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Abstract. In this paper, we consider the problem of minimizing simul-
taneously the total connectivity cost of a set of users to a set of facility
nodes and between facilities themselves. The problem arises as an exten-
sion of the p-Median problem, which is a classical combinatorial opti-
mization problem. We propose two mixed-integer quadratic program-
ming models which allow obtaining optimal solutions. Example applica-
tion domains where the proposed models can be utilized include mod-
eling and management of smart transportation and wireless networks,
to name a few. Our first model is derived as an extension of the clas-
sical p-Median formulation. Whereas the second one is an alternative
set-covering model. Finally, we linearize these models and strengthen
them by imposing additional linearized quadratic cuts. We solve hard
instances with up to 60 facility nodes and 350 users with the Gurobi
solver. Our preliminary numerical results indicate that the linear set-
covering formulation allows solving all tested instances to optimality in
significantly less computational effort, which is not possible to achieve
with the other proposed models.

Keywords: Mixed-integer quadratic and linear programming ·
p-Median problem · Smart transportation and Wireless networks
applications

1 Introduction

The p-Median problem is a classical combinatorial optimization problem which
can be described as follows. First, we are given a set of facility nodes J and a
set of users (customers) I with cardinalities n and m, respectively. Then, the
problem consists of finding an optimal subset of facility nodes P ⊆ J with
cardinality p that minimizes the total connectivity cost in such a way that each
user of I is assigned to a unique facility node in P. It is a discrete type location
problem with many real-life applications including the location of industrial
plants, warehouses, public facilities, and network design problems, to name a few
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[1,8]. In particular, for network design problems, it provides a useful modeling
framework as it allows forming backbone network structures [1,2,8,9].

In this paper, we consider the problem of minimizing simultaneously the total
connectivity cost of users to facilities, as in the classical p-Median problem, plus
the total connectivity cost between pairs of facilities. Notice that the latter cost
is not usually incorporated in the classical p-Median problem. We argue that
the motivation for doing so can be justified within many application domains.
For example, when moving patients from one hospital to another one under
pandemic situations like covid-19. Similarly, in a wireless network, it is highly
required that the facilities forming a backbone network structure are installed
as close as possible since this would allow more rapid transmission of the data
and at lower power consumption. Notice that even though the proposed mod-
els provide a generic modeling framework, they can be straightforwardly applied
and adapted to many optimization problems related to smart transportation and
wireless networks [1]. Also notice that in a graph layout configuration of a net-
work, the connectivity cost between two facilities can be computed as a function
of the shortest path distance between them [5]. We propose two mixed-integer
quadratic programming models. The first one is derived as an extension of the
classical p-Median formulation. Whereas the second one is formulated based
on an alternative set-covering formulation related to the p-Median problem [3].
Then, we apply the Fortet linearization method [6] and obtain two additional
mixed-integer linear programming (MIP) models. Finally, each linearized model
is further strengthened by imposing additional linearized quadratic cuts. In par-
ticular, we derive a cardinality cut that allows tightening the linear programming
relaxations significantly.

As far as we know, our proposed models are new to the literature. A similar
problem was studied in [10] where the author reports a new integer quadratic
formulation of a general hub-location problem. The author discusses a variety of
alternative solution strategies and proposes two heuristics for the task of siting 2,
3, or 4 hubs to serve interactions between sets of 10, 15, 20, and 25 cities. Other
related works, from the domain of wireless networks and urban planning, where
our proposed formulations can be applied, are reported in references [7,11]. In
particular, in [7], the author proposes a distribution location plan for multi-
sink nodes in a wireless sensor network based on the p-median problem. The
author also proposes a heuristic algorithm and shows that the proposed strategy
can effectively reduce the overall energy consumption, improve the efficiency of
the network service and extend the network lifetime. Analogously, in [11], the
authors incorporate big data in urban planning for better modeling of urban
dynamics and more efficiently allocating limited resources. The authors pro-
pose a high-performance computing-based algorithm based on random sampling
and spatial voting techniques to solve large-sized p-median problems. Numeri-
cal results show that their proposed algorithm provides high-quality solutions
and reduces computing time significantly. They also demonstrate the dynamic
scalability of their proposed algorithm.
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The paper is organized as follows. In Sect. 2, we present and explain the
quadratic and linear mathematical formulations. Then, we explain how we derive
quadratic cuts, which allow tightening each of the linear programming (LP)
relaxations. Subsequently, in Sect. 3, we conduct preliminary numerical experi-
ments in order to compare all the proposed models. Finally, in Sect. 4, we present
our main conclusions and provide some insight for future research.

