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Preface

As a reader of this book, you are interested in the creation of modern control
systems—automatic, capable of learning, and intelligent—such that you are able
to respond to the new challenges of modern technical development, with ubiquitous
robotization and digitalization.

The theory of automatic control has gone through a long process of transforma-
tion, from a scattered set of control methods for mechanical, hydrodynamic, and
other systems to fundamental science. Almost all scientific research in control has
been carried out within the framework of studying the possibility of creating vari-
ous innovative technical solutions from machine tools at the inception stage to au-
tomatic flying and space vehicles or nuclear power plants. The twentieth century is
famous for the creation of automatic control systems for industrial complexes and
production processes using computers. However, the twenty-first century brings new
challenges associated with the emergence of universal objects, such as autonomous
robots and robotic systems, capable of autonomously performing completely differ-
ent tasks in different conditions and environments. Modern control systems must be
able to quickly change, refine, and learn. This circumstance requires both the univer-
salization and automation of the very process of developing control systems that are
not tied to the physics of the control object, operating with laws and patterns that are
valid for objects of any complexity and nature. Machine learning meets these new
challenges. In this context, a new direction has recently appeared that implements
the modern approach of machine learning in the field of control, called Machine
Learning Control (MLC).

This book discusses machine approaches to solve control problems.
Today, the most common machine learning apparatus are the various neural net-

works. At first glance, it seems that a variety of neural network structures can satisfy
any control problem. In fact, the structure of the neural network is determined by the
developer and it is a given structure in which only parameters are configured, while
the structure itself remains unchanged. So it is difficult to even guess whether this
structure is optimal for a given task. In addition, for complex tasks, a neural network
has a complex structure, and for a development engineer who is used to describing
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vi Preface

objects and systems with some functions that have physical meaning and geometric
representation, working with a neural network seems to be a kind of black box.

This book aims to introduce to a wide range of readers to the possibilities of sym-
bolic regression methods. Symbolic regression methods allow us to find functions in
a form that engineers are familiar with. These methods can be considered as the uni-
versal tool for solving machine learning control problems. The variety of symbolic
regression methods can automate the process of synthesis of control systems, but
very few of them are used in this direction. This is due to a number of difficulties,
such as non-numerical search space and the absence of a metric on it, the complex-
ity of the program code and the absence of publicly available software packages,
etc. Thus, the main purpose of this book is to show the accumulated world experi-
ence in the field of symbolic regression methods and their possibilities in terms of
application to control theory and practice.

The more widely we distribute these technologies, the more valuable they will
become. To unleash the potential of symbolic regression methods, we want to make
them available to a wide range of researchers and applied engineers. Machine Learn-
ing Control by Symbolic Regression is written in a simple language accessible to a
wide range of readers, but it does not ignore the complex points and mathematically
rigorous formulations and justifications. Control system engineers, mathematicians,
specialists in optimization, specialists in mathematics and combinatorics, machine
learning specialists, software developers, and graduate students will find a lot of
value in the pages of this book.

Moscow, Russia Askhat Diveev
April, 2021 Elizaveta Shmalko
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Chapter 1
Introduction

Abstract This book is primarily about control. In the introduction, we will talk
about modern approaches to control, about the automation of the very design pro-
cess of control, about artificial intelligence and machine learning, and, of course,
about symbolic regression methods, which open up new possibilities not only in the
field of control automation, but also in the design of completely different optimal
structures, including building structures, technical systems, and even musical works.

1.1 About Modern Control Systems

The process of making human labor easier by technical means is entering a new
phase. Until recently, the emergence of new means of automation was mainly lim-
ited to the elimination of physical labor from production processes, which made it
possible to increase accuracy, safety, economy, and productivity. In many industries
where the process was sufficiently stable, manual work was replaced by fully auto-
mated lines. Today, outstanding breakthroughs in computer technology, as well as
fantastic advances in robotic technology, trigger new changes not only in the field of
automation, but also in the very process of designing control systems for automatic
devices.

At the present stage, since the 1980s, a computer plays the role of a control
device. Thus, digital automation, or digital automatic control, can be defined as
a technology that uses programmed commands affecting some object or process,
and feedback, with the help of which it is determined whether these commands are
executed correctly [1]. And the development of the control system now consists in
programming the control device.

With the advent of high-performance and relatively inexpensive computers, the
very approaches to the development of control systems have changed. Previously,
the development of a control system consisted in the initial formation of the system
configuration (setting a certain structure) and further calculation and adjustment of

© The Editor(s) (if applicable) and The Author(s), under exclusive license to
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2 1 Introduction

optimal parameters that would provide the desired quality indicators. The stage of
setting the configuration of the control system for a particular control object was
akin to art, in the process of which the experience and intuition of the development
engineer has a colossal role. However, the demands of the times have changed.

Modern control theory deals with automation and robotization that must meet the
requirements of adaptability, robustness, and optimality. The variability of modern
control objects creates the need to develop universal approaches to the synthesis of
control systems; the very process of developing control systems is required to be
automated. The number and variety of robots is growing at an enormous rate. So are
we going to program each robot by hand?

The question arises: Can we trust the machine on its own, without the help of an
engineer specifying the structure of the control system, to automatically determine
this structure by examining the data or relying on given estimates or desired char-
acteristics of the system? This question opens the door to a new paradigm for the
development of control systems: machine learning control [2].

1.2 About Machine Learning Control

Machine learning is one of the areas of artificial intelligence associated with solving
problems based on algorithms that can learn or gradually improve the performance
of a given task. Machine learning is based on the idea that computing systems are
able to show a behavior that was not explicitly programmed in them, they can iden-
tify patterns, rules, or functional dependencies and make decisions on their own.
Control systems can act as such functional dependencies. In machine learning, the
control system is learned, not programmed by the developer.

The most famous machine learning technique now is neural networks, and some-
times machine learning is equated with neural network training. This is incorrect,
because machine learning is a broader concept [3–5]. It includes such early forms
of data analysis as probabilistic modeling based on the application of Bayes’ the-
orem and logistic regression; classification algorithms such as kernel methods, hi-
erarchical structures such as decision trees, random forests, and gradient boosting.
We definitely note that deep neural networks show the best performance in many
tasks, which explains their popularity. At its core, a neural network is a function
with a specific structure and a large number of unknown parameters. Learning, or,
more precisely, training neural networks is finding optimal values of parameters.
But despite the successful breakthroughs in the development of artificial neural net-
works, they have their drawbacks [6, 7]. First, the choice of the type and structure
of the neural network, determination of the size and number of layers, and so on
are carried out mostly intuitively, at the discretion of the developer, based on his
experience and knowledge. Another big drawback of neural networks is the lack
of interpretability of the received functional dependency, since in fact the received
function in this approach is a black box, which gives little opportunity for its under-
standing and analysis. Moreover, approaches based on deep neural networks often
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suffer from lack of reproducibility, caused largely by non-determinism in the learn-
ing process. Finally, an important limitation of neural networks is the large amount
of data required to train them. In many problems, including the problem of optimal
control synthesis, such a volume of training data simply does not exist.

With this in mind, more and more works appear on the study of other artificial
intelligence methods for machine learning. One of these areas is symbolic regression
methods.

1.3 About Symbolic Regression Methods

Symbolic regression is a relatively new mathematical or algorithmic construction
that emerged at the end of the twentieth century and was originally intended to solve
the programming problem of automatically writing software code. In this task, one
program searches by some criterion and generates the code of another program to
solve a given problem. The required program code is written in a universal form
from a set of prefix operators, the code of which contains the operator identifier
and operand identifiers, among which there may be identifiers of other operators.
Such a construction is schematically a tree, the nodes of which are associated with
operators, and the number of branches leaving each node is equal to the number of
operands of this operator. The first symbolic regression method, a genetic program-
ming, authored by John Koza [8] has such construction. The merit of John Koza,
who was one of doctoral students of the famous John Holland, the creator of the
genetic algorithm, lies in the fact that he was able to use the genetic algorithm to
find the optimal code with a structure in the form of a tree. For this purpose, it
was necessary to redefine the main operation of the genetic algorithm, the operation
of crossover. In the genetic programming, in contrast to the genetic algorithm, the
crossover of two codes in the form of a tree is performed using the exchange of
subtrees.

Note right away that this book does not consider the problem of automatic writing
of programs. The basic brilliant idea of genetic programming is to apply a genetic
algorithm to find a solution in the form of a code. Genetic algorithm, one of the
few optimization algorithms that does not use arithmetic operations, addition and
multiplication in the search process. These operations are not applicable to different
codes.

Anything can be encoded, from a piece of music to the design of a spacecraft.
Humanity has been coding its activities for a long time, possibly with the aim of
transferring experience to future generations. In this case, the codes of the desired
structure must be written in a form convenient for processing on a computer. And
then it is necessary to develop the crossover operation for codes so that as a result
of its implementation, new correct codes corresponding to new constructions are
obtained. It should be stipulated here that when searching for an optimal solution,
it is also necessary to determine a numerical estimate for each possible solution.
In some problems, this is absolutely not difficult to do, for example, if you look
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for a code for a mathematical expression for solving some algebraic or differential
equation. In other tasks, it is almost impossible to do this, for example, if you search
for the code of a piece of music. In this case, the problem of coding music is not
particularly difficult, since people have long learned to encode sounds, and in a form
that can be easily represented on a computer. Here the main problem lies precisely
in the assessment of the desired solution, which may be liked by some people and
not by others.

In this book, symbolic regression is used to find mathematical expressions of
functional dependencies. Problems from the field of control theory are considered.
An attempt to solve classical control problems by new methods is presented. There-
fore, this book is primarily intended for specialists in the field of control. After
reading several chapters of this book, we would like control specialists, theorists,
and engineers, to rush to computers willing to program the application of symbolic
regression methods to solve complex control problems that have long tormented
them. It also aims to be a useful reference guide for applying symbolic regression
techniques to control problems.

It should be noted that in addition to genetic programming, there are many other
symbolic regression methods that differ in the form of coding and, accordingly, in
the crossover operation of the genetic algorithm. We tried to include in the book
descriptions of all the currently known methods of symbolic regression in order to
be able to freely use them in solving applied problems of synthesis of control of
various objects.

We expect that other readers of the book should be experts in the field of ma-
chine learning. The book formulates the general formal statement of the machine
learning problem as the problem of finding an unknown function. In all areas where
such a problem arises, it is possible to use machine learning methods. Previously,
in the overwhelming majority of cases, to search for functions, a researcher intu-
itively wrote it down with an accuracy to parameters. Then, as a rule, the values
of these parameters were found by the least squares method. Note that neural net-
works, which are now the main tool of machine learning, are also functions that
are defined accurate to the values of a large number of parameters. Even in those
cases when the structure of a neural network is being looked for, the change in its
structure is also determined by the values of regular parameters, the number of lay-
ers, or the number of neurons in a layer. Symbolic regression methods, in contrast
to neural networks, allow finding not only parameters, but also the structure of the
mathematical expression of a function.

In the field of control, the problem of finding a function is encountered in the
problems of optimal control, or generally in control synthesis, and identification of
the mathematical model of the control object. The formulation of these problems
and known methods for their solution are described in Chap. 2.

In the pioneer book on machine learning control [2], the control synthesis prob-
lem is solved by the genetic programming method. However, the example of control
synthesis given in the book consists in finding the controller parameters by a ge-
netic algorithm, i.e. again the search for the values of the parameters of a function
with a given structure. In this book, a general description of the symbolic regression
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methods is presented in Chap. 3, and then not only the genetic programming but
also various other symbolic regression methods are described in detail (Chap. 4),
and examples of solving control synthesis problems by these methods are given in
Chap. 5.

Note that almost twenty years of experience in using symbolic regression meth-
ods to solve the control problems led us to the definition of the main problem of
these methods, which does not yet allow them to effectively find formal analytical
solutions to various mathematical problems. This is the problem of finding an opti-
mal solution in a code space that does not have a single numerical measure. As in the
space of words: there is an alphabet and words can be close, based on the assess-
ment of symbols, but have completely different meanings, based on the semantic
assessment. The proximity of the names does not correspond to the proximity of
the meanings. The same is the case with the search on the space of function codes.
Function evaluation works with mappings. And the search is carried out on codes,
that is, on the names of these mappings. Thus, the metric between the names of the
functions does not correspond to the distances between the values of the functions.

In general, the encoding of a mathematical expression by any symbolic regres-
sion method can be described as follows. The basic set of elementary functions
and their code representation are determined. This basic set is like an alphabet. It
can also include the arguments of the desired mathematical expression. Further, the
rules for forming words (multisets of codes) from this alphabet are determined. Each
word is a code of the desired mathematical expression, which is inserted into the
mathematical problem to be solved and evaluated using a certain functional. The
problem is that the search for optimal solution is organized on the non-numerical
space of codes where only some symbolic metric can be set such as the Levenshtein,
Hamming, or Jaro distance, but the estimation of the solutions during the search is
performed in the space of functions with absolutely another metric. It turns out that
the search process is carried out on the space of function codes, where there is no
single metric, and it is impossible to determine a numerical estimate of the dis-
tance between any two different possible solutions. It is obvious that optimization
algorithms, which use arithmetic operations, cannot be used to find a solution here.
Among known optimization algorithms, only the genetic algorithm [9, 10] does not
use arithmetic operations and allows working with codes. However, it is not always
effective due to the complexity of the search space and requires additional improve-
ments. We managed to improve the efficiency of the genetic algorithm by applying
the principle of small variations in the basic solution, which in the general case
defines some conditions for the form of coding. A detailed discussion of the search
problems in non-numerical space of codes, the application of genetic algorithm, and
the concept of the principle of small variations are presented in Chap. 3. We do not
exclude the possibility of using some other approaches here. The need to develop
new modern algorithms for finding solutions is obvious; breakthrough results can
be obtained here, therefore the attention of a wide range of researchers is very im-
portant. If we draw an analogy with the technologies of neural networks, then their
structure has not changed much since their inception. But the main breakthroughs
were achieved with the advent of new learning methods, primarily the backpropaga-
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tion. We hope that the readers of this book will also be mathematicians dealing with
the problems of creating efficient algorithms for solving NP-hard problems. They
will be able to find here a new class of complex optimization problems, which is
defined as the problem of finding the optimal code. And new, more “reasonable,”
intelligent search optimization algorithms will be developed.

The material of the book is presented in a form accessible to a wide range of
readers, combining both classical mathematical formulations and substantiations of
the problems under consideration, as well as explanations and algorithms that are
understandable for programming.
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Chapter 2
Mathematical Statements of MLC Problems

Abstract This chapter presents the formal statements of MLC problems. First of all,
consider the formulation of the machine learning problem as the problem of finding
an unknown functional relationship. Next, we present the formulations of control
theory problems that can be distinguished as machine learning control problems,
namely the optimal control problem and more widely the general control synthesis
problem, optimal control problem based on the synthesis of the stabilization system
(synthesized optimal control), and the control object identification problem. All the
tasks involve finding an unknown function. The function can be set up to parameters,
and then machine learning techniques are used only to adjust the parameters. In
general case, both the structure of the function and its parameters should be found.

2.1 Machine Learning Problem

In many, if not all, scientific disciplines, the main task of research is to find a func-
tional relationship between certain values of parameters that characterize the prop-
erties of the object under research. If it is possible to present the sought functional
dependence in the form of a mathematical formula, then very often such a formula
becomes a law in this area and acquires the name of its creator. Here we would like
to emphasize the importance of the process of finding a mathematical expression for
a function.

Machine learning, in almost all known cases, is the search for some functional
dependence between the values of certain quantities. Unlike symbolic regression
methods, which is the main focus of the present book, machine learning by neural
networks, for example, also allows finding a functional relationship between some
characteristics, but in the form of a computational black box. The resulting func-
tional dependence can be used for modeling, prediction, classification, etc., but it
is impossible to determine the mathematical expression of this function. Hence, the
significance of the result obtained is somewhat different. It can be argued that the
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8 2 Mathematical Statements of MLC Problems

mathematical formula for some functional dependence is the crown of research and
establishes the fact that the researcher has reached a certain level of knowledge in
understanding the process and now he can share this knowledge in the form of a
formula with humanity.

To formulate mathematically a machine learning problem, it is necessary to as-
sume that in the process under study there is a functional relationship between the
values of some parameters of this process. This functional relationship allows to de-
termine the values of some parameters, called output, basing on the values of other
parameters, called input. At the same time, the mathematical formula describing the
implementation of this functional relationship is unknown. The values of the input
and output vectors can be determined as a result of experiments.

Definition 2.1. A set of computational procedures, which transforms a vec-
tor x from an input space X into a vector y from an output space Y, and in
which there is not any mathematical expression y = f(x) for them, is called an
unknown function.

Denote the unknown function between input vector x and output vector y as

y= α(x). (2.1)

Definition 2.2. Machine learning is the process of computer implementation
of a computational procedure for finding an unknown function.

We believe that such a definition of machine learning fully covers the main tasks
that are currently being solved using machine learning: approximation, forecasting,
clustering, etc. For example, a classification problem can also be thought of as find-
ing a function that has an integer step-wise character.

Now, in order to apply machine learning to solve different problems, it is neces-
sary to formulate these problems as problems of finding an unknown function

y= β (x,q), (2.2)

where q is the vector of the required parameters, q ∈ R
p, and β is some function

that is equal or close to α in terms of some criterion.
There are two types of approaches of searching for an unknown function: para-

metric and structural-parametric.

Type 1 The first approach is parametric, when the structure of the unknown
function is determined by the researcher accurate to the values of a certain
number of parameters, i.e. in (2.2) β is given.
Machine search for an unknown function in this case consists of finding
the optimal parameter values q according to a given criterion.
The parametric approach includes also the case when the structure of a
function regularly changes during the search, for example, if the function
is searched in the form of a mathematical series and the number of mem-
bers of the series is determined during the search.
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Searching for an unknown function basing on artificial neural networks
also refers to the parametric approach. Indeed, transformations performed
in any neural network are formally described by a function with a given
structure and a large number of unknown parameters.

Type 2 Another approach is structural-parametric. According to this
approach, the machine search for an unknown function consists of find-
ing the optimal structure of the function β and the optimal value of the
vector of parameters q.
Today, the structural-parametric approach can be implemented using sym-
bolic regression methods. These methods define a basic set of primitive
functions and coding rules. Then, using a genetic algorithm, the optimal
structure of the mathematical expression of the desired function on the
code space together with optimal parameters is searched. Symbolic regres-
sion methods differ in coding rules and crossover and mutation operations
of the genetic algorithm performed on codes.

Further in this book we take a detailed tour of the different approaches to machine
learning based on the application of symbolic regression methods. Ultimately the
idea is to create a clear map of the vast landscape of symbolic regression methods.

The search for an unknown function, which, as we have already defined, is the
goal of machine learning, should be carried out on the basis of some evaluating crite-
rion. Depending on the type of evaluating criterion, machine learning problems can
be divided into two main classes: unsupervised learning and supervised learning.
Note that the currently existing various types of machine learning can be attributed
to one of these categories according to evaluating criterion.

In some problems, an evaluating criterion is specified

γ( β (x,q)) : X×R
p → R

1. (2.3)

Particularly, such evaluating criterion for machine learning control problems can
be a quality functional. For example, in the control synthesis problem considered
in more detail below it is necessary to find the control function dependent of the
coordinates of the state space of the object. To estimate the desired function, it is
substituted into the model of the control object and the value of the given functional
is calculated. The researcher usually knows the approximate value of the functional
for the optimal solution of the problem and set it up to evaluate the received solution.

Definition 2.3. Unsupervised machine learning consists of finding a
function (2.2) such that for some given estimate (2.3) the following inequation is
true

‖ f ∗ − γ( β (x,q))‖ ≤ δ , (2.4)

where f ∗ is a satisfactory value of the estimate, and δ is a small positive value.

Another approach for evaluating the desired function is to create a training set.
A training set is some possible examples that are used during the learning process
to search for unknown function.
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Definition 2.4. A pair of sets of compatible dimensions

(X̃, Ỹ) (2.5)

is called a training set if

X̃ = {x1, . . . ,xN} ⊆ X, (2.6)

Ỹ = {y1 = α(x1), . . . ,yN = α(xN)} ⊆ Y, (2.7)

and it is assumed that there is one-to-one mapping X → Y.

Definition 2.5. Supervised machine learning consists of building a
training set (2.5) and finding a function (2.2) such that if the total error for the
training set is less than the given value ε

N

∑
i=1

‖yi − β (xi,q)‖ ≤ ε , (2.8)

then for ∀x∗ not included in the training set x∗ /∈ X̃ the following inequation is
fulfilled

‖y∗ − β (x∗,q)‖ ≤ δ , (2.9)

where y∗ = α(x∗).

Based on the introduced formulations and strict mathematical definitions, we can
now apply machine learning methods in various tasks where it is required to search
for a function. A vast area of such problems are control tasks.

Definition 2.6. Machine learning control is a machine search for an un-
known control function using machine learning methods.

Such problems in the field of control include the problem of optimal control in
various formulations, for example, in the formulation of Pontryagin or Bellman, the
problem of general synthesis of control, as a feedback function on the state of the
object, as well as the problem of identifying the model of the control object itself,
as a search for functions of the right-hand sides of the equations of dynamics of the
object. All these tasks require finding an unknown function, and therefore, machine
learning methods can be applied to them.

In the mathematical formulation of control problems, the model of a control ob-
ject is described by a system of ordinary differential equations. The right-hand sides
of this system of differential equations, written in the Cauchy form, include a free
control vector. This vector is called “free” because it can take any values from a cer-
tain limited set of values. Without specific values of the control vector, the system
of ordinary differential equations describing the mathematical model of the con-
trol object cannot be solved. Object control in the classical mathematical sense is
to qualitatively change the right-hand sides of the differential equations due to the
control vector included in them. Such description is used in the next sections in
formulation of control problems as MLC problems.
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2.2 Optimal Control Problem

The optimal control problem is the most famous problem in the field of control
theory. This problem at one time attracted mathematicians to the field of control and
made control theory a branch of mathematics.

Previously in the field of control, applied methods based on the use of transfer
functions or frequency characteristics, which were borrowed from electrical engi-
neering, prevailed. According to the frequency approach, each element of the con-
trol system was considered as a low-pass filter. The developer needed to build such a
control system from separate blocks with certain frequency characteristics, so that,
as a result, the control system, together with the object, would pass useful signals
without distortion and, if possible, would not allow interference.

The representation of the mathematical model of the control object in the form
of a system of ordinary differential equations began to be widely used after the
formulation of the optimal control problem. To emphasize the adherence to modern
trends, and not to the outdated apparatus of transfer functions, in the sixties of the
last century many authors wrote in scientific articles that the state space method
was used when considering the control system. At the present time, the problem
of optimal control continues to be actively studied by mathematicians all over the
world, probably because an effective general numerical method has not yet been
developed for its solution.

In the optimal control problem, the control object is described by a system of
ordinary differential equations, in the right-hand sides of which there is an unknown
control vector. The initial and terminal conditions and the integral quality functional
are also given. It is necessary to find control as a function of time. If we substitute
this function into the right-hand sides of the differential equations, then we obtain
a non-stationary system of differential equations with a known function of time on
the right-hand side. A particular solution of this non-stationary system of differen-
tial equations from the given initial conditions reaches terminal conditions, and the
value of the quality functional is optimal in this case.

The optimal control problem belongs to the problems of infinite-dimensional op-
timization, since it is necessary to find a vector function of time, and not a constant
vector in a real vector space of a certain dimension. Therefore, this problem must
belong to the class of problems of the calculus of variations. Initially, attempts were
made to solve the optimal control problem using the calculus of variations. How-
ever, it turned out that the constraints on the values of control and the possibility
of the control function to have discontinuities of the first kind both in value and in
derivatives make it impossible to apply the methods of the calculus of variations to
the optimal control problem.

At present, the most significant result in the field of optimal control is the Pon-
tryagin maximum principle. Application of this approach to the optimal control
problem allows to consider the optimal control problem as an optimization prob-
lem in a finite-dimensional space. According to the maximum principle, conjugate
variables are introduced into the problem, which in this case play the role of La-
grange multipliers in the conditional minimization problem. Conjugate variables
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are necessary in order to take into account the connections described by the math-
ematical model of the control object when minimizing a given functional. Unlike
Lagrange multipliers, conjugate variables change over time, and to determine them,
it is necessary to solve a system of differential equations. Next, the Hamiltonian is
constructed, which includes the functional, conjugate variables and the right-hand
sides of the system of differential equations of the control object model. According
to the maximum principle, a necessary condition for optimal control is to maximize
the value of the Hamiltonian at each time instant. In order to find the optimal con-
trol from the condition of the maximum of the Hamiltonian, it is necessary at each
moment of time to know the value of the state vector of the control object and the
vector of conjugate variables. The problem is that the initial and terminal condi-
tions are known for the system of differential equations of the plant model, and for
conjugate variables there is a system of differential equations, but this system has
neither initial nor terminal conditions. Therefore, a boundary value problem arises
of finding the initial conditions for a system of conjugate variables such that, when
calculating the control at each integration step, from the conditions for the maximum
of the Hamiltonian, the state vector as a result falls into the given terminal condi-
tions. This problem is formulated as a finite-dimensional optimization problem, in
which it is necessary to find the vector of initial conditions for a system of differen-
tial equations of conjugate variables according to the criterion of the minimum error
of the state vector entering the terminal conditions.

There are also direct numerical methods that can be used for the optimal control
problem, without applying the Pontryagin maximum principle, directly according
to a given integral quality criterion.

The optimal control problem is presented here for several reasons. First, in the
optimal control problem, it is necessary to find a function, albeit one variable, but
this means that when searching for a function, machine learning methods can be
used. Second, after solving the optimal control problem and finding the control
as a function of time for the practical implementation of the found optimal solu-
tion, it is necessary to construct a system for stabilizing the motion of the control
object along the found optimal program trajectory, which leads to the problem of
finding another control function and, therefore, again to the problem of machine
learning. And finally, the problem of optimal control can be solved after solving
the problem of stabilizing the object with respect to the equilibrium point in the
state space. This method will be described below, and it leads to finding a solution
to the optimal control problem in the class of practically realizable control functions.

Consider a mathematical problem statement of the optimal control problem.
A model of the control object is given in the form of the system of ordinary

differential equations
ẋ= f(x,u), (2.10)

where x is a vector of the state space, x ∈ R
n, u is a vector of control, u ∈ U ⊆ R

m,
and U is a compact set, m ≤ n.
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For the system (2.10) initial conditions are given by

x(0) = x0. (2.11)

Terminal conditions are given by

x(t f ) = x f , (2.12)

where t f is a terminal time, which is not given but is determined by achieving the
terminal conditions.

The quality criterion is given in the form of an integral and/or terminal functional

J = F(x(t f ))+

t f∫

0

f0(x(t),u(t))dt → min . (2.13)

It is necessary to find a control as a function of time

u= v(t), (2.14)

where v(t) ∈ U for t ∈ [0; t f ].
The received control function v(t) is called a program control. If this program

control (2.14) is substituted into the right part of the system (2.10), then the follow-
ing system of differential equations is obtained

ẋ= f(x,v(t)). (2.15)

Such system (2.31) has a partial solution x(t,x0) from the initial conditions
(2.11), which achieves the terminal conditions (2.12) with an optimal value of the
quality criterion (2.30).

Computational methods for the optimal control problem include two approaches.
The first one is called a direct approach. It includes methods that search

for optimal control in the form of function of time

u= v(t,q), (2.16)

where q is a vector of parameters, q ∈ R
p.

The optimal control problem here is reduced to a nonlinear programming prob-
lem [1, 2] that provides the transition from the optimization problem in the infinite-
dimensional space to the optimization problem in the finite-dimensional space. As
a result we get a highly dimensional nonlinear programming problem that could be
solved using modern methods for solving the problem of nonlinear programming,
for example, stochastic gradient search methods, which are successfully used to-
day for training neural networks, but in this case we must be sure that the objective
function is unimodal. Unfortunately, most applied optimal control problems have
a non-unimodal functional, especially problems with phase constraints, which is
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often encountered robots control, where each robot is a phase constraint for other
robots. This circumstance determines the applicability of both evolutionary algo-
rithms, from the point of view of parametric search for a control function, and sym-
bolic regression methods, as a tool for structural-parametric search.

The second approach is called indirect and includes application of the Pon-
tryagin’s maximum principle [3]. According to the approach a Hamiltonian is writ-
ten for the problem

H(x, ψ ,u) =−∂F(x)
∂x

f(x,u)− f0(x,u)+ ψT f(x,u), (2.17)

where ψ is a vector of conjugate variables, ψ = [ψ1 . . . ψn]
T .

The vector of conjugate variables is determined from the system of differential
equations

ψ̇ =−∂H(x, ψ ,u)
∂x

. (2.18)

According to Pontryagin’s maximum principle an optimal control in each mo-
ment provides maximum of Hamiltonian

u(t) = argmax
u∈U

H(x(t,x0), ψ(t),u), (2.19)

where ψ(t) is a solution of the system (2.18).
The Pontryagin’s maximum principle transforms the optimal control problem,

where it is necessary to find control function, into the boundary problem, where it is
necessary to find a vector of initial conditions for conjugate variables. Application of
the maximum principle doubles the dimension of the system due to the introduction
of conjugate variables, which requires additional computational costs. Additional
difficulty is that for a system of equations (2.18) for conjugate variables, initial
conditions are unknown. The approach itself was developed in the 1960s, when
computer technology was very different from the modern one and it was important
to be able to build analytical solutions, at least for problems of small dimension.
Current trends are such that computer technology and numerical approaches are
gradually crowding out analytic.

Thus, in the presented mathematical formulation of the optimal control problem,
it is required to find the optimal control function (2.14). This means that this problem
can be considered as a machine learning control problem and can be solved by
machine learning methods.

2.3 Control Synthesis Problem

The control synthesis problem is the main one in the control theory. In contrast to
the aboveconsidered optimal control problem, it has a more applied character, since
control is sought here as a function of the object state. As a result, the developer
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receives a feedback control unit, which ensures, according to signals from sensors
that determine the object’s state, that the object achieves the control goal with the
optimal value of the control quality criterion for any current state of the object. This
is the specific feature of the control synthesis problem. Solving one control synthesis
problem is equivalent to solving an infinite set of optimal control problems. After
solving the control synthesis problem, the resulting control unit automatically solves
the optimal control problem for any current state of the control object.

At the dawn of control theory creation in the 1960s of the last century, while
studying the mathematical formulation of the optimal control problem, R. Bellman
formulated the control synthesis problem and derived the Bellman equation [4]. The
equation is a partial differential equation. The solution to this equation is the Bell-
man function, one of the arguments of which is the control vector. Finding such
control that maximizes the Bellman function is a solution to the synthesis problem.
Note that partial differential equations are much more complicated than ordinary
differential equations and in the general case almost never have a common solution.
Bellman proposed a numerical procedure for finding a solution in the form of dy-
namic programming [5,6]. As a result of applying this procedure for a huge number
of numerical values of state vectors, we obtain a huge number of control vectors,
while we do not obtain any analytical dependence of control on the state.

Other attempts to solve the Bellman equation consider special cases and for them
obtain an analytical formula for the Bellman function. Such cases, for example, in-
clude linear control systems with a quadratic quality functional. In this case, a con-
trol is searched in the form of a linear dependence on the state space coordinates.
Such approach of analytical design of optimal controllers (ADOC) [7] is well for-
malized, but it works only for a narrow class of problems.

At that very time, several control synthesis problems were completely solved
based on the Pontryagin maximum principle [3]. It turned out well since simple
models of control objects were considered, mainly of the second order. The time-
optimal problem was solved. And it managed to obtain general solutions for the dif-
ferential equations of the control object and conjugate variables. Then, on the basis
of the constructed solutions from different initial conditions, the control switching
points were determined. As seen, this approach is not universal, but when applying
this approach Boltyanskii [8] formulated the problem of general synthesis of con-
trol, which is an urgent mathematical problem up to the present time because its
mathematical formulation has no general analytical or numerical methods of solu-
tion till now.

Consider a conventional formulation of the control synthesis problem.
Given a control object in the form (2.10) of the system of differential equations.
The domain of initial conditions in the state space is given by

X0 ⊆ R
n. (2.20)

The existence of the initial condition domain is a main feature of the control
synthesis problem. Initially, Boltyanskii defined the domain of initial conditions as
a whole space of states X0 = R

n and tried to solve this problem analytically. As
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from practical and computational sense, the initial domain should still be limited.
Therefore, we consider the domain X0 as a restricted set in the space of states.

The terminal conditions (2.12) are given.
The quality criterion is given by

J1 =
∫

· · ·
∫

X0

⎛
⎝F(x(t f ,x0))+

t f∫

0

f0(x(t,x0),u(t))dt

⎞
⎠dx0

1 . . .dx0
n → min

u∈U
, (2.21)

where x0 = [x0
1 . . .x

0
n]

T ∈ X0, t f is not given but determined by achieving the termi-
nal conditions (2.12), it can be different for different initial conditions.

It is necessary to find a control function as a function of the state space vector

u= h(x) ∈ U, h(x) : Rn → R
m. (2.22)

If the obtained control function is inserted into the right part of the mathematical
model (2.10), then the obtained system of differential equations

ẋ= f(x,h(x)) (2.23)

will have a partial solution for any initial condition from the initial domain (2.20)

x(0) = x0 ∈ X0, (2.24)

which achieves the terminal condition (2.12) with an optimal value of the quality
criterion (2.30).

Thus, solving the synthesis problem as finding the control function (2.22) corre-
sponds to the machine learning control.

