
Open Source Software Governance:
Distilling and Applying Industry Best
Practices

Nikolay Harutyunyan

Abstract Modern software architectures are becoming increasingly complex and
interdependent. The days of exclusive in-house software development by companies
are over. A key force contributing to this shift is the abundant use of open source
frameworks, components, and libraries in software development. Over 90% of all
software products include open source components. Being efficient, robust, and
affordable, they often cover the non-differentiating product requirements companies
have. However, the uncontrolled use of open source software in products comes with
legal, engineering, and business risks stemming from incorrect software licensing,
copyright issues, and supply chain vulnerabilities. While recognized by a handful
of companies, this topic remains largely ignored by the industry and little studied
by the academia. To address this relevant and novel topic, we undertook a 3-year
research project into open source governance in companies, which resulted in a
doctoral dissertation. The key results of our work include a theory of industry
best practices, where we captured how more than 20 experts from 15 companies
worldwide govern their corporate use of open source software. Acknowledging the
broad industry relevance of our topic, we developed a handbook for open source
governance that enabled practitioners from various domains to apply our findings in
their companies. We conducted three evaluation case studies, where more than 40
employees at three Germany-based multinational companies applied our proposed
best practices. This chapter presents the highlights of building and implementing
the open source governance handbook.

1 Introduction

Traditionally, companies tended to develop large parts of their software products
internally with the occasional outsourcing or supplier code. However, modern
software development requires the use of free/libre and open source software

N. Harutyunyan (�)
Friedrich-Alexander-Universität, Erlangen-Nürnberg, Germany
e-mail: nikolay.harutyunyan@fau.de

© The Author(s) 2022
M. Felderer et al. (eds.), Ernst Denert Award for Software Engineering 2020,
https://doi.org/10.1007/978-3-030-83128-8_5

73

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-83128-8_5&domain=pdf
mailto:nikolay.harutyunyan@fau.de
https://doi.org/10.1007/978-3-030-83128-8_5

74 N. Harutyunyan

(FLOSS) components. Major software infrastructures are built using Linux servers;
many projects rely on open source libraries in Python, web browsers, and database
management systems; and much more are critically dependent on the use of
open source software. Moreover, many successful companies embrace open source
software development and contribute their own software as open source projects
including TensorFlow,1 a library for machine learning developed by Google; React,2

a front end library for building user interfaces or UI components; Android; Angular;
and Chromium just to name a few. While these and many other FLOSS components
are used daily by companies, few of them know about the associated risks of such
unstructured use.

When not properly managed, incorporating open source software in a company
product can have unforeseen legal, technical, and business consequences. A com-
mon example is the unintended use of an open source component licensed under
a GPL (GNU General Public License) license,3 which requires the user of the
code to in turn open source their software under the same license. If an unaware
developer uses a piece of GPL-licensed code in a company product, the company
will eventually be forced to either open source the whole product (which might not
make business sense) or replace the incorporated open source component. Over the
years, companies have been dealing with copyright and licensing violations [1, 2],
issues with complex licensing [3, 4], technical issues due to the dependency on other
open source projects [5, 6] and low quality documentation [7, 8], and other risks [9–
11].

Another major challenge of the uncontrolled FLOSS use are the software supply
chain vulnerabilities. A recent 2021 story by Alex Birsan4 outlines a remarkably
simple software supply chain attack, which affected PayPal, Apple, Microsoft, and
many other companies. In a nutshell, a developer analyzed several companies’
commonly used software components that were developed internally by these
companies. He then created public open source packages on GitHub with matching
names but unintended functionalities. Surprisingly, many developers from these
companies started using his public libraries instead, a confusion that can easily
happen when open source software development is highly integrated with in-house
development. This led to bugs and supply chain vulnerabilities across the board,

1 TensorFlow is a free and open-source software library for machine learning maintained by Google
and community—https://www.tensorflow.org/.
2 React is an open-source, front end, JavaScript library for building user interfaces or UI
components. It is maintained by Facebook and a community of individual developers and
companies—https://reactjs.org/.
3 The GNU General Public License is a series of widely used free software licenses that guarantee
end users the freedom to run, study, share, and modify the software—http://www.gnu.org/licenses/
gpl-3.0.en.html.
4 An article by Alex Birsan titled “Dependency Confusion: How I Hacked into Apple, Microsoft
and Dozens of Other Companies”—https://medium.com/@alex.birsan/dependency-confusion-
4a5d60fec610.

https://www.tensorflow.org/
https://reactjs.org/
http://www.gnu.org/licenses/gpl-3.0.en.html
http://www.gnu.org/licenses/gpl-3.0.en.html
https://medium.com/@alex.birsan/dependency-confusion-4a5d60fec610
https://medium.com/@alex.birsan/dependency-confusion-4a5d60fec610

Open Source Software Governance: Distilling and Applying Industry Best Practices 75

demonstrating that even successful industry players sometimes lack comprehensive
open source governance.

What causes the above-mentioned risks and problems when using open source
components in companies?

We aimed to answer this question in the first phase of our study. The answer
essentially was the lack of open source software governance. Companies that did
not have a structured and explicit approach for dealing with open source related
questions were bound to have such problems. Among the companies we studied,
some employees claimed that the use of open source software in their products was
not allowed. However, even in such cases, developers used open source libraries
and components simply without authorization or any checks, thus exacerbating the
problem.

We then set out to find the recommendations for comprehensive open source
governance. On the one hand, while many researchers recognized the issue [12–
14], the academic literature with actual FLOSS governance guidelines were scarce
and often limited to the “hot” topics, such as licensing [3, 15]. On the other hand,
practitioners were filling the gap with their own experience reports [10, 16], which,
however, did not follow rigorous or scientific methods for the elicitation of the
recommended practices.

