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Abstract Recent advances in mobile connectivity as well as increased computa-
tional power and storage in sensor devices have given rise to a new family of
software architectures with challenges for data and communication paths as well
as architectural reconfigurability at runtime. Established in 2012, Fog Computing
describes one of these software architectures. It lacks a commonly accepted defini-
tion, which manifests itself in the missing support for mobile applications as well
as dynamically changing runtime configurations. The dissertation “Dynamically
Scalable Fog Architectures” provides a framework that formalizes Fog Computing
and adds support for dynamic and scalable Fog Architectures.

The framework called xFog (Extension for Fog Computing) models Fog Archi-
tectures based on set theory and graphs. It consists of three parts: xFogCore,
xFogPlus, and xFogStar. xFogCore establishes the set theoretical foundations.
xFogPlus enables dynamic and scalable Fog Architectures to dynamically add
new components or layers. Additionally, xFogPlus provides a View concept which
allows stakeholders to focus on different levels of abstraction.

These formalizations establish the foundation for new concepts in the area of
Fog Computing. One such concept, xFogStar, provides a workflow to find the best
service configuration based on quality of service parameters.

The xFog framework has been applied in eight case studies to investigate
the applicability of dynamic Fog Components, scalable Fog Architectures, and
the service provider selection at runtime. The case studies, covering different
application domains—ranging from smart environments, health, and metrology to
gaming—successfully demonstrated the feasibility of the formalizations provided
by xFog, the dynamic change of Fog Architectures by adding new components and
layers at runtime, as well as the applicability of a workflow to establish the best
service configuration.
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1 Introduction

With the constant increase of computational power and available storage, mobile
devices get more and more involved in distributed systems, which are “collections
of independent computers that appear to be one single system to users” [1].
Nevertheless, mobile devices will always be resource poor in comparison to static
hardware, as static hardware is not capped by properties such as heat dissipation
or battery life [2, 3]. Therefore, mobile devices will always struggle with the most
advanced media and data analysis.

Mobile cloud computing was introduced to bridge this gap and combines mobile
computing with cloud computing to leverage the computational power of the cloud
for mobile devices [4, 5]. However, clouds are usually distant from the mobile
devices and using them creates high latencies, which are insufficient for real-time
applications such as augmented reality.

To address this issue, concepts such as Cloudlets, Edge Computing, and Fog
Computing emerged. Satyanarayanan et al. described these concepts to utilize
resource-rich components near the mobile device to offload computational intense
tasks while having “low latency, one-hop, high-bandwidth wireless access” [3].
While Cloudlets use trusted, nearby components with excessive computational
power, Edge Computing focuses on the entirety of the network trying to push
services as close to the edge as possible [6, 7].

Bonomi et al. introduced Fog Computing as a three-layered software architecture
containing a Cloud, Fog, and Edge layer [8]. These layers interact using subscriber
models with one layer acting as the provider and the other one as its user. Accord-
ingly, application scenarios such as dynamic vehicles, smart grids, distributed sensor
networks, and smart environments can benefit from using Fog Computing.

This loose definition has led to many interpretations of Fog Computing as well
as attempts to sharpen the definition. Nevertheless, there is no commonly accepted
definition of what Fog Computing or a Fog Node is, and the difference to similar
concepts such as Edge Computing is not clearly defined [9].

To address these misunderstandings, the dissertation “Dynamically Scalable Fog
Architectures” [10] follows the intent of the paper “Fog horizons—a theoretical
concept to enable dynamic fog architectures” [17] to create a formalized definition
for Fog Computing based on software architectures and set theory. It is based
on the organized and systematic research approach design science established by
Hevner andWieringa [11, 12]. It investigates the following knowledge and technical
research goals:

Knowledge Goal 1: Establish Fog Computing as a subclass of software
architectures.

Technical Research Goal 1: Define a framework that provides a formalized
definition of Fog Computing.
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These goals are achieved with xFog, an extension for Fog Computing, and
xFogCore which defines the foundations of the framework. These foundations are
then used to address two additional challenges by formalization: Providing support
for dynamic components and addressing the ambiguity of layers, in particular of the
Fog.

Technical Research Goal 2: Define an extension to the foundations of Fog
Computing that supports components joining and leaving an architecture
(Dynamics).

Technical Research Goal 3: Define an extension to the foundations of Fog
Computing that supports the process of adding and removing layers (Scalabil-
ity).

These goals should be addressed with xFogPlus, one part of xFog that relies on
the foundations introduced by xFogCore and formalizes dynamics and scalability in
Fog Architectures.

