
Model-Based Threat Modeling
for Cyber-Physical Systems:
A Computer-Aided Approach

Monika Maidl1(B), Gerhard Münz1, Stefan Seltzsam1, Marvin Wagner2,
Roman Wirtz2, and Maritta Heisel2

1 Siemens AG, Otto-Hahn-Ring 6, 81739 Munich, Germany
{monika.maidl,muenz.gerhard,stefan.seltzsam}@siemens.com

2 University of Duisburg-Essen, Duisburg, Germany
{marvin.wagner,roman.wirtz,maritta.heisel}@uni-due.de

Abstract. Harming the security of a Cyber-Physical System (CPS) can
lead to substantial damage and endanger for life because such a system
includes many devices that interact with the physical world. Following
the principle of security-by-design, the consideration of security should
take place as early as possible during software development. However,
the current state of the art often lacks systematic documentation of pos-
sible threats, and the identification of all relevant threats is not a trivial
task.

In previous work, we presented a taxonomy of relevant attack actions
for CPSs. The distinguishing feature of the taxonomy is its two-
dimensional structure. We map typical attack actions to the attack sur-
face. The attack surface is described by the component’s interfaces which
can be misused by attackers to gain access to a component, thus poten-
tially harming the security of the system. On top of this taxonomy, we
described an example of an attack action catalog. The application of our
taxonomy and the attack action catalog still requires manual effort from
practitioners, e.g. when looking up relevant attack actions.

Therefore, we developed a tool based on our taxonomy which we
present in the present paper. In a first step, we formalized our tax-
onomy in form of a metamodel. Each threat model is an instance of
that metamodel. The metamodel reflects the way in which the taxonomy
links attack actions with parts of the system. Furthermore, we created a
graphical editor that assists practitioners in creating the threat model.
Based on the taxonomy’s metamodel and attack action catalogs, the tool
pre-filters relevant attack actions and allows to systematically document
them in the threat model. Our tool provides different views on the threat
model, thus helping to focus on the relevant aspects for a specific task.

Keywords: Security threats · Threat modeling · Attack actions ·
Taxonomy · Catalog · Tool-support

c© Springer Nature Switzerland AG 2021
M. van Sinderen et al. (Eds.): ICSOFT 2020, CCIS 1447, pp. 158–183, 2021.
https://doi.org/10.1007/978-3-030-83007-6_8

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-83007-6_8&domain=pdf
https://doi.org/10.1007/978-3-030-83007-6_8

Model-Based Threat Modeling for CPSs 159

1 Introduction

Cyber-Physical Systems (CPSs) are running in many places, especially in critical
infrastructures. These systems interact with the physical world, e.g. by moni-
toring values measured with sensors. The recent development in the context of
the Internet-of-Things leads to increasing use of CPSs, also into private homes.
Usually, a CPS is composed of different components that communicate with each
other via interfaces. Due to their connected nature and their dissemination, CPSs
are often subject to attacks. Therefore, it is essential to design critical systems
with adequate security measures in place, following security standards like IEC
62443 [9].

The term threat modeling summarizes methods that deal with identifying
and documenting incidents that may have an impact on the system’s security.

Shostack [17] defines the term as follows: “Threat modeling is the use of
abstractions to aid in thinking about risks.” Uzunov and Fernández [20] give an
alternative definition: “Threat modeling is a process that can be used to analyze
potential attacks or threats, and can also be supported by threat libraries or
attack taxonomies.”

The knowledge about such threats can be captured in so-called threat
libraries which exist for many types of systems. Security engineers can look
up relevant threats and document them for their concrete system. However,
these libraries often do not follow a common structure for the different threat
descriptions.

A well-known taxonomy for security is STRIDE [11]. STRIDE provides six
categories for typical threat categories. The disadvantage of the taxonomy is
its generic nature, i.e. the categories are not mapped to specific elements of
the system. Therefore, the application of STRIDE requires high expertise from
security engineers.

In previous work, we presented a two-dimensional taxonomy that addresses
the disadvantage of STRIDE by mapping typical attack actions to the attack
surface [13]. The first dimension of this taxonomy is similar to STRIDE since
it denotes The new approach is to combine this attack action dimension with
a second dimension: The second dimension, which we call the attack surface
dimension, consists of the system elements that constitute the attack surface
of the system. It is described by the elements that allow some interaction, i.e.
the component’s interfaces. Attackers may perform malicious actions at these
points, thus leading to harm to the system’s security. The taxonomy allows
creating catalogs of typical attack actions to CPSs. Practitioners can use these
catalogs to look up relevant attack actions for the system they analyze.