2 Mathematical Formulations and Quadratic Cuts

In this section, we first present and explain the proposed mixed-integer quadratic
and linear models. Then, we describe how we obtain the quadratic cuts, which
are added to the MIP models.

2.1 Proposed Mathematical Formulations

In order to write a first quadratic model, we define the following binary variables

yj =
{

1, if facility node j ∈ J belongs to subsetP.
0, otherwise.

and

xij =
{

1, if user i ∈ I is assigned to facility node j ∈ J .
0, otherwise.

We also define the input matrices C = (Cij) for all i ∈ I and j ∈ J , and
D = (Dij) for all i, j ∈ J as the required distance matrices. Notice that each
entry in each of these input matrices represents the distance between elements i
and j. Consequently, a first model can be written as follows

Q1 : min
{x,y}

∑
i∈I

∑
j∈J

Cijxij +
∑
i∈J

∑
j∈J
(i�=j)

1
2
Dijyiyj (1)

s.t.:
∑
j∈J

xij = 1, ∀i ∈ I (2)

∑
j∈J

yj = p (3)

xij ≤ yj , ∀i ∈ I, j ∈ J (4)
x ∈ {0, 1}mn, y ∈ {0, 1}n (5)

where the first and second terms in the objective function (1) represent the
connectivity costs between users and facilities, and between facilities themselves,
respectively. The constraints (2) ensure that each user i ∈ I is connected to a
unique facility node j ∈ J . Next, the constraint (3) is used to select p out of n
facilities from J . Subsequently, the constraints (4) ensure that each user i ∈ I is
connected to a facility node j ∈ J if and only if j is active. Finally, constraints
(5) are the domain constraints for the decision variables.
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In order to obtain an equivalent MIP formulation for Q1, we apply the Fortet
linearization method [6]. This method consists of replacing each quadratic term
in the objective function (1) with a new variable zij = yiyj for all i, j ∈ J , (i < j)
while simultaneously adding linearization constraints. This leads to the following
equivalent MIP model

M1 : min
{x,y,z}

∑
i∈I

∑
j∈J

Cijxij +
∑
i∈J

∑
j∈J
(i<j)

Dijzij (6)

s.t.: (2) − (4)
zij ≤ yi, ∀i, j ∈ J , (i < j) (7)
zij ≤ yj , ∀i, j ∈ J , (i < j) (8)
zij ≥ yi + yj − 1, ∀i, j ∈ J , (i < j) (9)

x ∈ {0, 1}mn, y ∈ {0, 1}n, z ∈ {0, 1}n(n−1)
2 , (10)

where the objective function (6) is no longer a quadratic one, but a linear one.
The constraints (7)–(9) are the linearization constraints and ensure that variable
zij = 1 if and only if both yi = yj = 1 for all i, j ∈ J , (i < j). Otherwise, if
either yi or yj equals zero, then zij = 0. Notice that we do not use both variables
zij and zji in M1 as each connection link is considered only once.