For computational solution of the control synthesis problem (2.10), (2.20),
(2.12), (2.21), the initial condition domain (2.20) is replaced by a finite set of initial
conditions

X = {x0,1, . . . ,x0,K}, (2.25)

and the multiple integral of the quality criterion (2.21) is replaced by corresponding
sum for all initial conditions

J2 =
K

∑
i=1

⎛
⎝F(x(t f ,i,x0,i))+

t f ,i∫

0

f0(x(t,x0,i),u(t))dt

⎞
⎠ , (2.26)

where t f ,i is the time of achieving the terminal condition from the initial condition
x0,i, i = 1, . . . ,K.

In the search process the time of achieving the terminal condition is determined
by the following equation:

t f ,i =

{
t, if t < t+and ‖x f −x‖ ≤ ε
t+, otherwise

, (2.27)
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where ε is an accuracy of achieving the terminal condition, t+ is a limit time for
achieving the terminal condition, and ε and t+ are given positive numbers.

The problem of the numerical solution of the control synthesis problem is to
find the structure of the mathematical expression of the multidimensional control
function and its parameters. The dimension of the control function is generally equal
to the dimension of the control vector, and the number of arguments of the control
function is equal to the dimension of the state vector.

Since the synthesis problem is extremely important in control theory, a large
baggage of methods for its solution has already been accumulated. Let us take a
quick look at the existing approaches.

The most famous analytical method for solving the control synthesis problem is
the integrator backstepping, developed in 1992 by Kokotovic [9, 10]. The essence
of this method is to include some nonlinearities into the control function based
on the analysis of the right-hand sides of the differential equations in order to
compensate them and obtain a constant sign Lyapunov function for a closed con-
trol system, for example, with even powers of the state vector components, and
with the same sign. The method is implemented manually by the researcher, de-
pends on the model of the control object, and works especially well for cascade
systems in which some coordinates of the state vector are control for other coor-
dinates, for example, in some aircrafts the spatial movement is controlled by the
angular position. The application of this method is rather effective for low-order
systems.

Similar in concept is the method of analytical design of aggregated regulators
(ADAR), developed by Kolesnikov [11, 12]. The method consists of introducing
aggregated variables that describe the control goal, for example, the terminal state.
These variables are introduced into the functional and then, when composing the
Bellman equation, the time derivative is taken with respect to them. In the ana-
lytical calculation of derivatives, the aggregated variables include the right parts
of the control object model; thus, they depend on the control vector. Then we get
a system of nonlinear equations, the number of which is almost always equal to
the dimension of the state vector. These equations include the control vector. By
solving these equations with respect to the control vector, we obtain the control
function as a function of the coordinates of the state space. There are tasks in
which the method turns out to be effective; however, note that, first, the control
vector, as a rule, has a dimension less than the state vector; therefore, the system
of nonlinear equations has many solutions with respect to control, and second, like
backstepping , it is a manual method that does not lend itself to machine automa-
tion.

There is an approach to synthesis problem on the base of a Bellman equation

− dμ(x)
dt

= min
u∈U

{(
∂ μ(x)

∂x

)T

f(x,u)+
∂F(x)

∂x
f(x,u)+ f0(x,u)

}
. (2.28)
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If the Bellman function μ(x) is known, then the control function is found from
the Bellman equation (2.28)

u= argmin

{(
∂ μ(x)

∂x

)T

f(x,u)+
∂F(x)

∂x
f(x,u)+ f0(x,u)

}
. (2.29)

To solve the synthesis problem based on Bellman equation by machine learning,
it is needed to approximate the Bellman function. To apply the symbolic regression
method for Bellman function we rewrite the functional taking into account all initial
and terminal conditions.

J =
K

∑
j=1

⎛
⎝

t f , j∫

0

f0(x(t,x0, j),u)dt + p1

√
n

∑
i=1

(x f
i − xi(t f ,i,x0, j))2

⎞
⎠→ min

μ(x)
, (2.30)

where p1 is a weight coefficient, and x(t,x0,K) is a partial solution of the system
with control (2.29) from initial condition x0, j.

There are also some other analytical methods to solve the synthesis problem, like
methods of modal control [13] for linear systems, as well as synthesis based on the
application of the Lyapunov function [14,15] etc., but all known analytical synthesis
methods are appropriate for the specific type of model; therefore they cannot be
considered universal.

Today in most applications, as a rule, specialists solve the problem of control
synthesis using the so-called technical synthesis. According to the model, they de-
termine the control channels, i.e. determine which components of the control vector
affect the components of the state vector. Further, regulators are inserted into these
channels, most often a PID regulator, or some other regulator, even possibly nonlin-
ear. Then, with the help of a computer, the parameters of these regulators are found.
A majority of the control systems have been built using such technical approach. In
the present period, this method is also applied for robots, but this is essentially the
manual labor of a developer and does not at all meet modern challenges.

Previously, automatic control systems were used only in missiles and in the au-
topilots of aircraft and submarines. Now robots have appeared, and the number of
these robots, taking into account additive technologies, is growing catastrophically
every year, and the use of technical methods for creating automatic control systems
for them is the main obstacle for their development and implementation. Writing by
hand a control system program for robots becomes a very difficult task. For exam-
ple, how many operators will the robot control program contain, which simulates
the actions of a fly? The fly controls a complex wing motion that allows it to hang
motionless in the air, and it can move along a vertical surface and even with a nega-
tive slope. Further, the fly sees dangers and makes complex movements so as not to
be caught. At the same time, like an ordinary animal, the fly is looking for food and
the possibility of reproduction. With a simple, most optimistic estimate, the control
system for such an object should contain more than a million programming opera-
tors. Probably such a program could be written by a large team of programmers. But
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here, and when creating even more complex control systems, the need to automate
the synthesis of the control system is obvious.

2.4 Synthesized Optimal Control Problem

The formulated problems of optimal control and synthesis of control are, in fact,
the main research fields in the optimal control theory. But unlike theoretical calcu-
lations, where the main criterion of quality is contained in the quality functional,
practical control systems are forced to fend off a whole series of emerging difficul-
ties associated with inaccuracies in the model used in calculations, arising noises
in the state of the system, including deviations at the initial position, the need to
quickly respond to changes in real conditions, be able to recalculate the trajectory
of movement on board in real time, etc.

There is a field of the so-called robust systems [16, 17], in the development of
which it is possible to take into account the discrepancy in the state of the object,
which allows the system to remain stable during operation. However, in this case,
one has to sacrifice optimality in order to lay a margin for the quality of functioning.

Ideally, we still strive to develop optimal systems that are the best in terms of
the given criterion. In this case, the optimal control problem (see Sect. 2.2) is solved
first. But in fact its solution cannot be directly realized on a board processor of con-
trol object since the obtained optimal control function is a function of time and its
realization leads to open-loop control system, so any discrepancy in time of object
movement and control will lead to the fact that the control goal will not be achieved
and the value of the quality criterion will differ from that obtained during mathemat-
ical calculations. In practical control system design, the caused discrepancy between
the real trajectory of the object and the obtained optimal one is compensated by the
synthesis of a feedback motion stabilization system relative to the optimal trajectory.

But due to the introduction of the stabilization system, we again lose the opti-
mality. Indeed, a number of facts indicate this:

• Construction of the stabilization system changes the mathematical model of the
object and the received control might not be optimal for the new model.

• The error in the motion of the object along the trajectory can be both in time and
in position. Both these errors could lead to non-optimal motion.

• The stabilization system must have control resource to return the object on the
trajectory. This means that when calculating the optimal control it is necessary
to take into account that not all control resources will be available. And this, as a
rule, is omitted in the calculations.

• And the last but not least, that the motion of the object in the neighborhood of the
programmed trajectory may differ significantly from the optimal one in terms of
the value of the functional.

There is also a one more circumstance that complicates the implementation of the
solution to the optimal control problem. In the classical formulation of the optimal
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control problem no additional requirements are put forward for the mathematical
model of the control object. It follows that the problem is solved for any object,
including not stable or possessing special properties, bifurcations, cycles, poles. In
practical implementation, the inaccuracies of the mathematical model behave dif-
ferently depending on the qualitative characteristics of the system of differential
equations of the model, and they are also compensated by the feedback stabilization
system.

In practice, engineers have long understood the difficulties of controlling unsta-
ble objects, so they initially make the object stable and then solve the problems
of control. It is known that objects possess good properties for control, when their
mathematical models are stable in the phase space. Driven by the analysis of practi-
cally implemented control systems, in this section, we would like to present a new
numerical formulation of optimal control problem based on stabilization system
synthesis with the main focus on its feasibility.

According to the approach, the optimal control problem is supposed to be solved
after ensuring stability to the control object in the state space. Therefore, this ap-
proach is called synthesized optimal control. Its key idea is that a control function
is found such that the system of differential equations will always have a stable
equilibrium point in the state space. With that, the control system contains param-
eters that affect the position of the equilibrium point. Consequently, the object is
controlled by changing the position of the equilibrium point.

Consider the Problem Statement of Synthesized Optimal Control

Given a mathematical model of the control object in the form of the system of dif-
ferential equations

ẋ= f(x,u), (2.31)

where x is a state space vector, x ∈ R
n, u is a control vector, u ∈ U ⊆ R

m, U is a
limited compact set, m ≤ n.

The initial condition is given by

x(0) = x0. (2.32)

Given the terminal condition

x(t f ) = x f , (2.33)

where t f is the time of achieving the terminal condition, t f is not given, but limited

t f ≤ t+, (2.34)

and t+ is given.
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The quality criterion is given by

J1 =

t f∫

0

f0(x,u)dt → min
u∈U

. (2.35)

It is necessary to find a control in the following form:

u= h(x∗(t)−x) ∈ U, (2.36)

where x∗(t) is a function of time.
The function

h(x∗(t)−x) : Rn → R
m (2.37)

is searched such that it possesses a feasibility property [18], i.e. for any time t =
tk ≤ t f the system

ẋ= f(x,h(x∗(tk)−x)) (2.38)

has a stable equilibrium point

x̃(x∗(tk)) ∈ R
n, (2.39)

f(x̃,h(x∗(tk)− x̃)) = 0, (2.40)

det(A−λE) = λ n +an−1λ n−1 + . . .+a1λ +a0 =
n

∏
j=1

(λ −λ j) = 0, (2.41)

where
λ j = α j + iβ j, α j < 0, j = 1, . . . ,n, (2.42)

i =
√−1,

A=
∂ f(x̃,h(x∗(tk)− x̃))

∂x
. (2.43)

Algorithmically, the solution of the synthesized optimal control problem and
finding the control function (2.36) is assumed to be carried out in two stages as
two sequential tasks.

1st Stage: Stabilization System Synthesis

Initially, on the stabilization stage, the control synthesis problem is solved to provide
existence of the stable equilibrium point in the state space. Consider its problem
statement to be solved numerically by some machine learning technique.

The mathematical model of the control object (2.31) is given.
The set of initial conditions is given by

X0 = {x0,1, . . . ,x0,K}. (2.44)
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The terminal position is given. This can be any point relative to which the system
will be stabilized. Its position cannot coincide with the terminal condition (2.33) in
the optimal control problem.

x(t∗) = x∗ ∈ R
n, (2.45)

where t∗ is not given, but limited

t∗ =
{

t, if t < t+ and ‖x∗ −x(t,x0)‖ ≤ ε
t+, otherwise

, (2.46)

where x(t,x0) is a partial solution of the system (2.31), and ε and t+ are given
positive values.

It is necessary to find the control function in the form

u= h(x∗ −x) (2.47)

that partial solutions of the system of differential equations

ẋ= f(x,h(x∗ −x)) (2.48)

from any initial condition from the area (2.44)

x0,i ∈ X0, i = 1, . . . ,K (2.49)

will achieve terminal condition (2.45) with an optimal value of the following crite-
rion:

J2 =
K

∑
i=1

(
t∗i + p1‖x∗ −x(t∗i ,x

0,i)‖) , (2.50)

where

t∗i =

{
t, if t < t+ and ‖x∗ −x(t,x0,i)‖ ≤ ε1

t+1 , otherwise
, (2.51)

‖x∗ −x(t,x0,i)‖=
√

n

∑
i=1

(x∗ −x(t,x0,i))2, (2.52)

p1 is a weight coefficient, and ε and t+1 are given positive values.

2nd Stage: Solution of the Optimal Control Problem

At the second stage of the synthesized optimal control, after solution of the con-
trol synthesis problem (2.31)–(2.52), the optimal control problem (2.31)–(2.35) is
solved for the mathematical model (2.48), where it is necessary to find a control
function in the following form:

x∗(t) = v(t) (2.53)
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in order to minimize the given criterion (2.35).
Note that at the second stage the searched function (2.53) has the same dimen-

sion as the state space. As a particular case, it can be searched as a piece-constant
function,

v(t) = x∗,i, if (i−1)Δ ≤ t < iΔ , (2.54)

where x∗,i are found optimal values of the equilibrium point coordinates, i =
1, . . . ,K, Δ is a given time interval,

K =

⌊
t+

Δ

⌋
. (2.55)

Thus, according to the method of synthesized optimal control, the stability of
the object is first ensured, i.e. an equilibrium point appears in the phase space. In
the neighborhood of the equilibrium point, the phase trajectories contract, and this
property determines the feasibility of the system. This is the main strength of this
approach in comparison with the problem of optimal control, described in Sect. 2.2,
where as a result the developer gets an open-loop control system.

To provide this property, it is necessary to numerically solve the problem of syn-
thesizing the stabilization system in order to obtain expressions for the control and
substitute them in the right-hand sides of the object model. A logical question may
arise here: if it is still necessary to solve the problem of synthesis, may it be better
to consider the problem directly as a problem of general synthesis (as described in
Sect. 2.3)? As noted earlier, the problem of general synthesis is very difficult, in-
cluding from a computational point of view. It must be solved in advance, taking
into account all possible phase constraints. However, in most application systems,
this may not always be possible. Typically, the control object operates in a dynamic
environment and it is extremely important that the optimal path can be calculated on
board. The approach based on synthesized optimal control makes it possible to do
just that. The problem of the stabilization system synthesis is solved in advance, and
already the optimal position of the equilibrium points, as parameters of the control
system, can be calculated either in advance or in real time on board.

2.5 Model Identification Problem

Usually, when creating a control system, a mathematical model of the control ob-
ject is required, as a rule, in the form of a system of differential equations. When
the model is obtained, researchers or developers study it and calculate the optimal
control system using one of the well-known methods. Receiving a mathematical
model for the control object is a complex manual process. Note that any new mov-
able element of the control object changes its mathematical model and increases the
number of generalized coordinates and control channels. So this process should also
be automated and, therefore, must be considered as the task for machine learning.
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In the identification problem, the mathematical model of the control object is not
fully or partially known, but the researcher has a real control object or its physical
simulator. In this case, the real control object or physical simulator layout is an
unknown function. The space of the input vectors of this function is the space of
admissible controls for this object.

Assume that it is known how many components have a control vector u =
[u1 . . .um]

T and a state space vector x = [x1 . . .xn]
T of the control object. A time

interval Δ t is set.
A control function of time is set in each interval

u(t) = vk(t), (k−1)Δ t ≤ t < kΔ t, (2.56)

where vk(t) are given values of the function of time, k = 1, . . . ,N.
The control function (2.56) is supplied to the real object, which changes its state

depending on its current state, x(t,x0), where x0 is a state of the real control object
in initial moment of time.

Define M points on the axis of time t0, t1, . . . , tM−1, and values of the state vector
are saved in these points

X = {x0, . . . ,xM−1}, (2.57)

where x j = x(t j,x0), j = 0, . . . ,M−1.
Setting the control function (2.56) and storing points of the state vector (2.57)

are repeated a given number L of times.
In the result, the sets of control function and points of the state space vector are

obtained
〈U,X〉, (2.58)

where
U = {u1(·), . . . ,uL(·)}, (2.59)

X = {X1, . . . ,XL}, (2.60)

X j = {x j,1, . . . ,x j,M}, j = 1, . . . ,L. (2.61)

The pair (2.58) is called a training set.
It is necessary to find a system of ordinary differential equations in the form

˙̃x= f̃(x̃, ũ), (2.62)

where x̃= [x̃1 . . . x̃n]
T , ũ= [ũ1 . . . ũm]

T .
Let

x̃(t,x0,u j(·)), j = 1, . . . ,L, (2.63)

be a value of the partial solution of the differential equation system (2.62) with a
control function u j(·), from initial conditions x0 in the moment of time t.
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The right part function f(x̃, ũ) is searched on the criterion

J =

√√√√ L

∑
j=1

M−1

∑
i=0

n

∑
k=1

(x̃k(ti,x j,0,u j(·))− x j,i
k )2 → min

f̃(x̃,u)
. (2.64)

Thus, machine learning problem of model identification is to find the function
(2.62) by minimizing the functional (2.64).
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Chapter 3
Numerical Solution of Machine Learning
Control Problems

Abstract This chapter discusses general issues in the numerical solution of machine
learning control problems. As parametric machine learning approach, the most pop-
ular and widespread apparatus of neural networks is considered. Theoretical sub-
stantiations are given for the general possibility of using machine learning methods
for searching functions, namely the Kolmogorov–Arnold theorem. The only gen-
eral approach of structural-parametric search of functions based on the methods of
symbolic regression is presented. To overcome computational difficulties, it is pro-
posed to use the principle of small variations. A description of the genetic algorithm
is given as the main search mechanism in the space of structures, and in addition,
it can also be used to adjust the parameters of a given structure of a function in
parametric search.

3.1 Artificial Neural Networks

According to our definition, machine learning task is searching for unknown func-
tions. The most general numerical approach to the approximation of any function,
including those with discontinuities of the first kind, is the approximation by various
polynomial series, for example, Taylor, Fourier, etc. But in the case of multidimen-
sional functions of a vector argument, the use of such series is difficult.

Today, a neural network is considered a universal approximator [1]. In fact, any
neural network is a sequential set of linear transformations, which generally corre-
sponds to the first term of a multidimensional Taylor series expansion.

The problem of finding an unknown function using neural networks is of a para-
metric type, when the required function is specified by the researcher with an accu-
racy up to parameters, and the machine is looking for these parameters.

Indeed, any type of neural networks is a function with a given structure and a
large number of parameters. The structure is a sequence of linear vector transfor-
mations. Each transformation is performed on a separate layer. The nonlinearities
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Fig. 3.1 General scheme of a multilayer perceptron

introduced between the layers are added in order to separate some linear transfor-
mations from others.

For example, on some layer, a linear transformation of the input vector x is per-
formed

y= Ax.

On the next layer, the linear transformation is again carried out

z= By.

So, if the layers are not separated by some nonlinearity, then in fact one linear
transformation takes place

z= BAx.

In order to separate these linear transformations, nonlinearities are introduced
between them. The type of nonlinearity is also set by the researcher at his discretion.
Previously, a sigmoid function [2, 3] was used as the main activation function, and
now ReLU is very popular [4].

Let us consider the transformations of the input vector in the neural network
using the example of a multilayer perceptron with N layers, as shown in Fig. 3.1.

zi = Aiyi−1 +bi, i = 1, . . . ,N (3.1)

yi = F(zi), (3.2)

where bi is a vector of displacement, in some NN it may be equal to zero, and F is
a componentwise nonlinear transformation of the components of the vector zi,

F(zi) =

⎡
⎢⎢⎣

f1(z1)
f2(z2)
. . .

fN(zN)

⎤
⎥⎥⎦,

where fi are nonlinear transformations and are called activation functions.
During NN training, the components of the matrix Ai and the vector bi are

searched in the function (3.1).
As can be seen, a neural network is a function with a given structure. You can

change the structure by increasing or decreasing the number of layers, or change
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the activation functions (3.2), but these actions are rarely performed by developers
when training neural networks.

Similar linear transformations can be written for other types of neural networks,
such as the Elman and Jordan recurrent networks [5], the Hopfield feedback network
[6], etc.

The possibility of approximating any function using a neural network is based
on the Kolmogorov–Arnold representation theorem [7, 8] in that any multidimen-
sional function can be represented as a finite composition of continuous functions of
one variable. Its extension to ANN is also known as Kolmogorov–Arnold—Hecht-
Nielsen theorem [9].

Today, artificial neural networks have developed into a powerful direction with
a good software and application base. As a result, the neural network gives us a
representation of the function, implements its operation, but note that it does not
provide any information about this function, and the function can be exponential or
polynomial, have kinks and discontinuities, etc. ANN performs substitution of this
function but does not disclose its type and properties. And this is very important
from the point of view of understanding the ongoing processes, especially in the
field of control.

Another approach to machine search for an unknown function is the use of sym-
bolic regression methods. These methods make it possible to simultaneously carry
out a structural-parametric search for a function and, as a result, give a description
of the function that reflects the properties of this function. In addition, in the general
case, any symbolic regression method can approximate a neural network.

3.2 General Approach of Symbolic Regression

In the modern conception and in the form in which these conceptions are used in
this book, symbolic regression methods are methods for encoding mathematical ex-
pressions and a collection of algorithms for finding the optimal mathematical ex-
pressions in the space of these codes in machine learning problems (Fig. 3.2).

Fig. 3.2 General scheme of symbolic regression methods
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Encoding Technique

To encode a mathematical expression using any symbolic regression method, it is
necessary to create an initial alphabet of primitives. It should include a set of el-
ementary functions from which the mathematical expression is constructed and a
set of arguments of this mathematical expression. The most general and convenient
way for coding and decoding is to split the set of elementary functions into subsets
of functions with a certain number of arguments.

F1 = { f1,1(z), f1,2(z), . . . , f1,v1(z)},
F2 = { f2,1(z1,z2), f2,2(z1,z2), . . . , f2,v2(z1,z2)},
F3 = { f3,1(z1,z2,z3), f3,2(z1,z2,z3), . . . , f3,v3(z1,z2,z3)},

. . .

(3.3)

where vi is the number of elements in the set Fi.
Here the subscript of the set identifier and the first subscript of the element indi-

cate the number of arguments of the function. In most cases, it is sufficient to use
functions with one and two arguments. Note that functions with three arguments are
convenient to describe IF-operator. For example,

f3,1(z1,z2,z3) =

{
z2, if z1 ≤ 0
z3, otherwise

. (3.4)

In the case of representing the alphabet of primitives in the form (3.3), the set of
arguments of the mathematical expression corresponds to the set of functions with
zero arguments

F0 = { f0,1, f0,2, . . . , f0,v0}. (3.5)

Representation of alphabet primitives in the form (3.3), (3.5) is not mandatory.
In some methods of symbolic regression, all primitive functions, regardless of the
number of arguments, are placed in one set. In any case, when decoding a math-
ematical expression, and this is always required when calculating the value of the
desired mathematical expression, the number of arguments of the desired function
is important information.

Note that when representing the alphabet in the form (3.3), any function, includ-
ing the argument of the mathematical expression, is identified by an integer vector
of two components

fa,b ↔ [a b]T . (3.6)

To solve machine learning control problems and search for unknown functions,
it is necessary to determine the rules for composing mathematical expressions from
elementary functions. Various methods are also possible here. For example, you
can define the structure of a function. Then change the elements in it, keeping the
first index. The most universal way of composing mathematical expressions from
elementary functions is to represent a sequence of elementary functions as a com-
position of these elementary functions nested into each other. For example,
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fa1,b1 fa2,b2 fa3,b3 = fa1,b1 ◦ fa2,b2 ◦ fa3,b3 = fa1,b1( fa2,b2( fa3,b3(. . .))). (3.7)

Note that such a representation in symbolic regression methods is fully consistent
with the Kolmogorov–Arnold theorem on the representation of functions. Accord-
ing to it, if f is a multidimensional continuous function, then f can be written as a
finite composition of continuous functions of one variable and a binary operation of
addition. In terms of symbolic regression alphabet (3.3), functions with one variable
are accumulated in the set F1, and their combinations (addition and multiplication)
in the set F2.

Obviously, when forming compositions, a simple sequential listing of functions
can lead to violation of the mathematical notation. The rules to form compositions
for obtaining the correct mathematical notations are defined in different methods of
symbolic regression.

Here are the rules to form correct compositions from function codes constructed
for the case of dividing functions into subsets (3.3) taking into account the number
of arguments.

Suppose a sequence of functions is given by

S = fa1,b1 ◦ fa2,b2 ◦ . . .◦ fai,bi ◦ . . .◦ faK ,bK . (3.8)

To determine the correctness of code record, let us introduce the concept of the
composition item index.

Definition 3.1. A composition item index indicates the minimum number
of items that must follow the given item.

The index of the fa1,bi item in the composition record is calculated by the formula

T (i) = T (i−1)+ai −1 = 1− i+
i

∑
j=1

a j, 1 ≤ i ≤ K. (3.9)

Definition 3.2. The composition record is correct if all elements of the record,
except the last one, have a positive index, and the index of the last item is equal to
zero.

T (i) > 0, i = 1, . . . ,K −1,
T (K) = 0.

(3.10)

The set of elementary functions must be reachable in order to be used in symbolic
regression methods.

Definition 3.3. A set of elementary functions possesses reachability property
if, for any given bounded numbers A and B and a given small value ε , one can
construct a finite composition of functions from this set

fa1,b1 ◦ . . .◦ fak,bk (3.11)
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Fig. 3.3 GA scheme

such that the inequality holds

| fa1,b1( fa2,b2 . . . faK ,bK (A) . . .)−B| ≤ ε . (3.12)

So, we examined the general principles of coding mathematical expressions, with
the help of which the search space is determined in symbolic regression methods.
Machine learning using symbolic regression methods consists of searching for the
structure of an unknown function and its parameters.

Search Algorithm

The main search engine is a genetic algorithm (GA), which is used both to search
for the structure of the mathematical expression and its parameters.

The genetic algorithm for many years of its existence [10–14] has confirmed its
effectiveness and does not need additional announcement.

Let us recall only the general scheme of GA for readers who have not yet had
time to get acquainted with genetic algorithms (see Fig. 3.3).

One of the important features of a genetic algorithm is its ability to operate on
the space of codes. Search in the code space, in contrast to the search in a vector
numeric space, is complicated by the fact that the metric on the code space differs
from the metric of the space in which the objective functional is calculated.
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To illustrate this, consider a nonlinear programming problem

f (q)→ min
q
, (3.13)

where q ∈ [R]p, f (q) : Rp → R
1.

The continuous objective function (3.13) satisfies the relations

| f (q1)− f (q2)|= δ ≈ 0, if ‖q1 −q2‖ ≈ 0. (3.14)

Let G(q) = g be the operation of translating the real vector q into Gray code g,
g = [g1 . . .gpc]

T , where c is the amount of bits allocated to encode one component
of the vector q and p is the amount of components, gi ∈ {0,1}.

Consider the Hamming metric [15] in the code space that determines the distance
between two codes as the number of mismatched bits

dH(g1,g2) =
pc

∑
i=1

|g1
i −g2

i |. (3.15)

As a result, the smallest distance between the codes of two vectors is equal to one.
Let g1 = G(q1) and g2 = G(q2).
Then, if

dH(g1,g2) = 1, (3.16)

this does not mean that the values of the objective functional for these vectors are
close

f (q1) �≈ f (q2). (3.17)

This happens because the calculation of the objective functional is performed
using the vector components from the metric space of real vectors.

Definition 3.4. An optimization problem in which the search for a solution is per-
formed on the code space, and the calculation of the objective functional is carried
out in a metric vector space, is called a non-numerical optimization problem.

The genetic algorithm with its unique structure is capable of searching in non-
numerical space. The most important feature of the genetic algorithm is that it does
not use arithmetic operations to obtain new possible solutions. This feature allows
to use GAs for non-numerical optimization in machine learning control problems.

The classical GA works, as a rule, with Gray codes, so vectors from the real
space are translated into the space of Gray codes.

Here is a small computational life hack. In case of one-point crossover, it is suffi-
cient to translate into the Gray code and back only one component from the vectors
selected for crossover, because the other components do not undergo changes as a
result of crossover.

Suppose two real vectors are selected for crossover

qα = [qα
1 . . .qα

p ]
T ,

qβ = [qβ
1 . . .q

β
p ]

T .
(3.18)
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Randomly determine the component in which the crossover point will be located.
For this purpose, choose a random integer

k ∈ {1, . . . , p}. (3.19)

Convert components k in the selected vectors into the Gray code

gα ,k = G(qα
k ) = [gα ,k

1 . . .gα ,k
c ]T ,

gβ ,k = G(qβ
k ) = [gβ ,k

1 . . .gβ ,k
c ]T .

(3.20)

Find randomly the crossover point for the Gray codes

r ∈ {1, . . . ,c}. (3.21)

Produce crossover on the Gray codes of the components of the selected vectors

gγ ,k = [gα ,k
1 . . .gα ,k

r gβ ,k
r+1 . . .g

β ,k
c ]T ,

gδ ,k = [gβ ,k
1 . . .gβ ,k

r gα ,k
r+1 . . .g

α ,k
c ]T .

(3.22)

Translate the new received Gray codes into numbers

qγ
k = G−1(gγ ,k),

qδ
k = G−1(gδ ,k),

(3.23)

where G−1(g) is the reverse translation function from the Gray code to the number.
Exchange the remaining components of the vectors selected for crossover.
In result, we get two new numeric vectors

qγ = [qα
1 . . .qα

k−1 qγ
k qβ

k+1 . . .q
β
c ]

T ,

qδ = [qβ
1 . . .q

β
k−1 qδ

k qα
k+1 . . .q

α
c ]

T .
(3.24)

This type of crossover is more economical and more expedient than transferring
all the components of the real vector to the Gray code and vice versa, since the
components that did not hit the crossover point are not changed.

Thus, to summarize, all symbolic regression methods that are used for machine
learning control encode possible solutions (i.e. mathematical expressions of the un-
known functions) and look for an optimal solution in the space of these codes, while
the estimate of a possible solution is calculated in the space of real functions.

All methods of symbolic regression use the genetic algorithm to find the optimal
solution. Since the symbolic regression methods differ depending on the form of
encoding the mathematical expression, they also differ in the basic GA operations
of crossover and mutation applied to these codes. Thus, to create new methods of
symbolic regression, it is necessary to determine the form of encoding possible solu-
tions and redefine the operations of crossover and mutation in the genetic algorithm
so that as a result of these operations, the correct codes of new possible solutions
are obtained.
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Genetic algorithms used in well-known symbolic regression methods are con-
sidered in Chap. 4. The main features of the genetic algorithm for simultaneous
structural and parametric multicriterial search are considered in detail in Sect. 3.4
of this chapter. In the next Sect. 3.3, we touch upon the issue of the complexity of
the search on non-numeric spaces of structures and consider the principle of small
variations of the basic solution, as one of the promising ways to overcome these
difficulties.

3.3 The Principle of Small Variations of the Basic Solution

As shown in the previous section, searching for an optimal solution in the space of
codes is complicated by the fact that this task belongs to the class of non-numerical
optimization problems. For such search spaces it is impossible to use evolutionary
algorithms with arithmetic operations. Most of the known evolutionary algorithms
include arithmetic operations to transform possible solutions and produce evolution.
Therefore, genetic algorithm is a main searching algorithm on the space of codes
that does not use arithmetic operations in its steps. At the same time, with certain
complex forms of coding in different symbolic regression methods, the construction
of new operations of crossover and mutation is a significant problem. Studies of this
problem have led to the formulation of the principle of small variations of the basic
solution [16].

Consider a universal approach to the construction of genetic algorithms for solv-
ing non-numerical optimization problems, based on the application of the principle
of small variations of the basic solution.

The essence of this approach is as follows. One possible solution is coded, which
is called a basic solution. In complex problems, it is very advisable to use such
basic solution that can be close to the optimal one in the opinion of the researcher
or developer in order to speed up the search process. Next, small variations of this
code are defined such that any of them varies the code so that as a result the correct
code of the new possible solution is obtained. All small variations are coded. As far
as the small variation is considered as an operator acting in the space of codes of the
basic solution, therefore, a code of the small variation itself in all cases is an integer
vector containing information necessary to perform actions on the code according
to the small variation operator.

Let us have a detailed view on the principle of small variations of the basic solu-
tion.

Consider a code space Ξ n. Any element of this space is a code vector of some
non-numerical construction, in particular a mathematical expression.

y= [y1 . . .yn]
T . (3.25)
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Any element of this code has a meaning from a set of possible characters.

yi ∈ A = {0,a1, . . . ,aL}. (3.26)

In some cases, the character for the item code can be an integer. Then the code of a
non-numerical element will be a set of integers, for which arithmetic operations are
inapplicable, as, for example, for postal codes.

Definition 3.5. An elementary variation of the code of a non-numerical
element is to replace the value of the code element with another value from a set of
possible characters.

Replacing one character with another may not always result in a new correct code
that matches some new non-numerical construction.

Definition 3.6. A small variation of the non-numerical construction code is
a minimum set of elementary variations that allows to obtain a new valid non-
numerical construction code.

Define a set of small variations for the given code space

Ω(Ξ n) = {δ1(y), . . . ,δM(y)}. (3.27)

There may be several small variations depending on the code.

Definition 3.7. A set of small variations is complete if it is possible to derive
from any valid code of a non-numerical construction any other valid code from the
code space.

Now introduce the concept of a distance in the code space.

