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1.1	 �Overview

A machine or a deep learning algorithm is a computational process that uses input 
data to achieve a desired task without being literally programmed (i.e., “hard 
coded”) to produce a particular outcome. These algorithms are in a sense “soft 
coded” in that they automatically alter or adapt their architecture through repetition 
(i.e., experience) so that they become better and better at achieving the desired task. 
The process of adaptation is called training, in which samples of input data are 
provided along with desired outcomes. The algorithm then optimally configures 
itself so that it cannot only produce the desired outcome when presented with the 
training inputs, but can generalize to produce the desired outcome from new, previ-
ously unseen data. This training is the “learning” part of machine and deep learning 
processes. The training does not have to be limited to an initial adaptation during a 
finite interval. As with humans, a good algorithm can practice “lifelong” learning as 
it processes new data and learns from its mistakes.

There are many ways that a computational algorithm can adapt itself in response 
to training. The input data can be selected and weighted to provide the most decisive 
outcomes. The algorithm can have variable numerical parameters that are adjusted 
through iterative optimization. It can have a network of possible computational 
pathways that it arranges for optimal results. It can determine probability distribu-
tions from the input data and use them to predict outcomes.
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The ideal of machine learning is to emulate the way that human beings (and other 
sentient creatures) learn to process sensory (input) signals in order to accomplish a 
goal. Traditionally, a machine learning algorithm would feed computer-extracted 
human-engineered patterns (features) derived from the raw data by, e.g., computer 
vision methods, to an algorithm to perform a designated learning task; a process 
colloquially referred to now as shallow learning. This is in contrast to a special 
subcategory of machine learning that allows for combined data representation (e.g., 
feature extraction) and task learning (e.g., classification or detection) known as deep 
learning. Conceptually, deep learning comprises learning methods that are provided 
raw data and which then automatically discover the features needed for detection or 
classification using the designated machine learning approach. In either learning 
process, the goal could be, e.g., a task in pattern recognition, in which the learner 
wants to distinguish apples from oranges. Every apple and orange is unique, but we 
are still able (usually) to tell one from the other. Rather than hard code a computer 
with many, many exact representations of apples and oranges, or with an exhaustive 
set of defining characteristics, it can be programmed to learn to distinguish them 
through repeated experience with actual apples and oranges. This is a good example 
of supervised learning, in which each training example of input data with features 
(color, shape, texture, etc.) is paired with its known classification label (apple or 
orange). It allows the learner to deal with similarities and differences when the 
objects to be classified have many variable properties within their own classes but 
still have fundamental qualities that identify them. Most importantly, the successful 
learner should be able to recognize an apple or an orange that it has never seen before.

A second type of machine learning is the so-called unsupervised algorithm. This 
might have the objective of trying to throw a dart at a bull’s-eye. The device (or 
human) has a variety of degrees of freedom in the mechanism that controls the path 
of the dart. Rather than try to exactly program the kinematics a priori, the learner 
practices throwing the dart. For each trial, the kinematic degrees of freedom are 
adjusted so that the dart gets closer and closer to the bull’s-eye. This is unsupervised 
in the sense that the training doesn’t associate a particular kinematic input configu-
ration with a particular outcome. The algorithm finds its own way from the training 
input data. Ideally, the trained dart thrower will be able to adjust the learned kine-
matics to accommodate, for instance, a change in the position of the target.

A third type of machine learning is semi-supervised learning, where part of the 
data is labeled, and other parts are unlabeled. In such a scenario, the labeled part can 
be used to aid the learning of the unlabeled part. This kind of scenario lends itself to 
most processes in nature and more closely emulates how humans develop their skills.

A fourth type of machine learning is reinforcement learning, where the algo-
rithm learns to map inputs into optimized actions, i.e., goal-oriented tasks.

These algorithms currently represent the main categories of machine/deep learn-
ing, with supervised learning being the most common type in oncology, medical 
physics, and radiology with applications ranging from detection to diagnosis, drug 
discovery, and therapeutic interventions. However, several techniques are emerging 
to relieve the burden and cost of data labeling in supervised learning, including: the 
semi-supervised approach mentioned above, transfer learning (using knowledge 
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from other domains, such as natural images when learning medical ones), active 
learning (an interactive approach with human beings involved), and more recently 
weak supervised learning, where the labels are assumed to be imprecise or noisy.