The combination of both, xFogCore and xFogPlus, enables xFog to support
a variety of advanced concepts, such as xFogStar. xFogStar is an extension that
investigates the selection of service providers which is addressed with the following
goal:

Technical Research Goal 4: Enable service provider selection in dynamic
scalable Fog Architectures.

Finally, we want to investigate if and how xFog, its parts, and extension describe
Fog Computing:

Knowledge Goal 2: Investigate the feasibility of xFog.

Knowledge Goal 3: Investigate the feasibility of xFogStar.

Therefore, we validate three different aspects: Dynamic Fog Components , Scal-
able Fog Architectures , and Service Provider Selection. Each aspect is addressed
by multiple case studies with cases from different domains.

2 xFog: An Extension for Fog Computing

To define an architecture based on the component and connector definitions by
Shaw and Garlan, Bass and Kruchten for software architectures [13–15], we have
to investigate the components included within an architecture and the connections
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Fig. 1 Overview of the xFog framework highlighting the most important concepts

among them. The framework xFog addresses this goal for Fog Computing and its
resulting architectures for the purpose of formalization. The name xFog is short
for an eXtension for Fog Computing and accordingly uses its principles and ideas
to provide a formalization which addresses knowledge goal 1 and the technical
research goal 1 (Fig. 1).

xFog is separated into two parts: xFogCore and xFogPlus. While xFogCore
focuses on the formalization of Fog Computing, xFogPlus extends these formaliza-
tions by the concepts of dynamic reconfigurability and scalability. Finally, xFogStar
extends xFog with a workflow that supports service consumers with the selection of
service providers.

2.1 Fog Component

Fog Computing is defined using three types of components: Cloud Devices, Fog
Nodes, and Edge Devices. While Cloud Devices are servers / data centers offering
storage, computational power, or specific software, Fog Nodes are devices on the
way between the cloud devices and edge devices that could potentially offer services
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with less computational power but faster response times, location awareness, and
mobility [8]. Lastly, Edge Devices are end-user devices that strive to use services
offered by cloud devices and/or Fog Nodes.

In order to make the following concepts more type independent and easier
to understand, we define a Fog Component as a common superclass. This Fog
Component shows the direct similarity to the software architecture definitions and
allows its comparability. The group of all Fog Components is called Fog Component
Set.

2.2 Fog Visibility

The first concept based on the Fog Component definition is the Fog Visibility.
The Fog Visibility is the virtual area around a Fog Component including all other
Fog Components that can be “seen.” This idea is translated to the terminology
of software architectures and networking as shown in Definition 1 using received
messages without transitivity.

Definition 1: Fog Visibility

FogVisibility(x) := {y | y receives direct messages from x}

with:
x, y ∈ FogComponentSet

Therefore, the Fog Visibility describes a relation on the Fog Component Set
which allows us to use and assign properties of sets and relations to it.

One limitation of the Fog Visibility and all following concepts is the communi-
cation channel used by the Fog Components. While communication channels such
as Wi-Fi, 3G, or 4G can potentially include a large amount of Fog Components,
others, such as Bluetooth, might be inherently limited. This aspect will be further
investigated in Sect. 2.7.

Figure 2 shows two examples of Fog Visibilities for a Fog Component A. The
Fog Visibility on the left describes the self-containing set and the Fog Visibility
on the right a more generic example. To show the Fog Visibility in both cases, we
display the range in which a Fog Component can send messages as circles. This
shape as well as the radius of the Fog Visibility can change substantially depending
on the communication channel used.

Also the first example is of less practical use; it describes the edge case of the
Fog Visibility definition and answers the question if Fog Components without other
communication partners still maintain Fog Visibilities. As we do not exclude the
Fog Component itself as a viable communication partner, the Fog Visibility relation
is reflexive and, therefore, exists even without other Fog Components in range.

The second example includes Fog ComponentsA - F with Fog ComponentsA -
C andE being insideA’s Fog Visibility.D andF are outside the circle and therefore
excluded.
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Fig. 2 Example graph of the Fog Visibility

2.3 Fog Horizon

The second concept is called Fog Horizon. Its name is on the one side inspired
by the visual line separating the earth from the sky and on the other side by the
event horizon of a black hole from which nothing can escape its gravitational field.
Transferring those ideas to the area of Fog Components, it describes devices that
closely interact with each other, have a certain locality attached, and share a common
medium, in our case a communication channel.

This aspect can be described using the introduced Fog Visibility. As shown in
Definition 2, the Fog Horizon is the symmetrical closure of the Fog Visibility and
contains all Fog Components that can send as well as receive messages from each
other, establishing a bidirectional communication. Based on this definition and the
property of the Fog Visibility, the Fog Horizon is reflexive as well as symmetric.
Accordingly, if one Fog Component A is in the Fog Horizon of Fog Component B,
B is also in the Fog Horizon of A.

