
Improving the Model-Based Systems
Engineering Process

Michael von Wenckstern

Abstract Modern embedded software systems are becoming more and more com-
plex. Engineering embedded systems raise specific challenges that are rarely present
in other software engineering disciplines due to the systems’ steady interactions
with their environment. Research and industry often describe embedded systems
as component and connector models (C&C). C&C models describe the logical
architecture by focusing on software features and their logical communications.
In C&C models, hierarchical decomposed components encapsulate features, and
connectors model the data flow between components via typed ports. As extra-
functional properties, for example, safety and security, are also key features of
embedded systems, C&C models are mostly enriched with them. However, the
process to develop, understand, validate, and maintain large C&C models for
complex embedded software is onerous, time consuming, and cost intensive. Hence,
the aim of this chapter is to support the automotive software engineer with: (i)
automatic consistency checks of large C&C models, (ii) automatic verification of
C&C models against design decisions, (iii) tracing and navigating between design
and implementation models, (iv) finding structural inconsistencies during model
evolution, (v) presenting a flexible approach to define different extra-functional
properties for C&C models, and (vi) providing a framework to formalize constraints
on C&C models for extra-functional properties for automatic consistency checks.

1 Introduction

The industry area of embedded and cyber-physical systems is one of the largest and
it influences our daily life. The global embedded systems marked are getting up to
225 billion US dollar by end of 2021 [24]. Example domains of embedded systems

M. von Wenckstern (�)
Software Engineering, RWTH Aachen University, Aachen, Germany
e-mail: vonwenckstern@se-rwth.de

© The Author(s) 2022
M. Felderer et al. (eds.), Ernst Denert Award for Software Engineering 2020,
https://doi.org/10.1007/978-3-030-83128-8_12

249

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-83128-8_12&domain=pdf
mailto:vonwenckstern@se-rwth.de
https://doi.org/10.1007/978-3-030-83128-8_12

250 M. von Wenckstern

are automotive, avionics, robotics, railway, production industry, telecommunication,
consumer electronics, and much more.

Model-based engineering, especially component and connector (C&C) models
to describe logical architectures, is one common approach to handle the large
complexity of embedded systems. Components encapsulate software features; the
hierarchical decomposition of components enables formulating logical architectures
in a top-down approach. Connectors in C&C models describe the information
exchange via typed ports; they model black-box communication between software
features.

The current development of complex C&C-based embedded systems in industry
mostly involves the following steps [1, 6]: (1) formulating functional and extra-
functional requirements as text in IBM Rational DOORS; (2) creating a design
model of the software architecture including its environment interactions in SysML;
(3) developing a complete functional/logical model to simulate the embedded
system in Simulink; and (4) system implementation based on available hardware
in C/C++ satisfying all extra-functional properties.

This current development process has the following disadvantages [9]: (a) SysML
models do not follow a formalized approach leading to misunderstandings; (b) the
check between the informal SysML architecture design and the Simulink model
is done manually, and thus, error prone and time consuming; (c) refactoring of
Simulink models (e.g., dividing a subsystem) needs manual effort in updating the
design model; and (d) most tools do not support a generic approach for different
extra-functional property kinds, and thus, these properties are modeled as comments
or stereotypes where consistency checks can only be done manually.

My research [23] aims to improve the development process of large and complex
C&C models for embedded systems by providing model-based methodologies to
develop, understand, validate, and maintain these C&C models. Concretely, my
concepts support the embedded software engineer with: (i) automatic consistency
checks of C&C models; (ii) automatic verification of logical C&C models against
their design decisions; (iii) automatic addition of traceability links between design
and implementation models; (iv) finding structural inconsistencies during model
evolution; (v) providing a flexible framework to define different extra-functional
property types; (vi) presenting an OCL framework to specify (company-specific)
constraints about structural or extra-functional properties for C&Cmodels; and (vii)
generation of positive or negative witnesses to explain why a C&C model satisfies
or violates its extra-functional or structural constraints or its design decisions.

Prototype implementations of above-mentioned concepts and an industrial case
study in cooperation with Daimler AG show promising results in improving the
model-based development process of embedded and cyber-physical systems in
industry.

This chapter is a summary of the PhD thesis Verification of Structural and
Extra Functional Properties in Component and Connector Models for Embedded
and Cyber Physical Systems [23]. This chapter focuses on examples how the
development process for the left part of the V-model can be improved. Detailed
related work analyses comparing different tools and concepts like Mentor Capital,

Improving the Model-Based Systems Engineering Process 251

Polarsys Arcadia, PREEvision [23, Section 2.3], as well as related C&C (modeling)
languages such as AADL, ACME, Ada, AutoFOCUS, AUTOSAR, LabView,MARTE,
Modelica, SysML, SystemC, Verilog, and more [23, Section 3.2 and Section 5.2] are
discussed in the PhD thesis.

2 Systems Engineering Process at Daimler AG

This section presents results of our case study with Daimler AG in 2017 [1].
The case study included several interviews with an employee at Daimler AG to
understand the current model-based and component-based development process as
well as the challenges engineers are facing.

2.1 Current Development Process at Daimler AG

Both ISO 26262 Road vehicles—Functional safety and ISO/SAE 21434 Road
vehicles—Cybersecurity engineering follow the V-model and are the international
standards for automotive industry. The steps on the left side of the V-model from top
to bottom are system design, specification of software safety/security requirements,
software architectural design, and software unit design and implementation; the
steps on the right side from bottom to top are software unit testing, software
integration testing, verification of software safety/security requirements, and item
integration and testing [3].

The design of a system is mostly described as textual requirements with links
to each other; one famous requirement management tool is IBM Rational DOORS
(short DOORS). Later extra-functional requirements for safety or security of a
system’s design are identified; examples for safety (security process is based on the
safety one) are functional safety concept, technical safety concept, system safety,
and hardware failures. These extra-functional and stakeholder requirements are
integrated into existing requirements of a system’s design.

The design of a software architecture is mostly modeled in SysML block diagram
definitions. Common SysML tools in industry are Enterprise Architect, ArchiMate,
Metropolis, Cameo Systems Modeler, and PTC Integrity Modeler. The requirements
are modeled separately in these tools and are linked to the corresponding modeling
elements, so that traceability is always given [19].

After the design (high-level interaction between components themselves and
their environment) is modeled in SysML, engineers at Daimler AG create manually
an executable model in Simulink regarding to the previously defined design deci-
sions. To have the traceability between requirements, SysML design models, and
Simulink implementation models, engineers at Daimler AG add to every subsystem
in SysML and in Simulink an information block containing a link to the requirement

252 M. von Wenckstern

specification in DOORS [1]. Adding and maintaining these links manually is time
consuming and error prone.

This development process has the following disadvantages:

• The check between the informal SysML architecture design and the Simulink
model is done manually.

• The requirement links must be created manually for architectural design model
and for the Simulink model.

• There exists no automatic check in finding outdated Simulink subsystems after
updating SysML design models (e.g., due to model evolution).

• If Simulink models are refactored (e.g., subsystem is split into several ones), it
may occur that the SysML design model is not updated, and then the architecture
model becomes obsolete.

• Early inconsistencies in the SysML software architecture design, created by
different persons or even different teams in large companies, must be detected
manually.

2.2 Improving the Development Process at Daimler AG

To mitigate most of these above-mentioned disadvantages, this subsection presents
a slightly modified development process and verification tools, as shown in Fig. 1.
The advantage of this new process is that it is completely compatible to existing
tools (cf. right side of Fig. 1). The general workflow of this new process including
existing tools is:

1. DOORS requirements are automatically extracted to a set of textual require-
ments.

2. Engineers create manually for each requirement a C&C high-level design
model.

3. C&C design models are automatically transferred to graphical SysML diagrams.
4. The links between DOORS requirement IDs and C&C design models enable

to automatically derive tracing information between DOORS and SysML
diagrams.

