developments of these dispersion potentials in DFT calculations were
introduced later in the D3 and D3BJ techniques [38, 39]. The basic equation is
the same as Eq. (3.14); only the dispersion calculations were modified. The D3
calculation [37] uses the following form of E(D),

E(D) = E(2) + E(3) (3.17)

The E(2) and E(3) are the two-body and three-body dispersion interaction terms,
respectively. The philosophy for using such equation comes from the definition of
interaction energies in terms of many body interactions [40].

The term E(2) and E(3) are usually expressed as follows,

E(2) =
∑

IJ

∑

n=6,8,10...

Sn
CIJ

n

rn
IJ

fd,n (rAB) (3.18)

fd,n (rAB) = 1

1 + 6

(
rIJ

Sr,nrIJ
0

)−αn
(3.19)

E(3) =
∑

IJK

fd,(3) (rIJK) EIJK (3.20)

f terms in Eqs. (3.18) and (3.20) are damping terms and the terms given in Eq.
(3.19). The nonadditive dispersion term EIJK in Eq. (3.20) is computed from the
third-order perturbation theory for the three atoms I, J, K and is discussed in detail
in the ref. [38]. The three-body term is insignificant for small molecular systems, and
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usually has some contribution when the system is quite large. The D3BJ potential is
similar to D3 potential. It differs from D3 only in the contribution of damping factor
[39]. The detailed discussions related to these methods are available in the respective
papers, and they include the determination of such factor (Sn) and assignment of the
proper values of CIJ

n and rIJ
0 terms. We will discuss below only the basic features

of the D3BJ potential to show its difference with D3.
Becke and Johnson (BJ) [41] proposed a rational damping procedure for the

dispersion potential in the following form,

E(D) = −1

2

∑

I �=J

CIJ
n

rn
IJ + const.

(3.21)

Based on such a damping approach, the modified form of DFT-D3 method could
be represented in the following form of Eqs. (3.22) and (3.23).

E(D) = −1

2

∑

I �=J

S6
CIJ

6

r6
IJ + f

[
rIJ

0

]6 + S8
CIJ

8

r8
IJ + f

[
rIJ

0

]8 (3.22)

with

f
(
rIJ

0

)
= x1r

IJ
0 + x2 (3.23)

Where, x1 and x2 are the fit parameters introduced by BJ [40]. The BJ-damping
leads to a constant contribution of E(D) to the total correlation energy for each
bonded atom-pairs. This damping procedure seems theoretically more justified over
a normal zero-damping [42], although it was found to change the thermochemical
description of the underlying density functional (DF). Adjustment of standard
correlation functionals are required to overcome such a problem. The related
computer codes are usually equipped with these parameters for the computation
of the dispersion terms for the proper thermochemical description of DF. It has been
shown that, although the damping procedures in D3BJ differs from D3, both the
procedures produce almost equivalent results [39].

3.2.4 Dispersion Computation Through MP2 and Higher
Correlation Methods

The binding energy of non-covalently bound complexes could be computed through
MP2, CCSD, CCSD(T) etc. type of quantum chemical techniques using Eq. (3.13).
In such techniques, it is not needed to include the dispersion term separately. This
energy is already included in these methods through higher electron-correlation
effects. Let us consider, the case of MP2 method. We begin with the consideration
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of the effect of perturbation λV̂ on the generalized Hamiltonian Ĥλ.

Ĥλ = Ĥ0 + λV̂ (3.24)

Here, Ĥ0 is the unperturbed HF Hamiltonian. The Rayleigh-Schrödinger pertur-
bation theory tells us that the effect of perturbation renders the following expansion
effect on the wave function (ψλ) and energy (Eλ) corresponding to Ĥλ.

ψλ = ψ(0) + λψ(1) + λ2ψ(2) + . . . (3.25)

Eλ = E(0) + λE(1) + λ2E(2) + . . . (3.26)

The Møller-Plesset (MP) energy up to the first order perturbation term is the HF-
energy. The second order contribution (E(2)) to the MP-energy could be written as
[5–7],

E(2) =
occ∑

i<j

∑ virt∑

a<b

∑ 〈 ij | |ab〉2
(
εa + εb − εi − εj

) (3.27)

Here, ε terms are orbital energies of the occupied (i, j) and virtual (a,b) orbitals
and 〈ij|| ab〉 is a two-electron integral over spin-orbitals (and obviously involves
double substitution). Now, if we consider non-covalent interactions between two
molecular systems or atoms, E(2) is the correlation correction to the HF-energy
and represents the effect of dispersion energy (with higher correlation terms). The
dispersion interaction energy at the MP2 level could then be written as [43, 44],

ε
(2)
MP = E

(2)
AB − E

(2)
A − E

(2)
B (3.28)

Where, AB is the overall system generated from the species A and B. The Pure
HF-interaction energy in such a case could be written as

ΔEHF = EAB
HF − EA

HF − EB
HF (3.29)

This �EHF could be partitioned further into Heitler-London
(
ΔEex

HL

)
energy

components as

ΔEex
HL = ε

(10)
EL + ε

(10)
EX (3.30)

where ε
(10)
EL and ε

(10)
EX are the electrostatic and exchange contribution to the ΔEex

HL.
The difference between �EHF and �EHL generates the delocalization component
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of the total HF interaction energies. Thus,

ΔEdel
HF = ΔEHF − ΔEex

HL (3.31)

Such partitioning implies that total MP2 interaction energy �EMP2 could be
partitioned into four components in the following way [43, 44].

ΔEMP2 = ε
(10)
EL + ε

(10)
EX + ΔEdel

HF + ε
(2)
MP (3.32)

The ε
(10)
EL can further be divided into short-range penetration and long-range

multipolar components [44]. Thus, in quantum chemical analysis, the interaction
energies can not only be computed with accuracy but also the various energy
components affecting the interactions can be deduced from energy-component
analysis as outlined here. The details of such analyses are available in the refs.
[43, 44]. The coupled cluster level of computations can be used for binding energy
calculations through Eq. (3.13) for additional accuracy, and energy components
can also be measured for the total interaction energies through symmetry adopted
perturbation analysis (SAPT) [45]. In recent times, SAPT analysis has also been
developed for energy component measurements for DFT techniques [46]. The
DFT energy component analysis computes total interaction energy as the sum of
�ED + �Eex + �Eind (�Eex: exchange component; �Eind: induction component).
The �Eex in DFT and ΔEex

HL in the MP2 energy component analysis [as in Eq.
(3.32)] are similar. The ΔEdel

HF in Eq. (3.31) and �Eind in DFT-SAPT calculations
are closely related. The difference is, while ΔEdel

HF is associated with the relaxation
of electron densities of monomers upon interactions restrained by Pauli principle
[47] (charge delocalization with charge transfer interactions), �Eind represents
interactions arising from the charges due to deformation of the monomer units.

We have so far narrated a brief description of the various quantum chemical
techniques used to analyze the non-covalent interactions between two molecular
units. The rest part of the review article would be devoted to various non-covalent
weak interaction analysis based on techniques described in this section.

3.3 Non-covalent Interactions in Hydrogen-Bonded (HB)
Systems

A hydrogen bond is formed when hydrogen atom covalently bound to an elec-
tronegative atom or group, generally termed as donor (D) group that interacts with
another electronegative atom with lone pair of electrons (the so-called acceptor (A)
group) forming a non-covalent interaction of the type D-H . . . A. The hydrogen bond
formed is often described as electrostatic (dipole-dipole type), although it has some
features of covalent bonding. The interaction distance is usually shorter than the
sum of the van der Waals radii of the interacting components. The hydrogen bond
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strength depends on the electronegativities of D and A, and such bond could be
as strong as 38.6 kcal/mol [48]. Examples of very weak hydrogen bond are also
found in cases of S, Cl and C (~1.0 kcal/mol) [48, 49]. They are also ubiquitous and
have importance in control of receptor-ligand interactions in medicinal chemistry,
and intra-/intermolecular interactions in materials science [50, 51]. Most common
examples of hydrogen bonding are found in water, ammonia, hydrogen fluoride,
organic fatty acids, alcohols etc. Hydrogen bonding in such solvent systems is
important in manifestation of several physical properties viz., melting point, boiling
point, solubility, viscosity, and azeotropic properties of solvent mixtures. Such
interactions are also one of the most important building blocks in various polymeric
materials including DNA, proteins, cellulose, synthetic polymers, and the bonding
features in these systems are explored mostly through crystallography, NMR, and
IR experiments [52, 53].

Quantum chemical (QC) techniques and molecular dynamics (MD) simulations
are important in silico methods to understand the nature of hydrogen bonding. The
theoretical findings are important in explaining various experimental observations
in this context. Small clusters are usually important to understand such interaction
phenomenon, since these clusters are generated in recent times in gas phase and their
structural and bonding features could be observed through IR spectra. For example,
gas phase IR spectroscopic techniques viz., extensive terahertz laser vibration-
rotation-tunneling (VRT) spectra and mid-IR laser spectra [54–57] were used to
understand the origin of hydrogen bond formation in small water clusters. QC-
techniques are very effective in elucidating structural behavior and in the present
section we will discuss two such examples. The discussions would be oriented
around the structural, binding, and spectroscopic properties of several small water
clusters and fatty acid dimers. The discussions on water clusters would also include
the effect of inclusion of halide ions in several of such water clusters and their charge
transfer properties to solvent (CTTS) [23]. The fatty acid dimers were generated in
gas phase and apart from their binding properties, they have unique low and high
frequency vibrational modes which are involved in the relative stability of such
clusters [22]. Furthermore, these fatty acid clusters have unique fragment energy
additive properties, which could be used to predict the binding energies of higher
fatty acids. This characteristic is unique to such fatty acids and were not explored
before.

3.3.1 Hydrogen Bonding and Related Properties of Small
Water Clusters

The change of structural and spectroscopic properties of small water clusters with
increasing cluster size have been investigated through theory and experiments for
a long time [23, 54–63]. The primary objectives of such instigations were to
understand the nature of hydrogen bonding in such clusters, how such changes
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are related to their vibrational characteristics, effect of adding halide ions to such
clusters [23, 64] and related changes in hydrogen bonding and spectroscopic
properties. Experimental structure analysis of the small water clusters, (H2O)n,
n = 2–6, have been reported from the VRT spectroscopy [54–57], while the
vibrational spectra of n = 1–8 water clusters bound the benzene and water clusters
of n = 7–10 are available for their O-H vibrational modes [59, 60, 63]. The
water dimer is linearly hydrogen bonded [65], while water trimer to pentamer
are cyclic rings [61, 62]. The higher clusters starting from n = 8 and above are
multiring types [59, 60]. These structures were ascertained from the theoretical and
experimental results. The low-energy structures of water hexamer and heptamer are
also mostly multiring type, although they can have two-dimension (2D) and three-
dimensional (3D) structures. A 3D-cage structure of (H2O)6 is believed to be the
lowest energy structure from both theory and experiments [57, 58, 61]. On the other
hand, extensive QC calculations on water hexamer has also suggested the presence
of open-book like structure [65].

With this brief resumé on the structural aspect of the small water clusters, we turn
our attention to the more specific properties related to the hydrogen bonding, i.e.,
relative stabilities and IR characteristics arising from hydrogen bonds. We are taking
the specific example of water heptamer, as the low energy water clusters formed
in this case show various structural possibilities including directional hydrogen
bond properties due to the formation of 3D structures. The small water clusters
fall under two broad structural types viz., 2D ring and 3D cage (e.g., prism, or
cube). Furthermore, the water monomers inside a water cluster could be of single
proton donor–single acceptor (da), single donor–double acceptor (daa), double
donor–single acceptor (dda), and double donor–double acceptor (ddaa) types. In
the water hexamer, for example, these types of water monomers were found to be
related to the O–H spectra [66]. Water clusters presented in Fig. 3.4 tries to explain
these features through specific examples of (H2O)7-clusters [67]. It contains twelve
optimized water heptamer structures (C to R7, all in C1-symmetry) together with
four stable hexamer (cage, prism, book, and ring in C1-symmetry) [66] and two
stable octamer clusters (D2d, S4) [59, 60]. These hexamer and octamer structures
are shown here, since they are geometrically related to the heptamer structures for
their formation. The cage and prism structures of (H2O)6-clusters can generate
the C, D, E, and F structures through addition of a water molecule. The octamer
structure could also affect these structure formations in an alternative way. The
global minima D2d and S4 octamers are degenerate and contain dda and aad types
of water monomers. Exclusion of these water molecules from S4 would generate
the C and D structures, whereas removal of similar water molecules from the D2d
cluster would be responsible for the E and F cluster formation. The formation of
the G and H structures could similarly be explained from the S4 structure. The ring
structures R5, R4 and R7 could be generated from the ring and book structures of
water hexamers through addition of one water molecule [67].

The number of hydrogen bonds (HBs) play a major role in relative stability and
strength of hydrogen bond in water clusters. As a result, such properties together
with the polarity of hydrogen bonds can influence the observed –OH frequencies of
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Fig. 3.4 The optimized geometries of water heptamer (C–R7), hexamer (ring, book, cage, and
prism), and octamer (D2d and S4) clusters. All the structures are in C1 symmetry except D2d, S4,
and ring (S6). The sequential numbers in each figure represent the direction of the unidirectional
H orientations (reprinted from ref. [67], with the permission of AIP Publishing)

these clusters. The number HBs in C, D, E, F, G, and J are ten, while they are nine
in H, I, and K, eight in R5, R4, and seven in R7. The average HB distances vary
between 2.84 Å (cluster F) to 2.76 Å (cluster R4). These results were available from
the fully optimized structures of these clusters (MP2/TZ2P++ calculations) and are
slightly shorter than the normal O . . . O distance (2.98 Å) in water. These average
bond distances of the individual clusters together with the number of hydrogen
bonds determine the following relative stability order of the clusters.

C2.82
10 > D2.82

10 > G2.83
10 > H 2.83

9 > E2.83
10 > F 2.84

10 > J 2.82
10 > I2.80

9 > R52.76
8 > R42.76

9

The subscripts in the cluster notation indicate the number of HBs, and the
superscript represents average HB-length in Å (in terms of O-H-O distance). There
are few deviations in the above stability order in relation to the aforementioned
hypothesis. This could be attributed to the strain in the structure (Fig. 3.4), which
alters the stability order in terms of average HB-number and length considerations.
The relative stability order was verified through Gibbs free energy change mea-
surements in molecular beam experiments [54–58]. The energy difference between
C and D is only 0.5 kcal/mol and the other clusters except R7 and K are within
2.5 kcal/mol. The average HB energies for the lowest energy clusters C and D were
found to be 3.8 and 3.7 kcal/mol respectively (MP2/TZ2P++) and these values are
weaker than normal hydrogen bond energy in water (~5.0 kcal/mol). The average
HB-energy in other clusters is all within 4.2 kcal/mol (MP2//B3LYP/6-311++G**
level) [67].

Unidirectionality of HBs also determine the relative stability of the water
clusters. The low-energy clusters C, D, and R5 in Fig. 3.4 show that their HB



88 P. N. Samanta et al.

orientations are unidirectional. This is also true for the hexa- and octamer (n = 6, and
n = 8) clusters in Fig. 3.4. The lower clusters with n = 3, 4 and 5 with unidirectional
HBs (cyclic structures) are the most stable [61]. This is also true for the n = 9, and
10 clusters with nine- and ten-membered cyclic rings [60].

3.3.2 Nature of O-H Stretching Modes

The proton donor and acceptor properties of water monomers inside a water cluster
controls the O-H stretching modes of a (H2O)n cluster. Generally, most of the O-
H stretching modes in a water cluster are red shifted with respect to the water
monomer stretching modes. This is because these donor-acceptor properties of
water monomers in a cluster control the HB-strengths. We will discuss this case
for the low-energy water clusters with n = 6, 7, and 8. Figure 3.5 shows the
calculated vibrational spectra of these clusters (B3LYP/6-311++G**) [67]. The
spectra are presented with respect to the water monomer frequencies computed at
the same level of theory (3921 cm–1, 3816 cm–1, and 1603 cm–1). As it could be
seen from the spectra (Fig. 3.5), the H2O)n clusters have n number of asymmetric
(n3) and symmetric (n1) O-H stretching modes. Most of these peaks are red shifted
with respect to the monomer frequencies, except one (slightly blue shifted). The
classification of water monomers based on their donor-acceptor properties in n = 7
cluster, as discussed earlier, are as follows: C, D, E, F, G (1 da, 3 aad, and 3 daa);
H, I (3 da, 2 aad, 2 daa); J (2 da, 2 aad, 2 dda, 1 ddaa); K (5 da, 2 ddaa); R5, R4
(5 da, 1 aad, 1 dda); R7 (7 da). The general principle is that the n3-band of the dda
or ddaa types are lower (in energy) than those of the da types. On the other hand, in
the case of n1-band, the dda and ddaa type O-H stretches are higher than those of
the da and aad types. The spectral shifts in the whole spectral data in Fig. 3.5 can
be explained from this principle.

The experimental determination of the IR spectra of (H2O)7-cluster [63] indi-
cated two structural isomers. These are based on the number of experimental
peaks These peaks in terms of frequency shift with respect to the experimental
average O-H stretching frequencies of the water monomers, are –757 (2), –627
(2), 397, 287 (2), –147 (4), –57, and 13 cm–1) (the numbers within parentheses
are splitting pattern of the peaks). These spectral shifts are similar to the calculated
shifts of the mixture of C and D isomers (Fig. 3.4), indicating the presence to two
competitive lowest energy structures of the water heptamer. It is to be mentioned
in this connection that the computed absolute values of frequencies were not in
very good agreement with experiment, since anharmonicity effect was not explicitly
considered in such calculations. The anharmonicity effect, of course, do not alter the
binding energy (also the HB-energy) of these clusters, as was found in a later study
for n = 2–10 clusters [68].



3 First-Principles Modeling of Non-covalent Interactions in Molecular. . . 89

Fig. 3.5 Computed IR spectra for various low energy clusters of the water heptamer, hexamer, and
octamer at the B3LYP/6-311++G** level of theory (reprinted from ref. [67], with the permission
of AIP Publishing)

3.3.3 Effect of Halide Ion Interactions with Small Water
Clusters

The structural characteristics of the halide ion inclusions in water clusters were
monitored effectively through photoelectron spectroscopy (PES) [69, 70]. The PES
analysis showed that X(H2O)n (X = F–, Cl–, Br–, and I–), surface structures are
favored for X= Cl–, and Br– form small n. On the other hand, for X = I–, the n = 6
cluster has an internal state with first solvation layer of 6. The QC calculations on
X(H2O)n (X = Cl–, Br–, and I–) [64, 71] indicated that for n = 2–6, the Cl–, and
Br– ions resides on the surface of the cluster, while the I– resides on the surface
for n = 2–5, but for the n = 6 cluster, the I– tends to move from the surface to
the interior site. The F–(H2O)n clusters are different from the other halide-water
clusters, since the F– ion interactions are much stronger than the rest of the halide
ions. Because of the exceptionality of HB-interactions, we have chosen to discuss
the structural features and binding characteristic of such clusters in more details.
Moreover, all these halide-water clusters show CTTS properties [23]. These special
features of X(H2O)n (n = 1–4) would also be reviewed here.

The F–(H2O)n (n = 1–6) clusters were analyzed through QC calculations using
various approaches, and F–-binding energies of these clusters are experimentally
available. Figures 3.6 and 3.7 contain different structural possibilities of these
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Fig. 3.6 Optimized
geometries of the F–(H2O)n,
n = 1–5, clusters obtained by
using MP2 method (reprinted
from ref. [72], with the
permission of AIP
Publishing)
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Fig. 3.7 Optimized
geometries of the F–(H2O)6
clusters predicted by
employing MP2 method
(reprinted from ref. [72], with
the permission of AIP
Publishing)

clusters in different QC calculations [72]. There were not many disagreements
related to the cluster properties, and most of the calculations agreed on the minimum
energy structures, and these are important to compute the parameters related to
experiments. We have chosen to discuss the results based on DFT/B3LYP and MP2
calculations using large basis sets (6-311++G**). The results do not differ much



92 P. N. Samanta et al.

with respect to the higher level MP2 (and larger basis set) and CCSD(T) [72, 73]
computations. Figure 3.6 shows the cluster arrangements for n = 1–5, while Fig. 3.7
contains the structural possibilities for n = 6. The F– ion in the higher clusters could
orient on the surface or inside the cluster. A specific (n1 + n2) notation is chosen,
together with the overall molecular symmetries, to represent such possibilities of F–

ion arrangements. The numbers n1 and n2 represent the number of water molecules
in the primary and secondary hydration shells, and when n2 = 0, the structure is
simple represented as n1. As it could be seen from the structures of (H2O)6 clusters
(Fig. 3.4), the insertion of F– ion changes the structural patterns. This is true for the
other clusters (different n) also.

The lowest energy clusters of F–(H2O)n (n = 1–6) are 1(Cs) (n = 1), 2(C2)
(n = 2), 3(C3) (n = 3), 4(C1) (n = 4), 5(C1) (n = 5), and (4 + 2)(C2) (n = 6) (Figs.
3.6 and 3.7). The clusters with higher symmetry are mostly high-energy or transition
states. The smaller sized clusters (n ≤ 3) show very small energy difference between
the low-lying isomers (~0.2 kcal/mol). The cases of n = 3 and 4 are quite interesting.
The 3(C3h) isomer of n = 3 has slightly lower energy than 3(C3), although careful
analysis showed that the higher symmetry structure is a transition state. The 4(C1)
(n = 4) cluster, on the other hand, is not an unambiguous global minimum. The
(3 + 1)(Cs) is actually a competitive minimum energy isomer. In the case of higher
clusters (N = 5, 6), global minimum (as assigned above) is unambiguous through
both DFT and MP2 analysis [72], and in more recent calculations also [73]. Further
details of the energetics of these isomers are available in ref. [72].

The F . . . H, F . . . O, and O-H distances and related H-O-H bond angle are
important parameters to understand the strength of F– ion interactions in these
F–(H2O)n clusters. The variations of these parameters with increasing n represent
how F– ion interacts with the water cluster part. Figure 3.8 represents such variations
with respect to the cluster size (n). The variations are related to the lowest energy
clusters of different n. The graphs containing the variations of different bond-lengths
reflect the variation of F– ion interactions. The shortest F . . . H, F . . . O and O-H
bond lengths represent higher interactions in this respect. The variation of the H-O-
H angle with respect to the cluster size is a result of such interactions, and this angle
is always smaller than free water.

The actual variations of F–-ion binding energies with respect to the cluster
size are presented in Fig. 3.9 in terms of enthalpy (�H298K) and Gibbs free
energy (�G298K) of binding. These are MP2-level data and are compared with the
experimental results from two different sources (marked as Expt. a [74] and Expt.
b [75]), and the trends of both types of estimations are consistent. The MP2 results
(6-3111++G**) are presented with both BSSE-corrected and uncorrected ways,
and it could be observed that BSSE-corrected values somewhat underestimate the
binding energies for n ≥ 4. The interactions could also be analyzed through many-
body interaction theories [72], since they are quite important for bigger systems
(especially n = 5 and 6 clusters) to estimate interactions as well as binding energies.
Both 2-body and 3-body interactions contribute to the total binding energies in these
clusters. The higher body interactions (4 and above) are not important. These are in
nut-shell the nature of F–-ion non-covalent interactions in F–(H2O)n clusters. Such
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Fig. 3.8 Variation of the lengths r(F . . . H), r(F . . . O), and r(O–H) and H–O–H angle [θ(H–O–H)]
with increasing water molecules in clusters F–(H2O)n. The parameters are chosen for the minimum
energy (MP2) geometries of each cluster. The dotted lines indicate the values for the minimum
energy n1 cluster (n2 = 0) of n = 5 and 6 clusters (reprinted from ref. [72], with the permission of
AIP Publishing)

interactions have significant effect on the ionization potential and O-H vibrational
characteristics of these clusters. A specific effect is the higher red-shift of the O-H
stretching frequencies more than the normal water clusters. The detailed discussion
is available in ref. [72]. We will conclude this section after a general discussion of
the CTTS properties of halide-water cluster as HB-properties influence such CT-
spectra.

3.3.4 CTTS Properties of Halide-Water Clusters

The UV-spectra of halide ions in water demonstrates a unique type of charge-
transfer spectra. These specific spectral characteristics occur due to the electron
injection from the halide to the solvent in the UV region and generated excited state
is known as CTTS state. Thus, it is not the property of halide ion itself. The bound
CTTS state is created due to the stabilizing potential of the surrounding solvent
molecules. The non-covalent interactions of halide ions with the surrounding solvent
are an operative factor for such a CTTS phenomenon. For example, the aqueous
solution of iodine exhibits broad charge transfer band due to electron ejection from
iodide to the solvent. The spectrum consists of two bands at ~ 2100 Å separated by
characteristic spin-orbit splitting (0.94 eV) of neutral iodine [76].
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Fig. 3.9 Plots of
experimental and calculated
(MP2) �H and �G values of
F–(H2O)n clusters with
increasing n (n = 1–6)
(reprinted from ref. [72], with
the permission of AIP
Publishing)
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The measurements of the CTTS bands of I–(H2O)n (n = 1–4) through photo-
detachment spectra [77], and studies on the dynamics of electron solvation in
the photo excited states of the I–(D2O)n (n = 4–6) and I–(H2O)n (n = 2–
4) [78] unraveled the importance of water-cluster . . . halide ion interactions. The
experimental CTTS spectra of Cl–, and Br– are only available in bulk water [79].
The theoretical calculations determined the CTTS spectra of X–(H2O)n (X = F,
Cl, Br, I; n = 1–4) using their lowest energy clusters [80, 81]. The excited state
calculations at the TD-DFT level produced sufficiently accurate results. The first
excited singlet state (S1) of these clusters were found to represent the CTTS states
through computed charge transfer (�q) data from S0 → S1 states (Table 3.1). The
computed CTTS states were verified with respect to the experiment for the case of
I–(H2O)n (n = 1–4) clusters (Table 3.1). The minimum energy clusters used in such
calculations have halide ions on the surface of the water cluster networks. All these
structures are similar to the those of F–(H2O)n (n = 1–4) clusters in Fig. 3.4. The
only difference is that the F–(H2O)2 cluster is a 2(C2) isomer, while the rest of the
minimum energy n = 2 halide-water clusters are 2(C1) isomers (Table 3.1). The
further details of these structures are available in ref. [81].
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Table 3.1 Computed vertical transition energies [ΔEVT (S1), eV], experimental ΔECTTS(eV),
enthalpy of binding (ΔH, kcal/mol), dipole moment (μ,Debye) and charge transfer from S0 to S1
(Δq, a. u.) for the clusters X−(H2O)n (X = F,Cl,Br, I; n = 1 − 4)

Ion n Cluster ΔEVT (S1) ΔECTTS −ΔH μ(H2O) Δq

F– 1 1(Cs) 4.61 (4.69) – 26.3 2.35 0.518
2 2(C2) 5.34 (5.34) – 44.8 0.14 0.048
3 3(C3) 5.77 (6.07) – 60.1 1.35 0.002
4 4(C4) 6.02 (6.02) – 39.1 1.24 0.001

Cl– 1 1(Cs) 4.28 (4.28) – 13.9 2.33 0.857
2 2(C1) 4.52 (4.52) – 24.7 3.85 0.828
3 3(C3) 5.21 (5.21) – 36.2 3.33 0.715
4 4(C4) 5.45 (5.50) – 46.8 3.91 0.654

Br– 1 1(Cs) 4.00 (4.04) – 12.2 2.32 0.496
2 2(C1) 4.19 (4.19) – 23.5 3.93 0.561
3 3(C3) 4.78 (4.78) – 35.3 3.98 0.493
4 4(C4) 5.01 (5.01) – 46.3 4.19 0.495

I– 1 1(Cs) 3.74 (3.78) 3.60 10.1 2.32 0.395
2 2(C1) 4.08 (3.82) 3.95 20.0 4.13 0.487
3 3(C3) 4.29 (4.29) 4.25 30.9 3.98 0.439
4 4(C4) 4.44 (4.44) 4.50 41.6 4.84 0.466

All the values are reproduced from refs. [80, 81], with the permission of AIP Publishing

The CTTS bands of I–(H2O)n (n = 1–4) show blue-shift with respect to the
stepwise increment of n (Table 3.1) in both experiment and theoretical calculations.
The computed CTTS bands of other halide-water clusters also show similar trends,
indicating the role of water . . . halide interactions in such spectra. It has been argued
that CTTS bands of iodide-water cluster correspond to the excitation of electron
from an orbital localized in I– to a delocalized state with support from the water
network. Generally, a neutral molecule with around 2.5 D dipole moment can bind
an electron in a dipole-state through exchange repulsion between excess electron
and electrons in molecules [82, 83]. Considering the dipole moments of water
molecules induced by halide (Table 3.1), it can be safely assumed that the initial
upper state of I–(H2O)n (n = 1–4) cluster could be a short-lived I(3P2).[(H2O)n]–

(n = 1–4) state in pump-pulse experiment. Here electron is transferred from iodide
to the dipole-bound state of the water network. This argument could also be
generally applied to the CTTS spectra other halide-water clusters. The formation of
X.[(H2O)n]– actually might take place through several steps involving dissociation
of X–(H2O)n to X– and (H2O)n, followed by recapture of electron from X– to
the water network. A thermodynamic cycle was proposed [23] in this respect
and was found to work well to interpret CTTS spectral positions [80]. This is a
way to interpret the CTTS bands (vertical S1-state energy) through its dissociation
into several thermodynamic components, indicating the importance of non-covalent
interactions of halide-water clusters in such phenomena.
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3.3.5 Effect of Low-Frequency Vibrations of HBs in Fatty Acid
Dimers and Their Amides

HB is associated with interesting vibrational properties in molecular systems.
They are related to the relative stabilities of various hydrogen bonded isomers
generated through intermolecular interactions between the monomers of the same
species. Generally, high-frequency vibrations of the O-H/N-H bond, associated
with HB formation, are considered to influence the HB-strengths. Specific low-
frequency vibrations of several molecular systems, forming polymeric hydrogen
bonded systems through OH/NH bonds, were also found to correlate with the
HB-strengths/binding energies (�EB) of such systems through coupling with the
with the associated high-frequency modes. These correlations could be verified in
systems where several hydrogen bonded isomers could be identified. Small organic
fatty acids like, formic acid, acetic acid and their amides form hydrogen bonded
dimers. Involvement of low-frequency mode/s in the stabilities of such dimers were
identified through experiments and QC calculations [22, 84–86]. These correlations
further facilitated the development of a local fragment energy-based (related to the
HB) additive property to predict binding energies of such dimers. The concept is
extendable to other homologs of these acids, e.g., propionic, and n-butyric acids
[86].

Formic acid monomer predominantly exists in trans-form [87–89], although the
less common rotamer cis-form has also been characterized [89]. This conforma-
tional behavior of formic acid has opened up the possibilities of this molecule to
form several dimeric forms through hydrogen bonding. These include trans-trans,
trans-cis, and cis-cis combination of monomers, and experiments based on the
vibrational excitations of ground state trans-formic acid has detected most of these
isomers [90–92]. Acetic acid, like formic acid, exhibits rotational isomerism through
C-OH bond. Trans-form is the predominant rotamer, while the less probable cis-
variety also exists in the gas-phase [93, 94]. The cis-form is ~5.3 kcal/mol above the
trans-form with trans to cis conversion barrier of 13.2 kcal/mol. Thus, this cis-form
is unlikely to take part in dimer formation. Six dimers in trans-trans combination
could be constructed, three of them were found to exist through experiments [84,
95].

QC calculations are available on the various trans-trans and trans-cis isomers
of formic acid dimer and the global minimum was ascertained to be trans-trans
(TT-1, Fig. 3.10) [85]. This structure is similar to the other theoretical results [96]
and experiment [22, 90]. As it could be seen from Fig. 3.10, most of the isomers
have dihydrogen bond with a few exceptions (TC-3 and TC-4). High level QC
calculations are usually needed for accurate estimation of the �EB of such hydrogen
bonded dimers. A �EB value of 13.4 kcal/mol (MP2/aug-cc-pVTZ) [85] was found
to be comparable with the experiment (14.2 ± 0.2 kcal/mol) [97]. The theoretical
result was estimated using anharmonicity corrections and CCSD(T) (aug-cc-pVTZ)
calculations in this respect also generated satisfactory answer (13.23 kcal/mol).
The trans-trans dimer of acetic acid (AA-1, Fig. 3.11), out of the six probable
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Fig. 3.10 Optimized structures of formic acid dimers (at the CCSD level) with the computed
hydrogen-bond distances (Å). These dimers are formed through trans–trans (TT-1 to TT-6) and
trans–cis (TC-1 to TC-5) combinations of the monomers (reprinted with permission from ref. [85]
Copyright (2013) American Chemical Society)

isomers, is of lowest energy [86]. This isomer was also found to be the most
stable isomer through experiment [84, 98]. All these probable acetic acid dimers
have dihydrogen bonds, i.e., they form a closed ring system. The computed �EB

at different theoretical levels using aug-cc-pVTZ basis sets generate similar results
(DFT/B3LYP: –14.7 kcal/mol, MP2: –14.4 kcal/mol, CCSD(T): –14.8 kcal/mol).
The observed dissociation energy in this context is a combined theoretical and
experimental data (16.2 kcal/mol) [98]. It has been argued that if experimental
thermal contribution (~0.7 kcal/mol) is considered, the computed values would be
compatible with experiment.

The amides of these fatty acids do not possess the rotamerism properties
of the corresponding acids. The situation limits the formation of the hydrogen-
bonded dimers to five [85, 86]. In the case of formamide, two of the constructed
structures have been characterized through IR spectra (FMAD-A and FMAD-C,
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Fig. 3.11 Optimized
structures of acetic acid
dimers (at the
MP2/aug-cc-pVDZ level)
with the computed
hydrogen-bond distances (Å).
These dimers are formed
through trans–trans (AA-1 to
AA-6) combinations of the
monomers (reproduced from
ref. [86] with permission
from the PCCP Owner
Societies)

Fig. 3.12) [99], the rest of them are predicted structures. These isomers, like formic
acid dimers, are mostly formed through dihydrogen bond (except FMAD-D). The
FMAD-A is the minimum energy isomer and the computed �EB (MP2/aug-cc-
pVTZ: –12.86 kcal/mol, CCSD(T)/aug-cc-pVTZ: –12.92 kcal/mol) is close to that
of AA-1 (Fig. 3.11). The weaker NH . . . O HB-strength (with respect to O-H . . . O)
is reflected in these �EB values. The experimental binding energy of formamide
dimer is not known. The presence and abundance of FMAD-A isomer was predicted
from strong red-shift of the ns(NH2) (~387 cm–1) and nas(NH2) (~171 cm–1) modes
with respect to the monomer frequencies [99]. Acetamide dimer also does not have
experimental �EB values. Five possible isomers (Fig. 3.13) were assigned as the
probable acetamide dimers, and AMD-1 was found to be the most abundant isomer
from the strong red-shift data of ns(NH2) (~299 cm–1) and nas(NH2) (~37 cm–1)
modes with respect to the corresponding monomer frequencies [100]. The computed
red-shift data of the AMD-1 (ns(NH2): ~299 cm–1) and nas(NH2) : ~37 cm–1)
compares [86] well with the experiment, and this isomer was found to be the global
minimum also. The �EB values (MP2/aug-cc-pVTZ: –12.5 kcal/mol, CCSD(T): –
14.3 kcal/mol) are close to the formamide dimer. The structural details related to
the other isomers of formic acid, acetic acid, formamide and acetamide dimers are
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Fig. 3.12 Optimized structures of formamide dimers (at the CCSD level) with the computed
hydrogen-bond distances (Å). These dimers are formed through different orientations of the
monomers (FMAD-A to FMAD-E) (reprinted with permission from ref. [85] Copyright (2013)
American Chemical Society)

available in refs. [85, 86]. We will discuss only the effect of vibrational frequencies
on the relative stabilities of these dimers through the �EB values.

The primary characteristics of formic acid, acetic acid and their amide dimers is
that they form dihydrogen bonded ring structures in their lowest energy geometry
and except a few cases all the isomeric forms of these dimers maintain this HB
geometry. These specific non-covalent interaction patterns among these isomers
generate unique vibrational characteristics related to their relative stabilities and
provide information about the local properties of the hydrogen bonded groups. The
computed stretching vibrational data of –OH (n(OH)) group of the acid dimers
(TT-1 and AA-1) and –NH2 (ns(NH2)) group of their amide dimers (FMAD-A
and AMD-1) are presented in Table 3.2. These data show that these frequencies
are red shifted with respect to the acid (trans-formic and acetic acids) and amide
(formamide and acetamide) monomers. The intensities (I) of such modes are
substantially enhanced in these respects (Table 3.2), and the computed values
are compatible with respect to the experimental vibrational data [85, 86]. The
vibrational data for the rest of the isomers of these dimers (not discussed here) are
available in refs. [85, 86], and they have the same characteristics of the minimum
energy isomers in Table 3.2. These modes are usually called marker bands for
such dimers as their intensities decrease regularly with respect to their binding
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Fig. 3.13 Optimized
structures of acetamide
dimers (at the
MP2/aug-cc-pVDZ level)
with the computed
hydrogen-bond distances (Å).
These dimers are formed
through different orientations
of the monomers (AMD-1 to
AMD-4) (reproduced from
ref. [86] with permission
from the PCCP Owner
Societies)

characteristics (�EB) and main linear correlations (Eqs. 3.33–3.36).

Formic acid dimers : I = −164.0ΔEB − 359.0 R = 0.97 (3.33)

Acetic acid dimers : I = −248.0ΔEB − 729.0 R = 0.98 (3.34)

Formamide dimers : I = −107.0ΔEB − 333.0 R = 0.96 (3.35)

Acetamide dimers : I = −233.0ΔEB − 1150.0 R = 1.00 (3.36)

These correlations are at the MP2 level. It could be seen from the regression
coefficients (R) that these correlations are quite convincing to predict linear
correlations.

Experimentally six low-frequency vibrational modes were observed for formic
acid lowest energy dimer TT-1 [22]. The modes with u-symmetry (two Au and
one Bg) are IR-active and three g-symmetry modes (two Ag and one Bg) are
Raman active. These low-frequency modes were determined theoretically for TT-1
isomer through anharmonicity corrections, since these vibrations were experimen-
tally assigned as the lowest fundamentals of the overtone band. For example, n1
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Table 3.2 –OH and NH2 stretching modes (ν(OH) and νS(NH2) cm–1) of the lowest energy
isomers of TT-1, FMAD-A, AA-1, and AMD-1. The table also includes intensities (I, KM/MOL),
red-shift (�ν, cm–1) and change of intensity (�I) of each mode with respect to monomers of
formic acid, acetic acid, formamide and acetamide

Isomer Stretching mode ν I �ν �I

TT-1 ν(OH) 3119 1998 –473 1923
FMAD-A νS(NH2) 3276 1078 –251 1019
AA-1 ν(OH) 2950 3437 –593 2880
AMD-1 νS(NH2) 3104 1789 –335 1743

All the values are reproduced with permission from ref. [85] Copyright (2013) American Chemical
Society and ref. [86] with permission from the PCCP Owner Societies

Table 3.3 Low frequency
vibrations of TT-1 and
FMAD-A (ν1 − ν6), AA-1
and AMD-1 (ν1 − ν8)
dimers. The intensities (I,
KM/MOL) of the vibrational
modes responsible for
hydrogen bonding are also
included. The results are
presented at the
MP2/6-311++G** level and
the values within parentheses
are experimental data

TT-1 FMAD-A AA-1 AMD-1

ν1 65 (Au)(69) 64 (Au) 45 (Au)(–) –
ν2 162 (Au)(169) 144 (Au) 65 (Au)(56) –
ν3 237 (Bu)(248) 195 (Bu) 66 (Au)(~50) 24 (Au)
ν4 182 (Ag)(174) 134 (Ag) 173 (Bu)(170) 78 (Au)
ν5 150 (Ag)(194) 154 (Ag) 60 (Bg)(73) 145 (Bu)
ν6 234 (Bg)(242) 194 (Bg) 114 (Bg)(99) 84 (Bg)
ν7 – – 150 (Ag)(152) 125 (Ag)
ν8 – – 169 (Ag)(163) 144 (Ag)
I 57 (ν3) 84 (ν3) 30 (ν4) 45 (ν5)

All the values are reproduced with permission from ref. [85]
Copyright (2013) American Chemical Society and ref. [86] with
permission from the PCCP Owner Societies

band was determined as the lowest fundamental (n1, Au) of the experimentally
assigned overtone band ([2n1], Ag). Table 3.3 contains all these six low-frequency
fundamentals along with their theoretically determined values (MP2 level). The
computed values for the rest of the isomers are available in ref. [85]. It is only
important to note here that the intensities of the in-plane-bending mode (n3), related
to the low-frequency OH-bending of various formic acid dimers, show regular
change with respect to their �EB through the following linear correlation (Eq. 3.37).

I = −4.62ΔEB − 8.49 R = 0.96 (3.37)

Formamide dimer (FMAD-A) also have six low-frequency modes and only the
intensities of the stretch-bend mode (n3, Bu) (related to the ns(NH2) mode) (Table
3.3) together with the intensities of the similar modes of the other isomers [85] show
linear correlation with their �EB,

I = −9.54ΔEB − 34.8 R = 0.99 (3.38)

These correlations were validated using other high-level QC techniques including
DFT/B3LYP, G4MP2, CBS-QB3, and G2MP2 methods [85].
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Acetic acid dimers have eight such low-frequency vibrational modes [84, 86],
and these modes with their symmetries are shown in Table 3.3 for the lowest energy
AA-1 isomer. These bands are either IR-active (u-symmetry) or Raman-active (g-
symmetry). The acetamide dimer do not have any experimental data and six such
modes (instead of eight) could be computationally assigned through theoretical
computations (Table 3.3). They are also IR and Raman active and shown in Table
3.3 for the lowest energy AMD-1 isomer. The data for the other isomers of acetic
acid and formic acid dimers are available in ref. [86]. Analysis of such data revealed
that the in-plane-bending or stretch-bend (in plane) modes of AA-1 (Raman active
n7(Ag) and n8(Ag) and the IR-active n4(Bu)) modes showed importance in hydrogen
bonding. The n7 and n8 bands have very low intensities, while the n4 band have quite
large intensity (Table 3.3). The n4 band also showed regular change of intensities
for various acetic acid dimers and maintain a linear correlation with corresponding
ΔEB values (Eq. 3.39, MP2 results).

I = −2.52ΔEB − 6.41 R = 0.99 (3.39)

Similar analysis for the acetamide dimers generated the following correlation
(Eq. 3.40, MP2) using intensities of the IR-active n5 band.

I = −5.79ΔEB − 22.5 R = 0.91 (3.40)

These correlations, like formic acid and formamide dimers, were validated using
similar high-level QC techniques [86].

3.3.6 Empirical Additive Relations of ΔEB for Fatty Acid
and Amide Dimers

The important aspect of the individual linear correlations between the �EB of the
fatty acid (and amides) dimers and intensities (I) of the high frequency n(OH)-
modes, as discussed above, could be extended for their combined cases. For
example, the I-values of both trans-trans formic acid (TT-1–TT-5, Fig. 3.10) and
acetic acid (AA-1–AA-6, Fig. 3.11) dimers, when combinedly plotted against
their respective �EB values, a linear correlation is again prevailed (R= 0.97,
MP2 results). Similar linear correlation was also observed for the formamide and
acetamide dimers (R = 0.96; for the I [ns(NH2)] and �EB plot: MP2 results).
The low-frequency hydrogen bonding mode also showed similar features [85,
86]. These linear dependencies led to an empirical additivity relation of �EB

among these dimers due to transferable local character of the individual hydrogen
bonding fragments. Such relations were established through analysis of the local
hydrogen-bonding/binding energies of the fragments (EX . . .Y) (X and Y are the
atoms or groups involved in hydrogen bonding). It is assumed that the �EB values
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are originating solely due to the contribution of EX . . . Y terms and they are also
transferable. In the case of formic acid and acetic acid dimers these fragments
are OH . . . O, CH . . . O, OH . . . O(H), and CH . . . O(H), while for formamide and
acetamide dimers these fragments are NH . . . O and CH . . . O (see Figs. 3.10,
3.11, 3.12, and 3.13 for the definition of these fragments). The hydrogen within
parentheses belong to the O-H group not involved in hydrogen bonding. The
EX . . .Y values of the fragments could be evaluated by inspecting the nature of HB
interactions and �EB values of an individual dimer and setting a simple additive
relation from these data. The procedure could be explained using the following
examples of the different dimers.

