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Abstract Debugging is one of the most expensive and challenging phases in the
software development life-cycle. One important cost factor in the debugging process
is the time required to analyze failures and find underlying faults. Two types of tech-
niques that can help developers to reduce this analysis time are Failure Clustering
and Automated Fault Localization. Although there is a plethora of these techniques
in the literature, there are still some gaps that prevent their operationalization in real-
world contexts. Besides, the abundance of these techniques confuses the developers
in selecting a suitable method for their specific domain. In order to help developers
in reducing analysis time, we propose methodologies and techniques that can be
used standalone or in a form of a tool-chain. Utilizing this tool-chain, developers
(1) know which data they need for further analysis, (2) are able to group failures
based on their root causes, and (3) are able to find more information about the
root causes of each failing group. Our tool-chain was initially developed based on
state-of-the-art failure diagnosis techniques. We implemented and evaluated existing
techniques. We built on and improved them where the results were promising and
proposed new solutions where needed. The overarching goal of this study has been
the applicability of techniques in practice.

1 Introduction

We are in the era of software intensive systems. The complexity of systems is
growing as they are being increasingly used in safety critical applications. These
new applications have raised the need for intensive testing to assure the reliability
of the systems.
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These changes have consequently influenced software debugging endeavors.
From the increase in the number of tests and the fast pace of delivering software
have emerged the need for more automated debugging techniques. Automated
diagnosis techniques can reduce the effort spent on manual debugging, which
shortens the test-diagnose-repair cycle, and can therefore be expected to lead to
more reliable systems, and a shorter time-to-market. Software debugging has always
been recognized as a time-consuming, tiresome, and expensive task that cost billions
for economies every year [35].

In our terminology, a failure is the deviation of actual run-time behavior from
intended behavior, and a fault is the reason for the deviation [36]. In other words, a
fault is the program element that needs to be changed in order to remove the failure.
The essence of failure diagnosis is to trace back a failure to the fault or faults [11].

Developers usually get quick and yet preliminary test results from huge amounts
of test runs and use this information to attack problems such as locating faults. Such
a quick feedback approach may lower the development cost but puts a lot of pressure
on developers. In practice, the time resource allocated for each debugging session
is usually limited and predetermined. Therefore, developers need an assisting tool
which increases their productivity and reduces failure analysis time. We focused on
automated diagnosis techniques and tried to improve them to make them applicable
in practice. We recognized two general categories of techniques for addressing
reducing failure diagnosis time: failure clustering and automated fault localization.

Failure clustering methods attempt to group failing tests with respect to the faults
that caused them [30]. If there are several failing test cases (TC) as the result of test
execution, these failing TCs may be clustered such that tests which are in the same
cluster would have failed due to the same hypothesized fault. Then, in an ideal
world, testers investigate only one representative TC from each cluster to discover
all the underlying faults. This process eliminates the need for analyzing each failing
TC individually. Thus, there would be a significant reduction in analysis time[9].

Automated fault localization techniques aim to “identify some program event(s)
or state(s) or element(s) that cause or correlate with the failure to provide the
developer with a report that will aid fault repair” [21]. The debugging process
is usually predicated on the developer’s ability to find and repair faults. While
both steps in the debugging process (fault localization and fault repair) are time-
consuming in their own right, fault localization is considered more critical, as it is a
prerequisite for fault repair [21]. Furthermore, Kochhar et al. have found that there
is a large demand for fault localization solutions among developers [17]. Therefore,
over the past ten years, a lot of research has gone into developing automated
techniques for fault localization in order to help speed up the process [38].

There is a plethora of failure clustering and automated fault localization tech-
niques in the literature [28]. Although developers find these methods worthwhile
and essential [17], these techniques are not adopted in practice yet.
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2 Failure Clustering

Clustering failures is effective in reducing failure analysis time [9]. Its advantages
are threefold:

1. It eliminates the need to analyze each failing test individually. To achieve this
goal, it is enough to select one representative for each cluster and analyze only
the representatives to find all the underlying faults in case of multiple faults [9].

In an industrial environment, usually several dozens of TCs are executed
each night as regressions happen, and several hundred every weekend, which
together usually lead to large numbers of failures. Developers must analyze
the failing tests and find all the root causes in the short time they have before
the software release. The complexity of the analysis process makes the failure
diagnosis process tough and time-consuming. Since in practice, a single fault
usually leads to the failure of multiple TCs, analyzing only the representative
TCs helps developers to find more faults in a shorter time.

2. It provides the opportunity for debugging in parallel [13].

3. It gives an estimation of the number of faults causing the failures. Fault
localization, while there are several faults in the code, is more challenging than
when there is only one fault in the code. When a program fails, the number of
faults is, in general, unknown, and certain faults may mask or obfuscate other
faults [13].

Jones et al. [13] introduced a parallel debugging process as an alternative to
sequential debugging. They suggest that in the presence of multiple faults in a pro-
gram, clustering failing tests based on their underlying faults, and assigning clusters
to different developers for simultaneous debugging, reduce the total debugging cost
and time. They propose two clustering techniques. Using the first technique, they
cluster failures based on execution profiles and fault localization results. They start
the clustering process by using execution profile similarities and complete it using
fault localization results. Their second technique suggests to only use the results of
fault localization.

Hoegerle et al. [ 12] introduced another parallel debugging method which is based
on integer linear programming [25]. They applied the above-mentioned second
clustering technique of Jones et al. to compare it with their own debugging approach.
Their results show that this clustering technique of Jones et al. is not so effective.
But the first technique is effective if it is adapted to the context.

Parallel debugging reduces the analysis time. However, it does not remove the
need for analyzing all the failing tests one by one. It provides segregation between
faults to facilitate fault localization. But it does not provide segregation between
failing tests.

Another shortcoming in this area of research is the lack of a methodology for
adapting this idea to different industrial domains.

