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Chapter 11
Plant Growth-Promoting Rhizobacteria 
(PGPR): Strategies to Improve Heavy 
Metal Stress Under Sustainable 
Agriculture

Ananya Roy Chowdhury

Abstract  Among several soil pollutants, the heavy metal effluents discharged from 
different industries directly or indirectly influence the global environmental balance 
and eventually decrease agricultural productivity. As a result of these harmful activ-
ities, soil pollution due to heavy metal toxicity is a potentially crucial environmental 
issue globally. The conventional methods of removing the huge metals from the 
environment are not eco-friendly, and these processes produce huge toxic residues. 
So, in this situation, bioremediation is the most preferred way to minimise the 
effects of heavy metals on the environment. Under such circumstances, the impact 
of plant growth-promoting rhizobacteria (PGPR) in remediation of metal toxicated 
areas has gained importance in sustainable agriculture systems. PGPRs increase 
plant growth by solubilising phosphate, synthesising IAA, producing enzymes, fix-
ing the nitrogen, etc. So, the inoculation of suitable and specific heavy metal-tolerant 
PGPR strains associated with plants can maximise the phytoremediation. In this 
work, the impact of PGPR on remediation of the heavy metal contaminated zone is 
adequately described.
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11.1  �Introduction

The continued expansion of industrial activities and, more particularly, the dense 
industrial effluents are the main reasons contributing to soil pollution. Among vari-
ous soil pollutants, heavy metals are highly phytotoxic, and their toxicity has a 
significant effect not only on plant growth but also on mass crop yield and health. It 
is a well-known fact that to enhance crop production, the deliberate application of 
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chemical fertilisers, especially nitrogen and phosphorus, has led to extreme deleteri-
ous effects on soil structure and total plant health. In this situation, rhizosphere 
researchers have been throwing up surprises regarding the rhizospheric microorgan-
isms. Plant growth-promoting rhizobacteria (PGPR) are bacteria that live in plant 
roots. In recent years, substantial attention has been paid to the potential of PGPR 
to substitute agrochemicals (fertilisers and pesticides) for plant growth promotion 
through a variety of mechanisms including organic matter decomposition, soil 
structure formation, organic pollutant degradation, mineral solubilisation and bio-
control of seed-borne pathogens. Heavy metal stress has become a big issue in 
whole terrestrial ecosystems worldwide. Damage to soil texture means disturbing 
the pH of soil. Heavy metal accumulation is the chief factors responsible for the 
reduction of plant growth and development. The huge industrial discharge, particu-
larly wastewater discharge, contains a heavy load of metal effluents. When these 
materials get accumulated in agricultural land through irrigation, they produce 
severe problems in human bodies and the entire living systems. Under such circum-
stances, PGPR can be the safest option to decrease the notorious impacts of heavy 
metals on these environments.

11.2  �An Introduction to PGPR

The rhizosphere is a layer of soil that is tightly regulated by the root system of the 
plant. This area is nutrient-dense as a result of the accumulation of a variety of nutri-
tious plant exudates, such as sugars and amino acids. It is home to a diverse array of 
bacteria that colonise this region. Rhizobacteria are the microorganisms and bacte-
ria that inhabit this area. Numerous rhizobacteria genera have been classified as 
PGPR, but Pseudomonas and Bacillus are the most prevalent.

Due to the ever-increasing hunger of the excessively increasing human popula-
tion, the use of PGPR for reducing the application of agrochemicals is a critical 
issue. PGPR, the beneficial root-inhabiting bacteria, stimulates plant growth and 
protects them from various seed-borne pathogens by establishing a symbiotic 
relationship.

11.3  �Mechanisms of PGPR’s Action

PGPRs promote plant development in a number of ways, both overt and indirect 
with phosphate solubilisation, nitrogen fixation, IAA synthesis and siderophore 
synthesis as the examples of direct pathways. Indirect pathways, on the other hand, 
involve the suppression of fungal, bacterial, fungal and nematode infections by the 
synthesis of various enzymes such as cellulases proteases and chitinases. Additional 
indirect pathways include quorum sensing, signal interference, mineral nutrient 
solubilisation, biofilm inhibition and systemic acquired tolerance (Fig. 11.1).