In order to write an equivalent set-covering formulation, we first add an
artificial facility node to set J . Denote this new set by Ĵ . Next, we define an
additional input matrix Ĉ = (Ĉij) for each i ∈ I and j ∈ Ĵ . This new extended
matrix is constructed as follows. First, let Ĉ be an empty matrix. Then, for
each i ∈ I, we sort in ascending order the corresponding row vector of matrix
C = (Cij), for all j ∈ J and add the resulting sorted vector to the ith row
of matrix Ĉ. Finally, we add an extra zero column vector to the left of matrix
Ĉ. Similarly, we define the input symmetric matrix D̂ = (D̂ij) for all i, j ∈ Ĵ .
This matrix D̂ is constructed by adding zero column and row vectors to the left
and at the top of matrix D, respectively. To terminate, we define the following
cumulative variables

wij =

⎧⎨
⎩

1, if the distance cost of user i ∈ I is at least Ĉij , for all j ∈ Ĵ
no matter which median it is allocated to.

0, otherwise.

Thus, a quadratic p-Median formulation can now be written as

Q2 : min
{w,y}

∑
i∈I

∑
j∈Ĵ \{1}

(Ĉij − Ĉi,j−1)wij +
∑

i∈Ĵ \{1}

∑
j∈Ĵ \{1}
(i�=j)

1
2
D̂ijyiyj (11)

s.t.:
∑

j∈Ĵ \{1}
yj = p (12)
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wik +
∑

j∈Ĵ \{1}
{Cij<Ĉik}

yj ≥ 1, ∀i ∈ I, k ∈ Ĵ \ {1} (13)

w ∈ {0, 1}m(n+1), y ∈ {0, 1}n+1 (14)

Analogously as for Q1, we can obtain its linearized version as

M2 : min
{w,y,z}

∑
i∈I

∑
j∈Ĵ \{1}

(Ĉij − Ĉi,j−1)wij +
∑

i∈Ĵ \{1}

∑
j∈Ĵ \{1}
(i<j)

D̂ijzij (15)

s.t.: (12) − (13)
zij ≤ yi, ∀i, j ∈ Ĵ \ {1}, (i < j) (16)

zij ≤ yj , ∀i, j ∈ Ĵ \ {1}, (i < j) (17)

zij ≥ yi + yj − 1, ∀i, j ∈ Ĵ \ {1}, (i < j) (18)

w ∈ {0, 1}m(n+1), y ∈ {0, 1}n+1, z ∈ {0, 1} (n+1)n
2 (19)

Notice that the Fortet linearization constraints (16)–(18) are now imposed in
M2 for all i, j ∈ Ĵ \ {1}.

2.2 Quadratic Cuts Used to Strengthen the MIP Models

In this subsection, we explain how we obtain quadratic cuts, which are then
linearized to further strengthen the LP relaxations of the MIP models. By doing
so, we intend to measure the impact of these cuts on the performance of the
branch and cut algorithm of the Gurobi solver [4] when solving M1 and M2.
We denote by Ms

1 and Ms
2 the strengthened versions of models M1 and M2,

respectively. The set of linearized quadratic cuts we add in Ms
1 are

∑
j∈J

zij = pyi, ∀i ∈ J (20)

∑
i,j∈J
(i<j)

zij =
p(p − 1)

2
(21)

yi + yj ≤ 1 + zij , ∀i, j ∈ J , (i < j) (22)

The first cut (20) is obtained by multiplying constraint (3) by each yi, for all
i ∈ J . Whilst the cardinality cut (21) is obtained by multiplying constraint (3)
with each variable yi for all i ∈ J . Then, we take the sum over all the resulting
constraints and obtain the equality

∑
i,j∈J yiyj = p2, which is equivalent to

∑
i,j∈J ,(i�=j)

yiyj = p(p − 1)
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and ∑
i,j∈J ,(i<j)

zij =
p(p − 1)

2

Subsequently, the cuts in (22) are obtained from the quadratic valid inequal-
ities (1 − yi)(1 − yj) ≥ 0 for all i, j ∈ J , (i < j). Observe that each term in
these inequalities is nonnegative since yi ≤ 1 for each i ∈ J . Finally, notice that
the cuts (20)–(22) can be straightforwardly adapted for M2 while using the set
Ĵ \ {1} instead of J .