Moreover, the other similar existing approaches in the literature are either based
on coverage data or use context-specific data [31]. Therefore, there is a need for
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other sources of noncoverage data for the cases that the source code or execution
profile is not available.

To close the above-mentioned gaps, we propose a clustering approach. In the
following, first we describe our general clustering approach. Then, we explain two
different techniques based on available data.

2.1 Clustering Approach

Our general approach consists of usual steps of any clustering solution: First, we run
TCs and collect relevant data to use for clustering. Second, we apply hierarchical
clustering [32] on data. Third, we use some metrics to choose the best number
of clusters and finalize clusters. In an ideal solution, there is one cluster for each
underlying fault. Therefore, the number of clusters equals the number of faults.
Intuitively, we are not aware of this number beforehand. Fourth, we select one (or
k) representative for each cluster to start the debugging process. To implement this
clustering approach, one might need to adapt some steps based on available data. In
the following, we explain two failure clustering techniques that can be utilized in
different settings and at different levels of testing.

2.1.1 Failure Clustering with Coverage

In this approach, we use test coverage profiles as data for clustering. First, we
run a test suite and extract an execution profile for each TC. Second, utilizing
agglomerative hierarchical clustering, we build a tree of failing tests based on the
similarity of execution traces. In order to cut this tree into clusters we need to know
the best number of clusters. In the third step, we hence utilize fault localization
techniques to decide on the best number of clusters. Then, we cut the tree into the
found number of clusters. Finally, in the fourth step, we calculate the centers of the
clusters and choose the failures which are closest to the centers as representative
tests.

Step 1: Running Tests and Profiling Executions

The first step is to run the tests and profile executions. To profile TC executions, we
instrument the code. Executing a program while instrumenting the code results in a
report about which lines of code have been executed. We developed Aletheia [10]
to instrument the code and prepare data for clustering.
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Step 2: Generating Failure Tree

We use hierarchical clustering since it enables users to retrieve an arbitrary number
of clusters without the need to re-execute the clustering algorithm. This is especially
useful in practice since in a real-world scenario, it will not limit the users to a single
suggested number of clusters. Users will be able to explore multiple alternatives
without the need to wait for the re-execution of the clustering tool. We utilize
hierarchical clustering to generate a dendrogram of failing tests. We use execution
profiles generated in the previous step, as our feature sets for clustering.

Step 3: Cutting the Failure Tree by Fault Localization

Like any other clustering application, the next question is regarding the best number
of clusters. In our case, in an ideal solution, the number of clusters equals the number
of underlying fault which we do not know a priori. Therefore, we need a strategy to
predict the number of clusters. We use Spectrum-Based Fault Localization (SBFL)
(see Sect.3) to find the best number of clusters k, or the cutting point, of the
dendrogram. Liu and Han [19] as well as Jones et al. [13] suggest that if the failures
in two clusters identify the same entities as faulty entities, they most likely failed
due to the same reason and should be merged into one cluster.

This process can be considered in a top-down manner. This technique computes
the fault localization rank for the children of a parent to decide whether the parent
is a better cluster or it should be divided into its two children. The result of fault
localization is a ranked list of entities from the most to the least suspicious. To check
similarity between ranked lists, we use Jaccard [24] set similarity as suggested by
[13], defined on two sets A and B as follows.

Similarity(A B)—lAmB| (1)
imilarity(A, = |AUB|

If the similarity of the fault localization rank of two children is smaller than
a predefined threshold, they are (likely) pointing to different faults. They are
dissimilar and should not be merged. Thus, the parent cluster is not a good stopping
point and should be divided into its children. Otherwise, the parent is a better
cluster and this is the stopping point for clustering. According to Fig. 1, the first
step is to decide whether dashed line 1 is a better cutting point or dashed line 2. To
answer this question, the fault localization rank at cluster c2 is compared to fault
localization rank at cluster c3. If the similarity between these two sets is larger than
the predefined threshold, they are similar and the parent c1 is a better clustering than
dividing it into two clusters c2 and c3. As the result, line 1 is the cutting point. If line
1 is not the cutting point, the process continues to the point that no more division is
needed. Because of the good results in our large-scale experiments [9], we propose
0.85 as the similarity threshold.
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Fig. 1 Hierarchical clustering of four failing tests

Step 4: Selecting Representative TCs

We have already grouped TCs based on their hypothesized root causes by generating
the failure tree and cutting it into clusters. Now, we need to suggest a representative
for each cluster. Developers investigate only the representatives to find all the faults.
Since it is likely that clustering is imperfect, the selection of representatives for
a cluster has a great importance: We are aware that clusters are unlikely to be
100% pure [5]. We require our solution to make the representatives reliable. To
avoid selecting an outlier (a failure which does not belong to the fault class that has
the majority in the cluster) as a representative in clustering, we hence calculate the
center of the cluster and find the k-nearest neighbors (KNN) [3] to the center. These
KNNss are selected as representatives of the respective cluster. KNN search finds the
nearest neighbors in a set of data for each data point. Based on discussion with test
engineers, we suggestk = 1.

2.1.2 Failure Clustering Without Coverage

In previous section, we explained our first clustering approach that uses the coverage
profile of tests as the input for clustering. However, it is not always possible
to use this kind of data in practice due to three reasons. First, the source code
is not always accessible (e.g., in the case of Hardware-in-Loop tests). Second,
in this approach, collecting coverage information when running passing tests is
also needed. Sometimes, this requirement imposes extra work on the system.
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Third, instrumenting very large projects when running integration tests can be very
expensive and time-consuming. In this section, we propose a clustering technique
to group failing tests based on noncoverage data, retrieved from three different
sources. These data sources make the clustering approach applicable in different
stages of testing and other purposes such as test prioritization.