There are two particularly important advantages to a successful algorithm. First, 
it can substitute for laborious and repetitive human effort. Second, and more signifi-
cantly, it can potentially learn more complicated and subtle patterns in the input data 
than the average human observer is able to do. Both of these advantages are impor-
tant to medical physics, oncology, and radiology applications. For example, the 
daily contouring of tumors and organs at risk during treatment planning is a time-
consuming process of pattern recognition that is based on the observer’s familiarity 
and experience with the appearance of anatomy in diagnostic images. That familiar-
ity, though, has its limits, and consequently, there are uncertainties and inter-
observer variability in the resulting contours. It is possible that an algorithm for 
contouring can pick up subtleties of texture or shape in one image or simultaneously 
incorporate data from multiple sources or blend the experience of numerous observ-
ers and thus reduce the uncertainty in the contour.

The complexity of medical physics, oncology, and radiology processes can vary 
and may involve several stages of sophisticated human–machine interactions and 
decision- making, which would naturally invite the use of machine/deep learning 
algorithms to optimize and automate these processes, including but not limited to 
computer-aided detection, diagnosis, triaging, radiation physics quality assurance, 
contouring and treatment planning, image-guidance, respiratory motion manage-
ment, treatment response modeling, and treatment outcomes prediction.

1.2	 �Background

Machine learning is a category of computer algorithms that are able to emulate 
some aspects of human intelligence. It draws on ideas from different disciplines 
such as artificial intelligence, probability and statistics, computer science, informa-
tion theory, psychology, control theory, and philosophy [1–3]. The relationship 
between artificial intelligence, machine learning, and deep learning is depicted in 
Fig. 1.1 [4]. This technology has been applied in such diverse fields as pattern rec-
ognition [3], computer vision [5], spacecraft engineering [6], finance [7], entertain-
ment [8, 9], ecology [10], computational biology [11, 12], and biomedical and 
medical applications [13, 14]. The most important property of these algorithms is 
their distinctive ability to learn the surrounding environment from input data with or 
without a teacher [1, 2].

Historically, the inception of machine learning can be traced to the seventeenth 
century and the development of machines that can emulate human ability to add and 
subtract by Pascal and Leibniz [15]. In modern history, Arthur Samuel from IBM 
coined the term “machine learning” and demonstrated that computers could be pro-
grammed to learn to play checkers [16]. This was followed by the development of 
the perceptron by Rosenblatt as one of the early neural network architectures in 
1958 [17]. However, early enthusiasm about the perceptron was dampened by the 
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observation made by Minsky that the perceptron classification ability is limited to 
linearly separable problems and not common nonlinear problems such as a simple 
XOR logic [18]. A breakthrough was achieved in 1975 by the development of the 
multilayer nonlinear perceptron (MLP) by Werbos [19]. This was followed by the 
development of decision trees by Quinlan in 1986 [20] and support vector machines 
by Cortes and Vapnik [21]. Ensemble machine learning algorithms, which combine 
multiple learners using boosting of weak learners or bagging (model averaging), 
were subsequently proposed, including Adaboost [22] and random forests [23]. 
More recently, distributed multilayered learning algorithms such as convolutional 
neural networks (CNN) have emerged under the notion of deep learning [24]. These 
algorithms are able to learn good representations of the data that make it easier to 
automatically extract useful information when building classifiers or other predic-
tors, compared to conventional machine learning algorithms [25] as discussed fur-
ther below.

1.3	 �Machine Learning Definition

The field of machine learning has received several formal definitions in the litera-
ture. Arthur Samuel in his seminal work defined machine learning as “a field of 
study that gives computers the ability to learn without being explicitly programmed” 
[16]. Using a computer science lexicon, Tom Mitchell presented it as “A computer 
program is said to learn from experience (E) with respect to some class of tasks (T) 
and performance measure (P), if its performance at tasks in T, as measured by P, 
improves with experience E” [1]. Ethem Alpaydin in his textbook defined machine 

Deep Learning
(data abstraction with

learning representation,
e.g., CNN)

Artificial Intelligence
(humanized systems able

to perform intelligent
tasks, e.g., autonomous

vehicle, CADe, x)

Machine Learning
(computer algorithms

perform prediction tasks
without being explicitly

programmed, e.g., decision
trees, neural networks,

support vector machines,...)
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learning as the field of “Programming computers to optimize a performance crite-
rion using example data or past experience” [2]. These various definitions share the 
notion of coaching computers to intelligently perform tasks beyond traditional num-
ber crunching by learning the surrounding environment through repeated examples. 
The various conventional machine learning algorithms will be reviewed in Chap. 3.