5. Synthesis algorithms automatically check against structural inconsistencies in
high-level C&C design models.

6. Engineers add manually extra-functional properties to the C&C high-level
design model based on the textual requirements.

7. The OCL (Object Constraint Language) framework checks automatically the
consistence of the added extra-functional requirements of the high-level design.

8. Engineers create manually the functional C&C model based on textual require-
ments and the C&C high-level design models.

9. Verification automatically checks whether the functional C&C model satisfies
all C&C high-level design models.

Improving the Model-Based Systems Engineering Process 253

10. The functional C&C model is automatically transformed to a Simulink model.
11. The result of step 9 enables to automatically derive tracing information between

all SysML diagrams and the one Simulink model as well as tracing information
between all DOORS requirements and the one Simulink model.1

12. The Simulink model is executed. Measured runtime information (e.g., timing)
automatically enriches the C&C model via extra-functional properties.

13. Engineers enrich manually the C&C model with extra-functional properties
based on user manuals of software or hardware components, for example, price
or ASIL.

14. The OCL framework checks automatically the consistency of the extra-
functional properties added in steps 12 and 13 to the functional C&C model.

15. The OCL framework in combination with the verification in step 9 validates
automatically whether all extra-functional properties in the functional C&C
model satisfy all extra-functional requirements in all C&C design models.

Even though the new toolchain is larger, there are less manual steps needed due to
the higher automation of the steps in this new toolchain. Creating SysML diagrams

Fig. 1 Modified development process, compatible to V-model (only left side of V-model is shown
here)

1 Due to existing tracing information between SysML and DOORS due to steps 2 and 3.

254 M. von Wenckstern

based on textual requirements needs one manual step in the existing approach:
DOORS →2 SysML diagrams. The improved toolchain also needs only one manual
step to translate textual requirements to C&C high-level design models as shown
in Fig. 1: DOORS ⇒ Textual Requirements → C&C High-Level Design Models
⇒ SysML diagrams. The same holds to create Simulink models based on DOORS
requirements and SysML diagrams, where the additional manual step in the existing
approach is to create Simulink models manually, whereas in the new toolchain the
functional C&C models are created manually: DOORS → SysML diagrams →
Simulink model ≡ DOORS ⇒ Textual Requirements → C&C High-Level Design
Models → Functional C&C Model ⇒ Simulink model.

In the existing approach, the tracing between DOORS and SysML diagrams,
between DOORS and Simulink model, as well as between SysML diagrams and
Simulink model is done manually. In contrast, the new toolchain does the
tracing between C&C high-level design models and functional C&C model
automatically. Thus, only the tracing between textual requirements and C&C high-
level design models is done implicitly manually as each C&C design model belongs
to one requirement. Based on this implicit relation between textual requirements
and C&C high-level design models as well as the automatically generated tracing
between C&C high-level design models and functional C&C model, the tracing for
textual requirements and functional C&Cmodel can also be done automatically. The
two automatic transformations enable to automatically derive the tracing between
DOORS requirements and the Simulink model. This means three manual tracing
relations in the old approach are equivalent to only one manual tracing relation in
the new toolchain.Thus, the new toolchain saves a lot of work, especially in agile
systems engineering, and it prevents manual tracing errors.

Furthermore, the new toolchain adds due to its unique semantics many
additional automatic verifications to ensure better model quality and to prevent
modeling errors as early as possible: steps 5, 7, 9, 14, and 15.

C/C++ compiler/linker toolchains create one executable file based on many
C/C++ source code text files. In a similar way, the EmbeddedMontiArc toolchain
creates one C&C high-level design based on multiple textual text input files. The
combined C&C high-level design can be graphically displayed and/or logged into
one “merged” larger text file. The advantage of splitting up the design decisions
into several textual files (similar as programming languages do it) is the ability to
version and merge changes in these files separately. Commercial SysML tools such
as PTC Integrity Modeler (short PTC IM) use a database approach, which supports
to version only the entire (design) model including all SysML elements used by
different development teams. In PTC IM different teams work in one database
model, as otherwise (tracing) links between elements—created in different layers or
by different teams—are not possible. In contrast to the database linking approach,
the presented textual C&C modeling language family (cf. Sect. 4) to specify C&C
high-level designs as well as functional C&C models uses readable full qualified

2 ⇒: automatic transformation; →: manual transformation.

Improving the Model-Based Systems Engineering Process 255

names (instead of generated encrypted IDs by PTC IM) to establish the linking
process.

The synthesis algorithm enables to check the C&C high-level design against
inconsistencies [10, 12]. If this algorithm generates a functional C&C model based
on the specified high-level design, then the design is consistent; otherwise the
specified design is inconsistent. For inconsistent designs, the synthesis algorithm
generates user-friendly error messages, which include a natural text of the problem
description, and a minimal C&C witness containing the involved components
causing the conflict. Since these checks are completely automatic, they can be
integrated in a commit-based or nightly continuous integration process. These
algorithms are described by Maoz and Ringert [15].

The high-level design can be enriched with extra-functional properties such as
safety, performance, or security ones. The strong typed tagging mechanism allows
to tag only correct elements which reduces human errors (e.g., shifting a line
lower). An example of a check for the tagging mechanism is unit correctness: A
velocity tag of a car cannot be 9 kg. Since for each extra-functional property
consistency constraints can be defined, the validation framework (cf. Sect. 7) can
check full-automatically (no further user action is required) the correctness of the
design model with its enriched extra-functional properties. For example, the tool
can check whether the price of a component is larger than the sum of the prices of
its subcomponents.

EmbeddedMontiArc (cf. Sect. 6) is a textual modeling language extending
Simulink with new features such as complete unit support as well as component
and port arrays. These extensions facilitate an easier description of functional
C&C models: (1) Model references must not be copied to be used multiple times,
and (2) stronger types with units prevent inconsistencies when connecting ports.
Additionally, our textual approach is based on the modular Java class concept that
supports to split one model into several textual files to be modified and versioned
by different teams.

Furthermore, the layout algorithm [23, Subsection 8.5.1.] creates nice graphical
representations with boxes and lines of the textual model. These graphical represen-
tations enable an easier navigation between different components. Furthermore, the
layout algorithm avoids manually (and time-consuming) adaptions of the graphical
model when adding new ports.3 Based on the automatically calculated layout of
the textual model, a MATLAB script file containing Simulink API calls with x and
y coordinates of subsystems creates the Simulink model. Hence, the here presented
workflow can be easily integrated into the existing workflow of Daimler AG being
based on SysML and Simulink tools.

Additionally, my PhD thesis [23, Section 7.4f] also defines formally when a
functional model satisfies all its design models. If the design verification was
successful, then the tooling infers automatically all tracing information/links. In

3 Simulink does not have a layout algorithm, yet [7]. But other modeling tools such as Ptolemy II
[4] and LabView [18] have one.

256 M. von Wenckstern

case the functional model does not satisfy the design model, then non-satisfaction
witnesses with user-friendly error messages pointing directly to the error locations
are generated.

Besides the case study focusing on structural consistency checks which is
explained in this chapter, there exist also case studies with Daimler AG [21],
BMW Group [9], and FEV GmbH [20] with focus on behavioral parts of C&C
and Simulink models. All these case studies in the automotive domain helped
to understand the model-based systems engineering process in detail and how to
improve it.

3 Creating C&C High-Level Designs Based on Requirements

In step 2 in Sect. 2.2 the engineer creates for each textual requirement, a C&C high-
level design model. The top part of Fig. 2 shows one requirement of the ADAS
(advanced driver assistant system) requirement FA-6 based on our case study with
Daimler AG. The prefix FA is an abbreviation of Fahrerassistenzsystem
which is the German word for ADAS. The requirementFA-6 is part of the functions
describing the Distronic feature.