3 Numerical Experiments

In this section, we present preliminary numerical results for all the proposed
models. For this purpose, we implement a Python program using Gurobi solver
[4]. In particular, we solve each quadratic model while setting the Gurobi option
parameter Nonconvex to a value of 2. This option allows one to solve a non-
convex quadratic problem with spatial branch and bound algorithms. We decided
to use this option as it proved to be the most effective one in terms of CPU time
required to solve the quadratic models. Whilst for the MIP and LP models,
we use the Gurobi solver with default options. This implies solving the linear
models with state-of-the-art branch and cut-based algorithms. The numerical
experiments have been carried out on an Intel(R) 64 bits core (TM) with 3 GHz
and 8G of RAM under Windows 10. So far, we generate eight instances with
dimensions of n = {50; 60} and m = {200; 250; 300; 350}, and each of them is
solved for values of P = {10; 20}. We mention that this range of parameter values
was arbitrarily chosen in order to ensure that hard instances were obtained. In a
larger version of this paper, a wider range of parameter values will be considered.
The input matrices C = Cuj and D = Dij for all u ∈ I and i, j ∈ J are generated
by computing the distances between users and facilities and between facilities
themselves. Notice that matrix D is symmetric. The coordinates of each user
and facility node are randomly drawn from the interval (0; 1).

In Table 1, we present preliminary numerical results obtained with models
Q1 and M1. More precisely, in columns 1–4 we present the instance number,
and the values of p, m, and n, respectively. Next, in columns 5–8 we report for
Q1, the best objective function value obtained in at most 1h of CPU time, the
number of branch and bound nodes, CPU time in seconds required to solve the
model, and the MipGap parameter value of Gurobi solver, respectively. Gurobi
computes this parameter by subtracting from the best incumbent solution the
best lower bound obtained. Then, it divides this result by the incumbent solution
again. Notice that this value is reported as a percentage. Also notice that if the
Gurobi solver terminates with an optimal solution, then the MipGap parameter
should be equal to zero. Subsequently, in columns 9–15 we report for M1, the best
objective function value obtained in at most 1 h, the number of branch and bound
nodes, CPU time in seconds, the optimal objective value of its LP relaxation,
and CPU time in seconds required to solve it, and the gap and MipGap values,
respectively. The gap is computed by

[
Best−LP

Best

] ∗ 100.
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Table 1. Numerical results obtained with Q1 and M1.

# P m n Q1 M1

Best B&Bn CPU(s) MipGap% Best B&Bn CPU(s) LP CPU(s) Gap% MipGap%

1 10 200 50 45.76 59834 2133.63 0 45.76 10494 1015.92 24.17 0.43 47.18 0

2 250 53.59 45816 2090.6 0 53.59 6398 1156.28 31.15 0.58 41.86 0

3 300 60.54 36938 1964.24 0 60.54 4850 1246.64 37.34 0.61 38.31 0

4 350 66.97 26966 1824.55 0 66.97 2456 703.56 43.96 0.83 34.35 0

5 10 200 60 45.55 50480 3600 0.06 45.55 19046 3229.7 24.03 0.55 47.24 0

6 250 53.35 46754 3600 0.05 53.35 11860 3600 31.04 0.72 41.8 0.03

7 300 60.39 41313 3600 0.05 60.39 11310 3600 37.26 0.81 38.3 0.03

8 350 66.77 33585 3600 0.05 66.77 10374 3600 43.92 0.96 34.21 0.02

1 20 200 50 88.19 2595 962.54 0 88.19 233 120.82 18.4 0.19 79.13 0

2 250 96.21 5095 2129.14 0 96.21 521 375.69 23.47 0.36 75.6 0

3 300 104.17 7559 3600 0.02 104.17 1725 1118.44 28.44 0.5 72.69 0

4 350 110.67 5372 3600 0.04 110.67 1457 1062.42 33.29 0.76 69.91 0

5 20 200 60 84.91 4278 3600 0.06 84.91 1153 858.49 17.81 0.29 79.02 0

6 250 93.24 3566 3600 0.09 93.24 1140 1473.24 22.83 0.55 75.51 0

7 300 101.44 2966 3600 0.12 101.44 1574 3600 27.7 0.67 72.68 0.02

8 350 108.47 2771 3600 0.13 108.36 1513 3600 32.49 0.9 70.01 0.03

Table 2. Numerical results obtained with Q2 and M2.