Seeing the industry relevance and need for this research, as well as acknowl-
edging its potential business impact, we set out to study open source governance
at companies with an advanced understanding of the topic. Based on the state-of-
the-art literature and our preliminary industry interviews, we identified four key
subtopics: getting started with open source governance, inbound governance, supply
chain management, and outbound governance. Accordingly, we asked the following
research questions:

• RQ1: How should companies using open source components in their products
get started with open source governance based on existent industry best practice?

• RQ2: How should companies using open source components in their products
govern the inbound aspects of the FLOSS use?

• RQ3: How should companies using open source components in their products
govern their software supply chains?

• RQ4: How should companies using open source components in their products
govern the outbound aspects of the FLOSS use?

Our goal was to gather expert knowledge from the industry through interviews,
observations, and primary materials analysis, in order to distill and propose a set of
industry best practices for open source software governance.

This phase of our study took about two years and resulted in more than 80
recommended industry best practices for different aspects of FLOSS governance,
including:

• Transition toward open source governance
• IP-at-risk analysis
• Component search

76 N. Harutyunyan

• Component approval
• Component reuse
• Bill of materials management
• License compliance and more

Following the qualitative survey method by Jansen [17], we collected and
analyzed data from more than 20 expert interviews at 15 companies, primary
materials, and observation notes. This resulted in a proposed theory of industry best
practices for corporate open source governance.

From an academic view, we built a theory, but we wanted to go beyond that
and see our findings actually used by companies. To do this, we cast our theory
as a practical handbook for open source governance that can be easily customized
and used by practitioners in their companies. In each subsection of this chapter, we
present best practice subsets from the handbook.

We concluded our study by conducting three evaluation case studies at large,
multinational companies based in Germany. We followed the multiple-case case
study method by Yin [18]. The collaboration with the selected companies was
essential for the successful evaluation of our proposed best practices. We worked for
over two years with the case study companies to implement parts of our open source
governance handbook at different production projects. Over time, we observed how
these companies with little to no previous understanding of FLOSS governancewere
able to establish internal processes and tools to efficiently and comprehensively
manage their open source use. In the course of the implementation, we identified
the lacking aspects of our theory and addressed them. At the same time, we helped
these companies take their first steps toward FLOSS governance, which increased
their benefits from using open source components while limiting the potential risks.
In the following subsections, we couple the proposed best practices with their
implementation reports at the case study companies.

Observing the actual industry impact of our research work was very rewarding,
and we are happy to share our experience in this chapter, which is structured as
follows. Section 2 focuses on the discovery and capture of industry best practices
for open source governance including subsections on getting started with FLOSS
governance, supply chain management. Section 3 goes on to describe the case
studies where the proposed best practices were applied. Section 4 concludes the
paper outlining the potential directions for future research.

2 Distilling Industry Best Practices

In the first phase of our study we developed a theory of industry best practices for
corporate open source governance based on expert interviews, primary materials,
and observations we conducted at 15 companies worldwide. These companies all
had an advanced understanding of open source governance, included a form of
open source program office responsible for establishing and executing open source

Open Source Software Governance: Distilling and Applying Industry Best Practices 77

governance processes, and were willing to be interviewed for our study. We selected
these companies from a larger sample of 140 companies in our professional network.
We first classified these companies using different predefined criteria such as the size
of the company, product types, business models, and more. We aimed for a polar
theoretical sampling that would result in companies with different profiles and from
different industries. As a result we had a mix of small, medium, and large companies
from varying domains such as automotive, consulting, and enterprise software. The
details of the sampling and method description can be found in the dissertation [19].

After analyzing the collected data following Jansen’s qualitative survey method
[17] and using qualitative data analysis tools such as MAXQDA,5 we distilled the
frequent best practices highlighted by experts. Figure 1 illustrates the hierarchical
structure of the distilled best practice categories and subcategories.

Answering the research questions RQ1-RQ4 we addressed the main concepts
of open source governance proposing subsets of industry best practices for each
category. As an example, we can consider the Supply Chain Management (SCM)
category in Fig. 1. Answering RQ3, we analyzed how expert companies established
their SCM policy and processes focused on presenting governance and corrective
governance. The former would include among other things recommendations for
supplier selection with open source governance aspects in mind. The latter would
focus on assessing the risks of supplier vulnerabilities and mitigating potential risks.
Each subcategory (leaf in the tree) would then include individual best practices
presented in the following subsections. An example of a best practice covering the
choice of the right supplier as a preventive SCM measure is presented in Table 1.

Together all the best practices we identified form a handbook that can bemodified
and applied by any company that has software as part of their products. Additionally,
to make the handbook more applicable for practitioners, we constructed workflows
of interconnected best practices. Customizing and then following such a workflow
would make the application of the handbook at a company easier. A sample page
from the handbook is presented in Fig. 2.

2.1 Getting Started with FLOSS Governance

Answering the research question RQ1, we addressed a common problem companies
have when faced with the issue of open source software governance: where does one
start. The first part of our handbook is devoted to getting started with corporate open
source governance.