Definition 3.8. A distance between two elements y1, y2 of the code space Ξ n

is the minimum number of small variations of one code y1 required to get another
code y2

‖y1 −y2‖Ξ = d, (3.28)

where
d = min

r
{y2 = δk1(. . .δkr(y

1) . . .)}. (3.29)

Definition 3.9. Δ-neighborhood of the code Δ(ỹ) is a subset of all codes that
are at a distance of no more than Δ from the code ỹ

∀y ∈ Δ(ỹ)⇒‖ỹ−y‖Ξ ≤ Δ . (3.30)

To encode a small variation, an integer vector is introduced

w= [w1 . . .wr]
T , (3.31)

where r is the dimension of the vector of variations, which depends on the form of
encoding, w1 is the number or type of the small variation, the remaining components
determine the number of the variable elements in the code, and wr is, as a rule, a
new value of the variable element.
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GA based on the principle of small variations of the basic solution contains the
following steps:

1. Establish the basic solution, which, according to the researcher, is the closest to
the possible optimal solution.

y0 = [y0
1 . . .y

0
n]

T . (3.32)

In the practical problems of control synthesis, discussed in Chap. 5, a propor-
tional controller or a linear transformation of the state vector was most often
used as the basic solution for various control objects.

2. Generate initial population in the form of ordered multisets of variation vectors

Wi = (wi,1, . . . ,wi,d), i = 1, . . . ,H, (3.33)

where H is the number of possible solutions in the initial population and d is the
number of variation vectors in one set.
Every possible solution from the initial population is obtained by applying small
variations to the basic solution

yi = wi,d ◦ . . .◦wi,1 ◦y0. (3.34)

From Definitions 3.9 and (3.34) it follows that every possible solution in the
population belongs to the d-neighborhood of the basic solution

yi ∈ d(y0), i = 1, . . . ,H. (3.35)

3. Calculate the value of the objective functional for each possible solution in the
population

Fi = J(Ω(yi)), i = 1, . . . ,H, (3.36)

where Ω(y) is the function of converting the code of the non-numeric construc-
tion into a real function.

4. Until the stop condition is satisfied, the evolution cycle is implemented:

a. Randomly select two sets of vectors of variations

Wα = (wα ,1, . . . ,wα ,d),

Wβ = (wβ ,1, . . . ,wβ ,d).
(3.37)

b. Calculate the probability of crossover by the values of the objective functional
for the selected vectors

Prc = max

{
Fj−
Fα

,
Fj−
Fβ

}
. (3.38)

If the random number generator produced a number less than Prc, then
crossover is performed.
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Randomly find the crossover point

c ∈ {1, . . . ,d}. (3.39)

Exchange the vectors of variations in the selected sets after the crossover point
and obtain two new sets of vectors of variations that correspond to two new
solutions from the d-neighborhood of the basic solution

WH+1 = (wα ,1, . . . ,wα ,c,wβ ,c+1, . . . ,wβ ,d),

WH+2 = (wβ ,1, . . . ,wβ ,c,wα ,c+1, . . . ,wα ,d).
(3.40)

c. Perform the mutation operation with a given probability for the obtained new
possible solutions in the form of sets of vectors of variations (3.40). Randomly
find the mutation point and generate a new vector of variations in this position.

d. Calculate the values of the objective functional for the obtained new possi-
ble solutions and determine, from the values of these functionals, the fate of
each new possible solution, either it is discarded or included in the population
instead of the currently worst possible solution.

Thus, the genetic algorithm based on the principle of small variations of the basic
solution includes the same actions as the usual genetic algorithm. The crossover in
it is performed in the usual way, by exchanging tail elements after the crossover
point. This algorithm can be supplemented with one more loop for changing the
basic solution. After performing a given number of iterations of constructing new
possible solutions, the basic solution is replaced by a possible solution selected for
the new basis, which is the best in terms of functional.

The principle of small variations in the basic solution was first used in the net-
work operator method. Further, this principle was applied in other methods of sym-
bolic regression. In all cases of its application, the method of symbolic regression in
the search for a mathematical expression worked significantly better than the same
method without the principle of small variations of the basic solution. The word
“variational” is added to the name of the symbolic regression method that uses the
principle of small variations of the basic solution.

3.4 Genetic Algorithm for Multicriterial Structural-Parametric
Search of Functions

All symbolic regression methods use a genetic algorithm with a special crossover
operation to find the structure and parameters of a mathematical expression. If we
use the principle of small variations of the basic solution, then the crossover oper-
ation becomes a common operation of the genetic algorithm, but the operation of
performing small variations is added to evaluate each possible solution.

Studies of control synthesis problems using symbolic regression methods have
shown that when searching for a control function, it is important, together with
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the structure of the control function, to look for a vector of parameters, which is
included in the control function as a part of the arguments. The introduction of
parameters into the structure of a function is a natural extension of the class of the
required functions.

Note that initially in genetic programming, parameters are introduced as con-
stants included in the desired function as arguments, and their further change is
carried out due to transformation using elementary functions. This approach is not
entirely logical. Suppose, an acceptable structure of the control function is obtained.
The only drawback of this structure is that the parameters included in this structure
are not optimal. The algorithm will continue searching for the structure in order to
change the parameters, i.e. the algorithm will complicate the structure and change
the values of the parameters by replacing the parameters with various functions of
these parameters. For example, if a parameter has a value 5, and the optimal value
of this parameter for a given structure of the function is 1.57, then it is difficult to
imagine how many nonlinear transformations of the parameter should be done, i.e.
calculate from it the values of various functions like sin, arctan, exp, and others, in
order to get the value of 1.57 from the value of 5. In addition, all these nonlinear
transformations must then be included in the implemented control function.

It makes more sense to look for the values of the parameters together with the
structure of the function they are included in. The search for the structure and pa-
rameters should be carried out within the framework of the same genetic algorithm,
but on different data structures.

A feature of control problems is, as a rule, the presence of several quality criteria.
In control problems, there is always a control goal, which is often formulated in the
form of terminal conditions, and a control quality criterion, which is formulated in
the form of an integral functional. In numerical synthesis, it is necessary to take
into account the accuracy of achieving the goal and its influence on the assessment
of the quality criterion. In practice, it is always possible to convolve criteria with
certain weights, but for a genetic algorithm such a convolution does not give much
advantage. Therefore, it is also possible to look for solutions in the form of a set of
Pareto optimal solutions, which can always be built on the set of possible solutions
used by the genetic algorithm.

Let us describe a multicriteria genetic algorithm for structural-parametric search
for a function:

1. Enter the initial data for the search algorithm.
Vector quality criterion is

J(S,q) = [ j1(S,q) . . . jv(S,q)]T , (3.41)

where S is a code of the structure of the required function in symbolic regression
method and q is the vector of parameters.
The code of the basic solution and the value of the vector of parameters for this
solution are given by

S0, q0 = [

p︷ ︸︸ ︷
1 . . .1]T . (3.42)
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The parameters of the algorithm are set:
H is the number of possible solutions in the population,
P is the number of generations,
R is the number of possible crossovers in one generation,
α is the minimum value of the probability of crossover,
E is the number of generations in one epoch, or the number of generations be-
tween the change of the basic solution,
pμ is the probability of performing the mutation operation,
c is the number of bits for the integer part of the parameter,
d is the number of bits for the fractional part of the parameter,
M is the number of small variations for one possible solution,
p is the dimension of the parameter vector.

2. Generate a set of possible solutions in the form of ordered sets of vectors of small
variations

W = {W1, . . . ,WH}, (3.43)

Wi = (wi,1, . . . ,wi,M), i = 1, . . . ,H. (3.44)

Introduce a set of zero variations that do not vary the basic solution

W0 = (w0,1, . . . ,w0,M), (3.45)

w0,i = [0 . . .0]T , i = 1, . . . ,M. (3.46)

It is algorithmically determined that the zero variation vector does not change the
basic solution code

[0 . . .0]T ◦S0 = S0.

The set of zero variation vectors is introduced in order for the basic solution to
be used in crossover operations.
Generate a set of binary codes for vectors of parameters of possible solutions

Z = {z1, . . . ,zH},

zi = [zi
1 . . .z

i
p(c+d)]

T ,

zi
j = ξ (2),

(3.47)

where ξ (A) is a random number generator function, and each time it is called, it
returns a random integer from 0 to A−1.
We transform this vector to the Gray code

z0 = Gray(q0),

where Gray(q) is the function of converting a real vector into a Gray code.
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3. Calculate the value of the functionals for all possible solutions, including the
basic solution

Si = wi,M ◦ . . .◦wi,1 ◦S0,

qi = Gray−1(zi),

fi = J(Si,qi), i = 0, . . . ,H,

(3.48)

where Gray−1(z) is a backward translation function from Gray code to real vec-
tor.
Calculate the values of the Pareto ranks for all values of the functionals

Li = 0,

Li ← Li +1, if f j < fi, j = 0, . . . ,H

i = 0, . . . ,H,

(3.49)

where

f j < fi, if f j
k ≤ f i

k,k = 1, . . . ,v and ∃r, 1 ≤ r ≤ v ⇒ f j
r < f i

r . (3.50)

The Pareto set is defined by elements with zero Pareto rank values

Pareto = {i1, . . . , iK}, Li j = 0, j = 1, . . . ,K. (3.51)

4. Set the counter of generations jp = 0.
Step1. Start the generation cycle.
Set the counter of the number of possible crossovers jc = 0.
Step2. Start the crossover cycle
Select possible solutions for crossover

a = ξ (H), b = ξ (H). (3.52)

Calculate the probability of crossover

Pr = max

{
1+αLa

1+La
,

1+αLb

1+Lb

}
. (3.53)

Step3. Check the fulfillment of conditions

ξ ≤ Pr, (3.54)

where ξ is a random number generator function; it returns a random number from
(0;1) interval.
If the condition (3.54) is not met, then go to Step 9.
Note that according to (3.53) the probability of crossover is equal to 1 if one of
the parents belongs to the Pareto set and has a Pareto rank 0.
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Step4. Carry out the crossover. Randomly determine the crossover points for
the structural and parametric parts

r = ξ (M), s = ξ (p(c+d)). (3.55)

Crossover is performed. Four new possible solutions are obtained. For two new
possible solutions, both the structural and parametric parts are crossed; for the
other two new possible solutions, only the parametric parts are crossed.

WH+1 = (wa,1, . . . ,wa,r−1,wb,r, . . . ,wb,M),
WH+2 = (wb,1, . . . ,wb,r−1,wa,r, . . . ,wa,M),

WH+3 = Wa,
WH+4 = Wb,

zH+1 = [za
1 . . .z

a
s−1 zb

s . . .z
b
p(c+d)]

T ,

zH+2 = [zb
1 . . .z

b
s−1 za

s . . .z
a
p(c+d)]

T ,

zH+3 = [za
1 . . .z

a
s−1 zb

s . . .z
b
p(c+d)]

T ,

zH+4 = [zb
1 . . .z

b
s−1 za

s . . .z
a
p(c+d)]

T .

(3.56)

Step5. Perform the mutation for each new possible solution H + i, i = 1, . . . ,4.
Check the conditions for performing a mutation

ξ ≤ pμ . (3.57)

If the condition (3.57) is met, then the mutation operation is performed.
Randomly define positions in the structural and parametric parts

mi = ξ (M), li = ξ (p(c+d)),

and generate a new variation vector and an element in the parametric part

wH+i,mi , zH+i
li

= ξ (2). (3.58)

Step6. Calculate the values of the functionals for each new possible solution

fH+i = J(SH+i,qH+i), (3.59)

where
SH+i = wH+i,M ◦ . . .◦wH+i,1 ◦S0,
qH+i = Gray−1(zH+i), i = 1, . . . ,4.

(3.60)

Step7. Calculate the value of the Pareto rank for the new possible solutions
LH+i. Determine the possible solution with the highest value of the Pareto rank

L j+ = max{Lk : k = 1, . . . ,H}. (3.61)
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Step8. Check the condition for replacing solutions

LH+i < L j+. (3.62)

If the condition (3.62) is met, i.e. a new possible solution H + i has a value of
the Pareto rank less than the largest value of the Pareto rank for the entire set of
possible solutions, then we replace the solution with the largest value with the
new obtained possible solution

W j+ ← WH+1,

z j+ ← zH+1,

L j+ ← LH+i,

f j+ ← fH+i.

(3.63)

Repeat steps 7 and 8 for all new possible solutions i = 1, . . . ,4.
Step9. Increase the counter of the number of possible crossovers

jc ← jc +1.

Step10. Check the conditions for exiting the crossover cycle. If jc < R, then
go to step 2.
Step11. Increase the counter of the number of generations

jp ← jp +1.

Step12. Check condition for the end of the epoch

jp mod E = 0. (3.64)

If the condition (3.64) is satisfied, then replace the basic solution; otherwise go
to step 15.
Step13. Change the basic solution.
For all possible solutions, including the basic one, the values of the functionals
are normalized

f̃ j
i =

f j
i − f j−

j

f j+
i − f j−

i

, i = 1, . . . ,v, j = 0, . . . ,H, (3.65)

where
f j−
i = min{ f j

i ; j = 0, . . . ,H}, 1 ≤ i ≤ v, (3.66)

f j+
i = max{ f j

i ; j = 0, . . . ,H}, 1 ≤ i ≤ v. (3.67)
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Calculate the norms of functionals for all possible solutions

f̃ j =

√
v

∑
i=1

( f̃ j
i )

2, j = 0, . . . ,H. (3.68)

Define a new basic solution that has the smallest value of the norm of the func-
tional

f̃ j0 = min{ f̃ j : j = 0, . . . ,H}. (3.69)

Change the basic solution.

S j0 = w j0,M ◦ . . .◦w j0,1 ◦S0,
S0 ← S j0,
z0 ← z j0,
f0 ← f j0.

(3.70)

Step14. Calculate the values of the functionals for all possible solutions using
(3.48) and the value of the Pareto ranks using (3.49).
Step15. Check the condition for the end of calculations

jp ≥ P. (3.71)

If the condition (3.71) is not met, then go to step 1; otherwise stop the calcula-
tions.

The solution to the multicriterial problem is the set of Pareto optimal solutions,
which is determined by zero values of the Pareto rank. Then, the researcher should
choose one of the possible solutions on the Pareto set as a solution to the problem.
If the researcher is not satisfied with any of the solutions on the Pareto set, then he
chooses one solution, which he defines as basic and starts the algorithm from the
beginning.

3.5 Space of Machine-Made Functions

A machine search for a function has the peculiarity that in the process of searching,
functions can take infinity values, which will stop the search process in the form
of an overflow error message. To avoid the occurrence of this event, it is necessary
to change the process of calculating elementary functions from the basic set so that
they do not accept invalid values. Moreover, it is necessary to assume that found
control functions will be realized on a board processor of robot or any other auto-
matic device. This means that the found control functions should be realizable by
computer and their modulo value never reach infinity.

Therefore, some space different from R
n should be introduced to eliminate over-

flow errors.
Let us consider such space of functions.
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This space is a subspace of the real vector space

R
n
# ⊆ R

n, (3.72)

where R
n
# is a machine-made space.

This space R
n
# possesses the following properties.

For any vector x = [x1 . . .xn]
T ∈ R

n
# of dimension n the following conditions are

satisfied:

(1)
|xi| ≤ B+ < ∞, i = 1, . . . ,n. (3.73)

(2) There exists a small positive value δ− > 0 that

if |xi|< δ−, then xi = 0, i = 1, . . . ,n. (3.74)

(3)
if x(t) ∈ R

n
#, then ẋ(t) ∈ R

n
#. (3.75)

(4) There exists a value satisfactory accuracy Δ̃ > δ− that

if |α|< Δ̃ , then xi ±α = xi, i = 1, . . . ,n. (3.76)

Usually in the problems with differential equations, the value satisfactory accu-
racy is a half-step of integration.

The derivative of a function in the machine-made space R# is calculated by the
relation

∂ f (z)
∂ z

=
f (z+δ−)− f (z)

δ− . (3.77)

Consider an example.

∂ sin(z)
∂ z

=
sin(z+δ−)− sin(z)

δ− =

sin(z)cos(δ−)+ sin(δ−)cos(z)− sin(z)
δ− =

sin(z)+δ− cos(z)− sin(z)
δ− = cos(z). (3.78)

Here the following equation is used

cos(δ−) = 1−0.5(δ−)2 = 1, (3.79)

according to equation (3.76).
In the introduced space R#, the machine-made functions are recorded as usual

functions from mathematical analysis, but with a condition that their values are
never equal to infinity.
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For example,

z−1 =

{
1/z, if |z|> δ−

sgn(z)B+,otherwise
.

The description of the most often used machine-made functions is presented in
the Appendix of this chapter as a free Pascal programming code.

If it is necessary to emphasize in notation that this is a machine-made function,
then the special subscript can be used. For example, sin#(z), exp#(z), etc.

Theorem 3.1. Any machine-made function can be presented in the form of Taylor’s
series with a finite number of members.

Proof. Assume f (z) is a machine-made function, then for a point z = a Taylor’s
series has the following form:

L

∑
k=0

f (k)(a)
k!

(z−a)k = f (a)+ f ′(a)(z−a)+
f ′′(a)

2!
(z−a)2 + . . .

. . .+
f (L)(a)

L!
(z−a)L.

The value of derivative is limited | f (k)(a)| ≤ B+ and the value of a denominator
increases k!. For some member of Taylor’s series the following inequality will be
implemented

B+

k!
< δ−.

According to property (3.74) all subsequent members of the series will be zero. ��
Thus, machine learning methods can also be used to search for mathematical

expressions in the space of machine-made functions.

Appendix

Here is the description of the most often used machine-made functions presented in
the form of free Pascal programming code, where notation Ro−N is used for func-
tions with one argument, Xi−N is used for functions with two arguments, and Nu−N
is used for functions with three arguments, where N is the number of functions.

Unit Machine-Made Functions

const
infinity=1e8;
eps=1e-8;

//*******************************
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Function Ro−1 (z: real): real;
Begin

result:=z;
End;
//*******************************
Function Ro−2(z:real):real;
Begin

if abs(z)>sqrt(infinity)
then result:=infinity

else result:=sqr(z);
End;
//*******************************
Function Ro−3(z:real):real;
Begin

result:=-z;
End;
//*******************************
Function Ro−4(z:real):real;
Begin

result:=Ro−10(z)*sqrt(abs(z));
End;
//*******************************
Function Ro−5(z:real):real;
Begin

if abs(z)>eps
then result:=1/z

else result:=Ro−10(z)/eps;
End;
//*******************************
Function Ro−6(z:real):real;
Begin

if z>-ln(eps)
then result:=-ln(eps)

else result:=exp(z);
End;
//*******************************
Function Ro−7(z:real):real;
Begin

if abs(z)<exp(-pokmax)
then result:=ln(eps)

else result:=ln(abs(z));
End;
//*******************************
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Function Ro−8(z:real):real;
Begin

if abs(z)>-ln(eps)
then result:=Ro−10(z)

else result:=(1-exp(-z))/(1+exp(-z));
End;
//*******************************
Function Ro−9(z:real):real;
Begin

if z>=0
then result:=1

else result:=0;
End;
//*******************************
Function Ro−10(z:real):real;
Begin

if z>=0
then result:=1

else result:=-1;
End;
//*******************************
Function Ro−11(z:real):real;
Begin

result:=cos(z);
End;
//*******************************
Function Ro−12(z:real):real;
Begin

result:=sin(z);
End;
//*******************************
Function Ro−13(z:real):real;
Begin

if abs(z)<eps
then result:=Ro−10(z)*pi/2

else result:=arctan(z);
End;
//*******************************
Function Ro−14(z:real):real;
Begin

if abs(z)>Ro−15(infinity)
then result:=Ro−10(z)*infinity

else result:=sqr(z)*z;
End;
//*******************************
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Function Ro−15(z:real):real;
Begin

if abs(z)<eps
then result:=Ro−10(z)*eps

else result:=Ro−10(z)*exp(ln(abs(z))/3);
End;
//*******************************
Function Ro−16(z:real):real;
Begin

if abs(z)<1
then result:=z

else result:=Ro−10(z);
End;
//*******************************
Function Ro−17(z:real):real;
Begin

result:=Ro−10(z)*ln(abs(z)+1);
End;
//*******************************
Function Ro−18(z:real):real;
Begin

if abs(z)>-ln(eps)
then result:=Ro−10(z)*infinity

else result:=Ro−10(z)*(exp(abs(z))-1);
End;
//*******************************
Function Ro−19(z:real):real;
Begin

if abs(z)>1/eps
then result:=Ro−10(z)*eps

else result:=Ro−10(z)*exp(-abs(z));
End;
//*******************************
Function Ro−20(z:real):real;
Begin

Result:=z/2;
End;
//*******************************
Function Ro−21(z:real):real;
Begin

Result:=2*z;
End;
//*******************************
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Function Ro−22(z:real):real;
Begin

if z<0
then Result:=exp(z)-1

else Result:=1-exp(-abs(z));
End;
//*******************************
Function Ro−23(z:real):real;
Begin

if abs(z)>1/eps
then result:=-Ro−10(z)/eps

else result:=z-z*sqr(z);
End;
//*******************************
Function Ro−24(z:real):real;
Begin

if z>infinity
then result:=1

else
if exp(-z)>infinity

then result:=0
else result:=1/(1+exp(-z));

End;
//*******************************
Function Ro−25(z:real):real;
Begin

if z>0
then result:=1

else result:=0;
End;
//*******************************
Function Ro−26(z:real):real;
Begin

if abs(z)<eps1
then result:=0

else result:=Ro−10(z);
End;
//*******************************
Function Ro−27(z:real):real;
Begin

if abs(z)>1
then result:=Ro−10(z)

else result:=Ro−10(z)*(1-sqrt(1-sqr(z)));
End;
//*******************************
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Function Ro−28(z:real):real;
Begin

if z*z> ln(infinity)
then result:=z*(1-eps)

else result:=z*(1-exp(-sqr(z)));
End;
//*******************************
Function Xi−1(z1,z2:real):real;
Begin

result:=z1+z2;
End;
//*******************************
Function Xi−2(z1,z2:real):real;
Begin

if abs(z1*z2)> infinity
then result:=Ro−10(z1*z2)*infinity

else result:=z1*z2;
End;
//*******************************
Function Xi−3(z1,z2:real):real;
Begin

if z1>=z2
then result:=z1

else result:=z2;
End;
//*******************************
Function Xi−4(z1,z2:real):real;
Begin

if z1<z2
then result:=z1

else result:=z2;
End;
//*******************************
Function Xi−5(z1,z2:real):real;
Begin

result:=z1+z2-z1*z2;
End;
//*******************************
Function Xi−6(z1,z2:real):real;
Begin

result:=Ro−10(z1+z2)*sqrt(sqr(z1)+sqr(z2));
End;
//*******************************
Function Xi−7(z1,z2:real):real;
Begin
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result:=Ro−10(z1+z2)*(abs(z1)+abs(z2));
End;
//*******************************
Function Xi−8(z1,z2:real):real;
Begin

result:=Ro−10(z1+z2)*Xi−2(abs(z1),abs(z2));
End;
//*******************************
Function Nu−1(z1,z2,z3:real):real;
Begin

if z1>0
then result:=z2

else result:=z3;
End;
//*******************************
Function Nu−2(z1,z2,z3:real):real;
Begin

if z1>z2
then result:=z3

else result:=-z3;
End;
//*******************************
Function Nu−3(z1,z2,z3:real):real;
Begin

if z1>0
then result:=z2+z3

else result:=z2-z3;
End;
//*******************************
Function Nu−4(z1,z2,z3:real):real;
Begin

if z1>z2
then

if z1>z3
then result:=z1

else result:=z3
else

if z2>z3
then result:=z2

else result:=z3;
End.
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Chapter 4
Symbolic Regression Methods

Abstract This chapter provides a detailed description of different symbolic regres-
sion methods. Some methods differ directly in the form of coding, as well as vari-
ational methods are based on the principle of small variations of the basic solution.
By analogy with deep learning, the technology of the multilayer symbolic regression
method is presented. We deliberately did not include detailed historical references
in the description of the methods, focusing only on practically significant entities.
The description of each method includes the encoding procedures with examples
and the main features of the searching algorithm for finding the optimal solution in
the code space with an emphasis on the implementation of the crossover operation
of the genetic algorithm, which differs depending on the type of encoding. We do
not pretend to provide a comprehensive overview of symbolic regression methods,
but present only those symbolic regression methods that have already been applied
in machine learning control problems, or we managed to apply them to the class of
machine learning problems under consideration. As new symbolic regression meth-
ods appear for solving machine learning control problems, we will be happy to
supplement the presented description.

4.1 Genetic Programming

The genetic programming method is the first and most famous symbolic regression
method. It was created in the 1990s of the twentieth century.

Genetic programming uses a genetic algorithm that performs crossover and
mutation operations on character strings [1, 2]. The notation of the mathematical
expression in genetic programming is a string of characters without parentheses.
Instead of symbols, when searching for a mathematical expression, it is advisable
to use two-component numeric vectors. The first component of the vector indi-
cates the number of arguments of the elementary function being encoded, and the
second component indicates the function number. These two numbers are needed to
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calculate a mathematical expression using genetic programming code and to find a
subexpression that is used in crossover. Each character corresponds to some oper-
ation. Each function is characterized by a certain number of arguments. Functions
with no arguments are variables or parameters. The order of characters in the string
determines the correspondence between functions and their arguments. In genetic
programming, prefix notation of symbols is more often used. In this entry, the func-
tion symbol appears in the line before or to the left of the argument symbol.

Consider the coding procedure of a mathematical expression by GP.
A set of ordered sets of functions with a certain number of arguments is intro-

duced
F = {F0,F1, . . . ,Fn}, (4.1)

where
Fi = { fi,1(z1, . . . ,zi), . . . , fi,ni(z1, . . . ,zi)}, (4.2)

fi, j(z1, . . . ,zi) is the function number j with the number of arguments i, j = 1, . . . ,ni,
i = 1, . . . ,n. When i = 0, the set F0 is a set of arguments of the mathematical expres-
sion. In this case, the arguments of the mathematical expression are considered as
elementary functions without arguments.

The function code is an integer vector of two components

s= [s1 s2]
T , (4.3)

where s1 is the number of arguments, s2 is a number of the function in the set Fs1 ,

fi, j(z1, . . . ,zi)⇔ [i j]T . (4.4)

A mathematical expression is an ordered set of function codes

S = (s1, . . . ,sK), (4.5)

where si = [si
1 si

2]
T , i = 1, . . . ,K.

Consider an Example

Let us have a mathematical expression

y1 = exp(−ax1)cos(bx2 + c). (4.6)

Define a set of functions for this example.

F0 = { f0,1 = x1, f0,2 = x2, f0,3 = a, f0,4 = b, f0,5 = c},
F1 = { f1,1(z) =−z, f1,2(z) = exp(z), f1,3(z) = cos(z)},
F2 = { f2,1(z1,z2) = z1 + z2, f2,2(z1,z2) = z1z2}.

(4.7)
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Fig. 4.1 GP computational tree for the mathematical expression (4.6)

Rewrite sets of functions in codes

F0 =

([
0
1

]
,

[
0
2

]
,

[
0
3

]
,

[
0
4

]
,

[
0
5

])
,

F1 =

([
1
1

]
,

[
1
2

]
,

[
1
3

])
,

F2 =

([
2
1

]
,

[
2
2

])
.

(4.8)

Encode now the mathematical expression (4.6)

y1 = exp(−ax1)cos(bx2 + c) =
f2,2(exp(−ax1),cos(bx2 + c)) =

f2,2(exp(−ax1),cos( f2,1(bx2,c))) =
f2,2( f1,2(−ax1), f1,3( f2,1(bx2,c))) =

f2,2( f1,2( f2,2(−a,x1)), f1,3( f2,1( f2,2(b,x2),c))) =
f2,2( f1,2( f2,2( f1,1( f0,3), f0,1)), f1,3( f2,1( f2,2( f0,4, f0,2), f0,5))) =

f2,2 ◦ f1,2 ◦ f2,2 ◦ f1,1 ◦ f0,3 ◦ f0,1 ◦ f1,3 ◦ f2,1 ◦ f2,2 ◦ f0,4 ◦ f0,2 ◦ f0,5.

(4.9)

Rewrite this record in codes

S1 =

([
2
2

]
,

[
1
2

]
,

[
2
2

]
,

[
1
1

]
,

[
0
3

]
,

[
0
1

]
,

[
1
3

]
,

[
2
1

]
,

[
2
2

]
,

[
0
2

]
,

[
0
4

]
,

[
0
5

])
.

(4.10)

Figure 4.1 shows a computational tree for the given mathematical expression.
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Fig. 4.2 GP computational tree for the mathematical expression (4.11)

The code of the mathematical expression (4.10) is written correctly if the con-
dition for the correct code (3.10) is met for it. Index of the code element (3.9) is
necessary for the correct execution of crossover.

Having defined the coding procedure, it is necessary to consider the performance
of crossover. In genetic programming, crossover is performed by swapping subtrees.
It is not difficult to define a subtree in Fig. 4.1. But defining a subtree in a sequential
code notation (4.10) causes certain difficulties.

Consider the specified features of the crossover operation both for trees and for
sequential code notation.

To show the crossover for GP codes, one more mathematical expression needs to
be considered

y2 = bx2 + c+ax2
1. (4.11)

The code of this mathematical expression, using the sets of functions (4.7), has
the following form:

S2 =

([
2
1

]
,

[
2
1

]
,

[
2
2

]
,

[
0
2

]
,

[
0
4

]
,

[
0
5

][
2
2

]
,

[
0
3

]
,

[
2
2

]
,

[
0
1

]
,

[
0
1

])
. (4.12)

The computation tree for the mathematical expression (4.11) is shown in Fig. 4.2.

Perform the crossover for the computational trees shown in Figs. 4.1 and 4.2. The
outlined nodes are randomly selected nodes for crossover.

Exchange subtrees that start at these nodes and get new computational trees
shown in Figs. 4.3 and 4.4.

The mathematical expressions of these new trees are following:

y3 = exp(x2)cos(bx2 + c), (4.13)

y4 = x2b+ c−a2x1. (4.14)

As seen, finding a subtree from a tree graph is not particularly difficult. But with a
machine implementation of genetic programming, the computer memory uses codes
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Fig. 4.3 GP computational tree for the mathematical expression (4.13)

Fig. 4.4 GP computational tree for the mathematical expression (4.14)

(4.10) and (4.12). To perform crossover for these codes, it is necessary to determine
the subsequences of the codes of the exchanged subtrees.

For this purpose, the code element index (3.9) is used. Since each subtree is a tree,
we consider the first element of the subtree to be the first element of the tree. We
calculate sequentially the indices of all the following elements until the element’s
index becomes equal to zero. This will point to the last code element of the subtree.

Consider the code (4.10) of the mathematical expression (4.6). The element 3 in
the code is chosen as crossover point.

Consider it as the first element of the subtree and calculate the index of this
element as the first element using the formula (3.9)

T (3) = 1+2−1 = 2.
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Calculate sequentially the indices of the remaining code elements until the index
becomes zero

T (4) = 2+1−1 = 2,
T (5) = 2+0−1 = 1,
T (6) = 1+0−1 = 0.

As a result, the sequence of the subtree code includes four elements

S1 =

⎛
⎝
[

2
2

]
,

[
1
2

]
,

[
2
2

]
,

[
1
1

]
,

[
0
3

]
,

[
0
1

]

︸ ︷︷ ︸
,

[
1
3

]
,

[
2
1

]
,

[
2
2

]
,

[
0
2

]
,

[
0
4

]
,

[
0
5

])
.

(4.15)

Perform the same actions for the code of the second mathematical expression
(4.11).

T (9) = 2+1−1 = 2,
T (10) = 2+0−1 = 1,
T (11) = 1+0−1 = 0.

S2 =

⎛
⎝
[

2
1

]
,

[
2
1

]
,

[
2
2

]
,

[
0
2

]
,

[
0
4

]
,

[
0
5

][
2
2

]
,

[
0
3

]
,

[
2
2

]
,

[
0
1

]
,

[
0
1

]

︸ ︷︷ ︸

⎞
⎠ . (4.16)

Exchange now the found subsequences and obtain codes for new mathematical
expressions

S3 =

⎛
⎝
[

2
2

]
,

[
1
2

]
,

[
2
2

]
,

[
0
1

]
,

[
0
1

]

︸ ︷︷ ︸
,

[
1
3

]
,

[
2
1

]
,

[
2
2

]
,

[
0
2

]
,

[
0
4

]
,

[
0
5

]⎞
⎠ , (4.17)

S4 =

([
2
1

]
,

[
2
1

]
,

[
2
2

]
,

[
0
2

]
,

[
0
4

]
,

[
0
5

][
2
2

]
,

[
0
3

]
,

[
2
2

]
,

[
1
1

]
,

[
0
3

]
,

[
0
1

]

︸ ︷︷ ︸

⎞
⎠ .

(4.18)

The new codes obtained after crossover correspond to the following mathemati-
cal expressions (4.13), (4.14).

Other operations of the genetic algorithm in GP are performed in a standard
manner and do not present programming difficulties.

The main drawback of the genetic programming consists in different code lengths
for different mathematical expressions, and, accordingly, a change in the code
lengths after the crossover operation.
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4.2 Grammatical Evolution

The method of grammatical evolution [3, 4] is designed to search for mathematical
expressions in the program code of Backus–Naur form. To describe the language
grammar in Backus–Naur form, four finite sets of characters are used:

T—set of terminal symbols;
N—set of nonterminal symbols;
P—set of production rules;
S—set of starting symbols, S ⊂ N.

As an example, consider the following sets:

T = {sin,cos, tan,+,−,/,×,x,z},
S = {< expr >},
N = {< expr >,< op >,< pre−op >,< var >}.

