
Chapter 19
Diet and Circadian Rhythms:
Implications for Aging and Longevity

Anita Jagota, Zeeshan Akhtar Khan, and M. Sultan Khan

Abstract Circadian rhythms are maintained by the interaction of external environ-
mental cues with body’s molecular clock machinery and help to optimize physio-
logical functions by temporally coordinating them at the cellular, tissue, organ and
behavioural level of an organism. Feeding-fasting pattern is one of themost important
external cues that affect the robustness of the biological rhythms. Upon aging due to
loss of indispensable neurons in the master clock- Suprachiasmatic nucleus (SCN),
these rhythms get compromised and so does the temporal coordination thus leading
to various age-related pathologies. Irregular eating-fasting patterns can also tempo-
rally disrupt the coordination between metabolism and physiology, leading to the
onset of many chronic diseases and early aging. Hence, avoiding irregular feeding-
fasting habits and maintaining strong rhythmic cycles following optimum amplitude
and phase of rhythms can help in healthy aging and preventing diseases such as
sleep disorders, cardiovascular, metabolic disorders, diabetes, obesity, breast cancer,
inflammation, hypertension, neurodegeneration etc. Therefore, synchronizing the
external cues and timings of signals from master clock along with time restricted
eating patterns can help in sustaining a robust circadian clock. Such synchronization
will help in preventing the diseases and improving their prognosis. In this chapter,
we aim to discuss the role of diet in restoration of age-induced circadian dysfunction.
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19.1 Introduction

Circadian rhythms are evolutionarily conserved biological rhythms in almost all
organisms ranging from archaea to mammals. Circadian (Latin: circa – approxi-
mately; diēm– day) rhythms are approximately 24 hour(h) rhythmic oscillations that
regulate the physiology of an organism at molecular and behavioural level (White-
head et al. 2009; Edgar et al. 2012). The adaptation to external environmental condi-
tions using clock system allows an organism to predict changes and give an advantage
to survival (Kondratov et al. 2006). Many diseases are associated with disruptions
in the circadian clock like psychological disorders, sleep disorders, metabolic disor-
ders, cardiovascular diseases, cancer, insomnia, fatigue, disorientation and hormonal
profile shifts in night shift workers etc. (Hofman et al. 2006; Gibson et al. 2009).
During aging, there is a shift in both amplitude and phases of circadian rhythm
(Gibson et al. 2009; Jagota 2012).

Circadian rhythms have evolved as an adaptation to the oscillations found in
the environment and to get entrained by them, notably to the day-night cycle
(Jagota 2006). In the case of mammals, the main circadian rhythm regulator is
SCN containing ~20,000 neurons located in the hypothalamic region. It acts as a
timekeeper in controlling and synchronizing the circadian period of many physio-
logical and behavioral functions and entraining them to 24 h light and dark cycles
(Jagota et al. 2000; Jagota 2006; Takahashi et al. 2017). Three major pathways,
Retino-hypothalamic tract (RHT), Geniculo-hypothalamic tract (GHT), and Retino-
raphe pathway (RRP) receive the information from the environment through several
cues such as photic (light) and non-photic cues (food, sound, humidity etc.). All
these pathways diverge from the retinal ganglion cells before they enter into the
SCN. Among these three, RHT is a photic pathway that has a direct synaptic
contact of retinal ganglionic cells with the SCN; GHT is an indirect photic pathway
where the retina conveys input signals to Intergeniculate Nucleus (IGL) via a sepa-
rate branch of RHT that overlaps with the RHT terminals in the SCN; RRP is
the third major input pathway which participates in the non-photic regulation of
the SCN, where neuronal fibres from raphe nuclei end in the core region of the
SCN (Jagota 2012).The auto-regulatory transcriptional and translational feedback
loops drive the coordinated expression of genes such as (Clock)-circadian locomotor
output cycles kaput, (Bmal1)-Brain and muscle aryl hydrocarbon receptor nuclear
translocator-like protein 1), (Per1)-Period1, (Per2)-Period2, (Per3)-Period3, (Cry1)-
Cryptochrome1, (Cry2)-Cryptochrome2, (Ror)-retinoic acid-related orphan nuclear
receptors, and (Rev-Erb)-reverse erythroblastosis virus etc. at both levels (Takahashi
2017).