In this “Getting Started” category, we identified the following best practices:

• Product Analysis (OSGOV-GETSTA-PROANA)—eight best practices
• IP-at-Risk Analysis (OSGOV-GETSTA-IPRISK)—nine best practices

5 MAXQDA is a software program designed for computer-assisted qualitative and mixed methods
data, text, and multimedia analysis—https://www.maxqda.com/.

https://www.maxqda.com/

78 N. Harutyunyan

Industry Best Practices
for Corporate Open
Source Governance

Getting Started

Transition Policy

Transition Organization

Product Analysis

IP-at-Risk Analysis

Communication and Capabilities

General Governance

Governance Management

Open Source Program Office

License Interpretation

Capabilities

Inbound Governance

Component Search

Component Selection

Component Approval

Approval Process

Approval Rules

Approval Templates

Component Integration

Component Reuse

Reuse Policy

Reuse Process

Component Repository

Component Monitoring

Communication

Education

Outbound Governance

License Compliance

Release Management

Contribution Management

Supply Chain Management

SCM Policy

SCM Process

Preventive Governance

Supplier Selection

Supplier Certification

Supplier Contracts

Corrective Governance

Supplier Audit

Risk Assessment

Risk Mitigation

Bill of Materials Management

Metadata

Tracking

Standard Format

License Compliance for SCM

License Review

License Obligations

Tools

Fig. 1 Distilling industry best practices: Key concepts

• Transition Policy (OSGOV-GETSTA-TRAPOL)—three best practices
• Transition Organization (OSGOV-GETSTA-TRAORG)—eight best practices
• Communication and Capabilities (OSGOV-GETSTA-COMCAP)—five best

practices

Open Source Software Governance: Distilling and Applying Industry Best Practices 79

Table 1 OSGOV-SUCHMA-PREGOV-1. Choose the right supplier

Name Choose the right supplier

Actor Supply chain management responsibles, IT department, procurement depart-
ment

Context Virtually all companies use supplied software components as part of their
products. Not all suppliers are the same in terms of open source governance and
compliance. Choosing a supplier without open source governance consideration
can result in functionally superior software with open source components that
are not compliant with the company’s license use case pairs

Problem If supplied code causes open source governance and compliance risks, you will
have to either change your supplier or address the risks in cooperation with the
supplier after the delivery. How can such situations be prevented?

Solution To prevent potential issues with FLOSS governance and compliance you should
choose the right suppliers that are aware and mature in terms of governance
and compliance, as well as experienced in using open source components in
their products. To do this, you need to → assess open source governance
and compliance awareness and maturity which can be done by → requesting
supplier certification or self-certification from potential suppliers. To establish
a consistent approach for preventive governance → design supplier contracts
with open source governance aspects in mind and use the governance related
clauses in case of license non-compliance by a supplier. The latter can be used
for corrective governance, namely to → trigger supplier contract clauses and
get the supplier to take care of the issue

The Product Analysis subcategory included practices for an initial scanning of
the open source components already in use at a company. Even if the company
had a policy discouraging the use of open source software, more often than
not, there are a considerable number of such components that were previously
undetected or undocumented. This cannot be ignored when getting started with
FLOSS governance. You need to take stock of the overall FLOSS use before
establishing the governance processes.

Once the initial assessment is conducted, companies need to perform an IP-at-
Risk Analysis, which covers the assessment of potential licensing issues, copyright
violations, or other inconsistencies. The identified risks need to be mitigated at
this stage either by complying with the component license or by removing or
encapsulating the component.

Afterwards, the company can start the transition from the unstructured use
of open source software to basic governance defined in a Transition Policy and
operationalized through the proposed Transition Organization best practices. During
the whole transition, companies need to pay close attention to communicating the
changes to all the stakeholders and building internal capabilities where needed.

An example best practice from the Getting Started category is presented in
Table 2, which covers the basic process that the project architect will use for
reporting and assessing ongoing additions of open source components during the
transition.

80 N. Harutyunyan

Fig. 2 Distilling industry best practices: Key concepts

All the proposed best practices can be traced to the primary data we analyzed in
the first stage of our study. Here is an example of such a trace from Company 14s6

legal counsel responsible for open source compliance talking about the specifics
of establishing a process of continuous reporting and assessment of open source
components:

6 Company and interviewee names were anonymized per their request.

Open Source Software Governance: Distilling and Applying Industry Best Practices 81

Table 2 OSGOV-PROANA-1.2. Establish a process of continuous reporting and assessment

Name Establish a process of continuous reporting and assessment

Actor Transition manager and/or project architect

Context You already → used one mandatory survey for initial assessment. Now you need
a process for continuous reporting and assessment of any open source usage
during the transition

Problem The transition needs to prepare the company for fully structured FLOSS gov-
ernance. However, during the transition how should the process of continuous
reporting and assessment look like?

Solution Establish a process of continuous reporting and assessment that involves
defined and easy-to-follow steps for developers when using new open source
components during the transition. This can be achieved using a product archi-
tecture model (a meta-model for all governance related information such as
license information, copyright noticed, export restrictions, etc.), bill of materials
documentation, questionnaires or forms, etc. The process should help:

• Continuously report new use of open source components during transition
• Automate this reporting as much as possible, by → selecting and using

governance tools for automation
• Continuously assess new use of open source components during transition

– Assess license compliance
– Assess copyright notices
– Assess export restrictions
– Assess software supply chains

• Document the assessment findings
• Share the reported use of open source and documented assessment findings

When our developers are reporting the open source via [our internal tool], there is always
the main file which is also mentioned in the license file which is also computed by GitHub or
by the community behind. And with this scan tooling, we cross-check the whole software,
so we definitely see, okay, that’s not only the MIT license which is mentioned in the license
file but also other licenses, so the GPL files. And, then, we’re talking to our developer which
is reporting the open source. In most cases, the developer says, no to the GPL files, we don’t
use it, we only use the MIT file. And, so, they need to cross check what files they use, and
what licenses are used by them. – Company 14

More best practices on getting started with open source governance can be found
in the dissertation [19] or in our previous paper on the subject [20]. Furthermore,
we addressed the research questions RQ2 and RQ3 on inbound and outbound
governance in our previous papers [21] and [22], as well as in the dissertation [19].