In this approach, first, we collect the data from different non-code-based sources,
for example, Jira tickets to make a feature vector for each TC. We binarize all of
them to prepare them for hierarchical clustering. Second, utilizing agglomerative
clustering, we build a tree of failing tests based on the similarity of their feature
vectors. Third, using a regression model on the number of failing tests in previous
test runs, we predict the number of clusters. Finally, in the fourth step, we calculate
the centers of the clusters and choose the failing tests which are closest to the
centers as the representative tests. The developers receive the list of representatives
to investigate them. If the suggested number of clusters appears to the developers
to be inaccurate, they can immediately adjust the number of clusters on the user
interface and get new representatives. Steps two and four are similar to the first
clustering approach. In the following, we describe all the steps in detail.

Step 1: Collecting the Input Data

Two main input data sources are: the database of test results that includes several
thousand test results from the previous test runs, and the repository of the TCs,
providing the source files for the tests. We can extract three sets of features (variables
in a data set) using these two data sources. Since the primary objective is to cluster
failing tests, these data are extracted only for failing tests. In case of test selection
or prioritization, they can be extracted for all tests. Typically, multiple projects (e.g.,
weekly, daily, nightly) are used to test a unit in an industrial setting (e.g., a single
ECU in a car company). Each test run is usually called a build. All the feature
values are extracted individually for each build. We explain each set of features in
the following.

General Features The following features can be extracted from the database [18]:
general information about the test; that is, its source file, component, domain, and
the hardware that executes the test (if any).

If features are of categorical nature and do not follow an ordinal scale, we
transform them into binary data.

Jira History We use the Jira tickets to extract the next feature set which is based
on the faults assigned to the previously analyzed failed tests. The idea is that tests
which frequently shared the same cause in the past are also likely to fail due to the
same cause in the future [18]. Table 1 shows an example. Each “cause” is a Jira
ticket ID that has been assigned to the failing test. One ticket may be assigned to
several failing tests if the manual analysis shows that these tests are failing because
of the same reason. Similar to the previous feature sets, this table should change to
a binary form as shown in Table 2.
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Table 1 Jira history [18] Test Project  Build  Cause

TC1 Project] Build1 Cause x
TC?2 Project1 Build1 Cause x
TC3 Project1 Buildl Causey
TC1 Projectl Build2 Causez

Table 2 Binary Jira History Test  BuildlCauseX BuildlCauseY Build2CauseZ
TC1 1 0 1
TC2 1 0 0
TC3 0 1 0

Test Case Similarity The files used to generate TCs are usually maintained in SVN
repositories. These repositories are referenced to define the source files needed to
generate the desired test series. Our hypothesis is that the likelihood that two tests
failed due to the same cause increases with the similarity of their underlying source
files [18]. To facilitate the calculation of similarity between two files, we compare
the high level steps taken in each test.

Input Feature Weights We extract three set of features as input for clustering.
These three sets lead to the generation of three different data sets. We measure the
distance between TCs using all these three sets. Then, to have an aggregated distance
value, we assign weights to each group and sum up the distance values. Based on our
experience [7], test similarity, general features, and Jira history are almost equally
important and therefore can be assigned similar weights, as shown in the following
equation:

daggregate(X, y) =0.31 *dgeneral(X, y)+0.35 *djira (x, y) +0.34 % dyest Fite(x, y)
2

Step 2: Generating Failure Tree

Similar to the first approach, we apply hierarchical clustering on collected data.

Step 3: Cutting the Failure Tree by Fitting a Regression Model

In this approach, since we do not have coverage profile of tests, we cannot utilize
FL to predict the number of clusters. Therefore, we propose using polynomial
regression [16] to examine the relationship between the number of failing tests and
the cutting distance on the hierarchical tree which basically shows the number of
clusters. To this end, we extract the real number of faults in the previous analyzed
builds from the database. Then, we calculate the cutting distances of the respective
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trees. Finally, we fit the regression model to predict the cutting distance based on the
number of failing tests. Figure 2 illustrates an example. However, a model should
be fitted for each specific case.

° — f (x) = 0.0000322 x x> - 0.006752 x x +2.2044

Cutting Distance (opt)

0 100 200 300 400 500 600 700 800
# Failing Tests

Fig. 2 Polynomial regression model for cutting distance[18]

Step 4: Selecting Representative TCs

Similar to the first approach, the nearest neighbor to the center of the cluster is
considered as the representative of the cluster. Since we want the developers to
be able to change the number of the cluster in real time, we pre-compute the
representatives for all the clusters considering all possible cutting distances.

2.2 Industry Impact

Our large-scale evaluations in [9] and [7] show that using first and second clustering
approaches, we are able to reduce more than 80% and 60% of the failure analysis
time, respectively. Analyzing only the representative tests, we discovered all the
underlying faults in the first approach and more than 80% of the faults using the
second approach. These numbers show that our clustering approach is an effective
way to reduce failure diagnosis time in an industrial setting.

The second takeaway is that if the source code is available and the highest
accuracy is required, one can use approach one; if short response time is important
and some level of inaccuracy is tolerable, one can use approach two.
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3 Fault Localization

One of the most popular subsets of automated FL techniques is spectrum-based
fault localization, known as SBFL [38]. In order to correlate program elements
with failing TCs, these techniques are built upon abstractions of program execution
traces, also known as program spectra, executable statement hit spectra, or code
coverage [38]. These program spectra can be defined as a set of program elements
covered during test execution. The initial goal of SBFL techniques is therefore
to identify program elements that are highly correlated with failing tests [21]. In
order to determine the correlation between program elements and TC results, SBFL
techniques utilize ranking metrics to pair a suspiciousness score with each program
element, indicating how likely it is to be faulty. The rationale behind these metrics
is that program elements frequently executed in failing TCs are more likely to be
faulty. Thus, the suspiciousness score considers the frequency at which elements
are executed in passing and failing TCs. Some of the more popular ranking metrics
have been specifically created for the use in FL, such as Tarantula [14] and DStar
[37], whereas others have been adapted from areas such as molecular biology, which
is the case for Ochiai [23]. DStar, Ochiai, and Tarantula are three of the most popular
and best-performing metrics in recent studies [28].