Definition 2: Fog Horizon

FogHorizon(x) := FogVisibility(x)↔ =
FogVisibility(x) ∩ FogVisibility(x)− =
{y | y ∈ FogVisibility(x) ∧ x ∈ FogVisibility(y)}

with:
x, y ∈ FogComponentSet

Figure 3 shows a Fog Horizon example: As the circle around A does not include
any other Fog Components, its Fog Visibility and therefore Fog Horizon only
contain the component itself. In the case of Fog Component B, these sets do not
match up. While B can “see” D, this is not true the other way around, making the



Dynamically Scalable Fog Architectures 97

Fog Visibility of B equal to B and D and the Fog Horizon just B. C and D on
the other hand can send messages to each other, including them in each other’s Fog
Horizons.
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Fig. 3 Example graph for the Fog Horizon

2.4 Fog Reachability

The Fog Reachability describes the maximum outreach a Fog Component can
have and therefore addresses the missing indirect communication from the Fog
Visibility and Fog Horizon. While these concepts establish small isolated sets, the
Fog Reachability also includes Fog Components that can be reached using other Fog
Components as hops. Accordingly, as shown in Definition 3, the Fog Reachability is
defined as the transitive closure of the Fog Visibility or every Fog Component that
can receive direct or indirect messages.

Definition 3: Fog Reachability

FogReachability(x) := FogVisibility+(x) =
{y | y receives direct or indirect messages from x}

with:
x, y ∈ FogComponentSet

Figure 4 shows an example with four Fog Components A, B, C, and D. With
A’s Fog Visibility containingB and B’s Fog Visibility containingC andD, A’s Fog
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Reachability contains all four Fog Components. B does not contain A, C does not
contain any Fog Components and finally D contains B and C.
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Fig. 4 Example graph for the Fog Reachability

One issue of the Fog Reachability is shown as soon as the Fog Components are
not an isolated set, but open to the internet. According to the Fog Reachability’s
definition, just one open connection would result in a huge part of the internet being
included in the Fog Reachability.

2.5 Fog Set

To address this issue, we have to further limit the Fog Components that are included
in the set that describes a Fog Architecture, since we would not consider all these
Fog Components to be part of a single architecture but rather a superset. Similar
to the definition of the Fog Reachability, we use the transitive closure to create a
set that is not limited to single hops, but this time for the Fog Horizon instead of
the Fog Visibility as shown in Definition 4. This makes the Fog Set reflexive and
symmetrical, but also transitive, and allows us to emphasize the close interaction
between Fog Components that is described by the Fog Horizon.
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Definition 4: Fog Set

FogSet(x) := FogHorizon+(x) =
{y | y ∈ FogVisibility+(x) ∧ x ∈ FogVisibility+(y)}

with:
x, y ∈ FogComponentSet

Figure 5 shows an example for such a Fog Set. Since A’s Fog Horizon includes
B and B’s Fog Horizon includes C and D, the Fog Set of A includes all four
Fog Components. In fact, this is also the case for the Fog Sets of the other Fog
Components.
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Fig. 5 Example graph for the Fog Set

Since the Fog Set is reflexive, symmetrical, and transitive, it is an equivalence
relation and therefore the same and unique set for each involved Fog Component—
which is what we would expect from Fog Components in the same Fog Architecture.
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2.6 Service Constraints

In addition to the previously introduced concepts, most architectures are limited to
specific services which are offered within them. These services are summarized in
the Service Set as shown in Definition 5.

Definition 5: Service Set

ServiceSet := {s | s is a Service }

To address this, the following three service sets—Provide, Consume, and
Interest—create sets based on the Fog Components relation to the given service
as defined by their names (Definition 6).

Definition 6: Service Sets

Provide(s) := {x | x offers and advertises s ∈ ServiceSet }
Consume(s) := {x | x requests s ∈ ServiceSet }
Interest (s) := Provide(s) ∪ Consume(s)

with:
x ∈ FogComponentSet
s ∈ ServiceSet

Using these definitions, we define the following sets P, C, and I, which present
selections on the given Fog Concept with respect to the provided service as shown
in Definition 7.

Definition 7: Service Constraint

Ps(f(x)) := f(x) ∩ Provide(s)
Cs(f(x)) := f(x) ∩ Consume(s)
Is(f(x)) := f(x) ∩ Interest(s)

with:
x ∈ FogComponentSet
f(x) ∈ { FogVisibility(x), FogHorizon(x),

FogReachability(x), FogSet(x)}
s ∈ ServiceSet

These sets will be of particular interest in Sect. 3.1 as soon as we establish layers.

