
From Singularities to Graphs

Patrick Popescu-Pampu

Abstract In this text I present some problems which led to the introduction of
special kinds of graphs as tools for studying singular points of algebraic surfaces.
I explain how such graphs were first described using words, and how several
classification problems made it necessary to draw them, leading to the elaboration
of a special kind of calculus with graphs. This non-technical paper is intended to be
readable both by mathematicians and philosophers or historians of mathematics.
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Introduction

Nowadays, graphs are common tools in singularity theory. They mainly serve to
represent morphological aspects of algebraic surfaces in the neighborhoods of their
singular points. Three examples of such graphs may be seen in Figs. 1, 2, and 3.
They are extracted from the papers Némethi and Szilárd (2000), Neumann andWahl
(2005) and Chung et al. (2009), respectively.

Comparing those figures, one may see that the vertices are diversely depicted
by small stars or by little circles, which are either full or empty. These drawing
conventions are not important. What matters is that all vertices are decorated with
numbers. I will explain their meaning later.
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Fig. 1 An example from a 2000 paper of Némethi and Szilárd

Fig. 2 An example from a 2005 paper of Neumann and Wahl

Fig. 3 An example from a 2009 paper of Chung, Xu and Yau

My aim in this paper is to understand which kinds of problems forced mathe-
maticians to associate graphs to surface singularities. I will show how the initial
idea, appeared in the 1930s, was only described in words, without any visual
representation. Then I will suggest two causes that made the drawing of such
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graphs unavoidable, starting from the beginning of the 1960s. One of them was a
topological reinterpretation of those graphs. The other one was the growing interest
in problems of classification of special types of surface singularities.

Let me describe briefly the structure of the paper. In section “What Is the
Meaning of Such Graphs?”, I explain the meaning of such graphs: they represent
configurations of curves which appear by resolving surface singularities. I continue
in section “What Does it Mean to Resolve the Singularities of an Algebraic
Surface?” by describing what it means to “resolve” a singularity. In section “Repre-
sentations of Surface Singularities Around 1900” I present several models of surface
singularities made around 1900 and I discuss one of the oldest configurations of
curves, perhaps the most famous of them all: the 27 lines lying on a smooth cubic
surface. In section “Du Val’s Singularities, Coxeter’s Diagrams and the Birth of
Dual Graphs”, I present excerpts of Du Val’s 1934 paper in which he described a
way of thinking about a special class of surface singularities in terms of graphs. In
the same paper, he made an analogy between his configurations of curves and the
facets of special spherical simplices analyzed by Coxeter in his 1931 study of finite
groups generated by reflections. It is perhaps the fact that Coxeter had described
a way to associate a graph to such a simplex which, through this analogy, gave
birth to Du Val’s idea of speaking about graphs of curves. In section “Mumford’s
Paper on the Links of Surface Singularities”, I jump to the years 1960s, because
until then Du Val’s idea of associating graphs to singularities had almost never
been used. I show how things changed with a 1961 paper of Mumford, in which
he reinterpreted those graphs in the realm of 3-dimensional topology. Hirzebruch’s
1963 Bourbaki Seminar talk about this work of Mumford seems to be the first
place in which graphs representing arbitrary configurations of curves were explicitly
defined. I begin section “Waldhausen’s Graph Manifolds and Neumann’s Calculus
with Graphs” by discussing a 1967 paper of Waldhausen, in which he built a
subtle theory of the 3-dimensional manifolds associated to graphs as explained
in Mumford’s paper. I finish it with a discussion of a 1981 paper of Neumann,
which turned Waldhausen’s work into a concrete “calculus” for deciding whether
two graphs represent the same 3-dimensional manifold. In section “Conclusion”,
I conclude by mentioning several recent directions of research concerning graphs
associated to singularities of algebraic varieties, and by summarizing this paper.

What Is the Meaning of Such Graphs?

Let me begin by explaining the meaning of the graphs associated to singularities of
surfaces. In fact, the construction is not specific to singularities, one may perform it
whenever is given a configuration of curves on a surface. The rule is very simple:

• each curve of the configuration is represented by a vertex;
• two vertices are joined by an edge whenever the corresponding curves intersect.
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A variant of the construction introduces as many edges between two vertices as
there are points in common between the corresponding curves.

Note that this construction reverses the dimensions of the input objects. Indeed,
the curves, which have dimension one, are represented by vertices of the graph,
which have dimension zero. Conversely, the intersection points of two curves, which
have dimension zero, are represented by edges of the graph, which have dimension
one. Remark also that an intersection point lies on a curve of the configuration if and
only if its associated edge of the graph contains the vertex representing the curve. It
is customary nowadays in mathematics to speak about “duality” whenever one has
such a dimension-reversing and inclusion-reversing correspondence between parts
of two geometric configurations. For this reason, one speaks here about the “dual
graph” of the curve configuration, a habit which became common at the end of the
1960s.

An example of this construction is represented in Fig. 4, which combines
drawings from Michael Artin’s 1962 and 1966 papers (Artin, 1962, 1966). In the
upper half, one sees sketches of curve configurations, each curve being depicted
as a segment. This representation is schematic, as it does not respect completely
the topology of the initial curve configuration, which consists of curves without
boundary points. But it represents faithfully the intersections between the curves of
the configuration: two of its curves intersect if and only if the associated segments
do. The corresponding “dual graphs” are depicted in the lower part of the figure. For
instance, the vertex which is joined to three other vertices in the graph of the lower
right corner represents the horizontal segment of the curve configuration labeled (v),
on the right of the second row.

Note that the representation of the curve configurations as dual graphs empha-
sizes better visually its overall connectivity pattern than the representation as a

Fig. 4 Artin’s depictions of curve configurations and associated dual graphs
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configuration of segments. This is probably one of the reasons which led Artin to
pass from drawings of configurations of segments in his 1962 paper to drawings of
dual graphs in his 1966 paper.

More generally, dual graphs may be introduced whenever one is interested in the
mutual intersections of several subsets of a given set. It is not important that the
given sets consist of the points of several curves lying on surfaces, they may for
instance be arbitrary subsets of manifolds of any dimension or, less geometrically,
the sets of members of various associations of persons. Then, one represents each
set by a vertex and one joins two such vertices by an edge if and only if the
corresponding sets intersect.