N k

DStar = (Ner) ,
Nyfr + Ncs
1‘]/VCF
Tarantula = ! ,
Ncr + Ncs
Nf Ng
N,
Ochiai = cr

VNF % (NcF + Ncs)'

where N is the number of failing tests, Ng is the number of passing tests, Ncr
is the number of failing tests that cover the element, Ncg is the number of passing
tests that cover the element, Ny ¢ is the number of failing tests that do not cover the
element. DStar metric takes a parameter *. The nominator is then taken to the power
of *. There is no significant difference between these metrics [28].

An example of a hit spectrum is shown in Table 3. Each e in the table means that
the respective element “€” (can be at different levels of granularity, e.g., statement,
method, basic block, etc.) was hit in the respective test run “t”. Table 4 shows the
suspiciousness scores and ranks of program elements in Table 3 using Ochiai metric.
As the ranks indicate, element e4 is the most suspicious element.

A study on developers’ expectations on automated FL [17] shows that most of
the studied developers view FL process as successful only if it:

* Can localize faults in the Top-10 positions

» Is able to process programs of size 100,000 LOC

* Completes its processing in less than a minute

* Provides rationales of why program elements are marked as potentially faulty
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Table 3 A hypothetical hit Element Test cases

spectrum tl 2 t3 t4 t5 t6
el ° ° ° ° o o
e2 e o o L]
e3 e o o L]
e4 o o o o
e5 U

Verdict F P P P P F

Table 4 Ochiai

i Element Suspiciousness
suspiciousness scores

Score Rank

el 0.577 2
e2 0 3
e3 0 3
ed 0.707 1
e5 0 3

Considering these expectations, real-world evaluations [28] show that SBFL
techniques are not yet applicable in practice. They are able to process large-size
programs, but are not always able to locate the faults in top positions. This might
be the consequence of considering the correlation, not causation. Although the goal
of any FL technique is “to identify the code that caused the failure and not just any
code that correlated with it” [21], SBFL techniques measure the correlation between
program elements and test failures to compute suspiciousness scores. Thus, they do
not control potential confounding bias [27]. Confounding bias is a distortion that
modifies an association between an exposure (execution of a program element) and
an outcome (program failure) because a factor is independently associated with the
exposure and the outcome (see Sect. 3.2).

In addition, for SBFL techniques, the granularity of the program elements in the
program spectra is important, not only to the effectiveness of the system but also
to the preferences of developers [17]. Kochhar et al. found that among surveyed
developers, method, followed by statement and basic block were the most preferred
granularities. But when it comes to the effectiveness of the system, the method and
statement granularities may be too coarse- or fine-grained, respectively, to properly
locate the faulty program elements [21, 26]. Unfortunately, there is no golden rule
to say which granularity is the best for all contexts.

Despite ongoing research and improvements, the real-world evaluations show
that FL techniques are not always effective. Considering above-mentioned gaps, we
suggest the following improvements on SBFL.
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3.1 Syntactic Block Granularity

As mentioned previously, the two main program spectra granularities used by
practitioners are statement and method [17]. Unfortunately, neither of these options
are perfect, as they both have their limitations.

Due to its fine-grained nature, the statement granularity has a number of draw-
backs. First, simple profile elements like statements cannot properly characterize
and reveal nontrivial faults. Statements might be too simple to describe some
complex faults, such as those that are induced by a particular sequence of statements
[21]. In the Defects4]J data set [15], which is the largest available database of Java
faults, also the most used one for FL studies, the median size of a fault is four lines,
with 244 bugs having faults spread across multiple locations in the program [33].
Furthermore, due to the nature of the statement granularity, it is incapable of locating
bugs due to missing code, known as a fault of omission [38]. For example, of the
395 bugs in the Defects4] data set, only 228 can be localized by the granularity of
statements.

Unfortunately, it is unclear whether developers can actually determine the faulty
nature of a statement by simply looking at it, without any additional information
[26, 38]. As a possible solution to the drawbacks of the statement granularity, Masri
suggests the usage of more-complex profiling types with higher granularity [21].
Previous empirical studies have shown that the effectiveness of SBFL techniques
improves when the granularity of the program elements is increased [21]. For that
reason, among others, many practitioners prefer to use the method granularity.

However, due to its coarse-grained nature, the method granularity has a handful
of drawbacks when used for calculating SBFL scores. Sohn and Yoo suggest two
drawbacks to the method granularity due to the nature of methods themselves [34].
First, methods on a single call chain can share the same spectrum values, resulting
in tied SBFL scores. Second, if there are TCs that only execute non-faulty parts of
a faulty method, they will decrease the overall suspiciousness score of the given
method. Furthermore, when given a list of methods ranked by their suspiciousness,
a programmer would still have to walk through all the statements in each method
while looking for the bug, which can result in a lot of wasted effort, especially if
the methods are large. Finally, the method granularity also lacks any sort of context
and may not provide any further information to the developer. For instance, if there
are failing TCs that focus on testing one specific method, such as a unit test, the
developer will already know that the fault is contained within the failing method, so
the method granularity results are of no additional help.