2.7 Communication Set

The second set we want to investigate is the Communication Set, and therefore
the interactions/connectors between the different components of the Fog Set.
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While most architectures use the same communication medium for the entire
communication, Fog Architectures often involve different communication channels
depending on the devices used. These channels can range from close proximity such
as NFC or Bluetooth up to long distance communication such as 3G, 4G, or 5G. The
following Fig. 6 shows an excerpt of different communication channels which can
be found within Fog Architectures.

In the diagram, the channels are placed within a 2× 2 grid in which the columns
indicate whether the channels are wired or wireless and the rows indicate local
and remote proximity. Therefore, the placement within the grid describes a double
inheritance of the contained channel to the according superclasses. Additionally,
all superclasses are Communication Channels themselves. This set, called
Communication Channel Set, is defined in Definition 8. It contains all potential
communication channels that can be used within a Fog Architecture.

Definition 8: Communication Channel Set

CommunicationChannelSet = {c | c is a communication channel.}

While most communication channels that are used in the context of Fog Archi-
tectures are bidirectional, network limitations as well as sensors only providing data
can include unidirectional communication channels. To include and address these
channels, our definition of Fog Visibility is unidirectional in comparison to the Fog
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Fig. 6 Excerpt of possible communication channels in the context of Fog Architectures: The
channels are divided based on the physical medium that they are using (wired versus wireless),
but also the physical distance for which the communication channels can be used
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Horizon, and accordingly, the Communication Set can also include unidirectional
communication channels.

Bidirectional communication channels can be easily limited to unidirectional
communication using software solutions. Channels such as Wi-Fi, Bluetooth, or
USB rely on an open bidirectional communication approach. Therefore, encap-
sulating a certain amount of trust to other participants within the communication
structure is essential for Fog Architectures; only trusted instances are described as
part of a Fog Architecture.

In addition to the equivalent of a Component in the context of a Software
Architecture which is the Fog Component and the related sets, we define a
Communication Component as the equivalent to the Connector.

A Communication Component is a triple that consists of the source Fog
Component, the used Communication Channel, and the destination Fog Component
as shown in Definition 9. Specifying the source and destination allows to define
unidirectional communications.

Definition 9: Communication Component

CommunicationComponent := {SourceFogComponent,
CommunicationChannel,

DestinationFogComponent}

All Communication Components of one Fog Architecture are grouped within the
Communication Set. The Communication Set is defined as shown in Definition 10
and is the equivalent to the Fog Set. For a Communication Component to be con-
sidered part of the Communication Set, the source and destination Fog Component
have to be part of the Fog Set, and the Communication channel has to be part of the
Communication Channel Set.

Definition 10: Communication Set

CommunicationSet := {c : CommunicationComponent =
(source, channel, destination) | source ∈ FogSet

∧ destination ∈ FogSet

∧ channel ∈ CommunicationChannelSet}

3 xFogPlus: Dynamic and Scalable Fog Architectures

xFogPlus addresses technical research goals 2 and 3 to achieve dynamic recon-
figurability and scalability of Fog Architectures. This allows the addition of new
components to existing Fog Architectures and the addition of layers.
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3.1 Dynamic Reconfigurability

Being able to add new components to a Fog Architecture is simplified based on
the overarching mathematical definitions introduced in Sect. 2. Based on those
definitions, each component that should be considered part of the Fog Architecture
needs to fulfill two requirements. First, the component needs to be part of the Fog
Component Set, and second, it needs to be part of the Fog Set: As all concepts
introduced in Sect. 2 are based on the Fog Component Set, it is a mathematical
necessity for all of them, including the Fog Set, but the Fog Set is only sufficient for
the Fog Component Set.

The Fog Component Set itself already poses a problem. Based on the definition
shown in Sect. 2.1, the Fog Component Set consists of all potential Fog Compo-
nents. While Fog Components can be any IoT device on MOF level M0 and M1, the
Fog Component itself is an instance of the Fog Type on M3, which in turn has the
subclasses Edge Device, Fog Node, and Cloud Device. Although this definition is
helpful if different Fog Architectures are available and they should be differentiated
between each other, it is the wrong way around if new components should be added:
In order to be considered part of the Fog Component Set, the component needs to
be a Fog Component, and therefore already part of a Fog Architecture which is not
the case for new components.