# P m n Q2 M2

Best B&Bn CPU(s) MipGap% Best B&Bn CPU(s) LP CPU(s) Gap% MipGap%

1 10 200 50 45.76 5799 1122.08 0 45.76 188 91.79 24.17 0.77 47.18 0

2 250 53.59 5963 1499.08 0 53.59 124 113.52 31.15 1.29 41.86 0

3 300 60.54 2050 767.52 0 60.54 1 45.86 37.34 1.52 38.31 0

4 350 66.97 2101 872.13 0 66.97 1 37.74 43.96 1.89 34.35 0

5 10 200 60 45.55 9298 3600 0.04 45.55 1196 934.09 24.03 1.24 47.24 0

6 250 53.35 7716 3600 0.05 53.35 791 767.94 31.04 1.79 41.8 0

7 300 60.67 5756 3600 0.04 60.39 312 424.37 37.26 2.44 38.3 0

8 350 66.77 4642 3600 0.02 66.77 1 145.03 43.92 2.81 34.21 0

1 20 200 50 88.19 1383 727.43 0 88.19 17 44.02 18.4 0.43 79.13 0

2 250 96.21 1795 998.88 0 96.21 145 73.65 23.47 0.58 75.6 0

3 300 104.17 3036 1721.66 0 104.17 61 84.32 28.44 0.81 72.69 0

4 350 110.67 4148 2266.1 0 110.67 116 110.93 33.29 1.15 69.91 0

5 20 200 60 84.91 2962 3600 0.04 84.91 43 164.47 17.81 0.62 79.02 0

6 250 93.24 2456 3600 0.06 93.24 325 404.15 22.83 1.07 75.51 0

7 300 101.53 2701 3600 0.07 101.44 635 1118.62 27.7 1.24 72.68 0

8 350 108.42 2229 3600 0.08 108.35 816 1909.16 32.49 1.71 70.01 0

In Table 2, we report numerical results for the models Q2 and M2. The col-
umn information of Table 2 is analogous to Table 1. Finally, in Table 3 we report
preliminary numerical results for the linear models Ms

1 and Ms
2 . Its legend is

analogous as for the linear models reported in Tables 1 and 2 for M1 and M2,
respectively.

From Table 1, we first observe that both models Q1 and M1 allow obtaining
the same objective function values except for the instance #8, for which we
obtain a slightly smaller value with M1. Regarding the number of branch and
bound nodes, we see that Gurobi reports a significantly less number of nodes
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Table 3. Numerical results obtained with Ms
1 and Ms

2 .

# P m n Ms
1 Ms

2

Best B&Bn CPU(s) LP CPU(s) Gap% MipGap% Best B&Bn CPU(s) LP CPU(s) Gap% MipGap%

1 10 200 50 45.76 7702 928.61 34.63 0.41 24.32 0 45.76 158 115.51 34.63 1.39 24.32 0

2 250 53.59 5063 1105.62 41.62 0.48 22.33 0 53.59 9 75.24 41.62 1.46 22.33 0

3 300 60.54 3644 1008.27 48.26 0.71 20.27 0 60.54 1 46.72 48.26 1.76 20.27 0

4 350 66.97 4062 1107.03 54.79 0.88 18.18 0 66.97 1 42.38 54.79 1.98 18.18 0

5 10 200 60 45.55 16213 3600 33.48 0.7 26.48 0.01 45.55 1062 869.88 33.48 2.03 26.48 0