In the case of formic acid dimers, the hydrogen bonds in TT-1 and TT-5 isomers
are solely due to OH . . . O and CH . . . O fragment interactions (Fig. 3.10). Thus
EOH . . .O and ECH . . .O fragment energies in these cases are simply half of their �EB

values. The evaluations of the EOH . . .O(H) and ECH . . . O(H) fragment energies could
be computed directly from the following relations for TT-4 and TT-6 isomers (Eqs.
3.41 and 3.42)

ECH...O + EOH...O(H) = ΔEB (T T − 4) (3.41)

ECH...O + ECH...O(H) = ΔEB (T T − 6) (3.42)

Once the fragment energies are known, the �EB values of the other dimers could
be easily evaluated using these key EX . . .Y values. In the case of trans-cis dimers,
the trans- to cis-formic acid conversion energy (ETC) would be needed to evaluate
the binding energies. The following Eq. (3.43) could be used as an example for the
use of ETC data to compute �EB of TC-1 isomer (Fig. 3.10).

ECH...O + EO...HO + ET C = ΔEB (T C − 1) (3.43)

The predicted �EB values (MP2 level) of the isomers TT-2 (–8.28 kcal/mol),
TC-1 (–4.20 kcal/mol), TC-3 (–2.60 kcal/mol = TC-4), and TC-5 (–1.66 kcal/mol)
were within 0.5 kcal/mol of the computed results at the MP2/aug-cc-pVTZ level.
The computed ETC value of 4.08 kcal/mol (MP2 level) was used in such calculations
for the trans-cis isomers [85].

The acetic acid dimers (Fig. 3.10), like formic acid dimers, have OH . . . O (AA-
1), CH . . . O (AA-5), and OH . . . O(H) (AA-4) fragments involved in hydrogen
bonding. The evaluations of the related fragment energies, like formic acid dimers,
are quite straight forward. These values are not the same with respect to the formic
acid dimers due to the difference of �EB values. The AA-3 dimer in this respect
presents a special hydrogen bonding situation. Here, O-H center on fragment is
bound to O (O-H . . . O) and O-H (HO . . . HO) centers of the second fragment (Fig.
3.11). This HO . . . HO fragment is not like OH...O(H) fragment of AA-4 and is
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marked as OH . . . O1. The �EB of AA-3 isomer is used to evaluate the OH . . . O1
fragment energy using the value of EOH . . .O(H) in the following relation (3.44).

EOH...O1 + EOH...O(H) = ΔEB (AA − 3) (3.44)

These known values of fragments energies predict the �EB AA-2 and AA-
6 isomers within 1.0 kcal/mol of the computed values using MP2/aug-cc-pVTZ
technique [86]. These additive relations were used in cases of formamide and
acetamide dimers also. They needed knowledge of the fragment energies of
NH . . . O and CH . . . O fragment energies from the structural patterns of formamide
(FMAD-A and FMAD-E) and acetamide (AMD-1, and AMD-4) dimers. These
fragment energy values differ slightly because of the differences of structures, and
�EB values of these two different amides. The predicted values for the other isomers
using these fragment values were quite satisfactory [85, 86].

The results discussed so far are not restricted to the dimers of specific fatty acids
and their amides. The idea was found to be useful to other homologs also, provided
they have similar hydrogen bonding features. The propionic acid and n-butyric acid
dimers have similar dihydrogen bonded structures of AA-1. They differed only
in the size of the alkyl group (-C2H5 for propionic acid and –C3H7 for n-butyric
acid). Considering the difference of binding energies of TT-1 (–13.4 kcal/mol) and
AA-1 (–14.4 kcal/mol) isomers at the MP2/aug-cc-pVTZ level [85], the fragment
energy of two –CH3

(
ECH3

)
is estimated to be 1.0 kcal/mol (since rest parts of the

two dimers are similar). Assuming the fragment energies –C2H5 and –C3H7 to be
equivalent to two and three –CH3 groups, the �EB of propionic acid and n-butyric
acid dimers could be predicted to be –15.4 and –16.4 kcal/mol [86]. These results
are very impressive against the respective experimental values of 15.2 ± 0.2 and
17.2 ± 0.8 kcal/mol. Thus, the additive nature of binding energies, as discussed here,
seems quite natural for such dimers. It shows some predictive nature on binding
energies in a homologous series as well.

3.4 Molecular Modeling of Strong and Weak Cation-π
Interactions

The cation-π interactions, which were fundamentally coined by Kier and coworkers
[13, 14] as a non-covalent interaction mediated by ion-induced dipole foreseeable
via the molecular modeling of acetylcholinesterase inhibition reactions and subse-
quently rationalized by Dougherty and coworkers [15, 16] in diverse chemical and
biological systems, have appeared as a very prevalent restraining force to explicate
the crucial factor responsible for non-covalent binding in small gas-phase ion–
molecule complexes as well as macromolecular protein-ligand systems. There are
mainly two types of cation-π interactions that falls into the category of weak and
strong interactions for the sake of essence of electrostatics in molecular fragments.
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The quantitative estimation of such cation-π interactions in biological systems is
the paramount concern to comprehend the underlying factors for the molecular
recognition processes. To interpret the molecular recognition pattern contributed by
the cation-π interactions stemming from the side chain of phenylalanine, tyrosine,
and tryptophan with arginine and lysine in 1718 typical protein structures, Minoux
and Chipot [17] performed quantum mechanical calculations by accounting the
interactions of ammonium and guanidinium ions with the toluene, p-cresol, and
methyl-indole as prime models of large molecular assemblies. The inclusion of
polarization effects in predicting cation-π interactions seems to be indispensable,
as evident by the computed binding energies with the basis-set superposition
error (BSSE)-corrected MP2/6-311++G(d,p)//MP2/6-31G(d,p) level of approxi-
mation. Furthermore, the commercial force field such as Amber is demonstrated
to be a reliable and efficient approach for evaluating the cation-π interactions in
macromolecular assemblies of biological concern. The trends in calculated binding
energies for the non-covalent interactions of toluene, p-cresol, and methyl-indole
with the ammonium and guanidinium ions using the Amber force field compare
well with the MP2 results even though the molecular mechanics method based on
Amber force field predicts shorter interaction distances between the cations and the
centroid of the aromatic ring with respect to the quantum mechanical calculations.

The cation-π interactions also play a critical role in stabilizing the coordination
complexes of alkali-metal cations together with the aromatic systems. Nicholas et
al. [101] have estimated the strength of cation-π interaction between the alkali-
metal cations (Li+ to Cs+) and the benzene ring by accounting the consequences
of incomplete basis sets within the framework of restricted Hartree-Fock (RHF)
and second-order Møller-Plesset perturbation theory (MP2) levels. The predicted
binding energies for the three heavier cations at the SVWN/TZ94p level are found
to be 15–20% higher compared to the MP2 results, while the computed binding
energies using BP96/TZ94p level are shown to be ~20% reduced when compared
with the MP2 data. For such cation-π interactions, the binding enthalpies are usually
underestimated compared to the experimental measurement, albeit the calculated
binding enthalpies using BP96/TZ94p level are in accordance with the MP2 results.
In another study by Sunner et al. [102], the ion-quadrupole and ion-induced dipole
attractions due to the interaction between the potassium ion and benzene were
evaluated by performing ab initio calculations (at the STO-3G level) as well as
the classical electrostatic calculations, and the consideration of quadrupole moment
of the aromatic ring is suggested to be the pivotal parameter to describe the
electrostatics of cation-π interaction. In practice, the total electrostatic interaction
could be judged as the sum of charge–charge, charge-dipole, charge–quadrupole,
charge–octupole, and higher order terms. Kim et al. [103] have estimated charge-
dipole, charge–quadrupole and charge-polarizability interactions using MP2 level
in conjunction with 6-311+G(d,p) basis sets, to comprehend the nature of cation-π
interactions for the binding of ammonium and tetramethylammonium cations with
benzene and water. The obtained results clearly demonstrate that the interaction
between tetramethylammonium cation and benzene ring is crucially contributed
by the charge-quadrupole and charge-polarizability interactions. However, the
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contribution of other electrostatic terms has not been properly accounted in such
cation-π interactions involving charged amino group or metal ions and aromatic
systems.

The pertinency of computing various multipolar electrostatic energy terms in
describing both the strong and weak cation-π interactions has been critically
analyzed by Kadlubanski et al. [104]. The nature of cation-π interactions is
assessed via the comprehensive survey of two-body interaction energy decom-
position components of several gas-phase and dihydrated cation-π complexes
comprising benzene, p-methylphenol, and 3-methylindole as the π-donor systems
and Mg2+, Ca2+, and NH4

+ cations as the acceptor units by implementing a hybrid
variational–perturbational interaction energy decomposition scheme. The first-order
electrostatic and higher order delocalization energy components of the interaction
energy are indicated to be the critical parameters in elucidating the strong and weak
binding of cation-π complexes. To ascertain the reliability of the computational
approach for evaluating the energetics of cation-π interactions, the computed
interacting distances between the donor and acceptor units, binding energies, and
thermochemical properties such as enthalpy and Gibbs free energy of binding for
each complex using local DFT method at the B3LYP level after the counterpoise
(CP) and zero-point energy (ZPE) corrections are further compared with those
obtained from the G4MP2 and CCSD(T) level of theory in combination with
the aug-cc-pVDZ basis sets. The calculated binding energies and thermochemical
properties for the gas-phase cation-π complexes using DFT/B3LYP level are in the
immediate vicinity of the G4MP2 results. However, in case of dihydrated cation-
π complexes, the predicted binding energies using G4MP2 method are usually
lowered by 3–7 kcal/mol compared to those obtained by the DFT/B3LYP level,
which is in accordance with the calculated shorter interaction distance using G4MP2
method. The binding energies are further improved by the CCSD(T) level of
approximation especially for the binding of dihydrated Ca2+ ion with benzene
and 3-methylindole. The Mulliken population analysis manifests that a significant
amount of electronic charge is transferred from the aromatic systems to the Mg2+
and Ca2+ ions. Furthermore, a linear correlation between the calculated binding
energy and the charge transport is obtained, thereby, indicating identical provenance
of electrostatics of the cation-π interactions and demanding meticulous assessment
of diverse electrostatic interaction components to untangle the dominating factors
for the strong and weak cation-π interactions. Within the framework of Onsager
reaction field model, the total energy of such a cation-π complex in the presence
of a homogeneous electric field (V) induced by the acceptor atoms of the complex
could be expressed as,

E = E0 − μ0
i Vi − 1

2αijViVj − 1
3!βijkViVjVk − 1

4!γijklViVjVkVl . . .
1

3
Ai,jkVi∇Vjk · · · − 1

6
Bij,klViVj∇Vkl · · · − 1

15
Ci,jklVi∇2Vjkl

(3.45)

where E0 refers to the energy of the molecular system in the absence of external
perturbation; μ0 and α are the dipole moment and polarizability, and β and γ
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represent the higher-order polarizabilities, respectively. Ai, jk defines the dipole–
dipole-quadrupole hyperpolarizability. The dipole–quadrupole and dipole–octupole
polarizabilities are denoted by Bij, kl and Ci, jkl, respectively.

The essence of total electrostatic interaction energies (T-El) and the multipolar
components of electrostatic terms including charge–charge (C–C), dipole-charge
(D–C), quadrupole-charge (Q–C), and octupole–charge (O–C) as a function of
interacting distance (r) in the cation-π complexes of Mg2+, Ca2+, and NH4

+ are
delineated in Figs. 3.14 and 3.15. The T-El curves corresponding to the cation-
π complexes of Mg2+ exhibit a minimum, while those curves are dispersive in
nature for the binding of Ca2+ ion with benzene and 3-methylindole (Fig. 3.14).

Fig. 3.14 Plots of total electrostatic interaction energies (T-El) and its other multipolar com-
ponents as a function of r for the complexes of Mg2+ and Ca2+ ions with benzene (Bz),
p-methylphenol (PMP), and 3-methylindole (3MI). Panels a and b represent the curves for the
Mg2+ complexes, while panels c and d are for the Ca2+ ion complexes. In the figures, C–C,
D–C, Q–C, and O–C represent the multipolar electrostatic interaction energy components (C–C,
charge–charge; D–C, dipole–charge; Q–C, quadrupole–charge; O–C, octopole–charge) (reprinted
with permission from ref. [104] Copyright (2013) American Chemical Society)
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Fig. 3.15 Plots of total electrostatic interaction energies (T-El) and their multipolar components
as a function of r for the complexes of NH4

+ ion with benzene (Bz) (a), p-methylphenol (PMP)
(b), and 3-methylindole (3MI) (c) (reprinted with permission from ref. [104] Copyright (2013)
American Chemical Society)

The stabilities of strong and weak cation-π complexes of these ions are substantially
guided by the repulsive or attractive contributions of the Q–C and O–C components,
as manifested by the calculated curves of multipolar components of the Mg2+- and
Ca2+-complexes shown in Fig. 3.14. The distinct nature of cation-π interactions for
the NH4

+-complexes is certainly evident by the T-El curves as well as anisotropic
potential expansion of the multipolar components around the equilibrium distance
r as displayed in Fig. 3.15. The contribution of multipolar components of the
interaction energy is further demonstrated to be intrinsically linked to the cation-π
vibrational modes specifically the intramolecular stretching frequency (Sz) assigned
to the back-and-forth motion of the cation coupled with out-of-plane twisting
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mode of the aromatic moiety, and the out-of-plane C-H bending mode of the
π-system (νopCHb). The augmentation of IR intensity of a particular mode in a
cation-π complex could be further estimated from the alteration in dipole derivative
expressed as

∂

(
∂μ

∂Q

)
=
(

∂μ

∂Q

)

complex

−
(

∂μ

∂Q

)

isolated

(3.46)

whereQ corresponds to the normal coordinates of the cation–π mode; and the dipole
derivative for a given vibrational mode of the molecular system could be computed
by neglecting higher order induced moment terms as follows,

(
∂μi

∂Q

)
=
(

∂μ0
i

∂Q
+∂αij

∂Q
Vj + 1

2

∂βijk

∂Q
VjVk . . .

)
+
(

αij
∂Vi

∂Q
+ βijk

∂Vi

∂Q
Vk + . . .

)

(3.47)

The predicted intramolecular stretching mode of the respective cation-π complex
corroborates well with the binding strength of the studied systems (Fig. 3.16a).
The increase in IR intensities of these vibrational modes is found to correlate
well with the multipolar electrostatic comportment of cation-π interactions as
anticipated from the computed higher order quadrupolar and octupolar terms (Fig.
3.16c, d), albeit the linear correlation between the calculated blue shift of the
C-H bending mode with respect to the isolated π-system (�νopCHb) and the
binding energy (�EB) shows strong dependence on the nature of π-system (Fig.
3.16b).

3.5 Molecular Modeling of π-π Interactions

The estimation of non-covalent interaction between π-systems constitute a basis for
understanding binding mechanism of protein-ligand systems [105, 106]. The arene-
arene interactions resulting from the edge-to-face or the parallel-displaced stacking
orientations are found to play a leading role in stabilizing organic heterostructures
and bio-macromolecules [107–109]. The high-level quantum mechanical calcula-
tions [110–115] anticipate that these arene-arene interactions are primarily assisted
by the dispersion forces, although an earlier investigation led by Hunter and Sanders
demonstrated that the essential contributions to the π-π interactions emanate
from the electrostatic interactions [116]. A detailed theoretical investigation of the
interactions between benzene and monosubstituted benzenes in parallel face-to-face
stacking configuration revealed that the computed binding energies using hybrid
DFT method correlate well with the Hammett σm values for the substituents. The
parity of stacking interaction energies with the σm parameters could be further
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Fig. 3.16 (a, b) Correlation of �EB with the intermolecular stretching (Sz, panel a) and blue-
shifted out-of-plane CH bending mode of aromatic moiety (�νopCHb, panel b) modes of various
cation–π complexes. (b) Red, blue, and green lines respectively, represent the complexes of the
cations with benzene, p-methylphenol, and 3-methylindole. (c, d) Correlation of �EB with IRI for
the respective Sz (panel c) and the intensity enhancement for the respective �νopCHb (panel d)
modes of the various cation–π complexes. The red line in panel c represents the correlation with
all the complexes, while the blue line represents correlation excluding the hydrated metal ions. The
red, blue, and green lines in panel d represent correlations for the similar cases in panel b (reprinted
with permission from ref. [104] Copyright (2013) American Chemical Society)

explicated from the direct electrostatic and dispersive interactions of the benzene
and substituted benzene systems as evident by the symmetry-adapted perturbation
theory (SAPT) results. Recently, the influences of electrostatic and dispersive
interactions in establishing the correlation between binding energies and Hammett
σ-parameters for the offset face-to-face (OSFF) stacking interactions of diverse
nitrobenzene derivatives with the model graphene systems have been assessed by
Khan et al. [117]. An extensive comparative study of the arene-arene interactions
is conducted for the interactions of substituted nitrobenzene dimers, X–C6H4–NO2
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(X= H, CH3, OCH3, OC2H5, Cl, Br, I, OH, CN, and NH2 substituents at m- and
p-positions) as well as di- and tri-substituted nitrobenzene derivatives [3-NO2-4-
OH, 3,5-di-NO2-4-OH, and 3,5-di-NO2-4-CH3] with the model 5,5-graphene (GR)
and its B- and N-doped scaffolds (3BGR and 3NGR) within the framework of
DFT using M06 exchange-correlation functional and accounting the impact of large
basis sets namely cc-pVDZ, cc-pVTZ and sp-aug-cc-pVTZ. The calculated BSSE-
and ZPE-corrected binding energies (ΔEB) and related thermodynamic parameters
(ΔH 0

B and ΔG0
B) using DFT methods are further compared with those obtained

from the MP2 level. Albeit the estimated binding energies at higher basis sets and
the perturbative MP2 technique are found to be somewhat lower compared to the
results derived from the M06/cc-pVDZ level, the predicted trends in ΔEB values at
diverse levels closely resemble to each other. The computed values of ΔEB for the
interaction of m- and p-substituted nitroaromatics with GR/BGR/NGR are revealed
to be remarkably higher than that of benzene as well as pristine nitrobenzene.
The changes in ΔH 0

B and ΔG0
B are shown to be enhanced with the rise in the

number of substituents in the nitroaromatic ring. It is noteworthy to mention that the
predicted values of ΔG0

B for the adsorption of nitrobenzene, m-nitrobenzene, and
p-nitrotoluene on the graphene surface compare well with the experimental results
obtained from the Freundlich and Langmuir isotherms. The small disagreement
in magnitude with respect to the experimental adsorption free energies is mainly
attributable to the overestimated CP correction via double-ζ basis set. The robust
interaction of these extended π-systems stems from the electrostatic and dispersion
interactions, as manifested by the molecular electrostatic potential (MEP) maps.
The correlation between computed binding energy and Hammett parameter (

∑|σm|
or
∑|σ p|) is further illustrated in Fig. 3.17a, b. The values of calculated ΔEB

using M06/cc-pVDZ level of theory are in conformity with the
∑|σm| for all the

nitroaromatics involved in π-π interactions with the GR/3BGR/3NGR scaffold, and
the estimated correlation coefficient is found to be > 0.92 for each scaffold. The
correspondence between ΔEB and

∑|σm| is retained to a greater or lesser extent for
using diverse DFT methods and MP2 approach. The linear correlation between ΔEB

and
∑|σ p| parameters is also conserved but to a slightly lesser extent compared to

the
∑|σm| parameters especially for the interaction of nitrobenzene derivatives with

the 3NGR. Similar correlations are maintained for the computed thermodynamic
parameters ΔH 0

B and ΔG0
B with the Hammett constants

∑|σm| and
∑|σ p|, as

portrayed in Fig. 3.18.
Moreover, the dominant contribution of dispersion and electrostatic components

to the ΔEB is justified from the multiple regression analysis by accounting the
molar refractivity (

∑
Mr) or the changes in polarizability (Δα) (with respect to

benzene) in conjunction with the
∑|σm| and

∑|σ p| parameters. The contributions

of electrostatic
(
E

(10)
el

)
, and dispersive interactions (ΔEdisp: obtained from MP2)

together with empirical dispersion stemming from the M06/cc-pVDZ level are
further evaluated to explicate the nature of π-π interaction due to the attachment of
nitroaromatics on the surface of GR, 3BGR and 3NGR, as represented in Fig. 3.19.
The involvement of E

(10)
el and ΔEdisp terms appear to be substantial in stabilizing
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Fig. 3.17 Correlations of �EB with �|σm| (panel a) and �|σp| (panel b) for the interactions
between GR, 3BGR, and 3NGR with various m-, p- and several di- and tri-substituted nitrobenzene
derivatives at the DFT/M06/cc-pVDZ level. Panel a: correlations of GR (blue line and black
dots; r = 0.9), 3BGR (red line; r = 0.91) and 3NGR (green line; r = 0.87) (r: correlation
coefficient) interacting with m-, and other higher substituted nitrobenzene derivatives. Panel b:
correlations of GR (blue line; r = 0.91), BGR (red line; r = 0.91) and NGR (green line;
r = 0.80) interacting with p-, and other higher substituted nitrobenzene derivatives (reprinted
with permission from ref. [117] (https://pubs.acs.org/doi/10.1021/acsomega.7b01912), Copyright
(2018) American Chemical Society; “Further permissions related to the material excerpted should
be directed to the ACS”)

offset face-to-face stacking interactions in such extended π-systems. The E
(10)
el term

is found to increase with the stronger electron-withdrawing and electron-donating
substituents and furnish approximately equal contribution when compared with the
sum of energy components emanating from the ΔEdisp, the delocalization term(
ΔEHF

del

)
, and the repulsive Heitler–London exchange term

(
EHL

x

)
. The energy

decomposition analysis further anticipates that the E
(10)
el contribution crucially

originates from the charge–charge interactions even though the higher-order energy
components associated with the dipole–dipole, dipole–quadruple, and quadruple–
quadruple interactions are found to be important to determine the stabilizing factors
for the π-π interactions. Thus, the obtained results substantiate the necessity of∑

Mr and Δα together with the
∑|σm| or

∑|σ p| parameters in the multiple
regression analysis to evaluate the binding energies in extended π-systems in gas
phase.

https://pubs.acs.org/doi/10.1021/acsomega.7b01912
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Fig. 3.18 Correlations of �HB
0 and �GB

0 with �|σm| (panels a and b) �|σp| (panels c
and d) for the interactions of GR, 3BGR, and 3NGR with various m-, p- and several di-
and tri-substituted nitrobenzene derivatives at the DFT/M06/cc-pVDZ level. Correlations in
panel (a): GR . . . nitrobenzenes (blue): r = 0.93; 3BGR . . . nitrobenzenes (red): r = 0.92;
3NGR . . . nitrobenzenes (green): r = 0.92. Correlations in panel (b): GR . . . nitrobenzenes (blue):
r = 0.93; 3BGR . . . nitrobenzenes (red): r = 0.94; 3NGR . . . nitrobenzenes (green): r = 0.95. Corre-
lations in panel (c): GR . . . nitrobenzenes (blue): r = 0.85; 3BGR . . . nitrobenzenes (red): r = 0.90;
3NGR . . . nitro-benzenes (green): r = 0.86. Correlations in panel (d): GR . . . nitrobenzenes (blue):
r = 0.86; 3BGR . . . nitrobenzenes (red): r = 0.92; 3NGR . . . nitrobenzenes (green): r = 0.95
(reprinted with permission from ref. [117] (https://pubs.acs.org/doi/10.1021/acsomega.7b01912),
Copyright (2018) American Chemical Society; “Further permissions related to the material
excerpted should be directed to the ACS”)

https://pubs.acs.org/doi/10.1021/acsomega.7b01912
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Fig. 3.19 Bar chart graphs
comparing the contributions
of Eel

(10) and �Edisp in GR
(panel a)/3BGR (panel
b)/3NGR (panel c)
interactions with various m-
and several di- and
tri-substituted nitrobenzene
derivatives through energy
decomposition analysis. The
red and blue bars respectively
represent �Edisp (MP2) and
Eel

(10) contributions. The
empirical dispersion
contributions at the
M06/cc-pVDZ level (green
bars) are also included for
comparison (reprinted with
permission from ref. [117]
(https://pubs.acs.org/doi/10.
1021/acsomega.7b01912),
Copyright (2018) American
Chemical Society; “Further
permissions related to the
material excerpted should be
directed to the ACS”)

3.6 Modeling Non-covalent Interactions in Bio-inspired
Supramolecular Systems

Hierarchical molecular self-assembly, also called supramolecular polymerization,
is prevalent in nature, and the molecular recognition pattern of such naturally
occurring biomolecules can be exploited convincingly in vitro to generate functional

https://pubs.acs.org/doi/10.1021/acsomega.7b01912
https://pubs.acs.org/doi/10.1021/acsomega.7b01912
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nanomaterials with distinctive electronic, mechanical, and biological properties
[118–123]. The potential applications of supramolecular assemblies in diverse
fields including nanotechnology, biotechnology, and medicine necessitate a com-
prehensive understanding of the mechanism of molecular assembly [124–128].
Experimental techniques such as electron microscopy (scanning and transmission),
nuclear magnetic resonance (NMR), X-ray diffraction (XRD), and in situ atomic
force microscopy (AFM) fail to provide a detailed overview of the atomic inter-
actions and the molecular driving forces that essentially promote the formation
of macroscopic structures [129]. The design of tailored hierarchical soft materials
using molecular dynamics simulations is also a formidable task, since a broad array
of conformational sampling is necessary for the convergence of thermodynamic and
structural quantities. The supramolecular polymerization is assisted by the delicate
balance of attractive forces between the building blocks including hydrogen bonding
and van der Waals interactions.

By performing atomistic MD simulations for a cylindrical nanofiber comprising
144 peptide amphiphile (PA) molecules (Fig. 3.20a) in water with physiological ion
concentration and employing CHARMM force field, Schatz and co-workers have
shown that the self-assembly of PAs into nanofiber is aided by the electrostatic
interaction between the PAs and the sodium counterions as well as the van
der Waals interaction between the PA units (Fig. 3.20b) [130]. Furthermore, the
formation of β-sheets parallel to the fiber axis through the hydrogen-bonding

Fig. 3.20 (a) Snapshot of self-assembled PAs at 40 ns. The hydrophobic core is represented by a
blue surface: R-helixes are in red, β-sheets are in yellow, turns are in cyan, and coils are in gray.
(b) Intermolecular interaction energies between PAs are shown in the left column, and interaction
energies between sodium ion and PA are shown in the right column. The sum of electrostatic (open
blue circle) and van der Waals energies (open red circle) is shown as a filled purple circle (adapted
with permission from ref. [130] Copyright (2011) American Chemical Society)
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network is predicted to be the critical factor for the ordered structure of cylindrical
nanofiber. In another study [131], the pertinency of plane-wave (PW)-based DFT
computations in determining the driving forces for the experimentally perceived
cooperativity in the hydrogen-bond-mediatedsupramolecular polymerization of C3-
symmetrical trialkylbenzene-1,3,5-tricarboxamides (BTAs) has been assessed by
analyzing the function of electrostatic interactions on the total cooperativity. The
calculated interaction energy for the BTA dimer derived from PW-DFT using PBE
functional is found to be –38.7 kJ/mol, which further enhances to –116 kJ/mol
for the BTA oligomer holding seven monomers, and thereby leading to the total
cooperative effect of 200%. The escalation of binding strength for the higher
oligomers corroborates well with the shortening of hydrogen-bond length. The
key interactions accounted for the cooperativity include long-range dipole-dipole
interactions, short-range polarization, and resonance-assisted hydrogen bonding.
The contribution of long-range dipole-dipole interactions for the self-assembled
supramolecular polymer comprising seven BTA monomers is predicted to be 43%
within a framework of pairwise dipole-dipole model. The remainder 71% of the
interaction energy was assigned to the short-range polarization and resonance-
assisted hydrogen bonding accompanied by electron redistribution along the BTA
chain. The electron-density difference maps further manifest that the polariza-
tion of electron density alters substantially around the amide hydrogen bond
with the augmentation of chain length of BTA oligomer, as delineated in Fig.
3.21.

Later, by performing classical MD simulations, Kang et al. [132] have demon-
strated the impact of both the π-π stacking and the hydrogen bonding network on
the growth of chiral filaments through the self-assembly of a peptide-drug conjugate,
where a β-sheet forming peptide (CGVQIVYKK, or Tau) is conjugated with the
anticancer drug camptothecin (CPT) by dint of disulfide linker (disulfylbutyrate,
buSS). As revealed by the MD simulations, the π-π stacking between the CPT
moieties, that emanates from the planar pentacyclic structure of the drug molecules,
harnesses the initial phases of self-assembly process. The π-π stacking of the
planar drug molecules of the neighboring peptide-drug conjugate is diverse in nature
and exhibits both the displaced parallel and sandwiched configurations. The pre-
assembled system accommodates a higher proportion of van der Waals interactions
(31%) and lower contribution of electrostatic interactions (69%) between the drug
amphiphiles (DAs) in contrast to the random system even though the calculated total
interaction energies per DA are found to be comparable. Moreover, the fraction
of intermolecular hydrogen bonds is found to escalate from 46% in the random
system to 77% in the preassembled system, leading to a substantial cooperative
rearrangement of the hydrogen bonding network prior to the commencement of
nanofilament structure.
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Fig. 3.21 Electron-density differences calculated (a) by subtracting the electron density of the
individual monomers from the electron density of the constituting oligomer (dimer, trimer, and
hexamer) and (b) by subtracting the electron density of two trimers within a hexamer from the
electron density of the constituting hexamer. Values are in electrons/Å3. Red regions denote
accumulation of electron density, and blue regions correspond to depletion of electron density upon
formation of the hydrogen-bond complex (reprinted with permission from ref. [131] Copyright
(2010) American Chemical Society)
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3.7 Conclusions

The non-covalent interactions play a significant role in diverse chemical and
biological systems as well as the rational design of functional nanomaterials and
drug discovery. The structure and conformational dynamics of complex molecular
systems are influenced by the delicate interplay of non-covalent interactions encom-
passing hydrogen bonding, dipole-dipole interactions, steric repulsion, and London
dispersion. The interaction of non-polar molecules is impacted by the dispersive
forces, while the interaction of charged or highly polar molecules is chiefly
emerged from the electrostatic interaction including Coulombic interaction and
induction. The energetics of hydrogen-bonded systems, especially where polymeric
hydrogen-bonding network are formed via O-H/N-H bonds, are demonstrated to
be influenced by the specific low-frequency vibrations of the molecular systems
in combination with the high-frequency modes. The reckoning of non-covalent
interactions of halide ions with the surrounding solvent is turned out to be important
to interpret the CTTS bands that are characteristics of charge-transfer spectra of
halide-water clusters. As evident by the numerous theoretical investigations, the
quantitative characterization of dispersion-dominated interactions such as the π-
π and the cation-π interactions demand advanced correlated ab initio methods or
empirical treatment. The understating of origin of cation-π interactions relies on
the accurate description of the dipole-induced dipole as well as higher order terms
like quadrupole-dipole, quadrupole-quadrupole interactions etc. The Hammett sub-
stituent constants are manifested to be critical parameters to comprehend the nature
of interactions and their impact in predicting reaction thermodynamics for those
molecular systems which are stabilized by the π-π interactions. The stability of
the self-assembled structure in proteins and protein-mimetic materials is mainly
attributable to the subtle balance between different non-covalent interactions like
electrostatic, hydrophobic, hydrogen bonding, and van der Waals as revealed by the
atomistic MD simulations; and the ability to estimate and comprehend the nature of
non-covalent interactions is thus essential to elucidate the structure and function of
hybrid materials.

The high-level wave function-based methods such as CCSD(T) or MP2 together
with large basis sets like aug-cc-pVTZ and anharmonicity corrections are found to
yield reliable predictions of weak and strong non-covalent interactions. However,
the practical implementations of such approximate methods for large molecular
systems are categorically hindered by their slow convergence with the basis set
size and associated large basis set superposition errors. The dispersion-corrected
DFT-based methods or range-separated functionals with a long-range correlation
contribution from wave function methods followed by ZPE and BSSE corrections
appear to be effective approach to trade-off between computational cost and
accuracy.
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Chapter 4
DNA Damage Radiosensitizers Geared
Towards Hydrated Electrons

Magdalena Zdrowowicz, Lidia Chomicz-Mańka, Kamila Butowska,
Paulina Spisz, Karina Falkiewicz, Anna Czaja, and Janusz Rak

Abstract Hypoxia, a hallmark of solid tumors, which account for ca. 80% of
cancer cases, makes the cancer cells resistant toward ionizing radiation and as a
consequence to radiotherapy, one of the most common modality employed against
tumor. Oxygen present in significant amounts in the normoxic cells fixes DNA
damage exerted by the radiation-formed hydroxyl radicals which leads to about
three folds larger radiosensitivity of the normoxic cells compared to the hypoxic
ones. The imparted reactivity of hydroxyl radicals (•OH) in the absence of oxygen
and presence of equimolar to the •OH radicals number of solvated electrons under
these conditions (under normoxia hydrated electrons (ehyd) react with the dissolved
oxygen leading to relatively nonreactive O2

•– radicals) suggest the necessity of
the employment of sensitizers sensitive to the hydrated electrons for an efficient
radiotherapy. In the present chapter several groups of radiosensitizers geared
towards hydrated electrons are thoroughly discussed. In Introduction we show how
the hypoxic conditions influence cellular damage induced by ionizing radiation.
Then we demonstrate that hydrated electrons do not have significant DNA damaging
potential although they effectively bind to DNA (due to the subsequent protonation
of the anions formed in result of electron attachment to DNA). Finally, we will draw
the readers’ attention to the need for using radiosensitizers reacting with hydrated
electrons along with ionizing radiation. Introduction is followed by three sections
devoted to the discussed classes of radiosensitizers (1) modified nucleosides, (2)
oxygen mimetics and (3) metallic nanoparticles and metal complexes. Lastly, the
review is concluded with a short summary, where the advantages and disadvantages
of all the discussed classes of sensitizers are compiled.
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4.1 Introduction

Cancer is the main reason of death in the developed countries [1] and radiotherapy
belongs to one of the most common modalities for treating it in humans [1]. Indeed,
more than 50% of cancer patients receive radiotherapy at certain stage of their
treatment. Ionizing radiation (IR), a key component of radiotherapy, effectively
damages cellular DNA when the concentration of oxygen assumes values typical
for normal tissues (so called physoxia). On the other hand, solid tumors comprise
ca. 80% of all diagnosed cases [2]. In this type of tumors low oxygen level,
called hypoxia, is observed, and results from abnormal vascularization of tumor
and increased metabolism of cancer cells (Fig. 4.1) [3]. First report on hypoxia
in solid tumors, was published by Thomlinson and Gray in the middle of twentieth
century [4]. They showed a relationship between hypoxia and resistance to radiation
therapy. Similarly, in 1979, Brown demonstrated that poor response to radiotherapy
is correlated with low oxygen levels in tumor microenvironment [5]. In fact, the
efficacy of damaging the hypoxic cells with IR is three times lower than that of
damaging the normoxic ones [6].

The action of radiotherapy is based on DNA damage, which if unrepaired leads to
cellular death. It was demonstrated that the contribution of indirect effects (i.e. free
radical processes triggered by radiolysis of water) to biological damage for sparsely
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Fig. 4.1 Hypoxia in the tumor microenvironment. Hypoxia can limit radiotherapy and diffusion
of chemotherapeutic agent into tumor, leading to radio- and chemoresistance.
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ionizing radiation far exceeds that of its direct action [1]. The most abundant
products of water radiolysis are hydroxyl radicals and secondary electrons. The
latter species undergo very fast thermalization, becoming hydrated (ehyd) within the
picosecond time-scale. Until the seminal work of Sanche and coworkers [7], who
demonstrated efficient generation of single and double strand breaks in plasmid
DNA under ultra-high vacuum by electrons of energies well below ionization
threshold of DNA, it was assumed that hydroxyl radicals are the main source of
cellular DNA damage. Indeed, it has long been known that hydrated electrons do not
influence the activity of biologically active DNA while hydroxyl radicals inactivate
it inducing strand breaks [8, 9]. The assumption of major role of hydroxyl radical in
DNA damage seems to be quite reasonable since the reaction between hydrated elec-
trons and O2 transforms hydrated electrons into the practically unreactive towards
DNA O2

•– radical anions [10]. The formation of O2
•– happens before the electrons

reach DNA and it is very probable under physoxia/normoxia. However, solid tumor
cells, as was mentioned above, frequently suffer from the low concentration of
oxygen. Thus, the scavenging properties of O2 toward hydrated electrons, high
radiosensitivity under normoxia and low radiosensitivity under hypoxia (the latter
is explained in terms of oxygen dependent fixation of the initial damage induced
by the hydroxyl radicals [11]) suggest that low energy electrons (LEEs) are not
responsible for the biological effects of ionizing radiation. Indeed, it is well known
from theory [12] and experiment [9] that hydrated electrons do not cause strand
breaks in DNA but bind efficiently to nucleobases. Actually, it is well documented
that hydrated electrons attach to nucleobases, nucleotides and DNA with almost
diffusion controlled rate [13]. The resulting nucleobase anion radicals protonate
which prevents formation of strand breaks, leading instead to the formation of
ultimate molecular products such as dihydrothymine or dihydrocytosine [14, 15].

These circumstances suggest a strategy that could resolve the situation unfavor-
able from radiotherapy viewpoint. Since hypoxia imparts the action of hydroxyl
radical one could work out a way leading to the “activation” of the second
major product of water radiolysis i.e. hydrated electrons. Previous reports [16],
demonstrating that even 0 eV electrons are able to induce strand breaks in DNA,
emphasize the damaging potential that inhabits electron-DNA interactions. To
overcome the disability of hydrated electrons to damage DNA in an aqueous
solution, a specific type of radiosensitizer can be used. An exemplary compound
is a derivative of thymidine, 5-bromo-2′-deoxyuridine (BrdU), which undergoes an
ease phosphorylation in the cell, giving the respective triphosphate, and in this form
incorporates into DNA during its replication or repair [17]. Electron attachment to
the BrdU labelled DNA leads to the dissociation of the C5-Br bond in 5-bromouracil
that leaves behind the reactive uracil radical which in turn transforms, in a series of
secondary chemical reactions, into a strand break [18].

In the following we will focus on various types of radiosensitizers which utilize
electrons for their activity. In the first section, we will describe BrdU and similar
derivatives of nucleosides that after incorporation into DNA undergo efficient
dissociative electron attachment (DEA) leading to reactive radicals in the DNA
molecule and, in consequence, to DNA strand breaks. Here, we will discuss a
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computational model which enables potentially radiosensitizing derivatives to be
proposed yet before their synthesis. The next section will be devoted to oxygen
mimetics with a focus to nitroimidazolic derivatives which currently seem to be
most promising group of this type of radiosensitizers. Besides their ability to
“fix” DNA damage induced by the hydroxyl radicals their action triggered by the
attachment of hydrated electrons will also be elaborated. Finally, DNA damage by
the simultaneous action of ionizing radiation and metallic nanoparticles or metal
complexes will be described. We will end up with a summary emphasizing that
our future anticancer therapies should be supported by radiosensitizers that employ
hydrated electrons which are one of the major products of water radiolysis and
which are not utilized by classical radiotherapy. Future perspectives of this relatively
new direction will be shortly discussed in the closing statements.

4.2 Nucleoside Derivatives: A Trojan Horse Approach
to Radiotherapy

4.2.1 Modified Nucleosides as Radiosensitizers

Effective radiosensitizers should exhibit selectivity towards cancer cells. Based
on this assumption, only two groups of sensitizers that can be used in clinical
practice were distinguished: (1) hypoxic-cell radiosensitizers and (2) halogenated
pyrimidines [19]. The first group of radiosensitizers enhances the radiation effects
only in hypoxic cells. The hypoxia is characteristic only for cancer cells present in
a tumor tissue [19]. The selectivity towards cancer cells is due to the difference in
oxygenation levels between cancer and normal cells. In case of the second group
of radiosensitizers, the selectivity results from cancer cells ability for rapid growth
and uncontrolled division, which means a higher degree of pyrimidine derivatives
incorporation into DNA of cancer cell, compared to healthy tissue. In other words,
the halogenated analogs need the tumor tissue to be cycling faster than in case
of the normal cells. The extent of radiosensitization increases with the amount
of incorporated halo derivative. An excellent representative of this group is 5-
fluorouracil (for structure see Fig. 4.2) which enhances the cellular response to
ionizing radiation. This analog is metabolized to the monophosphate form and acts
mainly by inhibition of thymidylate synthase [20]. The other one, gemcitabine (for
its structure see Fig. 4.2), is a well-known radiosensitizer used in the treatment of
many types of cancer. Its incorporation into the cells requires phosphorylation of
the nucleoside by kinases to gemcitabine 5′-diphosphate. This metabolite inhibits
activity of ribonucleotide reductase and decreases the pool of dGTP, dATP, dCTP,
and dTTP. Furthermore, gemcitabine is converted to active triphosphate and, when
incorporated into DNA, leads to the termination of a DNA chain [21, 22].

Modified nucleosides possess exceptional properties making them especially
good agents for the radiation-induced cell killing. Their most unique property is
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Fig. 4.2 Structures of
modified nucleoside:
5-fluorouracil (FU) and
gemcitabine (dFdC)

the ability (of at least some of them) to substitute native nucleosides in DNA
without affecting its structure and biological function. For this reason, as mentioned
above, modified nucleosides can be extensively incorporated into DNA during non-
controlled proliferation of cancer cells—and in consequence—they are selective
towards tumor. However, if the nucleosides are appropriately structurally modified,
they can additionally engage hypoxia as a second selectivity factor. Such modi-
fication should rely on the introduction of substituents that increase nucleosides’
sensitivity to degradation induced by solvated electrons, which are one of the
major products of water radiolysis under hypoxic conditions [23] (in normoxia
hydrated electrons are mostly scavenged by oxygen) and remain non-reactive to
native DNA in water solution [24]. Thus, a modified nucleoside usually should
have an electrophilic substituent, undergoing efficient DEA that leaves behind a
nucleoside radical, which in secondary reactions is able to produce damage to DNA
leading ultimately to cancer cell death [1].

4.2.2 Nucleoside Derivatives as Trojan Horses

At the cellular level, electrophilic nucleoside derivatives act like a “Trojan horse”—
the lethal effects (DNA damage leading to cancer cells death) are produced only
as a result of interactions between radiation (producing solvated electrons) and
these compounds incorporated into DNA [1]. According to this approach, IR is
the external stimulus that leads to DNA degradation (Fig. 4.3). This means that
radiosensitizing derivatives (1) should be non-cytotoxic by themselves and (2) due
to their structural similarity to their natural analogs, they should be incorporated
into DNA structure during the replication or repair of the biopolymer.

The first assumption implies selection of analog, which after introduction
into a cell will not cause its death. Cytotoxicity of nucleosides analogs results
predominantly from their interfering with synthesis of nucleic acids by altering
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Fig. 4.3 Trojan horse approach to radiotherapy with the use of radiosensitizing nucleosides
derivatives (X-electrophilic substituent, undergoing efficient dissociative electron attachment)

DNA structure, interfering with various enzymes involved in biosynthesis and
repair mechanisms of DNA or by modifying the metabolism of native nucleo-
sides/nucleotides [25]. Nevertheless, many of electrophilic base-modified nucleo-
sides show low cytotoxicity towards cancer cells. With the use of MTT viability
test, it has been shown that the modified nucleosides considered as radiosensitizers
e.g., 5-selenocyanato-2′-deoxyuridine (SeCNdU) [26], 5-trifluoromethanesulfonyl-
2′-deoxyuridine (OTfdU) [26], 5-iodo-4-thio-2′-deoxyuridine (ISdU) [27] or 5-
bromo-4-thio-2′-deoxyuridine (BrSdU) [28] are characterized by relatively low
cytotoxicity towards both cancer and normal cells. The second requirement, i.e.
the necessity of introducing the modified nucleosides into cellular DNA, is not a
trivial task and seems to be a limiting step of the Trojan horse approach. There
are several possible methods of cellular DNA labelling: (1) using the substituted
nucleosides themselves, (2) via the substituted nucleobases and (3) using prodrugs.
In the first method, a modified nucleoside must easily penetrate cellular membrane,
be phosphorylated in cytoplasm by the specific kinases and, as a triphosphate,
attached to a newly synthesized DNA or enter the biopolymer during its repair (with
the involvement of DNA polymerases, e.g. via BER repair mechanism). Labelling
DNA using a nucleobase exploits the reserve pathway of nucleotide biosynthesis,
where the attachment of phosphoribosyl pyrophosphate to the nucleobase, leading
to the nucleoside 5′-monophosphate, is catalysed by a phosphoribosyltransferase.
The other option is chemical conversion of nucleosides into a prodrugs e.g.,
lipophilic cylcoSal pronucleotides which will hydrolyze in cytoplasm to nucleoside
monophosphates [29]. Since the first phosphorylation step is assumed to be the
most difficult one, the cycloSal pronucleotides is described as a universal way of
the modified nucleoside incorporation into the genome [30].
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Despite potential difficulties during incorporating of nucleoside derivatives into
DNA, there are several reports addressing the effectiveness of this process. Uracil
analogs, notably 5-bromo- and 5-iodo-2′-deoxyuridine (IdU), can be used by a cell
for DNA biosynthesis almost as easily as natural ones. For instance, it was demon-
strated that 5-iodo-2′-deoxyuridine was effectively incorporated (17% after 14 days
of continuous infusion) into human granulocytes [31]. It has been also proved that
4-thiothymidine [32] as well as halogenated derivatives of 4-thio-2′-deoxyuridine—
5-iodo-4-thio-2′-deoxyuridine and 5-bromo-4-thio-2′-deoxyuridine—are incorpo-
rated into the DNA of cultured human cells [33].