Therefore, to be able to add components to the Fog Component Set, an alternative
definition for a Fog Component is required which solely focuses on properties of
the component itself. The first hard requirement is that every Fog Component is
necessarily an IoT device. This means that a component needs to have the capability:

1. To be interconnected
2. To have the intention to share information across platforms
3. To be uniquely addressable
4. To have computational capabilities

Soft requirements are that the components:

1. Preferably use wireless communication
2. Have an interest in locality
3. Have general-purpose computational power
4. Which they offer as services to other components

This definition allows us to extend the Fog Component Set by new components
which are not involved in any Fog Architecture, yet.

The second requirement is that the component satisfies the definition of a Fog
Set and thus can be included in a Fog Architecture. Based on Definition 4, for a
Fog Component x to be included in a Fog Set , the Fog Component needs to
be in the transitive closure of the Fog Horizon of a Fog Component within the
Fog Architecture that the Fog Component should be added to. Accordingly, it is
mathematically sufficient for the Fog Component to be able to send and receive
direct messages to and from any single Fog Component in the Fog Architecture.
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After adding new components to the Fog Component Set and Fog Set, we have
to address the issue on which layer the component is added. In Fog Computing,
components can be assigned to three layers: the Edge Layer, the Fog Layer, or the
Cloud Layer. While the Edge Layer and Cloud Layer consist of single layers, the
Fog Layer can consist of several individual layers.

To indicate that the Fog Layer can consist of several layers, we rename the Fog
Layer to Fog Layer Set in compliance with the introduced concept of xFogCore. The
Fog Layer Set can consist of several Fog Layers itself.

Definition 11: Fog Layer Set

FogLayerSet := {l | l is a Fog Layer}

We present definitions for the different types of layers. Definition 12 shows the
properties of a Fog Component to be considered part of the Edge Layer. Each Fog
Component x needs to be part of the Fog Set , thus, part of the Fog Architecture ,
and does not provide any services to other Fog Components , which is represented
by not having any service s which makes Fog Component x part of its provide set.

Definition 12: Edge Layer

EdgeLayer := {x | x ∈ FogSet ∧ �s ∈ ServiceSet :x ∈ Provide(s) }

The Fog Layer is defined as every Fog Component x that is, equal to the Edge
Layer, part of the Fog Set and for which at least two services s1 and s2 exist, so
that Fog Component x consumes one of the services and offers the other one, as
shown in Definition 13. This describes the idea that Fog Components in the Fog
Layer bring services of higher layers, for example, the Cloud Layer, closer to the
Edge Layer but also do their own calculations.

Definition 13: Fog Layer

FogLayer := {x | x ∈ FogSet ∧ ∃s1, s2 ∈ ServiceSet :
x ∈ Consume(s1) ∧ x ∈ Provide(s2) }

The Cloud Layer, as shown in Definition 14, includes every Fog Component that
does not consume any service itself.

Definition 14: Cloud Layer

CloudLayer := {x | x ∈ FogSet ∧ �s ∈ ServiceSet :x ∈ Consume(s) }

Each Fog Layer in the Fog Layer Set is defined by a service pair si , sj that is
on the one side consumed by the layer and on the other side provided by the layer.
If different layers include the same Fog Components although being defined by
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different service pairs, those layers are fused to one layer consuming or providing
several services.

Using the provided definitions for the different layers, the issue of adding Fog
Components to specific layers can be reduced to these Fog Components providing
or consuming the services that uniquely identify each layer.

Figure 7 shows an example of different Fog Components distributed on
three layers: Edge Layer, Fog Layer Set, and Cloud Layer. The Fog
Layer Set consists of three layers: Fog Layer 1, Fog Layer 2, and Fog
Layer 3.
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Fig. 7 The graph shows an example for a Fog Architecture which is distributed over the three
layers Edge Layer, Fog Layer Set, and Cloud Layer

Although, in this example, all Fog Components in the Edge Layer consume
the same service s1, they could also consume other services as long as they do
not offer any services themselves. The first two Fog Layers are examples for
multiple consumed or provided services (s2, s3). These two layers present an
instance of fused Fog Layers as the service pairs s1, s2 as well as s1, s3 result
in the same set of Fog Components and therefore are on the same layer. The third
Fog Layer provides service s4 and consumes s5 which is provided by the Cloud
Layer.

Additionally, the example shows the case that Fog Component F7 is added
to the Fog Architecture. Based on the provided and consumed services s2, s3, and
s4, the new Fog Component can be added to the second Fog Layer; although no
connections are established, yet.
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3.2 Scalability

Adding new layers to existing architectures is one key aspect for making them
dynamic and scalable. As most applications nowadays use client-server archi-
tectures, it is also essential for the transition from a centralized approach to a
decentralized approach using Fog Computing.