As a general rule, one represents any object of study by a vertex, whenever one is
not interested in its internal structure, but in its “sociology”, that is, in its relations or
interactions with other objects. A basic way to depict these relations is to join two
such vertices whenever the objects represented by them interact in the way under
scrutiny. In our context, one considers that two curves interact if and only if they
have common points.

Let us come back to the configurations of curves and their associated dual graphs
from Fig. 4. Those drawings represent the classification of a special type of surface
singularities, namely the “rational double points”, in the terminology of Artin’s
1966 paper (Artin, 1966). That list was not new, it had already appeared in the
solution of a different classification problem—leading nevertheless to the same
objects—in Du Val’s 1934 paper in which he had informally introduced the idea
of dual graph. We will further discuss that paper in section “Du Val’s Singularities,
Coxeter’s Diagrams and the Birth of Dual Graphs”.

Before passing to the next section, let me mention that Artin’s paper (Artin, 1966)
contained also a new classification, that of the dual graphs associated to the “rational
triple points” (see Fig. 5). Beingmore abundant than those of the lower part of Fig. 4,

Fig. 5 Artin’s classification of dual graphs of rational triple points
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Fig. 6 A Klein bottle

it becomes apparent that it is also more economical for printing to draw such graphs
rather than configurations of segments.

Now that we understood how configurations of curves lead to dual graphs, let us
see in which way singularities of surfaces may lead to configurations of curves. This
is the object of the next section.

What Does it Mean to Resolve the Singularities of an
Algebraic Surface?

What is a singularity of an algebraic surface? It is a special point, at which the
surface is not smooth. For instance, a sphere does not have singular points, but
a double cone, idealization of the boundary of a nighty region illuminated by a
lighthouse, has a singular point at its vertex. In this case, the singular point is
isolated, but other surfaces may have whole curves of singularities. Such curves
may be either self-intersections of the surface, as shown in Fig. 6,1 or they may
exhibit more complicated behaviour, as shown in Fig. 7.2

In this last figure, a polynomial equation in three variables is written next to
each surface. The reason is that each of those surfaces is a portion of the locus
of points which satisfy the associated equation in the 3-dimensional cartesian
space of coordinates (x, y, z). As polynomials are algebraic objects, such a locus

1 This illustration of an immersion of a Klein bottle in three-dimensional cartesian space comes
from the wonderful 1932 book (Hilbert and Cohn-Vossen, 1952) of David Hilbert and Stefan Cohn-
Vossen. Note that in addition to a circle of self-intersection, this illustration represents also curves
of apparent contours and several closed curves drawn on the surface.
2 This figure comes from https://homepage.univie.ac.at/herwig.hauser/gallery.html, January 2018.
Copyright: Herwig Hauser, University of Vienna, www.hh.hauser.cc.

https://homepage.univie.ac.at/herwig.hauser/gallery.html
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Fig. 7 Several real surface singularities from Hauser’s gallery

is called “algebraic”. There are also algebraic surfaces in cartesian spaces of
higher dimensions, defined by systems of polynomial equations in more than three
variables. In fact, all surfaces considered in the papers discussed here are algebraic.
One advantage of working with such surfaces is that one may consider not only
the real solutions of those equations, but also the complex ones. In this way, one
expects in general to make the correspondence between the algebraic properties of
the defining equations and the morphological properties of the associated surface
easier to understand.

A prototype of this expectation is the fact that a polynomial equation in one
variable has as many complex roots as its degree, provided that the roots are counted
with suitable “multiplicities” (this is the so-called “fundamental theorem of alge-
bra”, but it is rather a fundamental theorem of the correspondence between algebra
and topology). If one considers instead only its real roots, then their number is not
determined by the degree, but there are several possibilities. In fact, as I will briefly
explain at the beginning of section “Representations of Surface Singularities Around
1900”, whenever one considers families with three parameters of polynomials, these
possibilities may be distinguished using “discriminant surfaces”, which have in
general non-empty singular loci.

Because of this expected relative simplicity of complex algebraic geometry
versus real algebraic geometry, it became customary in the nineteenth century to
study the sets of complex solutions of polynomial equations in three variables. One
gets in this way “complex algebraic surfaces”. Nevertheless, in order to build an
intuition of their properties, it may be useful to practice with concrete models of the
associated real surfaces. Around the end of the nineteenth century, such modelswere
either drawn or manufactured using for instance wood, plaster, cardboard, wires
and string. Nowadays they are also built using 3D-printers or, more commonly,
simulated using techniques of computer visualization. This is for instance the case
of Hauser’s images of Fig. 7.

Why is it important to study singular surfaces? Because, in general, surfaces do
not appear alone, but rather in families depending on parameters (which, in physical
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contexts, may be for instance temperatures or intensities of external fields), and that
for some special values of these parameters one gets surfaces with singularities.
Understanding the singular members of a family is many times essential for
understanding also subtle aspects of its non-singular members. For instance, one
may understand part of the structure of a non-singular member by looking at its
portions which “vanish” when one converges to a singular member.

The techniques of differential or algebraic geometry used in the study of
smooth algebraic surfaces may be extended to singular surfaces using three basic
procedures:

• by decomposing a singular surface into smooth “strata”, which are either isolated
points, smooth portions of curves or smooth pieces of surfaces; this is similar to
the decomposition of the surface of a convex polyhedron into vertices, edges and
faces;

• by seeing a singular surface as a limit of smooth ones; when this is possible, one
says that the surface was “smoothed”; such a process is not always possible, and
even if it is possible, it can be usually done in various ways;

• by seeing a singular surface as a projection of a smooth one, living in a higher
dimensional ambient space; if such a projection leaves the smooth part of the
initial singular surface unchanged, then it is called a “resolution of singularities”;
resolutions of singularities always exist, but are not unique.