The bottom part of Fig. 2 shows the manual created C&C view. The word C&C
view is used as synonym for C&C high-level design in this chapter. This view views

Fig. 2 Requirement FA-6 of unit Distronic of ADASv4 (top) and the view created for this
requirement by the domain experts (bottom); copied from [1, Fig. 5].

Improving the Model-Based Systems Engineering Process 257

the high-level architectural design model for this specific requirement, for example,
how the dataflow between different C&Cmodel should be. The colors in the text and
in the C&C view illustrate the mapping between both. The names in the if condition
phrase are mapped to input ports, as the Distronic component needs to read
these values to produce the correct reaction.

The solid arrows in Fig. 2 represent abstract connectors. The left top abstract
connector going from Vehicle to the Distance_Object_m abstract port
of the Distronic components states that the Vehicle component has an
input port which delegates its value without modifying it to an input port of
the Distronic subsystem having the signal name Distance_Object_m.
As the view shows only an abstraction (one viewpoint), the hierarchy between
Vehicle and Distronic is not direct; thus, in the Functional C&C Model
the vehicle may have the subcomponent AdaptiveCruiseControl, and
AdaptiveCruiseControl has as one subcomponent Distronic.

The dashed arrows in Fig. 2 represent abstract effectors. The top right
abstract effector going from the abstract port Deceleration_pc of the
Distronic component to Acceleration_pc of the Vehicle component
states that the output port with the signal name Deceleration_pc of the
Distronic component influences the value of the output port with the signal
name Acceleration_pc of the Vehicle component. Influence means that
value of Deceleration_pcmay be modified by other components.

The abstract port Deceleration_pc is not mentioned in the FA-6 require-
ment. However, the domain experts4 included this abstract port in the C&C view as
the deceleration value (100% deceleration means the car is not accelerating at all,
0% deceleration means that the car accelerates with its maximal acceleration) is a
limiting factor of the vehicle’s acceleration, and the domain experts meant that this
port is crucial to understand the implementation of this requirement.

4 Automatic Structural Consistency Checks for Design
Models

An advantage of the improved development process is the automatic consistency
check in step 5 between two C&C high-level design models.

Figure 3 shows two further created C&C design models by two different
engineers. The synthesis algorithm [16] throws an exception as it cannot generate
a valid functional C&C model based on the given three views: view FA-6 in
Fig. 2 as well as view FA-31 and view FA-32 in Fig. 3. The exceptionmessage
would be similar toDesign conflict between view FA-31 andview FA-32: The

4 The word domain expert in this chapter refers to the domain expert (an employee at Daimler
AG in 2017) who created the C&C high-level designs based on the textual requirements in the
industrial case study together with Daimler AG.

258 M. von Wenckstern

Fig. 3 Conflict in C&C high-level design models view FA-31 and view FA-32

port VMax_kmh of VelocityControl component can only progress a single
value for each time step. However it receives two different values: (1) one value
from the Limiter component in view FA-31 and (2) another value from the
BrakeAssistent component in view FA-32.

These precise exception messages of the synthesis algorithm help the architects
who are creating the C&C high-level design models to resolve inconsistencies in the
architecture while they are creating their view design models for each requirement.

5 Satisfaction Verification Between Design and Functional
Model

In step 8 in Sect. 2.2 the engineer creates the functional C&C model based on all
textual requirements and based on all C&C high-level design models. In our case
study with Daimler AG, the ADAS part contained of 68 requirements [1, Table
1] and the corresponding C&C model had over 1 000 C&C components and over
3 500 C&C ports [23, Table 8.17]. For such a large functional model it is very
time consuming to verify manually whether it satisfies the previously in step 2
defined architecture containing of many C&C high-level design models. Therefore,
the Software Engineering chair including the author of this chapter developed a
verification tool to automatically check the satisfaction verification between all
C&C design models and the one C&C functional model. To increase the trust of

Improving the Model-Based Systems Engineering Process 259

the result provided by the verification tool, the tool generates for each C&C design
model one satisfaction witness illustrating why the functional model satisfies this
C&C design model.

Figure 4 presents the generated satisfaction witness reasoning why the C&C
functional model5 satisfies the C&C design model in Fig. 2. The verification
algorithm only creates textual output of witnesses; the layout tool, which also
transforms the textual C&C functional models to graphical Simulink models in
step 10, generates good understandable graphical witnesses such as the one shown
in Fig. 4.6

The blue highlighted connectors in the bottom left part of Fig. 4 belong to the
connector chain of the witness representing the abstract connector going from
Vehicle (unknown port) to Distronic’s V_Obj_rel_kmh port in the C&C
high-level design. Additionally, Fig. 4 highlights the witness elements (i.e., upper
colored atomic blocks and signal lines in the C&C functional model) belonging
to the abstract effector starting at the Distance_Object_m port and ending at
Deceleration_pc port of the Distronic subsystem.

Figure 4 shows all elements of the generated satisfaction witness, that is, it
contains all components, ports, and connectors so that all elements of the C&C high-
level design in Fig. 2 are matched at least once. Note that the satisfaction witness
shows for each abstract connector and abstract effector only the shortest path in the
C&C functional model. In contrast, the tracing witness contains ALL paths of the
C&C functional model which match any element described in the C&C high-level
design. The verification witness is used as argument to reason why or also why not
a functional model satisfies a specific design model.

The purpose of a tracing witness7 is to trace down to all components, ports and
connectors in the functional model based on a design model. A practical use case for
the tracing witness is the following: Due to a product update some requirements and,
thus also, some high-level design models are updated. The generated tracing witness
identifies all elements in the functional C&Cmodel which are affected by the design
and requirement updates. The size and complexity of the generated tracing witness
enables a first effort and price estimation for the product update. Furthermore, the

5 The complete graphical C&C model is available from:https://embeddedmontiarc.github.
io/webspace2/svg/vis/v4/daimler.v4.oeffentlicher_Demonstrator_FAS_v04.dEMO_FAS.
dEMO_FAS.subsystem.dEMO_FAS.dEMO_FAS_Funktion_extended.html.
6 The generated graphical output of the layout tool is available from
https://embeddedmontiarc.github.io/webspace2/svg/vis/v4/FA6_Witness/daimler.v4.
oeffentlicher_Demonstrator_FAS_v04FA6.dEMO_FAS.dEMO_FAS.subsystem.dEMO_FAS.
dEMO_FAS_Funktion_extended.html. Figure 4 shows a manually and slightly modified layout
which is space and color optimized for this chapter.
7 The generated layout of the tracing witness for requirement FA-6 is available from
https://embeddedmontiarc.github.io/webspace2/svg/vis/v4/FA6_TracingWitness/daimler.
v4.oeffentlicher_Demonstrator_FAS_v04FA6Tracing.dEMO_FAS.dEMO_FAS.subsystem.
dEMO_FAS.dEMO_FAS_Funktion_extended.html.