With the introduced layer definitions and their service-based nature, the process
of adding new layers to a Fog Architecture is simplified to the addition of a new Fog
Component that offers and consumes a new pair of services that is used by existing
Fog Components of the architecture.

Based on the position where the new layer should be added, we have to
differentiate three cases. First, the addition of a layer between the layers of a
client server architecture to create a Fog Architecture, second the addition of new
Fog Layers in existing Fog Architectures, and third the creation of new Edge or
Cloud Layers. Figure 8 shows three examples, one for each of these cases, with
the previous architecture on the left and the resulting Fog Architecture on the right.
Each example shows the resulting service configuration.

3.3 Handling Complexity

In order to handle the introduced complexity in Fog Architectures by new Fog
Components and layers, and to make Fog Architecturesmore accessible for different
stakeholders, we introduce a Fog Architecture view concept. A View of a Fog
Architecture is a part of a Fog Architecture that consists of a specified amount
of layers, which are of current interest for a stakeholder. The definition is based
on the view concept introduced in SysML which provides a perspective that spans
different abstractions, in our case layers [16]. Our View is defined based on a tuple
that contains natural numbers which refer to the selected layers of interest.

Definition 15: Fog Architecture: View, Viewpoint, and Abstraction Level

View(s) := ⋃|s|−1
i=0 Layer(si )

with:
s := Tuple containing the numbers referring to the selected layers
|s| = Amount of layers within the View ≤ |FogArchitecture|
View ⊆ FogArchitecture

Figure 9 shows a view example for a Fog Architecture describing a smart city
with six layers. The view highlights the Edge Layer and the lowest two Fog Layers.

Looking at the View, one can describe the view as a Fog Architecture itself using
the previous introduced layer definitions. Accordingly, Fog Components can take
different rolls depending on the current View. For example, Fog Components on the
“Street” layer which are on Fog Layer 2 of the entire Fog Architecture act as the
Cloud for the highlighted View.
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Fig. 8 Three examples of layer additions: the transition to a Fog Architecture, the addition of a
new Fog Layer, and the addition of a new Edge/Cloud Layer

4 xFogStar: A Workflow for Service Provider Selection

Based on xFog, and accordingly xFogCore and xFogPlus, many new concepts can
be established in dynamically, scalable Fog Architecture. We introduce xFogStar,
one such concept, that focuses on the relation between service consumers and
service providers, the players suggested by Bonomi et al. [8], to show an application
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Cloud

Fog

Cloud
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Fig. 9 View example of a Fog Architecture describing a smart city with six layers

of the introduced framework with a Fog Architecture containing two layer views.
xFogStar supports the service provider selection in case multiple providers are
within the Fog Horizon of a service consumer requesting one service, addressing
technical research goal 4.

To describe properties of the service provider and its service, but also the
requirements of the service consumers, we use QoS parameters and an according
QoS vector. We investigated an extensive list of QoS parameters that are of major
importance in Fog Architectures. Figure 10 provides an overview of all QoS
parameters and groups them according to their dependencies.

Depending on the application domain, a selection of these parameters can be
used to match the requirements of the service consumer with the service providers.
This process to match the service consumer with the best fitting service provider
for a specified service is depicted in Fig. 11. It shows a seven-step workflow
which translates the requirements using availability strategies, limits, comparability
strategies, ordering strategies, and weightings into a transparent, ordered list of
service providers for the service consumer.

5 Validation

Due to the extent of the empirical validation of the xFog framework and xFogStar
addressing Knowledge Goal 2 and Knowledge Goal 3, this section only provides
an overview of the conducted validation. Detailed descriptions on each individual
case study, including each case study’s design, its results, and the discussion, can be
found in the dissertation “Dynamically Scalable Fog Architectures” [10].

The validation tries to justify if stakeholder goals would be met if the treatment
is implemented in the problem domain’s context. It investigates if the requirements
for the treatment are addressed within a model of the problem domain. As the
validation is part of the design cycle, and thus conducted in a laboratory setting,
the implementation of the treatment in the problem domain is not of interest, yet.
This results in the validation being independent of the stakeholders, which is the
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Fig. 10 Overview on QoS parameters for Fog Architectures and their dependencies

main difference between validation and evaluation. Therefore, different research
approaches are used such as modeling, simulations, and testing [11].