(4.19)

The set of production rules P is written as

(1)< expr > ::=< expr >< op >< expr > (0)
|< expr >< op >< expr > (1)
|< pre−op > (< expr >) (2)
|< var > (3)

(2)< op > ::=+ (0)
|− (1)
|/ (2)
|× (3)

(3)< pre−op > ::= sin (0)
|cos (1)
| tan (2)

(4)< var > ::= x (0)
|z (1)

To encode an expression, an ordered set of integers is used

C = (c1, . . . ,cK). (4.20)

Each number from the set (4.20) indicates the number of an element from the
corresponding set of production rules.

Consider an Example

Suppose we have the following set of numbers:

C = (2,1,1,3,0,0,3,1). (4.21)
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The initial character in the expression is y =< expr >. The number c1 = 2 in the
rules for the symbols < expr > defines the expression < pre−op > (< expr >).

Then
y =< pre−op > (< expr >). (4.22)

The number c2 = 1 in the set of symbols < pre−op > defines the function cos.
Then

y = cos(< expr >). (4.23)

Still not disclosed the symbol < expr >. The next number c3 = 1. Then

y = cos(< expr >< op >< expr >). (4.24)

Continue step by step.
c4 = 3:

y = cos(< var >< op >< expr >). (4.25)

c5 = 0:
y = cos(x < op >< expr >). (4.26)

c6 = 0:
y = cos(x+< expr >). (4.27)

c7 = 3:
y = cos(x+< var >). (4.28)

c8 = 1:
y = cos(x+ z). (4.29)

To encode integers, eight-bit strings, codons, are used. Each codon encodes a
number from 0 to 255. To determine the number of an element in the set of rules,
the remainder of the division of the number by the number of elements in the set is
calculated. For example, the codon for some number is 00100111. This corresponds
to the number c7 = 39 and (39 mod 4) = 3.

To search for an expression, fixed-length codon sets are used. If there are not
enough numbers to decode the expression, the last numbers are replaced with ter-
minal element codes. If numbers are redundant, the last numbers of codes are not
taken into account.

The expression is searched using the genetic algorithm. The crossover is per-
formed by exchanging parts of binary codes after a randomly selected crossover
point.

Consider the possibility of applying grammatical evolution to machine learning
control.

Let us introduce a set of ordered sets of functions with a certain number of argu-
ments

F = {F0,F1, . . . ,Fn}, (4.30)

where
Fi = { fi,1(z1, . . . ,zi), . . . , fi,ni(z1, . . . ,zi)}, (4.31)
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fi, j(z1, . . . ,zi) is the function at number j with the number of arguments i, j =
1, . . . ,ni, i = 1, . . . ,n.

As a function code, a binary vector of 2L elements is used

c= [c1 . . .cL cL+1 . . .c2L]
T , (4.32)

where c j ∈ {0,1}, j = 1, . . . ,2L.
The first L elements in the function code (4.32) determine the number of argu-

ments in the function or a subset (4.30). For this purpose, we translate the first L
elements in the function code into decimal code and take the remainder of dividing
the resulting number by the maximum possible number of arguments in the function

r =
L

∑
k=1

2kck, (4.33)

i = r mod n. (4.34)

To determine the function number in a certain set of functions Fi, we use the
following L elements in the function code:

r =
2L

∑
k=L+1

2k−Lck−L, (4.35)

i = r mod n. (4.36)

A mathematical expression code is an ordered set of function codes

C = (c1, . . . ,cK), (4.37)

where ci = [ci
1 . . .c

i
2L]

T , ci
j ∈ {0,1}, i = 1, . . . ,K, j = 1, . . . ,2L.

Consider an Example

Let us have the following sets of functions:

F0 = {a,b,c,x},
F1 = {−z,exp(z),cos = (z)},
F2 = {z1 + z2,z1 · z2}.

(4.38)

So, there are n sets, the set F0 has m0 = 4 elements, the set F1 has m1 = 3 ele-
ments, the set F2 has m2 = 2 elements.

Let L = 8 and a binary code of 2L = 16 elements is given.

c= [1 0 1 1 0 1 1 0 0 0 1 0 0 0 0 1]T . (4.39)

Convert the first L = 8 elements into decimal code

[1 0 1 1 0 1 1 0]T ⇒ (182)2, r = 182.



64 4 Symbolic Regression Methods

Define the set of functions.

i = r mod n = 183 mod 3 = 2.

So, this is a set of functions with two arguments F2.
Translate the second part of the code of L = 8 elements into decimal code

[0 0 1 0 0 0 0 1]T ⇒ (33)2, t = 33.

Define the function

j = t mod i = 33 mod 2 = 1.

Thus, this is a multiplication function

f2,1(z1,z2) = z1 · z2.

Each binary code ck in grammatical evolution corresponds to the vector code
of two numbers sk = [i j]T similar to genetic programming. After converting the
binary codes ck into integer codes sk = [i j]T , the calculations of the mathematical
expression are performed in the same way.

A significant difference between grammatical evolution and genetic program-
ming is the operation of reproducing new codes from existing ones. The crossover
in grammatical evolution is performed according to the usual rules for exchanging
the tails of codes after a randomly selected crossover point.

Select two codes of mathematical expressions for crossover

Cα = (cα
1 , . . . ,c

α
2L,c

α
2L+1, . . . ,c

α
2LK),

Cβ = (cβ
1 , . . . ,c

β
2L,c

β
2L+1, . . . ,c

β
2LK),

(4.40)

where cα
i ,c

β
i ∈ {0,1}, i = 1, . . . ,2LK.

Randomly determine the crossover point v ∈ {1, . . . ,2LK}. New codes are ob-
tained as a result of exchanging parts of the codes after the crossover point

Cγ = (cα
1 , . . . ,c

α
v ,c

β
v+1, . . . ,c

β
2LK),

Cδ = (cβ
1 , . . . ,c

β
v ,cα

v+1, . . . ,c
α
2LK).

(4.41)

The crossover operation in grammatical evolution:

• Is performed at any point;
• Does not require at the crossover point matching the numbers of arguments for

functions;
• Does not require finding subexpressions;
• Does not change the length of the code.
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To calculate the value of a mathematical expression, it is necessary to translate
the binary code of grammatical evolution into the genetic programming code

C = (c1, . . . ,c2LK)⇒ S = (s1, . . . ,sK). (4.42)

The crossover operation in grammatical evolution can lead to the violation of the
code correctness condition (3.10) for the corresponding code in genetic program-
ming. The code index of the last element can have a non-zero value T (K) �= 0 or
vice versa the code index of a non-last element can have a zero value T ( j) = 0,
j < K.

In case of violation of the code correctness condition (3.10), the code correction
rules should be applied.

Let the last code element have a positive index T (K)> 0.
Calculate the indices of all elements of the record using the formula

T ( j) = 1− j+
j

∑
i=1

si
1, j = 1, . . . ,K. (4.43)

Element index shows the minimum number of elements that must be to the right
of a given element.

Find the first element s j = [s j
1 s j

2]
T , for which

T ( j)> K − j, (4.44)

then a violation of the correctness of the code is recognized, since it will also lead to
T (K) > 0. Then, according to the verification procedure, the index of the previous
element satisfies the conditions for correct notation, therefore T ( j−1)≤ K − j+1
for it. Then

s j
1 = T ( j)−T ( j−1)+1.

Replace the element code s j with the new code s̃ j = [s̃ j
1 s̃ j

2]
T , in which we de-

crease the value of the first component

s̃ j
1 = s j

1 −T ( j)+K − j,

and adjust the value of the second component

s̃ j
2 = s j

2 mod |Ft |, t = s̃ j
1.

Next, we check the remaining elements of the record and, if a code violation
condition is detected (4.44), then the specified correction should be carried out.

If another type of code incorrectness is detected, for example, the non-last ele-
ment is equal to zero T ( j) = 0, j < K, then we also perform the appropriate correc-
tion, for example, we use only correct entries in the code, and exclude code entries
with violation.
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As can be seen, the method of grammatical evolution easily implements the
crossover operation, but it has the main drawback, which is the verification and
correction of the received code of the mathematical expression.

4.3 Cartesian Genetic Programming

Many researchers and programmers note some shortcomings in conventional ge-
netic programming, such as the need for recursive computations when looking for a
subexpression for crossing and different lengths of codes for different expressions,
which provoke additional computational difficulties. The coding of mathematical
expressions in Cartesian genetic programming [5, 6] is aimed at overcoming these
difficulties.

Cartesian Genetic Programming codes a mathematical expression in the form of a
set of integer vectors. Each vector contains all the necessary codes for calculations—
these are the codes of the function, its arguments, and the code of the variable, where
the calculation result should be written.

G= (g1, . . . ,gM), (4.45)

where
gi = [gi

1 . . .g
i
R]

T , (4.46)

gi
1 is the number of a function, gi

j is the number of an argument, j = 2, . . . ,R, i =
1, . . . ,M.

To code a mathematical expression it is necessary to determine the basic set
of elementary functions and the set of arguments of the mathematical expression.
Let the basic set includes k1 functions with one argument, k2 functions with two
arguments, and k3 functions with three arguments. Then the basic set of elementary
functions is

F = ( f1(z), . . . , fk1(z), fk1+1(z1,z2), . . .
fk1+k2(z1,z2), . . . , fk1+k2+1(z1,z2,z3), . . .
fk1+k2+k3(z1,z2,z3)).

(4.47)

The set of arguments is

F0 = (x1, . . . ,xn,q1, . . . ,qp,e1, . . . ,ek2), (4.48)

where xi is a variable, i = 1, . . . ,n, q j is a constant parameter, j = 1, . . . , p, ek is a
unit element for a function with two arguments,

fk1+l(z1,el) = z1,and fk1+l(el ,z2) = z2. (4.49)

Functions with three arguments are needed to code if-operator, which is often
applied in adaptive control systems.
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For example,

f (z1,z2,z3) =

{
z2, if z1 ≤ 0
z3, otherwise

. (4.50)

If for coding some mathematical expression we use only functions with not more
than three arguments, then R = 4. The first component is a number of function from
the set (4.47) and other components are numbers of arguments from the set (4.48)
or numbers of the vectors (4.46) that have already been computed.

For example,
gi = [gi

1 gi
2 gi

3 gi
4]

T , (4.51)

where gi
1 is a number of function, if gi

1 ≤ k1, then it is a function with one argument
fgi

1
(z), if k1 < gi

1 ≤ k1 + k2, then it is a number of function with two arguments

fgi
1
(z1,z2), if k1 + k2 < g1 ≤ k1 + k2 + k3, then it is a function with three arguments,

fgi
1
(z1,z2,z3), gi

2, gi
3, gi

4 are numbers of arguments, if 1≤ gi
k ≤ n+ p+k2, k = 2,3,4,

then it is an element from the set of arguments (4.48), if gi
k > n+ p+k2, k = 2,3,4,

then gi
k must be not more than n+ p+k2+ i−1, in this case, an argument is the result

of the calculation of the function called by the vector gr = [gr
1 gr

2 gr
3 gr

4]
T , where

r = gi
k − n− p− k2, k = 2,3,4. If gi

1 is a number of function with one argument,
then components gi

3 and gi
4 are not used. If gi

1 is a number of function with two
arguments, then the component gi

4 is not used.
Values of all components of the vector (4.51) must satisfy the restrictions

gi
1 ∈ {1, . . . ,k1 + k2 + k3},

gi
k ∈ {1, . . . ,n+ p+ k2 + i−1}, k = 2,3,4.

(4.52)

In order to calculate a mathematical expression by a code of Cartesian genetic
programming (4.45), the vector of results is needed

y= [y1 . . .yM]T , (4.53)

where

yi =

⎧⎪⎨
⎪⎩

fgi
1
(gi

2), if gi
1 ≤ k1,

fgi
1
(gi

2,g
i
3), if k1 < gi

1 ≤ k2,

fgi
1
(gi

2,g
i
3,g

i
4), if k2 < gi

1 ≤ k3,

(4.54)

where i = 1, . . . ,M.
Consider an example of coding the following mathematical expression:

y1 = exp(q1x1)(sin(q2x2)+ cos(q3x3)). (4.55)

For this example, the basic sets are

F = ( f1(z) = z, f2(z) =−z, f3(z) = cos(z), f4(z) = sin(z),
f5(z) = exp(z), f6(z1,z2) = z1 + z2, f7(z1,z2) = z1z2),

(4.56)

F0 = (x1,x2,x3,q1,q2,q3). (4.57)
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To code a mathematical expression q1x1, find a function of multiplication in the
set of functions (4.56). This function is number 7, f7(z1,z2) = z1z2. Then the num-
bers of elements in the set of arguments (4.57) are found. The parameter q1 is an
element number 4, the variable x1 is an element 1. The fourth component in the
code is not used; therefore, it can be of any value according to restrictions (4.52),
for example g1

4 = 2. As a result, the code of q1x1 is g1 = [7 4 1 2]T . Then, the code
of q2x2 is g2 = [7 5 2 3]T , and the code of q3x3 is g3 = [7 6 3 4]T .

Then the code of exp(q1x1) is written. The number of function exp(z) is 5. This
function has one argument; it is a result of calculation of g1. The number of the
argument is |F0|+1 = 6+1 = 7. As a result, the following vector is received g4 =
[5 7 5 6]T . Components g4

3 = 5 and g4
4 = 6 are not used.

Consequently, the code of the mathematical expression (4.55) has the following
form:

G1 =

⎛
⎜⎜⎝

⎡
⎢⎢⎣

7
4
1
2

⎤
⎥⎥⎦ ,

⎡
⎢⎢⎣

7
5
2
3

⎤
⎥⎥⎦ ,

⎡
⎢⎢⎣

7
6
3
4

⎤
⎥⎥⎦ ,

⎡
⎢⎢⎣

5
7
5
6

⎤
⎥⎥⎦ ,

⎡
⎢⎢⎣

4
8
1
2

⎤
⎥⎥⎦ ,

⎡
⎢⎢⎣

3
9
3
4

⎤
⎥⎥⎦ ,

⎡
⎢⎢⎣

6
11
12
5

⎤
⎥⎥⎦ ,

⎡
⎢⎢⎣

7
10
13
6

⎤
⎥⎥⎦

⎞
⎟⎟⎠ . (4.58)

It is not known in advance how many vectors are to be used to encode the desired
function. Code length is pre-set as L = 8. As a rule, the length of the codes is chosen
to be redundant, and the extra elements are simply recorded, but not taken into
account.

Now consider an example of crossover operation.
Let the first selected parent be (4.58). And the second is following:

G2 =

⎛
⎜⎜⎝

⎡
⎢⎢⎣

7
1
4
2

⎤
⎥⎥⎦ ,

⎡
⎢⎢⎣

7
2
5
1

⎤
⎥⎥⎦ ,

⎡
⎢⎢⎣

7
3
6
2

⎤
⎥⎥⎦ .

⎡
⎢⎢⎣

5
9
2
3

⎤
⎥⎥⎦ ,

⎡
⎢⎢⎣

7
8

10
1

⎤
⎥⎥⎦ ,

⎡
⎢⎢⎣

4
11
2
3

⎤
⎥⎥⎦ ,

⎡
⎢⎢⎣

7
12
7
3

⎤
⎥⎥⎦ ,

⎡
⎢⎢⎣

3
13
4
2

⎤
⎥⎥⎦

⎞
⎟⎟⎠ . (4.59)

The code of the second parent describes a mathematical expression

y2 = cos(q1x1 sin(q2x2 exp(q3x3))). (4.60)

Assume that a crossover point is r = 5. Then two new codes are obtained

G3 =

⎛
⎜⎜⎝

⎡
⎢⎢⎣

7
4
1
2

⎤
⎥⎥⎦ ,

⎡
⎢⎢⎣

7
5
2
3

⎤
⎥⎥⎦ ,

⎡
⎢⎢⎣

7
6
3
4

⎤
⎥⎥⎦ ,

⎡
⎢⎢⎣

5
7
5
6

⎤
⎥⎥⎦ ,

⎡
⎢⎢⎣

4
8
1
2

⎤
⎥⎥⎦ ,

⎡
⎢⎢⎣

4
11
2
3

⎤
⎥⎥⎦

⎡
⎢⎢⎣

7
12
7
3

⎤
⎥⎥⎦ ,

⎡
⎢⎢⎣

3
13
4
2

⎤
⎥⎥⎦

⎞
⎟⎟⎠ , (4.61)

G4 =

⎛
⎜⎜⎝

⎡
⎢⎢⎣

7
1
4
2

⎤
⎥⎥⎦ ,

⎡
⎢⎢⎣

7
2
5
1

⎤
⎥⎥⎦ ,

⎡
⎢⎢⎣

7
3
6
2

⎤
⎥⎥⎦ ,

⎡
⎢⎢⎣

5
9
2
3

⎤
⎥⎥⎦ ,

⎡
⎢⎢⎣

7
8

10
1

⎤
⎥⎥⎦ ,

⎡
⎢⎢⎣

3
9
3
4

⎤
⎥⎥⎦ ,

⎡
⎢⎢⎣

6
11
12
5

⎤
⎥⎥⎦ ,

⎡
⎢⎢⎣

7
10
13
6

⎤
⎥⎥⎦

⎞
⎟⎟⎠ . (4.62)
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These new codes correspond to the following mathematical expressions:

y3 = cos(q1x1 sin(sin(q2x2))), (4.63)

y4 = exp(q3x3)(q2x2 exp(q3x3)+ cos(exp(q3x3))). (4.64)

4.4 Inductive Genetic Programming

Another type of genetic programming is the method of inductive genetic pro-
gramming [7, 8]. Inductive genetic programming uses smooth polynomials of two
variables as basic functions. A discontinuous function cannot be obtained by this
method.

A mathematical expression encoded in IGP is a multidimensional polynomial. To
encode a mathematical expression, the parameters, variables, and basic elementary
second-order polynomials are placed in an ordered set of functions

F = { f1 = q1, . . . , fp = qp, fp+1 = x1, . . .
. . . , fp+n = xn, fp+n+1(z1,z2), . . . , fp+n+v(z1,z2)}, (4.65)

where p is the number of parameters, n is the number of variables.
The code of the inductive genetic programming function is an ordered set of

numbers of elements from (4.65)

I = (i1, . . . , iL), (4.66)

where i j is a number of function fi j ∈ F, j = 1, . . . ,L.
The code (4.66) is the composition of functions, variables, and parameters from

(4.65)
y = A1 ◦A2 ◦ . . .◦AL, (4.67)

where

A j =

⎧⎨
⎩

qi j , if 1 ≤ i j ≤ p
xi j , if p ≤ i j ≤ p+ v
fiJ , otherwise

. (4.68)

To check the correctness of the code in inductive genetic programming, the ele-
ment index (3.9) and the code correctness condition (3.10) also can be used.

Since the code uses only functions without arguments and functions with two
arguments, the index of the code element (4.66) in inductive genetic programming
is calculated by the formula

T ( j) =
j

∑
k=1

ak, (4.69)

where

ak =

{−1, if ik ≤ p+n
1, otherwise

. (4.70)
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The list of basic polynomials of two variables used in inductive genetic program-
ming is the following:

fn+p+1(z1,z2) = z1 + z2 + z1z2,
fn+p+2(z1,z2) = z1 + z2,
fn+p+3(z1,z2) = z1 + z1z2,
fn+p+4(z1,z2) = z1 + z1z2 + z2

1,
fn+p+5(z1,z2) = z1 + z2

2,
fn+p+6(z1,z2) = z1 + z2 + z2

1,
fn+p+7(z1,z2) = z1 + z2

1 + z2
2,

fn+p+8(z1,z2) = z2
1 + z2

2,
fn+p+9(z1,z2) = z1 + z2 + z1z2 + z2

1 + z2
2,

fn+p+10(z1,z2) = z1 + z2 + z1z2 + z2
1,

fn+p+11(z1,z2) = z1 + z1z2 + z2
1 + z2

2,
fn+p+12(z1,z2) = z1z2 + z2

1 + z2
2,

fn+p+13(z1,z2) = z1 + z1z2 + z2
1,

fn+p+14(z1,z2) = z1 + z2 + z2
1 + z2

2,
fn+p+15(z1,z2) = z1z2,
fn+p+16(z1,z2) = z1z2 + z2

1.

(4.71)

Codes for different mathematical expressions in inductive genetic programming
can have different lengths.

Graphically, the inductive genetic programming code looks like a computational
tree. The leaves of the tree contain parameters and variables, and the nodes of the
tree contain the numbers of the basic polynomials.

The crossover operation in inductive genetic programming is performed by ex-
changing subtrees or subsequences of codes. Crossover for two IGP codes does not
require special conditions for crossover points. To perform the crossover operation,
a subtree code needs to be defined. The definition of the subtree or subsequence for
crossover is performed according to the correct record conditions (3.10).

For crossover, two codes are selected. In each of the codes, crossover points are
randomly selected and the codes of subtrees are found. The codes of the subtrees
are exchanged with each other, and the codes of new mathematical expressions are
obtained.

Consider an Example

Let us have the following set of functions:

F = {q1,q2,q3,x1,x2,x3, f7(z1,z2), . . . , f22(z1,z2)} (4.72)

and IGP codes of the mathematical expressions

I1 = (15,12,1,19,4,2,14,12,5,20,6,4,3), (4.73)

I2 = (18,21,12,1,4,14,2,5,19,17,4,6,3). (4.74)
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Fig. 4.5 IGP graph of the mathematical expression (4.75)

Fig. 4.6 IGP graph for the mathematical expression (4.76)

The codes correspond to the following mathematical expressions:

y1 = A+B+AB+A2 +B2, (4.75)

where
A = q1 + x1 + x1q2 + x2

1 +q2
1,

B = (x2 + x1 + x3 + x2
1 + x2

3 + x2
2)

2 +q2
3.

y2 =CD+C2 +D2, (4.76)

where
C = (x1 +q1 + x2

1)(q
2
2 + x2

2),
D = x1 + x1x3 + x2

1 + x2
3(1+q3)+(x1 + x1x3 + x2

1 + x2
3)

2.

Computational graphs of these expressions are shown in Figs. 4.5 and 4.6.
The nodes marked on the graphs are selected as crossover points.
Crossover subtrees have the following codes:

I1(2) = (12,1,19,4,2),
I2(5) = (14,2,5).

(4.77)

Here in brackets is the position number in the code with which the subsequence
begins.

The following codes of new mathematical expressions are obtained after
crossover and exchanging subcodes (4.77):

I3 = (15,14,2,5︸ ︷︷ ︸,14,12,5,20,6,4,3), (4.78)
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Fig. 4.7 IGP graph of the mathematical expression (4.80)

Fig. 4.8 IGP graph of the mathematical expression (4.81)

I4 = (18,21,12,1,4,12,1,19,4,2︸ ︷︷ ︸,19,17,4,6,3). (4.79)

The newly obtained codes correspond to the following mathematical expressions:

y3 = E +F +EF +E2 +F2, (4.80)

where
E = q2

2 + x2
2,

F = (x2 + x1 + x3 + x2
1 + x2

3 + x2
2)

2 +q2
3.

y4 = GH +G2 +H2 (4.81)

where
G = (q1 + x1 +q2

1)(q1 + x1 + x1q2 + x2
1 +q2

1),
H = x1 + x1x3 + x2

1 + x2
3(1+q3)+(x1 + x1x3 + x2

1 + x2
3)

2.

The computational graphs of the obtained mathematical expressions are shown
in Figs. 4.7 and 4.8.

4.5 Analytic Programming

Analytical programming [9, 10] is one more kind of symbolic regression methods.
Elements of a mathematical expression in analytic programming are encoded with
integers. All elements of the mathematical expression, together with arguments, are
collected in one ordered set. Each number in the ordered set is the element code.
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As a basic set of functions, a combined set of functions is used, in which a set of
arguments of a mathematical expression is introduced

F = { f1 = q1, . . . , fp = qp, fp+1 = x1, . . . , fp+n = xn,
fm0+1 = f1,1(z), . . . , fm0+m1 = f1,m1(z),
fm0+m1+1 = f2,1(z1,z2), . . . , fm0+m1+m2 = f2,m2(z1,z2),
. . .
fK+1 = fr,1(z1, . . . ,zr), . . . , fK+mr = fr,mr(z1, . . . ,zr)},

(4.82)

where m0 = p+n,

K =
r−1

∑
i=0

mi.

The mathematical expression is encoded by a sequence of element numbers from
the combined set (4.82)

C = (c1, . . . ,cL), (4.83)

where c j is the number of an element from the combined set (4.82), j = 1, . . . ,L.
In analytical programming, the prefix order of the elements is used. The function

code in the record precedes the argument code. The length of the code record is
limited.

Consider an Example

Suppose the following combined set of functions is defined:

F = {q1,q2,x1,x2,−z,sin(z),cos(z),exp(z),z1 + z1,z1z2}. (4.84)

and the following code of a mathematical expression is given:

C1 = (10,9,10,1,7,3,10,2,6,4,8,5,3). (4.85)

Let us decode this code.
The first element c1

1 = 10 corresponds to the multiplication function

y1 = z1z2.

Next element c2
1 = 9 corresponds to the addition function

y1 = (z1 + z3)z2.

Then c3
1 = 10, again multiplication

y1 = (z1z4 + z3)z2.

Next c4
1 = 1 is the parameter q1

y1 = (q1z4 + z3)z2.
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c5
1 = 7 is cos

y1 = (q1 cos(z1)+ z3)z2.

c6
1 = 3 is the variable x1

y1 = (q1 cos(x1)+ z3)z2.

Then again multiplication c7
1 = 10

y1 = (q1 cos(x1)+ z1z3)z2.

c8
1 = 2 is the parameter q2

y1 = (q1 cos(x1)+q2z3)z2.

c9
1 = 6 is sin

y1 = (q1 cos(x1)+q2 sin(z1))z2.

c1
10 = 4 is the variable x2

y = (q1 cos(x1)+q2 sin(x2))z2.

c11
1 = 8 is exp

y = (q1 cos(x1)+q2 sin(x2))exp(z1).

c1
12 = 5 corresponds to the sign change function

y = (q1 cos(x1)+q2 sin(x2))exp(−z1).

c1
13 = 3 is the variable x1

y = (q1 cos(x1)+q2 sin(x2))exp(−x1).

The correctness of the code is determined by the index of the code element. The
index of the element i is determined from the relation

T (i) = 1− i+
i

∑
j=1

a j, (4.86)

where

a j =

{
0, if a j ≤ m0,

k, if ∑k
s=0 ms < a j ≤ ∑k+1

s=0 ms, k = 0, . . . ,r−1.
(4.87)

The condition of the code correctness is defined by (3.10).
Crossover in analytic programming is accomplished by exchanging subcodes.

Crossover points are randomly selected in each of the codes selected for crossover.
From these points, sequences of subcodes are determined as independent codes,
which start from the crossover point and satisfy the conditions for correct writing of
the code. The last subcode element is determined by the zero value of the subcode
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element index. For example, in the code, the point α is selected with the element aα .
The indices of all elements of the subcode are calculated starting from the element
α by the formula (4.86) with the replacement i ← i−α +1.

Consider an Example

Let the code of the second mathematical expression be given

C2 = (10,8,10,5,1,3,7,6,10,2,4). (4.88)

The code corresponds to the mathematical expression

y2 = exp(−q1x1)cos(sin(q2x2)). (4.89)

Let in the code C1 the crossover point be α = 3 and in the code C2, the crossing
point be β = 7. Thus, the subcodes for crossover are

C1(3) = (10,1,7,3),
C2(7) = (7,6,10,2,4).

Exchange the selected subcodes in the codes, and codes for new mathematical
expressions are obtained

C3 = (10,9,7,6,10,2,4︸ ︷︷ ︸,10,2,6,4,8,5,3),

C4 = (10,8,10,5,1,3,10,1,7,3︸ ︷︷ ︸).
The resulting codes correspond to new mathematical expressions

y3 = (cos(sin(q2x2))+q2 sin(x2))exp(−x1),
y4 = exp(−q1x1)q1 cos(x2).

Analytical programming has the shortest code to write a mathematical expres-
sion. The drawback of analytical programming is, as in genetic programming and
inductive genetic programming, different lengths of codes of various mathematical
expressions, and a change in the length of the code after the crossover operation.

4.6 Parse-Matrix Evolution

The parse-matrix evolution method [11] encodes function call commands as an in-
teger vector of a certain length. The dimension of the function call vector is deter-
mined by the maximum number of arguments of the functions used. In this case,
the method of parse-matrix evolution is similar to the method of Cartesian genetic
programming. The elements of the function call vector include the code of the func-
tion, the codes of the function arguments, and the element for storing the calculation
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results. The dimension of the function call vector determines the number of columns
in the parse-matrix. Unlike Cartesian genetic programming, the function call vec-
tor specifies the element code to store the results, and all function call vectors are
combined into one parse-matrix.

To encode a mathematical expression by the parse-matrix, we define the basic
ordered set of elementary functions

F = { f1 = f1,1(z), . . . , fm1 = f1,m1(z),
fm1+1 = f2,1(z1,z2), . . . , fm1+m2 = f2,m2(z1,z2),
. . .
fSr−1+1 = fr,1(z1, . . . .zr), . . . , fSr = fr,mr(z1, . . . ,zr)},

(4.90)

where

Sk =
k

∑
i=1

mk, k = 1, . . . ,r.

Define an ordered set of elements for storing the results of calculations

S = (s1, . . . ,sv). (4.91)

Define an ordered united set of parameters, variables, and elements for storing
the results of calculations. These elements are arguments of the mathematical ex-
pression and of functions from (4.90)

A = (a1 = q1, . . . ,ap = qp,ap+1 = x1, . . . ,ap+n = xn,
ap+n+1 = s1, . . . ,ap+n+v = sv).

(4.92)

The code of each element in the sets of elementary functions (4.90), arguments
(4.92), and elements for storing the results of calculations (4.91) is determined by
an ordinal number of the element by the formula

c = n(C)−
⌊ |C|

2

⌋
, (4.93)

where n(C) is an ordinal number of the element in the set C, |C|—is the cardinality
of the set C, C ∈ {F,A,S}.

The code of the mathematical expression is written in the form of a parse-matrix
with the dimension L× (r+2)

P= [pi, j], i = 1, . . . ,L, j = 1, . . . ,r+2. (4.94)

Each row of the parse-matrix (4.94) contains the code for calling a function from
a set of elementary functions (4.90)

pi,1 = n(F)−
⌊ |F|

2

⌋
, (4.95)
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pi,r+2 = n(S)−
⌊ |S|

2

⌋
, (4.96)

pi, j = n(A)−
⌊ |A|

2

⌋
, j = 2, . . . ,r+1. (4.97)

The solution in PME symbolic regression method is searched using a genetic
algorithm. When searching, all matrices of the set of possible solutions have the
same dimension. For this purpose, some rows of parse-matrices have function calls
that are not used for evaluation of the mathematical expression.

To perform the crossover operation, two parse-matrices are randomly selected

Pα = [pα
i, j], P

β = [pβ
i, j], i = 1, . . . ,L, j = 1, . . . ,r+2. (4.98)

Randomly select the crossover point t ∈ {1, . . . ,L} and exchange the matrix rows
from t string to the end. Getting new parsing matrices

Pγ =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

pα
1,1 . . . pα

1,r+2
...

. . .
...

pα
t−1,1 . . . pα

t−1,r+2

pβ
t,1 . . . pβ

t,r+2
...

. . .
...

pβ
L,1 . . . pβ

L,r+2

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, Pδ =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

pβ
1,1 . . . pβ

1,r+2
...

. . .
...

pβ
t−1,1 . . . pβ

t−1,r+2
pα

t,1 . . . pα
t,r+2

...
. . .

...
pα

L,1 . . . pα
L,r+2

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
. (4.99)

To perform the mutation operation, randomly select the mutation point pa,b, a ∈
{1, . . . ,L}, b ∈ {1, . . . ,r+2} and randomly generate a new value depending on the
column b

pa,b =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

μ −
⌊ |F|

2

⌋
, μ ∈ {1 . . . |F|}, if b = 1,

μ −
⌊ |A|

2

⌋
, μ ∈ {1 . . . |A|}, if 1 < b ≤ r+1,

μ −
⌊ |S|

2

⌋
, μ ∈ {1 . . . |S|}, if b = r+2.

(4.100)

Consider an Example

Suppose the following mathematical expressions are given:

y1 =

{
q1x1 + x2 exp(−q2x2)cos(q1x1), if B < 0
q1x1 + x2 sin(q2x2 +q3), otherwise

, (4.101)

y2 =

{
exp(−q1x1), if A ≤ 0
−exp(−q1x1), otherwise

, (4.102)

where
B = x2

1 − x2
2,

A = sin(cos(q1x1))− cos(sin(q2x2 +q3)).
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To encode the mathematical expressions, the following set of functions is used:

F = { f1 =−z, f2 = exp(z), f3 = sin(z), f4 = cos(z),
f5 = z1 + z2, f6 = z1z2, f7 = f3,1(z1,z2,z3),
f8 = f3,2(z1,z2,z3)},

(4.103)

where

f3,1(z1,z2,z3) =

{
z2, if z1 ≤ 0
z3, otherwise

,

f3,2(z1,z2,z3) =

{
z3, if z1 ≤ z2

−z3, otherwise
.

Define the set for storing intermediate computations as

S = {s1, . . . ,s15}. (4.104)

Define a set of arguments

A = {a1 = q1,a2 = q2,a3 = q3,a4 = x1,a5 = x2,
a6 = s1, . . . ,a20 = s15}. (4.105)

The maximum number of function arguments is r = 3, so the number of columns
in the parse-matrix is r+2 = 5.