https://embeddedmontiarc.github.io/webspace2/svg/vis/v4/daimler.v4.oeffentlicher_Demonstrator_FAS_v04.dEMO_FAS.dEMO_FAS.subsystem.dEMO_FAS.dEMO_FAS_Funktion_extended.html
https://embeddedmontiarc.github.io/webspace2/svg/vis/v4/daimler.v4.oeffentlicher_Demonstrator_FAS_v04.dEMO_FAS.dEMO_FAS.subsystem.dEMO_FAS.dEMO_FAS_Funktion_extended.html
https://embeddedmontiarc.github.io/webspace2/svg/vis/v4/daimler.v4.oeffentlicher_Demonstrator_FAS_v04.dEMO_FAS.dEMO_FAS.subsystem.dEMO_FAS.dEMO_FAS_Funktion_extended.html
https://embeddedmontiarc.github.io/webspace2/svg/vis/v4/FA6_Witness/daimler.v4.oeffentlicher_Demonstrator_FAS_v04FA6.dEMO_FAS.dEMO_FAS.subsystem.dEMO_FAS.dEMO_FAS_Funktion_extended.html
https://embeddedmontiarc.github.io/webspace2/svg/vis/v4/FA6_Witness/daimler.v4.oeffentlicher_Demonstrator_FAS_v04FA6.dEMO_FAS.dEMO_FAS.subsystem.dEMO_FAS.dEMO_FAS_Funktion_extended.html
https://embeddedmontiarc.github.io/webspace2/svg/vis/v4/FA6_Witness/daimler.v4.oeffentlicher_Demonstrator_FAS_v04FA6.dEMO_FAS.dEMO_FAS.subsystem.dEMO_FAS.dEMO_FAS_Funktion_extended.html
https://embeddedmontiarc.github.io/webspace2/svg/vis/v4/FA6_TracingWitness/daimler.v4.oeffentlicher_Demonstrator_FAS_v04FA6Tracing.dEMO_FAS.dEMO_FAS.subsystem.dEMO_FAS.dEMO_FAS_Funktion_extended.html
https://embeddedmontiarc.github.io/webspace2/svg/vis/v4/FA6_TracingWitness/daimler.v4.oeffentlicher_Demonstrator_FAS_v04FA6Tracing.dEMO_FAS.dEMO_FAS.subsystem.dEMO_FAS.dEMO_FAS_Funktion_extended.html
https://embeddedmontiarc.github.io/webspace2/svg/vis/v4/FA6_TracingWitness/daimler.v4.oeffentlicher_Demonstrator_FAS_v04FA6Tracing.dEMO_FAS.dEMO_FAS.subsystem.dEMO_FAS.dEMO_FAS_Funktion_extended.html

260 M. von Wenckstern

F
ig
.4

Sa
ti
sf
ac
ti
on

w
it
ne
ss

of
vi
ew

FA
-6

Improving the Model-Based Systems Engineering Process 261

components inside the generated tracing witness supports management in booking
the needed teams for this product update.8

6 Creating C&C Functional Models Efficiently with
EmbeddedMontiArc

EmbeddedMontiArc is a textual domain-specific language to create functional C&C
models for cyber-physical systems in an efficient way. Therefore, EmbeddedMon-
tiArc supports the international systems of units, generics, component libraries,
configuration parameters, as well as arrays of ports and component instantiations
to facilitate modular and reusable functional architectures.

EmbeddedMontiArc is a textual modeling family to describe both structural
(as already shown in the previous sections) and also behavior models. Behavioral
languages part of EmbeddedMontiArc family are: automata, MontiMath (typed
version of MATLAB),MontiMathOpt (math plus nonlinear optimization problems),
CNNArch (convolutional networks for deep learning), and OCL (object constraint
language for logical declarative description of components). This chapter does not
focus on the behavioral languages. However, the publications of Kusmenko and
von Wenckstern [8, 9, 11–13] contain behavioral models describing the logic of
self-driving cars created with EmbeddedMontiArc. A complete behavioral Embed-
dedMontiArc model for the logic of PacMan to escape four ghosts including a
simulator and a debugger exists as online demonstrator.9

The functional C&C model in Fig. 4 shows the OEM perspective, where the
Vehicle component receives the distance to the preceding vehicle as number
input directly from a smart sensor doing already the image capturing as well as the
object recognition. The smart sensor (developed by an automotive tier-1 supplier
for different OEMs) receives as input an image matrix of the front car camera,
performs spectral clustering to divide the images into segments, the object detector
can separate the objects to identify the car in front and to measure the distance to it.

This section explains the features and the syntax of EmbeddedMontiArc on an
image spectral cluster component [14] which could be part of the smart sensor.

The basic idea is depicted as a functional C&C model in Fig. 5 and can be
summarized as follows. Let xij ∈ [0, 255]3 be the three-dimensional pixel value
of an image at position (i, j) encoding a point in the HSV (hue, saturation, value)
color space. For better handling, an N × M image is represented as a vector,
mapping a position (i, j) to the vector index M · i + j , where N and M are

8 Mostly subcomponents can be matched to teams; for example, team one is respon-
sible for Tempomat and VelocityControl, and team two works on Distronic,
Distancewarner, and EmergencyBrake.
9 The online demonstrator is available from: https://embeddedmontiarc.github.io/webspace/
InteractiveSimulator/indexPacman.html.

https://embeddedmontiarc.github.io/webspace/InteractiveSimulator/indexPacman.html
https://embeddedmontiarc.github.io/webspace/InteractiveSimulator/indexPacman.html

262 M. von Wenckstern

Fig. 5 C&C architecture of the SpectralClusterer

the height and the width of the image, respectively. First, a symmetric similarity
matrixW ∈ R

NM×NM is computed. Consequently, the entry ofW at position (h, k)
provides information on the similarity of the two pixels corresponding to the indexes
h and k. Pixel similarity may be defined in terms of distance, color, gradients, etc.
Second, the so-called graph Laplacian is computed as L = D − W where D is
the so-called degree matrix defined as D = diag (W1N×M) with 1NM being an
N · M dimensional column vector full of ones. Often it is advantageous to use the
symmetric Laplacian

Lsym = D− 1
2LD− 1

2 = diag (1NM)−D− 1
2WD− 1

2 (1)

as outlined in [22]. For efficiency reasons, as they do not carry valuable cluster
information the identity matrix and the minus depicted in red are often dropped in
concrete implementations obtaining the simplified term highlighted in blue. Note
that computing Lsym requires a matrix inversion on the diagonal matrix D as well
as two matrix multiplications. Now the eigenvectors corresponding to the k smallest
eigenvalues of Lsym have to be computed where k is the number of clusters we
want to detect. If this number is unknown, an index can be used to estimate it [5].
Furthermore, let U be an NM × k matrix with the k eigenvectors as its columns.
Each row of this matrix represents one pixel in a feature space which should be
easier to cluster by the standard k-means algorithm.

EmbeddedMontiArc is a textual domain-specific language to model logical
functions in a C&C based manner. EmbeddedMontiArc places emphasis on the
needs of the embedded, cyber-physical systems, as well as the automotive domains
and is particularly used for controller design [9]. As an example, the elaborate
numeric type system allows declarations of variable ranges as well as accuracies.
Furthermore, units are an inherent part of signal types, and hence tedious and error-
prone tasks like checking the physical compatibility of signals (weights cannot be
added to lengths) as well as unit or prefix conversion (feet to meters, km to m) are
delegated to the EmbeddedMontiArc compiler.

Improving the Model-Based Systems Engineering Process 263

component NormalizedLaplacian
<N1 n> {

ports in diag Q^{n,n} degree,
Q^{n, n} similarity,

out Q^{n,n} nLaplacian;
implementation Math{
nLaplacian=degree^-.5*
similarity*degree^-.5;

}
}

1
2
3
4
5
6
7
8
9
10

component SpectralClusterer
<N1 n, N1 k=4, N1 maxCls=1> {

ports in Q^{n, n} img[3],
out (-1, 4)^{n*n, maxCls} cluster;

instance Similarity<n> sim;
instance NormalizedLaplacian<n*n> nL;
instance EigenSolver<n*n,k> eS;
instance KMeansClustering
<n*n, k, maxCls> kMC;

connect img[:] -> sim.img[:];
connect sim.degree -> nL.degree;
connect sim.similarity -> nL. similarity;
connect nL.nLaplacian -> eS.matrix;
connect eS.eigenVectors -> kMC.vectors;
connect kMC.cluster -> cluster;

}

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16

1
2
3

Model-Paths: [img, lib/math]
Main-Component-Instantiation:

SpectralCluster<n=50>;

Fig. 6 Textual EmbeddedMontiArc code of the graphical C&C SpectralClusterer com-
ponent shown in Fig. 5. (a) EmbeddedMontiArc model of SpectralClusterer. (b) Embed-
dedMontiArc model of atomic component NormalizedLaplacian. (c) Main component
instantiation

Figure 6 shows how the spectral cluster in Figure 5 is modeled in Embedded-
MontiArc. Figure 6b represents one subcomponent of (a). As EmbeddedMontiArc is
inherent to C&C languages, the main language elements of EmbeddedMontiArc are
component and connect. While the former defines a new component followed
by its name, for example, in line 1 of Fig. 6a, the latter connects two ports of
subcomponents with each other, for example, in lines 10–15 in Fig. 6a.