2.2 Supply Chain Management

Answering the research question RQ2, we focused on the core topic of our
research—software supply chain management in the scope of FLOSS governance.

82 N. Harutyunyan

Software supply chains include both proprietary code (developed in-house or
supplied) and open source code. Modern software supply chains have multiple tiers
where each supplier has multiple suppliers on the deeper tiers. In each instance,
open source components are used and integrated into the larger software package
that ends up in the software of the end user sold by the OEM (Original Equipment
Manufacturer) company. In a nutshell, in case of issues due to poor FLOSS
governance down the supplier hierarchy, the whole responsibility can rarely be put
on suppliers.

We can consider a car example. The car manufacturer has commissioned a
supplier to develop an infotainment system for the car including navigation, music,
and other functionalities. The supplier (or their suppliers) uses open source libraries
for the graphical interface and a Linux-based operating system, both of which are
licensed under the GPL v3 (GNU General Public License version 3) license. This
license requires any user of the code to publish it under the same license and to
disclose the original copyright holders. If the suppliers fail to mention this to the
automotive company and the company does not do its own due diligence in terms
of FLOSS governance, a copyright holder of the original software under the GPL
license can sue the company for license non-compliance. As a result, the company
would face steep legal or operational costs as they would either have to settle or
update their software to comply with the license.

In this category we distilled industry best practices for the following subcate-
gories:

• Supply Chain Management Policy (OSGOV-SUCHMA-SCMPOL)—three best
practices

• Supply Chain Management Process (OSGOV-SUCHMA-SCMPRO)—five best
practices

• Preventive Governance (OSGOV-SUCHMA-PREGOV)—four best practices
• Corrective Governance (OSGOV-SUCHMA-CORGOV)—four best practices
• Bill of Materials Management (OSGOV-SUCHMA-BOMMAN)—four best

practices
• License Compliance for Supply Chain (OSGOV-SUCHMA-LICCOM)—two

best practices

To go one level deeper, we can consider the specific best practices focused on
corrective governance:

• OSGOV-SUCHMA-CORGOV-1. Audit your supply chain
• OSGOV-SUCHMA-CORGOV-2. Mitigate identified risks
• OSGOV-SUCHMA-CORGOV-2.1. Assess risks in accordance to the supply

chain management policy
• OSGOV-SUCHMA-CORGOV-2.2. Trigger supplier contract clauses and get the

supplier to take care of the issue
• OSGOV-SUCHMA-CORGOV-2.3. Do not run your supplier out of business

An example best practice in this subcategory is presented in Table 3. While
somewhat counter-intuitive, we found an industry best practice discouraging an

Open Source Software Governance: Distilling and Applying Industry Best Practices 83

extreme pressure on the suppliers in case of FLOSS governance issues identified
too late. If you were to put the whole responsibility on the supplier, you are running
a chance of bankrupting the supplier, which could leave your company in a worse
situation. As a result, you still have to deal with the litigation but also need to find a
different supplier or maintain their code on your own.

Table 3 OSGOV-SUCHMA-CORGOV-2.3. Do not run your supplier out of business

Name Do not run your supplier out of business

Actor OSPO (Open Source Program Office), Lawyer/legal counsel

Context You have identified compliance and governance risks in your supply chain and
→ assessed these risks in accordance with the supply chain management policy.
For certain critical risks you → triggered supplier contract clauses to take care
of the issue

Problem What actions should you not take when addressing the identified risks of non-
compliance by a supplier?

Solution Most companies have suppliers that are smaller than themselves, thus giving
them higher negotiation power over the suppliers. This means that in case of
non-compliance with open source licenses in the supplied code, you can easily
force your supplier to fix the risk causing software non-compliance. You can
even sue your supplier and get compensation. However, you should be careful
not to endanger the operation of the supplier company

If you run your supplier out of business by pressuring them with lawsuits or
financial pressure, you can end up with a binary instead of a source code and no
ability to maintain or update the software that was causing the non-compliance
issue in the first place. Most software is not supplied as source code, but rather
as a binary in order to protect the intellectual property of the supplier that makes
money by selling a different version of the product that uses its know-how in the
form of source code. If a company goes bankrupt, you might have to look for
another supplier, which is costly and time consuming. In a nutshell, do not run
your supplier out of business, when possible. Alternatively, make sure to get the
source code in case of the supplier bankruptcy or before changing the supplier
to avoid the above mentioned risk

More practices on the topic of supply chain management can be found in the
dissertation [19] or in our previous publication [23].

3 Applying Industry Best Practices

In the second phase of our study we applied our handbook for open source
governance at three companies in order to evaluate our findings in a real-life context
using the case study methodology by Yin [18]. We identified three Germany-
based companies that had little to no experience of open source governance, but
had products incorporating software. These companies were willing to learn and
implement FLOSS governance processes following our recommendations. On the
one hand, this was an opportunity for them to learn from the leading companies in

84 N. Harutyunyan

terms of open source use and governance. On the other hand, it was an opportunity
for us to have an actual industry impact by having our theory implemented and
testing it in real life. The three companies were at different stages in terms of
FLOSS governance. Company A had no prior experience of structured open source
governance, while Company B and C had some basic experience. Company B, in
particular, was dealing with many software suppliers and needed support in that
domain.