Although our taxonomy and the attack action catalogs assist practitioners in
identifying relevant threats, manual effort is still required, e.g. when documenting
the identified threats. To support practitioners in systematically identifying and
documenting relevant threats to the system, we developed a tool based on our
taxonomy following a model-based approach. We first formalize the taxonomy
and its dependencies to the system model by developing a metamodel. For the
attack surface, we make use of our metamodel for CPS which we presented in

160 M. Maidl et al.

Weakness

Threat scenario

A�ack ac�on

Protec�on goal Confiden�ality

Availability

Integrity

CPS element/
A�ack surface

User Interface

OS-Level Access

C2C Interface

Physical Interface

Network
Communica�on

targets

leads to
viola�on ofexploits

MC AC MI DD TD ER

Fig. 1. Threat modeling terminology [13].

previous work [14]. Our metamodel includes the elements of a threat model, i.e.
a systematic listing of threats to a system. The focus of our metamodel is to
show the dependencies between the aspects of threats and different elements of
the system, thereby reflecting the relation between the two dimensions of the
taxonomy. To instantiate the metamodel, i.e. to create a threat model for a
previously modelled system, we provide a graphical editor. The editor allows
to systematically analyze the system, and it pre-filters relevant attack actions
based on the provided interfaces. Furthermore, it is possible to embed attack
action catalogs into the editor, thus ensuring flexibility for different development
projects. To help practitioners in focusing on relevant aspects, our editor provides
different views on the model.

The remainder of the paper is structured as follows: In Sect. 2, we describe
the terminology which we use in this paper. In Sect. 3, we describe the taxon-
omy for which we present our tool support in this paper. It is followed by its
formalization in form of our metamodel in Sect. 4. Section 5.1 explains how cat-
alogs can be structured with our taxonomy, and we provide an example of a
catalog. Our graphical editor to create a threat model is described in Sect. 6. We
discuss related work in Sect. 7 and conclude the paper with a summary of our
contributions and an outlook on future work in Sect. 8.

2 Terminology

The terminology in the context of threat modeling varies between different stan-
dards and publications. To have a common understanding for this paper, we
provide an overview of the used terminology in Fig. 1.

The output of threat modeling is a list of Threat scenarios. Each threat
scenario consists of the following elements: an Attack action, a CPS element as
part of the Attack surface, a Weakness, and a Protection goal. As protection
goals, we consider the CIA triad Confidentiality, Integrity, and Availability.

The threat scenario describes how an attack action leads to the violation of
a protection goal by exploiting a weakness. The attack action targets an element
of the attack surface of the CPS, i.e. an interface or network communication.

Model-Based Threat Modeling for CPSs 161

In some cases, a sequence of attack actions are required for the violation of
protection goals, and these are described as part of the threat scenarios.

For illustration, we describe the example of a threat scenario: An attacker,
pretending to be a legitimate device of the CPS, sends manipulated configuration
(attack action) to an embedded component that is accessible via a C2C inter-
face. As a result, the configuration of the control program is changed (violating
the protection goal ‘integrity of configuration’), and the embedded component
behaves in an unintended way.

The goal of threat modeling is to consider all relevant attack actions against
the CPS. To support this, we use categories of attack surface elements and attack
action types. The elements marked in gray provides an overview of the categories
which we use for our taxonomy (see Sect. 3). The attack surface denotes the first
dimension, and the attack action types are the second dimension.

3 Two-Dimensional Taxonomy

In the following, we describe our two-dimensional taxonomy. We provide a two-
dimensional taxonomy of attack actions for the scope of CPSs. Section 5.1 later
exemplifies the usage of the taxonomy by describing a catalog of attack actions.

We first describe the two dimensions and show how we combine them for our
taxonomy. Finally, we compare the taxonomy with existing ones, i.e. STRIDE
[11] and CAPEC [15].