The behavior of a component can be either defined by a hierarchical decompo-
sition into subcomponents as in the case of Fig. 6a or using an embedded behavior
description language.

The behavioral language shown in this code example is a matrix-based math
language, used in lines 6–8 of Fig. 6b respectively. As EmbeddedMontiArc is
strongly typed, errors like wrong matrix dimensions are caught at compile-time, in
contrast to MATLAB/Simulink where this is a runtime exception. A matrix property
system leverages performance optimizations as well as further compatibility checks
in the compilation phase. If a matrix is declared to be diagonal, both memory and
computational complexity of the generated code can be reduced dramatically. If
furthermore, the domain of the matrix is constrained to non-negative entries, it can
be inferred that the matrix is positive-semidefinite allowing the inversion function
to be used on it and guaranteeing that the result will be positive-semidefinite again
[2].

As this spectral clustering example shows each EmbeddedMontiArc component
resides in its own text file so that multiple users or teams can work on one large C&C
modeling project simultaneously. Compared to other C&C languages where models
are stored in a proprietary binary format in one single file, such as Simulink’s slx
format, this facilitates the usage of version control systems, merging, and conflict
solving but also textual searching in model repositories.

264 M. von Wenckstern

The next paragraphs explain EmbeddedMontiArc textual modeling language
more in detail. The modeling paradigm of EmbeddedMontiArc is based on Java
with language elements from Ada. The Main.txt file in Fig. 6c is similar
to Java’s manifest file. Line 1 defines model paths where the parser looks for
component type definitions; in this example it includes the img (for image)
and the library/mathamatics folders to find the SpectralCluster and the
NormalizedLaplacian type. Lines 2 and 3 specify the top level component
by creating one component instance of the SpectralCluster component type
whereby it bounds the generic parameters with the following values n=50, k=4,
and maxCls=1. The last two parameters may not be specified as shown in line 3
in (c), as k and maxCls have default values. The general generic concept is based
on Java, and the concepts to have default parameters and to also enable parameter
binding by name and not only via position are borrowed from Ada.

The support of generics in EmbeddedMontiArc enables high reusage which is not
possible in Simulink yet. For example, for applying the same clustering algorithm
on a 100× 100 image instead of the small 50× 50, one requires only to replace the
expression n=50 to n=100 in line 3 in (c).

Lines 1 and 2 in Fig. 6a define the SpectralClusterer component type
which has three input and one output ports as well as three generic parameters.
The three generic parameters are of type N1 representing the mathematical type N1
accepting values 1, 2, 3,

Line 3 defines the three input ports by applying port array notation. The names
of the input ports are img[1], . . ., img[3] for the three color channels HSV. All
three ports accept as values n×n (which is in our example 50×50) rational matrices
which is defined as Q^{n, n} in EmbeddedMontiArc; Q represents the math type
Q. All three ports could be used independently, for example, by connecting each of
them to different subcomponents. The SpectralClusterer produces as output
a n·n×maxCls matrix (which is in this example a vector with 2 500 elements) with
the cluster id of the pixel; all elements of the cluster matrix are in the interval
from −1 to +4 (including both end points).

Line 5 instantiates one Similarity subcomponent instance which accepts as
input a 50×50 (n = 50) matrix and produces as output the similarity and the degree
matrix of type Q2 500×2 500.

Line 6 instantiates the NormalizedLaplacian subcomponent instance and
bounds the valueNormalizedLaplacian.n to 2500 (SpectralClusterer
.n = 50) which is defined in Fig. 6b.

Lines 7 and 8 instantiate the two further subcomponents. Lines 10 to 15 connect
the ports of the defined subcomponents as shown in Fig. 5.

EmbeddedMontiArc also supports to add algebraic information for matrix types
as shown in line 3 in Fig. 6b with the keyword diagonal.

Additionally, EmbeddedMontiArc supports units. For example, port
in (0 km/h : 250 km/h) V_Obj_rel_km defines the input port
V_Obj_rel_kmh of the Distronic component as shown in Fig. 4. The strong
type system with units prevents errors like connecting ports with incompatible
units such as Distance_Object_m having port type (0m : 500m) with port
V_Obj_rel_kmh.

Improving the Model-Based Systems Engineering Process 265

The textual syntax for C&C design models for step 2 in Sect. 2.2 is very
similar to the textual syntax of EmbeddedMontiArc shown in Fig. 6a. For example,
the port definition in design models support a question mark as port type to
express underspecification: port out ? cluster. Detailed information about
the concrete and abstract syntax of the textual C&C high-level design and functional
modeling languages is available in my PhD thesis [23, Chapters 3, 4, 7].

7 Enriching C&C Functional Models with Extra-Functional
Properties in a Consistent Way

Section 6 showed the textual modeling languages for C&C high-level design models
and for C&C functional models. Section 3 presented the concept how to derive the
high-level design models from textual requirements and how to create one functional
C&C model based on the high-level designs and the requirements. These both
sections covered the steps 1–11 of Sect. 2.2.

This section continues with step 13 how the engineer enriches the functional
C&Cmodel with extra-functional properties. Therefore, this section shows first how
to define a new tag schema to enrich C&C components with ASIL (automotive
safety integrity level) information. Later, this section presents a tag model which is
to conform to the previously defined tag schema to tag the Vehicle subcompo-
nents of Fig. 4 with concrete ASIL levels. At the end this section explains how to
formulate the extra-functional constraint for ASIL in OCL: A composed component
cannot have higher ASIL than its subcomponents.

Figure 7 shows how to define a new tag schema and how to enrich it with
functional C&C models. Line 1 in (a) gives the tag schema a name so that it can
be used in tag models. Line 2 in (a) creates the new tag type asil which accepts as

tagschema EFP1Schema {
// enumeration type: asil can have one of the values QM, ..., ASIL-D
tagtype asil: [QM | ASIL-A | ASIL-B | ASIL-C | ASIL-D] for Component;

}

1
2
3
4

conforms to EFP1Schema;
tags AsilTags{
tag AdaptiveCruiseControl with asil = QM;
tag Tempomat with asil = ASIL-C;
tag VelocityControl with ASIL-D;
tag Distronic with asil = ASIL-B;

}

1
2
3
4
5
6
7

Fig. 7 ASIL tag schema and tag model example. (a) Tag schema definition of extra-functional
property asil. (b) Tag model enriching components with extra-functional property asil

266 M. von Wenckstern

Fig. 8 OCL code to force that composed component cannot have higher ASIL than its subcom-
ponents. The right part shows the class diagram of the abstract syntax of EmbeddedMontiArc with
gray background merged with the abstract syntax defined by the tag schema in Fig. 7a with white
background. Detailed information about the abstract syntax is available in my PhD thesis [23,
Chapter 4]

values QM (not safety relevant), ASIL-A, . . ., ASIL-D (highest safety level). One
tag schema can contain multiple tag types to build up tag libraries. For example, a
tag schema SafetySecurity could contain the tag types asil, reliability, encryption,
and firewallConfig.