Since the human kinases play a critical role in the activation of important
biologically-active nucleoside analogs, the structural and kinetic studies on the
activity of these enzymes towards various nucleoside derivatives have been carried
out [34]. For instance, Jagiello et al. [35] presented the quantitative structure-activity
relationship (QSAR) model allowing to identify and understand the molecular
properties of modified nucleosides related to the hTK1 kinase activity. This model
is based on only two molecular features: the ability of the modified nucleoside
to intermolecular interactions with the enzyme and the shape of the molecule
determined by atom substitutions. Its use allows to predict the activity of hTK1
kinase towards a new nucleoside analog before its synthesis [35].

4.2.3 Electron-Induced Degradation of Modified Nucleosides:
Experimental Studies

One of the best known radiosensitizers of Trojan horse type is 5-bromouracil
(BrU). This is a highly electron affinic molecule, prone to dissociative electron
attachment—the process that leads to a reactive uracil-5-yl radical via the unstable
5-bromouracil anion. The promising characteristics of the LEE-induced damage to
DNA by the halo derivatives of native nucleosides has been demonstrated many
times. For instance, the radiosensitizing properties of all four bromonucleosides
were studied by Sanche’s and Rak’s groups, by bombarding a thin layer of single
stranded trinucleotides TXT (where X = BrdU, BrdC, BrdA or BrdG) with low
energy electrons under ultra-high vacuum [36, 37]. The comparison of the results
obtained for the native and brominated trimers suggests that the main pathways
of LEE-induced TXT degradation are related to the release of bromide anions
[36]. Moreover, a 2–3-fold increase in the sensitivity of TXT oligonucleotides
has also been demonstrated compared to the susceptibility of their native coun-
terparts to electron attachment [37]. These findings were confirmed within the
radiolytic studies of the TXT trimers irradiated in water containing a hydroxyl
radical scavenger. Indeed, it has been shown that solvated electrons are unable to
damage native DNA, whereas DNA labelled with bromoderivatives are vulnerable
to damage. Strand breaks and abasic sites have been identified as the main products
of brominated trimers radiolysis [18]. The radiolytic studies on electron-induced
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damage to trimeric oligonucleotides labelled with iodinated pyrimidines showed
that electron attachment to the iodo bases leads mainly to the formation of single
strand breaks. The worth mentioning fact is that the iodinated trimers are two-
fold more sensitive to solvated electrons than the brominated ones, which can be
explained by the barrier-free dissociation of the iodinated base anions [38].

Besides the halo derivatives, several new C5-substituted pyrimidine analogs
have been proposed in the context of efficient electron-induced degradation [39,
40]. One of them is 5-thiocyanato-2′-deoxyuridine (SCNdU) [41]. Using low-
temperature ESR and steady-state radiolysis at ambient temperature coupled with
mass spectrometry, it has been shown that the electron attachment to SCNdU leads
to two parallel reactions producing quite different products (Fig. 4.4a). In one path,
the C5-S bond is broken and the secondary dU• is formed, giving dU as a stable
product. On the other path, the S-CN bond cleavage in the thiocyanate substituent
produces the dU-S• radical that ultimately gives a stable dimer (dU-S-S-dU). This
radiation chemical study of electron addition to SCNdU establishes SCNdU as a
potential radiosensitizer that could cause strand breaks, both intra- and interstrand
DNA crosslinking as well as DNA-protein crosslinking via the formation of S-S
dimers [41].

A similar approach was adopted for SeCNdU. It has been proved, that dU-Se•

is the primary product of dissociative electron attachment to SeCNdU. Electron
binding to the studied derivative results in its degradation leading to two major
products: the dU-Se-Se-dU dimer and dUSeO2H (product of the reaction between
dU-Se• and oxygen, produced during radiolysis) (Fig. 4.4b) [26]. In case of the next
proposed sensitizer—OTfdU—radiolysis of water solution containing •OH radical
scavenger leads to the formation of two stable products, dU and OHdU (Fig. 4.4c).
The formation of dU is more favorable which suggests that the main transient
product induced by dissociative electron attachment is dU•. On the other hand,
the presence of OHdU among the radiolysis products shows also the involvement
of •OdU radical in the DEA process. The extent of decay of the studied analogs
induced by X-rays has been determined (30% for SeCNdU and 16% for OTfdU)
and compared with the yield obtained for well-known radiosensitizer—BrdU (17%)
[26].

Other promising candidates for Trojan horse type radiosensitizer seem to be the
derivatives of 4-thio-2′-deoxyuridine. It has been demonstrated that ISdU sensitized
effectively DNA to IR. The radiolysis of deoxygenated water solution of ISdU
containing •OH radical scavenger was performed. The experimental results (LC-
MS) showed the formation of five major products of degradation induced by X-rays
(Fig. 4.4d). One of the major products of ISdU irradiation, SdU, results from the
DEA process. The others are oxidation products—ISOdU or IdU, and the dimers—
(ISdU)2 and ISdU-SdU. The radiolitic decay of ISdU is almost 1.5-fold more
effective compared to BrdU. At the cellular level, ISdU can effectively lead to X-ray
induced death, which has been shown by clonogenic assay. Flow cytometry analysis
(the histone H2A.X phosphorylation assay), on the other hand, demonstrated that
ISdU pretreatment sensitizes cancer cells to ionizing radiation, at least in part, by
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Fig. 4.4 Experimental determined products of X-ray radiolysis of (a) 5-thiocyanato-
2′-deoxyuridine (SCNdU), (b) 5-selenocyanato-2′ -deoxyuridine (SeCNdU), (c) 5-
trifluoromethanesulfonyl-2′ -deoxyuridine (OTfdU) and (d) 5-iodo-4-thio-2′ -deoxyuridine (ISdU)
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Fig. 4.4 (continued)

enhancement of double strand breaks generation. In addition, the cytometric cell
death assay confirmed the X-ray induced reduction of cell viability and increase in
the population of early apoptotic cells [27].

Interestingly, very similar derivative, BrSdU, despite its structural resemblance
to ISdU did not exhibit radiosensitization properties. Stationary radiolysis of
deoxygenated water solution of BrSdU with an •OH radicals scavenger showed the
decomposition of compound but the characteristic pattern of DEA and formation
of its expected product—SdU was not observed. The lack of radiosensitization
properties of BrSdU was confirmed at cellular level. The pulse radiolysis experiment
confirmed the lack of transient absorption of dU-S• radical in case of BrSdU (in
contrast to ISdU). The above-mentioned results were well-explained by difference
between the activation barriers for ISdU and BrSdU that accompanies the elim-
ination of the halogen anion from the XSdU•– anion radical. Unfortunately, this
fact proved the lack of radiosensitizing properties of BrSdU, but also confirmed the
crucial role of DEA process in the mechanism of radiosensitization of DNA damage
by the modified nucleosides [28].

The design and characterization of the above-mentioned new potent radiosensi-
tizers with the use of computational chemistry methods are presented in the next
section (see Sect. 4.3).
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4.3 Computational Studies on Nucleoside Radiosensitizers

4.3.1 5-Bromo-2′-Deoxyuridine

Although 5-brominated uridine was synthesized more than hundred years ago [42],
first significant wave of interest in 5-bromouracil (BrU) falls in the 1950s, when the
developed methods of its synthesis already existed. The attempts of incorporation
of BrU into bacterial DNA and first toxicity tests were reported [43–47] at the time.
Still on this wave of interest began the works on BrU as a potential sensitizer,
firstly to ultraviolet irradiation [48, 49], and soon later to X-ray radiation [50–
52]. Through decades, BrU, also in its nucleoside form (5-bromo-2′-deoxyuridine)
enjoyed variable popularity, rising with the works showing its radiosensitizing
properties in in vitro and in vivo experiments [53–56]. It was demonstrated that
the presence of BrU in a DNA strand increases three-fold the susceptibility of
cells to be killed by high energy radiation [57]. Experimental studies on BrU
as a radiosensitizer have reached the stage of clinical trials several times [58–
61]. However this promising compound has not been successfully introduced into
common clinical practice. The transition from in vivo research to clinical trials
has brought the main problem with achievement of therapeutic level of BrdU
in cancer cells. It is bounded with dehalogenation of BrdU by the liver—more
than 90% of BrdU administered intravenously is deactivated in liver within one
hour [62]. To reduce impact of dehalogenation, administration of the drug (like
intra-arterial or intratumor directly), omitting the liver and avoiding systemic
circulation can be introduced [54]. Additionally, it was observed (in vitro firstly
[63]) that the uptake of BrdU into the cancer cell nuclei can be also increased
by pretreatment with small amounts of antimetabolites—methotrexate, 5-fluoro-2′-
deoxyuridine or 5-fluorouracil—inhibitors of thymidylate synthetase. In presence
of those antimetabolites, native thymine biosynthesis is inhibited, so the dividing
cancer cells are forced to incorporate BrdU—the available thymidine analog—into
their DNA [54]. Side effects bounded with uptake of modified uracils by normal
cells are separate problem. For instance, Sano et al. in their BAR therapy (BrdU-
antimetabolite-continuous intra-arterial infusion radiation therapy) of brain tumors
mentioned two side effects: onychomadesis of the nails and more frequent epilation
and radiodermatitis of irradiated scalp, probably due to radiosensitization of the skin
cells [54]. Groves et al. in their work about high-dose BrdU sensitized radiotherapy
of glioblastoma multiforme combined with chemotherapy described substantial
myelosuppressive and dermatologic toxicity caused by BrdU doses [60]. Moreover,
none of them found a significant extended survival in patients treated with BrdU
during radiotherapy.

Despite the clinical problems with BrU, the deep understanding of molecular
mechanism of action of this derivative seems to be crucial for future radiosensitizers
development. Computations joined the experimental studies on BrU at the beginning
of the twenty-first century, when Wetmore et al. and Li et al. analyzed at the
DFT level the process of electron induced dehalogenation of a set of 5-substituted
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Fig. 4.5 Potential energy surfaces (PES) of 5-bromouracil and its anion radical along the C5-Br
bond. The energy of the optimized neutral molecule is set as reference. The C5-Br bond is circled in
the structure. Reprinted with permission from [65]. Copyright (2002) American Chemical Society

halouracils [64, 65]. They showed that attachment of excess electron to BrU leads
to the formation of a stable anion radical, BrU•–. Such anion radical is then prone
to produce, with a low kinetic barrier (related to a transition from π* to σ* state),
the Br– anion . . . uracil-5-yl radical U• complex (of ca. 2.6 Å C5-Br bond length, see
Fig. 4.5). In effect, dissociative electron attachment (DEA) process leads, in the case
of BrU, to the formation of reactive U• radical, which, if present in a DNA strand,
can initiate the damage process. Hence, Wetmore et al. and Li et al. theoretically
described BrU DEA process proposed former by Abdoul-Carime et al. on the basis
of their experimental study [66].

It was also calculated [65] that the value of electron affinity (EA) increases as
follows:

U − yl• � BrU > ClU > FU � U (4.1)

Although the adiabatic EA value is the highest for uracil of all DNA/RNA
bases, the halogenated derivatives, according to their EA values, are more effective
electron acceptors than natural nucleobases, which means they can act as “electron
traps”. Another important conclusions are that the highest EA for uracil-5-yl radical
indicates its reactive nature, which seems to be important for further consideration
of uracil derivatives labelled DNA degradation mechanisms.
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4.3.2 Crucial Characteristic of Electron Attachment Process

The analysis of excess electron–biomolecule interaction should start by defying
electron affinity and ionizing potential (IP), which are part of Mulliken’s defini-
tion of electronegativity [67]. According to Mulliken, electronegativity of neutral
particle is:

χ = 1

2
(I + A) (4.2)

where I is its ionizing potential and A is electron affinity. Simplifying, electron
affinity [68] characterizes molecule’s ability to attach electron and create its anionic
form:

X + e– → X– + EA (4.3)

Numerical value of EA is defined as the difference between energy of the
neutral moiety and its corresponding anion. On the other hand, IP characterizes
the minimum energy which should be supplied to the system in order to detach an
electron:

X + IP → X+ + e– (4.4)

To discuss electron–molecule interactions during excess electron attachment
we can provide additional nomenclature. Electron stability of anion radicals, X•–,
formed after electron attachment to the neutral X moiety can be described by
three parameters correlated with electron affinity: adiabatic electron affinity (AEA),
vertical attachment energy (VAE) and vertical detachment energy (VDE) [69,
70]. All these parameters are calculated as the difference in energy between the
respective species (E—enthalpy or G—Gibbs free energy) of X and X•– (Fig. 4.6):

• For AEA value, X and X•– states are in their optimal geometries;
• For VAE value, both are in the neutral (X) geometry;
• For VDE value, both are in the anion radical (X•–) geometry.

AEA = EX − EX•− (4.5)

V AE = EX − EX•− (in the X geometry) (4.6)

V DE = EX

(
in the X•− geometry

)− EX•− (4.7)

Analyzing the plot of electron energy against molecular geometry (Fig. 4.6) one
can state that to obtain electronically stable anion radical X•– via electron attachment
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Fig. 4.6 AEA, VAE and
VDE parameters definition. E
states for electron energy,
while r—molecule’s
geometry

to the neutral X moiety, this process should decrease system energy. For AEA,
VDE and VEA parameters it means they should be positive and of relatively high
values. The positive and high values of electron affinity prove that electron attaches
willingly to a molecule. Therefore, the values of AEA, VAE and VDE, calculated
for potentially radiosensitizing nucleobase should be larger in comparison to those
parameters calculated for native nucleobases, and are the initial characteristics,
which are tested during the modeling of radiosensitizers [71].

4.3.3 Bromonucleobases

As was discussed in the previous paragraph, 5-bromouracil is one of the best
studied modified nucleobase of proven radiosensitizing properties, which has not
found its place in clinical practice, though. As an analog of thymine, it can be
incorporated to DNA and its electron affinity is larger than that of the native
nucleobase (2.6 eV for BrU compared to 2.3 eV for U) [64]. It is confirmed that
the formed via electron attachment stable BrU•– anion radical is able to produce
genotoxic uracil-5-yl radical (U•) in the DEA process. Although it has not found
application in clinical practice (see the previous paragraph), BrU with its electron-
accepting properties seems to be a good starting point on the way of searching for
new radiosensitizers. Substitution of H5 hydrogen atom in uracil with bromine atom
leading to radiosensitizer suggests bromine derivatives of other native nucleobases
could be worth of considering as the potential radiosensitizers.

Based on this concept, Chomicz et al. analyzed at the DFT level the electron
affinity and DEA mechanism for four methylated bromonucleobases (methyl group
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Fig. 4.7 Geometrical structures of bromonucleobases

was used to mimic the N-glycosidic bond): 8-bromo-9-methyladenine (BrA),
8-bromo-9-methylguanine (BrG), 5-bromo-1-methylcytosine (BrC) and 5-bromo-
1-methyluracil (BrU) for comparison (Fig. 4.7) [72].

Based on the respective EA and VDE values (AEA, VEA, VDE) it was
determined that all brominated nucleobases (BrX) are able to form stable valence
anion radicals (BrX•–) and BrU is the one which attaches an excess electron most
willingly. Electrophilic character of BrX can be ordered according to the following
series (see Table 4.1):

BrG < BrA < BrC < BrU (4.8)

According to the AEA values of halogenated nucleobases [72], 5-bromopyri-
midines occurred to be better electron acceptors than 8-bromopurines. The ease of
electron attachment (in an aqua solution or the gas phase) has the same order as that
depicted by Eq. (4.8) (cf. Table 4.1).

On the other hand, the DEA process—dehalogenation of BrX producing reactive
nucleobase radicals, X•, although kinetically and thermodynamically possible for
all analyzed derivatives, occurred to be easier for the modified purines, with no
activation barrier for breaking the C8-Br bond in case of BrA (for details, see Table
4.1).

As mentioned above DFT work took into account reaction environment at the
PCM (Polarizable Continuum Model) level only, there was a question, if the explicit
model of surrounding water would affect the DEA mechanism. Thus, ab initio
molecular dynamics (AIMD) was used to better understand and describe electron
attachment to BrX [73]. Due to the AIMD calculations we described the process of
localization of an electron on DNA bases which allowed to notice some differences
in behavior between brominated purines and pyrimidines. The results of AIMD
modeling [73] were similar to the previous DFT studies [72] and showed that the
excess electron readily attach to the neutral structure of BrX creating the anion
radical (BrX•–). In such anion radical, BrX•–, the Br-X bond dissociates (with
low activation barrier for pyrimidines and barrier-free in case of purines) which
transforms the system to an anion Br– – radical X• complex, that finally dissociates
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Table 4.1 Electron affinity’s values (in eV) and dissociative electron attachment thermodynamic
(�G) and kinetic (�G*) data (in kcal/mol) for chosen uracil/uridine derivatives—potential
radiosensitizers. AEA values in free enthalpy scale. If not stated differently, �G, �G* calculated
as a difference between anion radical and complex anion radical free enthalpy and calculations in
aqua solution (PCM model)

Compound Electron affinity DEA Ref.
AEA VDE VAE �G �G* Mechanism

BrUa 2.48 2.74 1.90 –8.00 2.54 U• + Br– [72]
BrCa 2.26 2.51 1.65 –14.44 2.15 C• + Br–

BrAa – 2.91 1.31 – Barrier-free A• + Br–

BrGa 1.55 2.04 1.00 –29.45 0.41 G• + Br–

CNUa 2.83 3.18 – 40.2 41.2 U• + CN– [39]
SCNUa 2.70 3.07 – –3.7 3.4 U• + SCN–

NCSUa 2.73 3.86 – 10.5 19.5 U• + NCS–

NCOUa 2.40 2.78 – 10.5 20.1 U• + NCO–

OCNUa 2.62 3.07 – –19.3 2.5 U• + OCN–

SHUa 2.26 2.66 – 6.8 10.4 U• + SH–

NNNUa 2.38 2.77 – 10.6 12.5 U• + NNN–

NOOUa 3.55 3.81 – 26.8 29.3 U• + NOO–

SCNdUb,c 2.64 – – –1.60 8.69 dU• + SCN– [41]
–16.21 4.07 dU-5-S• + CN–

NCUa 2.7 3.0 – 12.9 25.6 U• + NC– [40]
NOUa 3.9 4.0 – 40.7 41.0 U• + NO–

OHUa 2.2 2.6 – 27.7 28.0 U• + OH–

CCHUa 2.5 2.9 – 57.3 58.8 U• + CCH–

NHNO2Ua,d 3.1 4.5 – 27.0 29.2 U• + NHNO2
–

– –25.6 –0.3 UNH• + NO2
–

SeCNUa,d 2.5 2.9 – 0.4 6.5 U• + SeCN–

2.5 2.9 – –14.4 –0.2 USe• + CN–

SOFUa,d 4.4 – 2.4 – – USO• + F–

CCl3Ua,d 4.7 – 2.1 – – UCCl2• + Cl–

SClUa,d 4.9 – 3.2 – – US• + Cl–

IOUe 4.0 – 2.6 – – IU + O•–

5FCH2dUDPf 2.45 2.95 1.84 –16.35 1.11 CH2dUDP• + F– [86]
5ClCH2dUDPf 3.84 – 1.93 –96.70g – CH2dUDP• + Cl–

5BrCH2dUDPf 3.84 – 1.99 –86.35g – CH2dUDP• + Br–

5BrdUDP-dADPf 2.50 3.02 1.95 – – –
5FCH2dUDP-dADPf 2.42 2.93 1.79 –16.80 1.92 CH2dUDP•-

dADP + F–

5ClCH2dUDP-dADPf 3.82 – 1.88 –95.97g – CH2dUDP•-
dADP + Cl–

5BrCH2dUDP-dADPf 3.78 – 1.95 –84.73g – CH2dUDP•-
dADP + Br–

(continued)
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Table 4.1 (continued)

Compound Electron affinity DEA Ref.
AEA VDE VAE �G �G* Mechanism

OTfdUb 2.7 – – –51.4 1.5 dUO• + Tf– [26]
–17.6 8.6 dU• + OTf–

SeCNdUb 2.6 – – –13.2 1.2 dUSe• + CN–

5.5 6.4 dU• + SeCN–

CH2CNUb 2.3 – – 3.2 19.7 dUCH2
• + CN–

43.7 44.0 dU• + CH2CN–

BrdUb 2.4 – – –3.9 5.3 dU• + Br–

ISUe – – – –31.6 0.6 (ISU)2 [27]
– – – –107.0 2.8 SU
– – – –43.2 15.3 ISOU
– – – –4.9 24.5 IOSU
– – – –45.0 1.8 IU
– – – –42.2 2.8 ISU-SU

BrSUe –2.5 6.2 SU• + Br– [28]
aB3LYP/6-31++G(d,p)
bM06-2X/6-31++G(d,p)
cC3′-exo-front conformation, values for another conformations available
dAvailable data calculated at the M06-2X/6-31++G(d,p) and MPWB1K/6-31++G(d,p) levels,
too
eB3LYP/DGDZVP++, available data calculated at the M06-2X/DGDZVP++ and
MPWB1K/DGDZVP++ levels, too
fB3LYP-D3/6-31++G(d,p), gas phase
gΔGt = G(•dUCH2DP/•dUCH2DP-dADP) + G(X¯) – G(5XCH2dUDP/5XCH2dUDP-dADP)

to a separated bromine anion Br– and the reactive nucleobase radical X• (see
Eq. 4.9).

BrX + e−
hyd → BrX•− → [

Br− · · · X•]→ Br− + X• (4.9)

Barrier-free dehalogenation found for purines may suggest that they could be
more effective sensitizers than pyrimidines. On the other hand, electron localizes
on pyrimidines faster than on purines (7–9 fs for pyrimidines vs. 12–15 fs for
purines), probably because of the higher values of electron affinity of the former
bases. Concluding, all the analyzed bromonucleobases can easily attach an excess
electron and undergo the DEA process, producing the reactive nucleobase radical.
Hence, all of them could be considered as potential radiosensitizers.

In order to elucidate the mechanism of electron induced degradation of DNA
labeled with brominated nucleobases, the fate of the nucleobase radicals was
examined at the DFT level for the chosen nucleotides having geometries char-
acteristic for double-stranded DNA. Possible electron induced degradation path-
ways were tracked both for brominated purine [74, 75] and pyrimidine [76, 77]
nucleotides. Thus, the radical reactions were studied on the following purine diphos-
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Fig. 4.8 Brominated purines dinucleotides models along with their abbreviated names

phates: 8-bromo-2′-deoxyadenosine 3′,5′-diphosphate (8BrdADP) and 8-bromo-
2′-deoxyguanosine 3′,5′-diphosphate (8BrdGDP, see Fig. 4.8). Their geometries
were excised from the structure of the B-DNA double helix and H8 replaced by
the bromine atom while the C8-Br distance set to the value characteristic for 8-
brominated purines [74].

For both adenosine and guanosine derivatives, electron attachment induces
barrier-free breaking of the C8-Br bond (as was calculated for bromonucleobases
[72, 73]) which leads to the anion radical complex [dXDP–Br]•–, and finally to the
isolated bromine anion and purine’s ring centered, dXDP•, radical (see Fig. 4.9). The
latter radical can be thermodynamically stabilized by detaching a hydrogen atom
from geometrically accessible positions, C2′, C3′ or C5′, of deoxyribose to form the
sugar-centered radicals: rad2′, rad3′ or rad5′ (Fig. 4.9). Formation of rad2′ seemed
to be a “dead-end” route, as further hydrogen atom transfers, leading subsequently
to the breakage of sugar-phosphate chain, are kinetically forbidden (kinetic barriers
as high as 33–41 kcal/mol [74]). When it comes to stabilization process for rad3′
radical of adenosine and guanosine, breaking the phosphodiester bond and a ketone
derivative formation were postulated. An analogous reaction for the rad 5′ radical
may lead to the formation of an aldehyde derivative, but that route is kinetically
unfavorable [74, 75]. Moreover, the most advantageous route within the analyzed
pathways occurred to be the cyclization reaction. The cycloX mutation can be easily
produced from the rad5′ radical as a result of an attack on the C8 position of the
respective purine (alternative radical stabilization, see Fig. 4.9). The cyclic product,
5′,8-cyclo-2′-deoxyadenosine, was observed experimentally in late seventies as one
of the main products of γ-radiolysis of 2′-deoxyadenosine aqueous solutions in the
absence of oxygen [78]. Further research on the cyclic purine lesions were critically
reviewed by Chatgillialoglu et al. in 2010 [79], so they will not be discussed in
details here. This is worth of emphasizing that the cyclopurines can block DNA
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Fig. 4.9 Degradation paths for debrominated purine nucleotide radical (adenosine, R1: –NH2,
R2: –H; guanosine, R1: =O, R2: –NH2)

replication and transcription [80]. In summary, brominated purines incorporated into
DNA strand might sensitize this biomolecule to radiation, but rather via cyclopurine
mutations than the formation of strand-breaks.

The same methodology and model construction were used to study electron
induced degradation processes in the brominated pyrimidines [76, 77]. Except the
5-bromosubstituted derivatives, 6-substituted nucleosides were also taken under
consideration, giving four diphosphate nucleotide models: 5- and 6-bromo-2′-
deoxyuridine 3′,5′-diphosphates (5BrdUDP and 6BrdUDP, see Fig. 4.10) as well
as 5- and 6-bromo-2′-deoxycytidine 3′,5′-diphosphates (5BrdCDP and 6BrdCDP,
Fig. 4.10).

The electron induced debromination of all studied derivatives occurs easily, with
a small kinetic barrier (ca. 3 kcal/mol). However, the stabilization of the rad5
radicals, formed via debromination (see Fig. 4.11), by the hydrogen atom transfer
from deoxyribose to pyrimidine’s ring is difficult because of steric hindrance. Strong
deformation of rad5 is required to transform it into rad3′ (kinetic barriers as high
as 67 kcal/mol for 5BrdCDP and 76 kcal/mol for 5BrdUDP degradation) or rad5′
(kinetic barriers in kcal/mol: 53 for 5BrdCDP and 44 for 5BrdUDP [76, 77]).
Therefore, it was suggested, that the radiation induced formation of strand breaks in
DNA labeled with 5BrdX could be explained by using an extended model of DNA,
including at least two neighboring nucleotides [81].
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Fig. 4.10 Brominated pyrimidines dinucleotides models along with their abbreviated names

Fig. 4.11 Degradation paths for debrominated pyrimidine nucleotide radicals (uridine, R1: =O,
R2: =O; cytosine, R1: –NH2, R2: =O)

High activation barriers found for rad5➔ rad3′ and rad5 ➔ rad5′ transformations
as well as pyrimidine geometries suggest that 6-substituted bromopyrimidines
could lead to a DNA strand break more likely than the 5-substituted ones.
Therefore, the isomer of rad5, the rad6 radical, which could form as a result of
electron attachment to the 6-bromopyrimidine was studied as well [76, 77]. The 6-
bromoderivatives turned out to be even more sensitive to the excess electron than
the 5-bromoderivatives. The rad6 radical is formed as a result of the barrier-free
breakage of the C6-Br bond. The lack of steric hindrance, that is present in the rad5
radicals, causes that rad6 stabilizes much easier by detaching hydrogen from the C3′
or C5′ position of the sugar moiety. Such produced rad3′ or rad5′ radicals could then
undergo the breakage of the phosphodiester bond (leading to DNA strand break),
producing stable ketone (C3′ site) or aldehyde (C5′ site) derivatives. Therefore, 6-
bromopyrimidines could be considered as potential DNA radiosensitizers. However,
despite promising computational results obtained for 6BrdX derivatives, they will
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probably not be used as radiosensitizers due to their insufficient stability in aqueous
solutions [82].

Summing up, the computational studies on brominated nucleobases led to
conclusions that theoretically all of the described above compounds could work
as potential radiosensitizers, and promising nucleobase derivatives should possess
at least two properties: (1) high electron affinity to work as an electron trap, (2) ease
to undergo DEA process which produces a reactive nucleobase centered radical.

4.3.4 5-Substituted Uracils as Potential Radiosensitizers

Obtaining a reactive radical inside the DNA strand after electron attachment is
crucial to effective sensitization of this biopolymer to radiation. Based on this
assumption, an easy and fast computational approach was propose for initial
prescreening of radiosensitizing properties of substituted uracils [39]. Although the
uracil molecule could be modified at various positions, only 5-position substitution
was taken under consideration in the above mentioned study, as this site of the
pyrimidine ring is not involved into the formation of hydrogen bonds within DNA
double helix and it is susceptible to chemical modifications.

5-substituted uracil radiosensitizers should have higher electron affinity, com-
pared to the native nucleobases, which enables them to act as “electron traps” and
to catch hydrated electrons generated during water radiolysis. To be sure that the
chosen compound will have high electron-withdrawing properties, only substituents
with positive values of the Hammet’s inductive constant σ1, falling in the range from
0.3 (thiol function) to 0.63 (strong electrophile nitro group) [83], were selected [39].
Secondly, the size of the substituent bonded to uracil moiety should be as small as
possible to fit into DNA double helix as a substituted uracil replaces thymine, i.e. 5-
methyluracil. Another criterion for selecting the substituents was related to the ease
of decomposition of the respective anion radical. The latter criterion results from
the fact that an effective nucleoside radiosensitizer is expected to easily undergo
DEA process to produce reactive genotoxic U• radical inside the DNA strand. Thus,
to preselect compounds which could be further degraded to U• during the DEA
process, the substituents with relatively weak bond (in comparison to the C5-Br
bond) with uracil moiety were chosen (see Fig. 4.12).

For those compounds the electronic stability of anions was analyzed at the DFT
level (AEA and VDE values; for details see Table 4.1). The results confirmed that
all those derivatives could act as an electron trap if introduced into DNA strand.
However, further computational study on the DEA process (providing the kinetic—
�G* and thermodynamic—�G barriers for breaking the bond between uracil and
its substituent in the substituted uracil radical anion) revealed [39] that only two
of the modified uracils, i.e. SCNU and OCNU, behave similarly to BrU, willing to
produce uracil U• radical due to electron attachment (see Fig. 4.12).

To confirm the quantum chemical predictions, photoelectron spectroscopy (PES)
was then employed. Two derivatives, differing in their radiosensitizing properties
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Fig. 4.12 5-substituted 1-methyl-uracil derivatives studied with corresponding name abbrevia-
tions. Dotted lines indicate bonds considered to be broken during DEA process. Adapted with
permission from [39]. Copyright (2013) American Chemical Society

were chosen for the experimental part of studies: SCNU, expected to undergo
DEA process with producing U• radical (potential sensitizer) and CNU, believed
to produce thermodynamically stable CNU•– anion radical after electron attachment
(no sensitizing properties). The results of PES experiment, in which anionic CNU•–

form for CNU and SCN– (and no SCNU•–) for SCNU were detected, confirmed the
reliability of the computational approach [39].

It also turned out that the described above simple computational tool is not
always able to predict the outcome of DEA process even for seemingly sim-
ple uracil/uridine derivatives. ESR experiment carried out for 5-thiocyanato-2′-
deoxyuridine (SCNdU) revealed that the main electron induced degradation path
leads to the breakage of the S-C bond inside the substituent rather than between
the substituent and uracil, which was predicted by that simple DFT model [41].
It is worth of mentioning that this finding does not exclude SCNdU from the
radiosensitizer group. Produced via path B the U-5-S• radical (see Fig. 4.13) was
experimentally found to dimerize to dU-S-S-dU (see Fig. 4.4a). Therefore, it was
suggested that the formation of such radical within DNA strand could result in the
inter- and intrastrand crosslink damage. Moreover, the side product of the B path, the
cyanide anion (CN–), is known for its cytotoxicity related to the efficient blocking
of cellular respiration [84].
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Fig. 4.13 Formation of U• (ca. 10% yield) and uracil-5-thiyl radical (U-5-S•, ca. 90% yield) by
dissociative electron attachment to 5-thiocyanatouracil (SCNU) or 5-thiocyanato-2′ -deoxyuridine
(SCNdU). [41]—Reproduced by permission of the PCCP Owner Societies

The possibility of various DEA paths, leading not only to U• but also to another
types of radicals, prompted to consider electron attachment induced dissociation
not only between the substituent and uracil moiety but also within the substituent
itself [40]. Based on previous experience [39], another set of electrophilic 5-
substituted uracils were computationally studied (see Fig. 4.14). For the first group
(A: NCU, NOU, OHU and CCHU, see Fig. 4.14) chemically available was only
electron induced uracil-substituent bond breaking. Group B consists of compounds
for which electron attachment induces barrier-free breakage of a bond inside the
substituent (spontaneously broken bonds marked in Fig. 4.14). For two compounds:
NHNO2U and SeCNU both degradation routes were available—path A leading to
U•, as well as path B leading to U-5-•NH and U-5-Se•. Path B was found to be
kinetically more favorable [40]. Completely different behavior was observed for
IOU derivative, as DEA process led in this case to the production of 5-iodouracil
(IU) and oxygen radical (O•–) as a side product [40]. Careful analysis of kinetics
and thermodynamics of the electron induced degradation processes enabled to
select three most promising radiosensitizing agents: SeCNU, the source of cyanide
anions able to block cellular respiration, SClU, as the source of U-5-S• believed
to produce crosslinks in DNA, and IOU as a prodrug, as it may transform into
a radiosensitizing IU. This computational study led to the further experimental
research on selenocyano- modified uridine SeCNdU [26, 85].

The above described computational approach was also used by Wang et al. to
analyze radiosensitizing properties of 5-(halomethyl) uridines: 5-XCH2U, where X
= F, Cl, or Br [86]. They found out that all those uridine derivatives are likely
to attach an excess electron and undergo DEA process leading to breaking inter-
substituent X-C bond with the formation of the U-5-•CH2 radical. Thus, they
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Fig. 4.14 Structures of 5-substituted uracil derivatives (UXY). The bonds broken due to electron
attachment are marked with dotted lines. Group a: U-XY bond breaking was considered only,
groups b and c: consider breaks to the UX-Y bond during degradation. The NHNO2OU and
SeCNU compounds belong to both groups [40]. Taken with permission from Ref. [40] Copyright
(2016) (John Wiley and Sons)

suggested that halomethylated uridines could be potential radiosensitizers inducing
crosslink damage in 5-XCH2U labeled DNA, and their sensitizing abilities are
increasing as follows: 5-FCH2U < 5-ClCH2U ≈ 5-BrCH2U.

Similarly, it was demonstrated [87] that various pyrimidine nucleosides with
azido modification at the C5-site of the pyrimidine base (Fig. 4.15) bind radiation-
produced electrons forming the highly unstable azide anion radical. The latter
species undergoes prompt release of nitrogen molecule resulting in the nitrene
radical which after swift protonation is converted into the damaging RNH• radical.
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Fig. 4.15 Structures of potentially radiosensitizing azido-modified pyrimidine nucleosides [87]

It was shown that 5-azidomethyl-2′-deoxyuridine (AmdU)—see Fig. 4.15—reveals
significant radiosensitizing properties against EMT6 breast cancer cells.

4.3.5 A Need to Expand the Computational Model for Difficult
Derivatives

As it was emphasized in the previous paragraphs, relatively easy and cheap
DFT calculations [39, 40] allow the pre-selection of potentially radiosensitizing
compounds via analysis of the mechanisms of their DEA processes. On the other
hand, such simplified methodology cannot anticipate all possible experimental
problems, related, for example, to reaction environment like water. Continuous PCM
model admittedly allows to take into account electrostatic stabilization exerted by
water, but remains ineffective for the description of hydrogen bonds. The solution
could be obviously employment of more complex and time-consuming methods,
AIMD or QM/MM, that take into account explicit water molecules and reaction
environment [73, 81].

On the other hand, unexpected experimental results can trigger in-depth analysis
of computational results—and vice versa. So was in the case of SCNdU radiosen-
sitizer for which water environment changed dissociative electron attachment route
in the ESR experiment, as was described in the previous paragraph [41]: •S-dU
radical was mainly observed experimentally instead of 5-dU•, predicted by the
computations on DEA to SCNU in the gas phase [39]. Another interesting case
was related to water impact in the reactions triggered by the excessive electron
attachment to BrU and studied using the ESR method [88]. In that case computations
helped to explain the formation of radiolysis products by suggesting that the dU•

radical is able to produce •OH radicals in reaction with water. Thus, additional
damaging properties of dU• could be bonded with the producing of genotoxic
radicals in the close vicinity to the labeled DNA strand. Another problem related
to the presence of water in biological systems which should not be ignored while
searching for new radiosensitizers, is that new radiosensitizing compounds may
undergo hydrolysis losing their sensitizing properties.
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The next experimental problem, which can be easily overlooked in too sim-
ple computational model is that in water environment acid-base equilibria may
play an important role, leading for instance to the protonation of the analyzed
nucleosides and changing degradation routes in that way (as it was observed
for 5-trifluoromethanesulfonyl 2′-deoxyuridine derivative, OTfdU, see Fig. 4.16)
[26]. Initially, for OTfdU, basic DEA calculations allowed to conclude that DEA
should lead to the formation of the dU-O• radical and Tf– anion (kinetic barrier of
1.5 kcal/mol). The second less probable path run with the formation of dU• and
OTf– (barrier 8.6 kcal/mol). However, irradiation of solutions containing OTfdU
gave different results. Namely, both products were formed, while the second
pathway was found more efficient. It allowed to conclude that simple DEA model
does not include important processes. Differences between degradation products
obtained experimentally and predicted by calculations were finally explained by
the possibility of anion radical protonation or neutral form deprotonation and the
influence of pKa on the DEA process.

Another similar case is the ISdU study [27]. During radiolysis, the compound
effectively undergoes the DEA process with the formation of a number of stable
products whose mechanisms of formation were proposed by calculations. Also here,
besides the expected DEA product—SdU, a number of other products—dimers or
oxidation products—are formed. To explain the reaction mechanisms the presence
of tert-butoxyl radicals (t-BuO•, the product of t-BuOH reaction with OH•) and
H2O2 (water radiolysis product) in the environment were taken into account. The
calculations allowed to conclude that the apparent decrease in the efficiency of SU
formation during radiolysis in solution is affected by the SU• radical consumption
during the formation of ISU-SU dimer.

Those two examples of potential radiosensitizers discussed above—OTfdU and
ISdU—are the exemplars of possible problems that might be encountered while
characterizing potential radiosensitizers. In both cases the calculations allowed for
better understanding and explanation of the experimental results and highlighted a
need to take into account a number of aspects of the DEA process, not only electron
affinity or Hammet’s constant of substituents.

Fig. 4.16 Structures of
modified 2′-deoxyuridines
considered as potential
radiosensitizers:
5-trifluoromethanesulfonyl
2′-deoxyuridine (OTfdU) and
5-iodo-4-thio-2′ -deoxyuridine
(ISdU)



4 DNA Damage Radiosensitizers Geared Towards Hydrated Electrons 151

4.4 Oxygen Mimetics

In the 1960s, a concept of joining electron affinity of a compound with its
radiosensitizing efficiency has been extensively explored [89]. Such radiosensitizers
were to be imitated (mimic) oxygen in hypoxic cells (Fig. 4.17). The best known and
effective class of oxygen mimetics are nitroimidazoles [90].

Nitroimidazole antibiotics display main role in clinical use to “fix” DNA damage
induced by ionizing radiation. Adams et al. noted that significant parameter for
radiosensitization and toxicity is the electron affinity of 2- and 5-nitroimidazoles
[91]. Thus, 2-nitroimidazole—misonidazole—with higher electron affinity is more
effective than 5-nitroimidazole—metronidazole. However, clinical use of mis-
onidazole is limited, because it turned out to be neurotoxic [92]. To minimize
neurotoxicity of 2- and 5-nitroimidazoles, their side chains were modified by
more polar groups [93, 94] (Fig. 4.18). Amide analog of 2-nitroimidazole named
etanidazole, demonstrated more hydrophilic character, hence a slower uptake by
neural tissues compared to misonidazole [95]. Despite lesser toxicity, etanidazole
offered no benefit to patient in clinical trials [93].

Another 2-nitro sensitizer with the reduced neurotoxicity, doranidazole (Fig.
4.18), showed radiosensitization in hypoxia. Doranidazole has been evaluated in
I/II phase of clinical trials with promising results in chemoradiotherapy treatment
of non-small-cell lung cancer [96]. The most efficient sensitizer seems to be 5-
nitroimidazole analog called nimorazole. It is well tolerated and has been clinically
used in the cancer treatment in Denmark. Currently, nimorazole has been inves-
tigated in III phase of clinical studies to use in radiotherapy in head and neck
cancers [97]. Despite of the fact that nitroimidazolic compounds have been under
consideration for years, it is important to note that molecular mechanism of their
action still remains unclear.

One of such mechanisms, proposed by Wardman et al. [98], assumes that
nitro derivative induces DNA damage in a manner similar to oxygen. A possible
pathway leading to DNA strand break and cell death is based on the reaction of
the hydroxyl radical with a DNA base, forming carbon-centred radicals. In the

Fig. 4.17 Mechanism of oxygen and oxygen-mimetics lead to DNA strand break
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Fig. 4.18 Clinically investigated nitroimidazole radiosensitisers

next step, oxygen/nitroimidazole can be added to a nucleobase, forming a long-
lived peroxyl/nitro radical. In either case, the long-lived radical might abstract
hydrogen atom from a neighbouring sugar moiety leading ultimately to a heterolytic
phosphodiester bond breakage (Fig. 4.19). The sugar radical-cation, a product of
heterolytic phosphodiester bond cleavage, is able to react with other molecules, e.g.
water, forming stable products [10]. On the other hand, nitroimidazole radiosensi-
tizers with high electron affinity have been identified as hypoxia-activated prodrugs
(HAPs) or hypoxia-selective cytotoxins (HSCs) [99]. In the presence of oxygen,
HAPs are reduced by one-electron reductase forming nitro radical anions, which
undergo oxidation to reproduce the nitroimidazole prodrug. In hypoxic conditions,
nitroimidazole prodrug radical is fragmented by disproportionation or undergoes
subsequent reduction leading to various products capable of attacking cellular
macromolecules, such as DNA [100].

On the other hand, potentially active drug species may be produced directly by
two-electron reductase generating nitroso, hydroxylamine and amine species (Fig.
4.20).

In recent years, the direction of research on oxygen mimetics and their mecha-
nism of action have changed. Nowadays, the role of low energy electrons is under
investigations for potential activation of oxygen mimetics.

In the gas phase LEEs are able to decompose molecules via dissociative electron
attachment based on an intermediate metastable electron-molecule complex [101].
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Fig. 4.19 Possible mechanism for strand break formation by oxygen-mimetics

Overall, DEA is a two-step reaction:

e– + M → [
M•–]# → [M–X]– + X (4.10)

[
M•–]# → M(∗) + e– (4.11)

where M is a molecule, [M•–]# assigns the metastable intermediate transitory anion
formed by Franck-Condon transition and X is a radical or neutral fragment [102].
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Fig. 4.20 Mechanism of hypoxia-activated prodrug by one- and two-electron reduction

Transitory anion may lose the extra electron, recovering the neutral molecule, by
autodetachment.