A. Row Chowdhury



191

The root-colonising bacteria can improve plant growth by N-fixation (Djordjevic 
et  al., 1987; Strzelczyk et  al., 1994), phosphate solubilisation (Kloepper et  al., 
1988), phytohormone (auxin, gibberellins, cytokinin) production and decreasing the 
ethylene level in plants (Glick et  al., 2007; Glick et  al., 1999). Promoting water 
absorption and nutrient translocation, promoting rhizo anatomical development 
(Okon & Kapulnik, 1986), improving the whole enzyme system and cooperating 
with other groups of beneficiary soil microbes to perform better are the other mech-
anisms by which they improve the plant growth.

11.3.1  �Direct Mechanism

PGPRs enhance the growth of plants through the following direct (Arora et  al., 
2012; Bhardwaj et al., 2014).

11.3.1.1  �Nitrogen Fixation

PGPRs are widely applied to fix nitrogen, the most significant nutrient for plant 
growth and development (Fig. 11.2). Irrespective of the presence of nitrogen in the 
highest concentration in air, the plants are incapable of converting it into ammonia, 
thus remaining unavailable to plants. PGPRs convert dinitrogen into ammonia, 
utilising nitrogenase enzyme (Gaby & Buckley, 2012). They fix nitrogen either by 
building symbiotic association or by non-symbiotic pathway. Among different 
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nutrients, nitrogen is one of the most essential, specifically in rice production. Every 
year 50–70% loss in rice yield occurs due to the failure of fulfilment of nitrogen 
demand of rice plants by chemical fertilisers (Ladha et al., 2005). As new varieties 
of rice demand a higher amount of nitrogen, it is getting impossible to provide it 
only by chemical fertilisers.

Among the root-colonising bacteria population that fix atmospheric nitrogen and 
benefit plant growth are plant growth-promoting rhizobacteria (PGPR). Alternatively, 
they are known as bio-enhancers or biofertilisers (Kloepper et al., 1980; Shamsuddin 
et al., 2014).

It is stated that PGPRs fix nitrogen in cereals, banana and grasses (Döbereiner, 
1997). They also increase the nutrient absorption rate and resistance to droughts 
(Arzanesh et al., 2011). Among several naturally occurring host-microbe interac-
tions, the symbiotic relationship between Rhizobium and leguminous plants is well 
established. This symbiosis is best understood and is a well-applied 
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nitrogen-providing system to leguminous plants. Nowadays, research is going on to 
develop Rhizobium-non-legume interactions as well. This approach involves the 
integration of nitrogen-fixing gene into the rice-Rhizobium system. The rhizobial 
gene manipulation and modulation have lots of benefits. It develops a high level of 
root architecture, increases root hairs and enhances the rate of nutrient absorption 
(Yanni et al., 1997).

The co-inoculation of Rhizobium with two PGPR strains, Pseudomonas fluores-
cens P-93 and Azospirillum lipoferum S-21, effectively controlled the total nitrogen 
uptake, nutrient uptake and translocation of nutrients in Phaseolus vulgaris L. The 
PGPRs first make entry into the plants following the nodule formation where nitro-
gen fixation starts. The rhizo-microbial population showing symbiotic association 
includes several symbionts, like Bradyrhizobium, Rhizobium, Mesorhizobium and 
Sinorhizobium with legume-forming plants (Zahran, 2001).

Non-symbiotic nitrogen fixation is carried out by free-living diazotrophs, which 
concurrently promote the growth and yield of non-leguminous plants. Azotobacter, 
Azoarcus, Acetobacter, Burkholderia, Cyanobacteria and Pseudomonas are all 
examples of non-symbiotic nitrogen fixers, 2012; Vessey, 2003).

11.3.1.2  �Phosphate Solubilisation

Phosphorus is another vital mineral element for a plant’s nutrition. It plays a pivotal 
role in photosynthesis, signal transduction, respiration and energy transfer. In soil, 
phosphate is present in inorganic and organic form with inadequate amounts, but 
plants can’t absorb phosphate because 98% of phosphate is present in insoluble and 
precipitated form (Pandey & Maheshwari, 2007). Plants can utilise phosphate only 
in two forms, the monobasic form (H2PO4) and the dibasic (HPO4

2−) form 
(Bhattacharyya & Jha, 2012).