The SCN plays the role of central clock or the relay centre of information. It
regulates the release of neurohormone melatonin, the messenger of time from pineal
gland. Melatonin then synchronizes the peripheral clocks with the central clock
(Vriend and Rieter 2014). Every mammalian cell is autonomous and has its own
clock machinery constituting the peripheral clock system controlled by the SCN
through both sympathetic as well as parasympathetic pathways (Kalsbeek et al.
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2010). The endogenous rhythms of clock gene expression have been reported by
researchers in cell culture of peripheral clocks like liver, adrenal glands, hormones
like adrenocorticotropic hormone (ACTH) and glucocorticoids (Cailotto et al. 2005;
Mahoney et al. 2010).

19.2 Food as an Important Clock Regulator

Food has been reported as an important non-photic zeitgeber (ZT) or time giver to
synchronize an organism’s biological rhythms and shifting the timing of food leads
to the shift in the activity of an organism (Carneiro et al. 2012). In SCN lesioned
mice, food restriction has demonstrated to induce locomotor behaviours as well
as temperature rhythms (Froy et al. 2010). Food timings entrain circadian clocks
in different brain regions and most peripheral organs, thereby synchronizing their
daily rhythms. This entrainment of peripheral clocks to mealtime is accomplished
by multiple feeding-related signals, including absorbed nutrients and metabolic
hormones, acting in parallel or series in a tissue-specificmanner. Signals that synchro-
nize circadian clock in the brain with feeding time are presumed to generate the
circadian rhythms of food-anticipatory activity (FAA) that emerge when food is
restricted to a fixed daily mealtime. Such FAA is regulated and paced by the food-
entrainable oscillator (FEO) located outside the SCN (Flores et al. 2016; Chaudhari
et al. 2017). Several timekeeping mechanisms involved in the FAA occurring before
food intake include neuronal activation,molecular clock entrainment, hormonal cues,
and metabolic regulation (Tahara et al. 2013; Challet 2019). The synchronization
between food entrainable clock and central clock system is driven by a complex
mechanism including humoral and enzymatic regulatory pathway (Challet 2019). β-
hydroxybutyrate (β-OHB) synthesized in the liver during fasting conditions has been
proposed to be a key candidate molecule in those pathways. Apart from being an
energy source, β-OHB has many cellular signalling actions and participates in FAA
modulation and its production is clock regulated involving Per2 (Newman et al.
2017).

19.3 Food and Melatonin Hormone

The synthesis and release of melatonin from the pineal gland is under regulation of
the SCN. The photic cues are received by the SCN clock and relayed to pineal gland
through a multi-synaptic pathway. Melatonin is a “night-time hormone” in all the
animals (diurnal, nocturnal and crepuscular) irrespective of their activity niche and
thus called messenger of darkness (Jagota et al. 2012; 2019). Melatonin is synthe-
sised from serotonin through N-acetylation followed by methylation reaction in the
presence of arylalkylamine N-acetyltransferase (AANAT; rate limiting enzyme) and
hydroxyl indole-O-methyl-transferase (HIOMT) respectively (Jagota et al. 2012).
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Endogenous melatonin rhythm modulates feeding and fasting behaviour and antici-
pation of meal time. Melatonin cues modulate the phase and amplitudes of various
hormonal rhythms including rhythms of cortisol and insulin (Challet et al. 2019).
Reduced levels of melatonin has been associated with aging (Reddy and Jagota
2015). Melatonin is an important hormetin (Jagota et al. 2019), and its manipula-
tion with dietary interventions in elderly may lead to restoration of circadian clock
functions and improvement of health and wellbeing.