The validation of xFog was separated into the three aspects of the xFog
framework provided by xFogCore, xFogPlus, and xFogStar. Each validation relied
on the validation approaches modeling and simulation. First, we introduced the
design of the different case studies. We presented the problem domain of the case
study, the requirements, and which concepts of xFog or xFogStar were addressed.
We selected cases in different domains to support domain-independent conclusions.
In total, we addressed six different domains: Smart Environments, Smart Cities,
Health, Continuous Integration,Metrology, and Gaming. These domains were used
in eight case studies mapped to three validations.

Second, we reported on the results of the validation for the three core concepts:
Dynamic Fog Components, Scalable Fog Architecture, and Service Provider Selec-
tion. While the formalization of Fog Computing (xFogCore) is used throughout all
three concepts, each of the concepts can be assigned to an addition to xFog as shown
in Fig. 12. Dynamic Fog Components and Scalable Fog Architectures are covered
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4. Case Study:

DisCoFog
2018

DisCoFog 2
2018/2019
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Fig. 12 An overview of the validation design for the xFog framework. Each of the three rows
represent a validation with Dynamic Fog Components and Scalable Fog Architectures belonging
to concepts related to xFogPlus and the Service Provider Selection belonging to the xFogStar
workflow. The coloring of the case studies represents the domains they belong to
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in xFogPlus as shown in the first two rows of the diagram. The Service Provider
Selection uses xFogCore and the workflow introduced by xFogStar.

Third, we discussed the impact of the results for the xFog framework, interpreted
the results, and addressed threads to the validity of the validation approach.

6 Conclusion

The main goal of the dissertation “Dynamically Scalable Fog Architectures” [10]
was to create a framework that establishes a formalization for Fog Computing and
integrates support for mobile applications and dynamic reconfigurability of Fog
Architectures. We implemented the formative research approach design science
using treatment designs and treatment validations.

The results can be separated into three parts: The problem investigation and
description, the creation of the xFog framework and its validation. The problem
investigation resulted in the goals shown in Fig. 1, which we translated into use
cases and functional and nonfunctional requirements. These were addressed by the
xFog Framework which can be divided in xFogCore, xFogPlus, and xFogStar.

xFogCore defined the Component Set represented by the Fog Set and the
Communication Set which relate to the components and connectors of a software
architecture. To define the Fog Set, xFogCore introduced the Fog Component Set,
Fog Visibility , Fog Horizon , and Fog Reachability . These concepts describe the
components of a Fog Architecture based on mathematical definitions. We showed
how the component sets can be constrained to specific services that are offered
or consumed, or that are of interest for a Fog Component, which allows the
identification of layers within Fog Architectures. We defined the Communication
Set as a set of Communication Components which are defined by the involved Fog
Components and the used communication channel. The sets were put into context
by a meta model on MOF level M2 including the basic building blocks of software
architectures which allowed the interpretation of the sets as graphs.

xFogPlus introduced support for the dynamic addition of Fog Components to
the Fog Architecture at runtime by redefining the idea of Fog Components and by
providing definitions for the three layers: Edge Layer, Fog Layer, and Cloud Layer.
Second, new layers can be described and added to the Fog Architecture enabling
scalability. As the scalability increased the complexity of the Fog Architecture, we
established the concept of different Views on the Fog Architecture to set a focus on
different layers depending on the stakeholder’s current interest.

xFogStar defined a workflow for the service provider selection in dynamically
scalable Fog Architectures which are described by the concepts of xFogCore and
xFogPlus. The workflow is used to select the best fitting service provider for
the service consumer’s needs. These needs are represented as a vector of QoS
parameters which we defined and categorized according to their dependencies. We
investigated the different steps of the xFogStar workflow to outline arising problems.
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We validated three aspects that use the foundations and formalization of xFog to
investigate Knowledge Goal 2 and Knowledge Goal 3: Dynamic Fog Components ,
Scalable Fog Architectures , and the Service Provider Selection. For each aspect, we
used a multiple case study to gather quantitative data on the feasibility of xFog, and
thus xFogCore, xFogPlus, and xFogStar. Dynamic Fog Components and Scalable
Fog Architectures related to xFogCore and xFogPlus, while the Service Provider
Selection addressed the xFogStar workflow.

Each validation compared the expected results with the results provided by
xFog. The first validation investigated three cases from different domains to support
generalizable conclusions. It demonstrated the feasibility of xFog and in partic-
ular xFogPlus by examining the addition of components at runtime. The second
validation included three cases to show the feasibility of the scalable concepts of
xFogPlus by adding new layers to existing Fog Architectures. The resulting Fog
Architectures were used to highlight the applicability of the View concept which
addresses complexity depending on the stakeholder’s current point of interest. The
last validation for the Service Provider Selection demonstrated the feasibility of the
xFogStar workflow in two cases.