It remains in the soil either in mineral salt form or in organic form. Hence, irre-
spective of the abundance of phosphorus in the soil, the plants can’t absorb it 
because of its insolubility which becomes a major limiting factor for the proper 
development of plants. That’s why it gradually becomes necessary to apply phos-
phorus in soluble form through fertilisers in the agricultural field.

Recent research indicates that inoculating crops with phosphate-solubilising 
microbes (PSM) will result in a 50% reduction in phosphate fertiliser application 
without affecting crop output (Yazdani et al., 2009). PSB (phosphate-solubilising 
bacteria) can also be beneficial in the phytoremediation of soils contaminated with 
heavy metals or in the bioleaching of rare earth elements from mined ores.

PGPRs solubilise inorganic phosphates by releasing phosphatase enzyme during 
substrate degradation (Sharma et al., 2013). Phosphate-solubilising PGPRs belong 
to the genera Arthrobacter, Beijerinckia, Microbacterium, Erwinia, Rhodococcus, 
Burkholderia, Flavobacterium, Enterobacter and Serratia (Bhattacharyya & Jha, 
2012). It is also reported that the phosphate solubilisation rate gradually increases 
by the application of other beneficial soil microbes along with PGPRs (Zaidi 
et al., 2009).
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11.3.1.3  �Siderophore Production

Iron is a critical micronutrient for all living species and is found in abundance in 
soil. Irrespective of its high presence in soil, plants can’t utilise it because of its low 
solubility rate. Iron is the fourth in position according to its abundance on earth. It 
is readily assimilated neither by the plants nor by any bacteria because of its pres-
ence in the aerobic soils in ferric ion (Fe3+) form that is not readily soluble in water 
(Ma, 2005). But some microorganisms have developed some unique mechanisms 
for iron assimilation, including the formation of low-molecular-weight iron-
chelating products called siderophores (Arora et  al., 2012; Schwyn & Neilands, 
1987). Through siderophores, it enters within the plant body. The siderophores per-
form an important function like iron’s extracellular solubilisation from minerals.

According to distinct functional groups, siderophores can be divided into three 
major categories: carboxylates, hydroxamates and catecholates (Cornelis, 2010), 
and bacteria can produce all four types of siderophores. Examples of some active 
siderophore-producing bacteria are Salmonella, Enterobacter, Vibrio cholerae, 
Escherichia coli, Aeromonas and Yersinia.

Some fungi, for examples, A. versicolor (Holinsworth & Martin, 2009), Ustilago 
sphaerogena (Shanmugaiah et al., 2015), Rhizopus (Shenker et al., 1992), etc., are 
also reported to produce siderophore. A large number of PGPRs, e.g. Streptomyces 
(Dimkpa et  al., 2008), Azotobacter (Fekete et  al., 1983), Rhizobium (Datta & 
Chakrabartty, 2014), Burkholderia (Ong et  al., 2016), Aeromonas (Hirst et  al., 
1991), Pseudomonas, etc. (Sujatha & Ammani, 2013), also produce siderophores 
and improve plant growth.

11.3.1.4  �Production of Phytohormone

Phytohormones are usually organic, and their impact on plant occurs in a meagre 
amount. They are synthesised in different tissues and are then transported to their 
target sites. Hormones are categorised into five groups by plant biologists: auxin, 
cytokinins, ethylene, gibberellins and abscisic acid (ABA). Recently, two novel hor-
mones, brassinosteroid and strigolactones, are also reported to be produced by 
plants (Zwanenburg et  al., 2016). Microorganisms in the rhizosphere generate 
growth-stimulating hormones such as indole acetic acid (IAA), cytokinins and gib-
berellins, among others (Arora et  al., 2013), which significantly enhance 
plant growth.

Indole Acetic Acid (IAA)

The fungi Rhizopus suinus and Absidia ramosa were identified to produce auxin. 
About 80% of root-colonising microbial populations isolated from different crops 
and vegetables are proven to produce auxin due to secondary metabolism (Vessey, 
2003). IAA is the natural auxin, and it has positive effects on the root and shoot 
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elongation. The primary precursor of IAA is tryptophan which is found to occur in 
root exudates (Miransari & Smith, 2014). Different PGPRs like Pseudomonas, 
Agrobacterium, Klebsiella and Enterobacter produce IAA either via the formation 
of indole-3-pyruvic acid or via indole-3-acetic-aldehyde (Shilev, 2013).