As both the statement and method granularities exhibit drawbacks, there is a
clear need for a new granularity level that has a higher granularity than statements,
without the added wasted effort and lack of context of methods. As a possible
solution, we propose the usage of the syntactic block granularity. Based on different
syntactic components found in the program’s source code (see Table 8 for syntactic
blocks in Java), it considers a wide range of program elements in an effort to provide
more context to the developer with minimal added cost.
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Fig. 3 Faulty mid() method. 1: |public int mid(int x, int y, int z) {
Each syntactic block is 5 bt il o
enclosed by a box .
3 if [(y < 2)||{
4 if [(x < y)
3
6:
T ic /¥ FAULT: missing the following
8: else if (x < z) {
9: mid = x;
10: }
11: */
12: | [}
13: else |{
14: if [(x > y)
15:
16:
17: else if |(x > L)’{_‘
18: mid = x;
19: M
20: M
21: return mid;
22: |}

To illustrate the drawbacks of the statement and method granularities, as well as
highlight the benefits of the syntactic block granularity, consider the sample program
in Fig. 3. The method mid() takes as input three integers and outputs the median
value. The method contains a fault of omission, where the proper implementation
should include the else-if block from lines 8—10. Tables 5, 6, and 7 contain the
coverage information from a test suite containing six different TCs for each of the
three different granularities. In each table, each TC corresponds to a column, with
the top of the column corresponding to the inputs, the black dots corresponding to
coverage, and the status of the test at the bottom of the column. To the right of
the test case columns are the Ochiai score [1] and the corresponding rank for each
element.

As mentioned previously, it is not possible to localize a fault of omission
using the statement granularity. Therefore, no SBFL technique using the statement
granularity will be able to localize the fault in the mid() method.

To localize the fault using the method granularity, the only information provided
to the developer is that the fault is contained in the mid() method (see Table 6).
However, due to the unit test nature of the TCs, this fact is obvious. A developer
would still have to go through all the statements in the method to find the fault.
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Table 5 mid() Statement granularity Ochiai calculations

Test cases
Line # 3,3,5 1,23 32,1 5,5,5 5,34 2,1,3 Ochiai Rank
1 ° ° ° . . ° 0.577 2
2 . . . . . . 0.577 2
3 . . . . . . 0.577 2
4 . . . . 0.707 1
5 . 0 6
13 ° . 0 6
14 ° . 0 6
15 . 0 6
17 . 0 6
18 0 6
21 ° ° ° . . ° 0.577 2
Verdict F
Table 6 mid() Method granularity Ochiai calculations
Test cases
Line #’s 3,3,5 1,23 3,2,1 55,5 5,34 2,1,3 Ochiai Rank
1-22 . . . . . . 0.577 1
Status F
Table 7 mid() Syntactic block granularity Ochiai calculations
Test cases
Block type  Line #’s 3,3,5 1,2,3 3,2,1 5,55 534 2,13 Ochiai  Rank
MD 1-22 . . . . . . 0.577 3
ICS 3 ° ° ° . ° ° 0.577 3
ITB 3-12 ° ° . ° 0.707 1
ICS 4 . . . . 0.707 1
ITB 4-6 . 0 5
IEB 13-20 . . 0 5
ICS 14 . . 0 5
ITB 14-16 ° 0 5
ICS 17 ° 0 5
ITB 17-19 0 5
Verdict F P P P P F

As seen in Table 7, when using the syntactic block granularity, the fault is
localized to the then block of the if statement (ITB block) from lines 3—12 with
a rank of 1. As an improvement over the method granularity result, the developer
would only have to look through one portion of the method to find the fault.
Furthermore, the developer would have a further intuition as to the location/type
of fault that exists. Due to the average depth of faults within the program elements
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of the syntactic block granularity, the developer would expect the fault to likely be
an issue with the direct children elements of the block, or the block itself. In this
case, the faulty missing element would in fact be a direct child of the top ranked
ITB block from lines 3—12. Furthermore, due to the O suspiciousness score of the
ITB block from lines 4-6, the developer can infer that the fault is either with the if
statement conditional at line 4 or is a fault of omission.

This added information provided by the syntactic block granularity, as well as
the reduced number of statements required to search through to localize the fault,
helps illustrate the benefits of the syntactic block granularity over the other two
granularities.

Extracting Syntactic Blocks

Each syntactic block consists of a set of statements that syntactically belong together
to form a program element. For instance, every statement in a method declaration
belongs together, as whenever the method is called, the contained statements may be
run. Furthermore, each element may further be broken into multiple sub-elements.
For example, an if statement has three components: the condition statement, the
then block, and the else block. Each of these sub-elements may be run separately
from each other. For instance, the condition statement will always be executed, but
depending on the Boolean value of the conditional, either the then block or the else
block will be executed. As a result, for Java programs, the syntactic block granularity
consists of the 18 different types of program elements found in Table 8. For ease of
use, each syntactic block type has an ID associated with it. An example of each type
of syntactic block can be found in bold in the last column in Table 8.

Like the method granularity, for each syntactic block, if any of the contained
statements are executed, the syntactic block is also marked as executed. Originally,
Class, Interface, and Enum declarations were also considered as types of syntactic
blocks. However, due to their average size compared to all other types of blocks,
the added benefit of encompassing class level faults (such as missing method
declarations or incorrect class variables) was outweighed by the overall added
wasted effort associated with inspecting whole classes for a fault.

Due to the hierarchical nature of syntactic blocks, it is possible for one block to
completely encapsulate another. For example, in Fig. 3 the I7B block from lines 3—
12 encapsulates the ICS block at line 4 and the /7B block from lines 4—6. Because of
this, sections of code will appear multiple times as a programmer walks through the
ranked list of elements. In order to prevent unnecessary work, any block completely
encapsulated by another block with a higher suspiciousness score can be ignored
and removed from the final ranking.