3.1 Attack Surface Dimension

The first dimension lists the parts of a system that form the attack surface,
i.e. those points of a system at which an attack action may be performed. The
elements of the attack surface depend on the type of system, and reflect the tech-
nical scope and level of detail typically considered in threat modeling. In this
work, a CPS is viewed as a set of different types of components like embedded
devices and hosts (workstations and servers) that are running standard oper-
ating systems and domain-specific applications and services. The components
communicate through a combination of network protocols. In previous work,
we proposed a metamodel for CPSs which is intended to be used as a basis
of security analysis and specifies the elements of the attack surface of a CPS
[14]. These elements form the attack surface dimension, and in the following, we
explain them in detail.

The primary parts of an attack surface are the interfaces of the system com-
ponents, as interfaces are the parts of the system that are open for interaction.
Corresponding to the scope and level of detail considered in this paper, the var-
ious interfaces related to operating systems are covered by one abstract attack
surface element, and the same holds for network communication.

User Interface. User interfaces are designed to let human users interact with
the system. User interfaces can be realized in different ways, e.g. as a graph-
ical user interface of an application running on the local computer, as a

162 M. Maidl et al.

web-based user interface accessed over the network via a web browser, or
as a human-machine interface realized with an embedded device. Apart from
interfaces for regular users of the CPS, user interfaces for administration pur-
poses need to be covered as well. User interfaces are usually associated with
user accounts to implement user identification, authentication, and autho-
rization.

Component-to-Component (C2C) Interface. These interfaces are similar
to user interfaces but are designed to allow interaction between components
instead of humans. Typically, an application running on a system component
calls a service that runs on another component according to some proto-
col. C2C interfaces implement protocols and may include authentication and
authorization. Typically, the protocol used by some C2C interface is utiliz-
ing standard network services that are implemented as part of the operating
system. Interfaces (e.g. APIs) that exist internally in a component without
being accessible by other components are not considered as C2C interfaces
but considered as part of OS level access.

OS Level Access. There are various possible ways of how an attacker can
interact with the operating system of a component. This includes local APIs
and files, as well as the installation and modification of software, and network
services that are implemented as part of the operating system. We use the
element OS level access to represent the range of actual OS interfaces. This
corresponds to the typical scope and level of detail of security analyses for
CPSs, where the interfaces of the operating system are not modeled in all
detail.

Physical Interface. These interfaces require physical access or physical prox-
imity to the component to interact with the system. This is often relevant
for CPSs with components that are widely deployed across sites. Included
are interfaces used to communicate with the component, such as serial ports,
USB port, local diagnosis or management interfaces, and near-field commu-
nication, e.g. Bluetooth. Other kinds of physical interactions are covered as
well, such as manipulating the hardware and removing a hard drive.

Network Communication. User interfaces and C2C interfaces may involve
network communication between different components of the CPS, using a
protocol. Communication takes place over a potentially complex network
infrastructure composed of network cables and network devices like routers
and firewalls. We use Network Communication as an element of the attack
surface that subsumes all possibilities to attack the communication between
components of the CPS. An attacker could e.g. perform wiretapping at an
accessible LAN port, or hack into a network device to disturb the communi-
cation. This abstraction corresponds to the typical scope and level of detail
of the design of CPSs, which builds on an existing network infrastructure
such as the Internet or production networks.

Model-Based Threat Modeling for CPSs 163

3.2 Attack Action Type Dimension

Attack actions are a central part of threat scenarios, as shown in Sect. 2, and
describe the action an attacker takes at the attack surface of the system. Hence
it is straightforward to use types of attack actions as a dimension of our taxon-
omy. Actual attack actions are often creative ways to interact with the system
in an unintended way, and hence the known attack actions are very heteroge-
neous. Therefore it is not straightforward to find suitable types. We devised the
following guiding principles for the development of our attack action types.

1. Focus on actions that an attacker performs at some location of the attack
surface.

2. Strictly differentiate between attack actions and harm. As detailed in
Sect. 3.5, after the identification of a relevant attack action for a CPS, it
is a separate step to analyze whether a protection goal can be violated by
that attack action.

3. Common attack actions should be assignable to one of the attack action types
in a straightforward way. As a reference for common attack actions, we use the
list compiled from industrial projects, as well as external sources [5]. Coverage
of ‘esoteric’attack actions has less priority.

4. Keep it simple: For good usability, the list of attack action types should not
be too long, and easy to grasp.

As the next step, we considered existing taxonomies, in particular STRIDE and
the taxonomy-level of CAPEC. To meet the guiding principles, we performed
some adaptations. Section 3.4 contains a detailed comparison of the attack action
types with the taxonomies of STRIDE and CAPEC, showing the adaptations.