Several free-living PGPRs like Alckaligenes faecalis, Acetobacter diazotrophi-
cous and Enterobacter cloacae are also related to the low level of IAA production. 
IAA increases the rate of cell division, differentiation, lateral and adventitious root 
development and pigment production and provides resistance to stress conditions 
(Spaepen & Vanderleyden, 2011).

IAA is a secondary metabolite produced through either tryptophan-dependent 
pathway or an independent tryptophan pathway in plants and bacteria. In 
Azospirillum brasilense IAA is produced through tryptophan-independent pathway. 
It is reported that IAA produced in wheat plants by Azospirillum brasilense stimu-
lates a high number and length of lateral roots.

Irrespective of plant growth promotion and root nodulation, IAA also helps in 
root proliferation and root branching. The function of IAA, produced by the PGPB 
Pseudomonas putida GR12-2, is well established by the experiment done on canola 
roots. The IAA-deficient mutant bacterial strain was applied on other canola plant 
sets and eventually showed no such root and shoot growth compared to PGPB-
treated set. Inoculation in a seed with Pseudomonas putida GR12-2 showed root 
formations that were 35–50% longer than the roots grown from seeds inoculated 
with IAA-deficient mutant PGPB strain. In another set where the mung bean plant 
was used in experimentation, the same PGPB showed overproduction of IAA in 
plants compared to the uninoculated control set. IAA is proven in taking a role in 
root and shoot growth and necessary for the formation of nodules.

The production of IAA in plants is a stimulator of the cell wall loosening. It is 
secreted in higher amounts as a root exudate, which provides excess nutrients to 
root-colonising bacteria.

Gibberellins and Cytokinins

Among different rhizobacteria, Azotobacter sp., Bacillus subtilis, Pseudomonas 
fluorescens, Paenibacillus polymyxa and Rhodospirillum rubrum are known to pro-
duce either gibberellins or cytokinins or both, which play an essential role in plant 
growth promotion (Kang et al., 2010). PGPRs produce a lower level of cytokinins 
as compared to different phytopathogens. According to Barea et al. (2005), 90% of 
root-colonising bacteria isolated from other crops exhibit the ability of cytokinin 
like compound production, e.g. a free-living soil bacterium, Pseudomonas poly-
myxa, was reported to produce cytokinins (Timmusk et al., 2014).

Gibberellins are involved in seed germination, floral induction, stem and floral 
growth and crop and fruit development. Simultaneously, GA processing by PGPRs 
encourages the growth and yield of a wide variety of grain plants and vegetables.

It is also reported that Azospirillum brasilense and Arthrobacter giacomelli pro-
duce a dense concentration of cytokinins grown in mixed culture condition (Lippi 
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et  al., 1991). In 1972, Philips and Torrey experimentally proved the presence of 
zeatin like compounds around the Rhizobium nodules.

11.3.2  �Indirect Mechanisms

The application of PGPR is a promising approach for sustainable agriculture, as it 
upsurges plant growth and soil fertility in an indirect way. Based on their indirect 
mechanism, researchers are trying to reduce the application of different agrochemi-
cals. PGPR can improve soil fertility via antibiosis, lytic enzyme production, the 
implication of induced systemic resistance, etc. (Lugtenberg & Kamilova, 2009).

11.3.2.1  �Antibiotic Production

According to researchers, PGPRs develop some antibiotics that are highly effective 
against a variety of soil-borne phytopathogens (Shilev, 2013). Numerous antibiotics 
are developed by various Pseudomonas bacteria, including phenazine, oomycin A, 
pyrrolnitrin, tensin and cyclic lipopeptides (Loper & Gross, 2007). Streptomyces 
and Bacillus contain antibiotics such as kanamycin, oligomycin A and zwittermicin 
A (Compant et al., 2005).

Pseudomonas sp. produces 2,4-DAPG in soil, which can be used to monitor 
Gaeumannomyces graminis var. tritici in wheat (de Souza et al., 2003). Bacillus 
amyloliquefaciens produces lipopeptides and polyketides that are effective against 
soil-borne pathogens (Ongena & Jacques, 2008). Certain PGPRs can also synthe-
sise a volatile compound called HCN, which is used as a biocontrol agent against 
Thielaviopsis basicola (Sacherer et al., 1994).