Intuitively speaking, resolving the singularities of a surface means to remove
its singular locus and to replace it algebraically by another configuration of points
and curves, so that the resulting surface is smooth. In the special case of an
isolated singular point of algebraic surface, one replaces that singular point by
a configuration of curves, called the “exceptional divisor” of the resolution. For
instance, all the graphs appearing in Figs. 1, 2, 3, 4, and 5 are dual graphs of
exceptional divisors of resolutions of isolated singularities of complex surfaces.

In simple examples, one may resolve the singularities of an algebraic surface
by performing finitely many times the elementary operation called “blowing up
a point”, which is a mathematical way to look through a microscope at the
neighborhood of the chosen point. This operation builds new cartesian spaces
starting from the space which contains the initial singular surface. Each of those
spaces contains a new surface, which projects onto a part of the initial one. If one
of those surfaces is smooth, then one keeps it untouched. Otherwise, one blows up
again its isolated singular points. It may happen that finitely many such operations
lead to a family of smooth surfaces, each one of them projecting onto a portion of the
initial singular surface. Those surfaces may be glued, together with their projections,
into a global smooth surface which “resolves the singularities” of the initial one.

Let us consider for instance the surface with equation x2−y2+z7 = 0, illustrated
in Fig. 8. It has an isolated singularity (called “of type A6”) at the origin.3 If one

3 This figure was taken from the web-page https://www.krueger-berg.de/anne/aufl-bilder/A6.html
of Anne Frühbis-Krüger in September 2020. This is also the case of Figs. 9 and 10.
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Fig. 8 An isolated A6 surface singularity

performs the previous iterative process of blowing up the singular points of the
intermediate surfaces, one gets a “tree” of surfaces, represented diagrammatically
on Fig. 9. The initial surface is indicated in the top-most rectangle, and each edge of
the diagram represents a blow-up operation.

The final smooth surfaces produced by the process are represented in Fig. 10.
Each of them contains one or more highlighted lines. Those lines glue into a
configuration of curves on the total smooth surface which resolves the initial
singular one. This configuration is the exceptional divisor of this resolution of the
starting isolated singularity. By looking carefully at the way the gluing is performed,
one may show that its associated dual graph is a chain of five segments. This means
that it is of the type shown on the left of the third row in Fig. 4.

For more complicated singularities, it may not be enough to blow up points,
as previous blow-ups may create whole curves of singularities. Other operations
which allow to modify the singular locus were introduced in order to deal with this
problem. One may learn about them in Kollár’s book (Kollár, 2007), which explains
various techniques of resolution of singularities in any dimension. The reader more
interested in gaining intuition about resolutions of surfaces may consult Faber
and Hauser’s promenade (Faber and Hauser, 2010) through a garden of examples
of resolutions or my introduction (Popescu-Pampu, 2011b) to one of the oldest
methods of resolution, originating in Jung’s method for parametrizing algebraic
surfaces locally.
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Fig. 9 Frühbis-Krüger’s representation of a resolution process

Fig. 10 The final stages of the previous resolution process
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Fig. 11 Sinclair’s representation of a discriminant surface

Representations of Surface Singularities Around 1900

In the previous sections we saw contemporary representations of surface singular-
ities, obtained using computer visualization techniques. Let us turn now to older
representations, dating back to the beginning of the twentieth century. This will
allow us to present one of the oldest sources of surfaces with singularities—the study
of discriminant surfaces—and one of the most famous configurations of curves—
consisting of the lines contained in a smooth cubic surface.

Figure 11 shows4 a hand-drawn “discriminant surface”, which has whole curves
of singular points, as was the case in the examples of Figs. 6 and 7. It reproduces a
drawing done by Mary Emily Sinclair in her 1903 thesis. Let me discuss this surface
a little bit, as it emphasizes another source of interest on the structure of singular
surfaces. As explained in its caption from the paper (Top and Weitenberg, 2011),
Sinclair was studying the family with three parameters (x, y, z) of polynomials of
the form t5 + xt3 + yt + z. One may associate to it an algebraic family of sets of
points, namely the sets of roots of the polynomial in the variable t obtained for fixed
values of the parameters. The “discriminant surface” is the subset of the cartesian
space of coordinates (x, y, z) for which the associated polynomial has at least one
multiple complex root.

More generally, consider any family of points, curves, surfaces or higher-
dimensional algebraic objects, depending algebraically on some parameters. If there
are exactly three parameters, then the set of singular objects of the family is usually

4 This drawing and the text immediately below it were extracted from the paper (Top and
Weitenberg, 2011) of Jaap Top and Erik Weitenberg.
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Fig. 12 An image from
Schilling’s catalog of
mathematical models

a surface in the space of parameters. All the surfaces obtained in this way are called
“discriminant surfaces”, because they allow to discriminate the possible aspects
of the objects in the family, according to the position of the corresponding point
in the space of parameters, relatively to the surface. For instance, by determining
in which region of the complement of the surface of Fig. 11 lies the point with
coordinates (x, y, z), one may see if the set of real roots of the polynomial has 1, 3
or 5 elements—those being the only possibilities for a quintic polynomial equation,
because the non-real roots come in pairs of complex conjugate numbers. The reader
interested in the analogous study of quartic polynomial equations may read Michel
Coste’s paper (Coste, 2010).

Let us pass now to material models of surfaces with singularities. Figure 12
reproduces an engraving5 from the 1911 catalog of mathematical models of Martin
Schilling’s enterprise. It depicts a cone over a smooth cubic curve, that is, a
smooth curve contained in the projective plane and defined by the vanishing of a
homogeneous polynomial in 3 variables. This cone has therefore only one singular
point, its vertex. Figure 13 shows a reproduction from the 1905 book (Blythe,
1905) of William Henry Blythe. It depicts two plaster models of cubic surfaces
with singularities.

One of the most famous discoveries of the nineteenth century regarding the
properties of algebraic surfaces is that all smooth complex algebraic cubic surfaces
situated in the projective space of dimension three contain exactly 27 lines. This
discovery was done in 1849, during a correspondence between Arthur Cayley and
George Salmon, and it triggered a lot of research.6 Starting from around 1870,

5 It may be found on page 123, part II.3.b of the catalog (Catalog mathematischer Modelle, 1911).
6 For instance, in the historical summary of his 1915 thesis (Henderson, 1915), Henderson
mentions that “in a bibliography on curves and surfaces compiled by J. E. Hill [in 1897] [...]
the section on cubic surfaces contained two hundred and five titles. The Royal Society of London
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Fig. 13 An image from Blythe’s book on models of cubic surfaces

material models of parts of real cubic surfaces with all 27 lines visible on them
started to be built. One may see such a model in Fig. 14. It represents a portion of
“Clebsch’s diagonal surface”.7 This surface does not contain singular points, but it
is interesting in our context because it exhibits a highly sophisticated configuration
of curves, composed of its 27 lines.