In 2012, theoretical calculations showed breaking of four chemical bonds in one-
step reaction by LEEs [103]. These results, demonstrated efficient bond breaking
in organic compound and in the next years, shed light on the attachment of
LEEs to nitroimidazole. In fact, experimental studies performed by Tanzer et al.
[104] exhibited high sensitivity of 4-nitroimidazole and its derivative 1-methyl-
4-nitroimidazole to LEEs in energies of 0–8 eV range. Both nitroimidazolic
compounds create the same ionic products in the crossed electron-molecular beam
experiment and detected by mass spectrometry, however ion yields are different.
They observed the loss of H atom (only for 4-nitroimidazole), expressed as
Eq. (4.12), cleavage of the C–NO2 bond and loss of neutral •OH. The cleav-
age of the C–NO2 bond in 4-nitroimidazole occurs through two DEA reac-
tions:

e– + M → [
M•–]# → [M–H ]– + H • (4.12)

e– + M → [
M•–]# → [M–NO2]• + NO2

– (4.13)

e– + M → [
M•–]# → [M–NO2]– + NO2

• (4.14)

Kossoski et al. showed that generation of NO2
– goes by indirect dissociation

mechanism, where coupling of π* state and the repulsive σ*
CN state occurs [105].

The loss of a neutral •OH unit for 4-nitroimidazole is related to the cleavage of
two bonds, N–O and C–H or N–H (e– + M → [M•–]# → [M–OH] – + •OH), while
the formation of [M–OH]– is quenched in the methylated compounds.

Methylated 4-nitroimidazole reactivity is completely blocked in the energy
below 2 eV, but target molecule reactivity is operative in higher LEEs energies.
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This phenomenon has been interpreted via the formation of vibrational Feshbach
resonance (VFR) [106]. Additionally, the excess electron in VFRs is weakly bonded
in the field of vibrationally excited molecule. It is worth of mentioning that
nitroimidazole isomers and their derivatives have different dipole moment, i.e. 4-
nitroimidazole has a dipole moment around 7.2 D, compared to only 3.24 D for
5-nitroimidazole. For the methylated compound large dipole moment (above critical
minimum value to bind an excess electron) may account for the formation of VFR
and increase efficiency of DEA, affecting this way the ion intensity [107].

Further observations of 4-nitroimidazole, 1-methyl-4-nitroimidazole and
1-methyl-5-nitroimidazole compounds confirmed bond cleavage with NO2

–

formations, loss of neutral •H and •OH, but also propose possible pathway of
complete degradation of the nitroimidazole derivatives leading to CN– formation
[104]. The CN– generation from DNA bases has been reported by Märk et al.
already in 2004, but at higher energies [108]. For nitroimidazolic molecules,
complete degradation with the formation of CN– or CNO– is viable at 0 eV via
reactions [109]:

e– + M → [
M•–]# → CN– + CO2 + N2 + •CH 3 (4.15)

e– + M → [
M•–]# → CNO– + CO + N2 + •CH 3 (4.16)

As mentioned above, 4- and 5-nitroimidazole and their methylated derivatives
demonstrated similar fragmentation pathways. In 2017, Ribar et al. [109] suggested
that in 4-nitroimidazole single bond cleavage related to the loss of neutral H• at
position N1 occurs. Most remarkably, vertical electron affinity (VEA) of the dipole-
bound state is comparable to that of the valence-bound anion for 4-nitroimidazole.
This is why the N1-H bond is broken due to electron attachment for 4-nitroimidazole
via dipole-bound anion formation (VEA of dipole bound state eq. 158 meV vs.
160–170 meV for valence bound anion) while the fragmentation pathway for 2-
nitroimidazole, leading to the loss of H2O (see Eq. 4.17), proceeds via the valence
anion since the VEA of its dipole bound state amounts to only 43 meV.

e– + M → [
M•–]# → [M–H2O]•– + H2O (4.17)

Another pathway not observed for the degradation of 4- and 5-nitroimidazole is
the loss of HONO:

e– + M → [
M•–]# → [M–HONO]•– + HONO (4.18)

These results suggest that 2-nitroimidazole could be more effective radiosensi-
tiser because of dominant losses of •OH, •ON, H2O and another variety of radicals
and radical anions which could damage biological molecules. Recently, Meißner et
al. observed for 2-nitroimidazole additional simple bond cleavages, which lead to
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Fig. 4.21 Examples of nitroimidazole sulfonamides

the loss of the neutral CH3 and CH2NO2 [110]:

e– + M → [
M•–]# → [M–CH 3]– + CH 3 (4.19)

e– + M → [
M•–]# → [M–CH 2–NO2]– + CH 2NO2 (4.20)

Despite radiosensitising properties of 2-nitroimidazole, its neurotoxicity is too
large to be used in clinic [95]. So, in 2019, Denifl et al. focused on nimorazole,
which is clinically used since 1990 [111]. The DEA formation of NO2

– from
nimorazole is the only dissociative process observed in the electron energy range
of 2–4 eV. A competitive to the DEA process is so called associative attachment
(AA), i.e. the formation of intact anion without further dissociation [112]. They also
studied electron attachment to nimorazole in water clusters (M(H2O)n) and found
out that DEA is reduced for solvated system in favour of AA. It confirms assumption
about energy dissipation to the environment in solution [113]. As a consequence,
presence of water lead to significant quenching of DEA to nimorazole as compared
to the gas phase. It is worth of emphasizing, that intact anion formation seems to
be crucial for radiosensitizing activity of these compounds. Indeed, nitroimidazolic
species have to be present in the time of irradiation for therapeutic effects [98].

In recent years increasing interest in novel nitroimidazole derivatives has been
observed. One of the strategies employed to propose new compounds is trans-
formation of nitroimidazoles into alkylsulfonamides, which were obtained by
modification of appropriate side chains [114]. This approach was reported first
time in 2014 and has a major impact on the physicochemical properties of the
nitroimidazolic compounds. First of all, sulfonamide chain in respective derivatives
with extra hydroxyl or amine groups leads to the compounds of increased solubility
and electron affinity (Fig. 4.21). Second, some of the studied nitroimidazole
sulfonamides derivatives had selective toxicity against hypoxic cells.

On the other hand, Hay et al. modified 2- and 5-nitroimidazole sulfonamides
by esterification to phosphate ester obtaining radiosensitizers called phosphate
prodrugs (Fig. 4.22) [115]. Phosphate modifications showed better in vivo activity
comparing to nitroimidazole sulfonamides and what is most important their electron
affinity is significantly higher.
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Fig. 4.22 Examples of phosphate prodrug of nitroimidazole sulfonamides

4.5 Metallic Nanoparticles and Metal Complexes

4.5.1 Possible Mechanisms of Radiosensitization

Metal chemistry offers a wide range of biologically-active molecules [116]. Many
of them are considered as anti-cancer agents. Besides being effective single-agent
chemotherapeutics, metallic nanoparticles and complexes are explored as potent
radiosensitizers [117].

Research done in recent years indicates that heavy-metal nanomaterials with
high atomic number appear to be especially promising radiosensitizers. One of
their exceptional features is ability to absorb, scatter and emit radiation energy.
Furthermore, the metallic nanoparticles possess favorable kinetic profiles of drug
exposure to the tissues, satisfying chemical stability, high biocompatibility and
low toxicity. In addition, fast distribution and enhanced uptake in tumor tissue are
characteristic for nanoscale materials. Ionizing radiation can interact with metallic
nanoparticles and cell structures in several ways. In general, from the viewpoint
of physical processes, the radiation-enhancing action is related to absorption of
ionizing radiation and emission of secondary electrons. Such phenomena as Auger
electrons production, Compton or coherent scattering and photoelectric effect, lead
to enhancement of local dose of ionizing radiation in tumor site and in consequence,
to direct or indirect (mostly via reactive oxygen species (ROS)) DNA damage (Fig.
4.23) [118–120].

The biological mechanism of radiosensitization by metallic nanoparticles has
been studied intensively. There are several theories explaining the synergistic
cooperation between ionizing radiation and metallic nanoparticles. One of them is
related to cell cycle regulation [121]. It is believed that enhancement of radiosen-
sitivity is achieved when nanoparticles can alter cell cycle phases and lead to cells
accumulation in the G2/M phase, and reduction of cells population in the G0/G1
phase [122, 123]. Other theory assumes that metallic nanomaterials inhibit the
repair of DNA damage, thereby increasing their pool [124]. Another one says that
nanoparticles are able to mediate cell signalling and can act via mechanism known
as bystander effect wherein directly irradiated cells transmit damaging signals to
non-irradiated cells [125, 126].

The other metal-based radiosensitizing agents are metal complexes. There are
several possible modes of their combined action with radiation at the molecular
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Fig. 4.23 Possible action modes of the metallic nanoparticles (NPs) in radiosensitization. Absorp-
tion of ionizing radiation (IR) and subsequent phenomena related to secondary electrons production
or scattering lead to enhancement of local dose of ionizing radiation in tumor site and in
consequence, to direct or indirect DNA damage

level. Essentially, it is believed that the most explored example of radiosensitizing
metal complexes, cisplatin, dissolves in the cellular environment and binds to
DNA structure leading to potentiation of its sensitivity to low energy electrons
and •OH radicals [127, 128]. Other interpretations emphasize the role of effective
dissociation of cisplatin by low energy electrons [129, 130] or increased generation
of secondary electrons on Pt atoms and their further interaction with DNA leading
to the enhancement of bond cleavages [131].

The cellular effects of synergy between radiation and cisplatin are mostly related
to the binding of cisplatin to DNA. It is not surprising that the resulting Pt–
DNA adducts act by distorting the structure of DNA, inhibiting replication and
transcription [116]. The radiosensitizing effect of cisplatin at cellular level is
explained by (1) enhancement of DNA damage caused by additional immediate
species created directly by radiation, or/and by (2) interference with repair by
non-homologous end-joining (NHEJ) when Pt–DNA lesions occur near radiation-
generated double strand breaks [116, 132, 133].

4.5.2 On the Role of Low Energy Electrons in the
Radiosensitization of DNA by Metallic Nanoparticles
and Complexes

Since low energy electrons are one of the major secondary products formed in water
environment by high energy radiation, interest in them is constantly increasing. The
special properties of LEEs, at energies less than 30 eV, make them a good target
in cancer treatment. Furthermore, interaction between high energy radiation and
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atoms with high atomic number e.g., gold nanoparticles, which are source of LEEs,
leads to synergic and desired effect in radiotherapy [134]. A lot of experiments have
been performed to understand molecular interactions of LEEs with small individuals
(e.g., O2, H2O) and large biomolecules (e.g., DNA) as well. The latter class of
interactions is very important for the potential application of metallic nanoparticles
and metal complexes in radiosensitization. Previous experiments were usually
performed on the gaseous isolated targets or under vacuum [135, 136]. In such
conditions the primary mechanism of biomolecules damage caused by electrons is
a resonance mechanism. An unoccupied orbital captures LEEs and forms transient
anions (TA), then undergoing DEA process, which can lead to various damages
of DNA e.g., crosslinks or single/double strand breaks. On the other hand, after
anion deionization, the site, where electron was attached, can stay in a dissociative
electronically excited state leading also to DNA damage [135, 137].

One of the nanoparticle types, which have potential radiosensitizing properties
are gold nanoparticles (GNPs). They lead to the enhancement of DNA damage. Xiao
et al. and Zheng et al. indicated that most of electrons emitted from GNPs possess
energy in a range of 0–30 eV [135, 138, 139]. Furthermore, Zheng et al. suggested
that radiosensitization of DNA by GNPs could result from (1) an enhancement of
local absorption of ionizing radiation (IR), which leads to an increase of short-range
secondary electrons pool, that can damage DNA, and/or (2) an increase of DNA
sensitivity to damages induced by LEEs [140].

Ligands, which stabilize the binding with GNPs are thiolated organic molecules
(e.g., oligonucleosides, peptides etc.). In these complexes, the thiol ligand self-
assembles on the gold surface through the Au–S covalent bond. Ligands allow
entering into the cell but their role on the mechanism of action of thiolated GNPs
radiosensitization is not clear [139]. Other species, which can coordinate to GNPs,
are alkane ligands which lead to the increase of photoexcitation and photoemission
of nanoparticles. On the other hand, gadolinium (Gd) chelating dithiolated pentetic
acid (DTDTPA), which should lead to the increase of X-ray absorption and the
amount of LEEs, do not exhibit any radiosensitization effect [139].

Xiao et al. conducted an experiment using GNPs and three GNPs complexes: (1)
with thiolated undecane (S–C11H23), (2) with DTDTPA and (3) with DTDTPA:Gd
chelating ligands. Dry films of plasmid DNA pGEM-3zF(–), DNA with GNPs and
DNA with three aforementioned GNPs complexes, were bombarded with 60 keV
electrons. These experiments confirmed that GNPs caused increase in the absorption
of IR, which affects the production of LEEs. However, coating of GNPs led to the
decrease amount of LEEs and in consequences, to reduction of double and single
strand breaks formation. It has been proved that the binding of GNP without coating
to DNA leads to increase of DSB and SSB by a factor of 2.3, while in case of GNPs
coated with S–C11H23, reduction of this factor to 1.6 was observed. The binding
of GNPs via the relatively long DTDTPA linkers results in essentially complete
attenuation of LEE’s activity because of their short effective range. For this reason,
it has been concluded that GNPs should be bonded to DNA of cancer cells by a
relatively short linker [139].
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Other type of molecules which sensitizes DNA to IR by LEEs are platinum
(Pt) compounds, e.g. cisplatin [135]. Zheng et al. conducted an experiment, where
they studied the influence of LEEs on damage to DNA linked with cisplatin. They
prepared a dry film of pure plasmid DNA and a DNA–cisplatin complex and
bombarded them with electrons in the range of 1 eV to 60 keV. DNA damage was
determined by count of SSBs and DSBs. The results shown that enhancement factor
(EFs) for DNA–cisplatin complex increases from 1.3 to 4.4 depending on (1) the
dissociation of bond caused by the formation of transient anions and (2) the ratio
of cisplatin/plasmid. In this experiment Zheng et al. proved that in DNA–cisplatin
complex, SSBs and DSBs are induced by LEEs and are substantially enhanced when
cisplatin is covalently bonded to DNA [141].

Bao et al. and Luo et al. measured conformational damage in pure plasmid DNA
and DNA–cisplatin complex, in dependence of energy of LEEs (2–20 eV). Except
a strong resonance in pure DNA at 5 and 10 eV they observed two additional
signals at 13.6 and 17.6 eV. The presence of these two additional resonances can
explain the increase of damage in cisplatin–DNA complex [142, 143]. Bao et al.
and Rezaee et al. claimed that, when Pt-analogs bound two guanines on the opposite
strands. Transient anion, formed from the Pt-adduct would have additional electron
delocalized equally between two unoccupied σ* molecular orbital (Fig. 4.24). This
led to the bond breaks between cisplatin and two guanines. As a result two guanine
radicals are created, which may detach hydrogens from the DNA backbone [137,
143].

Besides inter-strand interactions between cisplatin and DNA, its intra-strand
binding was also observed. Indeed, Mantri et al. [144] explained, by using quantum
chemical molecular simulations, preference of cisplatin bifunctional binding to the
adjacent nucleobases in the AGA fragment of DNA. After initial platination at the
central guanine, cisplatin prefers binding with the 5′-adenine. Both adducts with
cisplatin, (AG and GA) have similar energies, but the adduct of AG is slightly
more favored. It is caused by higher reaction barrier for the GA closure over the
alternative AG binding motif, which is connected with a difference between the
two forming transition states. The presence of a hydrogen bond between the axial
ammine ligand of cisplatin and the phosphate backbone stabilizes the transition state
of AG adduct. This interaction is not observed in the GA adduct. It means that the
binding preference of AG adduct over the GA one is largely under kinetic control
[144].

Another experiment was performed by Behmand et al. [145]. A water solutions
of oligonucleotide (TTTTTGTTGTTT) with or without cisplatin in the presence of a
hydroxyl radical scavenger were irradiated. The results showed that oligonucleotide
interacted with solvated electrons, which led to the damage of thymine and to the
break of bonds between cisplatin and one or both guanines. They proposed two
possible mechanisms explaining this process. The first one comprised an attachment
of solvated electron to thymine base and transfer of this electron from base to base
up to the guanine site, where cisplatin released it via DEA. The second, assumed
that solvated electron directly induces detachment of cisplatin from guanine—also
via DEA [145, 146].
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Fig. 4.24 Possible mechanism of DNA damage induced by single electron, when cisplatin is
bound by two guanines on opposite strands

Another attempt to explain a molecular mechanism of LEEs interaction with
cisplatin–DNA was undertaken by Dong et al. [136]. They prepared five-monolayer
films of plasmid DNA (pGEM-3Zf (–), 3197 bp)–cisplatin complex and bombarded
them with electrons with energies of 4.6 and 9.6 eV. They also observed the increase
of EFs for SSBs, DSBs and crosslinks. Their EFs are the largest measured so far.
The molecular mechanism of this process is based on that already proposed by Bao
et al. and Rezaee et al. [134, 143].

Since, it has been shown that GNPs and cisplatin are radiation enhancers, it
was intriguing if the electrostatic binding of GNPs with DNA–cisplatin complex
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could lead to a superadditive effect. Zheng and Sanche performed an experiment,
where dry films of plasmid DNA and complexes of (1) DNA–cisplatin (1:2), (2)
DNA–GNP (1:1) and (3) DNA–cisplatin–GNP (1:2:1) were exposed to 60 keV
electrons under ultra-high vacuum (UHV). They measured yields of SSBs and DSBs
generation, for pure DNA and its complexes. EFs of SSBs formation is equal to
2, 2.5 and 3 for (1), (2) and (3), respectively and superadditive effect was not
observed. The opposite situation was observed in case of DSBs. Here, an impressive
increase of EFs for DNA–cisplatin–GNP complex was observed (EF equal to 7.5)
[147]. This is due to the fact that GNPs significantly increase the density of LEEs,
while cisplatin causes the lowering of the energy barrier for DSBs generation [148].
Considering the above properties, single or multiple interactions of LEEs on two
opposite DNA strands, within a distance of 10 base pairs, could affect significantly
the increase of DSBs formed in DNA–cisplatin–GNP complex [137].

Described above experiments suggest that cisplatin and GNPs are good radiosen-
sitizers to DNA damage induced by LEEs. Introducing LEEs to anticancer therapy
creates a few challenges, such as selective delivery of molecules—which are source
of LEEs—or LEEs dosimetry [134].

4.5.3 Not only Gold Nanoparticles and Cisplatin

Gold nanoparticles and cisplatin are the most widely studied metallic radiosensitiz-
ers, nevertheless the research spectrum has been expanded to include the other types
and forms of metallic nanoparticles and complexes.

The first example is super magnetic iron oxide nanoparticles (SPIONs), which
due to excellent biocompatibility undergo cellular uptake [149]. Studies carried out
on three cell lines (Caco-2, MCF-7, 3T3) showed that citrate-coated SPION and
malate-coated SPION enhance sensitivity to radiation, even by 300%, by inducing
higher concentration of reactive oxygen species in tumor cells. Moreover, coated
SPIONs do not show any cytotoxic effect on cells unexposed to X-ray radiation.
Furthermore, super magnetism of the iron oxide nanoparticles enables the area of
tumor occurrence through heterogeneous external magnetic field to be accessed
[149, 150].

Another example are bimetallic core-shell gold-platinum polyethylene glycol
(PEG)-grafted nanoparticles (Au:Pt–PEG NPs), which induce an 90% increase of
double-stranded breaks (DSBs) compared to 34% increase using monometallic
gold PEG-grafted nanoparticles (Au–PEG NPs). Radiosensitizing properties of
core-shell mono- and bimetallic nanoparticles were investigated by evaluating a
gamma-induced damage in plasmid DNA. The presence of dimethyl sulfoxide
(DMSO) resulted in an 80% DSBs reduction demonstrating a significant role of
hydroxyl radicals in damage. Monte Carlo simulations confirmed that bimetallic
Au:Pt–PEG NPs radiosensitizers are more effective than monometallic Au–PEG
NPs. Considering only the direct effects caused by primary photons and secondary
electrons, a radiation enhancement by 45% for the bimetallic nanoparticles has been
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demonstrated, which remains in very good agreement with experimental results
(42%) [151].

Moreover, Porcel et al. [152] also showed that platinum nanoparticles (NP–Pt)
might behave as a radiation enhancer. Examination of the SSBs and DSBs was
possible by the irradiation of DNA loaded with NP–Pt with X-rays tuned to the
LIII and MIII resonant energy platinum shell (11,556 eV and 2649 eV, respectively)
and with non-resonant radiation (11,536 eV and 2638 eV, respectively). Damages
were induced in the presence of nanoparticles showing similar efficiency for
radiation with or without electron shells resonance, which suggests that the non-
resonant mechanism was mainly responsible for DNA damages enhancement. These
studies suggested that LEEs can increase DNA damage by a non-resonant process
mediated by secondary electrons, such as photoelectrons [152]. Alternative research
demonstrated, that the enhanced damage of the plasmid DNA film deposited on a
tantalum foil, such as SSBs, DSBs and crosslinks, are caused by X-ray-induced
secondary electron emission from tantalum. The authors also noticed that the
hydration level of DNA has a significant effect on the enhancement factor. When the
number of water molecules per nucleotide increased from 6 to 21, the EFs increased
for electron induced SSBs and DSBs, but decreased for crosslinks formation [153].

The electron induced processes in radiosensitization by metallic com-
plexes are not widely studied, except of few cases. With the use of both,
experimental and theoretical methods, the interaction of electrons with
bis(pentamethylcyclopentadienyl)titanium(IV) dichloride (Cp*

2TiCl2) and
difluoride (Cp*

2TiF2) was investigated. The research included the measurements
of partial cross sections for DEA and the electron ionization (EI) mass spectra of
isolated molecules. The fragmentation pattern in EI of these molecules is similar,
while DEA to Cp*

2TiCl2 leads to strong fragmentation, mainly to Cl– anion, and
DEA for Cp*

2TiF2 to the creation of a stable parent anion. Due to such electron
responses, these organometallic compounds can be promising radiosensitizers
[128].

It has been demonstrated that not only cisplatin but also other platinum com-
plexes possess the radiosensitizing properties. Rezaee et al. [154] bombarded pure
plasmid DNA and three complexes of plasmid DNA with cisplatin, carboplatin
or oxaliplatin, with 10 keV or 10 eV electrons, under UHV. Electrophoretic
determination of the DNA forms, including nicked circular, supercoiled and linear,
resulted from irradiation, allows to analyze the quantity of SSBs, DSBs. EFs in
the yields of SSBs, DSBs and interduplex cross-links induced by 10 keV and
10 eV electrons in the presence of cisplatin, carboplatin, and oxaliplatin have
been presented. When carboplatin, cisplatin, and oxaliplatin are bound to DNA,
irradiation with electrons of 10 eV cause significant increase of DSB yields by
factors of 3.1, 2.5, and 2.4, respectively. Similarly, the yields of interduplex cross-
links induced by 10 eV electrons are enhanced as well by factors of 2.2, 3.1, and 4.1
in the presence of cisplatin, carboplatin, and oxaliplatin, respectively [154].

Dissociative electron attachment to platinum(II) bromide (PtBr2) was examined
at the range of LEEs energies (0–10 eV) in the gas phase. The study showed that Br–

was the only anion detected at 0.4, 1.2 and 7 eV. Significant temperature dependence
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of resonance was observed at 0.4 eV and the high ion current intensity for this value
was explained by the formation of Br– from HBr generated in the oven. Calculations
allowed to link the 1.2 eV resonance to DEA reaction (Br– + PtBr) and 7 eV
resonance to DEA reaction leading to the formation of Pt, Br and Br– fragments
[155].

4.6 Summary

Efficient radiotherapy requires employment of a radiosensitizer sensitive to hydrated
electrons besides ionizing radiation. Indeed, most tumors are hypoxic which imparts
hydroxyl radical reactivity towards DNA. Moreover, in the absence of oxygen
hydrated electrons are the second major product of water radiolysis. It is, however,
well known that biological action of solvated electrons is negligible. Although
in aqueous solutions native DNA binds solvated electrons, due to subsequent
protonation of resulting anions, the electron attachment process does not lead to
DNA strand breaks. In order to resolve this unfavorable from radiotherapy viewpoint
situation, one may use substances that “activate” solvated electrons in the sense of
DNA damage.

Three groups of radiosensitizers whose activity is related to electrons were dis-
cussed in this chapter. We started from the well-known bromo- and iododerivatives
of nucleobases. Electron attachment to these species triggers efficient, low-barrier
elimination of the halide anion and formation of the respective radical. Other
modifications where the 5-substituent increases the electron affinity of the derivative
and these modifications undergo low-barrier or barrier-free dissociation were also
discussed. If such a modification of nucleobase is incorporated into the DNA
molecule, then the reactive radical, being a product of DEA, may in the secondary
chemical reactions lead to a strand break. A computational model that enables
proposal of potentially radiosensitizing nucleosides/nucleobases was discussed. We
demonstrated that it already predicted several new nucleosides/nucleobases which
should work as the DEA sensitive systems. Among other, one could list here: SeC-
NdU, OTfdU, ISdU, BrSdU, SCNU, OCNU. Although the discussed computational
model turned out to predict properly the behavior of the characterized compounds
within the radiolytic studies, sometimes it failed completely. We suppose that the
major drawback of that computational approach is related to the employment of
the PCM model of water which treats water as a continuous medium characterized
by a given dielectric constant. Indeed, the anions formed due to attachment of
a hydrated electron are prone to protonation (which cannot be described at the
PCM level) and if the DEA barrier for the intact anion is high enough, protonation
becomes competitive to the DEA process, completely changing its thermodynamic
and kinetic characteristics. Therefore, the most obvious development of such
computational model should take into account the fact that water is not a continuous
solvent. For these troublesome cases the AIMD or QM/MM approach, where at
least several water molecules are treated quantum mechanically, should be used.
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Another important aspect of radiosensitizing nucleobase derivatives is connected to
their phosphorylation and incorporation into DNA. In fact, to induce DNA damage
after electron attachment these molecules have to be present in DNA. Therefore,
they have to be good substrate for nucleoside kinases and in the form of triphosphate
for DNA polymerases. Computational QM/MM models that will be able to describe
phosphorylation of nucleosides and their subsequent incorporation into dsDNA are
being worked out in our laboratory.

Another type of radiosensitizers are oxygen mimetics. One of the most thor-
oughly studied group of such substances are derivatives of nitroimidazole (NIs).
The studies that began in 1970s resulted in the mechanism in which the oxygen
mimetic reacts with the radical formed after attachment of •OH to a nucleobase in
DNA. However, recent studies demonstrate that NIs form a series of resonances
in the gas phase leading even to complete degradation of those molecules that is
accompanied with the formation of various radical species. On the other hand,
if electron attachment process to NIs proceeds in water, the excess of energy
is transferred to the environment and the primary product is an intact anion of
nitroimidazolic compound (associative electron attachment). This anion can be
protonated under physiological conditions and as a neutral radical can bind to DNA
which may finally lead to a strand break. Studies trying to work out less toxic NIs
have been recently executed.

Last but not least we discussed metallic nanoparticles and metal complexes.
Metals have much larger absorption cross sections (compared to biological tissue)
and therefore have the potential to increase the effectiveness of the radiation,
increasing the amount of reactive species and damage they cause [156]. Therefore,
a rational design of metal-based drugs is a promising strategy to discover potent
radiation enhancers. Metallic nanoparticles and metal complexes can operate by
different non-exclusive modes to exert their radiosensitizing effects on cancer cells.
The increasing interest on electron induced processes in radiosensitization by metal-
based agents is observed. Studies on the mechanisms of radiosensitization by
metallic nanoparticles and complexes at physical and biological level are crucial
for designing the perfect metal-based radiosensitizers.

Although still much has to be done to understand completely the processes
triggered by radiosensitizers discussed in the current chapter the direction of further
studies seems to be well defined. Since hypoxia is widespread in solid tumors,
focusing on hydrated electron damage to DNA is an attractive idea that should
result in a substantial increase of the efficiency of radiotherapy. Therefore, a search
for new, better DEA sensitive nucleosides, oxygen mimetics binding electrons and
metal complexes leading to electron-induced DNA damage is undoubtedly worth of
our efforts.

Acknowledgements This work was supported by the Polish National Science Centre under Grant
No. 2014/14/A/ST4/00405.



166 M. Zdrowowicz et al.

References

1. Rak J, Chomicz L, Wiczk J, Westphal K, Zdrowowicz M, Wityk P, Żyndul M, Makurat S,
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35. Jagiello K, Makurat S, Pereć S, Rak J, Puzyn T (2018) Struct Chem 29:1367
36. Polska K, Rak J, Bass AD, Cloutier P, Sanche L (2012) J Chem Phys 136:075101
37. Park Y, Polska K, Rak J, Wagner JR, Sanche L (2012) J Phys Chem B 116:9676
38. Westphal K, Skotnicki K, Bobrowski K, Rak J (2016) Org Biomol Chem 14:9331
39. Chomicz L, Zdrowowicz M, Kasprzykowski F, Rak J, Buonaugurio A, Wang Y, Bowen KH

(2013) J Phys Chem Lett 4:2853
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Chapter 5
Application of Computational Chemistry
for Contaminant Adsorption on the
Components of Soil Surfaces

Glen R. Jenness, Levi A. Lystrom, Harley R. McAlexander, and Manoj
K. Shukla

Abstract Computational chemistry has seen an explosion of methods and tech-
niques over the last 30 years. In particular, the area of understanding surface
adsorption has seen radical changes in methodology and systems of interest. It
is our goal in the current chapter to review these techniques. Moreover, we will
demonstrate how they can be used to understand the interaction of components of
arid soils on potential environmental contaminants through a review of our groups
research efforts on understanding munitions. Finally, we present an overview of
new areas of research that will deliver the next generation of computational and
theoretical tools.

5.1 Introduction

How chemicals react in the natural environment is an important consideration
in determining which compounds make it to production. However, the natural
environment is extremely heterogeneous and is comprised of numerous components
that all interact with each other [1]. This makes the determination of how chemicals
interact within the environment extremely difficult.

In the last decade, our group has risen to the forefront of understanding the
fate and transport of munitions in the environment [2–16]. We have engaged
both traditional computational chemistry methods, while also developing newer
techniques for the prediction of chemical properties. Our work has revealed
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several important factors in how these compounds are affected by the environment,
including their solvation, interactions between various soil components, optical
spectra, and degradation (vide supra).

It is the goal of the current study to examine the methodologies that we have
used and developed in solving this problem. Here, we will be focusing primarily
on the interaction of munitions with arid soil components. In Sect. 5.2, we present
an overview of the periodic DFT method and include topics such as density of
states analysis, non-local functionals, and self-interaction error corrections. For
those familiar with these methods who wish to just see applications, one can jump
to Sect. 5.3. In Sect. 5.3, we demonstrate how these methods can be applied to our
problem at hand (i.e., understanding the fate and transport of munitions in soils). We
present a number of case studies, including electrochemical properties, adsorption,
charge transfer, Lewis acidity, and transport. In Sect. 5.4, we present up and coming
techniques, including an examination of our latest work on eliminating empiricism
in density functional tight binding (DFTB), and artificial intelligence/machine
learning algorithms. Finally, we present our conclusions in Sect. 5.5.

5.2 Density Functional Theory (DFT)

5.2.1 Preliminaries

We begin our discussion with the time-independent Schrödinger equation,

Hψ = Eψ, (5.1)

where H is the Hamiltonian operator, E is the energy of the system, and ψ is the
wave-function (in older literature one will find this is referred to as a state function).
Equation (5.1) is an eigenvalue problem wherein the eigenvalues are the energy E,
and the eigenvectors ψ on the right hand side do not change from the left hand
side. Ideally, H contains all the interactions occurring within and on the system. For
a system with N electrons, M nuclei, and no external potentials the Hamiltonian
takes on the form,

H = −
N∑

i=1

1

2
∇2

i −
M∑

A=1

1

2MA

∇2
A −

N∑

i=1

M∑

A=1

ZA

riA
+

N∑

i=1

N∑

j>1

1

rij
+

M∑

A=1

M∑

B>1

ZAZB

rAB

.

(5.2)

Solving the differential equation in Eq. (5.1) will produce a wave-function from
which all physical quantities can be calculated from (given the appropriate quantum
mechanical operator). However, in practice this equation lacks an exact solution due
to the presence of the r−1

ij term in Eq. (5.2), which results in the wave-function, ψ ,
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to take on an unknown form [17, 18]. Consequently, we need to employ a number
of approximations in order to solve Eq. (5.1).

First, we assume that the operator in Eq. (5.1) is simply a sum of one-electron
terms,

H =
N∑

i=1

hi =
N∑

i=1

−1

2
∇2

i −
M∑

A=1

ZA

riA
. (5.3)

Thus, the wave-function is simply a product of one-electron wave-functions,

ψ =
N∏

i=1

φi, (5.4)

where φi is the solution to the one-electron Hamiltonian hi . The total energy is then
just a summation of one-electron energies,

E =
N∑

i=1

εi. (5.5)

Equation (5.3) neglects the r−1
ij electron-electron interaction terms in Eq. (5.2); in

order to account for these interactions, we introduce a second approximation in
which we treat a single electron as acting in an average potential that arises from
the other N −1 electrons. This potential is called the Hartree potential

(
V H

i {j }), and
is appended to Eq. (5.3) [17, 18],

hi = −1

2
∇2

i −
M∑

A=1

ZA

riA
+ V H

i {j }. (5.6)

However, in order to calculate V H
i {j }, we first need to know the set of wave-

functions φ{j}, which we cannot know without first solving for φi . In other words,
we need our answer in order to get our answer! This paradox is solved by our third
approximation: the introduction of the basis set. Here, we express our initial wave-
function φi as a linear combination of N ancillary functions,

φi =
N∑

j=1

ajϕj . (5.7)

In accordance with the variational principal, the larger N is (i.e., the larger the basis
set), the more variationally complete the wave-function is and thus, the closer it is to
the “exact” wave-function. Naturally, a variety of forms can be used here; however,
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Slater and Gaussian forms are common,

ϕ(r, ζ, n) =
{

rn−1e−ζ r Slater

r�e−ζ r2
Gaussian.

(5.8)

Here, r is the distance between two atoms, ζ is a pre-determined coefficient, n is
the principal quantum number, and � is the angular quantum number. By using pre-
determined coefficients aj and exponents ζ , and adjusting them iteratively through
numerical minimization, we can circumvent the paradox outlined above. Such a
procedure is called the self-consistent field (SCF) method [17, 18]. In the above
discussion, we assumed that each atom i would receive their own basis function,
with the molecular wave-function being a sum of these basis sets; this is referred to
as the linear combination of atomic orbitals (LCAO) style basis set. In addition to
the forms in Eq. (5.8), LCAO basis sets can also be generated numerically; here a
finite-difference grid is used to construct the radial component of the wave-function
[19].

Above, we introduced the Hartree potential
(
V H

i {j }) without much fanfare. This
term is rather complicated, and involves integrals over four basis function centers.
Included within the Hartree potential is the Coulomb integral (denoted by J ),

J =
∫

dr1dr2|φa(r1)|2r−1
12 |φb(r2)|2. (5.9)

Given that |φb(r2)|2 is equal to the electron density ρ, the integral in Eq. (5.9)
represents the classical interaction of two charge densities interacting. Additionally,
the Hartree potential includes the exchange integral, K ,

K =
∫

dr1dr2φ
∗
a (r1)φb(r1)r

−1
12 φ∗

b (r2)φa(r2). (5.10)

This integral has no classical component, and arises from the quantum phenomena
of electrons being indistinguishable. This method is called the Hartree-Fock method,
and it scales as O(N4), where N is the number of basis functions. Moreover,
the approximations employed result in an energy that is under-predicted, with the
difference being referred to as the correlation energy [17]. While there exist several
techniques for correcting for electron correlation (e.g., CCSD(T) [20], MP2 [21],
etc.), these all increase the computational resources required.

This leads us to our final approximation: the density functional. Here, we
postulate the existence of a functional V that contains all the information in regards
to electron exchange and correlation (for this reason we call it the exchange-
correlation functional, or VXC). We refer to this quantity as a functional due to its
dependence on the density, which in turn is dependent on position (in other words,
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a functional is a function of a second function). This allows us to re-write Eq. (5.6)
as,

hKS
i = −1

2
∇2

i −
M∑

A=1

ZA

riA
+
∫

ρ(r′)
|ri − r′|dr′ + VXC[ρ]. (5.11)

The newly defined Hamiltonian, now called the Kohn-Sham Hamiltonian (as
denoted by the superscript KS), is in principal much easier to calculate. Moreover,
given the exact VXC we can re-produce the exact multi-electron Hamiltonian!
Unfortunately, we do not know the exact VXC with the exception of a few test
systems (e.g., uniform electron gas). This has lead to a variety of density functionals
being proposed, all with varying degrees of accuracy. Therefore, the choice of
functional is dependent on the system in question, and the required accuracy.
Due to the usage of a density functional, this method is referred to as density
functional theory, or DFT. While not exact, it does feature a scaling of O(N3) and
does capture some electron-electron correlation without the need for higher level
perturbation theory techniques [18, 22–24]. It has found a widespread success within
the computational and theoretical chemistry fields, with implementation in a variety
of open-source (e.g., PSI4 [25], GPAW [26] etc.) and commercial (e.g., Gaussian
[27], VASP [28–31], etc.) programs.

5.2.2 Bloch Function

We now consider a system with periodicity, i.e., a system with lattice vectors
(a1, a2, a3) whose atomic positions are,

[xi, yi, zi ] = [xi, yi, zi ] + (n1a1 + n2a2 + n3a3) (5.12)

where [xi, yi, zi ] are the xyz-coordinates for atom i, and the set {nj=1−3} are
arbitrary integers defining how many times the unit cell is replicated. This leads
to Bloch’s theorem which states that the wave-function of a periodic system is a
plane-wave times a periodic function, uk(r),

φk(r) = eik·ruk(r), (5.13)

where the vector k is referred to as reciprocal or k-space vector. What about the
choice of uk(r)? Using a similar method as we did in Eq. (5.8), we expand uk(r) in
terms of ancillary functions,

uk(r) =
∑

G

cGeiG·ruk (5.14)
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where G is the reciprocal space vectors m1b1 + m2b2 + m3b3 with the vectors bi

being defined in terms of the real space unit cell vectors ai ,

bi = 2π
ai+1 × ai+2

ai · (ai+1 × ai+2)
. (5.15)

The cG terms in Eq. (5.14) are coefficients to be determined during the calculation.
In order to keep calculations reasonable, we need to impose a limit on the integers
mi . As the kinetic energy E can be written as,

E ∝ |k + G|2, (5.16)

then we can specify an upper limit for the kinetic energy, which in turns limits how
many basis functions we have! Thus, our wave-function can be written as,

φk(r) =
∑

|G+k|<Gcut

ck+Gei(G+k)·r. (5.17)

As this basis set is comprised of plane-waves, it is called a plane-wave basis set.
While one could define the coefficients ck+G before hand, it is typical to just
generate random numbers for them, and hold the electron density constant for
the first few SCF steps. Additionally, instead of having a basis set wherein both
coefficients and exponents have to be defined beforehand and have an arbitrary size,
plane-wave basis sets are defined purely in terms of the energy cutoff employed.
This makes the plane-wave method easy to judge in terms of accuracy [22].
However, the presence of plane-waves requires the use of Fourier transforms
(which are notoriously hard to parallelize) and the enforcement of 3-dimensional
periodicity, even for systems where such periodicity would be artificial. Thus,
various alternatives for the choice of uk(r) have been proposed, including LCAO
[19] and real-space grid [32] methods.

5.2.2.1 Bypassing Periodicity: Cluster Models

While the above formalism is rather robust, there are problems for which a periodic
description is not feasible. For example, in determining how a polar molecule such
as water interacts with an extended π-electron system, one of the current authors
had to employ a cluster model description for graphene in order to move beyond
the DFT level. Here, systems of increasing size were “cut” from the graphene sheet,
with dangling bonds capped with hydrogen. This allowed for the examination of
the binding energy components to be studied with respect to increasing system
size with the end goal of extrapolating to the periodic limit [33–35]. The trick
with employing this type of approximation is balancing system size requirements
versus accuracy and computational cost. It is highly desirable for the cluster to be
representative of the periodic system, and should be sufficiently large enough to
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capture the relevant physics and chemistry. However, sometimes this is not feasible
and a compromise has to be made. We will explore this approximation below in the
context of electrochemical properties (Sect. 5.3.2) and binding energies (Sect. 5.3.3).

5.2.3 K-point Sampling

We now turn our attention to the selection of k-vectors. Regardless of our choice for
uk(r), we still frequently need to solve integrals of the form,

g =
∫

g(k)dk, (5.18)

which need to be integrated numerically. This necessitates the conversion of the
integral in Eq. (5.18) in a summation over a grid, which is called k-space [22]. A
common way to select this grid is the Monkhorst-Pack method. Here, the k-vectors
are calculated based on the reciprocal space lattice vectors bi ,

k =
3∑

i=1

uibi (5.19)

with ui calculated as,

ui = 2r − qr − 1

2qr

, r = 1, 2, ..., qr, (5.20)

where qr is an integer specifying the upper bound of the k-vector. This provides a
k-space that is evenly distributed [36]. It should be noted that as the k-vectors are
defined in terms of reciprocal space, as the unit cell volume decreases, the larger
your k-space needs to be; conversely, the larger your unit cell volume, the smaller
your k-space needs to be. The determination the requisite size of your k-space is
based upon the desired accuracy versus computational cost.

5.2.4 Density of States (DOS) and Analysis of Orbitals

For periodic systems, there are numerous molecular orbitals that lie relatively
close to each other. While it is common to show molecular orbital diagrams for
non-periodic systems, for periodic systems these can become rather complex. An
alternative visualization method is through the density of states (DOS),

DOS(ε) =
∑

n

∑

k

δ(ε − εn(k)), (5.21)
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where δ is the well-known δ-function, ε is the energy on a grid, and εn(k) is the
orbital energy for orbital (or band) n and k-point k. In practical terms, this means
that we setup a grid of energies (represented by ε) and create a set of bins. We then
go through the various eigenvalues (εn(k)). If εn(k) lies within that bin (represented
by the δ-function), then we increment that bin by 1. In this way, we gain a ready
visualization of where the various electronic states lie in relation to each other!
Additionally, one can perform a projection along the various angular momenta
moments which results in a projected DOS (or PDOS). This representation is handy
as it allows a ready visualization of which type of electrons are playing a role
in chemical bonding. Trends in PDOS’s have resulted in the formation of several
important models, the most famous of which is the d-band model of Nørskov and
Hammer [37]. This model has been instrumental in explaining several important
trends in catalysis, such as effect of stress and strain [38–41] and the identification
of novel catalysts [40, 42–45].

Another way to visualize the DOS is the crystal orbital overlap population
(COOP) [46] method. This method weighs the density of states (DOS) with a
Mulliken factor [47, 48],

COOP(ε) = 2
∑

n

∑

k

c∗
i cj Sij δ(ε − εn(k)), (5.22)

where ci/j are the coefficients of atom i/j , Sij is the overlap matrix between atoms
i and j , n denotes the band, k denotes the relevant k-point, and δ(ε − εn(k)) is the
delta function from Eq. (5.21). Peaks where COOP are negative denote anti-bonding
orbitals, whilst positive peaks represent bonding orbitals; regions where the peak is
zero (compared to the standard DOS) denote orbitals that are non-bonding [46].
This technique has been utilized by Jenness and coworkers to describe a variety
of chemical phenomena, including metal-support interactions [49, 50], chemical
reactivity [51], and Lewis acidity [11].

5.2.5 Self-Interaction Errors

Above, we briefly discussed the Hartree-Fock (HF) method in Sect. 5.2.1; the
Hamiltonian of which is defined as,

hHF
i = −1

2
∇2

i −
M∑

A=1

ZA

riA
+

N/2∑

i

(2Ji − Ki) , (5.23)

where Ji is the Coulomb operator
(
Ji = ∫ dr2ψ

∗
i (2)r−1

12 ψi(2)
)

and Ki is the

exchange operator
(
Kiψa(1) =

[∫
dr2ψ

∗
i (2)r−1

12 ψa(2)
]
ψa(1)

)
. The operators in

Eq. (5.6) are analogous to the energy expressions in Eqs. (5.9) and (5.10). While
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Ji is a purely classical expression, Ki is quantum mechanical in nature and arises
due to the indistinguisability of the electrons [17]. Comparison of Eqs. (5.23)–
(5.11) reveals that while both HF and DFT methods include Coulomb interactions
explicitly, only HF includes exchange explicitly; DFT includes exchange implicitly
through the exchange correlation potential (VXC[ρ]). While DFT offers a scaling of
O(N3) versus the O(N4) of HF, unfortunately it suffers from two key drawbacks:
(1) each electron interacts with itself through the Coulomb potential (termed self-
interaction error, or SIE) and (2) it produces wavefunctions that are more localized
than HF.