Let us write sequentially the mathematical expressions (4.101), (4.102) using
functions from the set F and encode them using PME.

q1x1 : f6(a1,a4), p1,1 = 6−
⌊ |F|

2

⌋
= 6−4 = 2,

p1,2 = 1−
⌊ |A|

2

⌋
= 1−10 =−9,

p1,3 = 4−
⌊ |A|

2

⌋
= 4−10 =−6,

p1,4 is not used and can be of any value,

p1,5 = 1−
⌊ |S|

2

⌋
= 1−7 =−6.
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As a result, the first row of the parse-matrix is obtained

p1 = [2 −9 −6 ∗ −6].

Perform the rest of the transformations.

cos(q1x1) : s2 = f4(a6),

p2 = [0 −4 ∗ ∗ −5],

q2x2 : s3 = f6(a2,a5),

p3 = [2 −8 −5 ∗ −4],

−q2x2 : s4 = f1(a8),

p4 = [−3 −2 ∗ ∗ −3],

exp(−q2x2) : s5 = f2(a9),

p5 = [−2 −1 ∗ ∗ −2],

exp(−q2x2)cos(q1x1) : s6 = f6(a10,a7),

p6 = [2 0 −3 ∗ −1],

q2x2 +q3 : s7 = f5(a8,a3),

p7 = [1 −2 −7 ∗ 0],

sin(q2x2 +q3) : s8 = f3(a12),

p8 = [1 2 ∗ ∗ 1],

x2
1 : s9 = f6(a4,a4),

p9 = [2 −6 −6 ∗ 2],

x2
2 : s10 = f6(a5,a5),

p10 = [2 −5 −5 ∗ 3],

−x2
2 : s11 = f1(a15),

p11 = [−3 5 ∗ ∗ 4],

x2
1 − x2

2 : s12 = f5(a14,a16),

p12 = [1 4 6 ∗ 5],

f3,1(x
2
1 − x2

2,exp(−q1x1)cos(q1x1),sin(q2x2 +q3)) :

s13 = f7(a17,a11,a13),

p13 = [3 7 1 3 6],

x2 f3,1(s12,s6,s8) : s14 = f6(a5,a18),

p14 = [2 −5 8 ∗ 7],

y1 = q1x1 + f3,1(s12,s6,s8),s15 = f5(a7,a19),

p15 = [1 −3 9 ∗ 8].
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As a result, a parse-matrix of size 15×5 is obtained

P1 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

2 −9 −6 ∗ −6
0 −4 ∗ ∗ −5
2 −8 −5 ∗ −4
−3 −2 ∗ ∗ −3
−2 −1 ∗ ∗ −2
2 0 −3 ∗ −1
1 −2 −7 ∗ 0
−1 2 ∗ ∗ 1
2 −6 −6 ∗ 2
2 −5 −5 ∗ 3
−3 5 ∗ ∗ 4
1 4 6 ∗ 5
3 7 1 3 6
2 −5 8 ∗ 7
1 −3 9 ∗ 8

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (4.106)

The second mathematical expression (4.102) is coded by the following parse-
matrix:

P2 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

2 −9 −6 ∗ −6
1 −9 −6 ∗ −5
−3 −4 ∗ ∗ −4
−2 −2 ∗ ∗ −3
0 −4 ∗ ∗ −2
2 −1 0 ∗ −1
−1 0 ∗ ∗ 0
−1 −4 ∗ ∗ −1
2 −1 3 ∗ 2
2 −8 −5 ∗ 3
1 5 −7 ∗ 4
−1 6 ∗ ∗ 5
2 −1 7 ∗ 6
0 7 ∗ ∗ 7
4 2 9 −1 8

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (4.107)

In this matrix, the rows 2, 6, 9, 10, 13 describe function calls that are not used
in the calculation of the mathematical expression (4.102). These lines are entered to
preserve the dimension of the parse-matrix.
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Define the crossover point, for example t = 8. After exchanging rows, new parse-
matrices are received

P3 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

2 −9 −6 ∗ −6
0 −4 ∗ ∗ −5
2 −8 −5 ∗ −4
−3 −2 ∗ ∗ −3
−2 −1 ∗ ∗ −2
2 0 −3 ∗ −1
1 −2 −7 ∗ 0
−1 −4 ∗ ∗ −1
2 −1 3 ∗ 2
2 −8 −5 ∗ 3
1 5 −7 ∗ 4
−1 6 ∗ ∗ 5
2 −1 7 ∗ 6
0 7 ∗ ∗ 7
4 2 9 −1 8

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, P4 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

2 −9 −6 ∗ −6
1 −9 −6 ∗ −5
−3 −4 ∗ ∗ −4
−2 −2 ∗ ∗ −3
0 −4 ∗ ∗ −2
2 −1 0 ∗ −1
−1 0 ∗ ∗ 0
−1 2 ∗ ∗ 1
2 −6 −6 ∗ 2
2 −5 −5 ∗ 3
−3 5 ∗ ∗ 4
1 4 6 ∗ 5
3 7 1 3 6
2 −5 8 ∗ 7
1 −3 9 ∗ 8

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (4.108)

The matrices correspond to the following mathematical expressions:

y3 =

{−q2x2, if q2x2 +q3 ≤ cos(sin(q2x2 +q3))
q2x2, otherwise

, (4.109)

y4 =

{
q1 + x1 + x2 exp(−q1x1)cos(q1x1), if x2

1 − x2
2 ≤ 0

q1 + x1 + x2, otherwise
. (4.110)

4.7 Binary Complete Genetic Programming

Binary Complete Genetic Programming (BCGP) [12] is also a kind of genetic pro-
gramming. BCGP represents a mathematical expression in the form of a binary
tree and uses only functions with one and two arguments. In a computational tree,
functions with two arguments are associated with tree nodes. Functions with one
argument are associated with tree arcs.

A complete binary tree has a certain number of elements, depending on the num-
ber of levels. Each level, except for the last one, contains the same number of func-
tions with one and two arguments. The last level contains the same number of func-
tions with one argument and arguments of the mathematical expression, which are
schematically associated with the leaves of the tree.

In BCGP, a mathematical expression is a sequential notation of function and
argument codes. All codes are in a specific order by level. At each level, the codes of
functions with one argument are firstly written, then functions with two arguments,
and at the last level the codes of the arguments of the mathematical expression are
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written. The number of function arguments is determined by the ordinal number of
the element in the code.

Define basic sets of elementary functions

• a set of functions with two arguments

F2 = { f1 = f2,1(z1,z2), . . . , fv = f2,v(z1,z2)}, (4.111)

• a set of functions with one argument

G1 = {g1 = f1,1(z), . . . ,gw = f1,w(z)}, (4.112)

• and a set of arguments of a mathematical expression

A = {a1 = q1, . . . ,ap = qp,ap+1 = x1, . . . ,an+p = xn,
an+p+1 = e1, . . . ,an+p+v = ev}, (4.113)

where ei is a unit element of the function with two arguments f2,i(z1,z2), i =
1, . . . ,v.

As seen, unit elements for functions with two arguments are added to the set of
arguments. The unit element of a function with two arguments is such a value of
one of the arguments that the result of evaluating the function is equal to the value
of the other argument. The unit element for the addition function is 0, and for the
multiplication function is 1.

Functions with two arguments are commutative

f2,i(z1,z2) = f2,i(z2,z1), i = 1, . . . ,v. (4.114)

The initial level of the binary tree is zero level. Let there be L levels in the binary
tree. At the k < L level of the binary tree, there are 2k functions with one argument
and the same number of functions with two arguments. At the level k= L there are 2L

functions with one argument and the same number of arguments of the mathematical
expression, taking into account the unit elements for functions with two arguments.
There are totally

N = 2
L

∑
k=0

2k = 2(2L+1 −1) (4.115)

elements in the BCGP code with L levels.

Consider an Example

Let a mathematical expression be given

y1 = (x2
1 − x2

2)cos(q1x1 +q2)+ x1x2 exp(−q3x1). (4.116)
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Fig. 4.9 A binary tree for the mathematical expression (4.116)

Fig. 4.10 A complete binary tree for the mathematical expression (4.116)

For encoding this mathematical expression, the following sets of functions and
arguments are sufficient

F2 = { f1 = z1 + z2, f2 = z1z2}, (4.117)

G1 = {g1 = z,g2 =−z,g3 = cos(z),g4 = exp(z),g5 = z2}, (4.118)

A = {a1 = q1,a2 = q2,a3 = q3,a4 = x1,a5 = x2,a6 = 0,a7 = 1}. (4.119)

A binary computational tree for a mathematical expression is shown in Fig. 4.9.
The resulting binary tree (Fig. 4.9) is not complete and has no more than four

levels. Add additional branches and nodes to the tree with functions with two argu-
ments and single elements of these functions to get a complete binary tree.

The complete binary tree for the mathematical expression (4.116) is shown in
Fig. 4.10.

BCGP code is an ordered set of integer numbers that indicate the numbers of
elements from the sets of functions with one and two arguments and from the set of
arguments of the encoded mathematical expression.



84 4 Symbolic Regression Methods

The BCGP code of the mathematical expression (4.116) is as follows:

C1 = (1, 1,
1,1, 2,2,
1,3,1,4, 1,1,2,2,
1,2,1,1,1,1,1,2, 1,1,1,2,1,1,1,1,
5,1,5,1,1,1,1,1,1,1,1,1,1,1,1,1,
4,6,5,6,2,6,4,1,4,6,5,6,4,6,3,6).

(4.120)

To search for an optimal mathematical expression, the number of levels of a
binary tree needs to be determined and codes of mathematical expressions are gen-
erated according to the structure of the complete binary tree. As a result, codes of all
mathematical expressions in search process have the same length. In all codes, the
arguments of a mathematical expression and functions with one and two arguments
are at specific positions in the code.

To perform the crossover operation, one crossover point is chosen for both se-
lected possible solutions. Crossover is performed conventionally by exchanging
codes after the crossover point.

To demonstrate the crossover operation, consider the second mathematical ex-
pression

y2 = cos(exp(−(q1x2
1 +q2x2

2))). (4.121)

The BCGP code of the mathematical expression (4.121) is as follows:

C2 = (3, 1,
4,1, 1,1,
2,1,1,1 1,1,1,1,
1,1,1,1,1,1,1,1, 2,2,1,1,1,1,1,1,
5,1,5,1,1,1,1,1,1,1,1,1,1,1,1,1,
4,1,5,2,6,6,6,6,6,6,6,6,6,6,6,6).

(4.122)

Randomly choose the crossover point s ∈ {1, . . . ,62}. Suppose s = 26.
Exchange the elements of the codes from the crossover point and get new codes

of mathematical expressions

C3 = (1, 1,
1,1, 2,2,
1,3,1,4, 1,1,2,2,
1,2,1,1,1,1,1,2, 1,1,1,2,1,1,1,1,
5,1,5,1,1,1,1,1,1,1,1,1,1,1,1,1,
4,1,5,2,6,6,6,6,6,6,6,6,6,6,6,6).

(4.123)

C4 = (3, 1,
4,1, 1,1,
2,1,1,1, 1,1,1,1,
1,1,1,1,1,1,1,1, 2,2,1,1,1,1,1,1,
5,1,5,1,1,1,1,1,1,1,1,1,1,1,1,1,
4,6,5,6,2,6,4,1,4,6,5,6,4,6,3,6).

(4.124)
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The resulting codes correspond to the following mathematical expressions:

y3 = q1x2
1 −q2x2

2, (4.125)

y4 = exp(x1 +q1 +q2)+2x1 +q3. (4.126)

4.8 Network Operator Method

The network operator method [13–15] encodes a mathematical expression in the
form of a directed graph. The method only uses functions with one and two argu-
ments. In the directed graph of the network operator, arguments of the mathematical
expression are associated with source nodes, functions with one argument are as-
sociated with graph arcs, functions with two arguments are associated with other
nodes in the graph. Any nodes of the graph can be defined as outputs, and the re-
sults of calculations in them will be the values of the components of the output
vector. Sink-nodes in a graph are outputs of the mathematical expression.

To encode a mathematical expression by the network operator method, three or-
dered sets are used

• and a set of arguments of the mathematical expression, or parameters and vari-
ables of the mathematical expression

F0 = { f0,1 = q1, . . . , f0,p = qp, f0,p+1 = x1, . . . , f0,n+p = xn}, (4.127)

• a set of functions with one argument

F1 = { f1,1 = z, f1,2(z), . . . , f1,w(z)}, (4.128)

• a set of functions with two arguments

F2 = { f2,1(z1,z2), . . . , f2,v(z1,z2)}. (4.129)

A set of functions with one argument F1 must necessarily contain the identical
function

f1,1 = z.

Functions with two arguments must be associative, commutative, and have a unit
element.

To build a computational oriented graph of the network operator, it is necessary to
represent a mathematical expression in the form of a composition of functions. The
first function in the composition should be a function with two arguments. Further
in the composition notation, functions with one argument alternate with functions
with two arguments.
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Also, when building a network operator graph, the following rules must also be
observed:

• Arguments of functions with one argument are only functions with two argu-
ments or elements of a set of parameters and variables,

• Arguments of a function with two arguments are only functions with one argu-
ment or its unit element,

• Functions with two arguments must not include functions with the same argu-
ment as arguments.

To satisfy these requirements for constructing a network operator graph, additional
functions with two arguments and with a unit element of this function as the second
argument are introduced. A unit element is not indicated on the graph. If a graph
node contains one arc, then the second argument associated with this node is a unit
element, therefore a function with two arguments associated with a node with only
one arc does not change the input value.

Consider an Example

Let a mathematical expression be given

y = (x2
1 − x2

2)cos(q1x1 +q2)+ x1x2 exp(−q3x1). (4.130)

To encode this mathematical, the following sets of arguments and functions are
needed

F0 = {x1,x2,q1,q2,q3}, (4.131)

F1 = { f1,1(z) = z, f1,2(z) =−z, f1,3(z) = cos(z),
f1,4(z) = exp(z), f1,5(z) = z2}, (4.132)

F2 = { f2,1(z1,z2) = z1 + z2, f2,2(z1,z2) = z1z2}. (4.133)

The network operator graph of the mathematical expression (4.130) is shown in
Fig. 4.11.

In the Fig. 4.11 the nodes contain the numbers of functions with two arguments,
the numbers of functions with one argument are indicated next to the arcs, the ar-
guments of the mathematical expression are indicated in the source nodes, and the
numbers of the nodes are indicated in the upper parts of the nodes. Node are num-
bered according to the rules of topological sorting, the number of the node from
which the arc exits is less than the number of the node where the arc enters.

In the computer memory, the graph of the network operator is represented as
an integer square matrix of the network operator, which is constructed from the
adjacency matrix of the graph. In the graph of the network operator, instead of 1 in
the adjacency matrix, the numbers of functions with one argument are indicated, the
diagonal contains the numbers of functions with two arguments.
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Fig. 4.11 A graph of the network operator for the mathematical expression (4.130)

The network operator matrix for the graph of the mathematical expression
(4.130) has the following form:

Ψ =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0 0 1 1 1 0 5 0 0 0 0
0 0 0 0 0 0 1 0 5 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 2 0 0 0 0 0 0
0 0 0 0 0 2 0 0 0 0 1 0 0 0
0 0 0 0 0 0 2 0 0 0 0 1 0 0
0 0 0 0 0 0 0 2 0 0 0 4 0 0
0 0 0 0 0 0 0 0 1 2 0 0 0 0
0 0 0 0 0 0 0 0 0 1 0 0 1 0
0 0 0 0 0 0 0 0 0 0 1 0 3 0
0 0 0 0 0 0 0 0 0 0 0 2 0 1
0 0 0 0 0 0 0 0 0 0 0 0 2 1
0 0 0 0 0 0 0 0 0 0 0 0 0 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (4.134)

The complexity of constructing a graph of a network operator by a mathematical
expression is compensated by the fact that such a construction is not required to
be performed when searching for a mathematical expression. Any integer square
upper-triangular matrix in which zero columns correspond to source nodes, and in
the remaining columns and in all rows there are non-diagonal non-zero elements
whose values correspond to the numbers of functions with one argument, and on the
diagonal in non-zero columns there are numbers of functions with two arguments,
is the network operator matrix that describes some computational graph.

Consider an example of calculating a mathematical expression using the graph
of a network operator.

To store the results of intermediate calculations, a vector of nodes is introduced,
the dimension of which is equal to the number of rows of the network operator
matrix.
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Initialize the vector of nodes and put the values of the arguments and the unit
elements of the functions with two arguments in its corresponding components

z(0) = [x1 x2 q1 q2 q3 1 1 1 0 0 0 1 1 0]T .

Scan the matrix (4.134) row by row and find non-zero non-diagonal elements
ψi, j �= 0, i = 1, . . . ,13, j = i+1, . . . ,14.

ψ1,6 = 1, z(1)6 = f2,2(z(0)6 , f1,1(x1)) = 1 · x1 = x1,

ψ1,7 = 1, z(1)7 = f2,2(z
(0)
7 , f1,1(x1)) = 1 · x1 = x1,

ψ1,8 = 1, z(1)8 = f2,2(z
(0)
8 , f1,1(x1)) = 1 · x1 = x1,

ψ1,10 = 5, z(1)10 = f2,2(z
(0)
10 , f1,5(x1)) = 1 · x2

1 = x2
1,

z(1)i = z(0)i , i = 1, . . . ,5,9,11, . . . ,14,

ψ2,7 = 1,z(2)7 = f2,2(z
(1)
7 , f1,1(x2)) = x1 · x2 = x1x2,

ψ2,9 = 5, z(2)9 = f2,2(z
(1)
9 , f1,5(x2)) = 1 · x2

2 = x2
2,

z(2)i = z(1)i , i = 1, . . . ,6,8,10, . . . ,14,

ψ3,6 = 1,z(3)6 = f2,2(z
(2)
6 , f1,1(q1)) = x1 ·q1 = x1q1,

z(3)i = z(2)i , i = 1, . . . ,5,7, . . . ,14,

ψ4,11 = 1,z(4)11 = f2,1(z
(3)
11 , f1,1(q2)) = 0+q2 = q2,

z(4)i = z(3)i , i = 1, . . . ,10,12,13,14,

ψ5,8 = 2,z(5)8 = f2,2(z
(4)
8 , f1,2(q3)) = 1 · (−q3) =−q3,

z(5)i = z(4)i , i = 1, . . . ,7,9, . . . ,14,

ψ6,11 = 2,z(6)11 = f2,1(z
(5)
11 , f1,1(z

(5)
6 )) = q2 + x1q1,

z(6)i = z(5)i , i = 1, . . . ,10,12,13,14,

ψ7,12 = 1,z(7)12 = f2,2(z
(6)
12 , f1,1(z

(6)
7 )) = x1x2,

z(7)i = z(6)i , i = 1, . . . ,11,13,14,

ψ8,12 = 4,z(8)12 = f2,2(z
(7)
12 , f1,4(z

(7)
8 )) = exp(−x1q3),

z(8)i = z(7)i , i = 1, . . . ,11,13,14,

ψ9,10 = 2,z(9)10 = f2,1(z
(8)
10 , f1,2(z

(8)
9 )) = x2

1 − x2
2,

z(9)i = z(8)i , i = 1, . . . ,9,11,12,13,14,

ψ10,13 = 1,z(10)
13 = f2,2(z

(9)
13 , f1,1(z

(9)
10 )) = x2

1 − x2
2

z(10)
i = z(9)i , i = 1, . . . ,12,14,
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ψ11,13 = 3,z(11)
13 = f2,2(z

(10)
13 , f1,2(z

(10)
11 )) =

(x2
1 − x2

2)cos(x1q1 +q2)

z(11)
i = z(10)

i , i = 1, . . . ,12,14,

ψ12,14 = 1,z(12)
14 = f2,1(z

(11)
14 , f1,1(z

(11)
12 )) = x1x2 exp(−x1q3)

z(12)
i = z(11)

i , i = 1, . . . ,13,

ψ13,14 = 1,z(13)
14 = f2,1(z

(12)
14 , f1,1(z

(12)
13 )) =

(x2
1 − x2

2)cos(x1q1 +q2)+ x1x2 exp(−x1q3)

z(13)
i = z(12)

i , i = 1, . . . ,13.

As soon as all the rows of the matrix of the network operator are scanned, the last
element of the vector of nodes contains the result of calculating the mathematical
expression encoded by the network operator.

The network operator method is the first symbolic regression method, where the
principle of small variations of basic solutions was applied.

So, the genetic operations are performed not directly on the network operator
matrix, but on the set of variations.

According to this principle only one basic solution is coded in the form of net-
work operator matrix. Other possible solutions are presented as small variations of
this basic solution. For coding of every possible solution, the set of small variation
vectors is used.

Each small variation vector includes four integer components

w= [w1 w2 w3 w4]
T , (4.135)

where w1 is a type of variation, w2 is a row number of the network operator matrix,
w3 is a column number of the network operator matrix, w4 is a new value of the
element in the network operator matrix.

The following types of small variations are used for the network operator matrix:

• w1 = 0 is a replacement of a non-zero non-diagonal element,
• w1 = 1 is a replacement of a non-zero diagonal element,
• w1 = 2 is a replacement of zero non-diagonal element by a non-zero element,
• w1 = 3 is a replacement of non-zero non-diagonal element by a zero element.

Variations are performed while maintaining the correctness condition for the net-
work operator matrix

∀i ∃ψi, j �= 0, i �= j and

∀ j /∈ {s1, . . . ,sN+P}, ∃ψk, j �= 0, k �= j. (4.136)

This condition (4.136) of the correctness of the network operator matrix means
the absence of such rows and columns that do not correspond to the source nodes,
in which all non-diagonal elements are zero.
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Consider an Example

Let a small variation vector be

w= [2 8 10 3]T . (4.137)

After this small variation, the network operator matrix (4.134) has the following
form:

w◦Ψ =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0 0 1 1 1 0 5 0 0 0 0
0 0 0 0 0 0 1 0 5 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 2 0 0 0 0 0 0
0 0 0 0 0 2 0 0 0 0 1 0 0 0
0 0 0 0 0 0 2 0 0 0 0 1 0 0
0 0 0 0 0 0 0 2 0 3 0 4 0 0
0 0 0 0 0 0 0 0 1 2 0 0 0 0
0 0 0 0 0 0 0 0 0 1 0 0 1 0
0 0 0 0 0 0 0 0 0 0 1 0 3 0
0 0 0 0 0 0 0 0 0 0 0 2 0 1
0 0 0 0 0 0 0 0 0 0 0 0 2 1
0 0 0 0 0 0 0 0 0 0 0 0 0 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (4.138)

This new network operator matrix codes the following mathematical expression:

ỹ = (x2
1 − x2

2 + cos(−q3x1))cos(x1q1 +q2)+ x1x2 exp(−x1q3). (4.139)

Now let us consider genetic operations in the NOP method.
Each possible solution is coded by the set of small variation vectors

Wk = (wk,1, . . . ,wk,d), (4.140)

where d is a number of small variations or a depth of variations.
The crossover is performed for the sets of small variations vectors. For this two

possible solutions are selected

Wα = (wα ,1, . . . ,wα ,d),

Wβ = (wβ ,1, . . . ,wβ ,d).
(4.141)

Randomly determine a crossover point

c ∈ {1, . . . ,d}. (4.142)

Two new possible solutions are obtained by exchanging variation vectors after
the crossover point

Wγ = (wα ,1, . . . ,wα ,c,wβ ,c+1, . . . ,wβ ,d),

Wδ = (wβ ,1, . . . ,wβ ,c,wα ,c+1, . . . ,wα ,d).
(4.143)
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Mutation is performed for new possible solutions (4.143) by randomly generating
new variation vectors in a randomly selected position.

4.9 Variational Symbolic Regression Methods

The principle of small variations of the basic solution [16], implemented in the net-
work operator method, can be applied in other symbolic regression methods. All
methods that use the principle of small variations include the word “variational” in
the name. It is not a whim of the authors to apply the principle of small variations to
different symbolic regression methods. The experience of studying the application
of symbolic regression methods for solving complex control problems has shown
that only variational methods of symbolic regression allow to obtain acceptable so-
lutions. A detailed study of this issue is probably still ahead, and it is connected with
the explanation of the global reasons for the success of evolutionary computations.

Why is the technology of small variations in possible solutions, moreover, per-
formed with the use of a random number generator, better than an ordinary random
search? Our hypothesis about the reason for the successful application of small vari-
ations in possible solutions in optimization problems is that these small variations
must have a certain property. This property depends both on the algorithm itself or
the parameters of the algorithm, and on the problem for the solution of which it is
applied. Let us call this property the inheritance property.

Definition 4.1. Small variations of possible solutions that are used in the algorithm
for finding the optimal value of the objective function possess the inheritance
property, if after applying small variations to the set of possible solutions, there is
always a non-zero constant part of possible solutions that have objective function
values that differ from the values of the objective function for the same possible
solutions before small variations by no more than a certain amount, and this does
not depend on the value of the objective function.

Obviously, when in the process of searching for the optimal solution, some good
possible solutions have already been found, which values of the objective function
are close to the optimal, then it is unlikely to find a better possible solution by the
random search. The probability of finding a better solution by the random search
decreases with the improvement of the found possible solution. The better a possible
solution found, the less likely is to find a better solution by the random search. And
in the case of the inheritance property, with small variations of the already found
good possible solutions, we always get a part of possible solutions in which the
values of the objective function are in the vicinity of the already found good values.
This means that the probability of finding a solution among the inheritors that will
give a better value of the objective function becomes higher than that of the random
search.
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It is possible that the complex crossover operations used in symbolic regression
methods do not have the property of inheritance. This leads to the fact that the search
for the optimal solution becomes random.

Let us illustrate this in an example. In the classical genetic algorithm, which
searches for the optimal solution in the form of a real vector on the space of Gray
codes, after performing selection, crossover, and mutation for several generations,
the set of codes of possible solutions turns out to be similar to each other. Ideally,
when a global minimum is found, all possible solutions are the same. Crossing the
same codes gives the same codes. In genetic programming, when crossing the same
trees, due to different crossover points, we get new trees that are completely different
from the trees of the parents.

Now consider several examples of applying the principle of small variations for
various well-known symbolic regression methods. The application of this principle
to each specific method requires the definition of the small variation types and the
ways of their coding.

4.9.1 Variational Genetic Programming

Define small variations for genetic programming code [17].

• 1—change of the second component of the function code vector, while the value
of the second component indicates the index of the element from the set given by
the first component;

• 2—removal of the function with one argument;
• 3—insertion of a function with one argument;
• 4—increasing the value of the first component of the function vector code, while

the vector of the argument code is inserted after the code of the function;
• 5—decreasing the value of the first component of the function vector code by

one, while deleting the first argument code encountered after the variable code.

If some contradiction arises when performing a variation, then the small variation
is not performed.

Small variation for GP can be described by a vector of variation of tree compo-
nents

w= [w1 w2 w3]
T , (4.144)

where w1 is a type of variation, w1 ∈ {1, . . . ,5}, w2 is an index of variable element,
w3 is a value of new element.

Consider an Example

Let the mathematical expression be (4.6)

y0 = exp(−ax1)cos(bx2 + c),
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and its GP code (4.10) is

S0 =

([
2
2

]
,

[
1
2

]
,

[
2
2

]
,

[
1
1

]
,

[
0
3

]
,

[
0
1

]
,

[
1
3

]
,

[
2
1

]
,

[
2
2

]
,

[
0
2

]
,

[
0
4

]
,

[
0
5

])
.

The code uses the following sets of elementary functions and arguments:

F0 = { f0,1 = x1, f0,2 = x2, f0,3 = a, f0,4 = b, f0,5 = c},
F1 = { f1,1(z) =−z, f1,2(z) = exp(z), f1,3(z) = cos(z),

f1,4(z) = sin(z), f1,5(z) = z2},
F2 = { f2,1(z1,z2) = z1 + z2, f2,2(z1,z2) = z1z2}.

(4.145)

We added to these sets (4.145) some new functions with one argument that were
not used in the mathematical expression (4.6) in order to demonstrate variations
further.

Let S0 be a basic solution.
Let possible solutions be set in the form of ordered sets of small variation vectors.

W1 = (w1,1, . . . ,w1,4) =

⎛
⎝
⎡
⎣1

3
1

⎤
⎦ ,

⎡
⎣ 3

10
3

⎤
⎦ ,

⎡
⎣4

2
1

⎤
⎦ ,

⎡
⎣5

1
2

⎤
⎦
⎞
⎠ , (4.146)

W2 = (w2,1, . . . ,w2,4) =

⎛
⎝
⎡
⎣1

1
1

⎤
⎦ ,

⎡
⎣3

4
4

⎤
⎦ ,

⎡
⎣3

2
5

⎤
⎦ ,

⎡
⎣2

9
3

⎤
⎦
⎞
⎠ . (4.147)

Codes of mathematical expressions of these possible solutions are

S1 = w1,4 ◦w1,3 ◦w1,2 ◦w1,1 ◦S0 =

([
1
2

]
,

[
2
2

]
,

[
2
1

]
,

[
1
1

]
,

[
0
3

]
,

[
0
1

]
,

[
1
3

]
,

[
2
1

]
,

[
2
2

]
,

[
1
3

]
,

[
0
2

]
,

[
0
4

]
,

[
0
5

])
,

(4.148)

S2 = w2,4 ◦w2,3 ◦w2,2 ◦w2,1 ◦S0 =

([
2
1

]
,

[
1
5

]
,

[
1
2

]
,

[
2
2

]
,

[
1
4

]
,

[
1
1

]
,

[
0
3

]
,

[
0
1

]
,

[
2
1

]
,

[
2
2

]
,

[
0
2

]
,

[
0
4

]
,

[
0
5

])
.

(4.149)

To obtain variation of codes, the first variation vector w1,1 = [1 3 1]T is taken.
The first component is w1,1

1 = 1, this means that it is necessary to change the second
component in the code vector w1,1

2 = 3 for value w1,1
2 = 1. Result is s1,3 = [2 1]T .

Further all other variations are made.
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These codes of possible solutions correspond to mathematical expressions

y1 = exp((−a+ x1)cos(bcos(x2)+ c)),

y2 = exp2(x1 sin(−a))+bx2 + c.

Now, let us perform crossover for the possible solutions given in the form of
variation vector sets (4.146), (4.147).

Select a crossover point c ∈ {1, . . . ,4}. For example, c = 3.
New possible solutions are the following:

W3 = (w1,1,w1,2,w2,3,w2,4),
W4 = (w2,1,w2,2,w1,3,w1,4).

Applying small variations to the basic solution, the following codes are obtained:

S3 = w3,4 ◦w3,3 ◦w3,2 ◦w3,1 ◦S0 =

([
2
2

]
,

[
1
5

]
,

[
1
2

]
,

[
2
1

]
,

[
1
1

]
,

[
0
3

]
,

[
0
1

]
,

[
1
3

]
,

[
2
1

]
,

[
2
2

]
,

[
1
3

]
,

[
0
2

]
,

[
0
4

]
,

[
0
5

])
,

S4 = w4,4 ◦w4,3 ◦w4,2 ◦w4,1 ◦S0 =

([
1
5

]
,

[
2
2

]
,

[
2
2

]
,

[
1
4

]
,

[
1
1

]
,

[
0
3

]
,

[
0
1

]
,

[
1
3

]
,

[
2
1

]
,

[
2
2

]
,

[
0
2

]
,

[
0
4

]
,

[
0
5

])
.

New codes correspond the following mathematical expressions:

y3 = exp(−a+ x1)+ cos(bcos(x2)+ c),

y4 = (x1 sin(−a)cos(bx2 + c))2.

4.9.2 Variational Analytic Programming

The analytic programming is a kind of genetic programming. The difference in the
codes of mathematical expressions is that in the analytical programming the number
of function arguments is not specified directly, and is determined by the number of
functions. It follows from this that small variations and the coding vector of these
variations coincide with the variational genetic programming.

A vector of tree components is used to encode small variation [18]

w= [w1 w2 w3]
T , (4.150)
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where w1 is a type of small variation, w2 is a code position number, w3 is a new
code value.

The following variations are possible:

• w1 = 1—change the function number while maintaining the number of argu-
ments;

• w1 = 2—remove the function number from the code, if this is a function with
one argument;

• w1 = 3—insert into the code a function with one argument;
• w1 = 4—change the function number so that the number of function arguments

increases by one, while after this function the code of the element from the set of
arguments is added;

• w1 = 5—change the number of the function so that the number of function argu-
ments decreases by one, while the first argument code that was found after the
code of the changed function is removed from the code.

Consider an Example

Let the analytical programming code of the mathematical expression be given (4.85)

C = (10,9,10,1,7,3,10,2,6,4,8,5,3).

A combined set of functions (4.84) is used for coding

F = {q1,q2,x1,x2,−z,sin(z),cos(z),exp(z),z1 + z1,z1z2}.

Let a set of vectors of variations be given

W =

⎛
⎝
⎡
⎣5

1
6

⎤
⎦ ,

⎡
⎣3

5
6

⎤
⎦ ,

⎡
⎣ 3

10
7

⎤
⎦ ,

⎡
⎣4

5
1

⎤
⎦
⎞
⎠ .

Apply variations to the code

w1 ◦C = (6,9,10,7,3,10,2,6,4,8,5,3).

w2 ◦C = (6,9,10,7,6,3,10,2,6,4,8,5,3).

w3 ◦C = (6,9,10,7,6,3,10,2,6,7,4,8,5,3).

w4 ◦C = (6,9,10,7,9,1,3,10,2,6,7,4,8,5,3).

This new code describes the following mathematical expression:

y = sin(cos(q1 + x1)q2 sin(cos(x2))+ exp(−x1)).
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4.9.3 Variational Binary Complete Genetic Programming

In the binary complete genetic programming, all codes of functions with two argu-
ments, one argument, and arguments of the mathematical expression, including the
unit elements of functions with two arguments, depending on the number of levels
of the binary tree, are always located in certain places. Therefore, small variations
of the code do not change the number of function arguments and do not change the
length of the code.