11.3.2.2  �Lytic Enzyme Production

PGPRs can produce different types of lytic enzymes like chitinases, lipases, prote-
ases, dehydrogenase, phosphatase, etc. (Hayat et al., 2010; Joshi et al., 2012). They 
show hyperparasitic function in attacking phytopathogens by their cell wall hydro-
lysis. PGPRs can also tolerate different living and non-living stresses by suppress-
ing several pathogenic fungi, including Fusarium oxysporum, Pythium ultimum, 
Rhizoctonia solani, etc. (Nadeem et al., 2013; Upadyay et al., 2012). Azotobacter 
chroococcum has been reported to give good performance on Sesamum indicum at 
field trial (Maheshwari et al., 2012). Similarly, Trichoderma sp. inoculation in pea-
nut acts as a biocontrol against Aspergillus niger which causes collar rot disease in 
the plant (Rabeendran et al., 2000).
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11.3.2.3  �Development of Induced Systemic Resistance (ISR)

When the environmental stimuli activate, the innate defence mechanism of the plant 
gets power against different challenges, called ISR (Avis et al., 2008). As PGPRs 
provide systemic resistance against several pathogens, like bacteria, fungi, insects 
and nematodes, they can be applied to host plants (Naznin et al., 2013). ISR stimu-
lates jasmonates and ethylene, which help plants against several types of pathogens 
(Glick, 2012).

Induced resistance is a physiological condition that occurs when plant growth-
promoting rhizobacteria induce an increase in defensive capacity (PGPR). The 
enzymes which have so far been reported to be involved with ISR include chitinase, 
peroxidase, superoxide dismutase, phenylalanine lyase, catalase, polyphenol oxi-
dase and ascorbate peroxidase (Annapurna et al., 2013).

11.4  �Impact of PGPR on Plants

PGPR is a distinct group of root-colonising bacteria that facilitate rooting and pro-
mote overall plant growth (Glick et al., 1995). According to Piao et al. (1992), plant 
growth-improving bacteria are collectively called YIB (Yield Increasing Bacteria). 
Some workers referred to them as plant beneficial bacteria (PBB). Gaind and Gaur 
(1991) referred to them as ‘direct PGPR’, and Grayston and Germida (1991) sup-
ported the term ‘direct PGPR’, whereas described them as non-biocontrol PGPRs.

The PGPR can enhance plant growth by nitrogen fixation (Roy Chowdhury 
et al., 2017), phosphate solubilisation (; Yazdani et al., 2009), phytohormone pro-
duction (Vejan et al., 2016), potassium solubilisation (Han & Lee, 2005; Parmar & 
Sindhu, 2013) and siderophore production (Beneduzi et  al., 2012; Pahari & 
Mishra, 2017).

11.4.1  �As Biofertilisers

The host plant-PGPR relationship is critical for optimising plant growth and pro-
duction on a broad scale. As the PGPRs are efficient for producing different phyto-
hormones, specifically IAA, the phytohormonal network is still understudied. 
Among several PGPRs, C138 is proven to supply iron in iron-starved tomato plants. 
Similarly, Bacillus amyloliquefaciens is reported as growth and yield improver in 
soybean in India.

Burkholderia kururiensis (Estrada-de los Santos et al., 2001) and Burkholderia 
vietnamensis (Gillis et al., 1995) are examples of nitrogen fixers. Besides nitrogen 
fixation, phosphate solubilisation and siderophore productions are also fulfilled by 
the PGPRs. For these reasons, PGPRs are used as biofertilisers.
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11.4.2  �As Biocontrol Agent

Few root-colonising bacteria, especially Pseudomonads, inhibit the growth of some 
soil-inhabited pathogens. These bacteria not only impart resistance but also help in 
the improvement of plant growth and yield. In such circumstances, the term ‘bio-
control plant growth-promoting rhizobacteria’ was proposed by soil microbiolo-
gists (Tilak et al., 1999).

In paddy, P. fluorescens strains exhibited inhibitory action on hyphal growth of 
Rhizoctonia solani (Radjacommare et  al., 2004). Stenotrophomonas marcescens 
strain, another biocontrol PGPR, inhibits different soil-borne pathogens, including 
Fusarium oxysporum. Different strains of Bacillus spp. constitute the ability to 
indulge ISR in a wide variety of crops. The biocontrol power of Bacillus spp. is one 
of the critical agents that can combat rhizo- and soil-borne pathogens in the case of 
chickpea (Landa et al., 1997).