6 250 53.35 10270 3600 40.5 0.65 24.08 0.03 53.35 1068 1454.03 40.5 2.09 24.08 0

7 300 60.39 8741 3600 47.2 0.83 21.85 0.04 60.39 257 520.99 47.2 2.6 21.85 0

8 350 66.77 7240 3600 53.77 0.99 19.45 0.02 66.77 1 146.25 53.77 2.98 19.45 0

1 20 200 50 88.19 876 221.09 71.69 0.35 18.7 0 88.19 1 41.15 71.69 1.34 18.7 0

2 250 96.21 1088 368.09 76.93 0.39 20.03 0 96.21 1 52.63 76.93 1.55 20.03 0

3 300 104.17 1327 768.92 82.22 0.46 21.07 0 104.17 1 77.44 82.22 2.0 21.07 0

4 350 110.67 3674 2335.46 87.34 0.55 21.07 0 110.67 55 88.82 87.34 2.33 21.07 0

5 20 200 60 84.91 1156 683.22 66.37 0.46 21.83 0 84.91 1 118.39 66.37 1.76 21.83 0

6 250 93.24 2254 1905.38 71.68 0.59 23.12 0 93.24 1 175.0 71.68 2.4 23.12 0

7 300 101.44 2545 3600 76.92 0.73 24.17 0.02 101.44 223 482.71 76.92 2.9 24.17 0

8 350 108.35 1903 3600 82.08 0.75 24.24 0.03 108.35 488 866.76 82.08 3.31 24.24 0

for M1. The CPU times show that we can obtain the optimal solution of the
problem for a larger number of instances with M1 in less than 1h. Next, we
observe that the MipGap values reported for both models are close to zero. The
latter indicates that the solutions reported are near-optimal. Notice that from
these values, we can obtain tight lower bounds for the problem as well. Finally,
we see that the LP relaxation of M1 is not tight when compared to the best
objective function values and that the gaps obtained increase with p.

From Table 2, we observe similar trends for Q2 and M2. We notice that
M2 significantly outperforms model Q2 in terms of the best objective function
and CPU time values obtained. Indeed, we obtain the optimal solution to the
problem with proven optimality for all tested instances. This cannot be achieved
by any of the other proposed models reported in Tables 1 and 2. This achievement
can also be observed by looking at the number of branch and bound nodes
obtained, which are significantly lower for M2. Finally, we observe that the LP
relaxation of M2 is not tight either. Similarly, from Table 3 we observe that M2

outperforms M1 in terms of all column information reported. In particular, we
confirm that M2 allows obtaining the optimal solution of the problem for all the
instances. Perhaps, one of the most interesting observations of Table 3 is that
the LP bounds obtained with Ms

2 are significantly higher than those reported in
Tables 1 and 2, respectively. Ultimately, we observe that the impact of adding
linearized quadratic cuts in M2 is not so strong in terms of CPU time values
obtained. However, we see that for most of the instances, the number of branch
and bound nodes decreases when these cuts are added to the models.

4 Conclusions

In this paper, we considered the problem of minimizing simultaneously the
total connectivity cost of a set of users to a set of facility nodes and among
facilities themselves. The problem is motivated by the potential develop-
ment of future smart transportation and wireless network applications where
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interacting facilities will be required to be connected and nearly reachable. We
proposed two mixed-integer quadratic programming models, which are further
linearized. The first one is obtained as an extension of the classical p-Median
formulation. Whereas the second one corresponds to an alternative set-covering
model. Finally, we strengthen the linear models by imposing additional linearized
quadratic cuts. So far, we solved hard instances with up to 60 facility nodes and
350 users. Our preliminary numerical results indicated that the linearized set-
covering formulation outperforms all the other proposed models as it allows
solving all the instances with proven optimality and in significantly less compu-
tational effort.

As future research, new models and algorithms should be investigated in
order to tackle this hard combinatorial optimization problem. Complementarily,
new cutting plane approaches should be proposed in conjunction with the new
models. This would allow a complete validation of the proposal. Ultimately, the
study problem in this paper should be adapted to more specific transportation
and telecommunication network problems as part of future work.
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