Figure 7b presents how to tag the componentsAdaptiveCruise,Tempomat,
and VelocityControl in Fig. 4 with the asil levels QM, ASIL-B, ASIL-C,
and ASIL-D.

Figure 8 shows the OCL code checking that the ASIL of all subcomponents must
be higher or equal than the ASIL of the composed component. Lines 3 and 4 define
the asilNb helper list. This list maps each ASIL to a number so that a comparison
of ASILs is possible. The expression asilNb.indexOf(x) returns 0 for QM, 1
for ASIL_A, 2 for ASIL_B, 3 for ASIL_C, and 4 for ASIL_D.

The indexOf10 function is extended to accept a set as parameter by
applying the Java indexOf operator to each element of the set; for example,
asilNb.indexOf({QM, ASIL_C}) returns {0, 3}. OCL extends all
Java operators to set and list operators when applying it element-wise makes
sense; this way OCL expressions—often dealing with sets due to its navigations of
associations—come along with less forall or exists statements, which makes
the code easier to read.

Line 7 takes the lowest number of an ASIL when a component is tagged with
two different ASIL values, and it takes 0 for QM when the subcomponent has not
been tagged at all. Line 12 does the comparison.

Figure 9 shows the graphical representation of the generated positive consistency
witnesses of the ASIL constraint for the AdaptiveCruisteControl subcom-
ponent in the Vehicle example in Fig. 4. Every witness shows (a) the context
(which is the AdaptiveCruiseControl component instance being matched by

10 cf. http://mbse.se-rwth.de/book2/index.php?c=chapter3-2.

http://mbse.se-rwth.de/book2/index.php?c=chapter3-2

Improving the Model-Based Systems Engineering Process 267

Fig. 9 Positive consistency witness of asil constraint for AdaptiveCruiseControl exam-
ple in Fig. 4 enriched with the values shown in Fig. 7b.

line 1 in Fig. 8), (b) all elements stored in the selection variable (which are the
three subcomponents Distronic, Tempomat, and VelocityControl being
matched by line 5 in Fig. 8), (c) filling elements to understand the witness (e.g., if a
port is part of (a) or (b), then also the corresponding component to which this port
belongs to is shown in the witness), and (d) all extra-functional properties being
addressed in the OCL constraint (which is in this case only the asil one being
used in lines 7 and 10 in Fig. 8).

The generated positive (or negative) consistency witnesses are as minimal as
possible. Thus, it is very easy for the engineer to understand why (or also why not)
a large functional C&C model satisfies a specific consistency constraint rule as the
ASIL one in this example.

This section presented a model-driven approach for adding extra-functional
properties to functional C&C models. The here shown tagging mechanism enables
noninvasive extensions of functional C&C models and also C&C high-level design
models (shown in the next section) with attributes for extra-functional properties.
Importantly, this concept provides means for integrated formal analyses of the
consistency of tagged values. Consistency ranges from type-safety and units of
quantitative measures to complex dependencies across component hierarchies as
well as between component definitions and their instances. The OCL framework
provides a way to define and to check rich consistency rules of extra-functional
property values based on selection (line 5 in Fig. 8), aggregation (lines 6–8), and
comparison (line 12) operators. This work allows for independent definition and
organization of tagged properties to support reuse across models and development
stages.

More OCL consistency examples for real-life problems are available in my PhD
thesis [23, Chapter 6] and in the paper [17].11

11 The OCL verification tool is available under https://git.rwth-aachen.de/monticore/publications-
additional-material/-/tree/master/OCLVerifyTool.

https://git.rwth-aachen.de/monticore/publications-additional-material/-/tree/master/OCLVerifyTool
https://git.rwth-aachen.de/monticore/publications-additional-material/-/tree/master/OCLVerifyTool

268 M. von Wenckstern

8 Automatic Extra-Functional Property Verification Between
Design and Functional Models

The previous section illustrated how easy it is to enrich functional C&Cmodels with
extra-functional properties. Additionally, Sect. 3 presented how company specific
consistency constraints can be easily defined with our OCL framework and how the
generated positive consistency witness looks like.

This section shortly introduces the last step 15 of the improved model-based
development process elucidated in Sect. 2.2. This section explains the general idea
how to check whether all extra-functional properties in the functional C&C model
satisfies all extra-functional requirements specified in all C&C high-level design
models.

The top part of Fig. 10 presents an extra-functional requirement about the worst
case execution time for the critical path inside the Distronic component: If the
distance to the preceding vehicle decreases, distronic decelerates within 20 ms.

The bottom left part shows the corresponding graphical C&C high-level
design model; the effector from the Distance_Object_m port to the
Deceleration_pc port has been tagged with the extra-functional requirement:
wcet ≤ 20ms

The bottom right part reprints the Distronic component of Fig. 4. Based on
the measured runtime information (cf. step item 12), the atomic subcomponents of
Distronic have been enriched with the extra-functional propertyexecutiontime
values: (i) both multiplication blocks mult1 and mul2 need 7 ms; (ii) the linear
and saturate need 10 ms, as well as the sum block needs only 5 ms.

Figure 11 defines the tag types et (execution time) for Components and wcet
(worst case execution time) for Effectors. Both the tag schema and the model
language support all SI units completely as shown in lines 4 and 7: the execution
time of a component can only have a value between 0ms and 1min.

Fig. 10 ASIL tag schema and tag model example

Improving the Model-Based Systems Engineering Process 269

tagschema ExecutionTime {
// number type of unit time: et (execution time) can be b/w 0 ms and 1 min
// only components in the functional C&C model can be tagged with et
tagtype et: (0ms : 1 min) for Component;
// only effectors in C&C high-leve desing model can be tagged with wcet
// (worst case execution time)
tagtype wcet: <= (0ms : 1 min) for Effector;

}

1
2
3
4
5
6
7
8

et wcet.

Fig. 11 ASIL tag schema and tag model example

conforms to ExecutionTime;
tags WcetTags{
within Distronic {

tag effector Distance_Object_m -> Deceleration_pc with wcet <= 20ms;
}

}

1
2
3
4
5
6

conforms to ExecutionTime;
tags EtTags{
within Distronic_Enabled {

tag sum with et = 5ms;
tag saturate, linear with et = 10ms;
tag mult1, mult2 with et = 7ms;

}
}

1
2
3
4
5
6
7
8

Fig. 12 ASIL tag schema and tag model example. (a) Tag model enriching C&C high-level design
view FA-146 with extra-functional property wcet. (b) Tag model enriching C&C high-level
design view FA-146 with extra-functional property wcet

Tag types to enrich the functional C&C model, as already presented in Sect. 3,
represent concrete extra-functional property values. Therefore, these always have an
assignment operator (=), which can be skipped as shown in line 4.

Tag types to enrich the C&C high-level design model represent underspecified
extra-functional requirements expressing a Boolean constraint. For this reason the
Boolean comparison operator (such as <, ≤, ⊆, ∈, ⊃, ≥, >) must be specified as
shown with <= in line 7.

Figure 12a shows that C&C high-level design models can be enriched
with extra-functional requirements nearly in the same way as functional
C&C models with extra-functional properties. Ports are identified via their
component name and their port name, because different components may have
the same port name. The within keyword in line 3 is syntactic sugar to
express that all expressions inside it refer to the component specified. Line
4 enriches the effector with the extra-functional requirement as illustrated
in the bottom left part of Fig. 10. An equivalent notation of lines 3–5 is

270 M. von Wenckstern

the following: tag effector Distronic.Distance_Object_m ->
Distronic.Deceleration_pc with wcet <= 20ms;.

Figure 12b displays the textual code how to enrich the functional C&C model
with the measured execution times as illustrated in the bottom right part of Fig. 10.
The tag model language supports to enrich multiple C&C elements at once with the
same value as shown in lines 5 and 6.