One solution to the problem is to employ hybrid functionals. These are density
functionals that include a fraction of HF exchange. The two most common hybrid
functionals are B3LYP [52] and PBE0 [53]. In B3LYP, the exchange-correlation
energy is defined as,

EB3LYP
XC = ELYP

XC + a
(
EHF

exchange − ELYP
exchange

)
+ b�EB88

exchange + c�ELYP
correlation,

(5.24)

where a = 0.20, b = 0.72, and c = 0.81. The terms EB88
exchange and ELYP

XC come from
Becke [54] and Lee et al. [55]. In contrast, the PBE0 is based on the PBE functional
[56] and defines the exchange-correlation energy in a simpler fashion [53],

EPBE0
XC = EPBE

XC + 1

4

(
EHF

exchange − EPBE
exchange

)
. (5.25)

This formalism increases the overall accuracy of the underlying DFT method (see
the book by Cramer [18] and the excellent review by Laurent et al. [57] for examples
and comparisons), however it comes at the cost of computational resources as it
now scales as O(N4). Moreover while hybrid functionals are available for periodic
systems, the computational costs are drastically much higher than what is seen for
non-periodic systems, which limits their usage [22].

Another solution is the so-called DFT+U methods. Here we will follow the
nomenclature of Stausholm-Møller et al. [58] (which in turn is based off of the
work of Dudarev et al. [59]). In the DFT+U method, the total energy is represented
as,

EDFT+U = EDFT +
# of atoms∑

a

Ea
orb, (5.26)

where Ea
orb is a modified orbital energy,

Ea
orb = Ua

2

∑

σ

Tr
(
ρ̂a

σ

)− Tr
([

ρ̂a
σ

]2)
, (5.27)
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and ρ̂a
σ is atomic orbital occupation matrix [58]. The Ua term in Eq. (5.27) is what

gives DFT+U its name, and represents an energy penalty for occupying certain
orbitals. This in turn forces electrons to act more like HF electrons, reduces SIE,
and still keeps the same DFT scaling of O(N3). However, Ua is an empirical term
whose value can vary from problem to problem. Methods to generate Ua parameters
from ab initio using linear response have been proposed [60, 61]; unfortunately,
these methods are still being tested and development is ongoing.

5.2.6 The Problem of Electron Correlation

In order to provide a tractable equation for solving electron-electron interactions,
it was necessary to treat these interactions in an average fashion, which gives rise
to the one electron operators that we have seen in Eqs. (5.6), (5.11), and (5.23). In
other words, this means that we do not consider the effect of electron motions being
coupled to every other electron. The effect of electron-electron motion is called
electron correlation, and is a non-local effect [17, 18].

Within DFT, we have a term called the exchange-correlation potential (VXC); in
principal this term does account for electron correlation, albeit in an approximate
fashion. In order to see why, we will expand out the exact electron density (ρexact)

in terms of an initial, zeroth order electron density (ρ0, which is calculated from the
choice of basis set),

ρexact = ρ0 + ∇ρ0 + 1

2
∇2ρ0 + ... (5.28)

Functionals depending only on ρ0 are referred to as being derived within the
localized density approximation (LDA) [55]. Adding in gradient terms (∇ρ0) results
in generalized gradient approximations (GGA) [62]. A third class, meta-GGA’s,
utilized the Lagrangian of the density

(∇2ρ0
)
, however, they will not be discussed

here as they are not typically employed for surface chemistry. Obviously, the more
terms we include in Eq. (5.28), the more electron correlation we capture; however
practically we are limited to the gradient on average (GGA’s).

Within the literature, correcting DFT for electron correlation is typically referred
to as the dispersion energy. In order to see why, we consider the Möller-Plesset

second order perturbation energy term for electron correlation for orbital i
(
E

(2)
i

)

is,

E
(2)
i =

∑

i �=n

〈i|V |n〉 〈n|V |i〉
E0

i − E0
n

(5.29)

where n is the other molecular orbitals, E0
i is the HF energy for orbital i, |i〉 is

the wavefunction for orbital i, and V is the electron-electron interaction operator
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[17, 21]. Now, if we compare Eq. (5.29) to that for the dispersion energy between

two atoms A and B
(
EAB

disp

)
, [63]

EAB
disp = −

MA∑

m�=0

NB∑

n�=0

〈00|V |mn〉 〈mn|V |00〉
EA

m + EB
n − EA

0 − EB
0

. (5.30)

We will not go into detail on every term in Eq. (5.30); however it is the similarities
between Eqs. (5.29) and (5.30) has led to the assumption that DFT fully lacks
dispersion. However, Jenness and coworkers have demonstrated that this is not the
case, and in reality the missing electron correlation terms spans the whole region of
intermolecular interactions [34, 35, 64].

Regardless, one of the more popular methods for correcting for electron correla-
tion in DFT is through the adding a Lennard-Jones “dispersion” term, or the DFT+D
method. Similar to DFT+U , we correct the total DFT energy by a pair-wise additive
term,

EDFT+D = EDFT − s6

∑

AB

CAB
6

RAB

, (5.31)

where the CAB
6 is a dispersion term that is either computed or fitted beforehand,

and s6 is a scaling term to match the reference data (typically CCSD(T), MP2,
or experiment) [65–68]. Care needs to be taken with the s6 term as you can end
up overestimating your “dispersion” contribution, resulting in an overprediction of
binding energies [34, 35]. However, these methods are quick and easy to implement,
and consequently are widely available. It should be noted that this method does
not modify the wavefunction like the DFT+U method; thus any follow on methods
involving wavefunction analysis will have its accuracy limited by the underlying
functional.

An alternative approach is the non-local density functional (also called van der
Waals density functional or vdW-DF). Instead of adding on an empirical correction
to the total energy, we modify the exchange-correlation energy as,

EXC = Eexchange + Elocal
correlation + Enon−local

correlation, (5.32)

where Elocal
correlation is taken from the LDA approximation. Enon−local

correlation is a new term,
and is defined as,

Enon−local
correlation = 1

2

∫ ∫
ρ(r)φ(r, r ′)ρ(r ′)drdr ′ (5.33)

where (r, r ′) denote two separate points in space, ρ(r) is our electron density, and
φ(r, r ′) is an interaction kernal [68, 69]. A variety of different kernals exist with
different density functionals (for a review see Berland et al. [69]); as a consequence
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there exist a variety of vdW-DF’s to choose from such as vdW-DF2 [70–72] and
optPBE-vdW [73, 74]. For a comparison of different vdW-DF’s, we refer the reader
to the work of Klimeš et al. [73, 74] These methods, while harder to implement, are
more robust and accurate than DFT+D methods. Furthermore, if correlation effects
are important in analyzing the wavefunction, vdW-DF’s can capture that effect.

5.2.7 Forces, Hellmann-Feynman Theorem, and Geometry
Optimization

Above, we discussed the methodology used in the calculation of the ground state
energy for a molecular system. However, how can we minimize the positions of the
individual atoms within a molecule so we can have the lowest energy structure? For
this problem, we will need to minimize the energy with respect to position, which
will require knowledge of the atomic forces.

From classical mechanics, we know that the force on a object (F) is calculated
as,

F = −∇U(r) = −
(

∂

∂x
+ ∂

∂y
+ ∂

∂z

)
U(r), (5.34)

where {x, y, z} is a set of Cartesian coordinates describing the position, r is the

distance from origin (r = (
x2 + y2 + z2

)1/2
), and U(r) is a potential depending

upon r . However, it is well known from the early days of quantum mechanics that
classical descriptors break down in the limit of atoms and molecules. Thus, the
question is now how can we calculate the forces of a quantum mechanical system?

The solution to the problem is the Hellmann-Feynman theorem; here we will
summarize following the nomenclature of Feynman [75]. Here, our U(r) is,

U =
∫

ψ∗Hψdν, (5.35)

where ψ is our wavefunction, ψ∗ it’s complex conjugate, H is a Hamiltonian (e.g.,
Eq. (5.11). It should be noted here that this discussion is agnostic of the Hamiltonian
used), and dν is a volume element. For a generic variable λ, we can write the
derivative of Eq. (5.35) as,

∂U

∂λ
=
∫

ψ∗
(

∂H
∂λ

)
ψdν +

∫ (
∂ψ∗

∂λ

)
Hψdν +

∫
ψ∗H

(
∂ψ

∂λ

)
dν. (5.36)

One of the properties of Hamiltonians like Eq. (5.11) is the fact that they are
Hermitian and as such, form their own self-adjoint [17, 76]. Consequently, we can
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write,

∫ (
∂ψ∗

∂λ

)
Hψdν =

∫ (
∂ψ

∂λ

)
Hψ∗dν, (5.37)

and since Hψ = Uψ and Hψ∗ = Uψ∗ (i.e., Eq. (5.1) with U substituted for E),
Eq. (5.36) becomes,

∂U

∂λ
=
∫

ψ∗
(

∂H
∂λ

)
ψdν + U

[∫ (
∂ψ∗

∂λ

)
ψdν +

∫
ψ∗
(

∂ψ

∂λ

)
dν

]
. (5.38)

Due to Eq. (5.37), the last two terms in Eq. (5.38) cancel. This gives the final
expression for our forces in a quantum mechanical framework,

∂U

∂λ
=
∫

ψ∗
(

∂H
∂λ

)
ψdν. (5.39)

Or, in other words, the classical expression for the forces in Eq. (5.34) can be applied
to quantum mechanical Hamiltonians! [75] The Hellmann-Feynman theorem is an
extremely powerful tool, and as been applied not only to the consideration of atomic
forces, but also problems in diffusion [77], calculating electronegativities [78], and
in thermodynamic considerations [79].

Once forces are generated through the Hellmann-Feynman theorem, it is a
simple matter of optimizing the geometry of the molecular system with respect
to atomic positions. A number of optimizers exist and have been implemented in
several software packages, including the LBFGS [80] and FIRE [81] methods (for
a comparison of the efficiency for different optimizers, see Sheppard et al. [82]).
Forces are converged to a predetermined criteria using the following inequality,

max

⎛

⎝
∑

i={x,y,z}
F 2

i

⎞

⎠ ≤ F 2
max, (5.40)

where the sum is over the {x, y, z} components of the force on atom i, and Fmax is
a user defined criteria. For periodic DFT calculations, a Fmax of 0.05 electron volt
per Ångstrom is used (eV Å−1).

5.3 Case Study: Adsorption of Munitions in Soils

In Sect. 5.2.1, we discussed the theoretical methodology used in current studies of
surface interactions. In this Section, we explore how the above techniques can be
used in a problem our group has been working on for several years: the effect of soil
constituency on the fate and transport of munition compounds. Here, we will focus
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our discussion on our efforts involving components of arid soils interacting with
munition compounds (Fig. 5.1). Additional techniques such as binding energies,
charge density differences, electrochemical property prediction, Lewis acidity, and
environmental transport will be discussed. Moreover, we will demonstrate how
tools such as density of state analysis can provide critical insight into the nature
of molecular interactions, as well as a comparison of cluster and periodic surface
models.

5.3.1 Binding Energies

The first step in understanding the nature of adsorbate-surface interactions is the
calculation of the binding energy. If we consider the adsorption process to be a
chemical reaction of the type,

Adsorbate + Surface −→ (Adsorbate-Surface) , (5.41)

then we can write the formation energy (Eformation) as,

Eformation =
Nproducts∑

i

E
product
i −

Nreactants∑

i

Ereactant
i . (5.42)

As the formation energy in Eq. (5.42) represents the energy contained when an
adsorbate is bound to the surface, it is referred to as the binding energy, EBE. While
other terms are commonly used (e.g., complexation energy, interaction energy, etc.)
for the purposes of this review we will refer to this quantity as the binding energy.
Additionally, it is common in the physics field to reverse the sign on Eq. (5.42). For
purposes of this review we will reverse the sign to be more in line with chemical
convention.

The second most common components of arid and semi-arid soil are aluminas,
or Al2O3 [83, 84]. Aluminas are typically found in the top layers of rocky soil
[83], and are present due to the nature of sub-surface hydrothermal circulation
[85]. Thus, it is instructive to discuss the binding of munition compounds onto this
material. Alumina has several different phases, however the α phase (α-Al2O3 or
corundum) is most energetically favored [86, 87], with the (0001) surface being the
most preferred. This surface is shown in Fig. 5.2.

We begin with our 2013 study that utilized plane-wave DFT to study the
interaction of TNT (Fig. 5.1a) on the α–Al2O3 (0001) surface [4]. We utilized
an energy cutoff of 340 eV and the PBE exchange-correlation functional [56]
and considered two configurations of TNT, a flat (called parallel in the original
manuscript) and perpendicular. After minimization using the Hellmann-Feynman
theorem (Sect. 5.2.7), a comparison of the gas-phase geometry to the adsorbed
geometry reveals that while the perpendicular configuration maintains the various
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Fig. 5.1 Common munitions. (a) TNT. (b) DNT. (c) DNAN. (d) NTO. (e) ANTA. (f) NQ. (g)
FOX7

dihedral angles, the flat features several deviations in the dihedrals of the nitro
groups. This rotation allows for a greater interaction between the α–Al2O3 surface
and the three nitro groups of TNT. In comparing the binding energies, the perpendic-
ular configuration has an energy of −1.09 eV, and the flat has an energy of −2.13 eV,
nearly double that of the perpendicular. Finally, they also show that relaxing the
surface results in a contraction of Al–O bonds due to the under-coordination surface
sites; in the presence of the TNT, these under-coordinated sites become coordinated,
and the interlayer spacing becomes similar to what is found in bulk α–Al2O3 [4].
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Fig. 5.2 The α–Al2O3 (0001) as viewed from the normal and from the side. Adapted with
permission from [16]. Copyright (2020) American Chemical Society

In discussing binding energies, it is instructive to also consider a quantity called
the charge density difference. Similar to Eq. (5.42), this quantity is defined as,

ρdiff = ρads−surf − ρads − ρsurf, (5.43)

where ads/surf denotes the adsorbate/surface, and ρ is the electronic density (which
is the wavefunction squared). This quantity allows us to determine where electrons
have either accumulated or are depleted and gives an indication of how the adsorbate
is binding to the surface. It is important to note that all three terms in Eq. (5.43) are
computed at the same geometry. We demonstrate how this quantity is used for TNT
on α–Al2O3 in Fig. 5.3. Examination of the charge density differences reveals a
depletion of electron density at the binding centers and accumulation of electron
density at the center of the TNT–Al+3 bond (Fig. 5.3. This demonstrates that there
is a charge transfer component present in the adsorption of TNT onto α–Al2O3.

In addition to TNT, we can also consider 5-Nitro-2,4-dihydro-3H-1,2,4-triazol-
3-one (NTO, Fig. 5.1d), nitroguanidine (NQ, Fig. 5.1f) and 1,1- Diamino-2,2-
dinitroethylene (FOX7, Fig. 5.1g) on α–Al2O3 (0001) [3, 10]. NTO has two N–H
bonds and functions as a weak acid with an experimental pKa of 3.76 [88]. As the
oxygens on the α–Al2O3 surface can act a Brønsted base (i.e., accepts a proton),
NTO undergoes dissociative adsorption. In this process, instead of retaining its
molecular identity, NTO donates a proton to the surface. This process is shown
in Fig. 5.4. First, NTO is shown to adsorb in a flat configuration, with an oxygen
from the nitro (–NO2) group coordinated with the Al+3 site. As the adsorption
process proceeds, the NTO assumes a perpendicular configuration, and the N–H
bond dissociates with the proton (H+) attaching to a surface oxygen and forming a
hydroxyl group (–OH). The entire process is ∼ − 0.45 eV exothermic and is shown
in Fig. 5.4. Additionally, NTO can adsorb in a perpendicular fashion through the
nitro or carboxylic groups. The flat configuration has a binding energy of −2.83 eV
(see the note above in regards to the sign convention). However, values are not given
for the two perpendicular configurations, but they do note that they are 2-3× lower
in binding strength when compared to the flat. Finally, in agreement with their study
on TNT, they note that there is an accumulation/depletion of electron density at bond
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Fig. 5.3 Charge density differences for TNT on α–Al2O3 (0001): (a) perpendicular and (b) flat.
Yellow regions show areas where electron density are accumulated and blue regions shows areas
where electron density is depleted. Al atoms are blue, O red, C brown, and H white. Reprinted
(adapted) with permission from [4]. Copyright (2013) American Chemical Society

Fig. 5.4 Dissociation of NTO on the α–Al2O3 (0001) surface. Caption letters correspond to the
energy points in the center graph. Reprinted (adapted) with permission from [3]. Copyright (2014)
American Chemical Society
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Table 5.1 Binding energies for NQ and FOX7 on clean α–Al2O3 (0001) and hydroxylated α–
Al2O3 (0001) from Shukla et al. [10]. Units in eV. Table created with permission using data from
Ref. [10], copyright (2017) American Chemical Society

NQ

Surface Perpendicular Flat Ia Flat IIb FOX7

α–Al2O3 (0001) −1.78 −3.01 −3.40 −3.62

hydroxylated α–Al2O3 (0001) −0.96 −0.96 −1.09
a

Called parallel I in original manuscript
b

Called parallel II in original manuscript

Fig. 5.5 Associative (a) and dissociative water (b) binding on α–Al2O3 (0001) surfaces. Black
dotted lines denote the presence of the periodic boundaries used in the DFT calculations. Adapted
with permission from [16]. Copyright (2020) American Chemical Society

and atomic centers, respectively. Sites near the NTO also assume a more bulk-like
inter-layer distance as the under-coordinated sites become coordinated [3].

For NQ and FOX7, Shukla et al. noticed that upon adsorption to the clean
α–Al2O3 surface the C–N bonds undergo a contraction relative to the gas-phase,
whereas the N–O bonds elongate for both NQ and FOX7. For NQ, they note that
the degree of these bond changes depends on the relative orientation of the NQ with
respect to the surface, i.e., if both –NH2 groups (called parallel II by Shukla et al.
[10]) are coordinated, then the N–O and C–N bonds change more than if only one
–NH2 is coordinated (called parallel I by Shukla et al. [10]). The binding energies
for these complexes are summarized in Table 5.1. For NQ, a flat binding motif is
favored over the vertical, as is seen from TNT and NTO, as the binding strength (the
absolute value of the binding energy) nearly doubles. Moreover, the structure where
both –NH2 groups are bound to the surface (Flat II) is more favorable, which can be
attributed to the increased number of hydrogen bonds. FOX7 binds more strongly
than NQ [10].

It is well known that alumina can become hydroxylated in the presence of water
[89–92], thus in this study, they considered the effect of surface hydroxylation due
to interactions of the surface with water [10]. An example of the hydroxylated
α–Al2O3 surface is shown in Fig. 5.5b. In order to better understand the effect of
surface hydroxylation, the binding energies for NQ and FOX7 on the hydroxylated
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Fig. 5.6 Charge density differences for NQ and FOX7 on α–Al2O3 (0001): (a) NQ on clean
α–Al2O3, (b) FOX7 on clean α–Al2O3, (c) NQ on hydroxylated α–Al2O3, and (d) FOX7 on
hydroxylated α–Al2O3. Yellow regions show areas where electron density are accumulated and
blue regions shows areas where electron density is depleted. Al atoms are blue, O red, C brown,
and H white. Reprinted (adapted) with permission from [10]. Copyright (2017) American Chemical
Society

α–Al2O3 are summarized in Table 5.1. Compared to the clean surface, the hydrox-
ylated surface has greatly reduced binding strengths (a three-fold decrease is noted
for the flat configurations of both molecules). In terms of geometry, the changes
discussed above are not present with the hydroxylated α–Al2O3 surface; instead
NQ assumes a geometry that is very mildly distorted from its gas-phase counterpart.
These trends for NQ also hold for FOX7. We can gain a better understanding of why
the clean α–Al2O3 (0001) surface changes binding strength/bond lengths more if we
examine the charge density differences as shown in Fig. 5.6. Here we see the same
pattern from Shukla and Hill [3, 4]; however, in the case of the hydroxylated surface
(Fig. 5.6c–d), we see that the hydroxylated surface does still donated charge density
but to a lesser extent [10].

At this point, we would like to note that the change in binding energy with respect
to orientation as shown by Shukla et al. [10] ties into the nature of the interaction,
i.e., Lewis acid-base interactions. Metiu and coworkers [93–95] demonstrated that
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as the orientation of the Lewis base (in the case of the current review the munitions
in Fig. 5.1), so does the overlap between the surface bands and the munitions
molecular orbitals. As the overlap increases, so does the strength of the interaction.
For an in depth examination of surface band structure and molecular orbitals, we
refer the reader to the seminal work by Hoffman [96–98]. A full discussion on the
computational prediction of Lewis acidity and surfaces is presented in Sect. 5.3.4.
To overcome the issue associated with geometrical dependence of surface–adsorbate
interactions, the authors of the current review examined four munitions (TNT
(Fig. 5.1a), DNAN (Fig. 5.1b), NTO (Fig. 5.1d), and NQ (Fig. 5.1f)) and how they
interact with the α–Al2O3 and α–Fe2O3 surfaces [11]. However, for purposes of this
review we will discuss TNT as the trends established for this molecule also apply to
DNAN, NTO, and NQ [11].

In order to handle the geometry affect of Lewis acids [93–95], we used the
minima hopping algorithm of Goedecker [99] with a Hookean constraint [100].
Jenness et al. [11] considered three binding motifs: two vertical (referenced as mode
1 and 2 in the original manuscript. These correspond to the position of the –NO2
groups. Using the methyl as a marker, mode 1 corresponds to the –NO2 at the para-
position, and mode 2 at the ortho-position), and a flat. These three modes served
as the starting point for the minima hopping. First, a short molecular dynamics run
in the NVT ensemble is performed (for a discussion on various thermodynamic
ensembles, we recommend the book by McQuarrie [101]) for 20–25 fs. Once time-
propagated, the geometry is minimized with respect to energy (see Sect. 5.2.7). The
new geometry is compared to the prior geometries. If it is unique, then it is appended
onto the list of unique structures and if not unique, it is discarded. Examination of
the unique minima allows for us to determine basic statistics (mean and standard
deviation) about the nature of the binding energy. An example for TNT on α–Al2O3
and α–Fe2O3 is shown in Fig. 5.7b [11].

Overall the binding of TNT to α–Al2O3 (0001) is favorable, and is between
∼ − 1.8–1.9 eV. In Fig. 5.8, they report the changes in bond lengths; similar to
what is reported by our group’s earlier work [3, 4, 10], the C–N bonds experience a
contraction while the N–O bonds elongate. Upon adsorption onto α–Fe2O3 (0001),
TNT gains an extra ∼0.40–0.50 eV in stability, and the N–O/C–N bonds are more
distorted [11]. These results indicate that the N–O bonds in soil rich in iron oxides
would undergo a greater degree of change than those with a greater amount of
aluminas. It needs to be stressed here that the effect of both on the kinetics of change
have yet to be elucidated, and is an open area of research. However, environments
rich in iron have been shown to transform –NO2 groups [102–109], thus we can state
that our study [11] provides a theoretical rationale behind the observed chemical
reductions.
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Fig. 5.7 (a) Schematic of 2,4,6-trinitrotoluene (TNT) with the atoms numbered, (b) mean binding
energies for TNT on the α–Al2O3 (orange bars) and α–Fe2O3 (blue bars) surfaces, and (c) COOP
curves for the gas-phase TNT. From Eq. (5.22), negative peaks represent anti-bonding interactions
whilst positive peaks represent bonding interactions. Reproduced from Ref. [11] with permission
from the PCCP Owner Societies

Fig. 5.8 Percent change in the bond lengths from the gas-phase to the adsorbed phase for TNT.
Negative percent change denotes the bond contracting relative to the gas-phase, whilst a positive
percent change denotes the bond elongating relative to the gas-phase. Numbering corresponds to
Fig. 5.7a. Reproduced from Ref. [11] with permission from the PCCP Owner Societies
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5.3.2 Cluster Models and Electrochemical Properties

Using periodic DFT to calculate electrochemical properties can be a challenging
task, especially for surfaces. In order to demonstrate why, we will outline the
procedure we have previously used [6] and for which the thermodynamic cycle is
shown in Fig. 5.9. From here, we can write the following equations for Gibbs free
energy of reduction

(
�G0

red

)
and oxidation

(
�G0

ox

)
,

�G0
red = �G0 (R−

ads

)− �G0 (Oads) (5.44a)

�G0
ox = �G0 (O+

ads

)− �G0 (Rads) . (5.44b)

Here, Rads and Oads denote the geometry with and without an electron, respectively.
In the absence of a charge sign (e.g., R−

ads), this denotes the neutral geometry. In
the presence of the charge sign, it denotes that an electron has been added (for a
negative charge) or removed (for a positive charge). The subscript “ads” denotes
that the complex is in it’s adsorbed state [5, 6]. For surfaces, a problem arises in the
application of Eq. (5.44). If we consider a neutral surface, the energy of the system is
uncoupled from the amount of vacuum applied above the surface. However, adding
a charge to a 2-dimensional surface results in the energy becoming a function
of the vacuum gap [110, 111]! Corrections for this effect have been introduced
by Freysoldt et al. [110], and Komsa and Pasquarello [111]; however, these
corrections are not widespread outside of the semiconductor community and as such
their applicability to electrochemical predictions is non-existent. Consequently, the
majority of work regarding electrochemical properties of munitions on soil surfaces
have relied upon the cluster approximation, discussed in Sect. 5.2.2.1.

Fig. 5.9 Thermodynamic
cycle used by Sviatenko et al.
[6]. Reproduced from Ref. [6]
with permission from the
Wiley Publishing
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Table 5.2 Electron affinities (EA) and Gibbs free energy of reduction (�G0
red) for ANTA, TNT,

DNT, DNAN, and NTO in the gas-phase, adsorbed on silica, and in water from Sviatenko et
al. [5, 6]. Units in electron volts (eV). ANTA data is reproduced with permission from Ref. [5],
copyright (2015) American Chemical Society. TNT, DNT, DNAN, and NTO data is reproduced
with permission from Ref. [6], copyright (2015) Wiley Publishing

EA �G0
red

Molecule Gas-phase Silica Water Gas-phase Silica Water Reference

ANTA(a) (–NO2) −0.53
−2.28 −3.50 −0.53

−2.16 −3.52
[5]

ANTA(b) (–NH2) −1.99 −1.95 [5]

TNT −2.21 −3.08 −4.32 −2.17 −2.93 −4.24 [6]

DNT −1.66 −1.90 −3.89 −1.68 −1.81 −3.92 [6]

DNAN −1.46 −2.50 −3.82 −1.48 −2.37 −3.83 [6]

NTO −1.47 −2.54 −4.05 −1.50 −2.40 −4.06 [6]

In 2015, our group published two papers in conjunction with Jackson State
University examining the electron affinities and Gibbs free energy of reduction
(�G0

red) for TNT, DNT, DNAN, NTO, and ANTA in the gas-phase, adsorbed on
silica, and in water [5, 6]. As these calculations involve the addition and subtraction
of electrons from the system, a cluster model of the hydroxylated α-SiO2 (100)
surface was employed. Sviatenko et al. [6] used the M05-2x functional with the
tzvp basis set. The electron affinities were calculated by attaching an electron to the
munitions system (either gas-phase, adsorbed, or in water) and taking the energy
difference with respect to the neutral. Their results are shown in Table 5.2. In terms
of geometry, Sviatenko et al. observed the munition compounds moving closer to
the surface upon addition of an electron, with an increase in the number of hydrogen
bonds forming when the munition-silica system had an electron attached. Removing
an electron resulted in the opposite trend [6].

In terms of the electrochemical properties in Table 5.2, it should be noted that
the sign convention in Eq. (5.44) denotes that a more negative EA/�G0

red means a
greater ability to attach an electron/undergo electrochemical reduction. Based on
their results, it is clear that the munitions are able to undergo reduction more when
in water versus being in the gas-phase (here, water is modeled using an implicit
solvation model). In particular, TNT is the most likely to undergo reduction, with
ANTA being the least reducible. Additionally, when adsorbed onto the silica surface,
there is a greater propensity for electron attachment and reduction (when compared
to the gas-phase)! While it has been demonstrated through experiments and theory
that oxides can act as a reducing agent [49, 50, 92, 93, 112–125]; however, silicas
such as α-SiO2 have been demonstrated to be rather “neutral” in this regard [112].
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5.3.3 Comparison of Cluster and Periodic Surface Models

At this point, we would like to discuss the differences between cluster and periodic
surfaces. In 2015 our group in conjunction with Jackson State University [7]
presented a comprehensive study of munition on kaolinite with both cluster model
and periodic surface. While the differences between cluster and periodic were not
the focus of this study, it is one of the few in which a careful comparison of both
methods was performed. Kaolinite (shown in Fig. 5.10) is an aluminum-silicate clay
comprised of alternating octahedral and tetrahedral sites. These sites are occupied
with Al and Si atoms, respectively. Consequently, as the crystal is cleaved along
the (100) plane (the lowest energy plane), either a Al- or Si-terminated plane will
be presented. The binding energies of TNT (Fig. 5.1a), DNT (Fig. 5.1b), DNAN
(Fig. 5.1c), and NTO (Fig. 5.1d) on kaolinite are summarized in Table 5.3.

Summarizing their results, Scott et al. [7] found that the Al-terminated surfaces
bind the munitions more strongly than the Si-terminated surfaces; however, they

Fig. 5.10 Kaolinite 3D
crystal structure. Red spheres
are oxygen, gray aluminum,
and beige silicon. Solid black
line denotes the periodic
boundary. Al atoms sit at
octohedral sites, and Si atoms
at tetrahedral sites

Table 5.3 TNT, DNT,
DNAN, and NTO binding
energies on kaolinite clay
from Scott et al. [7] (units in
eV). Table created from data
published in Ref. [7]

Termination TNT DNT DNAN NTO

Clustera

Al −1.33 −1.15 −1.22 −1.20

Si −0.82 −0.92 −1.06 −0.59

Periodicb

Al −1.19 −1.05 −1.09 −0.93

Si −0.60 −0.61 −0.59 −0.53
a

Method: BLYP+D2/6-31+G(d,p)
b

Method: BLYP+D2/Planewave
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(a) (b)

Fig. 5.11 Projected density of states for M+3 binding site on the (a) α–Al2O3 (0001) and (b) α–
Fe2O3 (0001) surfaces. Energy is zeroed to the Fermi level (taken to be the energy of the highest
occupied band), with the vertical black lines denoting the position of the E∗

s energy. Reproduced
from Ref. [92] with permission from the PCCP Owner Societies

also note that for both terminations the surface–munition distances are roughly
equivalent. These results indicate that under conditions in which the Al-termination
is favored, DNT would bind twice as a strong as for those under which Si-
termination flourishes. Comparison of the gas-phase to adsorbed DNT geometry
shows that the N–O bonds are relatively unaffected while the C–N bonds undergo a
mild contraction. However, this contraction only holds for the Al-terminated surface
as the Si-terminated the geometry is roughly equivalent to the gas-phase [7]. Using
the arguments outlined in Sect. 5.3.4, we can justify these trends by looking at the
band gap. The theoretical band gap has been calculated to be between 6.2 and
8.2 eV [126], which is significantly higher than the band gaps for α–Al2O3 and
α–Fe2O3 shown in Fig. 5.11a,b, respectively. From this we can conclude, based on
the Lewis acid arguments from Jenness and coworkers [11, 92] that kaolinite is a
relatively weak Lewis acid, and as such would not transform/degrade the –NO2
groups significantly.

In terms of comparing with the cluster model, the periodic surface shows similar
bond lengths and trends as the cluster model. However, the use of a cluster model
overestimates the binding of TNT, DNT, DNAN, and NTO by ∼0.1–0.2 eV. This
demonstrates that while geometrical trends can be established with a high level of
accuracy with a cluster model (and potentially allowing one to do electrochemical
analysis similar to Sect. 5.3.2), the binding energies need to use a periodic surface
or else they would be more strongly bound. This would have the consequence of
making the error in understanding transport phenomena hard to assess.

On a final note regarding cluster models, it is important to note that dangling
bonds represent defects in the surface. It has been previously demonstrated that
the band-gap picture changes radically as defects are introduced as “gap-states”
between the valence and conduction bands [127–132] form. This would partially
explain the differences in binding energies reported in Table 5.3 and would hinder
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molecular orbital type analyses such as those presented in Sect. 5.2.4. Thus, we
recommend caution when using cluster models.

5.3.4 Lewis Acidity and Environmental Fate

In Sect. 5.3.1, we briefly mentioned Lewis acidity. This is a chemical process in
which a system accepts electron density (the acid) from a donor (the base). For
example, aluminas have been shown to be Lewis acidic [89, 92, 93, 133–136] which
in turn drives several chemical processes [89, 90, 92, 124, 125, 134, 136–148]. In this
section, we discuss the nature of Lewis acidity, and how it can create a conceptual
picture for understanding the fate of munitions in soil.

As mentioned above, a solid Lewis acid accepts electron density from the highest
occupied molecular orbital (HOMO) of the adsorbate. By definition the HOMO lies
near the Fermi level of the surface of the Lewis acid; thus, the relative position of
the conduction band with respect to the Fermi level would be a key identifier for
Lewis acidity. Consequently Jenness et al. introduced the mean of the s-conduction
band,

E∗
s =

∫∞
εF

ρs(ε)εdε
∫∞
εF

ρs(ε)dε
, (5.45)

where εF is the Fermi level (taken to be the energy of the highest occupied band of
the surface), ρs(ε) is the energy-dependent s-orbital contribution from the projected
density of states (PDOS), and ε is the energy as a measure of Lewis acidity
[92]. It should be noted at this point that the E∗

s descriptor is of primary interest
in a comparative sense. For example, the Lewis acid properties of the various
heterogeneous Al+3 sites on the γ -Al2O3 can be correlated with the reactivity of
this material (as demonstrated for dehydration and etherification of ethanol) [92].

In 2018, we used this argument to provide an origin for the bond changes in TNT
when adsorbed onto α–Al2O3 and α–Fe2O3 (shown in Fig. 5.8). We found that α–
Fe2O3 results in a greater contraction of C–N bonds and a greater elongation of N–O
bonds when compared to α–Al2O3. Using E∗

s as a descriptor for Lewis acidity, we
find that α–Fe2O3 is more Lewis acidic than α–Al2O3 (Fig. 5.11b vs. a) as the E∗

s

of α–Fe2O3 (0001) is much closer to the Fermi level than that of α–Al2O3 (0001).
What this means is that we can expect to see stronger binding of our munitions onto
the α–Fe2O3 surface when compared to the α–Al2O3. Moreover, we can also expect
to see a greater elongation/contraction effect for the N–O/C–N bonds. Both of these
predictions are correct (Figs. 5.7 and 5.8).

We next examined the COOP curve (Eq. (5.22)) for the isolated TNT, shown in
Fig. 5.7c. On the energy scaled employed, the HOMO energy lies ∼1 eV. For the
N–O bonds, the COOP shows a strong bonding character at the HOMO; thus, as the
Lewis acid Al+3 centers depopulate this region the bond order decreases and the
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bonds elongate. Similarly, for the C–N bonds the nature is of the HOMO is anti-
bonding and as this region is depopulated the bond order increases and the bonds
contract. This is supported by examination of the charge density differences as the
N–O bonds are depleted of charge and the C–N bonds gain charge [11]. This is in
agreement with prior studies on α–Al2O3 [3, 4, 10] and provides an explanation for
the reported charge density differences shown here in Figs. 5.3 and 5.6. A similar
analysis was performed for DNAN, NTO, and NQ. We concluded this study by
stating it is these elongations that would allow for the –NO2 groups to be reduced.

5.3.5 Environmental Transport

While these prior studies are key in understanding the fate of munitions in soil, so far
little work has gone into understanding transport through these soils. A key problem
here is that when thermodynamic contributions are computed for molecules, an ideal
gas is assumed; however, in reality these molecules do not behave as an ideal gas,
nor are they in the gas-phase! To face these issues, we have introduced a correction
to the free energy of the munition (Gmun). We start by assuming an equilibrium
between the aqueous and vapor phases [101]

G
aq
mun = G

vapor
mun , (5.46a)

= G◦
mun(T ) + kBT ln

(
Pmun

P ◦

)
(5.46b)

where Pmun is the partial pressure of adsorbate mun, G◦
mun is the Gibbs free energy

at a standard pressure of P ◦ (here taken to be 1 atmosphere), and the kBT ln
(

Pmun
P ◦
)

is the deviation from standard. In this fashion, they are able to write Gmun as a
function of the partial pressure of an adsorbate, and relate the partial pressure to
aqueous concentration by Henry’s Law,

H = C

Pmun
, (5.47)

where H is Henry’s Law constant, C is the aqueous phase concentration, and Pmun
is the partial pressure. Thus,

G
aq
mun = G◦

mun(T ) + kBT ln

(
C

H × P ◦

)
. (5.48)

In Eq. (5.48), G◦
mun(T ) is calculated in the usual fashion (i.e. with the ideal-gas

approximation) and kBT ln
(

C
H×P ◦

)
represents a modification that accounts for
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adsorbate concentration. In addition to this modification, they considered several
thermodynamic states:

1. Munition
2. Water monolayer (Fig. 5.5a)
3. Dissociatively adsorbed water monolayer (fully hydroxylated surface, Fig. 5.5b)
4. Munition with water
5. Munition with dissociatively adsorbed water (partially hydroxylated surface)

and calculated the probability of each state forming with a Boltzmann distribution,

Probability = e−�E
f
i /kBT

∑states
i e−�E

f
i /kBT

× 100. (5.49)

�E
f
i is the formation energy of thermodynamic state i from the above list. We refer

the reader to Ref. [16] for further details on the methodology. The salient point here
is that while prior studies have considered the effect of a fully hydroxylated surface
or a clean surface, this is the first study to consider intermediate surface states, such
as hydroxyls and the munition bound to the surface, as opposed to the munition
being hydrogen bonded to the hydroxyl network [16].

The application of Eqs. (5.46)–(5.49) is shown in Figs. 5.12 and 5.13 for TNT
and DNAN, respectively. It should be noted that while both the water monolayer
(Fig. 5.5a) and hydroxylated (Fig. 5.5b) states were considered, it was found that the
hydroxylated state was preferred 100%. Thus, the rest of the discussion was centered
around the hydroxylated α–Al2O3 (0001) surface. From Figs. 5.12 and 5.13, the
first thing of note is that while DNAN largely prefers the flat configuration, TNT
favors the two vertical modes as well as the flat (albeit the flat moreso). For
DNAN, increasing the concentration results in more of the vertical modes being
preferred, however the majority of the surface coverage would still be flat. For
TNT increasing the concentration results in an increase in the vertical binding
modes, which would be expected based off of prior studies of aromatics on metal

Fig. 5.12 TNT Boltzmann probabilities (Eq. 5.49) with respect to concentration and temperature
on α–Al2O3 (0001). Binding modes of the munitions are in the presence of dissociatively adsorbed
water (i.e., hydroxylated surface). The concentrations are (a) 0.01 mg L−1, (b) 30 mg L−1, and (c)
60 mg L−1. Reproduced with permission from [16]. Copyright (2020) American Chemical Society
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Fig. 5.13 DNAN Boltzmann probabilities (Eq. (5.49)) with respect to concentration and temper-
ature on α–Al2O3 (0001). Binding modes of the munitions are in the presence of dissociatively
adsorbed water (i.e., hydroxylated surface). The concentrations are (a) 0.01 mg L−1, (b) 30 mg
L−1, and (c) 60 mg L−1. Reproduced with permission from [16]. Copyright (2020) American
Chemical Society

surfaces [149, 150]. This discrepancy for DNAN might be explained by the model
employed by Jenness et al. not accounting for adsorbate-adsorbate interactions; thus
the energetic shift to vertical binding is missing [16]. However, accounting for these
terms is a computationally demanding process with no easy solution. Despite this
drawback, these results do demonstrate that DNAN and TNT are soil bound for soils
rich in α–Al2O3.

We have also applied this formalism to the various thermodynamic binding
states for α–Fe2O3 (0001). Similar to α–Al2O3, the preferred water state was to
dissociatively adsorb, resulting in surface hydroxyls (similar to what is shown in
Fig. 5.5b for α–Al2O3). However, unlike the case for α–Al2O3 (0001), we found for
TNT 100% surface coverage across all three concentration considered in our study
(Fig. 5.14). Considering the stronger Lewis acid properties of α–Fe2O3 over α–
Al2O3 [11], this is to be expected. However, what is curious is that for DNAN, there
is a 0% surface coverage, and the α–Fe2O3 surface remains in it’s hydroxylated
state! This means that while TNT is a soil bound contaminant for soils rich in
α–Fe2O3, DNAN is a aqueous phase contaminant under those conditions [16]
(Fig. 5.15).

Fig. 5.14 TNT Boltzmann probabilities (Eq. (5.49)) with respect to concentration and temperature
on α–Fe2O3 (0001). Binding modes of the munitions are in the presence of dissociatively adsorbed
water (i.e., hydroxylated surface). The concentrations are (a) 0.01 mg L−1, (b) 30 mg L−1, and (c)
60 mg L−1. Reproduced with permission from [16]. Copyright (2020) American Chemical Society
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Fig. 5.15 DNAN Boltzmann probabilities (Eq. 5.49) with respect to concentration and tempera-
ture on α–Fe2O3 (0001). Binding modes of the munitions are in the presence of dissociatively
adsorbed water (i.e., hydroxylated surface). The concentrations are (a) 0.01 mg L−1, (b) 30 mg
L−1, and (c) 60 mg L−1. Reproduced with permission from [16]. Copyright (2020) American
Chemical Society.

5.4 Looking to the Future

5.4.1 Breathing New Life into an Old Method: Density
Functional Tight Binding

In the above discussions, rigorous first principals (or ab initio) DFT calculations
were performed (this methodology is outlined above in Sect. 5.2.1). These calcula-
tions, while efficient and accurate, still limit our system sizes. Advancements such as
projected augmented wavefunctions (PAWs) [32, 151, 152] and highly parallizable
codes such as GPAW [26] allow us to study systems containing upwards of 1000
atoms. However, we wish to explore the effect of the natural environment on the fate
and transport of key materials and chemicals; unfortunately, the natural environment
is an exceedingly complex system, and it is necessary to find more approximate
quantum chemistry methods that can deliver similar accuracy at a fraction of the
cost.

The semi-empirical density functional tight-binding method (DFTB) is one such
technique. This method has been applied to a wide variety of problems ranging from
intermolecular interactions [65, 153–158], organic molecules [159–167], metal-
organic frameworks [168], molecular vibrations [158], metals [169–175], metal
oxides [162, 166, 173, 176], solvents [166, 177–181], optical properties [175, 182],
semiconductor defects [170, 183], and chemical reactions [184]. For a more in depth
description of DFTB and its applications, we refer the reader to the literature [185–
191]. This method is also described in detail in “Introductory Roadmap to Current
Reactive Force-field Methodologies”, which is a chapter in the current volume.
Here, we would like to highlight the key points of the method, as well as our attempts
to bring this method closer to its DFT roots.
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DFTB is an approximate Hamiltonian method, in which we write the zeroth-
order molecular Hamiltonian as,

H 0
μν =

⎧
⎪⎪⎨

⎪⎪⎩

εfree−atom
μ if μ = ν
〈
φA

μ

∣∣T̂ + V A
0 + V B

0

∣∣φB
ν

〉
if A �= B

0 Otherwise

(5.50)

Following diagonalization and summation, a repulsive potential is then added to
the solution of the above Hamiltonian. While the terms in Eq. (5.50) can largely
be derived from DFT, the repulsive potential is still a largely empirical term and is
defined as the difference between the DFT energy of the molecule and the DFTB
Hamiltonian [159, 185, 186, 190–192]. Splines are typically used for reproducing
the repulsive energy curve. We can also form a second-order Hamiltonian with the
addition of atomic charges [159],

ESCC−DFTB =
occupied∑

i

〈φi |Ĥ0|φi〉 + 1

2

N∑

α,β

γαβ�qα�qβ + Erepulsion (5.51)

This method is referred to as the self-consistent charge (SCC) method due to the
charges (�qα) being determined by a Mulliken charge analysis in a self-consistent
manner. This allows for the fluctuations in the atomic environment arising from the
molecular environment to be accounted for.

The Hamiltonian terms are pre-computed and stored into Slater-Koster tables
for each atomic pair as a function of atom-atom distance. These tables are read in
at the start of the DFTB calculation and specific distance values are interpolated.
While several orders of magnitude faster than DFT, the interactions for each atom
pair needs to be calculated and stored before hand which limits applicability as
the majority of DFTB codes do not allow for the calculation of the relevant matrix
elements on the fly. Moreover, as mentioned above, the repulsion terms are also
dependent on both atom-atom pairs and having a ready data-base of DFT repulsive
curves. This makes for a rather arduous parameterization process, and there has been
a lot of work into automatic parameter generation [161, 167, 193–195].