Further details on the case study company profiles and specifics can be found in
the dissertation [19].

3.1 Case Study A

Once the Getting Started part of the handbook was completed, we started the
evaluation phase that was running in parallel to the further theory building and
handbook extension. We implemented a subset of the proposed Getting Started best
practices at Company A, namely at five of their divisions with a focus on Division
A.1 (with aerospace products including software systems and components).

In the course of the transition toward open source governance at Division A.1,
a newly established open source program office (OSPO)7 followed our Getting
Started best practice OSGOV-GETSTA-PROANA-3.1. Run open source use analysis
in products. An R&D manager who was part of the OSPO ran an initial analysis of
the current FLOSS use at the division using an open source tool called FOSSology8

[24]. An excerpt from this analysis is presented in Fig. 3. Following the best practice
was well worth it, as the OSPO identified a number of problematic components that
were previously overlooked or ignored, including but not limited to open source
software licensed under GPL and AGPL9 (GNU Affero General Public License)
licenses. These components were later reviewed and analyzed individually.

Case Study A was extensive spanning over 2.5 years and enabled us to run a
longitudinal study into the implementation of various parts of our handbook across
five different divisions operating in different industries and in different countries
including Germany, Mexico, and China. Figure 3 presents only a brief snippet
of an evaluation artifact. More artifacts and thorough details can be found in
the dissertation [19], including a complete open source governance process that
Company A created when customizing our handbook.

7 Open Source Program Office (OSPO) is a typical organization unit responsible for managing the
internal and external aspects of corporate open source governance, often composed of software
developers, software architects, lawyers, and product managers.
8 FOSSology is an open source license compliance software system and toolkit that can be used to
scan software for license, copyright, and export control issues—https://www.fossology.org/.
9 GNU Affero General Public License is based on the GPL license but has more restrictive license
terms—https://www.gnu.org/licenses/agpl-3.0.en.html.

https://www.fossology.org/
https://www.gnu.org/licenses/agpl-3.0.en.html

Open Source Software Governance: Distilling and Applying Industry Best Practices 85

FO
SS

ol
og

y

Yo
ur

 O
rg

an
iz

at
io

n
 G

en
 D

at
e:

 2
01

8/
12

/1
8

10
:2

7:
21

 U
TC

 F
O

SS
ol

og
y

Ve
r:#

4d
63

34
-2

01
8/

12
/0

7
12

:2
0

U
TC

 P
ag

e
6

of
 7

 sr

c/
ke

rn
el

.b
z2

/k
er

ne
l/a

pa
lis

-
tk

1/
us

r/i
nc

lu
de

/li
bi

ca
l/i

ca
lc

al
en

da
r.h

sr

c/
ke

rn
el

.b
z2

/k
er

ne
l/a

pa
lis

-
tk

1/
us

r/i
nc

lu
de

/li
bi

ca
l/i

ca
lfi

le
se

t.h

sr
c/

ke
rn

el
.b

z2
/k

er
ne

l/a
pa

lis
-

tk
1/

us
r/i

nc
lu

de
/li

bi
ca

l/i
ca

lm
es

sa
ge

.h

sr
c/

ke
rn

el
.b

z2
/k

er
ne

l/a
pa

lis
-

tk
1/

us
r/i

nc
lu

de
/li

bi
ca

l/i
ca

ls
et

.h

 sr

c/
ke

rn
el

.b
z2

/k
er

ne
l/a

pa
lis

-
tk

1/
us

r/i
nc

lu
de

/li
nu

x/
ne

tfi
lte

r/x
t_

AU
D

IT
.h

 sr

c/
ke

rn
el

.b
z2

/k
er

ne
l/a

pa
lis

-
tk

1/
us

r/i
nc

lu
de

/li
nu

x/
ne

tfi
lte

r/x
t_

C
H

EC
KS

U
M

.h

 sr

c/
ke

rn
el

.b
z2

/k
er

ne
l/a

pa
lis

-tk
1/

us
r/i

nc
lu

de
/g

st
re

am
er

-
0.

10
/g

st
/p

bu
til

s/
en

co
di

ng
-ta

rg
et

.h

sr
c/

ke
rn

el
.b

z2
/k

er
ne

l/a
pa

lis
-tk

1/
us

r/i
nc

lu
de

/g
st

re
am

er
-

1.
0/

gs
t/p

bu
til

s/
en

co
di

ng
-ta

rg
et

.h

 sr

c/
ke

rn
el

.b
z2

/k
er

ne
l/a

pa
lis

-
tk

1/
us

r/s
ha

re
/X

11
/x

kb
/s

ym
bo

ls
/h

u

 sr
c/

ke
rn

el
.b

z2
/k

er
ne

l/a
pa

lis
-tk

1/
us

r/i
nc

lu
de

/g
st

re
am

er
-

0.
10

/g
st

/p
bu

til
s/

en
co

di
ng

-p
ro

fil
e.

h
sr

c/
ke

rn
el

.b
z2

/k
er

ne
l/a

pa
lis

-tk
1/

us
r/i

nc
lu

de
/g

st
re

am
er

-
1.