They offer biological control to plants either by antibiotic production or by sid-
erophore/phytohormone production. Genetic modification has opened a new way 
for developing PGPRs as biocontrol agents.

11.4.3  �As Environmental Stress Controller

Due to climate change, rainfall patterns become more erratic, resulting in a tremen-
dous reduction in crop production. As a result, the plants either become exposed to 
severe drought condition or floods. In addition to these, the continuous rising of the 
pollutant level in the environment, specifically the toxic gases in the atmosphere and 
heavy metals in the soil, leads to a drastic reduction of crop yield. The chemical 
effluents from several industries are also getting mixed in the river water, which 
subsequently passes to the agricultural fields. All these situations are giving birth to 
different environmental stresses.

Under stress conditions, plants produce a high concentration of ethylene, utilis-
ing ACC as a precursor. The ethylene retards the root and shoot elongation and sup-
presses leaf expansion. So, it is clear that if the PGPRs can produce ACC deaminase, 
they can tolerate the stress to a certain level (Akhgar et al., 2014). The ACC deami-
nase synthesising PGPRs reduces several environmental stresses by producing dif-
ferent exopolysaccharides, which immediately binds with cations (Na++) and 
eventually form a sheath on the plant roots. Few rhizobacteria also develop heavy 
metal tolerance mechanisms (Maxton et al., 2018) in plants.

ACC deaminase producers can relieve different stresses, such as heavy metals, 
drought, polyaromatic hydrocarbons and salts (Glick et al., 2007). Jacobson et al. 
(1994) showed that Pseudomonas putida contains ACC deaminase that helps reduce 
the adverse stress level in plants. Under water stress conditions, Pseudomonas sp. 
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can improve CAT enzyme activity in basil plants. In GPX and APX function and 
total chlorophyll content, combinations of three PGPRs (Pseudomonas sp., Bacillus 
lentus, Azospirillum brasilense) showed tremendously good result under water 
stress condition (Heidari & Golpayegani, 2012).

11.5  �Reports on the Effect of PGPRs in the Role 
of Biofertilisers

Biofertiliser is becoming a fundamental pillar of eco-friendly organic farming and a 
significant component of sustainable agriculture globally. They contain products 
that can be inoculated to seeds, soil or epidermal plant portion. They subsequently 
colonise the rhizospheric area and ultimately enhance plant growth by providing 
nutrients to the host plant. As bio-formulation, biofertilisers contain many microor-
ganisms responsible for enriching the plants’ nutrient uptake status.

Azotobacter is a cytokinin synthesiser, which showed increased yield in cucum-
ber (Alori et al., 2017). It fixes nitrogen in wheat, barley, rice, maize, lime, coconut, 
tobacco, etc. (Wani et al., 2013). Azorhizobium is highly efficient for nitrogen fixa-
tion in wheat, and it is applied as biofertiliser in wheat cultivation (Sabry et  al., 
1997). Bacillus bacterisation develops more lateral roots in cucumber (Sokolova 
et al., 2011) and synthesises gibberellins in pepper (Joo et al., 2005). It can also 
solubilise potassium in these crops (Han & Lee, 2005). Some other PGPRs are 
reported to act as biofertilisers on different crops and vegetables enlisted in 
Table 11.1.

From the above-mentioned examples, it is clear that PGPRs have outstandingly 
worked on different plant species as biofertilisers. They provide the safest and the 
most eco-friendly approach to sustainable agriculture. The importance of PGPRs in 
yield development and their capacity to elicit ISR against several abiotic stresses 
has been reported (Avis et al., 2008). The symbiotic association between PGPR and 
host plants is the most promising way for developing a new approach for sustainable 
agriculture.