The following list presents the attack action types, which form the attack
action type dimension of our taxonomy. We argue for each case that the first
two principles are fulfilled.

MC. Misuse credentials: Attacker obtains the authentication credentials for the
account of a legitimate user and uses these to get access.
Note that this type covers all attack actions that relate to passwords, e.g.
actions like obtaining passwords by social engineering, or guessing the pass-
word. Such attacks are very common indeed. Login interfaces are part of
the attack surface. And as misuse of a password is not in itself harmful, the
second principle is also observed.

AC. Exploit weakness of access control: Attacker circumvents or breaks access
control and gets access.
This type covers the actions of attackers who are confronted with some form
of access control. Access control is located at places where interaction with
users or other components is expected, and hence the first principle is fulfilled.
The second principle is observed by the same argument as for MC. One could
argue that credentials are part of access control, but we decided to single out
the misuse of credentials as a separate type, as AC is about exploiting (usually
technical) weaknesses, while MC is about misusing legitimate credentials.

164 M. Maidl et al.

MI. Submit malicious input: Attacker enters or sends malicious data or com-
mands.
This type comprises many common attack actions, in particular many actions
against Web applications like SQL-injection. The first principle is fulfilled
since interfaces that take input are open for interaction and hence are part
of the attack surface. The second principle is fulfilled as it requires separate
considerations to determine harm that might be caused by malicious input.

DD. Disclose data: Attacker reads or sniffs data.
This type comprises attack actions where an attacker can easily read data
at the attack surface, e.g. by sniffing clear-text protocols. So the first princi-
ple is observed. Concerning the second principle, note that this type stands
for various actions in which data is read at a place directly accessible to
the attacker. Whether such reading results in harm, by violating the protec-
tion goal of confidentiality, is a different (although in this case fairly easy)
consideration: Determining whether the data that can be read is sensitive.

TD. Tamper data: Attacker manipulates data.
This type is similar to the type DD. The difference is that this type covers
attacks where data is manipulated at the attack surface.

ER. Exhaust resources: Attacker uses up limited, shared resources needed by
the system.
This type covers attack actions that exploit the use of shared resources, e.g.
CPU, memory, or network bandwidth. The attack surface for these actions
is some form of access to the shared resource, e.g. the possibility to run
applications on the operating system, or the possibility to send traffic in a
network. So the first principle is fulfilled. Concerning the second principle,
like in the two previous cases, it might be easy to determine the harm that
follows from the exhaustion of a shared resource, but this attack action type
focuses on the ways how to perform the exhaustion.

The example attack action catalog in Tables 4 and 5 shows that the third
principle is met, by mapping a range of common attack actions to our attack
action types.

3.3 Two-Dimensional Taxonomy

As the attack action types of Sect. 3.2 stand for attack actions at the attack
surface, it is a natural step to relate the attack action types with the attack
surface elements of Sect. 3.1. Table 1 shows the mapping, where the statements
in each field express the relation. In most cases, the statements are straightfor-
ward, while some statements clarify the relevant aspects of the attack surface.
Furthermore, some attack actions are not relevant for certain elements of the
attack surface, resulting in empty fields in the table.

The two-dimensional taxonomy helps to systematically cover attack actions
for the attack surface of a system.

We provide some explanations for the statements in the table: The attack
action types DD and TD are considered for user and C2C interfaces. By design,

Model-Based Threat Modeling for CPSs 165

Table 1. Two-dimensional taxonomy [13].

User
interface

C2C
interface

OS level
access

Physical
interface

Network
comm.