1.4	 �Deep Learning Definition

Deep learning (DL), as noted earlier, comprises a subcategory of machine learning 
that deals with representation learning, where raw information or data are fed 
directly into the algorithm, which can then automatically discover the underlying 
patterns (features) needed for the detection or classification task [26]. Conceptually, 
it can be applied to any machine learning technology as depicted in Fig. 1.2, but has 
been practically shown to be most effective currently with deep neural networks 
methods [27, 28], which will be thoroughly discussed in Chap. 4.

1.5	 �Learning from Data

The ability to learn through input from the surrounding environment, whether it is 
playing checkers or chess games, or recognizing written patterns, or solving the 
daunting problems in medical physics, oncology, or radiology, is the key to a suc-
cessful machine learning application. Learning is defined in this context as estimat-
ing dependencies from data [29].

The fields of data mining and machine learning are intertwined. Data mining 
utilizes machine learning algorithms to interrogate large databases and discover hid-
den knowledge in the data, while many machine learning algorithms employ data 
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Fig. 1.2  Conventional “shallow” machine learning (top) versus deep learning algorithms, where 
image data representation and classification are handled within the same framework
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mining methods to preprocess the data before learning the desired tasks [30]. 
However, it should be noted that machine learning is not limited to solving database-
like problems but also extends into solving complex artificial intelligence chal-
lenges by learning and adapting to a dynamically changing situation, as is 
encountered in a busy radiation oncology practice, for instance.

Machine/deep learning has both engineering science aspects such as data struc-
tures, algorithms, probability and statistics, and information and control theory and 
social science aspects that draw on ideas from psychology and philosophy.

1.6	 �Overview of Machine and Deep Learning Approaches

Machine or deep learning can be divided according to the nature of the data labeling 
into supervised, unsupervised, semi-supervised, and reinforcement learning as 
shown in Fig. 1.3. Supervised learning is used to estimate an unknown input-output 
mapping from known input-output samples, where the output is labeled (e.g., clas-
sification and regression). In unsupervised learning, only input samples are given to 
the learning system (e.g., clustering and estimation of probability density function). 
Semi-supervised learning is a combination of both supervised and unsupervised 
where part of the data is partially labeled and the labeled part is used to infer the 
unlabeled portion (e.g., text/image retrieval systems). In reinforcement learning, the 
machine learning algorithm aims to control learning by accommodating a feedback 
system, in which an agent attempts to take a sequence of actions that may maximize 
a cumulative reward such as winning a game of checkers, for instance [31]. This 
kind of approach is particularly useful for adaptive or sequential decision-making 
applications as will be discussed in Chap. 19.
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From a concept learning perspective, machine learning can be categorized into 
transductive and inductive learning [32]. Transductive learning involves the infer-
ence from specific training cases to specific testing cases using discrete labels as in 
clustering or using continuous labels as in manifold learning. On the other hand, 
inductive learning aims to predict outputs from inputs that the learner has not 
encountered before. Along these lines, Mitchell argues for the necessity of an induc-
tive bias in the training process to allow for a machine learning algorithm to gener-
alize beyond unseen observation [33].

From a probabilistic perspective, machine learning algorithms can be divided 
into discriminant or generative models. A discriminant model measures the condi-
tional probability of an output given typically deterministic inputs, such as neural 
networks or a support vector machine. A generative model is fully probabilistic 
whether it is using a graph modeling technique such as Bayesian networks, or not, 
as in the case of naïve Bayes.