Much more details about the building of models of algebraic surfaces around
1900 may be found in the books (Mathematical models, 2017; Institut Henri
Poincaré, 2017). As illustrated by Fig. 13, plaster models were built not only of
smooth cubic surfaces, but also of singular ones. The manufacturing process was
based on Rodenberg’s 1878 work (Rodenberg, 1878). The complete classification
of the topological types of real cubic surfaces was achieved by Knörrer and Miller
in their 1987 paper (Knörrer and Miller, 1987). Other historical details about the
study of the configurations of 27 lines lying on smooth cubic surfaces may be found
in Polo Blanco’ and Lê’s theses (Lê, 2013; Polo-Blanco, 2007), as well as in Lê’s
paper (Lê, 2013) and Labs’ paper (Labs, 2017).

Catalogue of Scientific Papers, 1800–1900, volume for Pure Mathematics (1908), contains very
many more.”
7 Clebsch’s diagonal surface is usually defined by the pair of homogeneous equations x0 + · · · +
x4 = 0 and x30 + · · · + x34 = 0 inside the projective space of dimension 4 whose homogeneous
coordinates are denoted [x0 : · · · : x4]. This photograph of a model belonging to the University
of Göttingen was taken by Zausig in 2012. It comes from Wikimedia Commons: https://commons.
wikimedia.org/wiki/File:Modell_der_Diagonalflche_von_Clebsch_-Schilling_VII,_1_-_44-.jpg.


 2124 4295 a 2124 4295
a
 
https://commons.wikimedia.org/wiki/File:Modell_der_Diagonalflche_von_Clebsch_-Schilling_VII,_1_-_44-.jpg
https://commons.wikimedia.org/wiki/File:Modell_der_Diagonalflche_von_Clebsch_-Schilling_VII,_1_-_44-.jpg


244 P. Popescu-Pampu

Fig. 14 A model of Clebsch’s diagonal surface and of its 27 lines

Note that at the beginning of the twentieth century, some artists from the
Constructivist and Surrealist movements were inspired by material models of
possibly singular surfaces, as explained in Vierling-Claassen’s article (Vierling-
Claassen, 2017). It would be interesting to know in which measure computer models
as those of Fig. 7 inspire nowadays other artists.
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Fig. 15 Du Val’s introduction of dual graphs

Du Val’s Singularities, Coxeter’s Diagrams and the Birth of
Dual Graphs

Let us discuss now the 1934 paper (Du Val, 1935) in which Patrick Du Val
considered, seemingly for the first time, the idea of dual graph of an exceptional
divisor of resolution of surface singularity.

As indicated by the title of his paper, Du Val’s problem was to classify the
“isolated singularities of surfaces which do not affect the conditions of adjunction”.
Given a possibly singular algebraic surface contained in a complex projective space
of dimension three, its “adjoint surfaces” are other algebraic surfaces contained in
the same projective space and defined in terms of double integrals. I will not give
here their precise definition, which is rather technical.8 Let me only mention that
the adjoint surfaces must contain all curves consisting of singularities of the given
surface. By contrast, it does not necessarily contain its isolated singular points.
Those through which the adjoint surfaces are not forced to pass are precisely the
singularities “which do not affect the conditions of adjunction”.

Du Val analyzed such singularities by looking at their resolutions. It is in
this context that he wrote that for each one of those singularities, there is a
resolution whose associated exceptional divisor is a ““tree” of rational curves” with
supplementary properties (see Fig. 15). For instance, each curve in this “tree” has
necessarily self-intersection −2 in its ambient smooth surface (this is the meaning
of the syntagm “has grade −2”). Du Val continued by giving a list of constraints
verified by such “trees”, if they were to correspond to singularities which do not
affect the conditions of adjunction (see Fig. 16). Using those constraints, he arrived
exactly at the list of configurations of curves depicted in Fig. 4. But, in contrast
with Artin’s papers (Artin, 1962, 1966) from 1960s, his article does not contain any
schematic drawing of a configuration of curves, or of an associated dual graph.

It is not even clear whether Du Val really thought about dual graphs. Perhaps he
drew for himself some diagrams resembling those of the upper part of Fig. 4, and he

8 The interested reader may find it in Merle and Teissier’s paper (Merle and Teissier, 1977). The
whole volume containing that paper is dedicated to a modern study of the singularities analyzed
by Du Val.
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Fig. 16 Du Val’s restricted class of graphs

Fig. 17 Du Val’s analogy with Coxeter’s spherical simplices

saw an analogy with some “trees” considered by other mathematicians. Note that it
is possible that for Du Val the term “tree” meant what we call “graph”. Indeed, one
sees him stating in the excerpt of Fig. 16 that the “trees” under scrutiny should not
contain “a cycle of curves”, a formulation which allows some “trees of curves” to
contain such cycles.

At the end of his article, Du Val mentioned an analogy with results of Coxeter9

regarding finite groups generated by reflections (see Fig. 17). In order to understand

9 Du Val cites the paper (Coxeter, 1932), but Coxeter already considered this problem one year
earlier, in Coxeter (1931). Note that Du Val and Coxeter were friends and that they discussed
regularly about their research. One may learn a few details about their friendship and discussions
in Roberts’ book (Roberts, 2007), especially on pages 71–72.
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this analogy, we have to know that Coxeter started from a finite set of hyperplanes
passing through the origin in a real Euclidean vector space of arbitrary finite
dimension. He assumed that they were spanned by the facets of a simplicial cone
emanating from the origin, and he looked at the spherical simplex obtained by
intersecting the cone with the unit sphere centered at the origin. Coxeter’s problem
was to classify those spherical simplices for which the group generated by the
orthogonal reflections in the given hyperplanes is finite.