MC Attacker
misuses
credential to
authenticate
to the user
interface

Attacker
misuses
credential to
authenticate
to the
C2C-interface

Attacker
misuses
credential to
obtain access
to the
operating
system

Attacker
misuses
credential to
obtain access
to physical
interface

AC Attacker
exploits
weakness in
the access
control of the
user interface

Attacker
exploits
weakness in
the access
control of the
C2C interface

Attacker
exploits
weakness in
the access
control of the
operating
system

Attacker
exploits
weakness in
the access
control of the
physical
interface

MI Attacker
enters
malicious
input at the
user interface

Attacker sends
malicious
input to the
C2C interface

Attacker sends
malicious
input to some
OS level
interface

Attacker
enters
malicious
input at the
physical
interface

DD Attacker reads
data out of
memory

Attacker reads
data via
physical
interface

Attacker sniffs
network com-
munication

TD Attacker
manipulates
data stored in
memory

Attacker
manipulates
data via
physical
interface

Attacker
manipulates
network com-
munication

ER Attacker
exhausts
resources of
the operating
system

Attacker
exhausts
network
resources

these interfaces display data and provide functionality for editing. Using this
functionality is not an attack action. If the access to a user or C2C interface
is meant to be restricted, then the attack action types MC and AC apply and
cover possible ways an attacker can get access despite the access protection.

The last row of Table 1 shows that the attack action type ER is only consid-
ered for OS level access and network access. Only at these elements of the attack
surface, an attacker has direct access to limited resources, like CPU, memory,
or network bandwidth. In contrast, user interfaces, C2C interfaces, and physical
interfaces do not provide direct access to resources. Malformed input to these
interfaces that causes the receiving component to crash, e.g. due to overload, is
covered by the type MI.

The column for OS level access reflects the fact that this element of the attack
surface comprises various interfaces of the operating system. For MC, the user
accounts of the operating system are in focus. The attack action type AC refers
to the various access control mechanisms of the operating system, e.g. privilege
of processes and file permissions. It comprises attacks to exploit weaknesses in
these mechanisms, e.g. to obtain higher privileges. Malicious input (MI) can

166 M. Maidl et al.

Table 2. Mapping of taxonomy categories - STRIDE [13].

Category Description MC AC MI DD TD ER

Spoofing of user
identity

Impersonating something or
someone else.

� �

Tampering with
data

Modifying data or code �

Repudiation Denying to have performed an
action

Information dis-
closure

Exposing information to
someone not authorized to see
it

�

Denial of service Deny or degrade service to
users

� �

Elevation of priv-
ilege

Gain capabilities without
proper authorization

� �

take the form of malware that exploits vulnerabilities in the operating system.
Malicious input may originate from a user with OS level access who is tricked
into downloading and executing malware. Another path of malicious input is
specially crafted packets sent to a network service of the operating system.

For network communication, as explained in Subsect. 3.1, the scope and level
of detail applied in the design of a CPS usually does not include the net-
work infrastructure. Hence, threat modeling for a CPS focuses on attack actions
against the network communication between components. These attack actions
are disclosing (DD), tampering (TD), and exhausting resource (ER). The attack
action types MC, AC, and MI are not relevant as the network communication
does not process credentials, does not implement access control, and does not
handle inputs. These tasks are performed by the protocol stack of the corre-
sponding user or C2C interface.

3.4 Comparison with Other Taxonomies

In a systematic literature review on threat analysis of software systems performed
by Tuma et al. [19], five methodologies make use of some sort of knowledge base,
are applicable to the architectural or design level, and take the architectural
design as input. Three of them use STRIDE [7,8,17] as taxonomy, the remaining
two refer to CAPEC [2,3]. As our taxonomy also provides a knowledge base and is
supposed to be used in the same context of threat analysis, this section provides
a detailed comparison with STRIDE and CAPEC.

STRIDE. STRIDE [11] is a well-known categorization model for threats against
computer systems. It has been developed by Microsoft and is integrated in the

Model-Based Threat Modeling for CPSs 167

Microsoft Threat Modeling Tool1. STRIDE is a mnemonic for six threat cate-
gories: Spoofing, Tampering, Repudiation, Information disclosure, Denial of ser-
vice, and Elevation of privilege.

We found that some of the STRIDE categories refer to the impact of a
successful attack (e.g. denial of service) rather than to the actual action an
attacker performs. To avoid confusion, our taxonomy clearly focuses on attack
actions that describe what an attacker does. The impact of an attack action can
be assessed in a subsequent step by determining the violated protection goals.

Table 2 shows how the STRIDE categories can be mapped to our attack
action types. As can be seen, the STRIDE categories Tampering and Infor-
mation disclosure are directly related to the attack action types TD and DD.
Spoofing can be achieved by misusing credentials of existing accounts (MC), or
by exploiting an access control weakness (AC). Denial of service is typically
caused by malicious input (MI), such as a specially crafted packet leading to a
segmentation fault, or by exhausting limited resources (ER), e.g. with a flooding
attack. Malicious input (MI) as well as bypassing access control (AC) can lead
to Elevation of privilege.