1.7	 �Quantifying the Data and Learning Objectives

The first step in the execution of a machine learning algorithm is the identification 
of the salient characteristics of the process to be emulated or the entity to be recog-
nized or classified. These characteristics must necessarily be quantitative because 
this is, after all, a computational problem. The characteristics are extracted from the 
raw input data and then assembled into a “feature vector” that is presented to the 
algorithm. The extraction almost invariably involves data compression to avoid 
completely overwhelming the subsequent computational steps. For example, when 
we look at an image, we don’t see individual pixels, we see recognizable structures. 
The art of feature extraction is to make the algorithm “see” structures and traits in 
the input data. The smaller the feature vector, the better, but it is critical that it be 
adequate to accurately represent the data and learning objectives. The identification 
and quantification of the most useful features is a fundamental part of the art of 
designing a machine learning algorithm, which has recently been automated in the 
context of deep learning.

In object classification (e.g., apples and oranges), the features could be empirical 
attributes that are directly quantifiable, such as dimensions, weight, density, etc., or 
indirectly quantifiable, such as color, texture, or smell. The indirect features need to 
be preprocessed further to convert them to numerical measures.

Formal features can be extracted via data transformation or reduction techniques. 
If the raw input data have many, many discrete elements, such as pixel values in an 
image, then using the entire image as the feature vector would have prohibitive 
computational overhead. However, if those elements are not random, then the size 
of the input feature vector can be dramatically reduced with minimal loss by meth-
ods of dimensionality reduction and compression such as principal component 
analysis (PCA) or Fourier analysis. PCA transforms a complex set of correlated 
data elements into a set of maximally uncorrelated principal component basis vec-
tors and their associated coefficients. A linear combination of the basis vectors and 
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coefficients reproduces the original data set with an accuracy that is determined by 
the number of vectors that are retained from the analysis. In highly correlated data, 
a very small number of PCA vectors and coefficients can be sufficient to character-
ize its structure. The most significant coefficients are then collected into the feature 
vector. Fourier decomposition of the input data into a set of Fourier basis vectors 
and coefficients achieves the same goal, but the difference is that the PCA method 
requires an initial set of representative training examples to determine the principal 
components, while Fourier decomposition can be done case by case using fixed 
basis vectors. The Fourier transform method lends itself naturally to image com-
pression, as is well known from the JPEG algorithm, but it can require many more 
coefficients to capture salient image content than the PCA method. Both of these 
methods lend themselves naturally to pattern recognition and classification algo-
rithms such as neural networks and support vector machines. Formal feature extrac-
tion or representation also lends itself naturally to deep learning applications, which 
automates the process by functioning as the interface between the raw input data 
and the learning algorithm.

1.8	 �Application in Biomedicine

Machine learning algorithms have witnessed increased use in biomedicine, starting 
naturally in neuroscience and cognitive psychology through the seminal work of 
Donald Hebb in his 1949 book [34] developing the principles of associative or 
Hebbian learning as a mechanism of neuron adaptation and the work of Frank 
Rosenblatt developing the perceptron in 1958 as an intelligent agent [17]. This was 
shortly followed by Ledley and Lusted in their 1959 paper, where they anticipated 
the role of a probabilistic logic-based approach to understand and support physi-
cians’ reasoning [35]. An early major machine learning initiative was the MYCIN 
project at Stanford in the 1970s, which was a rule-based system to identify bacteria 
types that may cause infectious diseases [36], achieving an acceptability rating of 
65% from a panel of experts [37]. Recent reviews of the application of machine 
learning in biomedicine and medicine can be found in [12, 13, 38, 39].

1.9	 �Applications in Radiology and Oncology

Among the earliest adoptions of machine learning algorithms was in the field of 
radiological and medical image analysis. Winsberg et al. reported in 1967 on a com-
puter detection algorithm for radiographic abnormalities in mammograms [40]. 
Lodwick et al. presented a roentgenograms concept for analyzing bone and lung 
cancer images [41, 42] and Meyers et al. developed an automated computer analysis 
of cardiothoracic ratios [43]. However, the major thrust happened in the 1980s, 
when tremendous developments occurred in computer-aided detection (CADe) and 
computer-aided diagnosis (CADx), providing radiologists with computer output as 
a “second opinion” to aid in making final decisions [44–49]. These CAD systems 
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utilized image feature-based analysis for the detection of microcalcifications in 
mammogram images [50–53] and lung nodules in digital chest radiographs [54]. 
This expanded into every area in radiology, in the form of decision support systems. 
In the field of oncology and specifically, radiation oncology, early applications of 
machine learning have focused on treatment planning and predicting normal tissue 
toxicity [55–57], but its application has since branched into almost every part of the 
field, including tumor response modeling, radiation physics quality assurance, con-
touring and treatment planning, image-guided radiotherapy, and respiratory motion 
management. Examples of the application of machine and deep learning will be the 
main subject of the second half of this book.