0/
gs

t/p
bu

til
s/

en
co

di
ng

-p
ro

fil
e.

h

 sr
c/

ke
rn

el
.b

z2
/k

er
ne

l/a
pa

lis
-

tk
1/

us
r/i

nc
lu

de
/li

bs
oc

ke
tc

an
.h

 sr
c/

ke
rn

el
.b

z2
/k

er
ne

l/a
pa

lis
-tk

1/
us

r/i
nc

lu
de

/g
st

re
am

er
-

1.
0/

gs
t/c

od
ec

pa
rs

er
s/

gs
th

26
4p

ar
se

r.h

 sr

c/
ke

rn
el

.b
z2

/k
er

ne
l/a

pa
lis

-tk
1/

us
r/i

nc
lu

de
/li

bv
4l

1.
h

sr
c/

ke
rn

el
.b

z2
/k

er
ne

l/a
pa

lis
-tk

1/
us

r/i
nc

lu
de

/li
bv

4l
2.

h
sr

c/
ke

rn
el

.b
z2

/k
er

ne
l/a

pa
lis

-
tk

1/
us

r/i
nc

lu
de

/li
bv

4l
co

nv
er

t.h

 sr

c/
ke

rn
el

.b
z2

/k
er

ne
l/a

pa
lis

-tk
1/

us
r/i

nc
lu

de
/g

st
re

am
er

-
1.

0/
gs

t/c
od

ec
pa

rs
er

s/
gs

th
26

4p
ar

se
r.h

 sr
c/

ke
rn

el
.b

z2
/k

er
ne

l/a
pa

lis
-

tk
1/

us
r/s

ha
re

/p
er

l5
/P

ar
se

/P
id

l/S
am

ba
4/

C
O

M
/H

ea
de

r.p
m

 sr
c/

ke
rn

el
.b

z2
/k

er
ne

l/a
pa

lis
-

tk
1/

us
r/i

nc
lu

de
/li

nu
x/

ne
tfi

lte
r/x

t_
N

FQ
U

EU
E.

h

 sr

c/
ke

rn
el

.b
z2

/k
er

ne
l/a

pa
lis

-
tk

1/
us

r/s
ha

re
/p

er
l5

/P
ar

se
/P

id
l/O

D
L.

pm

 sr

c/
ke

rn
el

.b
z2

/k
er

ne
l/a

pa
lis

-
tk

1/
us

r/i
nc

lu
de

/li
nu

x/
nf

sa
cl

.h

 sr

c/
ke

rn
el

.b
z2

/k
er

ne
l/a

pa
lis

-
tk

1/
us

r/s
ha

re
/X

11
/x

kb
/s

ym
bo

ls
/ro

 X
XX

XX
XX

XX
XX

XX
XX

XX
XX

XX
XX

XX

XX
XX

XX
XX

XX
XX

XX
XX

XX
XX

XX
XX

XX
XX

XX

XX
XX

XX
XX

XX
XX

XX
XX

XX
XX

XX
XX

X
XX

XX
XX

XX
XX

XX
XX

XX
XX

XX
XX

XX
XX

XX
XX

XX

 sr

c/
ke

rn
el

.b
z2

/k
er

ne
l/a

pa
lis

-
tk

1/
us

r/s
ha

re
/X

11
/x

kb
/s

ym
bo

ls
/h

u

 sr
c/

ke
rn

el
.b

z2
/k

er
ne

l/a
pa

lis
-

tk
1/

us
r/i

nc
lu

de
/li

nu
x/

ne
tfi

lte
r/x

t_
C

H
EC

KS
U

M
.h

sr

c/
ke

rn
el

.b
z2

/k
er

ne
l/a

pa
lis

-
tk

1/
us

r/i
nc

lu
de

/li
nu

x/
ne

tfi
lte

r_
ip

v4
/ip

t_
EC

N
.h

XX

XX
XX

XX
XX

XX
XX

XX
XX

XX
XX

XX
X

XX
XX

XX
XX

XX
XX

XX
XX

XX
XX

XX
XX

XX
XX

XX
XX

XX
XX

 X

XX
XX

XX
XX

XX
XX

XX
XX

XX
XX

XX
XX

XX

XX
XX

XX
XX

XX
XX

XX
XX

XX
XX

 sr
c/

ke
rn

el
.b

z2
/k

er
ne

l/a
pa

lis
-

tk
1/

us
r/i

nc
lu

de
/li

nu
x/

ne
tfi

lte
r/x

t_
D

SC
P.

h
sr

c/
ke

rn
el

.b
z2

/k
er

ne
l/a

pa
lis

-
tk

1/
us

r/i
nc

lu
de

/li
nu

x/
ne

tfi
lte

r/x
t_

ec
n.

h

 sr
c/

ke
rn

el
.b

z2
/k

er
ne

l/a
pa

lis
-

tk
1/

us
r/s

ha
re

/X
11

/x
kb

/s
ym

bo
ls

/ro

FO
SS

ol
og

y

Yo
ur

 O
rg

an
iz

at
io

n
 G

en
 D

at
e:

 2
01

8/
12

/1
8

10
:2

7:
21

 U
TC

 F
O

SS
ol

og
y

Ve
r:#

4d
63

34
-2

01
8/

12
/0

7
12

:2
0

U
TC

 P
ag

e
7

of
 7

 sr

c/
ke

rn
el

.b
z2

/k
er

ne
l/a

pa
lis

-
tk

1/
us

r/i
nc

lu
de

/li
nu

x/
ne

tfi
lte

r/x
t_

co
nn

tra
ck

.h

 X
XX

XX
XX

XX
XX

XX
XX

XX
XX

XX
XX

XX
X

XX
XX

XX
XX

XX
XX

XX
XX

XX
XX

X

 sr

c/
ke

rn
el

.b
z2

/k
er

ne
l/a

pa
lis

-
tk

1/
us

r/i
nc

lu
de

/li
nu

x/
ne

tfi
lte

r_
ip

v4
/ip

t_
TT

L.
h

[e
xc

er
pt

; 1
20

0+
 p

ag
es

 re
m

ov
ed

]
 13

. B
ul

k
Fi

nd
in

gs

(L
ic

en
se

 n
am

e,
 L

ic
en

se
 te

xt
, F

ile
 p

at
h)

 14
. N

on
 F

un
ct

io
na

l L
ic

en
se

s

e.
g.