We did not map the STRIDE category Repudiation to any of our attack
actions types. This is because we see repudiation as violation of a protection
goal (i.e. non-repudiation), not an attack action. In fact, various attack actions
can be used with the goal to repudiate an action, such as tampering log files.
But our types focus on the action of the attacker rather than the goal of the
action.

The main extension of our attack action types compared to STRIDE is the
attack action type MI, which includes all kinds of injection attacks, such as SQL
injection, code injection through exploitation of a buffer overflow vulnerability,
infection of a system with malware etc. In STRIDE, these attacks do not have
an explicit category but can only be categorized indirectly by the harm they
cause (e.g. denial of service).

STRIDE itself does not include an attack surface dimension. The Microsoft
Threat Modeling Tool allows us to associate STRIDE categories with elements
of a Data Flow Diagram (DFD), which contains processes, data stores, external
interactors, and data flows between them. However, the combination of STRIDE
categories and DFD elements is not used to provide a better understanding of a
STRIDE category for a DFD element. More importantly, DFDs do not reflect the
different parts of the attack surface of a system. So the combination of STRIDE
with DFDs lacks the possibility to create a catalog of relevant attack actions for
each attack surface element, similar to the ones in Tables 4 and 5.

CAPEC. The Common Attack Pattern Enumeration and Classification
(CAPEC) [15], maintained by MITRE2, provides a catalog of attack patterns.

1 Microsoft Threat Modeling Tool (last access: May 25, 2021): https://www.microsoft.
com/en-us/securityengineering/sdl/threatmodeling.

2 MITRE: https://www.mitre.org/ (last access: May 18, 2021).

https://www.microsoft.com/en-us/securityengineering/sdl/threatmodeling
https://www.microsoft.com/en-us/securityengineering/sdl/threatmodeling
https://www.mitre.org/

168 M. Maidl et al.

Table 3. Mapping of taxonomy categories - CAPEC [13].

Mechanism of
attack

Description MC AC MI DD TD ER

Engage in decep-
tive interactions

Spoofing and social engineer-
ing

� � �

Abuse existing
functionality

Manipulation of data or sys-
tem behavior by misusing sys-
tem functionality

� � � �

Manipulate data
structures

Manipulation of data by
exploiting a system vulnera-
bility

� �

Manipulate sys-
tem resources

Manipulation of shared
resources

� �

Inject unex-
pected items

Manipulation of system
behavior through malicious
input

�

Employ prob-
abilistic tech-
niques

Fuzzing and bruteforcing � �

Manipulate tim-
ing and state

Exploitation of concurrency
issues (e.g. race condition)

� �

Collect and ana-
lyze information

Theft of information � �

Subvert access
control

Exploitation of access control
weakness

�

In CAPEC version 3.2, attack patterns are classified according to two differ-
ent schemes. The first scheme is called domains of attack and assigns attack
patterns to the categories Software, Hardware, Communications, Supply chain,
Social engineering, and Physical security. These categories refer to the type of
weakness that is exploited, such as a software vulnerability, a weak physical
control, or an unaware user. We found that CAPEC attack patterns in the
domain Communications largely correspond to the attack actions associated to
our attack surface element Network Communication. Similarly, most attack pat-
terns belonging to Hardware and Physical security are related to the attack
actions of the attack surface element Physical Interface. For the other domains,
however, we did not find any clear correlation with the different elements of the
attack surface.

The second CAPEC classification scheme is called mechanisms of attack and
refers to general attacking techniques, which is similar to the attack action
dimension of our taxonomy. Table 3 shows a mapping of our attack action types
to CAPEC mechanisms of attack. Attack patterns belonging to the mechanism
Engage in deceptive interactions range from attacks targeting user credentials
and clickjacking to DLL injection and DNS spoofing. In our taxonomy, these

Model-Based Threat Modeling for CPSs 169

attacks are separated into the attack action types MC, AC, and MI. Simi-
larly, Abuse of existing functionality covers a broad spectrum of attack pat-
terns that, in our taxonomy, belong to different attack action types. As can
be seen, the attack mechanisms Manipulate data structures, Manipulate sys-
tem resources, and Manipulate timing and state are related to the attack action
types MI and TD. These two types distinguish between attacks sending mali-
cious input to a system interface, and attacks tampering data (e.g. configuration
files) directly, whereas the three CAPEC mechanisms differentiate between types
of manipulated data and resources. The mechanism Employ probabilistic tech-
niques includes password brute-forcing, which relates to the exploitation of an
access control weakness (AC), and fuzzing attacks, which corresponds to sending
potentially malicious input to an interface (MI). Collect and analyze information
subsumes active and passive information gathering techniques, belonging to the
attack action types MI and DD, respectively.