Recently [196], we have introduced an orbital dependence to the confinement
potential (we called this method the orbital dependent confinement (ODC). Where
the confinement plays a role in to DFTB is discussed in “Introductory Roadmap
to Current Reactive Force-field Methodologies” in this volume). Moreover, exam-
ination of the radial wavefunction allows for the necessary r0 parameters to be
generated automatically. This method, called AODC, was able to replicate the
geometries of a variety of organic molecules that have strong lone-pair electron
effects. In Table 5.4 we present scaling factors from both ODC (which were hand
fitted) and AODC.
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Table 5.4 Confinement
scaling factors for ODC and
AODC. Reproduced with
permission from [196].
Copyright (2020) American
Chemical Society

Atom

ODC AODC

1s 2s 2p 1s 2s 2p

Hydrogen 4.00 4.62

Carbon 2.00 1.85 1.75 0.37 2.14 2.44

Oxygen 2.00 2.50 1.50 0.27 1.57 1.77

Nitrogen 1.75 1.25 2.00 0.32 1.81 2.04

Table 5.5 Molecular topologies for H2, H2O, and NH3. Reproduced with permission from [196].
Copyright (2020) American Chemical Society

Parameterization 3rd Order H Correction H2 H2O NH3

Orbital Independent
No No

0.74 Å 0.97 Å 1.03

Confinement (OIC)a 101.0◦ 100.2◦

Orbital Dependent
No No

0.73 Å 0.96 Å 1.03

Confinement (ODC)b 107.0◦ 105.6◦

Auto-Orbital Dependent
No No

0.75 Å 0.96 Å 1.02 Å

Confinement (AODC)b 106.2◦ 105.8◦

mio-1-1[159] No No
0.74 Å 0.97 Å 1.02 Å

107.2◦ 110.0◦

3ob-3-1 [164] Yes Yes
0.74 Å 0.96 Å 1.01 Å

108.2◦ 109.3◦

DFT
0.75 Å 0.97 Å 1.02 Å

103.9◦ 106.2◦

Experiment [197]
0.75 Å 0.96 Å 1.02 Å

104.6◦ 106.8◦
a

r0 is set to 1.85rcovalent for all atoms
b

rcovalent scaling factors given in Table 5.4

In Table 5.5 we present the results of our new DFTB confinement model with
respect to previous DFTB parameterizations (mio-1-1 [159] and 3ob-3-1 [164]),
DFT, and experiment. From here, we can readily see that introduction of orbital
based confinement improves the description of lone-pair electrons as the ODC and
AODC bond angles are much closer to the experimental and DFT values. Mio-
1-1 and 3ob-3-1 employ an orbital independent confinement (OIC), and as such
their bonds deviate from the optimal value. We have also introduced the use of
combination rules for exponential functions that will allow for only homogeneous
curves to be fitted for the repulsive interactions. While these results are as good as
traditionally fitted DFTB repulsion, parameterization is an order of magnitude faster
and requires a smaller training suite [196]. We believe these advances will breathe
new life into the DFTB method, and will enable a further expansion of the systems
being studied.
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5.4.2 Artificial Intelligence and Machine Learning (AI/ML)

In addition to method refinement and new method development, other opportunities
for boosting capabilities can be found by leveraging expertise from other subject
areas. In particular, through the combination of increasingly available and powerful
computing processing power, large sets of data, and easily accessible software tools,
data science approaches have proven to have much to offer traditional computational
chemistry. Artificial intelligence (AI) and machine learning (ML) have been adopted
numerous times to a variety of chemical problems. The aim of this section is
only to provide awareness for some of the considerations for AI/ML methods in
computational chemistry and to highlight some relevant examples that illustrate the
utility of these increasingly applied techniques.

In some instances, ML models have been used as a substitute for quantum
or molecular mechanics. While the data acquisition and model building for such
applications is time consuming, the model, once constructed, may be orders of
magnitude faster than the pure computational chemistry method. In other cases,
AI/ML is used to develop supporting information, acting as a subcomponent to
the overarching computational approach. For example, where many “flavors” of
methods exist (e.g., density function theory with its alphabet soup of available
functionals), ML may be used to generate a tastier flavor or potentially match
functionals up with chemical systems or properties in order to achieve higher
accuracy.

Further diversity in the application of AI/ML approaches in computational
chemistry can be explained in terms of the underlying data or features that are
supplied to the ML models. For chemistry, the structure of a compound or system
of interest contains detailed data in a compact form. A trained chemist is able to
make predictions and rationalizations from these representations alone. To enable
an ML model to make use of such “intuitive” information, new representations (i.e.
a machine readable form of the structure) are needed.

Starting from a three dimensional structure, some approaches utilize the
Coulomb matrix, which is essentially the nuclear-nuclear repulsion terms for each
atom pair in a molecule. There are several considerations that may be taken into
account when using the Coulomb matrix as a molecular representation for ML—
e.g., ensuring same size for different molecules via padding with zeros, storing
only the upper triangle to take advantage of symmetry, etc. The benefit of the
Coulomb matrix is that it captures the three-dimensional structure of the system;
but it comes at the requirement of having or generating a “good” (i.e., reasonable
and representative) three-dimensional structure of the system. Chemical fingerprint
methods, which can include any number of properties or attributes, are often
connectivity based, and can avoid the need for a three-dimensional structure. As
such, the fingerprint features can be derived starting from the SMILES (Simple
Molecular Input Line Entry System)[198–200] string for a compound. Some
fingerprints may provide information on what structural groups are present and



204 G. R. Jenness et al.

how many of each, relying on chemist-defined moieties, while others follow a
graph-based approach.

Ultimately, ML models are not a “one and done approach”: feature optimization
(including novel, custom approaches), method selection, and method hyperparam-
terization need to be retooled for every different problem, dataset, or target property.
For energetic materials, the challenges are “how best” to apply ML, and how to
maximize data quantity and quality. In the following sections, we discuss: (1) some
successful applications of ML for energetic material property prediction, and (2)
efforts where ML has been applied to support the underlying theory and input to
DFT and computational methods rather than being the predictive model itself.

5.4.2.1 Machine Learning and Energetics

Energetic materials exist as a highly specialized subset of organic molecules.
Despite their distinct molecular properties, machine learning has successfully been
applied to these materials. Applications fall under many different umbrellas: prop-
erty prediction, [201–203] candidate screening, [204] synthetic route assessment,
[205] and microstructure generation [206]. We will focus our discussion on the more
straightforward examples of property prediction.

High quality, quantitative property predictions for energetic materials are
obtained via costly quantum mechanical calculations. While such in silico
approaches have their advantages relative to experiment (in terms of cost and safety,
for example), such predictions are limited due to the computational resources
required. To address this issue, several efforts have worked to utilize ML models to
predict the performance of energetic materials [201–204].

In their proof-of-concept work, Elton et al. [201] tested numerous featurizations
and ML models for the prediction of energetic performance properties (e.g.,
detonation pressure and velocity, explosive energy, etc.). Models included kernel
ridge regression, ridge regression, support vector regression, random forest, and k-
nearest neighbors. All method saw at least some level of success, but the kernel
ridge and ridge regressions typically performed best. The optimal featurizations for
their small test set (109 molecules total) was the sum over bonds approach. They
achieved errors ranging from 4 to 11% for the density and detonation volatility,
detonation pressure and explosive energy, respectively.

Barnes et al. [202] built on the previously described proof of concept work by
utilizing a larger data set and expanding the types of ML models. In particular,
they apply a neural network model (multilayer perceptron) to predict energetic
performance properties. Another key development in their work is the use of feature
sensitivity to explore the importance of different atoms/atom groups in the model
development. Doing so allowed for better interpretation of the ML results, along
with comparison to chemical intuition.

These works illustrate that ML models can be successfully applied to energetic
materials, but they also highlight that challenges for improved developments lay
in model optimization (feature and model selection) and most importantly, the
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underlying data. Larger data sets will enable for advanced ML approaches (such
as neural networks) to detect patterns and features that do not manifest on a smaller
scale. Some efforts utilize quantum chemical and other predicted values to create
a substantial dataset of approximately 18,000 molecules [203]. This approach is
feasible for sufficiently small molecules, but will be limited quickly with increasing
system size.

This is an opportunity where DFTB may work in tandem with ML, providing the
underling dataset for the ML model at a lower cost (in terms of time and resources)
compared to traditional quantum chemical methods.

5.4.2.2 AI/ML and DFT

In this section, we discuss in more detail a particular machine learning model, neural
networks, along with applications for ML in DFT method development.

A powerful model that has seen effective use in a range of subject areas is the
deep neural network (DNN). The machinery behind DNNs are inspired by our
nervous system, where our nerve endings take in input data that is passed to our
brain, which then interprets the data and elucidates a response. Typically, the more
neurons between the signal input and signal processing center, the more reliable the
data is interpreted. In terms of DNN, these neurons are represented as “nodes”, or
“layers”. Thus, the more nodes a DNN has, the “deeper” the neural network is, and
the more accurate it may become; but the size of the input layer, number of nodes
or hidden layers, and other hyperparameters must be optimized for each research
problem.

Translating our nervous system into an artificial neural network (ANN) was first
achieved in 1958 by psychologist Frank Rosenblatt to understand visual data and
object recognition [207]. However, it would take an additional 50 years before
applications to chemistry were developed [208] as there were significant challenges
that had to be overcome to allow DNNs to predict molecular structures. The first
challenge is the generation of training and testing databases. DNNs are designed to
mimic our neural anatomy, and as a result it must learn from its “surroundings”. This
is achieved by providing a set of training data that is subsequently used to teach/train
the DNN to predict the properties of interest. Despite the wide applicability of the
methods discussed in Sect. 5.2.1, the required data for a robust training set has been
elusive due to the cost of computing a wide variety of chemical systems. In fact, until
recently, each group interested in generating training data had to either generate it
in-house, or farm the literature. However, databases such as those from Smith et al.
[209], and Truhlar and coworkers [210] have recently become available.

The second challenge for DNN is how to interpret a 3-dimensional chemical
structure. Behler and Parrinello achieved the encoding by using 2- and 3-body sym-
metry functions [208]. Following this seminal work, the field of DNN in predicting
geometries split into two main groups: methods based on 2- (radial) and 3-body
(angular) symmetry functions, [208, 211, 212] and message-passing techniques that
use non-invariant radial functions [213–215]. The former are more computationally
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efficient as there are not feed back loops which add to the computational cost.
However, message-passing based methods enable properties to be predicted that
are not associated with the geometry, such as charge states [216, 217]. These type
of DNN models open the door to a wide range of chemical systems due to their
transferability and extensibility, and will enable the computation of properties that
were previously too expensive.

The first application of DNN to chemical problems was achieved in 2007
by Behler and Parrinello [208]. In this landmark study, they were successful in
predicting the energies and forces of a set of chemical structures and were able
to optimize large systems not included in the training set. In this initial work,
they showed errors per atom between DFT and DNN to be between 0.1–0.35 kcal
mol−1 (with 1 eV ≈ 23.06 kcal mol−1) [208]. These errors are reasonably low as
the target error is less than 2 kcal mol−1 [218]. The ANI-1 model of Smith et al.
[212], which uses a similar architecture to Behler and Parrinello [208], was able to
achieve a RMSE of 1.8 kcal mol−1, which was the lowest RMSE when compared to
DFTB (10.2 kcal mol−1), PM6 (22.0 kcal mol−1) and AM1 (16.2 kcal mol−1) [212].
Moreover the ANI-1 model was shown to be highly extensible, and has since been
used in problems related to the expedition of drug discovery [219].

In regards to message-passing techniques, the Hierarchically Interacting Particle
Neural network (HIP-NN) predicted the ground state energy of organic molecules to
within a 0.26 kcal mol−1 mean absolute error. This method employs a hierarchical
approach due to several energy predictions being required. At the zeroth order level,
the energy is based purely on the atom types, which is then followed by higher
energy predictions based on the neighboring atoms [215]. This type of message-
passing allows HIP-NN to predict not only the energy and atomic forces, but also
the charge of the systems [216, 217]. Here, the charge prediction can be based on
either Hirshfeld [220], NBO [221, 222], MSK [223], or CM5 [224] charge schemes
with a mean absolute error ∼0.01 electrons [217]. HIP-NN prediction of charges
enables the calculation of IR spectra, which has been shown to be comparable to
reference IR spectra. Thus, the HIP-NN can be used to compute the IR spectra for a
wide range of chemicals, which reduces the computational cost [216, 217].

In addition to these groundbreaking studies, Burke and coworkers [225–227]
utilized ML techniques within the framework of DFT to reduce the computa-
tional cost of generating electron densities. They initially examined fermions in a
1-dimensional (1D) box for a proof-of-concept. If this work can lead to an ML-
developed kinetic energy functional (Ts[ρ]) for the Kohn-Sham (KS) equation, then
this would allow for orbital-free DFT to be used, which would greatly decrease
the computational cost [225–227]. This proof-of-concept illustrated that Ts[ρ] is
not only achievable, but also accurate. Unfortunately, the corresponding functional
derivatives exhibited numerical instabilities which limits this implementation [225,
227]. Better results were obtained when then ML model learned the Hohenberg-
Kohn (HK) mapping of the potential to density (V (r) → ρ(r)). This model allowed
for the molecular dynamics of malondialdehyde based on the mapping of the
potential to density with errors of 4–14 kcal mol−1; these errors are much larger
compared to the errors obtained from the DNN PES models (ANI-1, HIP-NN) but
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are a promising proof-of-concept [227]. A recent study by Meyer et al. [228] took
this concept of learning the Ts[ρ] to feed into orbital-free DFT with success. They
found that if the ML model is trained on both Ts[ρ] and its derivative, it leads to
decreased errors and increased in extensibility for compounds outside the training
data [228].

5.5 Conclusions

In the current review, we examined several methodologies for examining surface
interactions. We have presented an overview of periodic DFT, its shortcomings,
and how to overcome these shortcomings. From there, we have demonstrated how
these techniques can be applied in calculating electrochemical, adsorption, charge
transfer, Lewis acidity, and transport properties. Our group has extensively applied
these techniques, and have used them to explain a variety of phenomena involving
munitions in soil. We finally presented our recent work on reducing empiricism in
DFTB, which we believe will be an invaluable methodology for studying the natural
environment from a quantum chemical perspective.
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Abstract Cyclic nitramines RDX (hexahydro-1,3,5-trinitro-1,3,5-triazine) and
HMX (octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine) are energetic materials
used in military application. They may contaminate soil and natural water by
release to the environment during manufacturing, transportation, storage, and
disposal. Among different methods for the cyclic nitramines remediation, an
alkaline hydrolysis is one of the most promised techniques. Knowledge of
detailed mechanism and kinetics of cyclic nitramines decomposition under alkaline
conditions is helpful to improve the technique of safe and effective removal of RDX
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and HMX from contaminated groundwater and soil. Experimental studies confirm
that the mechanism of hydrolysis is quite complex, multistep and influenced by pH,
concentration, and temperature. Computational studies are necessary to understand
the complete reaction mechanism of the hydrolysis and to predict its kinetics under
different conditions. In this chapter, we discuss insights gained from more than a
decade of computational investigations of energetic materials. We focus here on
studies of the reaction mechanism for hydrolytic decomposition of RDX and HMX
leading to stable products. In the context of these molecules, we also report on
recent studies of the reaction kinetics.

6.1 Introduction

Cyclic nitramines RDX (hexahydro-1,3,5-trinitro-1,3,5-triazine) and HMX
(octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine) are energetic materials with
different applications. They may be released to the environment during
manufacturing, transportation, storage, training, and disposal. Wastes from
explosive manufacturing processes are classified as hazardous wastes by the US
Environmental Protection Agency (EPA) [1]. The EPA has classified RDX as a
possible human carcinogen, weight-of-evidence carcinogenic classification of C
[2]. Therefore, there is a strong need for fundamental knowledge and technological
implementation of the chemical processes that lead to chemical degradation of
energetic nitrocompounds. The alkaline hydrolysis is one of the most promised
methods for the cyclic nitramines remediation. The mechanism of hydrolysis
is typically quite complex, multistep and influenced by relative stabilities of
various conformers, pH, concentration, and temperature. Computational studies
are indispensable to understand the complete reaction mechanism of the hydrolysis.
In this chapter, we discuss the reaction mechanism for hydrolytic decomposition
of RDX and HMX involving initial deprotonation and nitrite elimination, cycle
cleavage, and further transformation of cycle-opened intermediate to the end
products caused by a series of C-N bonds ruptures, hydroxide attachments, and
proton transfers. We focus on studies of the reaction mechanism and kinetics
using computational approach to the analysis of multistep chemical reactions
[3–5]. This procedure was successfully applied to the prediction of kinetics
of alkaline hydrolysis of such energetic materials as 2,4,6-trinitrotoluene, 2,4-
dinitrotoluene and 2,4-dinitroanisole [6]. The applied protocol includes generation
of a multistep Gibbs free-energy reaction profile appropriate for the transformations
of the reagents to products using quantum-chemical approximation, followed by
evaluation of the rate constants, construction and solution of the corresponding
kinetic equations. Such a procedure allows one to significantly extend the number
of steps through computational prediction.
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6.1.1 Short Survey of Experimental Data on RDX Hydrolysis

RDX can migrate to groundwater easily since its water solubility is 0.04 g/L [7].
This compound is stable against hydrolysis in an aqueous solution at normal range
of pH in surface water and groundwater systems [8], however, hydrolysis can occur
under alkaline conditions [9–22]. Degradation of RDX in natural coastal seawaters,
away from light, may proceed by alkaline hydrolysis [9, 10]. Alkaline hydrolysis
was found to be one of the most effective treatment approaches to remediate
RDX-contaminated soil, sediment, and water [11–13]. It was extensively studied
at different conditions (temperature and pH level) [13–22]. Hydrated lime was
effectively used for RDX transformation on military training ranges [14]. Kinetics
of the alkaline hydrolysis of RDX was studied in aqueous solutions, in aqueous
acetone, and soil slurries [13, 15–19]. The reaction of interaction between RDX
and OH− was shown to be a second-order reaction [13, 15–17]. Kinetics may be
evaluated by pseudo first order rate constant and half-life time for RDX (Table 6.1).
An increase in reaction temperature and pH of the contaminated water resulted in
enhancing efficacy of the hydrolysis. The free energy of activation for RDX alkaline
hydrolysis was determined to be 20.7 kcal/mol at 25 ◦C (Table 6.2).

The products of RDX hydrolysis at pH > 10 were nitrite, ammonia, nitrous
oxide, formaldehyde, and formate [13, 15, 16, 22]. The production of these
products depended on temperature, pH, and reaction time during the experiment.

Table 6.1 Pseudo first order
rate constant (k) and half-life
(t1/2) for alkaline hydrolysis
of RDX and HMX

pH T (◦C) k × 10–3 (min–1) t1/2 Ref.

RDX

11 25 0.8 17.9 h [17]
11.5 25 1.7 7.5 h [17]
12 25 2.3 5.3 h [17]
12 25 2.7 4.4 h [12]
12.2 25 7.9 1.5 h [17]
12.5 25 8.3 1.4 h [12]
12.6 25 22.3 0.6 h [17]
13 25 27.7 0.5 h [17]
13 25 26.8 0.4 h [12]
13.3 25 52.3 0.2 h [12]
11.18 50 9.3 75 min [13]
11.32 50 13 53 min [13]
12 50 58.2 12 min [13]
12.3 50 127.2 5.5 min [13]
HMX

10 30 0.0017 407,647 min [15]
10.34 50 0.09 7788 min [13]
11.32 50 0.99 700 min [13]
12.36 50 1.1 641 min [13]
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Table 6.2 Energy (¨Ã), changes in enthalpy (�H*), entropy (�S*), and Gibbs free energy (�G*)
of activation for alkaline hydrolysis of RDX and HMX

Compound ¨Ã, kcal/mol �H*, kcal/mol �S*, cal/mol × K �G*, kcal/mol

RDX 14.0 [20], 23.9 [13], 17.3 [21] 22.6 [16] 8.0 [16] 20.7 [16]
HMX 25.0 [20], 26.7 [13], 26.6 [21] 24.5 [22] 7.5 [22] 22.3 [22]
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Scheme 6.1 Proposed degradation pathway for alkaline hydrolysis of RDX

At temperature in the range of 25–30 ◦C and pH 10 RDX transformation leads
to formation of 0.98 equivalent of nitrite ion, 0.95 equivalent of 4-nitro-2,4-
diazabutanal (4-NDAB), 0.94 equivalent of formaldehyde, and 0.77 equivalent
of nitrous oxide [15, 22]. At higher pH and/or temperature 4-NDAB completely
degrades producing formate and ammonia [13, 15]. Based upon these experimental
investigations, the degradation mechanism begins from the initial deprotonation of
RDX and nitrite ion elimination resulting in the formation of intermediate 3,5-
dinitro-1,3,5-triazacyclohexene (Scheme 6.1). This intermediate may attach a water
molecule to double C=N bond. A proton transfer between oxygen and nitrogen
atoms leads to a ring-opened intermediate. Further pathways for its decomposition
may include cleavage of C-N bonds, attachment of water molecule or hydroxide
ion, that resulted in products such as nitrous oxide, formaldehyde, and 4-NDAB.
Different intermediates on the degradation pathway were proposed [15]. Despite
the detailed experimental data, the theoretical modeling was necessary to uncover
all reaction steps that could have been missed during the experimental analysis and
to predict and evaluate step-by-step chemical mechanism for alkaline hydrolysis of
RDX.

6.1.2 Short Survey of Experimental Data of HMX Hydrolysis

Hydrolysis of HMX under alkaline conditions is exothermic. The heat of HMX base
hydrolysis in aqueous sodium hydroxide, measured in calorimetry experiment, was
found to be 1.5 kJ/g of HMX [23]. HMX alkaline hydrolysis required 22.3 kcal/mol
of Gibbs free energy of activation (Table 6.2) [22]. The kinetics for base hydrolysis
of HMX was extensively investigated at different temperatures (Table 6.1) [13,
20, 22–25]. Kinetics of HMX decomposition follows a second-order rate equation
[13, 20, 22, 26]. The rate-limiting step for HMX hydrolysis is probably the ini-
tial E2 elimination with the formation of 3,5,7-trinitro-1,3,5,7-tetraazacyclooctene
(Scheme 6.2), however this intermediate was not experimentally detected [22].



6 Application of Computational Approaches to Analysis of Multistep. . . 219

N
N

N
N

NO2

NO2

O2N

O2N

N
N

N
N

NO2

O2N

O2N

OH

O

OH

H

N
H

NH
O2N

H
O- H2O

- NO2

HMX 

HO
+ NH3+N2O++

3,5,7-trinitro-1,3,5,7-tetraaza-
cyclooctene

...

4-NDAB

Scheme 6.2 Proposed degradation pathway for alkaline hydrolysis of HMX

The products of HMX hydrolysis at 30 ◦C and pH 10 were 1.82 equivalent of
formaldehyde, 1.48 equivalent of nitrous oxide, 1.15 equivalent of nitrite ion, and
0.86 equivalent of 4-NDAB [15]. The presence of ammonia, and formate was not
confirmed during the first 5% of the alkaline hydrolysis at pH 10. It should be
noted, these compounds were formed during hydrolysis of HMX at pH 12 (Scheme
6.2) [15]. Similar products (formaldehyde, nitrite, 4-NDAB) were obtained during
degradation of HMX in coastal waters [10]. The observed reaction products at
1.5 M sodium hydroxide and high temperature (105–155 ◦C) were nitrite, formate,
nitrate, acetate, nitrogen, nitrous oxide, and ammonia [25]. The obtained results
suggest that the mechanism of HMX alkaline hydrolysis consists of the initial
nitrite elimination, followed by a ring cleavage and spontaneous formation of the
final products (Scheme 6.2) [15]. The structure of some reactive species is difficult
to determine experimentally and, therefore, computational study was necessary to
understand the complete mechanism of HMX alkaline hydrolysis.

6.2 Computational Modeling of Hydrolysis of RDX

6.2.1 Conformational Analysis of RDX Structure

It is well known that RDX may exist in several conformational forms in gas
phase [27–30]. These forms include AAA, AAE, EEA, twist, and boat forms.
All these structures were adopted as the starting point to minimize the energy
of the conformers in water solution using PCM(Pauling)/M06-2X/6-311++G(d,p)
approach [31]. After the energy minimization was completed, the AAE conformer
relaxed to the AAA form, and boat conformer converged into twist one. The
calculated relative Gibbs free energies for the stable conformations of RDX are
shown in Fig. 6.1. Based on the obtained results the most stable structure in water
solution is AAA, which was also suggested to be the most likely conformer in gas
phase. It is also the global minimum structure in β-solid RDX and in acetone,
dimethyl sulfoxide, acetonitrile solutions [28, 29]. AAA and AAE conformers
were also reported to contribute to the RR spectra of RDX in acetonitrile solution
and in gas phase [27]. The calculated equilibrium constants for transformations
AAA→twist and AAA→EEA are in the range of 10–3–10–4, that predicts negligible
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Fig. 6.1 Relative Gibbs free energies for stable conformers of RDX predicted using the
PCM(Pauling)/M06-2X/6-311++G(d,p) level of theory (in kcal/mol). Reprinted from Ref. [31].
Copyright (2015), with permission from Elsevier

populations of twist and EEA conformers. For modeling the mechanism of alkaline
hydrolysis the most stable conformer of RDX (AAA) was chosen.

6.2.2 Mechanism of RDX Alkaline Hydrolysis

The mechanism of hydrolytic decomposition of RDX under alkaline condition
was theoretically investigated at PCM(Pauling)/M06-2X/6-311++G(d,p) level of
theory using isolated hydroxide ion (OH−) as well as hydrated OH− with three
water molecules (OH−(H2O)3) to account for specific solvation [31, 32]. Significant
difference between the results of both models was not found, except the increase of
activation barrier for steps involving hydrated hydroxide ion. The scheme of reaction
mechanism and corresponding Gibbs free energy diagram are shown in Fig. 6.2.
The alkaline hydrolysis of RDX begins with nucleophilic attack of hydroxide ion
onto methylene hydrogen leading to deprotonation and sequential nitrite elimination
resulted in formation of C=N bond. Release of large amount of energy during
this process provides evidence of its irreversibility and transformation of RDX to
stable unsaturated intermediate INT1. Experimental studies tentatively determine
the presence of INT1 in decomposition pathway of RDX during alkaline hydrolysis
[15, 16]. Theoretically obtained free energy of activation for INT1 formation in
case of model with hydrated hydroxide ion (21.2 kcal/mol) was found to be close
to reported experimental one (20.7 kcal/mol) than for model with nonhydrated
hydroxide (10.7 kcal/mol) [16]. This observation evidences requirement of taking
into account of specific hydration of hydroxide ion to get more realistic activation
energies and, correspondently, to create a more accurate kinetic model for the
investigated process of alkaline hydrolysis.

Nucleophilic attack of hydroxide ion onto C2 carbon atom of double C=N
bond of INT1 leads to formation of unstable negatively charged intermediate INT2.
Further transformation of INT2 may occur by two possible pathways with small
activation barriers (Fig. 6.2). The direct C2-N3 bond breaking and sequential iso-
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Fig. 6.2 The pathways of RDX alkaline hydrolysis, based on corresponding Gibbs free energy
modeled using PCM(Pauling)/M06-2X/6-311++G(d,p) level of theory. Reproduced from Ref.
[32] with permission from the Royal Society of Chemistry

merization leads to stable ring-opened intermediate INT4. Further tautomerization
of INT4 leads to INT6. Another pathway of INT2 transformation begins with a pro-
ton transfer from oxygen atom to nitrogen N1 atom, facilitated by water molecule as
a catalyst. Easy C2-N3 bond breaking in formed INT5 results in formation of stable
ring-opened intermediate INT6. Further transformation of INT6 leads to negatively
charged anion of 4-NDAB (INT7) and uncharged methylenenitroamine (INT8).
4-NDAB was experimentally observed as a stable intermediate during alkaline
hydrolysis of nitramines [15]. Further transformation of INT8 occurs by hydroxide
ion attachment to carbon atom of C=N double bond, a proton transfer between
oxygen and nitrogen atoms and C-N bond rupture with release of formaldehyde. An
elimination of hydroxide from nitramide anion leads to formation of nitrous oxide.
The details of experimentally reported product distribution for alkaline hydrolysis of
RDX corresponds well to the computationally predicted results [15, 32]. Additional
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formation of ammonium and formate may be considered as a side pathway of INT8
decomposition that occurs through reaction pathway involving deprotonation and
nitrite elimination with formation of cyanic acid. Further hydroxide ion and proton
attachment leads to formamide, which undergoes hydroxide ion attack, consequent
ammonia elimination with formation of formate. Absorption in the visible region of
simulated UV-Vis spectra of RDX, stable intermediates and products is absent that
correspond to experimentally reported colorless reaction mixture during the process
of RDX alkaline hydrolysis [16, 31, 33].

6.2.3 Kinetics of RDX Alkaline Hydrolysis

Kinetics of RDX alkaline hydrolysis was simulated using Gibbs free energy of
activation calculated at PCM(Pauling)/M06-2X/6-311++G(d,p) level (Fig. 6.2)
[32]. The rate constants were calculated according to Eq. (6.1):

kuni = k · T

h
· e− ΔG

�=
T

RT

(
s−1
)

kbi = k · T

h
· e− ΔG

�=
T

RT ·
(

1

c

)(
L · mol−1 · s−1

)

(6.1)

where h is the Planck constant, k—Boltzmann constant, R—universal gas constant,
ΔG

�=
T —Gibbs free energy of activation, T—temperature, c—transformation coeffi-

cient equal to one mol/L. The system of differential equations (6.2) for reactants,
intermediates, and products was solved and kinetics plots were modeled (Fig. 6.3).
To fit theoretically predicted and experimental kinetics, a scaling factor of 0.94
was used to decrease values of all Gibbs free energies of activation. Calculated
fitted value of rate constant (5.78 × 10–3 h–1) was close to experimental one
(7.21 × 10–3 h–1) [15].
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Comparative analysis of kinetic plots shows good agreement between theo-
retically modeled and experimental data. The deviation for nitrous oxide arises
probably because of unaccounted side reactions. Concentrations of intermediates
appearing during the reaction process are negligible because of their rapid decompo-
sition. Absence of formate and ammonia on simulated kinetic curves confirms that
the major pathway of INT8 transformation leads to nitrous oxide. Experimentally
observed minor products (0.075 equivalent of ammonium and 0.07 equivalent of
formate) may arise during degradation of 4-NDAB under base conditions [15].
Theoretically predicted period for 99% RDX decomposition by alkaline hydrolysis
at 298 K and pH 10 is approximately 32 days. The 10 K increase in temperature
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Fig. 6.3 Plots of concentration vs. time for RDX and products of alkaline hydrolysis calculated at
PCM(Pauling)/M06-2X/6-311++G(d,p) level and experimental data. Reproduced from Ref. [32]
with permission from the Royal Society of Chemistry

Fig. 6.4 Plots of concentration vs. time for RDX degradation during alkaline hydrolysis calculated
at PCM(Pauling)/M06-2X/6-311++G(d,p) level at pH 10 and different temperatures (a) and at
298 K and different pH (b). Reproduced from Ref. [32] with permission from the Royal Society of
Chemistry

leads to increase in reaction rate by 1.9-fold in temperature range of 293–313 K
(Fig. 6.4a). Rate of RDX hydrolysis is significantly influenced by pH (Fig. 6.4b).
Theoretically predicted half-life times for RDX are about 11 h, 54 min, and 6 min
at pH 11, pH 12, and pH 13, respectively.
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6.2.4 Hydrolysis of HMX

6.2.4.1 Conformational Analysis of HMX Structure

HMX may exist in several polymorphs [34–37]. Five stable conformers of HMX
were found by conformational analysis at PCM(Pauling)/M06-2X/6-311++G(d,p)
level [38]. The relative Gibbs free energies for the stable conformations of HMX
are displayed in Fig. 6.5. The most stable HMX(I) conformer represents α-
HMX polymorph structure [34, 39], observed in DMF solution [40] and found in
crystalline structure of complexes formed between HMX and DMF, and between
HMX and N-methyl-2-pyrrolidinone [35, 41]. The estimated equilibrium constants
for transformations of HMX(I) into HMX(II)-HMX(V) conformers, calculated
using the standard formula K = e− ΔG

RT , are in the range of 10–2–10–3, that predicts
negligible populations of conformers HMX(II)-HMX(V).

6.2.4.2 Mechanism of HMX Alkaline Hydrolysis

Theoretical investigation of base and acid effects on the degradation of HMX in gas
phase and in water solution was performed at B3LYP/6-311++G(d, p) level [42].
The solvation energies of the reaction species were calculated using a combined
molecular force field and quantum chemistry method. The results show that the
base can increase the rate of HMX degradation while the acid has no effect on HMX
hydrolysis. The removing a proton from the HMX molecule and further nitrite anion
release is the most energetically favored reaction direction for the initial stage of
HMX alkaline hydrolysis.

The mechanism of HMX hydrolysis under alkaline conditions was theoretically
investigated at PCM(Pauling)/M06-2X/6-311++G(d,p) level of theory and pro-
vided on Fig. 6.6 [38]. Only the most stable α-HMX conformer was considered
for the study. The initial deprotonation on the first step of HMX alkaline hydrolysis
occurs under action of hydroxide ion and leads to unstable carbanion INT1a (Fig.
6.6). The elimination of nitrite from INT1a results in formation of stable 3,5,7-
trinitro-1,3,5,7-tetraazacyclooctene (INT1). These two sequential processes occur

Fig. 6.5 Stable conformers of HMX and their relative Gibbs free energies predicted using
PCM(Pauling)/M06-2X/6-311++G(d,p) level of theory (in kcal/mol). Reprinted with permission
from Ref. [38]. Copyright (2016) American Chemical Society
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from Ref. [38]. Copyright (2016) American Chemical Society

in one step with an activation energy of 24.0 kcal/mol (Fig. 6.6, step a). It should
be noted that experimental Gibbs free energy of activation for the first step of HMX
alkaline hydrolysis was determined to be 22.3 kcal/mol, that is 1.7 kcal/mol smaller
than theoretically predicted one [22, 38]. The difference (~7%) presumably arises
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because of approximate description of specific solvation effects in the computational
study. An increase of stability of transition state structure in case of involving a
larger number of explicit water molecules is expected to decrease the activation
energy. The initial step of hydrolysis is accompanied by release of 31.8 kcal/mol
energy. Calculation at B3LYP/6-311++G(d,p) level gives value of 49.9 kcal/mol
for change of free energy in the first step of hydrolysis [42]. The difference between
two computed values probably exists because of consideration of different HMX
polymorphs as well as the using different theoretical methods.

Theoretical modeling shows that HMX is less reactive in alkaline hydrolysis
as compared with RDX. The activation Gibbs free energy for the initial step of
hydrolysis, calculated at PCM(Pauling)/M06-2X/6-311++G(d,p) level, is 21.2 and
24.0 kcal/mol for RDX and HMX, respectively [38]. This feature is confirmed by
experimental data [15, 22]. It was suggested that the reason of different reactivity
is a geometry of nitramine and transition state (TS) [32]. HMX has shorter and
stronger N-NO2 bond than RDX (Scheme 6.3). The change of bond lengths in TS is
relatively more (as compared with initial nitramine) in HMX than in RDX (Scheme
6.3).

Transformation of intermediate of the first step of alkaline hydrolysis INT1 may
occur in two directions: (1) hydroxide ion attachment to carbon atom of C=N
double bond, (2) deprotonation in positions 3, 5, and 7 under action of hydroxide
ion with subsequent nitrite release. It was found the first direction is energetically
more favorable than the second one. Hydroxide ion attachment to carbon atom C2
of double bond leads to unstable intermediate INT2a which readily transforms into
stable ring-opened intermediate INT2 (Fig. 6.6, step b). Cis-trans isomerization
of INT2 and subsequent amide-imide tautomerization lead to intermediate INT3
(Fig. 6.6, steps c, d), which decomposes into intermediates INT15 and INT16
by C7-N6 bond cleavage (Fig. 6.6, step e). Despite the intermediate INT3 is
more stable than formed INT15 and INT16, further rapid reaction of INT15 with
hydroxide ion allows the process to occur. Hydroxide ion attachment to C=N
double bond of INT15 leads to INT21 (Fig. 6.6, step g). Proton transfer from

Analysis of N-N bond in RDX and HMX

Compound
Electron 

density, e∙Å-3

Laplacian of electron density, 

e∙Å-5

Energy 

density, au

Energy of homolytic bond 

cleavage, kcal/mol

RDX 0.3525 0.1581 -0.3370 55.81

HMX 0.3661 0.1708 -0.3607 57.08

Scheme 6.3 Comparison of RDX and HMX. Reproduced from Ref. [32] with permission from
the Royal Society of Chemistry
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oxygen atom to nitrogen atom and subsequent rapid C-N bond rupture resulted
in release of formaldehyde and formation of nitramide ion, which degrades to
nitrous oxide and hydroxide (Fig. 6.6, steps h–j). The most favorable pathway
for INT16 decomposition is a C-N bond rupture with formation of intermediates
INT12 and INT15 (Fig. 6.6, step f ). INT12 represents experimentally observed 4-
NDAB [15]. Calculated results suggest that alkaline hydrolysis of HMX represents
a highly exothermic multistep process leading to products such as 4-NDAB, nitrite,
formaldehyde, and nitrous oxide [38]. All these alkaline hydrolysis products are
experimentally observed species [15]. The slowest step in the reaction channel is
the release of nitrite.

6.2.4.3 Kinetics of HMX Alkaline Hydrolysis

Kinetics of HMX alkaline hydrolysis was simulated using Gibbs free energy of
activation calculated at PCM(Pauling)/M06-2X/6-311++G(d,p) level (Fig. 6.6) and
is shown in Fig. 6.7 along with experimental data [15, 38]. To fit experimentally
observed and computationally predicted kinetics, a scaling factor of 0.93 was
applied to decrease all activation energies.

Comparative analysis of kinetic plots shows good agreement between experimen-
tal and theoretically modeled data (Fig. 6.7). The biggest deviations are observed
for formaldehyde and nitrous oxide. One might explain these differences due to
unaccounted side processes. Good agreement between theoretical and experimental
kinetics allows to predict the influence of temperature and pH on rate of HMX

Fig. 6.7 Plots of concentration vs. time for HMX and products of alkaline hydrolysis calculated at
PCM(Pauling)/M06-2X/6-311++G(d,p) level and experimental data. Reprinted with permission
from Ref. [38]. Copyright (2016) American Chemical Society
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degradation. Such relationships have not been measured experimentally and com-
putational study provides important insight into these processes. The 10 K increase
in temperature leads to increase in reaction rate by 2.1-fold in temperature range of
293–313 K (Fig. 6.8a). It should be noted that these data are obtained within the
accuracy provided by computational methods included in the Gaussian 09 suit of
programs. The PCM solvent model included in the Gaussian 09 does not incorporate
prediction of a temperature dependence of Gibbs free energy of solvation. Half-life
times for HMX transformation decreased from 3.8 years at pH 9.5 to 7.3 h at pH 13,
respectively (Fig. 6.8b). A period for 99% HMX degradation is expected to be 30
years at pH 9.5 while 2 days at pH 13. Simulated kinetics of HMX decomposition
along with products formation under alkaline conditions is presented in Fig. 6.9.
Transformation of 1 mol of HMX leads to formation of ~1 mol of 4-NDAB and
nitrite, and ~2 mol of formaldehyde and nitrous oxide at pH 10 and 12 (Fig. 6.9).

Fig. 6.8 Plots of concentration vs. time for HMX degradation during alkaline hydrolysis cal-
culated at PCM(Pauling)/M06-2X/6-311++G(d,p) level at pH 10 and different temperatures (a)
and at 298 K and different pH (b). Reprinted with permission from Ref. [38]. Copyright (2016)
American Chemical Society

Fig. 6.9 Plots of concentration vs. time for HMX decomposition and products formation under
alkaline hydrolysis of HMX calculated at PCM(Pauling)/M06-2X/6-311++G(d,p) level at 298
K and pH 10 (a) and pH 12 (b). Reprinted with permission from Ref. [38]. Copyright (2016)
American Chemical Society
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6.2.5 Mechanism of 4-NDAB Decomposition Under Alkaline
Conditions

4-NDAB, as a stable intermediate product of base hydrolysis of HMX and RDX
[15], is also formed during biotic degradation of nitramines [43, 44]. 4-NDAB has
good solubility in water and stability in aqueous solutions at pH range close to
neutral. Highly alkaline conditions may facilitate its transformation [15]. The mech-
anism of 4-NDAB decomposition under alkaline conditions was computationally
studied at PCM(Pauling)/M06-2X/6-311++G(d,p) level and is shown in Fig. 6.10
[32].

There are two main directions for 4-NDAB transformation (Fig. 6.10). The first
one starts from hydroxide ion attachment to carbon atom of carbonyl group and
leads to unstable intermediate INT1. The last one easy transforms to stable INT2
by release of formate. Proton transfer in INT2 between nitrogen atoms facilitates
rupture of C-N bond, which results in formation of INT3 and nitramide anion
(NHNO2

–). Further transformation of NHNO2
– leads to nitrous oxide. Hydroxide
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Fig. 6.11 Plots of concentration vs. time for alkaline hydrolysis of 4-NDAB calculated at
PCM(Pauling)/M06-2X/6-311++G(d,p) level. Reproduced from Ref. [32] with permission from
the Royal Society of Chemistry

attachment to INT3 and subsequent protonation leads to INT8. Proton transfer
from oxygen atom to nitrogen atom promotes C-N bond rupture with formation
of ammonia and formaldehyde. The second route for 4-NDAB transformation
begins with proton transfer between nitrogen atoms and subsequent elimination of
NHNO2

–. Hydroxide attachment transforms intermediate INT5 into INT6. Proton
transfer from oxygen atom to nitrogen atom leads to INT10, which decomposes with
formaldehyde elimination. Further protonation and hydroxide attachment promote
C-N bond rupture with formation of ammonia and formate. These both pathways
of 4-NDAB decomposition under alkaline conditions are exothermic and lead to
formation of the same products such as ammonia, nitrous oxide, formaldehyde, and
formate. The kinetics simulation for 4-NDAB alkaline conditions suggests that all
products are formed in equimolar amount (Fig. 6.11). Theoretical calculation of time
period for 4-NDAB degradation was refrained due to absence of experimental data
for fitting. Formation of formate and ammonia during the disappearance of 4-NDAB
under alkaline conditions was experimentally observed while ammonia, nitrous
oxide, and formic acid were reported as products of 4-NDAB biotransformation
[15, 43, 44].

6.3 Conclusion

The present review provides information needed for a deep understanding of
reaction kinetics and mechanism of alkaline hydrolysis of RDX and HMX. The
computational results demonstrate that the studied reactions are multistep exother-
mic processes in which the presence of hydroxide ion is crucial due to conclusion
that hydroxide initiates a decomposition of nitramines through deprotonation and
subsequent elimination of nitrite with a cyclic C=N double bond formation. Further
transformations include ring opening caused by hydroxide attachment to the double
bond, a series of C-N bonds ruptures, hydroxide attachments, and proton transfers
leading to stable products such as 4-nitro-2,4-diazabutanal, nitrite, nitrous oxide,
and formaldehyde. Transformation of 4-nitro-2,4-diazabutanal in highly alkaline
conditions leads to formation of ammonia, nitrous oxide, formaldehyde, and
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formate. The reaction mechanisms proposed based on the results of computational
studies are confirmed by a good agreement of predicted stoichiometry of the
products of the multistep process of RDX and HMX hydrolysis with experimental
data. Simulated kinetics using computational approach to analysis of multistep
chemical reactions allowed to predict the time for RDX and HMX hydrolytic
decomposition at different pH and temperature. The estimated half-life for HMX
and RDX degradation is approximately 1 year and 3.5 days, respectively, at pH 10
and temperature 298 K. The lower reactivity of HMX is due to a stronger N-NO2
bond as compared with RDX. Hydrolysis rate increases by the orders of magnitude
in case of pH 11–13. Reaction rate of alkaline hydrolysis increases by approximately
twofold with increase in temperature by 10 K over temperature range of 293–
313 K. Modeling of mechanism and kinetics provides an efficient way to study
decomposition pathways of various energetic materials at different conditions.
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Chapter 7
Dataset Modelability by QSAR:
Continuous Response Variable

Alexander Golbraikh, Rong Wang, Vinicius M. Alves, Inta Liepina,
Eugene Muratov, and Alexander Tropsha

Abstract Recently, we have introduced fast-calculated and reliable statistical
criteria to estimate whether a predictive QSAR model can be built for a given
chemical dataset. These modelability criteria were successfully applied to more
than 100 datasets with a binary response variable. In this study, we have extended
the modelability approach to datasets with a continuous response variable. The
QSARome datasets with built k Nearest Neighbors (kNN) and Random Forest
(RF) QSAR models for different IC50 values were used as the training set. Two
modeling criteria were proposed based on our preliminary results: MODI_ssR2

and MODI_q2. Both criteria were based on the kNN approach without variable
selection and optimization of the number of nearest neighbors. MODI_ssR2 was
based on leave-group-out (20%-out or fivefold) external cross-validation. MODI_q2

values were calculated as q2 values for the entire dataset (using leave-one-out cross-
validation). Modeling criteria were calculated for 1, 3 and 5 nearest neighbors.
QSAR models were built using 34 datasets with different methodologies and molec-
ular descriptors. The highest coefficients of determination were found between
QSAR_R2 and the MODI_ssR2 criterion calculated for k = 5 nearest neighbors:
0.91, 0.90, and 0.90, respectively, for training, test, and both training and test sets
together (entire dataset). Four additional external datasets were employed to validate
our approach. Our results demonstrate that the modelability criteria can be used
as a good estimate of the predictive power of QSAR models even prior to model
building. They establish the lower bound of the predictive power of QSAR models
in terms of QSAR_R2. Regression equations between QSAR_R2 and modelability
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criteria can also be used for estimation of the predictive power of QSAR models for
datasets not modeled yet. The use of modelability criteria can eliminate the futile
attempts to build QSAR models for “tough” datasets.