Du Val realized that his classification of isolated singularities which do not affect
the conditions of adjunction corresponds to a part of Coxeter’s classification of
spherical simplices giving rise to finite groups of reflections. In order to make this
correspondence visible, he associated to each curve of a given exceptional divisor
a facet of the simplex, two curves being disjoint if and only if the corresponding
facets are orthogonal, and having one point of intersection if and only if the facets
meet at an angle of π/3.

Exactly in the same way in which Du Val introduced in 1934 his dual graphs
verbally, without drawing them, Coxeter had verbally introduced in 1931 “diagrams
of dots and links” in order to describe the shapes of his spherical simplices (see
Fig. 18). It is only in his 1934 paper (Coxeter, 1934) that he published drawings
of such graphs (see Fig. 19), which were to be called later “Coxeter diagrams”, or
“Coxeter-Dynkin diagrams”, in reference to their reappearance in a slightly different
form in Dynkin’s 1946 work (Dynkin, 1946) about the structure of Lie groups and
Lie algebras.

Much later, Coxeter explained in his 1991 paper (Coxeter, 1991) that analogous
diagrams had already been introduced by Rodenberg in 1904, in his description
(Rodenberg, 1904) of the plaster models of singular cubic surfaces from Schilling’s
catalog. Rodenberg’s intepretation was different, not related to reflections, but
to special subsets of the configuration of 27 lines on a generic smooth cubic
surface (see Fig. 20, containing an extract from Coxeter (1991)). More details about
Rodenberg’s convention, based on his older paper (Rodenberg, 1878), may be found
in Barth and Knörrer’s text (Barth and Knörrer, 2017).

Fig. 18 Coxeter’s introduction of his diagrams
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Fig. 19 Coxeter’s pictures of his diagrams

Mumford’s Paper on the Links of Surface Singularities

One could believe that the combination of Du Val’s analogy between his “trees of
curves” and Coxeter’s spherical simplices on one side, and Coxeter’s diagrams on
another side, would trigger research on the possible dual graphs of isolated surface
singularities. Such an interest indeed developed starting from a 1961 paper of David
Mumford. In this section I explain the aim of Mumford’s paper and how it led to the
first explicit formulation of the notion of dual graph of a configuration of algebraic
curves contained in a smooth algebraic surface.

I could find only one article published between 1934 and 1961 which contained
a drawing of dual graph of resolution of isolated surface singularity.10 It is
Hirzebruch’s 1953 paper (Hirzebruch, 1953), in which he proved that one could
not only resolve the singularities of complex algebraic surfaces, but also of the
more general complex analytic ones. That article contains a single illustration (see
Fig. 21), which depicts the general shape of possible dual graphs of resolutions for
a class of singularities which is crucial for his method.11 Unlike the case of Du

10 One may think, from a rapid glance, that Du Val’s paper (Du Val, 1944) is an exception. But
the graphs of that paper, which I rediscovered with a different interpretation in Popescu-Pampu
(2011a), are not dual graphs of configurations of curves. They indicate relations between infinitely
near points of a given smooth point of an algebraic surface, being variants of Enriques’ diagrams
introduced in Enriques and Chisini (1917).



From Singularities to Graphs 249

Fig. 20 One of Rodenberg’s diagrams

Fig. 21 The dual graph of Hirzebruch’s 1953 resolution paper

Val’s singularities which do not affect the conditions of adjunction, which have
resolutions for which all the curves composing the exceptional divisor have self-
intersection −2, here the self-intersections can be arbitrary negative integers.12

But a common feature of both cases is that all those curves are smooth and

11 Such singularities are variously called nowadays “Hirzebruch-Jung singularities”, “cyclic
quotient singularities” or “toric surface singularities”. The first name alludes to their importance
for Hirzebruch’s method or resolution of arbitrary complex analytic surfaces (explained in
Popescu-Pampu, 2011b), inspired by the ideas of Jung’s method of local parametrization of
algebraic surfaces mentioned at the end of section “What Does it Mean to Resolve the Singularities
of an Algebraic Surface?”.
12 The “normal” surface singularities which admit resolutions with such a dual graph, its
composing curves being moreover smooth, rational and pairwise transversal, are exactly the
Hirzebruch-Jung singularities alluded to in Footnote 11. Their “links”, in the terminology explained
later in this section, are the so-called lens spaces. One may consult Weber’s recent paper (Weber,
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rational. This means that from a topological viewpoint they are 2-dimensional
spheres.

Hirzebruch used the expression “Sphärenbaum”, that is, “tree of spheres” for
the configurations schematically represented in Fig. 21. He explained that this
terminology had been introduced by Heinz Hopf in his 1951 paper (Hopf, 1951)
for the configurations of 2-dimensional spheres which are created by successive
blow-ups of points, starting from a point on a smooth complex algebraic sur-
face. Hopf chose that name because those spheres intersect in the shape of a
tree.13

Let us look again at the models of algebraic surfaces from Figs. 7, 8 and 12.
In each case, one has a representation of only part of the surface, as the whole
surface is unbounded. The chosen part is obtained by considering the intersection
of the entire surface with a ball centered at the singular point under scrutiny. By
this procedure, one obtains a portion of the surface possessing a boundary curve.
When the ball’s radius is small enough, one gets a curve whose qualitative shape
(number of connected components, number of singular points on each component,
etc.) does not depend on the radius. It is called nowadays the “link” of the singular
point.

One may perform an analogous construction starting from a point of a complex
algebraic surface. When the point is taken on a “normal” complex surface,14 then
its associated link is a 3-dimensional manifold. In the late 1950s, Abhyankar
conjectured that it was impossible to obtain a counterexample to the Poincaré
conjecture following this procedure. In other words, that it was impossible to find
a point on a normal complex surface, whose link is simply connected and different
from the 3-dimensional sphere. The aim of Mumford’s paper (Mumford, 1961) was
to prove this conjecture, as may be seen in Fig. 22, which reproduces the end of its
introduction.