Acknowledgments I would like to thank my first and second advisors Prof. Dr. Bruegge and
Prof. Dr. Lichter for their valuable insights and feedback. Additionally, I would like to thank all
members of the chair for applied software engineering from the Technical University of Munich
for the discussions and the students who took part in my case studies.

References

1. Tanenbaum, A., Van Steen, M.: Distributed Systems: Principles and Paradigms. Prentice-Hall,
Englewood Cliffs (2013)

2. Ferrer, A.J., Marquès, J.M., Jorba, J.: Towards the decentralised cloud: survey on approaches
and challenges for mobile, ad hoc, and edge computing. ACM Comput. Surv. 51, 111 (2019)

3. Satyanarayanan, M., Bahl, P., Caceres, R., Davies, N.: The case for VM-based cloudlets in
mobile computing. IEEE Pervasive Comput. 8, 14–23 (2009)

4. Dinh, H., Lee, C., Niyato, D., Wang, P.: A survey of mobile cloud computing: architecture,
applications, and approaches. Wirel. Commun. Mobile Comput. 13, 1587–1611 (2013)

5. Qi, H., Gani, A.: Research on mobile cloud computing: review, trend and perspectives. In: 2012
Second International Conference on Digital Information and Communication Technology and
it’s Applications (DICTAP), pp. 1–6 (2012)

6. Satyanarayanan, M.: The emergence of edge computing. IEEE Comput. 50 30–39 (2017)
7. Dolui, K., Datta, S. K.: Comparison of edge computing implementations: fog computing,

cloudlet and mobile edge computing. In: Global Internet of Things Summit (GIoTS), pp. 1–6
(2017)

8. Bonomi, F., Milito, R., Zhu, J., Addepalli, S.: Fog Computing and its role in the Internet of
Things. In: MCC Workshop on Mobile Cloud Computing, vol. 1, pp. 13–16 (2012)

9. Marín-Tordera, E., Masip-Bruin, X., García-Almiñana, J., Jukan, A., Ren, G., Zhu, J.: Dowe all
really know what a fog node is? Current trends towards an open definition. Comput. Commun.
109, 117–130 (2017)

10. Henze, D.: Dynamically Scalable Fog Architectures. Technische Universität München,
München (2020)



114 D. Henze

11. Wieringa, R.: Design Science Methodology for Information Systems and Software Engineer-
ing. Springer, Berlin (2014)

12. Hevner, A., March, S., Park, J., Ram, S.: Design science in information systems research. MIS
Q. 28(1), 75–105 (2004)

13. Shaw, M., Garlan, D.: Software Architecture. Prentice-Hall, Englewood Cliffs (1996)
14. Bass, L., Clements, P., Kazman, R.: Software Architecture in Practice. Addison-Wesley,

Reading (2003)
15. Kruchten, P.: The 4+ 1 view model of architecture. IEEE Softw. 12 42–50 (1995)
16. ISO: IEC/IEEE systems and software engineering: architecture description. In: ISO/IEC/IEEE

42010: 2011 (E)(Revision of ISO/IEC 42010: 2007 and IEEE Std 1471-2000). IEEE, New
York (2011)

17. Henze, D., Schmiedmayer, P., Bruegge, B.: Fog horizons—a theoretical concept to enable
dynamic fog architectures. In: IEEE/ACM International Conference on Utility and Cloud
Computing, vol. 12, pp. 41–50 (2019)

Open Access This chapter is licensed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits use, sharing,
adaptation, distribution and reproduction in any medium or format, as long as you give appropriate
credit to the original author(s) and the source, provide a link to the Creative Commons license and
indicate if changes were made.

The images or other third party material in this chapter are included in the chapter’s Creative
Commons license, unless indicated otherwise in a credit line to the material. If material is not
included in the chapter’s Creative Commons license and your intended use is not permitted by
statutory regulation or exceeds the permitted use, you will need to obtain permission directly from
the copyright holder.

http://creativecommons.org/licenses/by/4.0/

	Dynamically Scalable Fog Architectures
	1 Introduction
	2 xFog: An Extension for Fog Computing
	2.1 Fog Component
	2.2 Fog Visibility
	2.3 Fog Horizon
	2.4 Fog Reachability
	2.5 Fog Set
	2.6 Service Constraints
	2.7 Communication Set

	3 xFogPlus: Dynamic and Scalable Fog Architectures
	3.1 Dynamic Reconfigurability
	3.2 Scalability
	3.3 Handling Complexity

	4 xFogStar: A Workflow for Service Provider Selection
	5 Validation
	6 Conclusion
	References