Abbreviations

BCF Bioaccumulation factor
CCR Correct classification rate (mean of sensitivity and specificity for a QSAR

model built for a dataset with binary response variable)
CDK Chemical development kit
CV Cross-validation
GPCR G protein-coupled receptors
HC Hierarchical clustering (one of the machine learning methods used in

QSAR)
HDAC Histone deacetylase inhibitors
HiT QSAR Hierarchical technology QSAR (software)
IC50 Inhibitor concentration reducing activity by 50%
IGC50 50% inhibition growth concentration
Ki Inhibition constant
kNN k nearest neighbors (one of the machine learning methods used in QSAR

studies)
kNN_R2 Coefficient of determination (square of the correlation coefficient) between

predicted and observed activities of a QSAR model built using kNN
LGO-CV Leave-group-out cross-validation
LOO-CV Leave-one-out cross-validation
MODI Prefix for modelability criteria
MODI_CCR Modelability criterion based on CCR for the entire dataset
MODI_q2 Modelability criterion based on q2

MODI_ssCCR Modelability criterion based on similarity search, leave 20%-out external
cross-validation and CCR for union of external test sets

MODI_ssR2 Modelability criterion based on similarity search, leave 20%-out external
cross-validation and R2 for union of external test sets

MRTD dataset Maximum recommended therapeutic dose dataset
QSAR Quantitative structure—activity relationships analysis
QSAR_R2 Coefficient of determination (square of correlation coefficient) between

predicted and observed activities of a QSAR model
RF Random forest (one of the machine learning methods used in QSAR studies)
RF_R2 Coefficient of determination (square of correlation coefficient) between

predicted and observed activities of a QSAR model built using RF
RI Regulatory information
SiRMS descriptors Simplex representation of molecular structure descriptors
ss Similarity search
SVM Support vector machines (one of the machine learning methods used in

QSAR studies)
USEPA US Environmental Protection Agency
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7.1 Introduction

Recently, we have introduced various modelability criteria for QSAR studies of
datasets with binary response variables [1, 2]. The modelability index (MODI)
showed to be a reliable, fast, and easy to use approach to determine if a particular
dataset is modelable or not. This approach was validated and compared to QSAR
models developed using k Nearest Neighbor (kNN) algorithm. We have shown
a high correlation between the predictive power of QSAR models calculated as
CCR and two modelability criteria. MODI has proved to be helpful for the dataset
assessment before the actual modeling. Usually, unnecessary time and resources
are spent to develop “sophisticated tricks” to build predictive QSAR models for
a challenging dataset. Using MODI, one can understand that additional QSAR
modeling might not be necessary. Finally, it was also demonstrated that the results
of these calculations only moderately depend on the type of chemical descriptors
used for the calculation of modelability criteria [1].

In this study, we extended our approach to datasets with continuous response
variables. Recently, we published encouraging preliminary results [2]. We consid-
ered various modelability criteria and selected the MODI_q2 (kNN_q2 value in the
entire descriptor space, i.e., without variable selection) and MODI_ssR2 (kNN_R2

with 20% leave out cross-validation in the entire descriptor space) as the best ones.
We made calculations for 1, 3, and 5 nearest neighbors. In the preliminary studies
[2], we considered 14 datasets as the training set and just four as the test set. QSAR
models for all these datasets were built prior to that study, and some of these results
were published [2–4]. Both coefficients of determination for 14 datasets between
kNN_R2 and MODI_q2 for 3 and 5 nearest neighbors were as high as 0.90, and
between kNN_R2 and MODI_ssR2 for 3 and 5 nearest neighbors they were 0.85
and 0.88, respectively. In this report, we used 34 datasets [5] with continuous
responses as the training set and 14 datasets from the Regulatory Information (RI)
[2] as the test set. For the training set, QSAR models were built using RF and kNN
methodologies.

The results demonstrated that the above modelability criteria could be success-
fully used for the estimation of the predictive power of QSAR models prior to
modeling. The highest predictive power was obtained for k = 5 nearest neighbors.
The highest coefficients of determination R2 between QSAR_R2 values and the
MODI_ssR2 criterion were 0.91, 0.90, and 0.90 for training, test, and both training
and test sets (i.e., the entire dataset), respectively. This MODI_ssR2 modelability
criterion was calculated for five nearest neighbors, QSAR models for the training
sets were built with kNN using Dragon 5.5 descriptors [6], and for the test sets
using different methods and descriptors (see below). Additionally, we validated our
modelability criteria using four datasets from [2]. We demonstrated that the modela-
bility criteria for a different number of nearest neighbors should be used for different
datasets. Modelability criteria can be used as the estimation of the lower bound of
the predictive power of QSAR models in terms of QSAR_R2. Regression equations
between kNN_R2 and modelability criteria seemed to be slightly better than those
between RF_R2 and modelability criteria, especially for 1 nearest neighbor.
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7.2 Methods

7.2.1 Datasets

7.2.1.1 Training Set Data

We collected data for 34 well-studied G protein-coupled receptor (GPCR) targets
[5]. The data were collected from ChEMBL [7, 8] and the Psychoactive Drug
Screening Program database [9]. The datasets were curated following a protocol
previously described by our group [10]. Here the following targets were selected:
ten serotonin receptors (5-HT1A, 5-HT1B, 5-HT1D, 5-HT1E, 5-HT2A, 5-HT2C, 5-
HT3, 5-HT5, 5-HT6, and 5-HT7), seven adrenoceptors (α1A, α1B, α2A, α2B, α2C,
β1, and β2), five dopamine receptors (D1, D2, D3, D4, and D5), five muscarinic
receptors (M1, M2, M3, M4, and M5), four histamine receptors (H1, H2, H3, and H4),
and three neurotransmitter transporters [serotonin (SERT), norepinephrine (NET),
and dopamine (DAT)]. The datasets included compounds with ki values (in mol/L)
tested on the human tissues, which were transformed to logarithmic value before
modeling. QSAR models were built by RF and kNN methods along with Dragon
5.5 [6] descriptors (see Tables 7.1 and 7.2).

7.2.1.2 Test Set Data (14 Datasets)

Regulatory Information Datasets

Ten Regulatory Information datasets with activity data were retrieved from multiple
sources (see Table 7.3). For the estimation of both methods of modelability index,
Dragon 5.5 [6] descriptors were employed. Same descriptors were used for the
development of QSAR models along with RF [11] algorithm.

P. promelas LC50 Dataset

This dataset containing 809 compounds was compiled from the ECOTOX database
[12, 13] where the toxicity is expressed as the concentration (in mol/L), which kills
50% of fathead minnow individuals after 96 h. Dragon 5.5 descriptors were used
in calculations of modelability criteria. Multiple QSAR models were built using
HC [14], Dragon 5.5 [6], SiRMS [15], and CDK [16] descriptors with HC [14],
kNN [17], and RF [18] methods. Two RF implementations were used: available in
R [19] and developed by Polishchuk et al. [11]. The best model was built using the
RF method and RF (as implemented in R statistical package [20]) with Dragon 5.5
descriptors (R2 = 0.69 for the external validation set) and was used in this study.
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Table 7.3 Regulatory Information (RI) datasets

No Activity Compounds after curation Activity range Ref

1 Cancer Potency Value_CaIEPA 214 2.48–9.44 [1]
2 Oral Slope Factor Regional

Screening Level - Superfund
189 2.12–7.97 [2]

3 Reference Concentration_Regional
Screening Level – Superfund

125 3.11–9.71 [2]

4 Reference Dose Point of Departure
EPA IRIS

269 1.81–7.88 [18]

5 Reference Dose Dog Office of
Pesticide Programs

139 4.64–9.95 [24]

6 Reference Dose EPA IRIS 269 4.48–10.59 [18]
7 Reference Dose Point of Departure

Dog Office of Pesticide Programs
139 2.64–7.87 [24]

8 Reference Dose Point of Departure
Rat Office of Pesticide Programs

190 2.79–7.36 [24]

9 Reference Dose Rat Office of
Pesticide Programs

190 4.79–9.86 [24]

10 Reference Dose Regional Screening
Level – Superfund

424 4.29–10.51 [2]

T. pyriformis IGC50 Dataset

This dataset containing 1093 compounds was compiled by Zhu and coworkers [21]
from the work of Schultz and coworkers [22, 23]. The toxicity is expressed as the
50% growth inhibitory concentration (in mmol/L) of the T. pyriformis organism
(a protozoan ciliate) after 40 h. Calculations were made with Log (IGC50, 50%
Inhibition Growth Concentration) as a response variable. Dragon 5.5 descriptors [6]
were used in calculations of modelability criteria. QSAR models were built using
HC [14], Dragon 5.5 [6], SiRMS[15] and CDK [16] descriptors with HC [14], kNN
[17], RF [18], and SVM [24] methods. The best models were built using the HC
method with HC descriptors and RF with SiRMS descriptors (R2 = 0.85 for the
external validation set) and were used in this study.

Acute Oral Toxicity Rat LD50 Dataset

This dataset containing 7285 compounds was compiled from the ChemIDplus
database [25, 26]. The oral rat LD50 endpoint represents the amount of the chemical
(mass of the chemical per body weight of the rat), which, when orally ingested,
kills half of the rats. This dataset was recently modeled by a variety of QSAR
techniques [27, 28]. Calculations were performed for Log (LD50) as a response
variable. Modelability criteria were calculated using Dragon 5.5 [6] descriptors.
QSAR models were built using HC [14], Dragon 5.5 [6], SiRMS [15], and CDK
[16] descriptors with HC [14], RF [18] and SVM [24] methods. The best model was
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built using the RF method with Dragon 5.5 descriptors (R2 = 0.66 for the external
validation set) and was used in this study.

Bioaccumulation Factor (BCF) Dataset

The bioconcentration factor BCF is defined as the ratio of the chemical concentra-
tion in biota as a result of absorption via the respiratory surface to that in water at a
steady state [29]. This dataset was compiled from [4] and the final dataset consisted
of 613 chemicals (after removing salts, mixtures, and ambiguous compounds). The
modeled endpoint was the Log (BCF). Modelability criteria were calculated using
Dragon 5.5 [6] descriptors. QSAR models were built using HC [14], Dragon 5.5
[6], SiRMS [15], and CDK [16] descriptors with HC [14], kNN [17], RF [11] and
SVM [24] methods. The best model was built using the RF method with Dragon 5.5
descriptors [unpublished results] and was used in this study.

7.2.2 Modelability Criteria

The similarity search procedure is a kNN approach without a variable selection, i.e.,
it is carried out in the entire descriptor space, with no optimization of the descriptor
set. Furthermore, the number of nearest neighbors is carried out like in the standard
kNN developed in our laboratory [17]. As in the regular kNN, leave-one-out (LOO)
and leave-group-out (LGO) cross-validation (CV) were used. LOO-CV gives rise to
MODI_q2 modelability criterion. In this work, MODI_ssR2 modelability criterion
was defined by the fivefold LGO (leave 20%-out) CV. Each dataset was divided into
five equal parts. One part, in turn, was used as the prediction set, and the union of
the remaining four parts was used as the “modeling” set. One most active and one
most inactive compound and three compounds with activities uniformly distributed
within the entire range of activities were always included in the modeling set. Both
LOO-CV and LGO-CV were carried out with 1, 3, and 5 nearest neighbors.

In general, the Euclidean distances in the descriptor space between a compound
and each of its k nearest neighbors are not the same. Thus, the neighbor with the
smaller distance from a given compound is given a higher weight in calculating the
predicted activity as follows:

∧
yi =

k∑
j=1

yjwij

k∑
j=1

wij

(7.1)
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where yj is the observed activity value for nearest neighbor j, ŷi is the predicted
activity value for compound i; weights wij are defined as

wij =

⎛

⎜⎜⎜⎜⎝
1 + d2

ij

k∑
j ′=1

d2
ij ′

⎞

⎟⎟⎟⎟⎠

−1

(7.2)

dij are the Euclidean distances between compound i and each of its k nearest
neighbors. For binary activity, the predicted value is rounded to the nearest integer
or to a pre-determined threshold [30].

The Applicability Domain (AD) was defined by the Z-cutoff method employing
the average distance between k nearest neighbors dav and its standard deviation s in
the modeling set. The threshold distance Dthresh (Eq. 7.3) is defined as

Dthresh = dav + Zs (7.3)

where Z is defined by the user (1 in this study). Compounds outside the AD were
not predicted.

QSAR models obtained for 34 datasets of the training set were characterized by
the criteria described in our previous publications (see, for example [30]). Leave
20%-out external cross-validation was used. First, models with high cross-validated
q2 values were selected for each tree in the RF or each kNN model. Then the
models with sufficiently high q2 values (higher than 0.6) were used for consensus
prediction [31, 32] of compounds of the corresponding test sets. Then, predictions of
all five prediction sets were combined and the coefficient of determination between
predicted and observed activities, R2, along with coefficients of determination R0

2

and R′
0

2 and slopes k and k′ for trend lines through the origin for predicted vs.
observed and observed vs. predicted activities (see [30]) were calculated.

Similar criteria were used herein for comparison of MODI_ssR2 and QSAR_R2

values of QSAR models. Predictions of all five prediction sets were combined and
the “cross-validated” q2 and coefficient of determination between predicted and
observed activities, R2, along with coefficients of determination R0

2 and R′
0

2 and
slopes k and k′ for trend lines through the origin for predicted vs. observed and
observed vs. predicted activities were calculated. The main difference between the
approach described in [30] was that, for modelability criteria, no variable selection
in the similarity search procedure was used.
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7.3 Results and Discussion

The modelability criteria are given for training and test sets in Tables 7.1 and 7.2.
The models were built using RF (Table 7.1) and kNN methodologies (Table 7.2).
A high correlation between RF and kNN_R2 values for 34 datasets (see Fig. 7.1)
is characterized by R2 = 0.91. Even after the exclusion of three “outlier” datasets,
R2 = 0.76. Here we note that 31 datasets have both RF and kNN_R2 values between
0.50 and 0.81. In Table 7.4, modelability criteria for the training sets are presented
along with the criteria described in Sect. 7.2. Calculations were repeated for 1, 3,
and 5 nearest neighbors. Modelability criteria and the corresponding statistics were
also obtained for the test set (Table 7.5). In Table 7.6, the correlation coefficients
between R2 values of QSAR models and modelability criteria are given. The results
are given for the training, test, and training and test sets together (the entire datasets).
The corresponding regression equations for entire datasets are also given in Table
7.6. Both modelability criteria MODI_q2 and MODI_ssR2 were obtained for k = 1,
3, and 5 nearest values. QSAR models for the training sets were obtained using RF
and kNN methods. The best correlations were obtained for k = 5 nearest neighbors
for both RF and kNN models built for the training sets. Correlations for k=3 nearest
neighbors are almost as good as for k = 5. For k = 1, weaker results were obtained,
especially for MODI_q2 (see Table 7.6). To illustrate our results, we have built plots
of QSAR_R2 vs. MODI_q2 and MODI_ssR2 values (see examples in Figs. 7.2,
7.3, 7.4, and 7.5). Regression equations for training, test, and the entire datasets
are also given in these figures. We emphasize high coefficients of determination
between QSAR_R2 and modelability criteria for k = 3 and 5 for the whole dataset

y = 0.88x + 0.093
R² = 0.91

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

kN
N_

R2

RF_R2

Correlation between R2 values for RF and kNN
models

Fig. 7.1 High correlation between random forest and kNN models built for the training set
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Table 7.4 Modelability criteria for the training set.

Dataset Ncomp MODI_q2 MODI_ssR2 k1 k2 R012 R022 RF_R2 kNN_R2

5-HT1A 1121 0.6 0.59 1 0.99 0.39 0.59 0.67 0.69
5-HT1B 438 0.57 0.58 1 0.98 0.35 0.58 0.67 0,65
5-HT1D 426 0.56 0.61 1.01 0.97 0.39 0.61 0.71 0.72
5-HT1E 87 0.1 0.19 1 0.98 −0.78 0.12 0.32 0.39
5-HT2A 1031 0.63 0.61 1 0.99 0.38 0.61 0.72 0.71
5-HT2C 791 0.53 0.52 1 0.99 0.22 0.51 0.65 0.65
5-HT3 125 0.28 0.37 1 0.97 −0.04 0.33 0.48 0.42
5-HT5 145 0.42 0.53 1.01 0.97 0.26 0.53 0.65 0.69
5-HT6 952 0.61 0.61 1 0.99 0.42 0.61 0.7 0.71
5-HT7 397 0.5 0.51 1 0.98 0.16 0.51 0.6 0.68
alpha1A 429 0.59 0.61 0.99 0.99 0.43 0.61 0.64 0.67
alpha1B 366 0.67 0.68 1 0.99 0.61 0.67 0.68 0.72
alpha2A 365 0.45 0.51 1 0.98 0.23 0.5 0.69 0.68
alpha2B 243 0.39 0.44 0.99 1 −0.07 0.44 0.51 0.56
alpha2C 284 0.56 0.56 0.99 0.99 0.32 0.56 0.68 0.7
beta1 163 0.49 0.57 1.01 0.97 0.43 0.55 0.61 0.65
beta2 202 0.52 0.58 1 0.98 0.39 0.57 0.61 0.69
D1 417 0.50 0.49 0.98 0.99 −1.65 0.2 0.68 0.68
D2 2057 0.50 0.48 0.99 1 −0.05 0.46 0.60 0.60
D3 1493 0.56 0.54 0.99 0.99 0.26 0.53 0.64 0.64
D4 639 0.47 0.48 1 0.99 0.14 0.47 0.61 0.57
D5 247 0.38 0.39 0.99 0.98 −0.17 0.38 0.57 0.51
DAT 766 0.67 0.64 0.99 0.99 0.51 0.64 0.76 0.78
H1 393 0.53 0.52 1 0.98 0.15 0.52 0.61 0.63
H2 90 0.05 0.1 0.98 1.01 −1.88 0.02 0.066 0.17
H3 874 0.50 0.55 0.99 0.99 −2.08 0.21 0.65 0.66
H4 440 0.40 0.4 1.01 0.97 −0.5 0.4 0.55 0.55
M1 331 0.45 0.5 0.98 1 0.2 0.5 0.52 0.60
M2 369 0.52 0.54 0.99 0.99 0.27 0.54 0.62 0.69
M3 378 0.55 0.58 0.99 0.99 0.37 0.58 0.68 0.69
M4 199 0.47 0.45 0.98 0.99 0.1 0.44 0.53 0.55
M5 212 0.46 0.46 0.98 1 0.15 0.45 0.50 0.60
NET 837 0.67 0.64 1.01 0.98 0.5 0.64 0.74 0.77
SRT 1093 0.73 0.72 0.99 1 0.63 0.72 0.80 0.81

and for training and test sets. The regression lines for training and test sets are close
to each other. It is important to note that high correlations for the test set and for
the entire dataset were obtained despite the fact that distributions of QSAR_R2 and
MODI_R2 values are quite different for training and test sets. This also corroborates
our modelability approach.

Formulas for regression lines can be used to predict QSAR modeling results
qualitatively. In [2], four datasets were used to validate the modelability criteria.
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Table 7.5 Modelability criteria and prediction statistics for the test sets

Dataset MODI_q2 MODI_ssR2 QSAR_R2

K = 1 K = 3 K = 5 K = 1 K = 3 K = 5

1 LC50 0.51 0.60 0.55 0.46 0.61 0.60 0.69
2 IGC50 0.69 0.76 0.75 0.68 0.76 0.76 0.85
3 LD50 0.51 0.57 0.56 0.36 0.53 0.55 0.66
4 BCF 0.71 0.76 0.76 0.66 0.73 0.72 0.89
5 RI1 0.005 0.150 0.190 0.28 0.29 0.27 0.36
6 RI2 −0.14 0.07 0.12 0.18 0.095 0.16 0.43
7 RI3 0.24 0.42 0.44 0.34 0.46 0.36 0.46
8 RI4 0.18 0.38 0.37 0.38 0.41 0.44 0.53
9 RI5 0.041 0.340 0.360 0.18 0.35 0.37 0.51

10 RI6 0.18 0.19 0.19 0.22 0.26 0.3 0.37
11 RI7 0.18 0.39 0.42 0.37 0.4 0.32 0.58
12 RI8 0.12 0.16 0.19 0.21 0.23 0.22 0.39
13 RI9 0.28 0.086 0.110 0.18 0.1 0.19 0.29
14 RI10 0.18 0.41 0.42 0.37 0.49 0.44 0.48

Table 7.6 Prediction statistics for datasets included in training and test sets

Both sets

QSAR method MODI criterion Number of NN Training set Test set R2 Equationa

kNN MODI_q2 1 0.76 0.65 0.72 y = 0.58x + 0.41

kNN MODI_ssR2 1 0.80 0.88 0.84 y = 0.88x + 0.19

RF MODI_q2 1 0.75 0.65 0.72 y = 0.60x + 0.38

RF MODI_ssR2 1 0.74 0.88 0.78 y = 0.87x + 0.18

kNN MODI_q2 3 0.79 0.89 0.85 y = 0.76x + 0.26

kNN MODI_ssR2 3 0.88 0.84 0.87 y = 0.84x + 0.18

RF MODI_q2 3 0.79 0.89 0.84 y = 0.77x + 0.23

RF MODI_ssR2 3 0.82 0.84 0.82 y = 0.83x + 0.17

kNN MODI_q2 5 0.86 0.90 0.89 y = 0.81x + 0.23

kNN MODI_ssR2 5 0.91 0.88 0.90 y = 0.91x + 0.16

RF MODI_q2 5 0.84 0.87 0.90 y = 0.82x + 0.21

RF MODI_ssR2 5 0.87 0.87 0.88 y = 0.92x + 0.14

aGiven equations are for estimation of QSAR_R2: x—modelability index, y—predicted QSAR_R2

It was shown that the MODI_ssR2 and MODI_q2 can be used to discriminate
between modelable and non-modelable datasets. Here we demonstrate that our
updated regression equations can also be used.

Predictive QSAR models were built using kNN [17] and SVM [24] with
Molconn-Z [33] descriptors for a dataset containing 59 Histone Deacetylase
(HDAC) inhibitors [34]. Recently, Molconn-Z descriptors became unavailable;
however, almost all of them were included in Dragon 5.5 descriptors [33]. The
best kNN model built for this dataset with our standard fivefold external cross-
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Fig. 7.2 34 datasets of the training set: correlation between the predictive power of k nearest
neighbors models and MODI_ssR2 for five nearest neighbors
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Fig. 7.3 34 datasets of the training set: correlation between the predictive power of k nearest
neighbor models and MODI_q2 for five nearest neighbors

validation protocol had R2 = 0.77 [2]. MODI_ssR2 with 1, 3 and 5 nearest neighbors
were 0.60, 0.54 and 0.44 for 163 Molconn-Z [33] descriptors. The predicted
QSAR_R2 values based on regression equations (Table 7.3) were 0.72, 0.63, and
0.56, respectively. Similarly, MODI_ssR2 with 1, 3, and 5 nearest neighbors were
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Fig. 7.4 34 datasets of the training set and 14 datasets of the test set: correlation between the
predictive power of random forest (RF) models and MODI_ssR2 for five nearest neighbors. Models
were built for 34 training set datasets using RF. Models for 14 test set datasets were built as
described in the main text. All datapoints represent the entire dataset. White circles are the test
set. Solid line is the regression for the entire dataset. Dotted line represents the regression for the
test set. On top of the plot is the regression equation for the entire dataset, while on bottom of the
plot is the regression equation for the test set

0.60, 0.56, and 0.34 for 229 Dragon 5.5 [33] descriptors (descriptors were selected
so that the maximum pairwise correlation between them did not exceed 0.95), and
0.71, 0.49, and 0.38 for 409 Dragon 5.5 descriptors (descriptors were selected so
that the maximum pairwise correlation between them did not exceed 0.99). We
hypothesize that the higher number of nearest neighbors may bring in activity
cliffs that will reduce the predictivity of MODI_ssR2

. The corresponding predicted
QSAR_R2 values calculated using regression equations were 0.72, 0.65 and 0.47 for
229 Dragon 5.5 descriptors and 0.81, 0.59 and 0.51 for 409 Dragon 5.5 descriptors.
These results show that MODI_ssR2 can be used as a good estimator of QSAR
modelability of HDAC dataset. The best results were obtained for one nearest
neighbor. Here we emphasize that ideally modelability criteria for different counts
of nearest neighbors should be calculated and we found that MODI_ssR2 = 0.72. It
is possible to consider the dataset with 409 descriptors and one nearest neighbor as
a model already gives sufficiently high R2 of 0.72. Interestingly, it is lower than our
best estimate of QSAR_R2 = 0.81 with the highest QSAR_R2 = 0.87 obtained for
9 compounds of the external test set in our earlier publication [34].

The Maximum Recommended Therapeutic Dose (MRTD) database (1180 com-
pounds) was compiled from different sources. In total, 1220 pharmaceuticals are
listed in Martindale [35]: The Extra Pharmacopoeia (1973, 1983, and 1993) and
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Fig. 7.5 34 datasets of the training set and 14 datasets of the test set: correlation between the
predictive power of k Nearest Neighbors models and MODI_q2 for five nearest neighbors. Models
were built for 34 training set datasets using RF. Models for 14 test set datasets were built as
described in the main text. All datapoints represent the entire dataset. White circles are the test
set. Solid line is the regression for the entire dataset. Dotted line represents the regression for the
test set. On top of the plot is the regression equation for the entire dataset, while on bottom of the
plot is the regression equation for the test set

The Physicians’ Desk Reference (1995 and 1999) [13]. Modelability criteria were
calculated using Dragon 5.5 descriptors [6]. QSAR models were built using SVM
[24] and RF [11] methods with Dragon 5.5 [6], CDK [16], and SiRMS [15]
descriptors. The best QSAR model was built using RF and SiRMS descriptors
(R2 = 0.81) [Unpublished results].

For the Alpha-1A adrenergic receptor agonists and antagonists dataset (415
compounds), we built QSAR models using SVM [24] and RF [11] methods with
Dragon 5.5 [6], CDK [16], and SiRMS [15] descriptors. Modelability criteria were
calculated using Dragon 5.5 [6] descriptors. The best QSAR model was built using
RF and SiRMS descriptors (R2 = 0.81) [Unpublished results].

For the bioavailability dataset of 1110 compounds [36], QSAR models were built
using Dragon 5.5 [6] and SiRMS [15] descriptors, and for each set of descriptors,
PLS [37] and RF [18]methods were used. Modelability criteria were built using
Dragon 5.5 [6] descriptors. Many attempts were unsuccessfully undertaken for this
dataset to build a predictive QSAR model; the highest R2 was lower than 0.5 [38]
(unpublished results).

Results of modelability studies for these datasets are presented in Tables 7.7 and
7.8. In Table 7.7, predicted QSAR_R2 values were obtained using the corresponding
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Table 7.7 Modelability studies of MRTD, Alpha1a and Bioavailability datasets. Regression
equations for models built with RF for the training sets vs. modelability criteria (Table 7.6) were
used

Number of Estimated Estimated

Dataset nearest neighbors MODI_ssR2 QSAR R2 MODI_q2 QSAR R2

MRTD 1 0.36 0.49 0.19 0.49
3 0.45 0.54 0.40 0.54
5 0.42 0.53 0.41 0.55

Alpha1A 1 0.47 0.59 0.49 0.62
3 0.55 0.63 0.52 0.63
5 0.56 0.66 0.52 0.64

Bioavailability 1 0.26 0.41 0.051 0.41
3 0.29 0.41 0.24 0.42
5 0.22 0.34 0.26 0.42

Table 7.8 Modelability studies of MRTD, Alpha1a and Bioavailability datasets. Regression
equations for models built with kNN for the training sets vs. modelability criteria (Table 7.6)
were used

Number of Estimated Estimated

Dataset nearest neighbors MODI_ssR2 QSAR R2 MODI_q2 QSAR R2

MRTD 1 0.36 0.51 0.19 0.52
3 0.45 0.56 0.40 0.56
5 0.42 0.54 0.41 0.56

Alpha1A 1 0.47 0.60 0.49 0.64
3 0.55 0.64 0.52 0.66
5 0.56 0.67 0.52 0.65

Bioavailability 1 0.26 0.42 0.051 0.44
3 0.29 0.42 0.24 0.44
5 0.22 0.36 0.26 0.44

regressions in Table 7.6 (models for the training set were built using RF). In
Table 7.8, predicted QSAR_R2 values obtained using the corresponding regression
equations in Table 7.6 (models for the training set were built using kNN). As one
can see, the modelability criteria for the Bioavailability dataset are much lower
than those for the two other datasets. Almost all predicted QSAR_R2 values for the
Alpha-1A dataset are higher than 0.6, the standard threshold on a QSAR model to be
considered as predictive [30]. Of course, true modeling can improve the predictive
power of such models. At the same time, QSAR_R2 for MRTD dataset is lower than
0.6; however, most of them are close to 0.55, which is only slightly less than 0.6. In
this case, a more sophisticated QSAR modeling technique might be able to improve
the predictivity of QSAR models developed for this dataset. On the other hand, for
the Bioavailability dataset, predicted QSAR_R2 values are significantly lower, and
we can conclude that this dataset is probably not modelable. We conclude that no
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additional attempts to build QSAR models for this dataset with chemical descriptors
are necessary.

From these results, we can observe that predicted QSAR_R2 values are close
for both RF and kNN methods. As was demonstrated above, RF_R2 and kNN_R2

values have a high correlation (see Fig. 7.1), so this result was expected. Besides,
we can find that predicted QSAR_R2 values are also similar for MODI_ssR2

and MODI_q2 values. In most cases, MODI_ssR2 values are slightly higher than
MODI_q2 values. At the same time, the regressions QSAR_R2 vs. MODI_ssR2

have a smaller intercept than QSAR_R2 vs. MODI_q2. Thus, we recommend
using MODI_ssR2 rather than MODI_q2. Also, we found that for one nearest
neighbor, several MODI_q2 values are negative. Consequently, we can conclude
that MODI_ssR2 is slightly better than MODI_q2. A similar conclusion was made
for category QSAR [2], where we have shown that MODI_ssCCR was slightly better
than MODI_CCR.

7.4 Conclusions

In this book chapter, we describe two new modelability criteria to estimate the
modelability of the continuous dataset. These criteria provide estimation if a dataset
is modelable or not, i.e., if predictive QSAR models can be developed for that
dataset. The two new metrics introduced here are based on the k nearest neighbors’
approach. Their representative points consider compounds in the entire descriptor
space. Both criteria were calculated using 1, 3, and 5 nearest neighbors. One of the
criteria, MODI_q2, is the q2 value for leave-one-out cross-validation. Another index,
MODI_ssR2, is calculated using our standard fivefold external cross-validation
procedure. The training set included 34 GPCR datasets, for which QSAR models
were built using Dragon 5.5 descriptors along with RF and kNN algorithms. The
test set contained 14 different datasets. Our results are highlighted below.

1. The modelability index has shown to be a reliable, easy, and fast metric to assess
if, for a particular dataset, predictive QSAR models can be successfully devel-
oped. Here, we showed that MODI_ssR2 provides a slightly better estimation
than MODI_q2.

2. Since the R2 values for QSAR models built by different QSAR methods, for
example, kNN and RF, correlate, it is possible to regress RF_R2 values rather
than kNN_R2 against modelability criteria. It was demonstrated that kNN_R2

gives slightly better results in terms of the intercept and values of MODI_q2,
which for k = 1 nearest neighbor can be negative. Consequently, if RF_R2 is
used, the number of nearest neighbors should preferably be 3 and 5. However,
remember the results for HDAC inhibitors demonstrating that a different number
of nearest neighbors should be used in modelability studies.

3. The calculated MODI_q2 or MODI_ssR2 for a dataset have shown to be
informative of the lowest predictive bound of a QSAR model.
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4. Regression equations for QSAR_R2 vs. modelability criteria can be used for the
prediction of prediction power of QSAR models in terms of R2, which can be
built for this dataset using chemical descriptors.

5. Other modelability criteria can be developed by using other fast and reliable
QSAR approaches, like RF. This conclusion comes directly from a high correla-
tion between kNN_R2 and RF_R2 values for QSAR models built with the same
descriptors.

Finally, the modelability criteria can discriminate between QSAR models for
which it is possible and not possible to build predictive QSAR models. In some
cases, when a modelability criterion is extremely high, no additional QSAR
modeling might be necessary. The modelability approach can dramatically decrease
the time and resources used to build predictive QSAR models, especially to attempt
to build QSAR models for “tough” datasets.
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Chapter 8
A Cluster Model for Interpretation
of Surface-Enhanced Raman Scattering
of Organic Compounds Interacting
with Silver Nanoparticles

Nguyen Van Trang, Duy Quang Dao, Pham Vu Nhat, Phan Thi Thuy,
and Minh Tho Nguyen

Abstract In this brief review, we present some illustrative computational results
on the use of atomic clusters to model the solid substrate surfaces, aiming
to interpret the phenomena associated with surface-enhanced Raman scattering
(SERS) experiments. Using this technique, organic molecules undergo interactions
with silver nanoparticles, producing characteristic chemical and spectroscopic
enhancements. We exemplify that the small Agn cluster model can reproduce
typical chemical enhancements that occur on vibrational modes of the molecules
considered, including aromatic compounds, amino acids, pesticides, herbicides etc.
Analyses are made for not only the ground state but also for the first excited S1
state, which shows a reverse charge transfer trend. Two different mechanisms are
considered to construe the effects induced by the incident light during the SERS
phenomena. More importantly, the charge transfer mechanism allows selective and
quantitative measurements of the molecule considered in its mixture with several
other organic compounds. These results matter for the design of efficient mobile
sensors that are expected to potentially detect pollutants and toxic compounds
present in the environment and in food and agricultural products rapidly.
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Abbreviations

CDD Charge density difference
CE Chemical enhancement
CPF Chlorpyrifos
CT Charge transfer
DDA Discrete dipole approximation
DFT Density functional theory
EM Electromagnetic mechanism
FDTD Finite difference time domain
HOMO Highest occupied molecular orbital
LSPR Local surface plasmon resonance
LUMO Lowest unoccupied molecular orbital
MD Molecular dynamics
SERS Surface enhanced Raman scattering
UV Ultraviolet–visible

8.1 Introduction

An atomic cluster is an aggregate of typically a few up to several thousands of
atoms and represents a distinct form of matter lying between an atom and solid
bulk. When a cluster and a molecule are both generated in the gas phase, the main
qualitative difference between them lies in their inherent interatomic binding forces.
Atoms in a conventional molecule are known to be bound to each other by covalent
and/or ionic forces. Specific stabilizing forces in a cluster allow a polyatomic system
to grow much larger by stacking more and more atoms. A notable consequence
is that atomic clusters often possess unique properties that basically differ from
the corresponding single atom and bulk state. Fascination for free or supported
atomic clusters originates not only from their non-classical geometric and electronic
structures, but also from their surprising chemical reactivities. In the non-scalable
regime ranging from a few to about hundreds of atoms, the structures and properties
of clusters change discontinuously with not only their size but also with their charge
state. Specifically, an addition of an atom, a change of a unit in the electron number,
or both actions via doping, fundamentally changes the cluster identity. Such a
characteristic opens opportunities for creations of new clusters, and thus, cluster-
based building blocks with well-defined or tailored properties.

With the swift development in applications of nano-sized materials [1–2] and
mainly the urgent need of miniaturizing optoelectronic devices, the field of cluster
science has expanded broadly in recent years, establishing a contemporary inter-
disciplinary domain of research, which is constantly evolving both academic and
applied interests [3–6]. Basic studies of nanomaterials are of primordial importance
because they consistently reveal new properties that could lead to new prospective
applications. Moreover, the basic principles of such basic studies are threefold,
namely, (1) a comprehension of chemical bonding in clusters that bridges the
molecular phenomena with the condensed matter behaviors, (2) an establishment of
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new classes of clusters formed by various elements with unprecedented properties,
and (3) a search for promising applications of cluster-based assembly materials
[6]. While the structural motifs and electronic properties of clusters have long
been, and still are, fascinating to both chemists and physicists alike, their appli-
cations have been implemented in a myriad of modern technologies such as new
laser materials, infrared to visible conversion substrates, systems involving photo-
redox processes for solar energy conversion, photovoltaic devices, phosphorescent
sensors, electroluminescent sensors for biological applications, and catalysis for
chemical reactions, etc. [3–6]. As clusters are first generated in the gas phase, they
need to subsequently be deposited on a solid surface, such as a metal oxide, before
undergoing interactions with the reactants or the surrounding medium, leading
to catalytic effects or enhancement of spectroscopic responses. They can also be
stabilized by ligands before assembled in solid state materials.

Beside such actual and exciting aspects, the concept of an atomic cluster as a
form of matter also allows for theoretical approaches to be implemented. It is well
known that knowledge on the critical role of specific active surfaces in a nanoparticle
is of great importance, since interfaces between an active material and the surround-
ing media determine the efficiency of, among others, heterogeneous catalysis [3].
Theoretical modeling and simulations on nanoparticle surfaces to determine their
characteristics are challenging tasks as they require specific treatments to obtain an
appropriate description of the solid bulk state. Properties of material are usually
dependent on its dimensionality in such a manner that the behaviors of lower-
dimensional systems could either be alike, or widely different from, their bulk
counterparts. In this context, preliminary modeling of the bulk system is crucial
in the selection of methodologies for determining the structural, vibrational, and
electronic properties of the nanostructure considered.

Of the theoretical approaches to investigate nanoscale systems, and in particular
their surfaces, the atomic cluster approach is of worthy interest. In fact, a solid
surface could be simulated by a small-sized atomic cluster which can be treated
by reliable quantum chemical computations. A suitable model often requires a
bulk crystal approach to nanosized materials by building various surfaces and by
cutting the periodicity of the crystal lattice [7]. Another cluster approach is based
on the crystalline structure characterized inside the core of the nano-substrate
considered, surrounded by surfaces reconstructed following the surface energy
requirements. Such nanostructures are created from their original bulk crystals with
specified atomic positions appearing in well-defined space groups. Another plainer
cluster approach proceeds through full geometry optimizations of nanoclusters of
the atoms, representing the nanoparticle considered without specifying a crystal
structure [8, 9].

On this basis, from a viewpoint of theoretical methodology, a question of
continuing interest which remains a matter of debate, is as to whether a pure atomic
cluster can be used to model a solid nanoparticle [10]. Such a simple but efficient
approach could provide us with a means to complement some popular experimental
methods by investigation of reduced dimension nanosystems with reliable quantum
chemical computations. To simulate realistic nanostructures that can reproduce
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experimental data, the cluster models need to be constructed with appropriate sizes
[10]. As experimental observations are usually made on particles with diameters in
the range of a few nanometers, modeling based on quantum-chemical methods is
highly time-consuming and cannot be applied to very large systems. It is, therefore,
imperative to construct small but fitting cluster models. In this chapter, we would
advocate for the use of small silver clusters as models in the assignment and
interpretation of the spectra obtained from surface-enhanced Raman scattering
(SERS) experiments for organic compounds. The following sections present a
summary of the SERS technique, followed by the use of some silver clusters selected
to model the coinage metal substrates and surfaces in the experiments involving
molecules such as aromatic compounds, amino acids, pesticides, herbicides, etc.

8.2 Surface-Enhanced Raman Scattering (SERS)
Experiment

8.2.1 General Aspects

In 1974, largely through the pioneering work of Fleischmann and coworkers, the
first surface-enhanced Raman scattering (SERS) spectra were discovered, which
produced a Raman spectrum that was a millionfold more intense than expected
from molecules adsorbed on specially prepared silver [11]. In recent years, due
to its simple operation and high sensitivity, the SERS spectroscopy has become
a powerful analytical tool for monitoring food safety as well as toxicity in the
environment in detecting their fingerprint characteristics. The combination of
Raman spectroscopy and nanotechnology, which are the two most popular classical
and modern techniques, leads to the functioning of SERS.

Raman spectroscopy is renowned to be able to provide distinct Raman spectral
data, and thereby structural information, of any specific molecule or analyte [12].
However, this method has one major drawback due to the small cross-section of
Raman scattering, which often leads to low spectral resolution. Consequently, the
analyte should be present of high concentration. However, a typical phenomenon
was discovered for the analyte near the raw metal surface. The SERS results show
that the spectral signal can be enhanced by a factor up to 1010–1015 due to a
strong local field arising from the plasmon excitation combined with direct chemical
interactions between the molecule and the metal surface. Such a technique, also
known as SERS, has the potential to be exploited as a single molecule spectroscopy.
In other words, SERS is a powerful oscillometric spectrometric technique that
allows an overly sensitive structure of a low concentration analyte to be detected
based on the amplification of electromagnetic fields generated by the excitation of
localized surface plasmons. Although the SERS process has been applied for several
decades for chemical analysis purposes, the detail of its molecular mechanism
remains far from being fully understood.
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Fig. 8.1 Illustration of four
different enhancement
mechanisms in a SERS
experiment: CHEM, chemical
enhancement; CT, charge
transfer; R, resonance; EM,
electromagnetic mechanism

It has widely been accepted that four main mechanisms are responsible for
the SERS phenomenon. Figure 8.1 summarizes these mechanisms along with
the involvement of electronic configurations of the metal surface and interacting
molecule. The mechanisms illustrated in Fig. 8.1 include (1) an enhancement
due to non-resonant interactions between the surface and the adsorbate (CHEM),
(2) a molecular resonance mechanism (resonance) where the incident beam is in
resonance with a molecular excitation, (3) a charge transfer (CT) mechanism due
to a resonance of the coming beam through an excitation from the metal to the
adsorbate, and (4) an electromagnetic mechanism (EM) due to a very strong local
field when the excitation wavelength is in resonance with the plasmon excitations in
the metallic nanoparticle [13].

The mechanisms shown in Fig. 8.1 are not independent of each other. Often,
a combination happens to create a total enhancement. The predominance of a
certain mechanism depends on the wavelengths used in the experiment, and the
specific properties of both the adsorbate and metal surfaces. In other words, these
mechanisms cannot really be separated from each other according to experiment or
theory. However, certain limits can be set in such a way that one mechanism will
play a dominant role over the other. Reported results show that the EM is usually
considered as the dominant contribution to the observed SERS signal due to the fact
that local field enhancement arising from the plasmon excitation is often very large
in comparison with the enhancement factor of other mechanisms. The electrody-
namic enhancement mechanism is caused by the strong fields, and it is commonly
simulated that the SERS intensities is enhanced by a factor corresponding to the
fourth-power of the electric field enhancement, |Eloc|4, which will be discussed later
in detail. Because the EM does not include chemical interactions and charge transfer
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(CT) process between both molecule and metallic surface, it cannot always clarify
many SERS enhancement phenomenon such as the relative SERS signal intensity
changes, presence of new peaks or frequency shifting, even with examination of
the adsorbed molecule direction and polarization orientation of the EM field (cf.
Fig. 8.1). For a better understanding of the SERS enhancement phenomena, other
processes occurred in SERS (cf. Fig. 8.1) need to be considered.