While our work focused on faults in Java programs, the concept would be similar
for other programming languages with similar syntax, for example, C, C++, C#,
Go, PHP, and Swift.
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Table 8 Java syntactic block types
Base program element Syntactic block type Type ID Example
- Constructor declaration CND class X { xO { ... } }
- Method declaration MD public int foo() { ... }
- Initializer declaration IND static { a = 3; }
- Do statement DS do { ... } while (a == 0);
Foreach statement Condition statement FECS for (Object
o :
objects)
{ foo(); }
Body block FEBB for (Object
o :
objects)
{ foo(); }
For statement Condition statement FCS for (int
a=3; a
<10; a++) {
foo(); }
Body block FBB for (int
a=3; a
<10; a++) {
foo(); }
If statement Condition statement ICS if (a == 5) foo() else bar();
Then block ITB if (a == 5) foo() else bar();
Else block IEB if (a == 5) foo() else bar();
Switch statement Statement SS switch(a) { ... }
Entry statement SES case 1: foo(); break;
Try-catch statement Try block TCTB try { foo(); }
catch (Exception
e) { bar(); }
finally { x = 0;
Catch block TCCB  try { foo(); }
catch (Exception
e) { bar(); }
finally { x = 0;
Finally block TCFB try { foo(); }
catch (Exception
e) { bar(); }
finally { x = 0;
}
While statement Condition statement WCS while (a > 0) { bar(); }
Body block WBB while (a > 0) { bar(); }

3.2 Re-ranking Program Elements

Using Fig. 4, we explain an example of confounding bias in SBFL results. The code
snippet indicates a hypothetical faulty program. Assume that a fault in method F1
propagates only through the left branch where method F2 is triggered, while the
right branch, where method F3 is called, executes correctly. Put differently, although
F1 contains a fault, only those tests taking the left branch are failing. In this case,
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an SBFL technique gives the highest suspiciousness score to the method F2, since
it is executed more frequently in failing executions and less frequently in passing
executions (F1: 1 failing, 1 passing, F2: 1 failing, and F3: 1 passing). However,
method F1 is the faulty element.

public void F1(int i) {
if (i < 0) {
... // Faulty
F2(x);
} else {
F3(x);
}
}

Fig. 4 A hypothetical faulty method with two branches

“Confounding bias happens when a seeming causal impact of an event on a
failure may be in fact due to another unknown confounding variable, which causes
both the event and the failure” [21]. Given a program and a test suite, assume that
all failing TCs induce dependence chain (chain of executed program elements in
our case) ey — e —> epyg —> e3 —> e4 —> efq; and all passing TCs induce
e — ey only, where ey, indicates the execution of faulty element and e 4
indicates a failure. A correlation-based approach such as SBFL would assign the
same suspiciousness score to any of ep,g, €3, or e4, thus resulting in two false
positives, whereas a causation-based approach that considers dependencies to have
causal effect would assign e4 the lowest suspiciousness score and ep,, the highest
suspiciousness score. This means, when computing the suspiciousness scores, the
confounding bias to consider for e4 would involve e3 and ep,g, for e3 it would
involve ep,g, and no confounding is involved when computing the suspiciousness
score of epyg [21].

In our analysis on SBFL results, we observed that often if the most suspicious
element s* does not contain a fault, one of its parents or grandparents contains
a fault, as shown in Fig.4. Method F2 is the most suspicious element, while its
parent F1 contains a fault. To improve SBFL effectiveness, we propose a re-ranking
strategy based on this observation.

In this approach, we augment SBFL with a combined dynamic call and data-
dependency graphs of failing tests. First, using any similarity metric such as DStar,
we find the most suspicious method s* of the program. It has rank 1 on the
suspiciousness ranking list. We locate it on the combined dynamic call graph of
the failing tests and list all of its parents and grandparents. Then, we inject this list
between rank 1 and 2 of the ranking list and re-rank all the elements accordingly.
The re-ranking approach gives the second rank to the parents (if exists) of s* and the
third to its grandparents. We start inspecting the suspicious elements based on the
newly ranked list. Visual representation of call graph while highlighting the most



62 M. Golagha

B src/main/java/org/apache/commons/lang3/time/FastDateFormat.java

the formatted string

public String format(Date date) {
Calendar c = new GregorianCalendar(mTimeZone);
+ Calendar c = new GregorianCalendar(mTimeZone, mlLocale);
c.setTime(date);
return applyRules(c, new StringBuffer(mMaxLengthEstimate)).toString();

Fig. 5 Human patch to fix Lang-26 [4]

suspicious elements on it aids users in better understanding the problem. In the
following, we use a real fault, Lang-26, from Defects4J database as our motivating
example to explain each step. This bug is a wrong method reference that causes one
test to fail [33] (Fig.5).

Step 1: Finding the Most Suspicious Method(s) Using SBFL

As mentioned earlier, we arbitrarily use DStar (*=4) to find the most suspicious
method in the first step. DStar calculations on Lang-26 spectrum places
“lang3.time.FastDateFormat-TextField-1171” and “lang3.time.FastDateFormat-
StringLiteral-1130” methods at rank 1, as the most suspicious methods. Method
“lang3.time.FastDateFormat-820” which is the faulty method gets rank 17.

Step 2: Locating the Most Suspicious Method(s) on the Dynamic Call and/or
Data-Dependency Graph

In the second step, we generate a graph which includes dynamic method calls and/or
explicit data-dependencies of all failing tests. A dynamic call graph is generated
at runtime by monitoring the program execution. The graph contains nodes that
indicate the executed methods and edges between methods that represent method
calls. We consider dynamic call graph to inspect real, not potential (as is the case
in static call graphs), dependencies. An explicit data-dependency graph indicates
dependencies between program elements introduced by a common variable used in
multiple program elements. A data-dependency exists when two program elements
exchange data using a variable. This happens when one program element writes to
a field, and another element reads that field later. The result is a data-dependency
between the first and second elements.

Considering Fig. 6, a call graph contains only the solid lines. A data-dependency
graph contains only the dashed line. A combined graph can be helpful in SBFL. If
method compute is faulty, method getResult will also return a wrong result. Thus, it
will be labeled as a suspect. Looking into the combined graph, one can improve the
labeling by adjusting for the confounder.