In our example, we assume that the (here not shown OCL) constraint does the
following: First, it selects all components of the C&C subcomponent which are
matched by effector shown in view FA-146 in Fig. 10. These are the components
Distronic, Distronic_Enabled, sum, saturate, and mult2. Second, it
aggregates all the execution time values of these components whereby a missing et
tag is interpreted as 0 ms. The aggregation result is 22ms = 0ms + 0ms + 5ms +
10ms + 7ms. Third, it compares whether the aggregation result of the functional
C&Cmodel is smaller or equal to the wcet (worst case execution time) requirement
of the enriched effector. In this example, the aggregation result is 22ms and is NOT
smaller or equal to the requested worst case execution time of 20ms of the enriched
effector in the view FA-146. Thus, the functional C&C model in the bottom
right part of Fig. 10 does not satisfy the view as well as it violates the FA-146
requirement.

The verification tool does not only automatically check whether all extra-
functional properties of the functional C&C model satisfy all extra-functional
requirements specified in all C&C high-level designs, it also generates useful
witnesses directly pointing to the mismatch. Figure 13 shows the graphical rep-
resentation provided by the verification algorithm for this concrete example. The
satisfaction witness creation algorithm for extra-functional properties is similar to
the consistency witness creation algorithm presented in the previous section.

Fig. 13 ASIL tag schema and tag model example

Improving the Model-Based Systems Engineering Process 271

9 Conclusion

This chapter showed the developed methodology to improve the model-based
systems engineering process of large and complex C&C models for embedded and
cyber-physical systems, especially in the automotive domain. The here presented
approach extends the current model-based development process of large car manu-
factures identified during common case studies.

The main achievements of this work are concepts and tools for automatic
consistency checks between requirements, high-level design models, functional
C&C models, and extra-functional properties. These automatic checks with its user-
friendly witness generations prevent errors at design and implementation phase, and
thus, provide a way to improve quality, to increase development speed, and to save
money.

This chapter demonstrated the capabilities and benefits of the proposed model-
based process improvements on a running example of an advanced driver assistant
system.

References

1. Bertram, V., Maoz, S., Ringert, J.O., Rumpe, B., von Wenckstern, M.: Component
and connector views in practice: an experience report. In: Conference on Model
Driven Engineering Languages and Systems (MODELS’17), pp. 167–177. IEEE, Pis-
cataway (2017). http://www.se-rwth.de/publications/Component-and-Connector-Views-in-
Practice-An-Experience-Report.pdf

2. Borgmann, M.: Matrix taxonomy (2006). https://www.nari.ee.ethz.ch/teaching/ha/handouts/
linalg3p.pdf

3. Brenner, C.: How to ensure functional safety, according to ISO 26262 (2013). https://blogs.
itemis.com/en/how-to-ensure-functional-safety-according-to-iso-26262. Accessed 29 April
2021

4. Cheng, C.H.: autoCode4 integrated inside Ptolemy II (ver. 11.0.devel) (2016). https://youtu.be/
ImSHmsnUyeA?t=34s. Accessed 31 July 2018

5. Desgraupes, B.: Clustering indices. Univ. Paris Ouest-Lab Modal’X 1, 34 (2013)
6. Drave, I., Greifenberg, T., Hillemacher, S., Kriebel, S., Kusmenko, E., Markthaler, M., Orth,

P., Salman, K.S., Richenhagen, J., Rumpe, B., Schulze, C., Wenckstern, M., Wortmann, A.:
SMArDT modeling for automotive software testing. Softw. Practice Exp. 49(2), 301–328
(2019)

7. Goser, A.: MATLAB Answers: Clean up Simulink block diagram (2012). https://de.
mathworks.com/matlabcentral/answers/30016-clean-up-simulink-block-diagram. Accessed
31 July 2018

8. Grazioli, F., Kusmenko, E., Roth, A., Rumpe, B., von Wenckstern, M.: Simulation framework
for executing component and connector models of self-driving vehicles. In: Proceedings of
MODELS 2017. Workshop EXE, CEUR 2019 (2017). http://www.se-rwth.de/publications/
Simulation-Framework-for-Executing-Component-and-Connector-Models-of-Self-Driving-
Vehicles.pdf

9. Hillemacher, S., Kriebel, S., Kusmenko, E., Lorang, M., Rumpe, B., Sema, A., Strobl, G., von
Wenckstern, M.: Model-based development of self-adaptive autonomous vehicles using the
SMARDT methodology. In: Proceedings of the 6th International Conference on Model-Driven

http://www.se-rwth.de/publications/Component-and-Connector-Views-in-Practice-An-Experience-Report.pdf
http://www.se-rwth.de/publications/Component-and-Connector-Views-in-Practice-An-Experience-Report.pdf
https://www.nari.ee.ethz.ch/teaching/ha/handouts/linalg3p.pdf
https://www.nari.ee.ethz.ch/teaching/ha/handouts/linalg3p.pdf
https://blogs.itemis.com/en/how-to-ensure-functional-safety-according-to-iso-26262
https://blogs.itemis.com/en/how-to-ensure-functional-safety-according-to-iso-26262
https://youtu.be/ImSHmsnUyeA?t=34s
https://youtu.be/ImSHmsnUyeA?t=34s
https://de.mathworks.com/matlabcentral/answers/30016-clean-up-simulink-block-diagram
https://de.mathworks.com/matlabcentral/answers/30016-clean-up-simulink-block-diagram
http://www.se-rwth.de/publications/Simulation-Framework-for-Executing-Component-and-Connector-Models-of-Self-Driving-Vehicles.pdf
http://www.se-rwth.de/publications/Simulation-Framework-for-Executing-Component-and-Connector-Models-of-Self-Driving-Vehicles.pdf
http://www.se-rwth.de/publications/Simulation-Framework-for-Executing-Component-and-Connector-Models-of-Self-Driving-Vehicles.pdf

272 M. von Wenckstern

Engineering and Software Development (MODELSWARD’18), pp. 163–178. SciTePress,
Setúbal (2018)

10. Kriebel, S., Kusmenko, E., Rumpe, B., von Wenckstern, M.: Finding inconsistencies in design
models and requirements by applying the SMARDT process. In: Tagungsband des Dagstuhl-
Workshop MBEES: Modellbasierte Entwicklung eingebetteter Systeme XIV (MBEES’18).
Univ. Hamburg (2018). http://www.se-rwth.de/publications/Finding-Inconsistencies-in-
Design-Models-and-Requirements-by-Applying-the-SMARDT-Process.pdf

11. Kusmenko, E., Pavlitskaya, S., Rumpe, B., Stüber, S.: On the engineering of AI-powered
systems. In: O’Conner, L. (ed.) ASEW19. Software Engineering Intelligence Workshop
(SEIW19), pp. 126–133. IEEE, Piscataway (2019). http://www.se-rwth.de/publications/On-
the-Engineering-of-AI-Powered-Systems.pdf

12. Kusmenko, E., Ronck, J.M., Rumpe, B., von Wenckstern, M.: EmbeddedMontiArc: textual
modeling alternative to simulink. In: Proceedings of MODELS 2018. Workshop EXE (2018)

13. Kusmenko, E., Rumpe, B., Schneiders, S., von Wenckstern, M.: Highly-optimizing and multi-
target compiler for embedded system models: C++ compiler toolchain for the component
and connector language EmbeddedMontiArc. In: Conference on Model Driven Engineering
Languages and Systems (MODELS’18). IEEE, Piscataway (2018)

14. Kusmenko, E., Rumpe, B., Strepkov, I., von Wenckstern, M.: Teaching playground
for C&C language EmbeddedMontiArc. In: Proceedings of MODELS 2018. Workshop
ModComp (2018). http://www.se-rwth.de/publications/Teaching-Playground-for-C-and-C-
Language-EmbeddedMontiArc.pdf