The small variation vector contains only two components [19]

w= [w1 w2]
T , (4.151)

where w1 is a position number, w2 is a new value of the code element in accordance
with the selected position.

Let a binary tree have L levels. To determine which set the element number be-
longs to, we first define the level at which the w1 item is located by the formula

2l ≤ w1 < 2l+1. (4.152)

If the level found is not the last l < L, then the relation is used

w2 ∈
{

G1 if w1 mod 2l ≤ 2l−1

F2, otherwise
. (4.153)

If l = L, then

w2 ∈
{

G1 if w1 mod 2l ≤ 2L−1

A, otherwise
. (4.154)

Let w1 = 1, then the level l = 0, 20 = 1 ≤ w1 = 1 < 21 −2.
Then r = w1 mod 2l = 0 ≤ 2−1 = 0.5, therefore w2 ∈ G1.

Consider an Example

Let the binary complete genetic programming code of the mathematical expression
(4.120) be given

C0 = (1, 1,
1,1, 2,2,
1,3,1,4, 1,1,2,2,
1,2,1,1,1,1,1,2, 1,1,1,2,1,1,1,1,
5,1,5,1,1,1,1,1,1,1,1,1,1,1,1,1,
4,6,5,6,2,6,4,1,4,6,5,6,4,6,3,6).

The code corresponds to the mathematical expression

y0 = (x2
1 − x2

2)cos(q1x1 +q2)+ x1x2 exp(−q3x1).
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The following sets of functions and arguments are used:

F2 = { f1 = z1 + z2, f2 = z1z2},

G1 = {g1 = z,g2 =−z,g3 = cos(z),g4 = exp(z),g5 = z2},
A = {a1 = q1,a2 = q2,a3 = q3,a4 = x1,a5 = x2,a6 = 0,a7 = 1}.

Introduce some vectors of variations

W =

([
7
5

]
,

[
32
4

]
,

[
11
2

]
,

[
48
5

])
.

Applying small variations returns a new BCGP code

w4 ◦w3 ◦w2 ◦w1 ◦C0 = (1, 1,
1,1, 2,2,
5,3,1,4, 1,1,2,2,
1,2,1,1,1,1,1,2, 1,1,1,2,
1,1,1,1,
5,4,5,1,1,1,1,1,1,1,1,1,
1,1,1,1, 4,5,5,6,2,6,4,
1,4,6,5,6,4,6,3,6).

The resulting code matches the following mathematical expression:

y1 = (x2
1 + exp(x2))cos(q1x1 +q2)+ x1x2 exp(−q3x1).

4.9.4 Variational Cartesian Genetic Programming

The application of the principle of small variations for Cartesian genetic program-
ming [20] is convenient and does not require changing the code length after a small
variation. The code of a mathematical expression in Cartesian genetic programming
is an ordered set of vectors of calls of elementary functions. The number of com-
ponents in the call vector depends on the maximum number of arguments used to
encode the elementary functions. If functions with no more than three arguments
are used for encoding, then the function call vector has four components, one for
the function number, the rest for the argument numbers. If a function with fewer
arguments is called, then the extra components of the call vector are not used.

The vector of small variations for Cartesian genetic programming consists of
three components

w= [w1 w2 w3]
T , (4.155)

where w1 is a number of the call vector, w2 is a number of the variable component in
the call vector, w3 is a new value of the component of the call vector. If w2 = 1, then
the new value of the component indicates the number of any elementary function,
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if w2 > 1, then w3 indicates the number of the element from the set of arguments to
which the results of the calculation by the previous call vectors are added.

Consider an Example

Let the CGP code of the mathematical expression be given

G0 =

⎛
⎜⎜⎝

⎡
⎢⎢⎣

7
4
1
2

⎤
⎥⎥⎦ ,

⎡
⎢⎢⎣

7
5
2
3

⎤
⎥⎥⎦ ,

⎡
⎢⎢⎣

7
6
3
4

⎤
⎥⎥⎦ ,

⎡
⎢⎢⎣

5
7
5
6

⎤
⎥⎥⎦

⎡
⎢⎢⎣

4
8
1
2

⎤
⎥⎥⎦ ,

⎡
⎢⎢⎣

3
9
3
4

⎤
⎥⎥⎦

⎡
⎢⎢⎣

6
11
12
5

⎤
⎥⎥⎦

⎡
⎢⎢⎣

7
10
13
6

⎤
⎥⎥⎦

⎞
⎟⎟⎠ . (4.156)

This code describes the following mathematical expression:

y = exp(q1x1)(sin(q2x2)+ cos(q3x3)).

The following sets of arguments and functions are used:

F0 = (x1,x2,x3,q1,q2,q3), (4.157)

F = { f1 = z, f2 =−z, f3 = cos(z), f4 = sin(z), f5 = exp(z),
f6 = z1 + z2, f7 = z1z2, f8 = f3,1(z1,z2,z3)}, (4.158)

where

f3,1(z1,z2,z3) =

{
z2, if z1 ≤ 0
z3, otherwise

.

Let the following set of vectors of variations be given:

W =

⎛
⎝
⎡
⎣8

1
8

⎤
⎦ ,

⎡
⎣3

3
8

⎤
⎦ ,

⎡
⎣ 6

2
10

⎤
⎦ ,

⎡
⎣1

3
2

⎤
⎦ ,

⎡
⎣4

1
3

⎤
⎦
⎞
⎠ . (4.159)

Applying small variations (4.159) to the code (4.156), and the following code of
the mathematical expression is obtained:

w5 ◦w4 ◦w3 ◦w2 ◦w1 ◦G0 =

⎛
⎜⎜⎝

⎡
⎢⎢⎣

7
4
2
2

⎤
⎥⎥⎦ ,

⎡
⎢⎢⎣

7
5
2
3

⎤
⎥⎥⎦ ,

⎡
⎢⎢⎣

7
6
8
4

⎤
⎥⎥⎦ ,

⎡
⎢⎢⎣

3
7
5
6

⎤
⎥⎥⎦ ,

⎡
⎢⎢⎣

4
8
1
2

⎤
⎥⎥⎦ ,

⎡
⎢⎢⎣

3
10
3
4

⎤
⎥⎥⎦ ,

⎡
⎢⎢⎣

6
11
12
5

⎤
⎥⎥⎦ ,

⎡
⎢⎢⎣

8
10
13
6

⎤
⎥⎥⎦

⎞
⎟⎟⎠ .

(4.160)

Here the first vector of variations is w1 = [8 1 8]T . Therefore, we changed the
first component in the eighth call vector to the function number 8. We received
g8 = [8 10 13 6]T . From the second vector of variations w2 = [3 3 8]T we obtained
g3 = [7 6 8 4]T . And so on.
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The code obtained after small variations corresponds to the following mathemat-
ical expression:

y =

{
sin(q2x2)+ cos(exp(q1x2)), if cos(q1x2)≤ 0,
q3, otherwise.

(4.161)

As seen, the application of the principle of small variations for various methods
of symbolic regression is not particularly difficult, it is enough to determine the
possible variations in accordance with the encoding of mathematical expressions
and set the type of their description. Genetic operations on the space of vectors of
small variations are carried out in a standard way.

4.10 Multilayer Symbolic Regression Methods

The natural development of symbolic regression methods, as deep learning in artifi-
cial neural networks, is the transition to multilayer constructions.

The emergence of multilayer neural networks was caused by the need to approx-
imate more complex functions, in particular, with the need to approximate the XOR
function. Symbolic regression methods can directly search for complex functions,
nonlinear, discontinuous, etc. However, with an increase in the dimension of the
problems being solved, when searching for solutions in the form of functions of
large dimensions, when the construction of the symbolic regression code also in-
creases significantly, the use of a multilayer approach can be a promising direction.

All symbolic regression methods can be multilayered. The result of the calcula-
tion in one layer is added to the set of arguments for other layers.

In multilayer symbolic regression methods, in order to avoid cyclicality, it is
necessary to establish the order of the layers and control the calls of the calculation
results in the layers. The main rule for avoiding cyclical calculations is to ensure the
order of using the results of calculations in layers. A higher numbered layer can use
the results of calculations of lower numbered layers.

Let us consider the construction of a multilayer symbolic regression method us-
ing the example of a multilayer network operator [21].

Multilayer Network Operator

Consider the NOP code with N layers.

Ψ = (Ψ1, . . . ,ΨN). (4.162)

To encode a mathematical expression, there is an ordered set of arguments of a
mathematical expression and a set of functions with one and two arguments.

F0 = {x1, . . . ,xn,q1 . . . ,qp}, (4.163)
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F1 = { f1,1(z) = z, f1,2(z), . . . , f1,w(z)}, (4.164)

F2 = { f2,1(z1,z2), . . . , f2,v(z1,z2)}. (4.165)

Suppose that each network operator from (4.162) has a different number of
source nodes and a different number of outputs. Let us define integer vectors of
the corresponding dimensions.

To describe the inputs to the network operator, the vector of inputs is introduced

ri = [ri
1 . . .r

i
mi
]T , (4.166)

where i is a number of the network operator, mi is a number of source nodes of the
network operator, i = 1, . . . ,N.

To describe the outputs of the network operator, the output vector is used

di = [di
1 . . .d

i
ni
]T , (4.167)

where i is a number of the network operator, ni are numbers of network operator
nodes that store the results of calculations, di

j is a number of the node in the network
operator Ψi that stores the results of calculations , j = 1, . . . ,ni, i = 1, . . . ,N, the set
of output nodes must include the numbers of all sink-nodes of the network operator.

The set of arguments for the network operator on each layer includes the results
of calculations on the previous layers.

Let us introduce an ordered set of the results of calculations of NOP

Yi = (yi
1, . . . ,y

i
ni
), (4.168)

where yi
j is the result of calculations of the network operator Ψi stored in the node

numbered di
j, j = 1, . . . ,ni, i = 1, . . . ,N.

Assume that the numbers of the source nodes ri
j are the first numbers of the nodes

of the network operator Ψi. This can always be done, since the source nodes are not
directly connected to each other.

The set of arguments for each network operator is different. For the first network
operator, the set of arguments coincides with the set of arguments (4.163) of the
encoded mathematical expression

F1
0 = F0. (4.169)

For each next network operator, the set of arguments includes the results of cal-
culations of the previous network operators

F2
0 = F1

0 ∪Y1,
F3

0 = F2
0 ∪Y2,

. . .

FN
0 = FN−1

0 ∪YN−1.

(4.170)
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Consider an Example

Let sets of arguments of the mathematical expression and functions with one and
two arguments be given

F0 = {x1,x2,x3,q1,q2,q3}, (4.171)

F1 = { f1,1(z) = z, f1,2(z) =−z, f1,3(z) = sin(z),
f1,4(z) = cos(z), f1,5(z) = exp(z), f1,6(z) = arctan(z),
f1,7(z) = 3

√
z, f1,8(z) = tanh(z)}.

(4.172)

F2 = { f1,1(z1,z2 = z1 + z2), f2,2(z1,z2) = z1z2}. (4.173)

N = 4 network operators of different sizes are given

Ψ1 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0 1 0 0 6
0 0 0 0 2 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 2 0 0
0 0 0 0 2 0 3 0
0 0 0 0 0 2 4 0
0 0 0 0 0 0 2 0
0 0 0 0 0 0 0 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (4.174)

Ψ2 =

⎡
⎢⎢⎢⎢⎢⎢⎣

0 0 1 0 1 0
0 0 2 0 0 0
0 0 2 5 0 0
0 0 0 1 1 0
0 0 0 0 2 8
0 0 0 0 0 1

⎤
⎥⎥⎥⎥⎥⎥⎦
, (4.175)

Ψ3 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0 1 0 0
0 0 0 0 1 0 0
0 0 0 0 0 6 0
0 0 0 0 0 1 0
0 0 0 0 2 1 0
0 0 0 0 0 2 7
0 0 0 0 0 0 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
, (4.176)

Ψ4 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0 1 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 5 0 0 0 0
0 0 0 0 0 6 0 0 0 0
0 0 0 0 1 0 4 0 0 0
0 0 0 0 0 2 1 1 0 0
0 0 0 0 0 0 2 1 0 0
0 0 0 0 0 0 0 1 1 0
0 0 0 0 0 0 0 0 1 1
0 0 0 0 0 0 0 0 0 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (4.177)
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Input and output vectors for network operators are given

r1 = [1 3 2 4]T , (4.178)

r2 = [3 6]T , (4.179)

r3 = [1 2 7 9]T , (4.180)

r4 = [11 12 8 10]T , (4.181)

d1 = [7 8]T , (4.182)

d2 = [5 6]T , (4.183)

d3 = [6 7]T , (4.184)

d4 = [10]. (4.185)

From the output vectors, the sets of arguments for each NOP are obtained

F1
0 = (x1,x2,x3,q1,q2,q3), (4.186)

F2
0 = (x1,x2,x3,q1,q2,q3,y

1
1,y

1
2), (4.187)

F3
0 = (x1,x2,x3,q1,q2,q3,y

1
1,y

1
2,y

2
1,y

2
2), (4.188)

F4
0 = (x1,x2,x3,q1,q2,q3,y

1
1,y

1
2,y

2
1,y

2
2,y

3
1,y

3
2). (4.189)

Determine now the mathematical expression by the code of the multilayer net-
work operator.

According to the vector of inputs (4.178) the elements of the set of arguments x1,
x2, q1, q2 are fed to the first network operator to the nodes 1, 2, 3, 4 respectively. As
a result of calculations, the following expressions are obtained:

y1
1 = sin(−q1x1)cos(−q2x2),

y1
2 = sin(−q1x1)cos(−q2x2)+ arctan(x1).

(4.190)

According to the vector of inputs (4.179) for the second network operator, x3, q3

are supplied to its input. Then

y2
1 = x3 exp(−q3x3),

y2
2 = tanh(x3 exp(−q3x3)).

(4.191)

According to the vector of inputs (4.180) for the third network operator, x1, x2,
y1

1 and y2
1 are fed to its input. Then

y3
1 = x1x2y2

1 arctan(y1
1),

y3
2 = 3

√
x1x2y2

1 arctan(y1
1).

(4.192)
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According to the input vector (4.181), y3
1, y3

2, y1
2, y2

2 are fed to the input of the
fourth network operator. As a result of calculations according to the matrix of the
network operator, we obtain the following mathematical expression:

y4 = cos(y3
1 + y3

2)exp(y1
2)arctan(y2

2). (4.193)

As a result, the mathematical expression encoded by the four-layer network op-
erator has the following form:

y = cos(x1x2y2
1 arctan(y1

1)+
3
√

x1x2y2
1 arctan(sin(−q1x1)cos(−q2x2)))×

exp(sin(−q1x1)cos(−q2x2)+ arctan(x1))×
arctan(tanh(x3 exp(−q3x3))).

(4.194)

Genetic operations for multilayer symbolic regression structures are easy to im-
plement based on the principle of small variations. When using the principle of
small variations of the basic solution for multilayer symbolic regression methods,
the number of the varied layer is added in the variation code as the first component
of the variation vector. The rest of the components of the vector of variations retain
their previous values.
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Chapter 5
Examples of MLC Problem Solutions

Abstract This chapter contains various applied examples of solving machine learn-
ing control problems by various methods of symbolic regression presented in the
book. First, the tasks of unsupervised learning are considered based on the value of
the target functional. The classical Pontryagin problem is considered and a compar-
ison of the solution obtained by machine learning with the classical result is given.
The problem of stabilization system synthesis for various objects is considered. Var-
ious symbolic regression methods are demonstrated. An example of solving a super-
vised machine learning synthesis problem is considered, where, to obtain a training
sample, the optimal control problem is solved many times under different initial
conditions, and then the obtained solutions are approximated by symbolic regres-
sion. An identification example is presented. An example of solving the problem of
synthesized optimal control for a mobile robot in comparison with the solution of
optimal control and subsequent stabilization is given. All the examples presented
are aimed to show the possibilities and prospects of symbolic regression methods in
machine learning control.

5.1 Control Synthesis as Unsupervised MLC

The control synthesis problem is the most important task in the field of control,
and in connection with the pandemic of robotics, today it is becoming the most
important task of mankind.

The use of symbolic regression methods, first of all, from our point of view,
should be aimed at creating numerical methods for solving the control synthesis
problem. The complexity of the mathematical expressions that are obtained as a
result of solving the control synthesis problem using symbolic regression methods
is not significant. On board of the control object, instead of a complex mathematical
expression, you can always write its code, which can be used to calculate control
values.
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An important role here is played by the properties that the control system ac-
quires due to the nonlinear feedback function obtained as a result of solving the
control synthesis problem using symbolic regression methods. Note that an ideal
control system from the developer’s point of view should be described by such a
system of differential equations so that its particular solution from a given initial
state always reaches the terminal state with the optimal value of the quality criterion
and at the same time possesses the attractor property, i.e. attracted all the private
solutions closest to it. This attractor property makes it possible to compensate for
the inaccuracies of the mathematical model, measurement errors, and external dis-
turbances. The creation of systems for stabilizing the movement of an object along
an optimal trajectory is an attempt to impart the property of an attractor to some par-
ticular solution of a system of differential equations describing the dynamics of a
closed-loop control system. Note that only solutions of nonlinear systems of differ-
ential equations have the properties of an attractor. In linear systems, only a stable
equilibrium point can be an attractor.

Consider several examples of solving the control synthesis problem as unsuper-
vised learning. The unsupervised machine learning for control synthesis is assumed
as a direct search of the control function on the basis of the quality criterion mini-
mization.

5.1.1 Pontryagin’s Example

In the classical monograph on optimal control [1], there is an example of general
control synthesis for an object described by a system of second-order linear differ-
ential equations. For comparison with the obtained solution, let us solve the same
problem using the symbolic regression.

A mathematical model of the control object is given

ẋ1 = x2,
ẋ2 = u.

(5.1)

Restrictions on controls are set

−1 ≤ u ≤ 1, u ∈ U = [−1;1]. (5.2)

Given the terminal state

x f = [x f
1 x f

2 ]
T = [0 0]T . (5.3)

It is necessary to find a control that moves the object (5.1) from any point of the
initial conditions area

−2 ≤ x1 ≤ 2, −1.5 ≤ x2 ≤ 1.5, X0 = [−2;2]× [−1.5;1.5], (5.4)
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to the terminal point (5.3) in the minimum time

J = t f → min . (5.5)

Here the region of initial conditions is bounded (5.4) for computational reasons,
and it is not the entire state space R2 in contrast to the classical problem formulation.

To solve the stated problem numerically by symbolic regression, instead of the
region of initial conditions, a finite set of initial conditions of twenty points is set

X̃0 = {x0,1 = [−2 −1.5]T ,x0,2 = [−2 −0.5]T ,x0,3 = [−2 0.5]T ,
x0,4 = [−2 1.5]T ,x0,5 = [−1 −1.5]T ,x0,6 = [−1 −0.5]T ,
x0,7 = [−1 0.5]T ,x0,8 = [−1 1.5]T ,x0,9 = [0 −1.5]T ,
x0,10 = [0 −0.5]T ,x0,11 = [0 0.5]T ,x0,12 = [0 1.5]T ,
x0,13 = [1 −1.5]T ,x0,14 = [1 −0.5]T ,x0,15 = [1 0.5]T ,
x0,16 = [1 1.5]T ,x0,17 = [2 −1.5]T ,x0,18 = [2 −0.5]T ,
x0,19 = [2 0.5]T ,x0,20 = [2 1.5]T}.

(5.6)

The control is searched in the form of a function of coordinates of the state space

u = h(x f
1 − x1,x

f
2 − x2) ∈ U. (5.7)

Redefine the functional (5.5) taking into account the set of points of initial con-
ditions (5.6)

J̃ =
20

∑
i=1

(
t f ,i + p1‖x f −x(t f ,ix0,i)‖2

)→ min, (5.8)

where

t f ,i =

{
t, if ‖x(t,x0,i)−x f ‖2 ≤ ε0

t+, otherwise
, (5.9)

x(t,x0,i) is a particular solution of the system (5.1) with control (5.7) from the initial
conditions x0,i, i ∈ {1, . . . ,20}, t+ = 5.1 s, ε0 = 0.01, p1 is a weight coefficient,
p1 = 1,

‖x(t,x0,i)−x f ‖2 =

√
2

∑
i=1

(xi(t,x0,i)− x f
i )

2. (5.10)

To solve the problem, the method of the network operator was applied. The di-
mension of the NOP matrix was 14×14. As a basic solution, a limited proportional
controller was chosen.

u =

⎧⎪⎨
⎪⎩

1, if q1(x
f
1 − x1)+q2(x

f
2 − x2)≥ 1

−1, if q1(x
f
1 − x1)+q2(x

f
2 − x2)≤−1

q1(x
f
1 − x1)+q2(x

f
2 − x2), otherwise

, (5.11)

where q1 = 1, q2 = 1.



108 5 Examples of MLC Problem Solutions

Fig. 5.1 Trajectories from eight initial conditions for control function (5.12)

As a result, the following solution was obtained:

u =

⎧⎨
⎩

1, if ũ ≥ 1
−1, if ũ ≤−1
ũ, otherwise

, (5.12)

where

ũ = arctan(A)+
1
B
+C3, (5.13)

A = B+ arctan(q1 sgn(x f
1 − x1)

√
|x f

1 − x1|),

B = q1(C+ sgn(C)exp(−|C|)),

C = q2(x
f
2 − x2)+ sgn(x f

1 − x1)
√
|x f

1 − x1|
q1 = 11.33423, q2 = 8.13892.

Figure 5.1 shows the simulation results of the system (5.1) with the control
function (5.12) synthesized by the network operator. Simulation is performed from
eight initial conditions x0,1 = [−2 − 1.5]T ,x0,4 = [−2 1.5]T , x0,9 = [0 − 1.5]T ,
x0,12 = [0 1.5]T , x0,17 = [2 − 1.5]T , x0,20 = [2 1.5]T , x0,21 = [−2 0]T , x0,22 =
[2 0]T .

The obtained results can be compared with the optimal solution presented in
Fig. 5.2 that shows the results of simulation from the same initial conditions with
optimal control obtained using the Pontryagin maximum principle.

All trajectories in Figs. 5.1 and 5.2 coincide with high accuracy.



5.1 Control Synthesis as Unsupervised MLC 109

Fig. 5.2 Optimal trajectories from eight initial conditions

Fig. 5.3 Trajectories from eight initial conditions not from (5.6) for the control function (5.12)

Figure 5.3 shows the simulation results of the system (5.1) with the obtained
control (5.12) from initial conditions that were not included in the set (5.6), which
was used to solve the control synthesis problem. The simulation was carried out for
the following initial conditions x0,23 = [−1.5 − 1]T , x0,24 = [−0.5 − 1]T , x0,25 =
[0.5 −1]T , x0,26 = [1.5 −1]T ,x0,27 = [−1.5 1]T ,x0,28 = [−0.5 1]T ,x0,29 = [0.5 1]T ,
x0,30 = [1.5 1]T .

For comparison, Fig. 5.4 shows the simulation results from the same initial con-
ditions with optimal control according to Pontryagin.
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Fig. 5.4 Optimal trajectories from eight initial conditions not from set (5.6)

As can be seen from the figures, the optimal trajectories and trajectories obtained
using the network operator synthesized control coincide with high accuracy. The
values of the functional for all initial conditions for the optimal and synthesized
controls coincided with an accuracy of 0.01 s. It follows from the simulation results
that the symbolic regression method managed to synthesize the optimal control sys-
tem.

5.1.2 Mobile Robot

Consider the control synthesis problem for spatial stabilization of a mobile robot.
A mathematical model of the robot is [2]

ẋ1 = 0.5(u1 +u2)cos(x3),
ẋ2 = 0.5(u1 +u2)sin(x3),
ẋ3 = 0.5(u1 −u2),

(5.14)

where x= [x1 x2 x3]
T is the state vector, u= [u1 u2]

T is the control vector.
The control values are constrained

−10 ≤ ui ≤ 10, i = 1,2, u ∈ U = [−10;10]× [−10;10]. (5.15)

For the model (5.14), the terminal condition is given

x f = [0 0 0]T . (5.16)
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It is necessary to find the control in the form of a function of the coordinates of
the state space

u= h(x f −x). (5.17)

The function (5.17) must ensure that the robot moves to the terminal point from
any initial condition of the area

X0 = [−2;2]× [−1.5;1.5]× [−5π/12;5π/12] ∈ R
3, (5.18)

with time-optimal criterion
J = t f → min . (5.19)

To solve the problem numerically by symbolic regression, the range of initial
values is replaced with a finite set of thirty points of initial conditions

X̃0 = {x0,1 = [−2 −2.5 −5π/12]T ,x0,2 = [−2 −2.5 0]T ,
x0,3 = [−2 −2.5 5π/12]T ,x0,4 = [−2 2.5 −5π/12]T ,
x0,5 = [−2 2.5 0]T ,x0,6 = [−2 2.5 5π/12]T ,
x0,7 = [−1 −2.5 −5π/12]T ,x0,8 = [−1 −2.5 0]T ,
x0,9 = [−1 −2.5 5π/12]T ,x0,10 = [−1 2.5 −5π/12]T ,
x0,11 = [−1 2.5 0]T ,x0,12 = [−1 2.5 5π/12]T ,
x0,13 = [0 −2.5 −5π/12]T ,x0,14 = [0 −2.5 0]T ,
x0,15 = [0 −2.5 5π/12]T ,x0,16 = [0 2.5 −5π/12]T ,
x0,17 = [0 2.5 0]T ,x0,18 = [0 2.5 5π/12]T ,
x0,19 = [1 −2.5 −5π/12]T ,x0,20 = [1 −2.5 0]T ,
x0,21 = [1 −2.5 5π/12]T ,x0,22 = [1 2.5 −5π/12]T ,
x0,23 = [1 2.5 0]T ,x0,24 = [1 2.5 5π/12]T ,
x0,25 = [2 −2.5 −5π/12]T ,x0,26 = [2 −2.5 0]T ,
x0,27 = [2 −2.5 5π/12]T ,x0,28 = [2 2.5 −5π/12]T ,
x0,29 = [2 2.5 0]T ,x0,30 = [2 2.5 5π/12]T}.

(5.20)

Replace the functional

J̃ =
30

∑
i=1

(
t f ,i + p1‖x f −x(t f ,i x0,i)‖2

)→ min, (5.21)

where

t f ,i =

{
t, if ‖x(t,x0,i)−x f ‖2 ≤ ε0

t+, otherwise
, (5.22)

x(t,x0,i) is a particular solution of the system (5.14) with control (5.17) from the
initial conditions x0,i, i ∈ {1, . . . ,30}, t+ = 1.5 s, ε0 = 0.01, p1 = 1.

To solve this machine learning control problem, the method of variational Carte-
sian genetic programming was used. To find a solution, a code of 20 call vectors
was defined, which encoded function calls with one, two, and three arguments, so
each call vector consisted of 4 components.
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The proportional controller was used as a basic solution

ui =
3

∑
j=1

q j(x
f
i − xi), (5.23)

where q j = 1, j = 1,2,3.
As a result, the following control function was obtained:

ui =

⎧⎨
⎩

10, if ũi ≥ 10
−10, if ũi ≤−10
ũ, otherwise

, i = 1,2, (5.24)

where

ũ1 = sgn

(
−q2

1(x
f
3 − x3)

3
√

x f
2 − x2

)√∣∣∣∣−q2
1(x

f
3 − x3)

3
√

x f
2 − x2

∣∣∣∣, (5.25)

ũ2 =

{
q3, if A > B
−q3, otherwise ,

(5.26)

A = x f
1 − x1 +(q2 + f3,1((x

f
2 − x2)

−1,x f
2 − x2,q1))×

tanh(−q2
1(x

f
3 − x3)

3
√

x f
2 − x2),

B = tanh(−q2
1(x

f
3 − x3)

3
√

x f
2 − x2),

f3,1(z1,z2,z3) =

{
z2, if z1 > 0
z3, otherwise

,

q1 = 15.8576, q2 = 10.7705, q3 = 15.7634.
The solution was obtained on the 2.8 GHz computer, Intel Core i7. To obtain the

solution (5.24), the control object model with the control function was integrated
more than 9,000,000 times.

Figure 5.5 shows the simulation results of the control object (5.14) with the found
control function (5.24) from eight initial conditions.

X̄0(8). = {[−2.5 −2.5 −5π/12]T , [−2.5 −2.5 5π/12]T ,
[−2.5 2.5 −5π/12]T , [−2.5 2.5 5π/12]T ,
[2.5 −2.5 −5π/12]T , [2.5 −2.5 5π/12]T ,
[2.5 2.5 −5π/12]T , [2.5 2.5 5π/12]T}.

(5.27)

As you can see from the Fig. 5.5, the object moved to the terminal state not
symmetrically about the x1 axis. During the research, it was found that the most
difficult points to reach the terminal position were the points located on the x2 axis.
In some cases, solutions were found with a sufficiently good value of the functional,
but the obtained controls ensured the achievement of the terminal state, ignoring the
initial conditions located on the x2 axis.
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Fig. 5.5 Trajectories of the robot from 8 initial conditions with control function (5.24)

Fig. 5.6 Trajectories from 8 initial conditions not from (5.20) with control function (5.24)

To check these conditions, the system (5.14) with control (5.24) was simulated
from the initial conditions located on the x2 axis and not included in the set of
initial conditions (5.20). The following initial conditions were considered x0,31 =
[0 −1.5 −5π/12]T , x0,32 = [0 −1.5 5π/12]T , x0,33 = [0 −0.5 −5π/12]T , x0,34 =
[0 −0.5 5π/12]T , x0,35 = [0 1.5 −5π/12]T , x0,36 = [0 1.5 5π/12]T , x0,37 = [0 0.5 −
5π/12]T , x0,38 = [0 0.5 5π/12]T .

The simulation results are shown in Fig. 5.6.
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As can be seen from the figure, the object reaches the terminal state from all
given initial conditions. By the type of trajectory of the object’s movement toward
the target, it should be assumed that the movement itself is not optimal in terms
of the length of the trajectory. This situation is common in unsupervised machine
learning. In reality, the computer does not know intuitively how to move toward the
goal, so machine intelligence has determined this type of movement.

The same control problem was solved by two more methods of symbolic regres-
sion, the network operator method and the complete binary genetic programming
with the principle of small variation of the basic solution. Proportional controllers
for each variable were used as a basic solution in all algorithms. The operations of
addition and multiplication were used as binary operations, and a set of 28 smooth
elementary functions was used as unary operations.

The network operator found the following control law:

ui =

⎧⎨
⎩

10, if ũi > 10
−10, if ũi <−10
ũi, otherwise

, i = 1,2, (5.28)

where
ũ1 = A ln(| tanh(C)+μ(D)+F3 +G+ sin(q3x3)|), (5.29)

ũ2 = ũ1 + sin(A)+μ(A)+B−1 + sgn(C) ln(|C|+1)+
arctan(D)+ tanh(E)+μ(G+ tanh(H)+ x1)+G−G3+

q−2
3 q−1

1 x−11 + sgn(x1),
(5.30)

A = B−1 + 3
√

tanh(C)+μ(D)+F3 +G+ sin(q3x3)+
sgn(q3x3)exp(−|q3x3|),

B = tanh(C)+μ(D)+F3 +2G+ sin(q3x3)+ tanh(H)+
x1 − (G+ tanh(H)+ x1)

3,
C = D+G−G3 + sgn(q2

3q1x1)+ arctan(q1)+ϑ(x3),

D = E + 3
√

F + sgn(G+ tanh(H)+ x1)+ sgn(G)
√|G|+

arctan(q2
3q1x1),

E = F +G+ tanh(H)+ x1 +H + sgn(q2
3q1x1)

√
|q2

3q1x1|,
F = G+ tanh(H)+ x1 + tanh(q2

3q1x1)+ 3
√

x1,
G = H + sgn(q2x2 + sgn(x1))∗ exp(−|q2x2 sgn(x1)|)+

cos(q3x3)+ sin(x1),
H = q2x2 + sgn(x1)+q3x3 + tanh(q2

3q1x1),

μ(α) =

{
α , if |α| ≤ 1
sgn(α), otherwise

,

q1 = 15.80103, q2 = 14.63843, q3 = 13.00757.
Results of simulation of the system (5.14) with the control function (5.29), (5.30)

from eight initial conditions (5.27) are presented in the Fig. 5.7.



5.1 Control Synthesis as Unsupervised MLC 115

Fig. 5.7 Trajectories of the robot with control law trained by NOP

Fig. 5.8 Trajectories of the robot with control law trained by BCGP

The complete binary genetic programming found the following solution (5.28),
where

ũ1 = (q2 + x2)x1 cos(x3)+ 3
√

q3 arctan(1 3
√

x3)+
(( 3
√

q3 +q1)x2 sin(x3)(2q2 −q3
2))

3,
(5.31)

ũ2 = (2q3 +1)(x2x−1
1 − x3)

−1+

(q3
3x2 + exp(1))(sin(exp(x2)x

−1
1 )− x3),

(5.32)

q1 = 3.33594, q2 = 3.77930, q3 = 2.52148.
The trajectories of the robot moving from eight initial conditions (5.27) to the

terminal position (5.16) are presented in Fig. 5.8.
The goal of experiments was to show that computational symbolic regression

methods allow to obtain a control function that, when substituted into the right-hand



116 5 Examples of MLC Problem Solutions

sides of a system of differential equations of the control object, makes this object
stable. As a result, it was demonstrated that various symbolic regression methods
can successfully solve this machine learning problem without laborious construction
of a training set, basing only on the criterion for minimizing the quality functional.