1.10	 �Ethical Challenges in the Application 
of Machine Learning

The application of machine learning in medicine has not been without challenges 
and even controversies. This is understandable given the data-driven nature of these 
algorithms and caveats related to data sharing, provenance, patient privacy, and the 
nature of medical data acquisition, which not only vary in technologies and param-
eters but also shift over time with new developments. Moreover, issues related to 
learning bias [58] and adversarial examples [60, 61] need to be accounted for. For 
instance, a machine learning algorithm developed for predicting the risk of pneumo-
nia counter-intuitively suggested that patients with pneumonia and asthma would be 
at a lower risk of death than patients with pneumonia but without asthma [59]. 
Similar controversial examples were noted in the case of skin cancer risk prediction, 
where the presence of a ruler in the image may be a cue for the ML algorithm of 
high risk [62] or the appearance of a tube in a chest X-ray being indicative of severe 
lung disease [63]. These examples and others stress the importance of data quality 
and context when training and applying these powerful tools.

These challenges have led the Food and Drug Administration (FDA) in the 
United States, the European Union, and other international bodies to advocate for 
lawful, ethical and robust application from technological and societal perspectives. 
Towards this goal there have been shifts towards developing more explainable/inter-
pretable machine learning algorithms [64], which would allow for better transpar-
ency, oversight, and accountability.

1.11	 �Steps to Machine Learning Heaven

For the successful application of machine learning in general and in medical phys-
ics, radiology and oncology in particular, one first needs to properly characterize the 
nature of the problem, in terms of the input data and the desired outputs. Secondly, 
despite the robustness of machine learning to noise, a good model cannot substitute 
for bad data, keeping in mind that models are primarily built on approximations, 
and it has been stated that “All models are wrong; some models are useful (George 
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Box).” Additionally, this has been stated as the GIGO principle, garbage in garbage 
out as shown in Fig. 1.4 [65].

Thirdly, the model needs to generalize beyond the observed data into unseen 
data, as indicated by the inductive bias mentioned earlier. To achieve this goal, the 
model needs to be kept as simple as possible but not simpler, a property known as 
parsimony, which follows from Occam’s razor that “Among competing hypotheses, 
the hypothesis with the fewest assumptions should be selected.” Analytically, the 
complexity of a model could be derived using different metrics such as Vapnik–
Chervonenkis (VC) dimension discussed in Chap. 2 for instance [32]. However, 
deep learning algorithms with their large number of layers for learning data repre-
sentation and performing model prediction in the same architecture, may present a 
future challenge to this classical notion, but the overall objective remains the same, 
that is, to achieve generalizability to out-of-sample data, which should be carefully 
evaluated as discussed in Chap. 6. Finally, a major limitation in the adoption of 
machine learning in general and deep learning in particular by the larger medical 
community is the “black box” stigma and the inability to provide an intuitive inter-
pretation of the learned process that could help clinical practitioners better under-
stand their data and trust the model predictions. This is an active and necessary area 
of research that requires special attention from the machine learning community 
working in biomedicine. Solutions such as deriving proxy models, developing 
attention maps, providing disentangled representation or learning with known oper-
ators have been emerging to create a more interpretable/explainable machine learn-
ing paradigm [66–70].

1.12	 �Conclusions

Machine and deep learning present computer algorithms that are able to learn from 
the surrounding environment to optimize the solution for the task at hand. It builds 
on expertise from diverse fields such as artificial intelligence, probability and statis-
tics, computer science, information theory, and cognitive neuropsychology. Machine 
learning algorithms can be categorized into different classes according to the nature 
of the data, its representation, the learning process, and the model type. Machine 
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learning has a long history in biomedicine, particularly in radiology, but its applica-
tion in medical physics and oncology is in its infancy, with high potential and prom-
ising future to improve the safety and efficacy of clinical care and advance cancer 
research discovery.
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