15. Maoz, S., Pomerantz, N., Ringert, J.O., Shalom, R.: Why is my component and connector
views specification unsatisfiable? In: 2017 ACM/IEEE 20th International Conference onModel
Driven Engineering Languages and Systems (MODELS), pp. 134–144 (2017). https://doi.org/
10.1109/MODELS.2017.26

16. Maoz, S., Ringert, J.O., Rumpe, B.: Synthesis of component and connector models
from crosscutting structural views. In: Meyer, B., Baresi, L., Mezini, M. (eds.) Joint
Meeting of the European Software Engineering Conference and the ACM SIGSOFT
Symposium on the Foundations of Software Engineering (ESEC/FSE’13), pp. 444–454.
ACM, New York (2013). http://www.se-rwth.de/publications/Synthesis-of-Component-and-
Connector-Models-from-Crosscutting-Structural-Views.pdf

17. Maoz, S., Ringert, J.O., Rumpe, B., vonWenckstern, M.: Consistent extra-functional properties
tagging for component and connector models. In: Workshop on Model-Driven Engineering
for Component-Based Software Systems (ModComp’16), CEUR Workshop Proceedings, vol.
1723, pp. 19–24 (2016). http://www.se-rwth.de/publications/Consistent-Extra-Functional-
Properties-Tagging-for-Component-and-Connector-Models.pdf

18. National Instruments: Automatische Bereinigung von LabVIEW-Blockdiagrammen (2009).
http://www.ni.com/tutorial/7386/de/. Accessed 31 July 2018

19. Plataniotis, G., Ma, Q., Proper, E., de Kinderen, S.: Traceability and modeling of requirements
in enterprise architecture from a design rationale perspective. In: Research Challenges in
Information Science (RCIS), 2015 IEEE 9th International Conference on, pp. 518–519. IEEE,
Piscataway (2015)

20. Richenhagen, J., Rumpe, B., Schloßer, A., Schulze, C., Thissen, K., von Wenckstern, M.:
Test-driven semantical similarity analysis for software product line extraction. In: International
Systems and Software Product Line Conference (SPLC ’16), pp. 174–183. ACM, New York
(2016). http://www.se-rwth.de/publications/Test-Driven-Semantical-Similarity-Analysis-for-
Software-Product-Line-Extraction.pdf

21. Rumpe, B., Schulze, C., von Wenckstern, M., Ringert, J.O., Manhart, P.: Behav-
ioral compatibility of simulink models for product line maintenance and evolution.
In: Software Product Line Conference (SPLC’15), pp. 141–150. ACM, New York
(2015). http://www.se-rwth.de/publications/Behavioral-Compatibility-of-Simulink-Models-
for-Product-Line-Maintenance-and-Evolution.pdf

22. Von Luxburg, U.: A tutorial on spectral clustering. Stat. Comput. 17(4), 395–416 (2007)

http://www.se-rwth.de/publications/Finding-Inconsistencies-in-Design-Models-and-Requirements-by-Applying-the-SMARDT-Process.pdf
http://www.se-rwth.de/publications/Finding-Inconsistencies-in-Design-Models-and-Requirements-by-Applying-the-SMARDT-Process.pdf
http://www.se-rwth.de/publications/On-the-Engineering-of-AI-Powered-Systems.pdf
http://www.se-rwth.de/publications/On-the-Engineering-of-AI-Powered-Systems.pdf
http://www.se-rwth.de/publications/Teaching-Playground-for-C-and-C-Language-EmbeddedMontiArc.pdf
http://www.se-rwth.de/publications/Teaching-Playground-for-C-and-C-Language-EmbeddedMontiArc.pdf
https://doi.org/10.1109/MODELS.2017.26
https://doi.org/10.1109/MODELS.2017.26
http://www.se-rwth.de/publications/Synthesis-of-Component-and-Connector-Models-from-Crosscutting-Structural-Views.pdf
http://www.se-rwth.de/publications/Synthesis-of-Component-and-Connector-Models-from-Crosscutting-Structural-Views.pdf
http://www.se-rwth.de/publications/Consistent-Extra-Functional-Properties-Tagging-for-Component-and-Connector-Models.pdf
http://www.se-rwth.de/publications/Consistent-Extra-Functional-Properties-Tagging-for-Component-and-Connector-Models.pdf
http://www.ni.com/tutorial/7386/de/
http://www.se-rwth.de/publications/Test-Driven-Semantical-Similarity-Analysis-for-Software-Product-Line-Extraction.pdf
http://www.se-rwth.de/publications/Test-Driven-Semantical-Similarity-Analysis-for-Software-Product-Line-Extraction.pdf
http://www.se-rwth.de/publications/Behavioral-Compatibility-of-Simulink-Models-for-Product-Line-Maintenance-and-Evolution.pdf
http://www.se-rwth.de/publications/Behavioral-Compatibility-of-Simulink-Models-for-Product-Line-Maintenance-and-Evolution.pdf

Improving the Model-Based Systems Engineering Process 273

23. von Wenckstern, M.: Verification of Structural and Extra Functional Properties in Component
and Connector Models for Embedded and Cyber Physical Systems. Aachener Informatik-
Berichte, Software Engineering, Band 44. Shaker Verlag (2020). http://www.se-rwth.de/
phdtheses/Diss-von-Wenckstern-Verification-of-Structural-and-Extra-Functional-Properties-
in-Component-and-Connector-Models-for-Embedded-and-Cyber-Physical-Systems.pdf

24. Zion Market Research: Global Embedded Systems Market Will Reach USD 225.34 billion by
2021 (2017). https://tinyurl.com/ofetbpzw. Accessed 14 February 2021

Open Access This chapter is licensed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits use, sharing,
adaptation, distribution and reproduction in any medium or format, as long as you give appropriate
credit to the original author(s) and the source, provide a link to the Creative Commons license and
indicate if changes were made.

The images or other third party material in this chapter are included in the chapter’s Creative
Commons license, unless indicated otherwise in a credit line to the material. If material is not
included in the chapter’s Creative Commons license and your intended use is not permitted by
statutory regulation or exceeds the permitted use, you will need to obtain permission directly from
the copyright holder.

http://www.se-rwth.de/phdtheses/Diss-von-Wenckstern-Verification-of-Structural-and-Extra-Functional-Properties-in-Component-and-Connector-Models-for-Embedded-and-Cyber-Physical-Systems.pdf
http://www.se-rwth.de/phdtheses/Diss-von-Wenckstern-Verification-of-Structural-and-Extra-Functional-Properties-in-Component-and-Connector-Models-for-Embedded-and-Cyber-Physical-Systems.pdf
http://www.se-rwth.de/phdtheses/Diss-von-Wenckstern-Verification-of-Structural-and-Extra-Functional-Properties-in-Component-and-Connector-Models-for-Embedded-and-Cyber-Physical-Systems.pdf
https://tinyurl.com/ofetbpzw
http://creativecommons.org/licenses/by/4.0/

	Improving the Model-Based Systems Engineering Process
	1 Introduction
	2 Systems Engineering Process at Daimler AG
	2.1 Current Development Process at Daimler AG
	2.2 Improving the Development Process at Daimler AG

	3 Creating C&C High-Level Designs Based on Requirements
	4 Automatic Structural Consistency Checks for Design Models
	5 Satisfaction Verification Between Design and Functional Model
	6 Creating C&C Functional Models Efficiently with EmbeddedMontiArc
	7 Enriching C&C Functional Models with Extra-Functional Properties in a Consistent Way
	8 Automatic Extra-Functional Property Verification Between Design and Functional Models
	9 Conclusion
	References