11.6  �Heavy Metal Stress in the Environment

Heavy metals are a significant cause of soil pollution. Numerous metals contribute 
to soil pollution, including Ni, Cd, Zn, Cr, Cu and Pb. Heavy metals exert toxic 
impacts on the soil microflora; hence their population size, diversity and total activi-
ties get drastically affected. Different physiological activities of plants like photo-
synthesis, water absorption and cell division get affected tremendously. The toxic 
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Table 11.1  Report of different PGPRs on plant growth enhancement

Sl. 
no. Name of the PGPR

Name of the 
host pant Findings References

1. Burkholderia Paddy Siderophore production and 
high nitrogen fixation

Govindarajan et al. 
(2008)

2. Rhizobium Legume plants Helped in developing 
resistance against several 
stresses

El-Akhal et al. 
(2013)

3. Streptomyces Indian lilac Production of IAA Verma et al. (2011)
4. Pseudomonas Pigeon pea Chitinase and

β-glucanase production
Kumar et al. (2010)

6. Herbaspirillum Rice Nitrogen fixation Elbeltagy et al. 
(2001)

7. P. putida Maize High percentage of seed 
germination

Gholami et al. 
(2009)

8. Rhizobium 
leguminosarum

Wheat Improves the yield and 
phosphorus uptake

Afzal and Bano 
(2008)

9. Sphingomonas Tomato Gibberellin production Khan et al. (2014)
10. Beijerinckia Sugarcane Nitrogen fixation

11. Phyllobacterium Strawberry Phosphate solubilisation Flores-Félix et al. 
(2015)

12. Mycobacterium Maize Induction of resistance 
against environmental 
stresses

Egamberdiyeva 
(2007)

13. Bacillus megaterium Tea Phosphate solubilisation Chakraborty et al. 
(2006)

14. Bacillus pumilus Tobacco Compete against blue mould Zhang et al. (2003)
15. Bacillus subtilis 

CE1
Maize Gives resistance against 

Fusarium verticillioides
Cavaglieri et al. 
(2005)

16. Pseudomonas 
chlororaphis

Soybeans Phosphate solubilisation

17. Bradyrhizobium 
japonicum

Cowpeas Nitrogen fixation Rivas et al. (2009)

18. B. cereus Wheat Gives resistance against R. 
solani AG 8

Ryder et al. (1999)

19. Bacillus circulans Mung bean Phosphate solubilisation Singh and Kapoor 
(1999)

symptoms include the appearance of dark green leaves, permanent wilting of plants, 
stunted growth, brown short leaves and roots. The plants’ uptake metals from soil 
and these metals eventually enter the food chain and result in high health risk for 
living animals, including humans. The agricultural runoff containing heavy metal 
discharge enters the aquatic environment and leads to toxic effects on aquatic ani-
mals and plants.
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Heavy metals reduce bacterial species richness in the contaminated soils. Among 
different heavy metals, cadmium (Cd) is considered the most toxic one to the micro-
bial enzymes, whereas lead (Pb) decreases catalase, urease, alkaline phosphatase 
and acid phosphatase. The nature of sensitivity of soil enzymes to different heavy 
metals is quite different from each other.

11.6.1  �Effects of PGPRs on Plants in Heavy 
Metal-Contaminated Soil

Hyperaccumulator plants can accumulate a high level of heavy metals and tolerate 
heavy metal stress to an extent. The plants growing in the heavy metal-polluted soils 
harbour a wide group of microbes that can tolerate heavy metal concentrations to a 
higher limit and provide several nutrients to host plants. Among the rhizospheric 
microbes, the plant growth-promoting rhizobacteria (PGPR) attract special atten-
tion because they can enhance the phytoremediation method by releasing chelators, 
synthesising different phytohormones, etc. The following table (Table 11.2) sum-
marises the existing reports regarding the effects of PGPR on phytoremediation in 
metal-polluted soil.

PGPRs are known to affect the metal mobility and availability to the host plant, 
and it may occur through redox changing, acidification, siderophore production, 
mobilisation of inorganic phosphate, etc. The sensitivity and sequestration power of 
rhizospheric microbes towards heavy metal stress broaden the way of bioremedia-
tion. The PGPRs can also alter the plant metabolism to better withstand the heavy 
metal stress in the soil.

11.7  �Conclusions

Phytoremediation is a new cost-effective way for sustainable agriculture. The recent 
trends of research on remediation of heavy metals in soil by applying PGPRs show 
a brilliant prospect for modern agriculture. The application of PGPRs in enhancing 
crop growth and development helps in heavy metal mobilisation, which is quite 
advantageous to applying chemical fertilisers. The microbial metabolites are less 
toxic, biodegradable and eco-friendly. So, to remove the harmful impact of heavy 
metals from the agricultural soil, it is the safest option to use the PGPR, which will 
open a new gateway to sustainable agriculture.
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