5.1.3 Quadcopter

The mathematical model of quadcopter [3] is described by system of twelve ordi-
nary differential equations

ẋ1 = x4 +(x5 sin(x1)+ x6 cos(x1))sin(x2)/cos(x2),
ẋ2 = (x5 sin(x1)+ x6 cos(x1))/cos(x2),
ẋ3 = x5 cos(x1)+ x6 sin(x1),
ẋ4 = x5x6(I2 − I3)/I1 +u1/I1,
ẋ5 = x4x6(I3 − I1)/I2 +u2/I2,
ẋ6 = x4x5(I1 − I2)/I3 +u3/I3,

(5.33)

ẋ7 = x10,
ẋ8 = x11,
ẋ9 = x12,

ẋ10 = u4 sin(x3)cos(x2)cos(x1)+ sin(x1)sin(x2),
ẋ11 = u4 cos(x3)cos(x1)cos(x2)−g,
ẋ12 = u4 cos(x2)sin(x1)− cos(x1)sin(x2)sin(x3),

(5.34)

where equations (5.33) describe an angular movement, and equations (5.34) de-
scribe a spatial movement, x1, x3 are rotation angles about horizontal axes, x2 is
a rotation angle about vertical axis, x4 and x6 are angular speeds of rotation about
horizontal axes, x5 is an angular speed of rotation about vertical axis, x7, x9 are hor-
izontal axes, x8 is a vertical axis, x10 is a speed along axis x7, x11 is a speed along
axis x8, x12 is a speed along axis x9, ui is a moment around axis xi, i = 1,2,3, u4 is a
total lift of all four screws, g is the acceleration of gravity, Ii is a moment of inertia
around axis xi, i = 1,2,3.

To solve the synthesis problem and to achieve the object stability in the twelve-
measured state space, two problems are solved consequently, the synthesis of an
angular and a spatial stabilization systems.

For the first problem, the system (5.33) is used. It is necessary to find the optimal
control in the following form:

u j = h j(x
∗
1 − x1, . . . ,x

∗
6 − x6), j = 1, . . . ,3, (5.35)

where x∗i is a given coordinate of a point in the six-measured space {x1, . . . ,x6},
i = 1, . . . ,6.
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In the problem of angular stabilization, the following initial conditions were
used:

X0 = {x0,1 = [−0.2 −0.2 −0.2 0 0 0]T ,x0,2 = [−0.2 −0.2 0 0 0 0]T ,
x0,3 = [−0.2 −0.2 0.2 0 0 0]T ,x0,4 = [−0.2 0 −0.2 0 0 0]T ,
x0,5 = [−0.2 0 0 0 0 0]T ,x0,6 = [−0.2 0 0.2 0 0 0]T ,
x0,7 = [−0.2 0.2 −0.2 0 0 0]T ,x0,8 = [−0.2 0.2 0 0 0 0]T ,
x0,9 = [−0.2 0.2 0.2 0 0 0]T ,x0,10 = [0 −0.2 −0.2 0 0 0]T ,
x0,11 = [0 −0.2 0 0 0 0]T ,x0,12 = [0 −0.2 0.2 0 0 0]T ,
x0,13 = [0 0 −0.2 0 0 0]T ,x0,14 = [0 0 0.2 0 0 0]T ,
x0,15 = [0 0.2 −0.2 0 0 0]T ,x0,16 = [0 0.2 0 0 0 0]T ,
x0,17 = [0 0.2 0.2 0 0 0]T ,x0,18 = [0.2 −0.2 −0.2 0 0 0]T ,
x0,19 = [0.2 −0.2 0 0 0 0]T ,x0,20 = [0.2 −0.2 0.2 0 0 0]T ,
x0,21 = [0.2 0 −0.2 0 0 0]T ,x0,22 = [0.2 0 0 0 0 0]T ,
x0,23 = [0.2 0 0.2 0 0 0]T ,x0,24 = [0.2 0.2 −0.2 0 0 0]T ,
x0,25 = [0.2 0.2 0 0 0 0]T ,x0,26 = [0.2 0.2 0.2 0 0 0]T}.

The terminal condition was

x∗ = [0 0 0 0 0 0]T .

Restrictions on control were

−2 = u−i ≤ ui ≤ u+i = 2, i = 1,2,3.

The quality criterion was

J1 =
26

∑
i=1

⎛
⎝t f ,i +a1

√√√√ 6

∑
j=1

(x∗j − x j(t f ,i,x0,i))2

⎞
⎠ , (5.36)

where a1 is a weight coefficient, a1 = 1, t f ,i is a terminal time for solution with
initial condition x0,i, t+ = 1.5, ε1 = 0.01, x(t,x0,i) is a partial solution of the system
(5.33) with control (5.35) and initial conditions x0,i, i ∈ {1, . . . ,26}.

When searching for the optimal solution, parameters of the model were I1 = 1.5,
I2 = 1, I3 = 1.5, g = 9.8067.

For solution search the network operator method was chosen with the following
parameters: a dimension of the network operator matrix 32×32, a number of func-
tions with one argument W = 20, a number of functions with two arguments V = 2,
a number of possible solutions in initial set H = 1024, a number of generations
P = 128, a number of possible crossovers in one generation R = 128, a number of
generations between change of the basic solution E = 32, a number of small varia-
tions of the basic solution for one possible solution l1 = 8, probability of mutation
pμ = 0.7. The basic solution was

u(0)j =
6

∑
i=1

qi(x
∗
i − xi), j = 1,2,3, (5.37)

where qi = 1, i−1, . . . ,6.
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As a result of solving the synthesis problem by the network operator method, the
following solution was obtained:

ui =

⎧⎪⎨
⎪⎩

u−i , if ũi < u−i
u+i , if ũi > u+i
ũi– otherwise

, i = 1,2,3, (5.38)

where

ũ1 =
(
q4(x∗4 − x4)+q1(x∗1 − x1)+(x∗4 − x4)

3 + 3
√

q1(x∗1 − x1)
)−1

+(
q4(x∗4 − x4)+q1(x∗1 − x1)+(x∗4 − x4)

3 + 3
√

q1(x∗1 − x1)
)1/3

+
sgn(x∗6 − x6) log(|q6(x∗6 − x6)|+1)+q2(x∗2 − x2)+

sgn(x∗4 − x4)
√|q4(x∗4 − x4)|+q1(x∗1 − x1)+(q4(x∗4 − x4))

3,

(5.39)

ũ2 = sgn(sgn(A1 +q3(x∗3 − x3)+ x∗3 − x3)×
(exp(|A1 +q3(x∗3 − x3)+ x∗3 − x3|)−1))×
(|sgn(A1 +q3(x∗3 − x3)+ x∗3 − x3)×
(exp(|A1 +q3(x∗3 − x3)+ x∗3 − x3|)−1)|)1/2

(5.40)

ũ3 = tanh(0.5B1)−A1 −q3(x∗3 − x3)− x∗3 + x3+
3
√

B1 +q6(x∗6 − x6)+q2(x∗2 − x2),
(5.41)

q1 = 12.224, q2 = 14.197, q3 = 13.611,
q4 = 4.361, q5 = 9.989, q6 = 4.144,
A1 = sgn(x∗5 − x5) log(|q5(x∗5 − x5)|+1),
B1 = (A1 +q3(x∗3 − x3))

3 +q6(x∗6 − x6)+q2(x∗2 − x2).

Figures 5.9 and 5.10 show the trajectories of quadcopter movement on the verti-
cal plane from eight initial conditions.

Fig. 5.9 Trajectories of the quadcopter on a plane {x1,x2} from eight initial conditions
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Fig. 5.10 Trajectories of the quadcopter on a plane {x3,x2} from eight initial conditions

Calculation of the functional and simulations of the model was 1,035,720 times.
Calculations are performed on the computer with processor Core i7, 2.8 GHz. The
calculation time was about 40 minutes.

On the second stage, the full dynamic model of quad-rotor helicopter is con-
sidered. The angular model is replaced by the model with the stabilization system
(5.39), (5.40), and (5.41).

ẋ1 = x4 +(x5 sin(x1)+ x6 cos(x1))sin(x2)/cos(x2),
ẋ2 = (x5 sin(x1)+ x6 cos(x1))/cos(x2),
ẋ3 = x5 cos(x1)+ x6 sin(x1),
ẋ4 = x5x6(I2 − I3)/I1 + h̃1(Δx)/I1,
ẋ5 = x4x6(I3 − I1)/I2 + h̃2(Δx)/I2,
ẋ6 = x4x5(I1 − I2)/I3 + h̃3(Δx)/I3,

(5.42)

where
h̃i(Δx) = ui, i = 1,2,3, (5.43)

Δx=

⎡
⎢⎢⎢⎢⎢⎢⎣

x∗1 − x1

x∗2 − x2

x∗3 − x3

−x4

−x5

−x6

⎤
⎥⎥⎥⎥⎥⎥⎦
. (5.44)

Now the optimal control system synthesis problem is solved for stabilization
of object in a point of six-measure space {x7, . . . ,x12}. The control of the object
includes four components

û= [x∗1 x∗2 x∗3 u4]
T . (5.45)
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So, the point x∗ = [x∗7 . . .
∗
12]

T in six-measure space was set, and the vector of
control (5.45) was searched for the systems (5.34), (5.42).

To solve this problem again the network operator method was applied.
In the problem a set of initial condition included eight elements

X0 = {x0,1 = [0 0 0 0 0 0 −0.5 −0.5 −0.5 00 0]T ,
x0,2 = [0 0 0 0 0 0 −0.5 −0.5 0.5 00 0]T ,
x0,3 = [0 0 0 0 0 0 −0.5 0.5 −0.5 00 0]T ,
x0,4 = [0 0 0 0 0 0 −0.5 0.5 0.5 00 0]T ,
x0,5 = [0 0 0 0 0 0 0.5 −0.5 −0.5 00 0]T ,
x0,6 = [0 0 0 0 0 0 0.5 −0.5 0.5 00 0]T ,
x0,7 = [0 0 0 0 0 0 0.5 0.5 −0.5 00 0]T ,
x0,8 = [0 0 0 0 0 0 0.5 0.5 0.5 00 0]T}.

(5.46)

Constraints on control were

−π/4 = x−1 ≤ x∗1 ≤ x+1 = π/4,
−π/4 = x−2 ≤ x∗2 ≤ x+2 = π/4,
−π/4 = x−3 ≤ x∗3 ≤ x+3 = π/4,

0 = u−4 ≤ u4 ≤ u+4 = 12.

(5.47)

Terminal condition was

x f = [0 0 0 0 0 0 0 2 0 00 0]T . (5.48)

The following functional was used:

J2 =
8

∑
i=1

⎛
⎝t f ,i +a2

√√√√ 12

∑
j=1

(x f
j − x j(t f ,i,x0,i))2

⎞
⎠ , (5.49)

where a2 is a weight coefficient, a2 = 2.5, t f ,i is a terminal time for solution with
initial condition x0,i, ε1 = 0.05, t+ = 2 x(t,x0,i) is a partial solution of the system
(5.33) with control (5.35) and initial conditions x0,i, i ∈ {1, . . . ,8}.

The network operator method had the following parameters: a dimension of the
network operator matrix 32×32, a number of function with one argument W = 16,
a number of function with two arguments V = 2, a number of possible solution
in initial set H = 1024, a number of generation P = 128, a number of possible
crossovers in one generation R = 128, a number of generation between change of
the basic solution E = 16, a number small variation of basic solution for one possible
solution l1 = 6, probability of mutation pμ = 0.7.
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A basic solution was

x∗1 = q11(x
f
9 − x9)−q12,

x∗2 = q7(x
f
7 − x7)−q8x10 +q9(x

f
8 − x8)−q10x11+

q11(x
f
9 − x9)−q12x12,

x∗3 = q7(x
f
7 − x7)−q8x10,

u4 = q9(x
f
8 − x8)−q10x11,

(5.50)

where qi = 1, i = 1, . . . ,12.
As the result, the following solution was received:

x∗i =

⎧⎪⎨
⎪⎩

x+i , if x̃∗i > x+i
x−i , if x̃∗i < x−i
x̃∗i – otherwise

, i = 1,2,3, (5.51)

u4 =

⎧⎪⎨
⎪⎩

u+4 , if ũ4 > u+4
u−4 , if ũ4 < u−4
ũ4 – otherwise

, (5.52)

x̃∗1 = (A2q9(x
f
9 − x9)cos(x11)exp(−q12))

3
√

A2×
log(|q9(x

f
9 − x9)cos(x11)|),

(5.53)

x̃∗2 = 3
√

x̃∗1 +2arctan(C2)−q3
10x9

10 +D2 −q11x11q2
8×

(x f
8 − x8)

2 −q7(x
f
7 − x7)+ arctan(−q10x3

10+

arctan(A2q9(x
f
9 − x9)cos(x11)exp(−q12))+

q7(x
f
7 − x7))+q8(x

f
8 − x8)+

sgn(−q10x3
10 +q7(x

f
7 − x7))

√
|−q10x3

10 +q7(x
f
7 − x7)|

+ tanh(−0.5x12)+μ(A2q9(x
f
9 − x9)cos(x11)exp(−q12))

+sgn(E2)∗ (exp(|E2|)−1),

(5.54)

x̃∗3 = sgn(x̃∗1) log(|x̃∗1|+1)+ 3
√

B2 + arctan(C2)−q3
10x9

10−
x̃∗1 +(−q10x3

10 +q7(x
f
7 − x7))

3,
(5.55)

ũ4 = sin(x̃∗3)+ sgn(x̃∗2)∗ (exp(|x̃∗2|)−1)+
sgn(x̃∗1) log(|x̃∗1|+1)+C2

2 +(A2q9(x
f
9 − x9)cos(x11)×

exp(−q12))
2 + tanh(0.5B2)+ tanh(0.5E2)+

(−q10x3
10 +q7(x

f
7 − x7))

2,

(5.56)

where
A2 = q12 − x12 + 3

√
q10 + arctan(q9)+ cos(x f

7 − x7),

B2 = arctan(−q10x3
10 +q7(x

f
7 − x7))−q11x11q2

8(x
f
8 − x8)

2+

q8(x
f
8 − x8)−q7(x

f
7 − x7),
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C2 = sgn(−q10x3
10 +q7(x

f
7 − x7))∗ (exp(|−q10x3

10+

q7(x
f
7 − x7)|)−1)+ sgn(−q10x3

10)
√
|q10x3

10|+
μ(q7(x

f
7 − x7))+q3

7,

D2 = 2(arctan(−q10x3
10 +q7(x

f
7 − x7))−q11x11q2

8(x
f
8 − x8)

2+

sgn(−q11x11q2
8(x

f
8 − x8)

2)exp(−|−q11x11q2
8(x

f
8 − x8)

2|)+
q8(x

f
8 − x8)+ exp(q10)−1+(−q10x3

10 +q7(x
f
7 − x7))

3−
q7(x

f
7 − x7)),

E2 = arctan(−q10x3
10 +q7(x

f
7 − x7))−q11x11q2

8(x
f
8 − x8)

2+

q8(x
f
8 − x8)−q7(x

f
7 − x7),

μ(β ) =

{
sgn(β ), if |β |> 1

β– otherwise
,

q7 = 0.115, q8 = 3.371, q9 = 3,076, q10 = 0,144, q11 = 3.131, q12 = 4.515.
At the search process, the criterion (5.49) was counted 1,189,440 times. Calcu-

lation time was about 1.5 hour.
In the Figs. 5.11 and 5.12 the quadcopter trajectories from eight initial conditions

are shown.

Fig. 5.11 Trajectories of quadcopter in vertical plane {x7,x8} from eight initial conditions

Plots of controls in spatial spaces are shown in the Figs. 5.13, 5.14, 5.15,
and 5.16.
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Fig. 5.12 Trajectories of quadcopter in vertical plane {x9,x8} from eight initial conditions

Fig. 5.13 Control x̃∗1 (dash) and coordinate x1

5.2 Control Synthesis as Supervised MLC

Supervised machine learning control is a learning with application of a training set.
In this case firstly it is necessary to create a training set in order to show to the
learning object what we want of it. For this purpose, initially the optimal control
problem from some different initial conditions can be solved with the same quality
criterion as for the synthesis problem. Obtained optimal trajectories are templates
for learning. They show what forms of plots for variables must be obtained in the
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Fig. 5.14 Control x̃∗2 (dash) and coordinate x2

Fig. 5.15 Control x̃∗3 (dash) and coordinate x3

result of control synthesis problem solution and what values of functional must give
these solutions. Then, obtained optimal trajectories for different initial conditions
are approximated by some symbolic regression method.

Let us demonstrate the proposed approach of machine learning based on ap-
proximation of optimal trajectories in the computational example of general syn-
thesis of optimal control for a spacecraft landing on the surface of the Moon
[4].
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Fig. 5.16 Control u4 of total thrust of all quadcopter screws

The mathematical model of the spacecraft landing is described by the following
system of differential equations:

ẋ1 =
gE(Pc +u2)cos(u1 − x2)

x5
−gMh cos(x2),

ẋ2 =
gE(Pc +u2)sin(u1 − x2)

x5
+

gMh sin(x2)

x1
,

ẋ3 =
x1 cos(x2)

1000
,

ẋ4 =
x1 sin(x2)

1000
,

ẋ5 = −Pc +u2

Ps
,

(5.57)

where x= [x1 x2 x3 x4 x5]
T is a state vector, namely x1 is the current speed of the

spacecraft (m/s), x2 is a trajectory inclination angle (rad), x3 is the current flight
altitude relative to the lunar surface (km), x4 is a flight distance (km), x5 is the mass
of spacecraft including fuel (kg),

u= [u1 u2]
T is a control vector, values of which are constrained

− π
2
≤ u1 ≤ π

2
, −80 ≤ u2 ≤ 80. (5.58)

Parameters of the model have the following values: gravitational acceleration at
the certain altitude above the lunar surface

gMh = gM

(
rM

rM + x3

)2

, (5.59)
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the Moon gravitational acceleration gM = 1.623m/s2, the Earth gravitational accel-
eration gE = 9.80665m/s2, the Moon radius rM = 1737km, nominal thrust of the
spacecraft engine Pc = 720 kg, spacecraft engine thrust Ps = 319 s.

A domain of initial states is

X0 = {x0,1 = 1689, −1.65 ≤ x0,2 ≤−1.55,
17 ≤ x0,3 ≤ 20, x0,4 = 0, x0,5 = 1500}. (5.60)

A terminal state is

x f =
[
x f

1 = 10, x f
3 = 0.2

]T
. (5.61)

Phase constraints are determined by the mechanics of spacecraft flight. Obvi-
ously, the speed x1, altitude x3, and fuel level x5 cannot be negative, reaching a zero
altitude x3 or zero fuel level x5 at a significant speed x1 means that the spacecraft
has crashed.

Consider the following phase constraints:

hk(x) = −x j ≤ 0, k = 1,2,3, j = 1,3,5,

hk(x) = ϑ(0.001− x j)(x1 −Vmax)≤ 0, k = 4,5, j = 3,5,
(5.62)

where Vmax is the maximum landing speed, Vmax = 1, ϑ(A) is the Heaviside step
function

ϑ(A) =

{
1, if A > 0
0, otherwise

.

According to the proposed method at the first step, the training set is to be formed.
We determine the finite set of initial states within the domain (5.60) and solve the
optimal control problem for each initial state from this set.

Let us replace the domain of initial states (5.60) with a set of M = 21 elements
uniformly distributed on this domain

X̃0 = {x0, j+7(i−1) = [1689 −1.65+0.05(i−1)
17+0.5( j−1) 0 1500]T}, i = 1,3, j = 1,7.

(5.63)

Quality criterion considers the proximity of reaching terminal state and violation
of phase constraints

Jj = α1

√(
x1
(
t f (x0, j)

)− x f
1

)2
+
(

x3
(
t f (x0, j)

)− x f
3

)2
+

α2

∫ t f (x0, j)

0

(
K

∑
k=1

ϑ
(
hk(x(t,x

0, j))
)

hk(x(t,x
0, j))

)
dt → min, (5.64)

where αi are given penalty coefficients, i = 1,2, K = 5 is a number of phase con-
straints, j = 1,M.

To search for solution to the optimal control problem the direct approach was
used. The original problem was reduced to a nonlinear programming problem by
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introducing the time interval Δ t. The solution of each optimal control problem in
the form of control vector at discrete moments of time was searched independently
by hybrid evolutionary algorithm combining Grey Wolf Optimizer (GWO) [7] and
Particle swarm optimization (PSO) [5].

In a computational experiment the size of the set of possible solutions was 100,
number of search iterations was 5000. Modeling parameters were the following:
maximum control time tmax = 300, discretization time interval Δ t = 30, penalty
factors α1 = 10, α2 = 10.

At the second step of proposed approach, we use obtained optimal trajectories to
synthesize a multidimensional control function of object state space. The search for
a control function is conducted by a symbolic regression method that searches for
the most suitable expression that approximates provided optimal trajectories best.

We used the network operator method to synthesize a control function. In the
computational experiment we used the following parameters of NOP: size of NOP
matrix was 40, size of the set of input variables was 3, size of the set of input
parameters was 12, number of outputs was 2, number of candidate solutions in the
initial set was 256, maximum number of search iteration was 25,000.

As a result of computational experiment, a control function in the form of NOP
matrix and a parameter vector was obtained. The mathematical expression for the
found control function is as follows:

u1 =

⎧⎨
⎩

π/2, if ũ1 > π/2
−π/2, if ũ1 <−π/2
ũ1, otherwise

, u2 =

⎧⎨
⎩

80, if ũ2 > 80
−80, if ũ2 <−80
ũ2, otherwise

, (5.65)

where
ũ1 = χ6(−z34, tanh(z35),z37),

ũ2 = sgn(u1)
√
|u1|− z36 + arctan(z35)+ sgn(z34)

√
|z34|+ log(|z33|)+

z−1
32 + z31 + z28 − z3

28 + log(|z26|)− z25 + arctan(z21)+ sgn((z17))
√
|z17|+

exp(q12)+ tanh(q10)+q9 + log(q5)+ tanh(q1),

z37 = min{z36− z3
36, log(|z35|),z34− z3

34,z
−1
32 ,sgn(z28)

√
|z28|, tanh(z27),exp(z25),z

−1
20 ,

3
√

x2},
z36 = min{exp(z29), tanh(z28),sgn(z27)

√
|z27|,arctan(z26), 3

√
z22,z

3
20, tanh(q6), 3

√
q1,x

3
3},

z35 = arctan(z23)+ tanh(z22)+ tanh(q12)+ log(|x3|),
z34 = max{sgn(z33)

√
|z33|, log(|z30|),z−1

29 ,z
−1
22 ,z

−1
20 },

z33 = min{z−1
32 ,arctan(z29), tanh(z24),z

3
22,z19,−z16,z

−1
11 , tanh(q3), tanh(q2),exp(x2)},

z32 = min{z3
31,z26, log(|z25|),z−1

18 ,
√

q10,arctan(q6), 3
√

q2},
z31 = log(|z27|)+ z2

26 + z2
24 + arctan(z22)+ 3

√
z21 + exp(z20)+ exp(z17)+

z−1
16 +q3

12 −q5 + 3
√

q2 + 3
√

x1,

z30 = max{z29,−z26, tanh(z25),arctan(z18),sgn(z16)
√
|z16|,q11},
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z29 = χ6(z28,z
−1
27 ,z

3
26, log(|z24|),−z3

22,−z20, 3
√

z17,q7,q
−1
2 ,

√
q1),

z28 = max{z27,z
−1
23 ,−z20, log(|z19|),z18 − z3

18,−z17, log(|z16|),q7, log(q5)},
z27 = χ6(z24,arctan(z20),

√
q11,q8 −q3

8,q
3
6,−q5, log(q4)),

z26 = χ5( 3
√

z23,−z20,z19 − z3
19,−z18,sgn(z15)

√
|z15|,q12, 3

√
x3),

z25 = max{z2
23,z22,z21 − z3

21,arctan(z17),q11,q9,
√

q5},
z24 = max{tanh(z21),z20 − z3

20,z
3
15,q12 −q3

12,q10,q
3
8,

3
√

q5,q
3
4,exp(x2)},

z23 = z20z18z16q9
√

q7 sgn(x1)
√
|x1|,

z22 = χ6(z19,z
−1
17 ,exp(z16), 3

√
q10,arctan(q9),q

−1
8 ,

√
q2),

z21 = max{tanh(z18),q
2
8,q7,−q6,

√
q3},

z20 = χ6(−z19,z17,arctan(z10),q6,−q2,x
−1
3 ),

z19 = z16 + arctan(q11)+q−1
8 +q5 + arctan(x3),

z18 = χ5(z15,q
−1
12 ,q

−1
7 ,q4,x1 − x3

1),

z17 = q3 + x3 −q3x3,

z16 = q2x2 tanh(q5),

z15 = sgn(
√

q10 +q5 −q3
5 +q−1

3 +q1 + x1)
√

q10 +(q5 −q3)2 +q−2
3 +q2

1 + x2
1,

χ5(a1,a2) = a1 +a2 −a1a2,

χ5(a1, . . . ,as) = χ5(a1,χ5(a2,χ5(. . . ,χ5(as−1,as) . . .))),

χ6(a1, . . . ,as) = sgn

(
s

∑
i=1

ai

)√
s

∑
i=1

a2
i ,

q1 = 2.3474, q2 = 10.5066, q3 = 9.9106, q4 = 13.1419, q5 = 9.6631, q6 = 4.4541,

q7=2.1899, q8=4.8552, q9=3.1116, q10=6.6172, q11=12.6812, q12=15.6148.

Further, the obtained solution was tested for various initial conditions from
(5.60), both those that were used in training (5.63) (see Table 5.1) and new ones
that were not used (see Table 5.2).

Table 5.1 shows the quality of approximation. Here J∗ are the values of quality
criterion obtained using the found control function (5.65) for 21 initial states pre-
viously used as a training set. The value of the quality criterion Jopt obtained by
solving the optimal control problem for the same initial state is presented as a refer-
ence value. The average deviation of the quality criterion values from the reference
ones is 0.0591, maximum deviation is 0.2514, the standard deviation is 0.0648.

Table 5.2 shows the values of quality criterion J∗ obtained using the found control
function (5.65) for 10 initial states generated randomly within the domain (5.60).
This test shows the efficiency of the found control function for any initial state from
the domain (5.60). The value of the quality criterion Jopt obtained by solving the
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optimal control problem for the same initial state is shown in the table as a reference
value. The average deviation of the quality criterion values from the reference ones
is 0.0366, maximum deviation is 0.1122, the standard deviation is 0.0341.

Table 5.1 Results of testing using initial states from the training set

Initial state x0 J∗ Jopt

[1689 −1.65 17 0 1500]T 0.1777 0.0018
[1689 −1.6 17 0 1500]T 0.0295 0.0056
[1689 −1.55 17 0 1500]T 0.0049 0.0029
[1689 −1.65 17.5 0 1500]T 0.1433 0.0060
[1689 −1.6 17.5 0 1500]T 0.0264 0.0044
[1689 −1.55 17.5 0 1500]T 0.0127 0.0024
[1689 −1.65 18 0 1500]T 0.0780 0.0033
[1689 −1.6 18 0 1500]T 0.0439 0.0084
[1689 −1.55 18 0 1500]T 0.0061 0.0023
[1689 −1.65 18.5 0 1500]T 0.0703 0.0019
[1689 −1.6 18.5 0 1500]T 0.0111 0.0019
[1689 −1.55 18.5 0 1500]T 0.2525 0.0011
[1689 −1.65 19 0 1500]T 0.0240 0.0012
[1689 −1.6 19 0 1500]T 0.0501 0.0024
[1689 −1.55 19 0 1500]T 0.0030 0.0009
[1689 −1.65 19.5 0 1500]T 0.1035 0.0036
[1689 −1.6 19.5 0 1500]T 0.0822 0.0027
[1689 −1.55 19.5 0 1500]T 0.0045 0.0045
[1689 −1.65 20 0 1500]T 0.0954 0.0036
[1689 −1.6 20 0 1500]T 0.0635 0.0052
[1689 −1.55 20 0 1500]T 0.0334 0.0099

Table 5.2 Results of testing for random initial states

Initial state x0 J∗ Jopt

[1689 −1.565 18.92 0 1500]T 0.0176 0.0034
[1689 −1.571 17.21 0 1500]T 0.0048 0.0018
[1689 −1.63 19.39 0 1500]T 0.1136 0.0014
[1689 −1.558 19.91 0 1500]T 0.0567 0.0083
[1689 −1.582 17.62 0 1500]T 0.0042 0.0016
[1689 −1.628 18.2 0 1500]T 0.0398 0.0016
[1689 −1.614 19.24 0 1500]T 0.0508 0.0022
[1689 −1.644 18.57 0 1500]T 0.0613 0.0052
[1689 −1.563 18.33 0 1500]T 0.0032 0.0023
[1689 −1.589 18.9 0 1500]T 0.0464 0.0043

Figures 5.17 and 5.18 illustrate the results of computational experiment for initial
state x0 = [1689 −1.565 18.92 0 1500]T . Trajectories obtained using the found con-
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Fig. 5.17 The graphs of trajectories: (a) spacecraft speed over time x1(t); (b) spacecraft altitude
over time x3(t). Found solution—black solid line; reference solution—grey dashed line

Fig. 5.18 The graphs of trajectories: (a) spacecraft speed over distance x1(x4); (b) spacecraft alti-
tude over distance x3(x4). Found solution—black solid line; reference solution—grey dashed line

trol function are shown by black solid lines, and the optimal trajectories are shown
by grey dashed lines. Figure 5.19 shows the found control function values over time.

The computational experiment showed that the found multidimensional control
function allows to obtain a close to optimal solution for any initial states from the
given domain (5.60) even for those initial states that were not in the training set
(5.63).

The presented example illustrates the methodology for solving the control syn-
thesis problem as supervised machine learning control based on a training set. The
training sample is constructed based on multiple solutions of the optimal control
problem. An example shows that the machine learning control, obtained by sym-



5.3 Identification and Control Synthesis for Multi-link Robot 131

Fig. 5.19 The graphs of control values over time: (a) control u1(t); (b) control u2(t). Found
solution—black solid line; reference solution—grey dashed line

bolic regression, gives good results not only for the input data from the training set
but also not from it.

5.3 Identification and Control Synthesis for Multi-link Robot

In the present example, we are going to consider the solution of the problem of
identifying a mathematical model of a control object using machine learning by
symbolic regression methods. In this example, we not only identify the object model
but also build a control system for it, solving the synthesis problem for the identified
object model.

The identification problem emerges from the unknown or extremely complex na-
ture of control objects. The derivation of the model often requires significant time
or even impossible using traditional methods. And as mentioned in Chap. 2, identi-
fication also requires automation by machine learning methods.

Consider an example of identification and control synthesis [6] for multi-link
robot presented in (Fig. 5.20).

Assume a model of control object is unknown.
There is the real object and for it some experiments can be conducted. It is known

that the control vectors are electromagnetic moments ui which act on the rotor Ri.
Components of the state vector are the joint angles φi, i = 1,2,3.

In the experiment, to obtain the original data for the robot the following time
dependent test control functions were used:

u1 = 0.35sin(t),
u2 = 0.3(3− t),
u3 = 0.15sin(t)+0.3cos(t).

(5.66)
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Fig. 5.20 A multi-link robot

A series of experiments was conducted, and the values x of variables in 21 points
were obtained. Such small number of points turned out to be sufficient for such type
of trajectory. Experimental data are presented in Table 5.3.

Table 5.3 Experimental Data

t x1 x2 x3 u1 u2 u3
(s) (rad) (rad) (rad)

0 0 0 0 0 0.9 0.3
0.1 0 0 −0.32 0.03 0.87 0.313
0.2 0 −0.028 −0.102 0.07 0.84 0.323
0.3 0 −0.05 −0.250 0.1034 0.81 0.3309
0.4 −0.007 −0.084 −0.4111 0.1363 0.78 0.3347
0.5 −0.01 −0.146 −0.6418 0.1678 0.75 0.3352
0.6 −0.02 −0.221 −0.8503 0.1976 0.72 0.3323
0.7 −0.048 −0.35 −1.042 0.2255 0.69 0,1261
0.8 −0.07 −0.468 −1.223 0.2511 0.66 0.3166
0.9 −0.116 −0.64 −1.319 0.2742 0.63 0.304
1,0 −0.165 −0.79 −1.323 0.2945 0.6 0.2883
1.1 −0.246 −0.977 −1.247 0.3119 0.57 0.2689
1.2 −0.313 −1.093 −1.085 0.3262 0.54 0.2485
1.3 −0.44 −1.216 −0.8576 0.3372 0.51 0.2248
1.4 −0.514 −1.32 −0.5798 0.3449 0.48 0.1998
1.5 −0.642 −1.407 −0.2505 0.3491 0.45 0.1708
1.6 −0.754 −1.452 0.007 0.3499 0.42 0.1412
1.7 −0.89 −1.463 0.2505 0.3471 0.39 0.1101
1.8 −1.01 −1.431 0.3952 0.3408 0.36 0.0779
1.9 −1.18 −1.353 0.4444 0.3312 0.33 0.045
2.0 −1.29 −1.23 0.373 0.3183 0.3 0.0115
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Fig. 5.21 The plot for x1(t)

The identification was conducted by the network operator method. The simple
redundant linear model of the control object was taken as the basic solution

ẋ1 = q1x1 +q2x2 +q3x3 +u1 +q4,
ẋ1 = q1x1 +q2x2 +q3x3 +u2 +q5,
ẋ1 = q1x1 +q2x2 +q3x3 +u3 +q6.