19.4 Circadian Dysfunction with Aging

Aging is an inevitable unidirectional natural process in the lifespan of an organism.
Thedisruptionof the endogenousnature of themolecular clock, deteriorated temporal
synchronisation of the oscillators and an overall change in the physiology dampens
the circadian rhythm as the organism ages (Jagota et al. 2000;Manoogiana and Panda
2017; Jagota et al. 2019). A phase advance in body temperature and melatonin secre-
tion rhythms has been associated with aging in humans. Alterations in the daily
rhythms of clock genes (Mattam and Jagota 2014), serotonin metabolism (Kalyani
and Jagota 2008; 2010; Reddy and Jagota 2015), antioxidant enzymes (Manikonda
and Jagota 2012), leptin (Reddy and Jagota 2014), nitric oxide (NO), and Suppressor
of cytokine signaling (Socs) (Vinod and Jagota 2016; 2017) expression has been
reported from our laboratory. Additionally, alterations in daily rhythms of Sirtuin1
(Sirt1), Nuclear factor erythroid 2–related factor 2 (Nrf2), Rev-erbα and inflam-
matory markers including Nfkb1, Tumor necrosis factor alpha (Tnf-α), Interleukin-
6 (Il-6), Toll-like receptor 4 (Tlr4) and Toll-like receptor 9 (Tlr9) affecting circadian
timing system (CTS)were observedwith aging (Thummadi and Jagota 2019; Kukke-
mane and Jagota 2020). As endogenous rhythms dampen and deteriorate with age,
the contribution by the external cues and its timing starts playing an increasingly
critical role in maintaining the amplitude and phase of an organism’s circadian clock
(Manoogian and Panda 2017; Jagota et al. 2020).

19.5 Circadian Rhythms, Metabolism and Homeostasis
with Aging

The circadian clock controls energymetabolismandmaintains homeostasis in periph-
eral tissues through the controlled expression of various metabolic hormones like
leptin, ghrelin, secretin etc. involved in different metabolic pathways. This helps
in maintaining the normal physiological functions and healthy aging (Green et al.
2008; Froy 2009).The circadian clock is itself under metabolic regulation and the
disturbances induced by a nutrient imbalance results in circadian dysfunction (Chaix
et al. 2014). Many hormones such as insulin, glucagon adiponectin, corticosterone,
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and ghrelin have been found to show circadian expression and oscillation (Ando
et al. 2005; Yang et al. 2006). The temporal regulation of insulin which shows a
peak in its production at 1700 h and a nadir at 0400 h is achieved by both the
patterns of feeding-fasting and SCN signalling (Sadacca et al. 2011; Vieira et al.
2015). Leptin, a well-known appetite repressor also shows circadian rhythmicity in
its expression. The removal of the SCN abolishes the rhythmicity of its secretion in
rodents leading to uncontrolled feeding behaviour, obesity, pathologies, and early
aging effects suggesting the role of the clock system in aging, metabolism and main-
taining homeostasis (Kalra et al. 2003). The receptors for leptin and ghrelin have
been demonstrated in SCN (Yi et al. 2006; Zigman, et al. 2006) thus, establishing a
direct link between the main circadian clock (SCN) and metabolism (Prosser et al.
2003). Metabolism is also influenced by the microbiome which makes an impor-
tant component of the gastrointestinal tract (GIT). The microbiome shows rhythmic
oscillations in its composition as per the requirement in GIT for proper metabolism.
Erratic feeding patterns can dampen the taxonomic diversity and disrupt the oscil-
lating rhythm of the microbiome, contributing to metabolic disorders like intestinal
dysbiosis, obesity, and early aging (Voigt et al. 2016). Forced feeding-fasting patterns
achieved by different strategies like intermittent fasting (IF), periodic fasting (PF),
and calorie restriction (CR) have been shown to restore some of these oscillations to
normal and achieve healthy aging (Zarrinpar et al. 2014).