As described in Fig. 8.1, the CT, resonance, and CHEM mechanisms are often
combined into a general chemical enhancement mechanism (CE) because it is
not possible to view a clear separation between them. In an EM mechanism, the
enhancement results from the light amplification by the excitation of localized sur-
face plasmon resonances. This phenomenon tends to occur locally at the energy gap
positions, crevices or sharp features of plasmonic materials (such as gold, silver, and
copper nanoparticles). Dependent on the material surfaces, the EM enhancement
factor can reach up to ~1010–1011. In a CE mechanism, an enhancement factor
of up to 103 can be reached, due to the charge transfer between the adsorbed
molecule and the metallic nanoparticles, which is in resonance with the wavelength
of incident light. It is still a challenge to observe a CE process occurred during
a SERS experiment. Therefore, recent studies exploring the CE mechanism have
been carried out by computations employing density functional theory (DFT) and
time dependent-density functional theory (TD-DFT) methods.

8.2.2 Electromagnetic Mechanism of SERS (EM)

A straightforward rationale for the field enhancement in SERS can be illustrated
by considering the following simple model which was first suggested by Gersten
and Nitzan [14]. The Raman scattering of a molecule is influenced by the electro-
magnetic interaction with a polarizable source located nearby. The electromagnetic
SERS enhancement is often considered as process occurred in two steps, including
both local field and radiation enhancements, which can be presented as follows in
Fig. 8.2 [15].

Local Field Enhancement in SERS The SERS mainly results from a localized
electric field enhancement, utilizing optical resonance processes, such as those

Fig. 8.2 Schematic two-step SERS enhancement mechanism: (a) local field enhancement and (b)
radiation enhancement
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triggered by local surface plasmon resonance (LSPR). The local electric field
strength at the molecule Eloc(ω0, rm) can be enhanced as shown in Eq. (8.1):

Eloc (ω0, rm) = g1 (ω0, rm) E0 (ω0) (8.1)

where Eloc(ω0, rm) is the local electric field strength at position rm of the molecule.
While the enhancement factor assigned for the incident electric field strength is
g1(ω0, rm), the enhanced local field, gives a stronger oscillating dipole pm(ωR, rm)
at the Raman scattering frequency ωR (Eq. 8.2):

pm (ωR, rm) = αI
m (ωR,ω0) Eloc (ω0, rm) (8.2)

The resulting power enhancement factor at rm is defined as follows (Eq. 8.3):

Mloc (ω0, rm) = |g1|2 =
∣∣∣∣
Eloc (ω0, rm)

M0 (ω0, rm)

∣∣∣∣
2

(8.3)

Radiation Enhancement in SERS The radiation nature of pm(ωR, rm) are sub-
stantially affected by the dielectric properties of its medium and their consequential
optical resonance steps.

The radiation enhancement MRad can then be determined by Eq. (8.4):

MRad (ω0, rm) = PRad

P0
(8.4)

where PRad and P0 is the capacity of the total Raman-scattered radiation
with/without a nearby plasmonic nanostructure.

MRad is usually estimated using the optical reciprocity theorem (Eq. 8.5):

MRad (ω0, rm) ≈
∣∣∣∣
Eloc (ω0, rm)

M0 (ω0, rm)

∣∣∣∣
2

(8.5)

The SERS enhancement factor at rm is given by Eq. (8.6):

EF (ω0, ωR, rm) ≈ PRad

Pm,0
= P0

Pm,0
.
PRad

P0
= P0

Pm,0
.MRad (ω0, rm) ≈ Mloc (ω0, rm )MRad (ωR, rm)

(8.6)

When the frequency of the Raman-scattered light becomes very close to that of
the incident light, Eq. (8.6) can be simplified to Eq. (8.7):

EF (ω0, ωR, rm) ≈
∣∣∣∣
Eloc (ω0, rm)

M0 (ω0, rm)

∣∣∣∣
2

.

∣∣∣∣
Eloc (ωR, rm)

M0 (ωR, rm)

∣∣∣∣
2

≈
∣∣∣∣
Eloc (ω0, rm)

M0 (ω0, rm)

∣∣∣∣
4

(8.7)



262 N. V. Trang et al.

Equation (8.7) is the well-known |E|4-approximation for the SERS enhancement
factor [15]. Despite its many approximations and simplifications, it helps us to
conveniently evaluate the actual experimental SERS enhancements in a single
molecule located at a position r. It is also used as a typical parameter to be evaluated
for comparison with results gained from theoretical models.

The SERS method appears to be a strongly observed effect in systems capable
of coupling plasmons such as electromagnetic resonances with electromagnetic
plane waves, i.e., small metal characteristics and grating. Metiu and Das [16] stated
on a paradigm of the technique as follows: ‘Large enhancements are produced
when the structure absorbs the photon and localizes it. Gratings and flat surfaces
absorb the photon and ‘store’ the electromagnetic energy into the surface plasmon;
this is delocalized in the direction parallel to the surface but localized in the
perpendicular one. This increases the electromagnetic energy density near the
surface. A sphere localizes the photon, by plasmon excitation, in all directions and
the resulting concentration of electromagnetic energy is larger than that produced
by a grating’. Presumably, the gaps between closely spaced metal features, as in
aggregated colloids or cold-deposited films, concentrate the electromagnetic energy
even further, producing even higher enhancements [16].

8.2.3 Chemical Enhancement Mechanism (CE)

The chemical enhancement mechanism (CE) is related to the changes in the physical
and chemical abilities of a compound when adsorbed onto a metal surface, and the
changes in the relative intensity and pattern of the spectrum recorded are governed
by surface selection rules [17]. The CE is determined as vibrational modulations
on the excitation energy and the transition dipole of the resonance. The differences
in modulations on molecular orbitals due to atomic motions is frequently used to
explain the enhancement arising from vibrational modes. In this regard, it is possible
to quantitatively determine the chemical mechanism in SERS using electronic
structure theory computations; the chemical enhancements are both system and
vibrational mode dependent.

The CE has been less conclusive in the study because most SERS experiments
were conducted using roughened surfaces (or particles) for which both mechanisms
take part together in the same time. Indeed, some theories of CE invoke the
resonance Raman scattering via a “charge transfer intermediate state”. Although
the formalisms of these theories vary somewhat, their key ideas are quite similar
each to other. Adsorbate molecular orbitals are spread into resonances following
interactions with electrons in the conduction band. While resonances of levels
whose energies lie near the Fermi energy are in part filled, those that are occupied
well below are fully filled (cf. Fig. 8.1). Inclusion of metallic states in chemisorption
creates new ways for resonance excitation at frequencies much lower than those of
intrinsic intramolecular excitations of the free adsorbate molecule. New excitations
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can be formed from two possibilities, namely, electrons can be changed from the
filled adsorbate orbitals to unfilled metal orbitals above the Fermi level (molecule
➔ metal surface charge transfer), or metal electrons can be moved to the partly
filled adsorbate affinity level (metal ➔ molecule charge transfer). The most cogent
experimental proof for this picture comes from spectro-electrochemical experiments
where metal-molecule charge transfer excitations show red shift upon making
the electrode potential more negative (by increasing the Fermi energy), whereas
molecule-metal charge transfer excitations induce blue-shift. A comprehensive
theory has been developed to predict enhancement profiles, mode selectivity,
overtones and combinations [18].

The most important part of the CE mechanism is a CT contribution in which
a new charge transfer state appears [19]. In fact, when a molecule is adsorbed on
a metal surface, its electronic states are changed upon chemisorption. The new
electronic states may play a role as resonant intermediate states in Raman scattering.
If the Fermi level of the metal is ranged between the highest occupied molecular
orbital (HOMO) and the lowest unoccupied molecular orbital (LUMO), then CT
excitations probably occur at a lower energy than essential intramolecular excita-
tions of the adsorbate. According to Albrecht’s notation [20], in the CT mechanism
via Albrecht’s, a term (Franck–Condon term), only the thoroughly symmetric modes
are resonantly enhanced when the laser excitation is near to an allowed electronic
transition and only one excited state gets involved in this progress. The resonance
Raman results for vibrational mechanism that are asymmetric are usually detected
when these modes are coupled with two excited states of the chromophore. The
product of the symmetry models of both excited states should be equal to, or contain,
the asymmetric mode. Such an action scheme has been known as the Herzberg–
Teller mechanism or B-mechanism in the Albrecht’s notation [20].

It is a difficult task to characterize the chemical enhancement from the EM
mechanism via a visual theoretical approach. The charge difference density (CDD)
in a 3D cubic image can best be used for such a visualization, which can visually
reveal the photoinduced CT between the metal and the molecule, or the intra-cluster
excitation at resonant electronic transitions. The CT between metal and molecule
provides us with an evidence of a CT mechanism, whereas an intramolecular CT
or a redistribution establishes an evidence for molecular resonance, and finally, the
intra-cluster charge redistribution gives an evidence for the EM mechanism [20].

8.2.4 Use of Silver Nanoparticles in SERS Applications

As stated above, the SERS experiment has been proven to be a highly sensitive
technique for the detection of molecules in very low concentrations, yielding a very
rich set of structural information. The interactions between the adsorbed molecules
and the surface of plasmonic nanostructures that are often the outstanding substrates
such as gold (Au), silver (Ag) or copper (Cu) play an important role in the successful
applications of SERS. In general, the SERS substrates formed by Au and Ag
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Fig. 8.3 Approximate wavelength ranges in which Ag, Au, and Cu nanoparticles are well
characterized and established to be used in SERS experiments. Printed with permission from Ref.
[21]. Copyright 2012, Elsevier

particles are more popular than Cu because they are air-stable materials, whereas
Cu is more reactive. Let us define a localized surface plasmon resonance (LSPR) as
a collective oscillation of electrons at the interface of the metallic substrate, which
could be formed through the electron-magnetic interaction of the metal with the
light at a particular wavelength. Thus, all the coinage metals exhibit suitable LSPRs
that cover most of the visible and near-infrared wavelength range in which most
Raman measurements happen, also making them suitable to use (Fig. 8.3) [21].

It has been shown that the Raman intensity of pyridine on an Ag electrode with
the presence of Cl ions can be adjusted by varying the potential across the electrode.
This phenomenon was explained by the fact that the pyridine molecule is adsorbed
on the Ag surface inducing an enhancement due to a high concentration at the Ag
surface. Subsequently, Van Duyne and co-workers [22] recorded that with pyridine
adsorbed on rough Ag surface, Raman signals can be enhanced by 105–106 times.
As for an explanation for the experiment, these authors used a tetrahedral Ag20
cluster model for representing the silver surface [22]. Such a surface model was
confirmed through a detailed comparison of the SERS spectrum computed using
quantum chemical methods with experiment. The tetrahedral Ag20 cluster emerges
as the largest size so far used for SERS calculations found in the literature. More
importantly, the tetrahedral Ag20 cluster provides us with a model nanoparticle
structure that exhibits a well-defined fragment of a (111) surface, as well as edges
and vertices that can be adopted to model coordinately unsaturated sites on the
particle. As the tetrahedral Ag20 cluster turns out to be a reasonable reference
structure for the determination of the chemical contribution to SERS enhancements,
it is the most popular cluster size chosen for SERS calculations. In the following
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sections, we focus on the use of silver clusters to simulate nano-substrates in the
interpretation of SERS experiments.

8.3 Geometrical and Electronic Structures of Silver Clusters

It is well known that although the solid bulk behaviors of the coinage metals, Cu,
Ag and Au, are nearly similar to each other, some important differences emerge
in the form of their small size clusters. Due to the strong surface and typical
relativistic effects, the most stable structures of gold clusters tend to adopt planar
and tubular structures, whereas three-dimensional (3D) structures are more popular
for Cu clusters [23]. The behavior of silver clusters lies between those of Cu and Au
counterparts, that is, planar structures are preferred for small Ag clusters, whereas
3D Ag structures appear slightly earlier than the Au cluster as the cluster size
increases. Li and co-workers [24] found a significantly large energy gap and electron
affinity for the cluster Au20, based on photoelectron spectroscopy data. Density
functional theory (DFT) calculations demonstrated that the most stable isomer of
Au20 clearly possesses a tetrahedral Td structure [24].

In general, these results may be elucidated in terms of a competition between the
effects caused by an electronic order and an atomic order. For magic clusters- cluster
containing 13, 38, 55 atoms, etc. a closed packing of atoms, or an atomic order, can
be dominant. Accordingly, icosahedron or cuboctahedron are usually determined as
the lowest-energy isomer for magic coinage metal clusters. On the other hand, based
on the electron shell theory, 20 valence electrons form a closed electron shell, and
consequently, an electronic order plays an important role in determining structural
and electronic characteristics of 20-atom clusters. Based on the above discussion,
the ground state of both Ag20 and Cu20 clusters likely results from a competition
between both effects.

Recent computational studies apparently confirm that the most stable forms of
Ag20 are energetically degenerate [25–53]. Quantum chemical results point out
that while Cu20 adopts a compact Cs ground state structure, a pair of Td and Cs

isomers having quasi-degenerate energy content emerge for the Ag20 ground state.
As a matter of fact, a compact Cs structure is found for the most stable Cu20
isomer whereas a Td structure is located for the lowest-energy structure of Au20.
The energy difference of 0.6 eV between both compact Cs and Td structures of
Cu20 is significantly large [38]. Earlier computations pointed out that the energy
difference between both lowest-lying isomers of Ag20, being the high symmetry Td
and a low symmetry compact Cs structure, amounts to only 0.06 eV, indicating that
their energy levels are practically degenerate [35]. It is well known that d electrons
and s–d hybridization constitute an essential factor influencing on the shape of
cluster structure. d electron populations are slightly smaller for small Au clusters
as compared to those of corresponding Ag clusters. Moreover, as mentioned above,
stronger surface and relativistic effects in Au clusters appear to lead to some basic
differences between Ag20 and Au20. Apart from these isomers, other C2v or lower
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Fig. 8.4 Optimized structures and some selected binding distances of (a) 1A1 state of Td Au20
cluster, and (b) 1A1 state of Td Ag20 (PBE96 /SDD-RECP). Printed with permission from Ref.
[30]. Copyright 2017, Elsevier

symmetry isomers of Ag20 were computed to be substantially less stable than both
Td and Cs structures [35].

The tetrahedral Ag20 is a relaxed moiety of the face-centered cubic (fcc) lattice of
bulk silver. Figure 8.4 gives some bond distances for both tetrahedral Ag20 and Au20
clusters. The typical Ag-Ag bond lengths determined by DFT computations (using
the functional PBE96) amount to 2.84, 2.77 and 2.91 Å (Fig. 8.4b) [30]. Similar
equilibrium bond lengths were obtained using different DFT functionals with some
small variations that could be due to the basis sets employed with 1s-4p frozen core
for Ag atoms. Similar to Au20, three unique sites for the Td Ag20 comprise of the
central atoms along the planes of the faces of the pyramid, position denoted as A in
Fig. 8.4b, the vertices of the pyramid (position C) and the atoms along the edges of
the pyramid (position B).

Figure 8.5 displays various local energy minima obtained for Ag20 by Nhat et
al. [25] who used the LC-BLYP functional in conjunction with a cc-pVDZ-PP basis
set. As expected, the tetrahedral structure Ag20_2 displayed in Fig. 8.5 was again
reported as the most stable form of Ag20 by several DFT calculations using different
functionals including the PW91, B3LYP, TPSS and M06 [31–33, 37]. Nevertheless,
Nhat et al. [25, 27] pointed out that the lower symmetry isomer Ag20_1 is the lowest-
lying isomer rather than the higher symmetry Td Ag20_2. In fact, the Ag20_1 can
be generated by adding extra Ag atoms to an icosahedral core. Recent study using
the M06 functional [26] appeared to support the findings obtained earlier using the
LC-B3LYP and PBE functionals, but with a negligible energy difference between
both isomeric forms.
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Fig. 8.5 Lower-lying structures optimized for Ag20 (LC-BLYP/cc-pVDZ-PP), along with sym-
metry point group, electronic state and relative energy (eV) with respect to the lowest-lying isomer
Ag20_1. Printed with permission from Ref. [25]. Copyright 2019, Wiley

In agreement with DFT calculations mentioned above, tight-binding molecular
dynamics (TBMD) introduced in atomistic simulations [53] were also used to locate
a stable form of Ag20 which is structurally similar to Ag20-1 in Fig. 8.5 [25].
Remarkably, the Td Ag20_2 was computed to be only ~0.03 eV higher in energy than
Ag20_1 by this MD simulation (Fig. 8.5). A larger energy gap was found by another
method (~0.28 eV when using the PW91/cc-pVDZ-PP) [27]. Also formed by adding
extra Ag atoms to the icosahedron Ag13, only two isomers Ag20-3 and Ag20_4 are
found to be less stable by 0.2–0.3 eV. Remaining isomers Ag20_5 and Ag20_6 seen
in Fig. 8.5 are much less stable, being located at 0.8–1.0 eV above Ag20-1. Results
obtained using a variety of DFT functionals including the BP86, BPW91, PBE0,
PBE and TPSS are presented in Table 8.1. Within the current error margins expected
for DFT methods, being ± 0.2 eV on energetic parameters, the lowest-energy
structures of Ag20 can be predicted to be the energetically degenerate isomers C3
Ag20_1 and Td Ag20_2, even also the Cs Ag20_3. Such a pattern basically differs
from those of both isovalent coinage metal systems Cu20 and Au20 as illustrated in
Fig. 8.6. In fact, while Cu20 prefers the C3 isomer, Au20 clearly adopts the Td form.
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Table 8.1 Lower-lying isomeric structures of Ag20 (cf. Fig. 8.5) and their relative energies
computed using different DFT functionals with a cc-pVDZ-PP basis set

Cluster Relative energy (eV) Functional
LC-BLYP PW91 BP86 BPW91 TPSS PBE0 PBE

Ag20_1 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Ag20_2 0.03 0.3 0.2 0.3 0.7 0.3 0.5
Ag20_3 0.2 0.1 0.2 0.1 0.1 0.1 0.1

Fig. 8.6 Lower-energy C3 and Td structures located for Cu20 and Au20 (eV). Printed with
permission from Ref. [27]. Copyright 2018, Springer

Concerning the typical spectral features of lower-lying isomers of Ag20, they are
also not quite distinguishable from each other. Figure 8.7 displays the vibrational
spectra of some lower-lying isomers for Ag20 cluster. The calculated infrared
spectrum of the lowest-energy isomer Ag20_1 contains various low-frequency
modes in the range of 80–150 cm-1 as well as stronger peaks centered at 70 and
170 cm-1. However, the spectra of either Ag20_2 or Ag20_3 appear to be similar to
each other, making it hard to identify them solely based on vibrational signatures.
The high symmetry tetrahedron Ag20_6 presents a much simpler vibrational IR
spectrum, defined by bands located at ~70 and 156 cm-1.

The experimental absorption spectrum of Ag20 was recorded and interpreted
[27, 28]. Accordingly, the spectrum recorded in argon is composed of a broad
peak located at 3.7 eV (335 nm) and a much less intense band centered at
4.0 eV (310 nm). Figure 8.8 displays the calculated absorption spectra of a few
lowest-energy isomers of Ag20 using density functional theory methods (TD-
DFT B3LYP/ccpVDZ-PP). The lowest-energy isomer Ag20_1 turns out to be
characterized by an intense band centered at ~3.8 eV (325 nm) obtained from four
close lines at 3.75, 3.82, 3.93 and 3.99 eV [27]. Previous TD-DFT calculations using
the CAM-B3LYP functional [45] identified corresponding lines at 3.77, 3.81, 3.89
and 3.97 eV. Overall, Fig. 8.8 shows that the calculated spectra for other isomers
also reproduce the shape of the experimental spectrum. In this regard, each of the
two lowest-lying isomers can equally be used as a model for the Ag20 cluster.
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Fig. 8.7 Predicted IR spectra of lower-lying structures of Ag20. Printed with permission from Ref.
[27]. Copyright 2018, Springer

8.4 Detection of Single Molecules Using SERS Technique

Since the first observation of single molecule sensitivity under SERS phenomenon
[48, 49], its high applicability has attracted much attention from scientists. The sin-
gle molecule character of the detected SERS spectra was demonstrated by applying
Poisson data. In fact, the concentration of the single molecules is ~100 times smaller
in comparison to that of the aggregated silver nanoparticles, and the SERS spectra
are determined by the Poisson model, relating to the number of molecules within
the probed volume [12]. Most earlier studies on the chemical SERS enhancement
contribution were conducted with pyridine, an aromatic molecule, which becomes
a kind of classical test molecule for SERS experiment. The chemical enhancement
factor could be determined by comparison of the signal of the Raman spectra of
pyridine and its complexes with several types of silver particles.

Jensen et al. studied the size-dependence of the enhanced Raman scattering of
pyridine adsorbed on a series of silver Agn (n = 2–8, 20) clusters using the TD-
DFT method (Fig. 8.9) [31, 50]. Both the appearance of the SERS spectral features
and the resulting enhancement are significantly dependent on the cluster size. The
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Fig. 8.8 Calculated absorption spectra of some isomers of Ag20 (TD-DFT B3LYP/ccpVDZ-PP).
Printed with permission from Ref. [27]. Copyright 2018, Springer

total enhancements for the complexes were calculated to be at a factor of 103–104

stronger. The strongest enhancement was found for the Ag2-Py complex. Due to the
fact that such an enhancement trend depends not only on the distance connecting the
molecule to the center of the metal cluster but also on the resonance polarizability,
the dominance of the electromagnetic enhancement can also be argued for. In other
words, the enhancement mechanism caused by the small silver clusters appears
close to that of an electromagnetic mechanism for larger nanoparticles.

To better understand the contribution of a chemical mechanism to the enhance-
ments observed in SERS, Franzen et al. [51] calculated the dimensionless excited
state displacements of pyridine on Ag clusters. The Pyr-(Ag)n clusters with n = 2,
4, 8, 14, 20 were regarded as supermolecules that have absorption bands due to
excitations of both Agn and Pyr moieties, as well as a possible charge transfer
bands. Enhancements of 103–106 were determined for all complexes, which is quite
close to the overall experimental SERS effect found for the Ag-pyridine system,
indicating that resonance Raman is a major contributor to the effect.

Schatz and co-workers [31] showed a detailed study of the enhanced Raman
scattering of a pyridine-tetrahedral Ag20 model system using TD-DFT computa-
tions. Similar to several earlier results, the interaction between pyridine and a silver
cluster was found to be formed through the nitrogen atom in a perpendicular fashion
(Fig. 8.10). The computed bond distance between the N atom and the closest silver
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Fig. 8.9 Optimized geometries for Agn-Py (n = 2–8) complexes. Printed with permission from
Ref. [50]. Copyright 2007, The American Chemical Society

Fig. 8.10 Configurations of two pyridine-Ag20 complexes having Cs symmetry: (a) S-complex
and (b) V-complex. Printed with permission from Ref. [31]. Copyright 2006, The American
Chemical Society

atom is 2.66 and 2.46 Å for the S-complex (Fig. 8.10a) and V-complex (Fig. 8.10b),
respectively.

Modeling the normal and enhanced Raman scattering of a metal-molecule-metal
model on the atomic scale helps us to understand the identity of the observed SM-
SERS enhancements. Due to the limitations of computational requirements of high
accuracy methods, a time-dependent density functional theory (TD-DFT) method
based on a short-time approximation for the Raman cross-section was used to
determine both on and off-resonance Raman scattering, and this method was used
to approach the absorption and Raman scattering of a pyridine-Ag20 model system
[52]. Using this approach, a remarkable enhancement of the Raman activity due
to the binding of pyridine to the Ag20 cluster was observed. This is a convenient
method for the detection of pyridine molecules in the gas phase, which is known as
a difficult target for detection without complexation to a metal surface. For example,
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the electronic spectrum of the bare Ag20 cluster shows a triple-degenerate excitation
centered at ~3.4 eV. After binding pyridine at the vertex site of the tetrahedral Ag20
(Fig. 8.10b), a split of the peak from a triply degenerate excitation occurs due
to a lowering in symmetry of both complexes. However, Raman scattering cross-
sections are still almost degenerate for the Ag20-pyridine complex when pyridine
binds to the vertex site, i.e., V-complex of the tetrahedral Ag20 cluster (Fig. 8.10).
The results show that both the local chemical environment of the molecule-metal
binding site and the incident excitation wavelength induce significant effects on
Raman spectrum, in both absolute and relative intensities. The effects of each
mechanism enhancement were examined, and the ordering was found as follows:
static chemical enhancements (factor of 10) < charge-transfer enhancements (103)
< EM enhancements (105). The effect of enhancements of principal normal modes
can be justified by their vibrational motion and the local chemical environment of
the molecule. This gives us a simple but clear picture showing key details of the
enhancements.

To further probe the enhancement caused by the CHEM mechanism, ab initio
molecular dynamics simulations combined with a Fourier transform of the polariz-
ability autocorrelation function were performed to determine the SERS spectrum of
pyridine adsorbed on Ag20 cluster at room temperature [53]. This approach could
emphasize the effects of both temperature and orientation of the adsorbed pyridine
in the change of the SERS spectrum. Calculated results showed that the Raman
peaks are in good agreement with experimental findings, even without using a
scaling factor for vibrational frequencies. Furthermore, the calculated enhancement
factor was found to be in the magnitude of 101–103, no doubt due to a CHEM
enhancement.

A systematic study of the CHEM enhancement of pyridine derivatives binding
to the tetrahedral Ag20 was carried out employing TD-DFT methods by simply
changing the substituents on the pyridine ring in both para and meta positions
[54]. This approach allowed the direct chemical interactions between the pyridine
ring and the metal cluster to be probed. Results showed that the enhancement was
not increased, because a larger amount of charge is actually transferred from the
pyridine ring to the cluster. Instead, the energy difference between the HOMO of
the metal cluster and the LUMO of the molecule seems to play a crucial role in
the CHEM enhancement. A molecule giving a significant increase of this HOMO-
LUMO gap tends to bring in a stronger CHEM enhancement, which is in good
agreement with experimental findings.

Sun et al. investigated the chemical enhancement of SERS via CT from Ag20
to pyridine on resonance excitation, and the EM enhancement of SERS via intra-
cluster charge redistribution on an electronic intra-cluster collective oscillation
excitation [55]. From the ultraviolet to the infrared region, enhancement spectra
were constructed to classify different incident excitation wavelength regions for
the main chemical and EM enhancements for pyridine binding to Ag20 cluster in
the S-complex (Fig. 8.10). The results were confirmed by the formal fragmented
experimental and theoretical SERS studies of pyridine at various laser frequencies.
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Silver substrates, stimulated by their multiple roles in catalysis, photography,
and various theoretical and experimental studies, have been heavily investigated
for the last several decades [21, 56–59]. These materials have larger potentials
for clinical and therapeutic treatments due to their antibacterial and antifungal
properties. Furthermore, the optical abilities of silver nanoparticles at the scale of
nanometers, are also found to be superior in comparison with other transition metals
[60, 61]. Therefore, silver nanoparticles and clusters have been widely applied in the
field of sensors, biosensors and biomedical diagnostics [62–64]. There have been
many studies that are developing techniques using sub-nanometer silver clusters
interacting with biomolecules such as amino acids, peptides or nucleotides for
selective detections of heavy metal ions, thiols, peptides, herbicides and nucleic
acids . . . [30, 48, 51, 65, 66].

The thiol-containing cysteine amino acid can be found at many proteins, and it
operates as a link to anchor these proteins to inorganic derivatives. Therefore, the
interaction of cysteine with silver nanoparticles is considered as a typical illustration
for adsorption of biomolecules and functionalization of metal surfaces. And so, let
us consider in some detail the interactions of cysteine with a small silver cluster.

It is important to note that not only the binding site but also the binding energy
are modified in various phases. In both gaseous and highly acidic solutions, the
cysteine prefers to bond to silver clusters through the N-atom of the amine group.
However, the S-atom of the thiolate group is the most dynamically favorable
site for the bonding due to the cysteine mostly exists in deprotonated forms, in
aqueous environments [67]. To illustrate this point, Fig. 8.11 shows a normal Raman
spectrum of deprotonated cysteine and its SERS spectrum on Ag10 cluster.

According to various research [68–70], the Raman spectra of amino acids has
many important peaks in the range above 3000 cm−1 and below 1700 cm−1.
Particularly, some low-intensity peaks at 1665–1585 cm−1, 1605–1555 cm−1,
1425–1393 cm−1 and 1340–1315 cm−1 correspond to NH2 bending vibrations,
C−C stretching peaks, and CH/CH2 deformations, respectively. Other weak and
broad bands located above 3400 cm–1 are assigned to symmetric and asymmetric
N−H stretching vibrations. The highly overlapped bands at 3000–3200 cm−1 which
resulted from C–H stretching modes, is the most characterized peak of an organic
Raman spectrum. For Raman spectrum of cysteine, there are some strong bands
near 700 and 2600 cm−1 that correspond to the C–S and S–H stretching model,
respectively.

Binding energies (Eb) of cysteine to small Ag clusters were calculated to increase
in the following ordering: aqueous solution (about –22 to –30 kcal/mol) < vacuum
< acidic solution (about –10 to –16 kcal/mol). Among the small clusters, Ag- has a
low affinity with cysteine, while the trimer radical Ag3 has a large Eb. The frontier
orbital’s results also indicate that both forward donation (HOMO ➔ LUMO of the
Cys → Agn process) and backward donation (Agn → Cys) give to the formation
of intermolecular bonds in silver clusters-cysteine complexes in a balanced manner.
These complexes are stabilized by both forward and backward pathways, indicating
that the metal clusters play a role as either an electron acceptor or an electron donor.
Hence, there are strong overlaps between HOMO and LUMO of Agn-cysteine
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Fig. 8.11 Normal Raman spectrum of deprotonated cysteine and its SERS spectrum on an Ag10
cluster. Simulations were performed in aqueous solution using the LP-BLYP functional with the
cc-pVTZ-PP for Ag and cc-PVTZ basis set for other atoms. Printed with permission from Ref.
[67]. Copyright 2021, The American Chemical Society

complexes to form an σ-type bonding orbital. Moreover, further π-type bonding
orbitals can be formed by the cysteine LUMO and the Ag2 HOMOs.

In the computed UV-Vis spectra (Fig. 8.12), silver clusters-cysteine complexes
are distinguished by high absorbance peaks at longer wavelengths than the corre-
sponding bare species. Most of the absorption spectra of Agn•Cys(-H+) complexes
have some characteristic intense signals located at the wavelength above 400 nm,
except for complexes of cluster Ag7 and Ag8 sizes (cf. Fig. 8.12). Weaker transitions
can be determined in both the higher and lower energy regions. For example, beside
the highest peak at ~400 nm, the UV-Vis spectrum of Ag2•Cys(-H+) has a less
intense absorption band located in the range of 330–360 nm. In aqueous solution, the
most important peaks are markedly blue-shifted as compared to those predicted in
vacuum, except for Ag8•Cys(-H+) and Ag10•Cys(-H+). Experimental results show
that there is a broad UV-Vis absorbance peak located at ~400 nm when cysteine
binds covalently to silver nanoparticles [71]. Therefore, silver clusters mainly
contribute to the absorption spectra of Agn•Cys complexes since these electronic
transitions do not appear in the visible range of free cysteine. The UV spectrum of
cysteine in aqueous phases has an absorption maximum at ~200 nm, relating to the
combined n → π* and π → π* transitions of the carboxylic chromophore [72].

Figure 8.11 also plots the SERS spectra of the deprotonated cysteine bonded
to the most stable isomer of the Ag10 cluster which represents the surface of a
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Fig. 8.12 TD-DFT absorption spectra for Agn•Cys(-H+) complexes with n = 2–10 (LC-BLYP).
Printed with permission from Ref. [67]. Copyright 2021, The American Chemical Society

silver nanostructure [67]. A comparison of these spectra produces some insights
into important changes in band intensities due to the SERS effect. First, the cysteine
SERS spectra do not have the S–H band near 2600 cm−1 due to the deprotonation
of the thiol group at the metal surface, which is nearly the same as the experimental
SERS spectrum of cysteine on silver nanoparticles [73]. Notably, there is a large
enhancement of vibrational peaks due to the NH2 bending and stretching models
that are significantly small in the normal Raman spectrum of cysteine. Previously,
some signals in the SERS spectra at 900–1000 cm−1 region due to the C–COO
stretching and CH2 bending models, were substantially enhanced [74]. However,
recent calculated results [67] validated that these peaks are mostly due to the N−H
bending vibrations directly oriented to the silver surface.

Furthermore, the experimental SERS spectrum of cysteine in a silver colloidal
solution is also defined by the enhancement of the signals above 3100 cm−1. This
can be explained based on the assumption that there is an interaction between the
amine head and the metal surface [74]. Quantum chemical computations [67] proved
that the weak Ag–H–N bonding plays an essential role in the SERS enhancement of
both N−H bending and stretching vibrations, more than an Ag−NH2 covalent bond.
Finally, there is a significant increase of the peak related to C−S stretching vibration
in the energy of near 700 cm−1 [67], indicating that the C−S bond corresponds
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to the adsorption of cysteine on silver surfaces. This is demonstrated by Raman
spectroscopy when the enhancement of the NH2 vibration is significantly larger
for this peak. However, this band is distinctive from that of other amino acids that
do not contain a thiol functional group. Whereas the SERS chemical enhancement
is accompanied with an electron transfer, their eventual correlation cannot clearly
be determined. Odd-numbered Ag clusters yield more enhanced SERS peaks than
even-numbered one, which can be explained by the radical ability of the former.
Overall, such a SERS signature correlated with a C−S model is significantly
differentiated from many other amino acids and can be used as an ideal index for a
selective detection and identification of the cysteine derivatives.

Various studies on both experimental and theoretical approaches were conducted
to explain the quality of the binding of different biomolecules such as amino
acids and DNA nucleobases to silver metal surfaces [75–77]. These interactions
act as a form of molecular chemisorption rather than a formation and breaking
of new chemical bonds. The anchoring bonds, which are formed by the electron
lone pair of the X atoms (X = S, N, O) and the anti-bonding orbitals of the
metals, play an essential role in the stability of these complexes [78]. Another
significant contribution is the non-conventional O–H· · · M hydrogen bonds formed
by an electron transfer from the metal atom (M) to the hydrogen of X-H bonds.
Recent studies also indicated that deprotonated cysteine residue tend to stabilize the
fluorescent silver clusters formed in the protein templates [79].

Notwithstanding the significance of nano-bio interfaces, the nature of interac-
tions between proteins and silver surface is still a matter of debate. Although some
theoretical studies were carried out to address relevant issues, most computational
investigations were executed in the gas phase, and the effects of the biological
environment have not been taken into account. Investigation on the binding of
M+ ions and some small clusters Mn (M = Au, Ag, n = 2, 3) with several
amino acids and DNA bases also excluded the solvent effects [35, 80]. A recent
systematic theoretical study [50] aimed to decipher the adsorption behaviors of
the thiol-containing cysteine on a silver surface. Small silver clusters Agn in the
size range of n = 2–10 were adopted as reactant models to simulate the metallic
nano-surface. Molecule-surface interactions were simulated not only in vacuum but
also in aqueous solution, and a chemical enhancement mechanism of the SERS
phenomenon in these systems was also inspected [50, 81].

An et al. [64] recently prepared the flower-like silver nanoparticles (Ag-NPs) of
dimension going from 0.3 to 0.5 μm. The 150 mg AgNO3 and 100 mL HNO3 0.1 M
were added together and stirred until the complete dissolution. Another solution of
500 mg ascorbic acid in 10 mL deionized water was also prepared. The two solutions
were then stirred together at room temperature for 3 h. Ag-NPs were thus obtained
after washing the obtained products in several hours and centrifuging at 4000 rpm
[64]. The obtained Ag-NPs with the surface properties of flower tips favors the
adsorption of the small molecules on its rough surface. The normal Raman and
SERS spectra were recorded by a Raman spectrometer using 633 excited lasers.
This apparatus allowed the spectral range from 2000 to 200 cm-1 to be recorded
The Ag-NPs obtained above were used as SERS substrate to analyze the melamine
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(C6H6N6) that was illegally added into the milk to increase the apparent protein
content. The experimental normal Raman spectrum shows two intense peaks located
at 676 and 983 cm-1 corresponding to ring breathing vibration and C-N-C bending
vibration, respectively. And the typical peak at 676 cm-1 is shifted into 684 cm-1,
and the one at 983 cm-1 is shifted into 980 cm-1 in the experimental SERS spectra
of melamine. Overall, the melamine-Agn cluster complexes are shown to be a good
model for SERS modeling in reproducing the CE mechanism via charge transfer
(CT) process.

In fact, An et al. [64] evaluated the interactions of the melamine molecule
with different Agn cluster models with n = 4, 8, 10 and 20 atoms. The most
stable interaction configurations found to consist in the perpendicular interaction
of melamine at its ring-N atom onto one Ag atom located at the corner site of the
cluster. The experimental vs. calculated values of two typical peaks on SERS spectra
are in good agreement with each other. The experimental peak observed at 676 cm-1

is also found on the calculated SERS spectra at 688 and 685 cm-1 by using the
Ag4, Ag8, Ag10, and Ag20 models, respectively. Similarly, the experimental peak
centered at 983 cm-1 is reproduced at 1003, 996, 998 and 983 cm-1 using the Agn
clusters.

Furthermore, the cluster sizes exert a noticeable influence on the intensities of the
Raman and SERS signals. As seen in Fig. 8.13, while the intensity of the 685 cm-1

peak in the normal Raman spectra is about 1.4 (Fig. 8.13a), the intensity of this
peak increases 2.1 times (intensity of 2.9) by using the Ag4 cluster model (Fig.
8.13b). And when using the Ag8 and Ag10 clusters, the intensity of 685 cm-1 peak
also increases up to 2.4 times (intensity of 3.5) and 2.6 times (intensity of 3.7)
(Fig. 8.13c, d), respectively. Finally, in the case of melamine–Ag20 cluster, the peak
intensity is saturated at 3.6 (increase by 2.5 times, Fig. 8.13e). Overall, these results
again demonstrate that the pyramidal Ag20 cluster is a good model to reproduce
spectroscopic properties of the absorbed molecule.

The SERS technique is also used to detect pesticides that have played an
important role in modern agriculture. Besides their obvious beneficial actions, the
intensive use of pesticides did and still cause much pollution to the environment. The
over-abundant amounts of pesticides accumulated in the soil, water, plants, crops,
food and beverage, etc. also severely affect human health because of their toxicity.
A pesticide monitoring method using reliable and reproducible detection methods
is, therefore, an essential demand. Although many chromatographic methods such
as LC/GC-MS, HPLC or TLC can detect the ultralow concentration of pesticides,
the SERS has emerged as a powerful technique in the analysis of pesticide residues
owing to its several fundamental conveniences such as ultrasensitive and on-site
capacity with low-cost detection, faster turnover, simpler protocols, and in situ
samplings.

A recent theoretical study by Ngo et al. [63] provides further understanding
on the effects of chemical enhancement (CE) mechanism and the influence of
interaction configurations (or geometries) of chlorpyrifos (CPF, which is a pesticide)
with nanoparticles on the SERS spectra. Interaction of the CPF molecule with Ag
nanoparticles was considered not only by using the Ag20 cluster model but also
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Fig. 8.13 Calculated normal Raman spectra of melamine (a) and SERS spectra of the most
stable melamine-silver complexes: melamine–Ag4 (b); melamine–Ag8 (c); melamine–Ag10 (d)
and melamine–Ag20 (e) and their optimized structures. Calculations were carried out using the
B3LYP functional with the LanL2DZ basis set for Ag atoms and the 6-31G(d) for C, N, and H
atoms. Printed with permission from Ref. [64]. Copyright 2016, Elsevier

by computations using the extended Ag(111) solid surface model with periodic
boundary conditions and plane-wave pseudopotential.

DFT calculations showed that both interactions between one Ag atom on the
top of tetrahedral cluster with S4 atom, and between the cluster surface with the
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Fig. 8.14 Optimized structures, relative energies �E) of all possible interaction configurations
between chlorpyrifos (CPF) and Ag20 cluster. Bond lengths are given in Å and bond angles
indegrees. Printed with permission from Ref. [63]. Copyright 2020, The American Chemical
Society

pyridine ring of CPF lead to the most stable configuration of the CPF–Ag20 complex
(Fig. 8.14a). Another stable configuration with relative energy (�E) being only
0.1 kcal/mol is also recognized in which only the S4 atom interacts with the Ag
atom at the top of the Ag20 cluster (Fig. 8.14b). The bond distance S4-Ag amounts
to ~2.6 Å.
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Both interaction modes have quite different geometric shapes, even with a
small energy difference of only ~0.1 kcal/mol. For that reason, first-principle
simulations using the extended Ag(111) surface with the periodic-repeated slabs
model were needed to further probe further the interactions of CPF with the silver
surface. To determine the dispersion correction between the CPF and AgNPs, the
optimized Becke88 functional (optB88) was used together with the nonlocal vdW-
DF correlation (optB88-vdW exchange-correlation function). Since the Ag-NPs is
characterized by a quite rough surface, considerable defect sites (like adatom sites)
and under-coordinated sites (like step edges sites) are expected to be present besides
the plane surface.

Consequently, all three nanoparticle surface models result in remarkably similar
results as compared to the ones obtained from the Ag20 tetrahedral cluster model. In
fact, the CPF molecule binds to the Ag(111) surface via both the bond between S4
atom with surface Ag atom and the van der Waals interaction of the pyridine ring on
terrace Ag sites and the bond length of the surface Ag atom and S4 atom is ~2.7 Å
(cf. Fig. 8.15). Such a results deduced from calculations using the periodic-repeated
slabs model is in good agreement with the those obtained from the Td Ag20 cluster
model.

Furthermore, Ngo et al. [63] also analyzed the charge transfer (CT) mechanism
for the most stable CPF–Ag20 complexes (see Fig. 8.14a) in both the ground state
S0 and the first excited state S1 based on TD-DFT method. The HOMO and LUMO
populations and charge density difference (CDD) maps were determined for both
states. Computed results for the S0 state confirm the molecule-to-metal charge
transfer occurred from filled adsorbate orbitals to the unfilled metal region occupied
above the Fermi-level. Fermi energies of silver nanoparticles from the vacuum are
also visualized, along with those for the π and π* levels of CPF. The difference
in energy between the Fermi level and frontier orbital levels of the adsorbate is
comparable in terms of frequency to the incident light [82]. In the excited state
S1, with the influence of incident light, the CT flow occurs in the reverse trends,
that is from the metal to the CPF ligand. In such a situation, a resonance happens
between the incident photon frequency (ωinc) with a charge-transfer transition from
metal to ligand. To elucidate the CT transition under the influence of incident light,
optical UV absorption spectra were simulated using TD-DFT method [63]. While
the HOMO (becoming a SOMO) in the S1 state is primarily located at the Ag20
moiety, the LUMO (becoming a SOMO) is mainly centered at the pyridine moiety of
CPF ligand. These results imply that electron densities are transferred from the Ag20
cluster to the CPF ligand following incident light. This result is in good agreement
with the CDD map determined at the first excited S1 state. It is important to note
that a laser of 532 nm used in these experimental conditions caused the electronic
excitation to occur at the 532 nm (2.33 eV) which is in resonance with the charge
transfer transition of the Fermi level to the π* level of CPF.
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Fig. 8.15 Adsorption structure and binding energies relative of CPF on Ag(111) surface in
perspective view (left), side view (center) and top view (right) for each isomer. Printed with
permission from Ref. [63]. Copyright 2020, The American Chemical Society

8.5 Concluding Remarks

In this chapter, we outlined the development of a theoretical treatment using
quantum chemical computations for the surface-enhanced Raman scattering (SERS)
experiments. The latter constitutes a powerful vibrational spectrometric technique
which allows overly sensitive detection of analytes at very low concentrations. The
current state of knowledge concerning the mechanism of SERS, and some recent
computational studies in which small silver clusters were used as models for sub-
strate materials were described. Our opinion on the effects of both electromagnetic
(EM) and chemical (CE) enhancement mechanisms on the SERS spectra were based
on the results obtained from small cluster models such as the Ag10 and Ag20 cluster.
Some structural issues such as the most stable structure of the Ag20 cluster as
well as the molecular interactions of silver clusters with organic molecules such as
pyridine and pesticides were discussed in detail. A silver cluster as small as Ag10,
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and in particular the tetrahedral Ag20 cluster, have been shown to have quite good
behavior in representing the Ag nanoparticle surfaces, and they are recommended
to be used in further studies related to the adsorption of the organic molecules onto
silver nanoparticles. The cluster model can naturally be extended to the simulation
of nano-surfaces of other coinage metals including copper and gold. These results
are also of importance for the design of efficient mobile sensors that are expected
to rapidly detect toxic compounds present in the environment and in food and
agricultural products.
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