2018) for details about the history of the study of lens spaces and their relation with Hirzebruch-
Jung singularities.
13 In Section 4 of Hopf (1951), Hopf wrote: “[. . . ] die σi lassen sich den Eckpunkten eines
Baumes—d. h. eines zusammenhängenden Streckencomplexes, der keinen geschlossenen Strecken-
zug enthält—so zuordnen, dass zwei σi dann und nur dann einen gemeinsamen Punkt haben, wenn
die entsprechenden Eckpunkte eine Strecke begrenzen.”. This is to be compared with Hirzebruch’s
explanation given in section (11) of Hirzebruch (1953): “Kn wird von H. Hopf als Sphärenbaum
bezeichnet, da sich die Sphären σ ∗

i eineindeutig den Eckpunkten eines Baumes zuordnen lassen:
Zwei σ ∗

i haben genau dann einen Schnittpunkt, wenn die zugeordneten Eckpunkte im Baum eine
Strecke begrenzen.”
14 Normality is a technical condition which implies that all the singular points of the surface are
isolated. One may find details about it in Laufer’s book (Laufer, 1971) or in Mumford’s book
(Mumford, 1999).
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Fig. 22 Mumford’s motivation

Fig. 23 Mumford’s curves “connected together as a tree”

Mumford’s proof started from a resolution of the given point, assuming—
which is always possible—that its exceptional divisor has “normal crossings”.15

It proceeded along the following steps:16

1. Show that the link M of the given point p of a normal complex surface is
determined by the exceptional divisor and by the self-intersection numbers of
its composing curves.

2. Show that if M is simply connected, then the curves of the exceptional divisor
are “connected together as a tree” and are all rational (see Fig. 23).

3. Under this hypothesis, write a presentation of the fundamental group π1(M) of
M in terms of the configuration of curves of the exceptional divisor and of their
self-intersection numbers.

4. Deduce from this presentation that if π1(M) is trivial, then one may contract
algebraically one of the curves of the exceptional divisor to a point and obtain
again a resolution whose exceptional divisor has normal crossings.

5. Iterating such contractions, show that the given point p is a smooth point of the
starting surface, which implies that its link M is the 3-dimensional sphere.

In what concerns step (1), Mumford proved in fact that the link M is determined
by the dual graph of the exceptional divisor, decorated by the genera and the

15 This means that the exceptional divisor is composed of smooth curves intersecting pairwise
transversally, and that three such curves do not have common points.
16 One needs to know a certain amount of algebraic topology in order to understand this proof
completely. The reader with a strong taste for visualization may learn the needed notions from the
website (Saint Gervais, 2017).
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Fig. 24 Mumford’s diagram

self-intersection numbers of the associated curves. This formulation is slightly
anachronistic, because he still did not formally introduce this dual graph. He said
only that the curves of the exceptional divisor were “connected together as a tree”,
which is similar to Du Val’s terminology of his 1934 paper discussed in section “Du
Val’s Singularities, Coxeter’s Diagrams and the Birth of Dual Graphs” (see again
Fig. 15). Unlike Hirzebruch in his 1953 article, he did not even draw a dual graph,
but only a schematic representation of the same type of configuration of curves as
that of Hirzebruch’s paper (Hirzebruch, 1953) (see Fig. 24). One may notice that the
same drawing convention was to be followed by Michael Artin in his 1962 paper
(Artin, 1962) (see the upper half of Fig. 4), before his switch to dual graphs in the
1966 paper (Artin, 1966).

It seems that the notion of dual graph of an arbitrary curve configuration, not
necessarily formed of smooth rational curves, was formally defined for the first
time in Hirzebruch’s 1963 Bourbaki Seminar talk (Hirzebruch, 1963) discussing
the previous results of Mumford. Hirzebruch associated to any “regular graph of
curves” a “graph in the usual sense” (see Fig. 25), without using the terminology
“dual graph”, which seems to have appeared later in the 1960s. Then, he stated
the result of step (3) formulated above as the fact that the dual graph determines
an explicit presentation of the fundamental group of the link M—of course, under
Mumford’s hypothesis that the exceptional divisor has normal crossings, that all its
components are rational curves and that the graph is a tree.

Less than 10 years later, appeared the first books explaining—among other
things—algorithms for the computation of dual graphs of resolutions of singularities
of normal surfaces: Hirzebruch, Neumann and Koh’s book (Hirzebruch et al., 1971)
and Laufer’s book (Laufer, 1971). All those algorithms followed Hirzebruch’s
method of his 1953 paper from which Fig. 21 was extracted.

Before passing to the next section, let me quote an e-mail received on 9 January
2018, in which Mumford answered my questions about the evolution of the notion
of dual graph:

Perhaps the following is useful. In much of the twentieth century, math papers never had any
figures. As a geometer, I always found this absurd and frustrating. In my “red book” intro to
AG [Algebraic Geometry, Mumford (1999)], I drew suggestive pictures of various schemes,
trying to break through this prejudice. On the other hand, I listened to many lectures by
Oscar Zariski and, on rare occasions, we, his students, noticed him making a small drawing
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Fig. 25 Hirzebruch’s switch from “graphs of curves” to graphs “in the usual sense”

on the corner of the blackboard. You see, the Italian school had always in mind actual
pictures of the real points on varieties. Pictures of real plane curves and plaster casts of
surfaces given by the real points were widespread. If you want to go for firsts, check out
Isaac Newton’s paper classifying plane cubics. So we were trained to “see” the resolution
as a set of curves meeting in various ways. The old Italian theory of “infinitely near points”
was, I think, always drawn that way. Of course, this worked out well for compactifying
moduli space with stable curves. I’m not clear who first changed this to the dual graphs.
Maybe it was Fritz [Hirzebruch].

Waldhausen’s Graph Manifolds and Neumann’s Calculus with
Graphs

Mumford’s theorem stating that the link of a complex normal surface singularity is
determined by the dual graph of any of its resolutions whose exceptional divisor has
normal crossings raised the question whether, conversely, it was possible to recover
the dual graph from the structure of the link.