19.6 Chrononutrition: Timing of Food as a Therapeutic
Intervention

Due to demanding work pressure and changing food habits, unhealthy and unsched-
uled meals including junk food have now become a part of our lifestyle. Such
unscheduled meals with unhealthy amounts of sugar, salts, caffeine, processed meat,
fats and an inadequate intake of fruits, green leafy vegetables, cereals etc. are the
major risk factors for developing age-related pathologies and accelerate the aging
process (Micha et al. 2017). Patterns of feeding and fasting can potentially contribute
to the development of chronic pathologies and thus have an influential impact on
human health and onset of diseases (Zarrinpar et al. 2014). Although clock oscilla-
tors in our body can recuperate frommild alteration in our daily feeding times, chronic
imbalanced and unscheduled feeding behaviour results in untimed cues, circadian
dysfunction and disease pathologies later in life with unhealthy aging (Asher and
Sassone-Corsi 2015; Lopez-Minguez et al. 2019). Thus, the temporal attributes of
food and its role in health and disease are as vital as the qualitative and quantitative
nutritional aspects (Gupta et al. 2017; Kant et al. 2018).
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19.6.1 Food, Energy Metabolism, Circadian Dysfunction,
and Aging

Various mitochondrial rate-limiting enzymes are rhythmically expressed (Neufeld-
Cohen et al. 2016). In circadian mutant mice, enforced feeding-fasting patterns can
reinstate rhythmic expression of some of metabolites, such as Acylcarnitine carrier
protein and Acyl CoADehydrogenase (Manoogian and Panda 2016; Neufeld-Cohen
et al. 2016). Mice with a deleted exon-19 of the Clock gene shows an altered feeding
rhythm, over-eating, obesity and other metabolic syndromes like high blood leptin,
lipids and glucose levels (Turek et al. 2005). Such mutant (Clock�19) mice also
showed a decrease in the expression of hypothalamic peptides like ghrelin and orexin,
which are important for energy balance (Turek et al. 2005). Per2mutations abolished
rhythmicity for glucocorticoids, feeding patterns and caused obesity (Yang et al.
2009).

Aging leads to significant disruption in adipogenesis by affecting circadian
components, Bmal1, Rev-erbα causing multiple pathologies like obesity, cardiovas-
cular diseases and decline in longevity (Duez et al. 2008). Peroxisome proliferator-
activated receptor α (PPARα) is important for transcriptional activation of Bmal1
and genes responsible for the metabolism of lipids and glucose (Lefebvre et al.
2006; Lamia et al. 2008). Impairment of PPARα leads to defective fatty acid oxida-
tive pathways, enhanced inflammatory response, oxidative stress and renal fibrosis
and impaired energy metabolism (Adnan 2007). Adenosine 5′-monophosphate–
activated protein kinase (AMPK), an energy sensor of cells integrates the circa-
dian clock with metabolism by regulating the response to feeding and modulating
NAD+ levels and SIRT1 activity (Hardie et al. 2006; Canto et al. 2009). Peroxi-
some proliferator-activated receptor gamma coactivator 1-alpha (PGC-1α), a tran-
scriptional co-activator of Bmal1 and Rev-erbα also regulates energy metabolism.
Disrupted expressions of AMPK and PGC-1α leads to abnormal daily diurnal
rhythms, body temperature energy imbalance, metabolic disorders, multiple patholo-
gies and early aging (Grimaldi et al. 2007). Another important protein found to
display a link between metabolism and the circadian clock of mammals is SIRT1.
The influence of nutrient state and the circadian clock on insulin sensitivity is via
SIRT1 (Bass and Takahashi 2010). It is an NAD+ dependent histone deacetylase that
plays an important role in extending the life span in yeast, Caenorhabditis elegans,
Drosophila and mice (Mair et al. 2008; Canto et al. 2009). SIRT1 can interact with
CLOCK directly and deacetylate BMAL1 and PER2 in cultured fibroblasts (Asher
et al. 2008; Nakahata et al. 2008). The information on the food, circadian clock,
and metabolic factors discussed here has been compiled as a schematic diagram in
Fig. 19.1.
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Fig 19.1 Simplified schematic representation of the link between circadian clock, metabolism
and aging. Aging leads to significant disruption in glucose and lipid metabolism by affecting
circadian components like Bmal1, Clock, Rev-erbα etc. and metabolic components like Perox-
isome proliferator-activated receptor α (PPARα) and Peroxisome proliferator-activated receptor
gamma coactivator 1-alpha (PGC-1α). Also, feeding and fasting cycle, controlled by Adenosine 5′-
monophosphate–activated protein kinase (AMPK), with the involvement of NAD+, and SIRT1 gets
desynchronised upon aging. This age induced desynchronization between clock and metabolism