All in all, we can state that CAPEC’s approach to classify attack patterns
into mechanisms of attacks has some similarities to the attack action dimension
of our taxonomy. The attack surface dimension of our taxonomy, however, is
not reflected in CAPEC. Some CAPEC domains of attack are slightly related
to specific attack surface elements, but in general, CAPEC domains of attack
refer to types of exploited weaknesses. As a consequence, CAPEC lacks the
possibility to easily query attack patterns that are relevant for a specific attack
surface element of a CPS.

3.5 Using the Taxonomy for Threat Modeling

In the process of threat modeling, our taxonomy helps to obtain a list of threat
scenarios as described in Sect. 2. The elements of the attack surface that need
to be considered can be directly extracted from the design of the CPS. In the
first step of threat modeling, for each of these elements and each relevant attack
action type, attack actions are looked up from the catalog.

Once an attack action is found to be relevant, the next step is to analyze
whether the attack action could lead to the violation of a protection goal of the
CPS. This is an essential step of threat modeling, in which know-how about the
architecture of the system is combined with a thorough understanding of the
protection goals for the data and functionalities of the system. If a path to the
violation of a protection goal has been found, a threat scenario is documented.
The threat scenario is completed by describing the weakness of the CPS that is
exploited by the attack action. Usually, the attack action is directly associated
with a weakness, so this step is not challenging. For example, the infection with
malware is exploiting unpatched vulnerabilities, while a brute force attack on a
password is exploiting weak passwords. In fact, it would be a natural extension
of an attack action catalog to link the attack actions to related weaknesses and
hints for security measures. For example, enforcing a strong password policy is
a security measure to protect against brute forcing.

After threat modeling has been completed, the weaknesses are used as a basis
to select (additional) security measures for the CPS.

170 M. Maidl et al.

NetworkZone

Function

DataNetworkCommunication

InterfaceComponent

System

Fig. 2. Relevant artifacts of the system’s metamodel.

We point out some aspects of using the taxonomy with an example: A com-
ponent has several user interfaces and C2C interfaces. The relevant attack action
types, namely MC, AC, and MI, are analyzed for each of these interfaces. This
helps to identify weaknesses in the design of access control for these interfaces,
and weaknesses in the processing of inputs. The component also has several
physical interfaces, and the need to adequately protect each of them may have
been overlooked during design. Going through the attack action types helps to
identify the critical gaps. Furthermore, the component runs a standard oper-
ating system that needs to be securely configured and hardened. The attack
action types allow the architect to understand which parts of the OS need par-
ticular protection, e.g. by encrypting files, disabling unneeded network services,
or implementing other hardening measures. For each of the network communica-
tions of the CPS, the attack action types DD, TD, and ER are analyzed, and as
a result, the architect might decide to use another protocol or a secure channel
for a protocol.

4 Metamodel

As a first step towards tool support, we formalize our taxonomy and the relations.
Based on the Eclipse Modeling Framework (EMF) [18], we create a metamodel
for this purpose. The notation of metamodels EMF is similar to UML class
diagrams. For better readability and space reasons, we have decomposed the
metamodel into four sub-metamodels System, ThreatModel, ThreatScenarioList-
ing, ProtectionGoal. The gray elements in the metamodels are taken from our
CPS system model [14]. Classes with a cursive name are abstract classes. The
focus of our metamodel is on the dependencies between the aspects of threats
and the different elements of the system, thereby reflecting the relation between
the two dimensions of the taxonomy as presented in Sect. 3.