Formulated in this way, the problem cannot be solved, because resolutions are not
unique. Indeed, given a resolution whose exceptional divisor has normal crossings,
one can get another one by blowing up any point of the exceptional divisor. The new
resolution has a different dual graph, with one additional vertex. Is there perhaps a
minimal resolution, from which all other resolutions are obtained by sequences of
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blow ups of points? Such a resolution indeed exists,17 and one may ask instead
whether its dual graph is determined by the corresponding link.

This second question was answered affirmatively in the 1981 paper (Neumann,
1981) of Walter Neumann, building on a 1967 paper (Waldhausen, 1967) of
Friedhelm Waldhausen. Let me describe successively the two papers, after a
supplementary discussion of Mumford’s article (Mumford, 1961).

Mumford looked at the link M of a singular point of a normal complex algebraic
surface as the boundary of a suitable “tubular neighborhood” of the exceptional
divisor of the chosen resolution. One of his crucial insights was that the assumption
that this divisor has normal crossings18 implies that the 3-dimensional manifold M

may be described only in terms of real curves and surfaces, which are objects of
smaller dimension. Namely, the link M may be obtained by suitably cutting and
pasting continuous families of circles—called circle bundles—parametrized by the
points of the curves of the exceptional divisor. Let me explain why.

In the simplest case where the exceptional divisor is a single smooth algebraic
curve—topologically a real surface, because it is a complex curve—such a tubular
neighborhood has a structure of disk bundle over the curve: one may fill it by discs
transversal to the curve. Being its boundary, the link has therefore a structure of
circle bundle over this surface.

In general, the exceptional divisor has several components. Then the boundary
of one of its tubular neighborhoods has again a structure of circle bundle far from
the intersection points of those components, but one has to make a careful analysis
near such points. Mumford worked in special neighborhoods of them, which he
called “plumbing fixtures”. These allow to see in which way one passes from the
circle bundle over a curve of the exceptional divisor to that over a second such
curve, intersecting the first one at the chosen point. In terms of the dual graph, the
description is very simple: to every edge of it one can assign a “plumbing fixture”. In
the link, which is identified with the boundary of the tubular neighborhood, it gives
rise to a torus. By moving inside the link M and crossing this torus, one passes from
the first circle fibration to the second one. In order to understand precisely in which
way the transition is made, one has to look at the relative positions of the circles of
both fibrations on the separating torus. These intersect transversally at exactly one
point.

This phenomenon gave rise to the notion of “plumbed 3-manifold”. It is a
3-dimensional manifold constructed from a decorated graph by performing a
“plumbing” operation for each edge of the graph, similar to that described by
Mumford in his paper. Each vertex comes equipped with two numbers, one
representing the genus of a surface and the second its self-intersection number in an
associated disk-bundle of dimension four. There is a subtlety related to orientations,
which obliges one to decorate the edges with signs.

17 The figures in sections “Introduction” and “What Is the Meaning of Such Graphs?” present in
fact dual graphs of minimal resolutions of the corresponding surface singularities.
18 Recall that this notion was explained in footnote 15.
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One witnesses here a metamorphosis of the interpretation of the weighted dual
graphs. If they started by representing the configurations of curves obtained as
exceptional divisors of resolutions of singularities, they became blueprints for build-
ing certain 3-manifolds. It was Waldhausen who developed a subtle theory of those
manifolds in Waldhausen (1967). He called them “Graphenmannigfaltigkeiten”—
that is, “graph-manifolds” and not “plumbed manifolds”, in order to emphasize the
idea that they are defined by graphs. In fact, he considered slightly more general
graphs, whose edges are also decorated with pairs of numbers (see Fig. 26). This
convention allowed the transitions from one circle fibration to another one across a
torus to be performed by letting the fibers from both sides intersect in any way, not
necessarily transversally at a single point. One of his main theorems states that any
graph-manifold has a unique minimal graph-presentation, except for an explicit list
of ambiguous manifolds.

In his 1981 paper (Neumann, 1981), Neumann turned this theorem into an
algorithm, allowing to determine whether two weighted graphs in the original sense
of the plumbing operations determined the same oriented 3-dimensional manifold.
Roughly speaking, this algorithm consists in applying successively the rules of a
“plumbing calculus”—some of them being represented in Fig. 27—in the direction
which diminishes the number of vertices of the graph. Two graphs determine

Fig. 26 Two of Waldhausen’s “graph manifolds”
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Fig. 27 Part of Neumann’s “plumbing calculus”

the same 3-dimensional manifold if and only if the associated “minimal” graphs
coincide—again, up to a little ambiguity related to the signs on the edges.

The algorithm allowed Neumann to prove important topological properties of
normal surface singularities and of families of smooth complex curves degenerating
to singular ones. For instance, he showed that the decorated dual graph of the
minimal resolution with normal crossings is determined by the oriented link of
the singularity. This unified the two viewpoints on the graphs associated to surface
singularities discussed in this paper (as dual graphs of their resolutions, and as
blueprints for building their links).

Conclusion

We could continue this presentation of the interaction between graphs and singular-
ities in several directions:

• By examining other classification problems of singularity theory which led to
lists of dual graphs, between Mumford’s paper (Mumford, 1961) and Neumann’s
paper (Neumann, 1981) (for instance Brieskorn’s paper (Brieskorn, 1968),
Wagreich’s paper (Wagreich, 1972) and Laufer’s papers (Laufer, 1973, 1977)).
We saw that it was such a classification problem which led Du Val to his
consideration of “graphs of curves”, and which led to Artin’s lists of dual graphs
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shown in Figs. 4 and 5. Another such problem led to the more recent paper of
Chung, Xu and Yau from which Fig. 3 is extracted. Note that in Laufer (1973),
Laufer classified all “taut” normal surface singularities, that is, those which are
determined up to complex analytic isomorphisms by the dual graphs of their
minimal resolutions. He showed in particular that all rational double and triple
points of Figs. 4 and 5 are taut. This result had already been proved by Brieskorn
in Brieskorn (1968) for rational double points. As a consequence, this class
of singularities coincides with Du Val’s singularities which do not affect the
condition of adjunction. This result is much stronger than the fact that their
minimal resolutions have the same dual graphs.