 /t
es

t o
r /

ex
am

pl
e.

 15
. I

rr
el

ev
an

t F
ile

s
(P

at
h,

 F
ile

s,
 L

ic
en

se
s)

 15
.1

.
C

om
m

en
t f

or
 Ir

re
le

va
nt

 fi
le

s
(L

ic
en

se
 n

am
e,

 C
om

m
en

t E
nt

er
ed

, F
ile

 p
at

h)

 16
. C

le
ar

in
g

Pr
ot

oc
ol

 C
ha

ng
e

Lo
g

La
st

 U
pd

at
e

R
es

po
ns

ib
le

C

om
m

en
ts

Fig. 3 Applying industry best practices: Initial open source use assessment at Case Study A

3.2 Case Study B

Company B was an enterprise software company operating internationally but based
in Germany. With nearly 5000 employees, the company had different approaches
for open source governance across different teams and business units. At the

86 N. Harutyunyan

time of our engagement, there was an initiative of establishing a centralized
organizational unit that would deal with everything related to open source software.
This team has been acquiring new FLOSS governance responsibilities and was glad
to collaborate with us in the scope of a research project. We introduced a subset of
best practices for Supply Chain Management from our handbook and observed their
implementation at the company. Similar to Company A, we did not conduct the
actual implementation, but rather observed and supported it. This enabled a more
unbiased evaluation of how our handbook would perform in a real-life setting of a
company.

Company B followed a number of our best practices establishing internal
processes for supplier evaluation with FLOSS governance in mind, as well as
optional supplier certifications, bill-of-materials (BOM) management, and more.
As a notable example, the software supplier manager at Company B followed our
best practice OSGOV-SUCHMA-PREGOV-1.1. Assess open source governance and
compliance awareness and maturity to create a supplier questionnaire that included
the key aspects recommended by our handbook. While abstract, the proposed best
practices served as a good basis to develop new supplier guidelines that were sent to
actual suppliers. Figure 4 presents an excerpt of the supplier questionnaire (its first
page with the table of contents). The questionnaire included the following points
recommended by our handbook:

• License information (including open source licenses)
• Level of open source awareness
• Technologies used in the development process
• Integration of third party software into supplier code
• Bill-of-materials information

Our best practice did not cover all the aspects required by Company B, so they
added points on quality management (including information on ISO certifications),
and sales process.

To see more details of our evaluation case studies, as well as handbook
implementation artifacts, see the dissertation [19].

Fig. 4 Applying industry best practices: Supplier questionnaire at Case Study B

Open Source Software Governance: Distilling and Applying Industry Best Practices 87

4 Conclusion

This section concludes the book chapter with the results’ highlights from our
work on open source software governance in companies. In the first stage of
the study, we distilled some best practices used in the industry for open source
governance. We captured and presented them as part of a larger handbook for
FLOSS governance that focused on getting started with governance, managing the
inbound and outbound aspects, as well as supply chain management. The handbook
was the practical artifact we developed to make our research results more relevant
and applicable for practitioners, who could customize and use our best practices.
The handbook consisted of topical categories and subcategories. Individual best
practices were arranged into workflows that would enable an easier execution at
a company.

Fig. 5 Tooling for handbook representation and forking: Editive—https://editive.com/en/

https://editive.com/en/

88 N. Harutyunyan

In the second stage of the study, we took parts of the handbook to companies
in Germany willing to put our findings to test in their production projects. We con-
ducted three case studies, where different best practice subsets were implemented
and evaluated in a real-life setting. The case studies demonstrated the pitfalls of
some best practices that we later addressed. They also demonstrated the limitations
of best practice transferability across companies. As a result, our handbook and its
best practices had to be abstract in nature and not specific for one industry domain.
Instead, we aimed for broad applicability and customization.

Going beyond the traditional academic work of theory building and working
closely with the industry to evaluate our findings, we also faced some setbacks.
Namely, Case Study C partially failed due to the misaligned expectations from the
project, as well as different visions for the open source governance handbook. We
learned that large shifts in company software architectures or processes are no easy
feat. They need to be thoroughly prepared and be backed by different stakeholders
across the company. And even in such cases, success is not a given. However, we
were able to learn from both our successes and failures during the three years of
working on this topic.

We see future opportunities for extending the research into other aspects of
both open source governance and related topics, such as corporate open sourcing
or license compliance. We also want to highlight the potential of the handbook
method for other studies in software engineering and computer science. Finally,
we see potential tooling support for the handbook that would make it even easier
for companies to use and modify the best practices across their organizational
complexities. In fact, we collaborated with a startup (Editive—https://editive.com/
en/) based on a spin-off project at our university to create a forkable prototype of
our handbook to present to our industry partners. A screenshot is presented in Fig. 5.
The further development of such tools can make introducing and maintaining open
source governance easier and more streamlined for any company in the future.

Acknowledgments This was not an individual effort. Throughout the whole research, many
people supported me—my family, my friends, my colleagues, and industry partners. I want to
especially thank my professor Dirk Riehle and my colleagues Ann Barcomb, Andreas Bauer,
Fariba Bensing, Maximilian Capraro, Hannes Dohrn, Michael Dorner, Andreas Kaufmann, Daniel
Knogl, and Georg Schwarz for their contributions to this research.