(5.67)

As a result, the following solution was obtained:

ẋ1 = u3
1 +u3

2 +u3
3 +q1u2

2 +u1q4 cos(u3),
ẋ2 = 2x1 −2x3

1 −q3 +q3
1 + cos(x2)+ x2 − x3

2 +u2 +q5,
ẋ3 = x2 − x3

2 +2u1q4 cos(u3)− (u1q4 cos(u3))
3 +u3

1 +u3
3 +q1u2

2−
(u3

1 +u3
3 +q1u2

2 +u1q4 cos(u3))
3 + sin(cos(x1)cos(x2)cos(x3)×

q3u2 +u−23 +u3 +q6 + cos(x1 − x3
1 + x2 − x3

2 +u2 +q5)),

(5.68)

where q1 = 0.234375, q2 = 0.984375, q3 = 3.875000, q4 = 3.984375, q5 =
0.484375, q6 = 0.0000.

Results of simulation of the obtained control system model are presented in
Figs. 5.21, 5.22, and 5.23. Points indicate the experimental data from Table 5.3,
and lines are the results of simulation.

Figures 5.21, 5.22, and 5.23 show that identified mathematical model is good
enough for the experimental data, though at t = 1 s the error is approximately 10%.

At the second step, we validate the solution of the identification problem and
solve the control synthesis problem using the model we have derived at the identifi-
cation step. To solve the synthesis problem we also use the network operator method
of symbolic regression.

As the control goal, we set a trajectory that should be followed by the robot from
point to point (see Figs. 5.24, 5.25, and 5.26).
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Fig. 5.22 The plot for x2(t)

Fig. 5.23 The plot for x3(t)

Fig. 5.24 The given trajectory
for x1(t)
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Fig. 5.25 The given trajectory
for x2(t)

Fig. 5.26 The given trajectory
for x3(t)

The deviation from a given trajectory was taken as a quality criterion for the
synthesis problem

J =
M

∑
k=1

√√√√ N

∑
j=1

3

∑
i=1

(xi(t j,x0,k)− x̃i(t j))2 → min
u∈U

, (5.69)

where M is a number of initial conditions, N is a number of points on the given
trajectories, M = 3, N = 10.

In the experiments, the following initial conditions were set:

x0,1 = [0 0 0]T ,x0,2 = [−0.1 −0.1 −0.1]T ,x0,3 = [0,1 0,1 0.1]T .
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Fig. 5.27 Function x1(t) and
the given trajectory

The basic solution was defined in the following form:

ui =

⎧⎨
⎩

u−i , if ũi ≤ u−i ,
u+i , if ũi ≥ u+i ,
ũi, otherwise

, i = 1,2,3, (5.70)

where
ũi = c1x1 + c2x2 + c3x3, i = 1,2,3. (5.71)

ci = 1, u−i =−2, u+i = 2, i = 1,2,3.
In the result, the following solution was obtained:

ũ1 = (cos(c1)x2c2 cos(c3))
2 − sin(sin(c1)+ sin(x1)+ c1),

ũ2 = (cos(c1)x2c2 cos(c3))
2 − sin(sin(c1)+ sin(x1)+ c1)−

((cos(c1)x2c2 cos(c3))
2 − sin(sin(c1)+ sin(x1)+ c1))

3+
c1 + cos(c3x3)+ sin(cos(x3)sin(cos(c1)c2x2 cos(c3))),

ũ3 =
√

c1 +((cos(c1)x2c2 cos(c3))
2 − sin(sin(c1)+ sin(x1)+ c1))

3+
sin(

√
c1 + cos(c1)+ c2x2 cos(c3)),

(5.72)

where c1 = 0.01562, c2 = 0.734375, c3 = 2.484375.
Figures 5.27, 5.28, and 5.29 show the results of obtained control system simula-

tion with different initial values. Blue color is for initial values x0,1, red is for x0,2,
and green is for x0,3.

As can be seen from Figs. 5.27, 5.28, and 5.29 the identified mathematical model
allows synthesizing control system for multi-link robot that provides the movement
over the given trajectory with different initial conditions.
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Fig. 5.28 Function x2(t) and
the given trajectory

Fig. 5.29 Function x3(t) and
the given trajectory

5.4 Synthesized Optimal Control Example

In this section, we are going to compare two approaches to practical implementation
of the optimal control problem.

One way is to solve initially the optimal control problem and receive a control
function in the form of time function. Then optimal trajectories are obtained basing
on the received control function. To implement the solution, a stabilization control
system is designed such that it can provide movement of the control object near
optimal trajectory. The drawback of this approach is that it changes a mathematical
model of control object after implementation of stabilization system and the initial
optimal control is not more optimal for the modified object. We will further show
this effect by introducing the noise into the object model.

Another approach of synthesized optimal control, described in Chap. 2 consists
in initially creating a control system to provide stability to control object in some
point of the state space. Then the optimal control problem is solved by finding the
stabilization point positions. In the second approach, a mathematical model of con-
trol object is not changed after the solution of the optimal control problem.
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Let us compare now two approaches on an example of the optimal control prob-
lem for two mobile robots. Consider the task of control of two mobile robots [2]
that must swap without collisions with each other. The mathematical model of each
robot is described by a system of n = 3 equations

ẋ j
1 = 0.5(u j

1 +u j
2)cos(x j

3)+Bξ ,
ẋ j

2 = 0.5(u j
1 +u j

2)sin(x j
3)+Bξ ,

ẋ j
3 = 0.5(u j

1 −u j
2)+Bξ ,

(5.73)

where j is the number of robots, j = 1,2, B is a constant, determining a level of
noise, ξ ξ is a random value from interval (−1;1).

There are constraints on components of the control vectors

u−i ≤ u j
i ≤ u+i , (5.74)

where u−i , u+i are given values i, j = 1,2.
The initial conditions are given

x j
i (0) = x0, j

i +B0ξ , i = 1,2,3, j = 1,2, (5.75)

where B0 is a noise level.
Terminal conditions are set

x j
i (t f ) = x f , j

i , i =−1,1,2,3, j = 1,2. (5.76)

Each robot produces a dynamic phase constraint for the other robot. Collision
avoidance condition is

d2 − (x1
1 − x2

1)
2 − (x1

2 − x2
2)

2 ≤ 0, (5.77)

where d is a given minimal distance between centers of robots.
A quality criterion is given

J = t f +a1
2
∑
j=1

3
∑

1=1
‖ x j

i (t f )− x f , j
i ‖+

a2

t f∫
0

ϑ(d2 − (x1
1 − x2

1)
2 − (x1

2 − x2
2)

2)dt → min,
(5.78)

where a1, a2 are given weight coefficients,

t f = max{t f ,1, t f ,2}, (5.79)

t f , j =

{
t, if t < t+ and δ j(t)≤ ε1,
t+ otherwise,

(5.80)
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where ε1 is a small positive value, t+ is a limit time of control process, ϑ(a) is a
step Heaviside function

ϑ(a) =

{
1, if a > 0

0 – otherwise
,

δ j(t) =

√
3

∑
1=1

(x j
i − x f , j

i )2. (5.81)

The stated problem was solved by two different approaches: by the synthesized
optimal control and by the direct approach using piece-wise linear approximation.
In both approaches, control systems were constructed without disturbances at B= 0.

5.4.1 Synthesized Optimal Control

According to the approach, it is necessary to find a solution of the synthesized opti-
mal control problem in the form of a set of coordinates of equilibrium points.

Firstly, the control system synthesis problem is solved. As far as the robots are
similar, the problem of synthesis is solved for one robot. For solution of this prob-
lem, the symbolic regression method of variational Cartesian genetic programming
was used.

In the result, the following control function was obtained:

u j
i =

⎧⎪⎨
⎪⎩

u+i = u+i , if u+i ≤ ũ j
i

u−i = u−i , if ũ j
i ≤ u−i

ũ j
i , otherwise

, i = 1,2, j = 1,2, (5.82)

where
ũ j

1 = A+B+ρ#(A), j = 1,2, (5.83)

ũ j
1 = B−A−ρ#(A), j = 1,2, (5.84)

A = c1(θ ∗ −θ j)+σ#((x
∗ − xJ)(y∗ − yJ)), (5.85)

B = 2(x∗ − x j)+ sgn(x∗ − xJ)c2, (5.86)

ρ#(α) =

{
sgn(α)B+, if |α|>− log(δ−)
sgn(α)(exp(|α|)−1)

, σ#(α) = sgn(α)
√
|α|, (5.87)

c1 = 3.1094, c2 = 3.6289, B+ = 108, δ− = 10−8.
For solution of the synthesis problem, eight initial conditions were used and the

quality criterion took into account the speed and the accuracy of terminal position
achievement

x∗ = [x∗1 x∗2 x∗3]
T . (5.88)



140 5 Examples of MLC Problem Solutions

In the result of the solution of control synthesis problem, a stable equilibrium
point in the state space is appeared. Position of the equilibrium point depends on the
terminal vector (5.88).

Secondly, the set of equilibrium points

X∗ = {x∗,1,1, . . . ,x∗,1,4,x∗,2,1, . . . ,x∗,2,4} (5.89)

was searched such that when switching from one point to another through given
time interval Δ robots (5.73) moves from initial conditions to the terminal state with
the optimal value of the quality criterion (5.78).

To search for the points the evolutionary algorithm of Grey wolf optimizer [7]
was used. This algorithm differs from the most popular evolutionary algorithm of
Particle Swarm Optimization [5] by not using such evolutionary parameters as a
number of possible solutions in initial population and a number of generations as
calculation parameters. GWO changes every possible solution basing on the infor-
mation from three best current possible solutions. In the present work, GWO was
slightly modified. Now a number of the best current possible solutions is a parame-
ter of the algorithm. In calculations four or eight best current possible solutions are
used. Parameters in the experiments were set as follows: dimension of the vector
of parameters p = 18, restrictions on parameters q+1+3( j−1) = 11, q+2+3( j−1) = 11,

q+3+3( j−1) = π/2, q−1+3( j−1) = −1, q−1+3( j−1) = 1, q−3+3( j−1) = −π/2, j = 1,2. Ini-

tial conditions x0,1 = [0 0 0]T , x0,2 = [10 10 0]T , restrictions on control u+i = 10,
u−i = −10, i = 1,2, other parameters, control time limit t+ = 2.4 s, interval for
switching stabilization points Δ = 0.8 s, ε1 = 0.01, d = 2, a1 = 2.5, a2 = 3.5.

In result the following stabilization points were received:

x∗,1,1 = [5.5 5.584 0.0744]T ,
x∗,1,2 = [9.1374 9.116 0.302]T ,
x∗,1,3 = [7.7585 −0.4732 0.8357]T ,
x∗,2,1 = [0.4587 3.1368 −0.4339]T ,
x∗,2,2 = [0.0726 0.5525 0.1014]T ,
x∗,2,3 = [0.3813 −0.4348 −0.7355]T .

(5.90)

The value of functional (5.78) for found solution was J = 2.1542. In the Fig. 5.30
optimal trajectories for robots on the horizontal plane {x1,x2} are presented. Black
squares in the Fig. 5.30 are stabilization points.

5.4.2 Direct Solution of the Optimal Control Problem

Now the same problem is solved by traditional methodology, when the optimal con-
trol problem is solved firstly, and then the stabilization system is constructed in order
to provide a steady movement of the object along the optimal trajectory.
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Fig. 5.30 Optimal trajectories
for synthesized control

Initially, for solution of the optimal control problem a piece-wise linear approx-
imation of control was used. The control for both robots was calculated by the fol-
lowing equation:

u j
i =

⎧⎨
⎩

u+i , if q(t, j,k,Δ0)> u+i
u−i , if q(t, j,k,Δ0)< u−i
q(t, j,k,Δ0), otherwise

, j = 1,2, i = 1,2, (5.91)

where

q(t, j,k,Δ0) = (q(i+2 j−3)M+k+1 −q(i+2 j−3)M+k)
t −Δ0(k−1)

Δ0
, (5.92)

i = 1,2, j = 1,2, k = 1, . . . ,M−1,

M =

⌊
t+

Δ0

⌋
+1.

During the solution of the optimal control problem, the following problem pa-
rameters were used: t+ = 2.4 s, Δ0 = 0.24 s, M = �t+/Δ0�+ 1 = 11. Restrictions
on parameter values were q+ = 20, q− = −20. Optimal values of parameters were
again searched by the GWO algorithm.

As a result, the following values of parameters were received:
q1 = 19.0344, q2 = 18.7579, q3 = 14.8563, q4 = 16.252, q5 = 13.9701, q6 =

14.2058,q7 = 12.1852, q8 = 0.5533, q9 =−0.6065, q10 =−1.0168, q11 =−0.758,
q12 =−2.052, q13 = 19.7234, q14 = 11.9609, q15 = 13.3309, q16 =−2.0296, q17 =
17.6389, q18 = 10.0327, q19 = 17.9334, q20 = 2.5053, q21 = 1.174, q22 = 0.2601,
q23 = 8.9844, q24 =−17.0169, q25 =−17.7283, q26 =−15.8004, q27 =−17.1493,
q28 =−14.0442, q29 =−19.1540, q30 = 0.0241, q31 = 2.0056, q32 = 0.3253, q33 =
−0.2754, q34 = −17.4827, q35 = −12.7697, q36 = −10.3852, q37 = −15.7939,
q38 = −11.4048, q39 = −18.0859 q40 = −2.5518, q41 = −0.1689, q42 = 0.1689,
q43 = 4.8284 q44 =−2.6376.

A value of functional was obtained J = 1.9013.
Figure 5.31 shows optimal trajectories received by the direct approach.
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Fig. 5.31 Optimal trajecto-
ries received by the direct
approach

Thus, the solution of the optimal control problem (5.91) is a function of time.
Obviously, this solution could not be realized on board of robots. So next, for imple-
mentation of the received solution it is necessary to construct a stabilization system.

Generally speaking, the construction of the stabilization system is very dependent
on the specific object.

In the present example, the stabilization system for moving robots on optimal
trajectories is constructed according to [8].

For stabilization, the following control is used:

u j
1 = 0.5(u j∗

1 +u j∗
2 )(cos(e j

3)+ k j
2e j

2)+ k j
1e j

1+

0.5(u j∗
1 −u j∗

2 )+ k j
3 sin(e j

3),

u j
2 = 0.5(u j∗

1 +u j∗
2 )(cos(e j

3)− k j
2e j

2)+ k j
1e j

1−
0.5(u j∗

1 −u j∗
2 )− k j

3 sin(e j
3),

(5.93)

where upper index j is the robot number, u j
1 and u j

2 are the optimal control for robot
j, e j

1, e j
2, e j

3 are errors between state of robot j and its optimal state,

⎡
⎢⎣

e j
1

e j
2

e j
3

⎤
⎥⎦=

⎡
⎣ k j

2 cos(x j
3) k j

2 sin(x j
3) 0

−k j
2 sin(x j

3) k j
2 cos(x j

3) α j

0 0 1

⎤
⎦
⎡
⎢⎣

x j
1 ∗−x j

1
x j

2 ∗−x j
2

x j
3 ∗−x j

3

⎤
⎥⎦ , (5.94)

x j∗
1 , x j∗

2 , x j∗
3 are components of optimal state vector for robot j, they are determined

from the etalon model

ẋ j∗
1 = 0.5(u j∗

1 +u j∗
2 )cos(x j∗

3 ),

ẋ j∗
2 = 0.5(u j∗

1 +u j∗
2 )sin(x j∗

3 ),

ẋ j∗
3 = 0.5(u j∗

1 −u j∗
2 ),

(5.95)

k j
1, k j

2, k j
3, α j are constant coefficients of controller, j = 1,2.

To search for optimal coefficients k j
1, k j

2, k j
3, α j the same GWO was used. Values

of parameters are determined on the criterion (5.78).
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Fig. 5.32 The optimal tra-
jectories with and without
stabilization system

In the result, the following values were received k1
1 = 9.9554, k1

2 = 5.9981, k1
3 =

7.1414, α1 = 3.3537, k2
1 = 3.0468, k2

2 = 6.3653, k2
3 = 8.8845, α2 = 0.6517. The

resulting value of the quality criterion (5.78) was improved a little J = 1.8968.
The optimal trajectories for the object with the stabilization system and optimal

trajectories without the stabilization system are presented in Fig. 5.32.
In the Fig. 5.32 red lines are optimal trajectories for the etalon model, and black

ones are optimal trajectories for the object with the stabilization system. As can
be seen, trajectories with the stabilization system almost coincide with the etalon
model completely.

5.4.3 Experimental Analysis of Sensitivity to Perturbations

To compare two approaches, the synthesized optimal control and direct optimal con-
trol with realized stabilization system, the perturbations were entered into the math-
ematical model and in the initial conditions.

There were ten experiments for each perturbation level. Values of the functional
with different perturbations are presented in Tables 5.4, 5.5, 5.6, and 5.7.

Table 5.4 Direct approach with stabilization in the presence of model perturbations

No B = 0.5 B = 1 B = 2 B = 5

1 3.4768 5.0309 4.1677 6.6225
2 3.0823 3.2038 7.3429 4.9321
3 3.0805 4.9694 4.1394 6.9220
4 3.1019 3.1120 8.2476 7.2693
5 5.1297 4.8077 3.1618 9.7189
6 3.0917 2.6837 4.9604 8.2018
7 3.2268 4.9566 3.2740 8.7121
8 3.7074 5.3586 3.0518 5.1837
9 5.4770 3.3332 7.2745 4.6449
10 3.6222 5.1715 8.6932 8.9466
Average 3.6969 4.2627 5.4313 7.1234
St.dev. 0.8803 1.0380 2.2255 1.7793
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Table 5.5 Synthesized optimal control in the presence of model perturbations

No B = 0.5 B = 1 B = 2 B = 5

1 2.5524 2.5413 2.8345 2.6035
2 2.5019 2.6449 2.7889 3.5243
3 2.5056 2.4866 2.6103 3.2268
4 2.4952 2.6251 2.7708 3.1393
5 2.4856 2.5473 2.6309 3.6660
6 2.4965 2.2293 2.7764 3.4443
7 2.2000 2.6381 2.7795 3.4076
8 2.4517 2.6211 2.8168 2.9567
9 2.4861 2.7025 2.5121 3.3035
10 2.4878 2.5452 2.7744 3.4872
Average 2.4663 2.55814 2.7178 3.3506
St.dev. 0.0968 0.13209 0.158 0.2172

Table 5.6 Direct approach with stabilization in the presence of perturbations in initial conditions

No B0 = 0.1 B0 = 0.5 B0 = 1 B0 = 1.5 B0 = 2

1 3.0550 3.0230 2.8399 2.6057 3.1508
2 2.5150 2.5412 2.5558 2.8344 7.7675
3 2.5249 2.9201 2.6229 31.2255 2.6863
4 3.0181 2.5976 2.6259 2.9744 2.8958
5 2.8731 2.5149 2.5205 2.5147 2.9021
6 2.5164 2.5142 2.9247 2.6986 2.5765
7 2.5146 2.7903 2.5227 2.5148 49.2804
8 2.5154 2.6121 2.5151 2.8189 9.5292
9 2.5215 2.5358 2.8036 2.5146 9.9916
10 2.6112 2.6212 2.5464 2.7979 9.3691
Average 2.6665 2.667 2.6478 5.5501 9.3691
St.dev. 0.2243 0.1812 0.1517 9.0228 13.6044

As can be seen form the Tables 5.4, 5.5, 5.6, and 5.7, for big perturbations,
B0 = 1.5 or B0 = 2, there appeared some enormous values of the functional for
the direct approach of optimal control with stabilization system. For example, in the
experiment 3 with B0 = 1.5 the functional was 31.2255, or in the experiment 7 with
B0 = 2 the functional was 49.2804. These were not mistakes. These cases always
appeared at big perturbations. This means that the stabilization system is corrupted
and could not provide the movement of robots to the terminal points near the op-
timal trajectories. For the synthesized control at the same perturbations, such big
values of functional did not appear.

Also, when discussing the obtained results, we would note one more weak-
ness of the direct approach. In the Fig. 5.33 trajectories of robots with perturba-
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Table 5.7 Synthesized optimal control in the presence of perturbations in initial conditions

No B0 = 0.1 B0 = 0.5 B0 = 1 B0 = 1.5 B0 = 2

1 2.4601 2.4512 2.535 2.633 2.526
2 2.4816 2.4929 2.7775 2.5091 4.3804
3 2.4635 2.4757 2.5011 7.9801 12.845
4 2.4565 2.4868 2.5107 4.7016 2.5051
5 2.4858 2.4846 2.5724 2.5074 7.214
6 2.4643 2.5051 2.501 2.525 2.4933
7 2.4605 2.501 2.4853 2.9441 15.7325
8 2.455 2.5422 2.7048 6.5336 16.6373
9 2.4804 2.6022 2.5551 3.0706 2.5289
10 2.4854 2.4644 2.4625 2.4656 3.7654
Average 2.4693 2.5006 2.5606 3.78701 7.0628
St.dev. 0.0125 0.0434 0.1019 1.9756 5.7846

Fig. 5.33 Optimal trajecto-
ries received by the direct
approach

tions B = 2 are presented. Optimal trajectories signed red color almost coincides
with trajectories of objects’ movement, but value of the functional (5.78) for move-
ment with perturbations is equal to 3.274 instead of 1.8968 for optimal trajecto-
ries. This confirms the proposition that movement near optimal trajectory is not
optimal movement in terms of functional value, it gives not optimal value of func-
tional.

5.5 Machine Learning in Synergetic Control

In this example, we will consider the possibility of using machine learning methods
based on symbolic regression to synthesize synergetic control. The application of
the ideas of Synergetics [9] to the solution of nonlinear control problems was pro-
posed in [10, 11] and is considered as synergetic control which is characterized by
the presence in the state space of such manifolds that must have special properties of
attraction or repelling. The main idea of the approach is that when a feedback con-
trol function is synthesized and inserted into the model, all solutions of the resulting
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system of differential equations have special properties specified by the developer.
Such properties that the solutions must satisfy are determined by the presence of
manifolds in the state space. In particular, terminal manifolds must have the prop-
erties of an attractor, and phase constraints on the contrary must indicate regions of
the state space through which the solutions of the system do not pass or have the
repeller properties.

Consider a problem where the terminal manifold should have an attractor prop-
erty.

The problem statement of the control synthesis with attracting terminal manifold
is as follows.

The mathematical model of control object is given

ẋ= f(x,u), (5.96)

where x ∈ R
n, u ∈ U ⊆ R

m, U is a compact set, m ≤ n.
The domain of initial conditions is given

X0 ⊆ R
n. (5.97)

The terminal manifold is given

g(x(t)) = 0, (5.98)

where t ≥ t f , t f is a time of reaching the manifold (5.98),

g(x) = [g1(x) . . .gr(x)]T , r ≤ n. (5.99)

The quality criterion is given

J =

t f∫

0

f0(x(t),u(t))dt → min
u∈U

. (5.100)

It is necessary to find a control function in the form

u= h(x). (5.101)

When this control function is substituted into the right part of the system of
differential equations (5.96), then any solution of the system

ẋ= f(x,h(x)) (5.102)

from the initial conditions from the given region (5.97) will reach the terminal man-
ifold (5.99) and remain on it after reaching and the value of the quality criterion
(5.102) will be optimal.
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For numerical solution of the problem, it is necessary to reformulate the state-
ment in order to provide computer checking of the given conditions.

Replace the initial condition region with a set of initial condition points

X̃0 = {x0,1, . . . ,x0,K}. (5.103)

In order to check the attraction property condition of the terminal manifold
(5.98), a multi-point criterion is introduced. A certain number M of points on the
terminal manifold is given. A position of points is not determined, but only the num-
ber of points. Any partial solution of the system (5.102) from the given set of initial
conditions (5.103) must pass a given number of points on the manifold. Distance
between any pair of points on the manifold must be not less than the given value δ ,
at that when moving from one point to the next, the partial solution must not deviate
from the manifold by more than the given value ε . Multi-point criterion for check-
ing the conditions of attraction of the terminal manifold is included into the quality
functional.

J1 =
K
∑

i=1

(
t+∫
0

f0(x(t,x0,i),h(x(t,x0,i)))dt+

p1(M−min{M,L})+ p2

√
r
∑
j=1

g j(x(t+,x0,i))

)
,

(5.104)

where x(t,x0,i) is a partial solution of the system (5.102) from initial conditions x0,i,
i ∈ {1, . . . ,K}, t+ is a given time, p1, p2 are given weight coefficients, L is a cardinal
number of the set of points on the terminal manifold T(x(t,x0,i))

T(x(t,x0,i)) = {x(t1,x0,i), . . . ,x(tL,x0,i)}, (5.105)

t1 < .. . < tL,

‖x(tk,x0,i)−x(ts,x0,i)‖ ≥ δ ,∀k,s ∈ {1, . . . ,L}, k �= s, (5.106)

√
r

∑
j=1

g j(x(t+,x0,i))≤ ε , t1 ≤ t ≤ tL. (5.107)

Consider an Example of the Synergistic Control Synthesis

The mathematical model of control object has the following form:

ẋ1 = x2 +u1,
ẋ2 = −x2 − x1 − x3

1 +u2.
(5.108)
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Restrictions on control are given

−1 ≤ ui ≤ 1, i = 1,2. (5.109)

The terminal manifold is described by the following equation:

x2 =
x2,2 − x2,1

x1,2 − x1,1
x1, if x1,1 �= x1,2, (5.110)

x1 = 0, if x1,1 = x1,2, (5.111)

x−i = min{xi,1,xi,2} ≤ xi ≤ max{xi,1,xi,2}= x+i , i = 1,2. (5.112)

To obtain the attractor property, the quality criterion should define a distance to
the terminal manifold. Therefore, the quality criterion has the following form:

J2 =
K

∑
i=1

⎛
⎝p1(M−min{M,L})+ p2Δ f (t

+,x0,i)+

t+∫

0

Δ f (t,x0,i)dt

⎞
⎠ , (5.113)

where Δ f (t,x0,i) is a distance from partial solution x(t,x0,i) to the terminal manifold
in the moment t

Δ f (t,x0,i) =

⎧⎨
⎩

min{Δ−(t,x0,i),Δ+(t,x0,i)},
if (β−(t)< 0)∨ (β+(t)< 0);

2S(t)/l f – otherwise,

Δ−(t,x0,i) =
√

(x1(t,x0,i)− x−1 )2 +(x2(t,x0,i)− x−2 )2,

Δ+(t,x0,i) =
√

(x1(t,x0,i)− x+1 )
2 +(x2(t,x0,i)− x+2 )

2,

β−(t) =
2

∑
i=1

(x+i − x−i )(xi(t,x0,i)− x−i ),

β+(t) =
2

∑
i=1

(x−i − x+i )(xi(t,x0,i)− x+i ),

l f =
√

(x+1 − x−1 )2 +(x+2 − x−2 )2,

S(t) =
√

p(t)(p(t)−Δ+(t,x0,i))(p(t)−Δ−(t,x0,i))(p(t)− l f ),

p(t) = 0.5(Δ−(t,x0,i)+Δ+(t,x0,i)+ l f ).

In the experiments the set of initial conditions included K = 16 points:
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X̃0 = {x0,1 = [−1.1 −1.1]T ,x0,2 = [−1.1 −0.4]T ,
x0,3 = [−1.1 0.3]T ,x0,4 = [−1.1 1]T ,x0,5 = [−0.4 −1.1]T ,
x0,6 = [−0.4 −0.4]T ,x0,7 = [−0.4 0.3]T ,x0,8 = [−0.4 1]T ,
x0,9 = [0.3 −1.1]T ,x0,10 = [0.3 −0.4]T ,x0,11 = [0.3 0.3]T ,
x0,12 = [0.3 1]T ,x0,13 = [1 −1.1]T ,x0,14 = [1 −0.4]T ,
x0,15 = [1 0.3]T ,x0,16 = [1 1]T}.

(5.114)

Other parameters of the task had the following values: p1 = 0.01, p2 = 1, M = 8,
ε = 0.005, δ = 0.005, t+ = 4 s.

For solution of this problem, the multi-layer network operator was used.
The basic solution had the following form:

ui =

⎧⎨
⎩

−1, if ũi ≤−1
1, if ũi ≥ 1
ũi, otherwise

, (5.115)

where
ũ1 = −q3(q1x1 +q2x2)+q4 −q1x1 −q2x2,
ũ2 = −q3(q1x1 +q2x2)+q4 −q1x1 −q2x2,

(5.116)

qi = 1, i = 1,2,3,4.
The basic solution (5.115),(5.116) was coded by the network operator of N = 2

layers of the dimension 16×16:

Ψ 1 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0
0 0 0 0 2 0 3 0 0 0 0 0 0 0 0 0
0 0 0 0 0 2 3 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (5.117)
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Ψ 2 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0
0 0 0 0 2 0 1 0 0 0 0 0 0 0 0 0
0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (5.118)

Input and output vectors of this network operator were

r1 = [0 0 0 2 0 1 0 3]T , (5.119)

r2 = [1 14 0 4 1 15 0 5]T , (5.120)

d1 = [2 14]T , (5.121)

d2 = [2 15]T . (5.122)

Consider the terminal manifold in the form of a segment in various positions.
Let firstly the terminal manifold be described by two points

(x1,1 =−0.5, x2,1 =−0.5),(x1,2 = 0.5,x2,2 = 0.5). (5.123)

In the result of computations, the following solution was received:

ũ1 = q3(x2 −2q1x1 −q2x2 + sgn(x2 −q1x1)
√|x2 −q1x1|)+

q4(x2 −2q1x1 −q2x2 + sgn(x2 −q1x1)
√|x2 −q1x1|+

sgn(x2 −q1x1 −q2x2)+(q2x2)
3),

ũ2 = ũ1 − ũ3
1,

(5.124)

where q1 = 0.989258, q2 = 0.024414, q3 = 3.755859, q4 = 0.106445.
Figures 5.34 and 5.35 show the results of simulation of the control object (5.102)

with the control function (5.124).
As seen from the results of simulation, the terminal manifold possess an attractor

property: the object reaches the manifold and moves along it.
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Fig. 5.34 Partial solutions of the system (5.102) for four initial conditions from the set X̃0

Fig. 5.35 Partial solutions of the system (5.102) for four initial conditions not from the set X̃0

Consider now the terminal manifold based on two other points

(x1,1 =−0.5, x2,1 = 0,5),(x1,2 = 0.5,x2,2 =−0.5). (5.125)

For the terminal manifold (5.125), the following control function was received:

ũ1 = arctan(+q4(arctan(−q1x1 −q2 sin(x2))+ x3
2)+

−q3(q1x1 +q2 sin(x2))+(arctan(−q1x1 −q2 sin(x2))+ x3
2)

3),
ũ2 = ũ1 +ϑ(ũ1)+ sin(−q3(q1x1 +q2 sin(x2))+

q4(arctan(−q1x1 −q2 sin(x2))+ x3
2)),

(5.126)

where q1 = 2.578125, q2 = 2.665039, q3 = 3.252930, q4 = 1.182617.
The results of simulation are shown in Figs. 5.36 and 5.37.
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Fig. 5.36 Partial solutions of the system (5.102) with control (5.126) for four initial conditions
from the set X̃0

Fig. 5.37 Partial solutions of the system (5.102) with control (5.126) for four initial conditions that
are not from the set X̃0 of initial conditions

Consider one more terminal manifold based on two other points

(x1,1 =−0.5, x2,1 = 0),(x1,2 = 0.5,x2,2 = 0). (5.127)

For the terminal manifold (5.127), the following control function was received:

ũ1 = q3B+q4(B+ϑ(x2)+ arctan(q1x1))+ arctan(q4),

ũ2 = sin(q3B+q4(B+ϑ(x2)+ arctan(q1x1))+ arctan(q4))
−B−ϑ(x2)− arctan(q1x1),

(5.128)
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Fig. 5.38 Partial solutions of the system (5.102) with the control function (5.128) for four initial
conditions from the set X̃0

Fig. 5.39 Partial solutions of the system (5.102) with the control function (5.128) for four initial
conditions not from the set X̃0

where
B = A+A3 + arctan(−x2 −q1x1 + sin(x2)+ 3

√
x2),

A = −q1x1 + sin(x2)+ 3
√

x2 + sgn(x2)
√|x2|,

q1 = 2.458008, q2 = 0.795898, q3 = 0.337891, q4 = 0.283203.
Figures 5.38 and 5.39 show the results of simulation of the system (5.102) with

obtained control (5.128) from different initial conditions.
At last consider the terminal manifold

(x1,1 = 0, x2,1 =−0.5),(x1,2 = 0,x2,2 = 0.5). (5.129)
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Fig. 5.40 Partial solutions of the system (5.102) with the control function (5.130) for four initial
conditions from the set X̃0

Fig. 5.41 Partial solutions of the system (5.102) with the control function (5.130) for four initial
conditions not from the set X̃0

For the terminal manifold (5.125), the following control function was received
by the multi-layer network operator method:

ũ1 = A+2tanh(A),

ũ2 = A+2tanh(A)+2sin(A+2tanh(A))+ϑ(A+2tanh(A)),
(5.130)

where
A =−q3(q1x1 +q2x2)+q4 sin(−q1x1 −q2x2),

q1 = 3.939453, q2 = 0.204102, q3 = 3.364258, q4 = 1.684570.
The results of simulation of the system (5.102) with obtained control (5.130)

from different initial conditions are presented in Figs. 5.40 and 5.41.
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