• By examining the applications and developments of Neumann’s “plumbing
calculus”. One could analyze its variant developed by Eisenbud and Neumann
in Eisenbud and Neumann (1985) for the study of certain links (that is, disjoint
unions of knots) in integral homology spheres which are graph-manifolds, its
applications initiated by Neumann (1989) to the study of complex plane curves at
infinity, or those initiated by Némethi and Szilárd (2012) and continued by Curmi
(2020) to the study of boundaries of “Milnor fibers” of non-isolated surface
singularities.

• By discussing generalizations of dual graphs to higher dimensions. In general,
when one has a configuration of algebraic varieties, one may represent them by
points, and fill any subset of the total set of such points by a simplex, whenever
the corresponding varieties have a non-empty intersection. One gets in this way
the so-called “dual complex” of the configuration of varieties. In the same way
as there was a substantial lapse of time since the idea of dual graph emerged
till it became an active object of study, an analogous phenomenon occurred
with this more general notion. It seems to have appeared independently in the
1970s, in Danilov’s paper (Danilov, 1975)—whose results were rediscovered
with a completely different proof by Stepanov in his 2006 article (Stepanov,
2006)—in Kulikov’s paper (Kulikov, 1977) and in Persson’s book (Persson,
1977). Information about recent works on dual complexes may be found in
Payne’s paper (Payne, 2013), in Kollár’s paper (Kollár, 2013) and in the paper
(de Fernex et al., 2017) by de Fernex, Kollár and Xu. One may use Nicaise’s
paper (Nicaise, 2016) as an introduction to the relations between dual complexes
and “non-Archimedean analytifications in the sense of Berkovich”.

• By presenting the notion of “fan” of the divisor at infinity of a toroidal variety,
introduced by Kempf, Knudson, Mumford and Saint-Donat in the 1973 book
(Kempf et al., 1973). It is a complex of cones associated to special kinds
of configurations of hypersurfaces in complex algebraic varieties. When the
configuration has normal crossings, the projectivisation of the fan is in fact the
dual complex of the configuration. Fans had been introduced before by Demazure
for “toric varieties” in the 1970 paper (Demazure, 1970), and since then they
were mainly used in “toric geometry”. Following this direction, we could arrive
at the notion of “geometric tropicalization”, which expresses “tropicalizations”
of subvarieties of algebraic tori in terms of the dual complexes of the divisors at
infinity of convenient compactifications (see Hacking et al., 2009 and Maclagan
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and Sturmfels, 2015, Theorem 6.5.15). Note that Berkovich’s analytification
(alluded to at the end of the previous item) and tropicalization are intimately
related, as explained by Payne in Payne (2009, 2015). Note also that the paper
Barroso et al. (2019) studies dual graphs of resolutions of normal surface
singularities in the same spirit.

• By discussing how Waldhausen’s theory of graph-manifolds led to Jaco-Shalen-
Johannson’s theory of canonical decompositions of arbitrary orientable and
closed 3-manifolds into elementary pieces, by cutting them along spheres and
tori (see Jaco and Shalen’s book (Jaco and Shalen, 1979) and Johansson’s
book (Johannson, 1979)). This is turn gave rise to Thurston’s geometrization
conjecture of Thurston (1982), proved partially by Thurston, and which was
finally completely settled by Perelman’s work (Perelman, 2003). For details on
Perelman’s strategy, one may consult the monographs Bessières et al. (2010) and
Morgan and Tian (2014).

• By speaking about the second, more recent, main source of graphs in singularity
theory: the dual graphs of configurations of “vanishing cycles” in Milnor fibers of
isolated hypersurface singularities. Such dual graphs, called sometimes “Dynkin
diagrams”, began to be described and drawn after 1970 for special classes of
singularities in A’Campo (1975a,b), Gabrielov (1973, 1974) and Gusein-Zade
(1974). One may consult Arnold’s papers (Arnold, 1973, 1975), Gusein-Zade’s
survey (Gusein-Zade, 1977) and Brieskorn’s papers (Brieskorn, 1981, 1983) for
a description of the context leading to those researches on Dynkin diagrams
and of their relations with other invariants of hypersurface singularities. Du
Val’s singularities possess configurations of vanishing cycles isomorphic to the
dual graphs of their minimal resolutions indicated in Fig. 4. One may consult
Brieskorn’s paper (Brieskorn, 2000) for a description of the way he proved
this theorem instigated by a question of Hirzebruch. In fact, this property
characterizes Du Val’s singularities (see Durfee’s survey (Durfee, 1979) of many
other characterizations of those singularities). In general, the relation between
the two types of dual graphs is still mysterious. Note that Arnold described in
Arnold (1975) a “strange duality” inside a set of 14 “exceptional unimodular
singularities”, relating the two types of dual graphs. This duality was explained
in Pinkham (1977) on one side and Dolgachev and Nikulin (1977) on another
side (see Dolgachev’s Bourbaki seminar presentation (Dolgachev, 1983)). Later,
Dolgachev related it in Dolgachev (1996) to the very recent phenomenon—at the
time—of “mirror symmetry”, but this seems to be only the tip of an iceberg.

I will not proceed in such directions, because this would be very difficult to do
while remaining reasonably non-technical. I made nevertheless the previous list
in order to show that dual graphs and their generalizations to higher dimensions
are nowadays common tools in singularity theory, in algebraic geometry and in
geometric topology. It is for this reason that I found interesting to examine their
births and their early uses.
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We saw that dual graphs of surface singularities were first used mainly verbally,
in expressions like “tree of curves”, “Sphärenbaum”. Drawing them became impor-
tant for stating results of various problems of classification. This made their verbal
description first too cumbersome, then completely inadequate for the description of
the wealth of morphologies under scrutiny. Then, their reinterpretation as blueprints
for building graph-manifolds led to the development of a “plumbing calculus”,
which transformed them into objects of algebra. The necessity to develop an
analogous “calculus” appears every time one gets many different encodings of the
structure of an object, leading to the problem of deciding which encodings corre-
spond to the same object (another instance of this phenomenon is Kirby’s calculus of
Kirby, 1978). In other situations—for instance, that of finite presentations of discrete
groups—it is known that the problem is undecidable. But for plumbing graphs it is
solvable, as shown by the works of Waldhausen and Neumann alluded to before.
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