References

1. Ruffin, C., Ebert, C.: Using open source software in product development: a primer. IEEE
Softw. 21(1), 82–86 (2004)

2. Lin, L.C.-H., Shen, N.: Copyleft referring to GPL-3.0 was cited as a defense method in Chinese
intellectual property court in Beijing. Int. Free Open Source Softw. Law Rev. 10(1), 1–7, (2019)

3. German, D.M., Hassan, A.E.: License integration patterns: addressing license mismatches
in component-based development. In Proceedings of the 31st International Conference on
Software Engineering, pp. 188–198. IEEE Computer Society, Silver Spring (2009)

https://editive.com/en/
https://editive.com/en/

Open Source Software Governance: Distilling and Applying Industry Best Practices 89

4. Merilinna, J., Matinlassi, M.: Assessing the role of open source software in the European
secondary software sector: a voice from industry. In: 1st International Conference on Open
Source Systems (2005)

5. Chen, W., Li, J., Ma, J., Conradi, R., Ji, J., Liu, C.: An empirical study on software development
with open source components in the Chinese software industry. Softw. Process Improv. Practice
13(1), 89–100 (2008)

6. Agerfalk, P.J., Deverell, A., Fitzgerald, B., Morgan, L.: State of the art and practice of open
source component integration. In: 32nd EUROMICRO Conference on Software Engineering
and Advanced Applications (EUROMICRO’06), pp. 170–177. IEEE, Piscataway (2006)

7. Akkanen, J., Demeter, H., Eppel, T., Ivánfi, Z., Nurminen, J.K., Stenman, P.: Reusing an open
source application—practical experiences with a mobile CRM pilot. In: IFIP International
Conference on Open Source Systems, pp. 217–222. Springer, Berlin (2007)

8. Ayala, C., Hauge, Ø., Conradi, R., Franch, X., Li, J., Velle, K.S.: Challenges of the open source
component marketplace in the industry. In: IFIP International Conference on Open Source
Systems, pp. 213–224. Springer, Berlin (2009)

9. Stol, K.-J., Ali Babar, M.: Challenges in using open source software in product development: a
review of the literature. In: Proceedings of the 3rd International Workshop on Emerging Trends
in Free/Libre/Open Source Software Research and Development, pp. 17–22. ACM, New York
(2010)

10. Popp, K.M.: Best Practices for commercial use of open source software: business models,
processes and tools for managing open source software. BoD–Books on Demand (2015)

11. Helmreich, M.: Best practices of adopting open source software in closed source software
products (2011)

12. Kemp, R.: Towards free/libre open source software governance in the organization. IFOSS L.
Rev. 1 (2009)

13. Markus, M.L.: The governance of free/open source software projects: monolithic, multidimen-
sional, or configurational? J. Manag. Governance 11(2), 151–163 (2007)

14. Gangadharan, G., D’Andrea, V., De Paoli, S., Weiss, M.: Managing license compliance in free
and open source software development. Inform. Syst. Front. 14(2), 143–154 (2012)

15. Alspaugh, T.A., Asuncion, H.U., Scacchi, W.: Analyzing software licenses in open architecture
software systems. In: Proceedings of the 2009 ICSE Workshop on Emerging Trends in
Free/Libre/Open Source Software Research and Development, pp. 54–57. IEEE, Piscataway
(2009)

16. Peters, S.: Best practices for creating an open source policy (2010)
17. Jansen, H.: The logic of qualitative survey research and its position in the field of social

research methods. Forum Qualitative Sozialforschung/Forum: Qualitative Social Research
11(2), (2010)

18. Yin, R.K.: Case Study Research and Applications: Design and Methods. Sage Publications,
New York (2017)

19. Harutyunyan, N.: Corporate Open Source Governance of Software Supply Chains. doctoralthe-
sis, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) (2019)

20. Harutyunyan, N., Riehle, D.: Getting started with floss governance and compliance: a theory
of industry best practices. In: Proceedings of the 15th International Symposium on Open
Collaboration, Forthcoming, 2019

21. Harutyunyan, N., Riehle, D.: Industry best practices for FLOSS governance and component
reuse. In: Proceedings of the 24th European Conference on Pattern Languages of Programs.
ACM, New York (2019)

22. Harutyunyan, N., Riehle, D.: Industry best practices for component approval in floss gover-
nance. In: Proceedings of the 25th European Conference on Pattern Languages of Programs.
ACM, New York (2020)

23. Harutyunyan, N.: Managing your open source supply chain-why and how? Computer 53, 77–
81 (2020)

24. Gobeille, R.: The FOSSology project. In: Proceedings of the International Working Conference
on Mining Software Repositories, pp. 47–50. ACM, New York (2008)

90 N. Harutyunyan

Open Access This chapter is licensed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits use, sharing,
adaptation, distribution and reproduction in any medium or format, as long as you give appropriate
credit to the original author(s) and the source, provide a link to the Creative Commons license and
indicate if changes were made.

The images or other third party material in this chapter are included in the chapter’s Creative
Commons license, unless indicated otherwise in a credit line to the material. If material is not
included in the chapter’s Creative Commons license and your intended use is not permitted by
statutory regulation or exceeds the permitted use, you will need to obtain permission directly from
the copyright holder.

http://creativecommons.org/licenses/by/4.0/

	Open Source Software Governance: Distilling and Applying Industry Best Practices
	1 Introduction
	2 Distilling Industry Best Practices
	2.1 Getting Started with FLOSS Governance
	2.2 Supply Chain Management

	3 Applying Industry Best Practices
	3.1 Case Study A
	3.2 Case Study B

	4 Conclusion
	References