leads energy imbalance, metabolic disorders and accelerated aging. = Abolition of

rhythms; (+) = Induces the expression

19.7 Various Dietary Interventions: Circadian Clock,
Aging and Longevity

Dietary intervention is an ancient practice and various researchers using experimental
models from invertebrates (C. elegans) to mammals (rat/mice) have demonstrated
mean life-span extension by using different strategies of dietary interventions (Di
Francesco et al. 2018). Such strategies (Table 19.1) achieved either by fasting for a
certain period or reducing the calorie intake are discussed below.

19.7.1 Restricted Feeding (RF)

Restricting food to a particular time of the day while still ensuring nutritional
adequacy is called restricted feeding (RF) (Froy et al. 2010). RF controls the FAA,
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Table 19.1 Various dietary interventions in therapeutic strategies towards circadian dysfunction
and aging

Restricted feeding (RF)

Hepatic P450 levels, body temperature,
locomotor activity, and heart rate (↑)

Hara et al. 2001, Hirao et al. 2006

Corticosterone secretion, gastrointestinal
motility and activity of digestive enzymes

Stephan 2002

Core clock apparatus of liver, kidney, heart,
and pancreas, life span (↑)

Damiola et al. 2000, Hara et al. 2001, Stokkan
et al. 2001, Schibler et al. 2003, Hirota et al. 2004

Expression of c-myc & p53 (↓) and
increases lifespan (↑)

Wu et al. 2004

Obesity (↓) & aging in rat (↓) Sherman et al. 2012, Chaix et al. 2014

Caloric restriction (CR)

Life span in C. elegans, Drosophila, rodents,
and monkeys (↑)

Mair and Dillin 2008

Phosphorylation of CREB, and aging Ripperger et al. 2006

Clock, memory & aging Etchegaray et al. 2006

Life span in the clinical trials (↑) Mattson et al. 2017

Oxidative stress, aging, mitochondrial
function, and inflammation (↓)

Lopez-Lluch et al. 2019

Arterial hypertension (↓) An et al. 2020

Intermittent fasting (IF)

Life span as compared to food given
ad libitum (↑)

Goodrick et al. 1990, Mattson et al. 2005

Glucose metabolism (↑), cardio-protection,
Aging, neuro-protection (↑)

Anson et al. 2003, Contestabile et al. 2004;
Mattson and Wan 2005

Resistance to aging & cancer (↑) Descamps et al 2005, Mattson and Wan 2005

Cardiovascular diseases (↓) Varady et al. 2007

Aging and Cognitive performance (↑) Singh et al. 2012

Abdominal fat and blood pressure in humans
(↓)