Figure 7 shows the call graph of Lang-26 failing test. Due to space constraints, it
is only depicting the left branch. Thick red boundaries highlight the most suspicious
methods. All nodes are annotated with their ranks.
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Fig. 6 Combined
call/data-dependency graph

getResult

Step 3: Re-ranking Program Methods

In step 3, we find the parents and grandparents of the DStar’s most suspicious
methods. Then, we inject them between rank 1 and rank 2 and change all the
ranks accordingly. Parents get rank 2 and grandparents get rank 3. In our example,
“lang3.time.FastDateFormat-888” is the parent and “lang3.time.FastDateFormat-
820” is the grandparent. Thus, in our new list, we place them right after
ranked 1 methods and change their ranks to 2 and 3, respectively. Users get
the new ranking list. As annotations on Fig.7 show, the rank of faulty method
“lang3.time.FastDateFormat-820” changes from 17 to 3 which is a considerable
improvement.

3.3 Evaluation

Our evaluation results in [6] show that using our proposed re-ranking techniques, we
can improve the average effectiveness of SBFL to 73.5% when it comes to locating
faulty elements in Top-10 ranks. This means, in 75.3% of the cases, SBFL with
re-ranking listed the faulty element in top ten ranks.

In addition, using syntactic blocks, we add context to SBFL results, provide
additional insight into the possible location of the fault, and cover more types
of faults than both popular statement and method granularities. Syntactic block
granularity exhibits ranking behavior similar to the method granularity, while having
a wasted effort (# lines that have to be inspected before finding the fault) equivalent
to, if not better than, the statement granularity. Finally, when compared to the
method granularity, it exhibits up to a 92.48% improvement when it comes to
the locality of the program elements to the fault, a characteristic that provides the
user with a better insight into the possible location of the faults. When inspecting
program elements containing multiple statements, it is important to be able to have
some insight as to which statements are more suspicious than others. For example,
when inspecting a method for a fault, it would be helpful for the user to know where
to start looking for the fault, instead of having to walk through each statement
one-by-one. By knowing certain characteristics of the program elements in each
granularity, a user may be able to localize the fault easier. One possible characteristic
to consider would be the proximity of the most suspicious faulty program element
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e* to the fault itself. If the average depth of the fault in the abstract syntax tree (AST)
of the program element e* is low, it will be easier to find the fault, as the user could
work their way down the AST, giving higher priority to the shallower elements.

However, we observed an issue when it comes to its application in industrial
domains: the effectiveness of SBFL varies from case to case. It is not clear for
a user whether using SBFL would help in reducing analysis time or waste time.
Therefore, to continue our endeavor in developing practical solutions, first we need
to understand what is the reason behind this observation. Why is the effectiveness
of these techniques so unpredictable? What are the factors that influence the
effectiveness of fault localization? Can we accurately predict fault localization
effectiveness? Answering these questions can help in two ways: (1) We would know
how to improve the code to facilitate SBFL. (2) We would be able to predict the
effectiveness of SBFL. This helps users in deciding where and when to use it to
avoid wasting time and money.

3.4 Predicting the Quality of SBFL

We tried to shed light on the observations above and understand what factors
explain such variations. Knowing influencing factors and being able to predict the
effectiveness of SBFL can improve the user’s trust. If SBFL is expected to be
bad, we don’t use it—and the other way around. Doing this will not always help
programmers, but it doesn’t frustrate them either with bad predictions of the fault
location.

To learn the aspects of the projects with the strongest influence on fault local-
ization effectiveness, we investigated a large number of potential factors affecting
SBFL effectiveness and built models, using standard machine learning techniques
and a set of carefully selected metrics, to predict effectiveness. We wanted to
determine whether we can build a model, using collected metrics as features, that is
accurate enough to be used for SBFL effectiveness predictions in practice.

We grouped metrics into three groups according to the source of information
they are based on. Metrics were considered potentially relevant when we had a
hypothesis about why they could influence SBFL effectiveness. Considering code
metrics, a metric had to be actionable as well, meaning that a developer could, using
an appropriate programming style, improve its value. Static metrics measure the
static aspects of the whole source code. Dynamic metrics measure the dynamic
aspects considering the test runs. Test suite metrics are correlated to the test suite.
In total, we collected 46 metrics and computed them for the buggy versions of five
Defects4] projects. Tables 9, 10, and 11 illustrate the collected metrics.

Based on the metrics defined above, we need to predict if SBFL is effective and
define class labels to predict. To define effectiveness, we relied on method-level
Ochiai results. If the rank of the faulty method was between 1 and 10, we labeled
SBFL as “effective” or “1”, otherwise “ineffective” or “0”. Using collected metrics
as variables or features and SBFL effectiveness as labels, we formed a data set. We
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Table 9 Static metrics

ID Metric Definition

S1 PML % of methods with LoC>30

S2 PHFS % of files with LoC>750

S3 PMFS % of files with 300<LoC<750

S4 PHND % of methods with nesting depth>5
S5 PMND % of methods with 3<=nesting depth<=5
S6 CC Mean cyclomatic complexity [22]
S7 MCC # of methods with 10<CC<20

S8 AFFC Mean afferent coupling [2]

S9 EFFC Mean efferent coupling [2]

S10 ABKD Mean block depth

S11 ADIH Mean depth of inheritance hierarchy
S12 ALOCPM Mean # of LoC per method

S13 ANOCPT Mean # of constructors per type
S14 ANOFPT Mean # of fields per type

S15 ANOMPT Mean # of methods per type

applied regression analysis and classification algorithms on the data set with the goal
to find the most relevant and influential metrics. A model generated using influential
metrics helps decide whether or not to proceed with fault localization, thus avoiding
misleading recommendations and waste of time.

Our evaluation results in [8] show that the best model is based on random forest;
combines 15 static code, dynamic execution, and test suite metrics; and shows an
excellent discrimination power (AUC = 0.88). The most influential metrics are: four
static metrics (% Methods with LoC>30, % Methods with Nesting Depth>5, %
Methods with 3<=Nesting Depth<=5, Mean # of Fields per Type), four dynamic
metrics (Mean Node Degree, Max. Node Out-Degree, Graph Diameter, Response
for Class), and two test metrics (% Method Coverage, % Methods Covered in Failing
Tests). A slightly less accurate model (AUC = 0.87), based on only 10 metrics, relies
on logistic regression. There is a considerable overlap of eight metrics which yield
an AUC of 0.86 when using logistic regression and 0.87 when using random forest.
These prediction models can be used in two ways: (1) to decide whether or not to
proceed with fault localization and (2) to guide improvements in code quality and
test suites.

4 Contribution and Limitation

We make the following contributions:

* A failure clustering methodology. We propose a failure clustering technique
and a methodology for adapting the idea of debugging in parallel to a real context.
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Table 10 Dynamic metrics

Table 11 Test suite metrics

ID Metric Definition®

D1 vC # of Nodes in call graph

D2 EC # of Edges in call graph

D3 MAXVD Max. node degree

D4 MVD Mean node degree

D5 MAXVI Max. node in-degree

D6 MVI Mean node in-degree

D7 MAXVO Max node out-degree

D8 MVO Mean node out-degree

D9 MSND Avg. start node degree

D10 GD Graph diameter

D11 GR Graph radius

D12 MGD Mean geodesic distance

D13 VCON Node connectivity

D14 ECON Edge connectivity

D15 ClCo Mean clustering coefficient [20]
D16 SCovV % of statement coverage
D17 CBO Coupling between objects [2]
D18 RFC Response for class [2]

4D1: # methods. D2: # method calls. D3: max. # edges
connected to a node. D5: max. # edges entering a node. D7:
max. # edges leaving a node. D10: greatest distance between
any two nodes. D11: min. distance between any two nodes.
DI12: # edges in a shortest path between any two nodes.
D13: min. # nodes that must be removed to break all paths
between two nodes. D14: min. # edges that must be removed
to break all paths between two nodes. D15: measures degree
to which nodes in a graph tend to cluster

ID Metric Definition

T1 T # of tests

T M # of methods

T3 PPT % of passing tests

T4  PFT % of failing tests

5 D Density [29]

T6 G Diversity [29]

T U Uniqueness [29]

T8 DDU Density x diversity x uniqueness [29]

T9  MatSpar  Matrix sparsity

T10 MetCov % of method coverage

T11 COVPT % of methods covered in passing tests
T12 COVFT % of methods covered in failing tests
T13 AVGMV Mean covered methods per test
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* A collection of data sources for failure clustering. We introduce a list of
coverage and noncoverage data that are useful in the clustering of failing tests.

* A new data granularity for failure diagnosis. We propose a new granularity
for program spectra called the syntactic block granularity which considers 18
different types of program elements.

* A new ranking strategy. We propose a ranking approach for SBFL techniques
which leverages dynamic call and data-dependency graphs of failing executions.

* A model to predict the effectiveness of SBFL. We introduce a set of metrics
which influence the effectiveness of SBFL. Using these metrics, we build a model
to predict the effectiveness of SBFL. This model can be helpful in facilitating
fault localization as well.

* A tool-chain for failure diagnosis. We introduce a tool-chain for failure
diagnosis which puts failure clustering and fault localization in a pipeline.

However, we are aware that our work has its limitations. The difficulty of
gathering data for evaluation prevented us from reporting on several case studies. We
evaluated our solution ideas on either C++4- programs or Java programs. However,
a comprehensive evaluation should contain benchmarks from both languages.
Comparing the results, finding similarities, and understanding dissimilarities can
help us better understand the important factors in general and in each category.

In our fault localization evaluations, we assumed that each buggy version
contains only one bug. However, this is not the case in practice. Although we suggest
that before any fault localization attempt, one should do clustering on failing tests
to segregate between faults, a comprehensive evaluation should also consider cases
with multiple bugs.

5 Summary and Outlook

We proposed techniques and enhancements to facilitate failure diagnosis experience
for developers. The proposed techniques can be used stand-alone or form a tool-
chain; applying SBFL on fault-focused clusters yields more accurate results. The
following is how developers and testers can benefit from using our proposed
approaches.

Tester X is responsible for the quality of software development and deployment.
She is involved in performing automated and manual tests to ensure the software
created by developers is fit for purpose. Every week, she runs 1000 scheduled tests.
Test runs take about 2 days. While running tests she collects coverage information.
She has also provided a database of relevant data to measure the similarity between
TCs.

After each test run, developers have two days to analyze failures, find bugs,
repair them, and mark the analyzed failed tests as ready for the next test run. Thus,
tester X collects failing tests and clusters them. The clustering results include a
prediction of the numbers of bugs, groups of failing tests that are failing because of
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the same reason, and one representative test for each cluster of failing tests. Tester
X, then, assigns each group of failures to one developer and asks them to analyze
the representative failing tests to find the reasons behind failures as soon as possible.

Developers Y and Z use SBFL prediction model. Developer Y receives promising
results. She continues using SBFL techniques to get some insight regarding the fault
in her code. Developer Z, on the other hand, does not receive promising results. She
continues the debugging process without using SBFL. However, later she uses the
model to improve the quality of her code to facilitate fault localization.

Note Automated failure diagnosis techniques can be very helpful in reducing
failure analysis time regardless of the programming language. However, a minimum
code and test quality is needed. If software is of poor quality, not only our tool-chain
but any other tool or technique cannot be highly effective on it. Thus, there is a
prerequisite for using such tools and techniques.
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