Harvie et al. 2011

Visceral fat, and insulin resistance (↓) Barnosky et al. 2014

Inflammatory diseases (↓) Johnson et al. 2007

which includes corticosterone secretion, gastrointestinal motility and activity of
digestive enzymes before meals (Stephan et al. 2002). RF is dominant over the SCN
and able to drive the rhythms in clock mutant rodents and animals with lesioned
SCN regardless of photic cues (Hara et al. 2001; Stephan 2002). But in some cases,
RF only affects the clock system in peripheral tissues such as the heart, kidney,
pancreas and liver, causing their uncoupling from the SCN, followed by metabolic
disorders, pathologies and early aging (Schibler et al. 2003; Hirota et al. 2004). This
suggests the nutritional regulation of clock oscillators in peripheral tissues and its
involvement in metabolic disorders and aging (Lin et al. 2008). Damiola et al. 2000
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demonstrated when the food availability is made normal, the SCN, whose phase
remains unaffected, resets the peripheral oscillators and synchronization of physi-
ology. Per2 mutant mice do not show wheel-running food anticipation (Mistlberger
2006). In one of the interesting studies, the survival time of mice inoculated with
osteosarcomawas prolonged under RF (Wu et al. 2004). RF has been found tomodify
the expression of genes responsible for carcinogenesis and tumor progression such
as c-myc and p53 (Filipski et al. 2005) but whether RF affects life span in a real
sense or not is still not clear.

19.7.2 Intermittent Fasting (IF)

IF is a cyclic pattern of eating and fasting, one of the regimen of IF is alternate day
fasting (ADF), where food is available ad-libitum every alternate day (Froy et al.
2010). Two more variations of IF include: Periodic Fasting (PF) which lasts for 2
or more days followed by the next cycle after 6–7 days (Longo et al. 2016; Vargas
et al. 2020) and Time restricted feeding (TRF), where food is taken in a specific
time window of 8 h or less (Mattson et al. 2017). Recently, IF has gained popularity
due to its various beneficial effects on health (De Cabo et al. 2019). Animals on IF
exhibit increased life span, improved glucose metabolism, cardio physiology, neuro-
protection and resistance towards cancer (Descamps et al. 2005; Mattson et al. 2005;
Varady et al. 2007). Rev-erbα, an important component of the circadian clock, also
regulates the expression of genes involved in metabolism and inflammation. It was
observed that there is an average 11 fold increase in its levels at the end of the 4th
week during 30-days of IF (Mindikoglu et al. 2020). RF schedules elicit a phase shift
in molecular and metabolic machinery components of peripheral clocks. Likewise,
imposed periods of extended daily fasting, independent of dietary composition and
calorie intake have significant metabolic and lifespan benefits (Mitchell et al. 2018).

19.7.3 Time-Restricted Feeding (TRF)

A feeding regime like Time-restricted feeding (TRF) has shown beneficial effects
in animals and is believed to compensate and consolidate the circadian rhythms
(Chaix et al. 2014; De Cabo and Mattson 2019). Flies on TRF showed a sustained
nocturnal sleep which is about double the total sleep duration of the flies with food
ad libitum (Gill et al. 2015). Nocturnal rodents given TRF with food ad libitum
during the light phase (normally their rest period) show altered expression of clock
genes and clock-controlled genes (CCGs) in the peripheral tissues without affecting
SCN (Damiola et al. 2000; Stokkan et al. 2001). A differential adaption to the novel
feeding regimens has been observed in peripheral clocks where Kidneys, lungs, or
heart adapts to changes slower than the liver. TRF of normal diets improves energy
metabolism in humans in short-term studies and contributes to a healthy life span
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even though calories are not restricted (Sutton et al. 2018; Jamshed et al. 2019).
High-fat diets (HFD), representing thewestern diet model, has been reported to cause
circadian dysfunction by disrupting the feeding-fasting rhythms and gene expression
rhythms (Hatori and Panda 2015; Potter et al. 2016). A very recent report has shown
that an extended HFD and night restricted feeding (NtRF) regimen on senescence-
accelerated mouse strain, SAMP8 ameliorates age-related phenotypes. The positive
impact of HFD has been manifested till metabolic perturbations kicked in. So, the
HFD and chrono-nutritional feeding in combination can be an effective anti-aging
strategy (Oike et al. 2020) ensuring a healthy life span.

19.7.4 Caloric Restriction (CR)

CR has almost similar beneficial effects on health as that mediated through IF
and leads to circadian clock plasticity by chromatin remodelling (Nakahata et al.
2007). CR can induce expression of brain-derived neurotrophic factor (BDNF) in the
hippocampus, phosphorylation of cAMP response element-binding protein (CREB),
dendritic spine density and transcription of BDNF (Whitmore et al. 2000; Eide et al.
2001; Etchegaray et al. 2006). CR not only reduces the risk of age-associated circa-
dian dysfunction and disorders but also significantly impedes aging and enhances
longevity (Taormina et al. 2014). When Drosophila was subjected to caloric restric-
tion, expression of several clock genes showed increase in amplitude (Katewa et al.
2015). CR affects significantly the expression of several genes in both central clock-
SCN and the peripheral clocklike the liver (Patel et al. 2016). The importance of meal
timing by studies on α-MUPAmice have shown that reduced calories alone were not
able to sustain rhythms unless feeding was spontaneously timed at night, or the day
through a RF protocol. Further, to investigate the involvement of the circadian clock
in impacting the metabolic activity and life span via CR, core clock gene knockouts
were used (Bmal1 inmice andPer and Timeless (Tim) in Drosophila); circadian clock
disruption along with multiple metabolic disorders and increased life span was noted
in such experiments (Patel et al. 2016; Katewa et al. 2015). Inmammals, CRmediates
decline in blood IGF-1 level and the effect was compromised in mice deficient for
BMAL1, an important circadian transcriptional factor. With CR, the diurnal activity
and sleep pattern dampens in fruit flies as seen in humans with night sleep pattern.
An overall diagrammatic representation of effects of different feeding regimens on
aging and longevity has been summarised as Fig. 19.2.
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Fig 19.2 A diagrammatic representation of the effect of feeding regimens on aging and longevity
through resetting of central and peripheral clock system. Intermittent fasting, caloric restriction,
time restricted feeding, and high fat diet with TRF helps in resetting the circadian rhythms in both
peripheral and the central clock systems but RF resets the rhythms only in the peripheral clocks

19.8 Nutritional Epigenetic: Aging and Clock

The nutritional modulation of the circadian clock has been reported to be linked with
the epigenetic regulation of various clock genes. Themodifications by sirtuins, a class
III NAD+ dependent diet-sensitive histone deacetylase enzymes, are of vital impor-
tance to genome stability. Sirt1 is believed to be a key epigenetic regulator protecting
the mammals from events and consequences that ultimately lead to aging (Hudec
et al. 2020). Higher Silent information regulator 2 (Sir2; mammalian Sirt1 equiva-
lent) expression has been reported to extend the lifespan inDrosophila melanogaster
and Sirt1 knock-outs die young owing to developmental defects. Single nucleotide
polymorphism (SNPs) gene variants for core clock genes have been implicated in
age related disorders and individual dietary response in humans. Among the epige-
netic mechanisms that control circadian rhythms, microRNAs are the least studied
ones compared to SNPs and such studies can be a key to novel chrono-therapeutic
interventions (Mico et al. 2016).

19.9 Conclusion

Dietary interventions are promising and easy-to-adapt strategies for the modulation
and prevention of circadian dysfunction and senescence in humans of different ages.
Recently, adjustment of caloric intake using different strategies like IF, PF and TRF
have emerged as potential strategies towards treatment of metabolic syndromes like
cardiovascular diseases, cancer and possibly neurodegenerative diseases etc. and
helping in the synchronization of the circadian clock system. RF entrains peripheral
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clocks suggesting their role via temporal food consumption, whereas, CR and IF
appears to synchronize the central pacemaker in the SCN, suggesting their role
by involving low calories intake in the entrainment of the central clock system.
A direct relationship between feeding time and onset of chronic diseases such as
obesity, breast cancer and inflammatory and metabolic disorders, neurological and
sleep disorders explains that metabolic state is linked to sensitization in different
parts of the brain, especially the hypothalamus and hippocampus, to maintain the
coordination between the neuroendocrine system, metabolism, and energy balance.
The CTS, thus influences and resets a wide variety of output systems like cellular and
physiological systems to perform in a more synchronized manner hence maintaining
the robust circadian rhythms using dietary interventions can ensure better tissue and
body homeostasis and mediating aging attenuation and promoting longevity.
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