4.1 CPS Metamodel

We use the metamodel for cyber-physical systems (CPS) from our previous work
[14] as a starting point. It contains the elements of the attack surface, i.e. the
interfaces and network communication. In the present paper, we focus on the

Model-Based Threat Modeling for CPSs 171

«Enumeration»
ImpactScale

- red
- orange
- yellow
- green

«Enumeration»
ImpactCategory

- Safety
- Degradation
- BreachesLegal
- BreachesContractual
- LossIntellectual
- LossReputation

System

ProtectionGoal
impact : ImpactScale
impactCategory : ImpactCategory

ThreatModel ThreatScenarioListing

Fig. 3. Metamodel of ThreatModel.

crucial parts of the CPS metamodel that are important for the implementation
of the taxonomy. Figure 2 shows this compact version. The System class is the
root element of the sub-metamodel. It contains four other classes: (i) Network-
Zone representing network zones in a CPS, (ii) Component which can be further
refined to specific types, e.g. a host, (iii) NetworkCommunication representing
the communication between two components, and (iv) Data (represents data
which is processed in a CPS). A component has a set of Interfaces. These inter-
faces offers some functionalities (class Function) to other components. Later on,
we map attack actions to the different interface types (see Sect. 3.1). Our editor
uses this information for filtering relevant attack actions (see Table 1).

4.2 Threat Model

The second sub-metamodel, which is shown in Fig. 3, shows how the other three
sub-metamodels are linked. The root element is the ThreatModel which has an
association to the system. This way, the threat model can make references to
the elements of the system, and the automatic mapping of attack actions to
the interfaces can be used. A threat model consists of ThreatRiskAnalysiss and
ProtectionGoals, both of which are further refined in the next sub-sections.

A protection goal has two attributes. First, there is the attribute impact
of the type ImpactScale. This attribute expresses how severe a violation of the
protection goal would be. We use an enumeration for the ImpactScale. This
enumeration has four literals red, orange, yellow, and green. Red means a high
impact and green means a low impact. Orange and yellow are between them.
Orange means a higher impact than yellow.

The second attribute is impactCategory which has the type ImpactCategory
in form of an enumeration. It has the six literals Safety, Degradation, Breach-
esLegal, BreachesContractual, LossIntellectual, and LossReputation. The impact
category describes what kind the impact has to the system. We use these six
categories because they are the most common ones.

172 M. Maidl et al.

4.3 Protection Goals

FunctionData

IntegrityConfidentiality Availability

ProtectionGoal
impact : ImpactScale
impactCategory : ImpactCategory

Fig. 4. Metamodel of ProtectionGoal.

Figure 4 shows the third sub-metamodel. The class ProtectionGoal is an abstract
class. It has the three specializations Confidentiality, Integrity, and Availability
which are equal to the CIA triad. Confidentiality and integrity have an associa-
tion to some data processed by the System. This way, the metamodel provides
the possibility to document which data shall be protected. The metamodel for
CPS as presented in [14] includes the relation of data to components and network
communications, i.e. where data is stored and transferred. Availability has an
association to a function of the System. An interface of a component offers some
functions (see Fig. 2). Thus, an availability goal denotes that the availability of
a function shall be preserved.

4.4 Threat Scenario Listing

InterfaceNetworkCommunication
«Enumeration»

AttackActionType
- DD
- TD
- MC
- ER
- AC
- MI

ProtectionGoal

AttackAction
type : AttackActionType
weakness : String

NetworkZone

NetworkCommunication

Interface

ComponentinScopeThreatScenarioListing

Fig. 5. Metamodel of ThreatScenarioListing.

Figure 5 shows the last sub-metamodel. The ThreatScenarioListing is part of a
threat model. A threat model can have multiple threat scenario listings for dif-
ferent perspectives. Each analysis consists of inScope-classes and a set of Attack-
Actions. inScope has the purpose to express that a part of a system (Network-
Communication, Component, Interface, or NetworkZone) is in scope for that

Model-Based Threat Modeling for CPSs 173

analysis. So, not each element has to be in scope, and it can be filtered what
shall be analyzed. Attack actions are also part of a threat scenario listing. Each
attack action has the attribute type which has the type AttackActionType which
is an enumeration and has six literals DD, TD, MC, ER, AC, and MI. These are
the abbreviations of attack actions as shown in Table 1. They form the second
dimension of our taxonomy. Furthermore, there is the attribute weakness that
documents the weakness exploited by the attack action. The associations from
an attack action to a NetworkCommunication and an Interface are to express
that an attack action is performed at this element of the attack surface. They
form the other dimension of the taxonomy. Between an attack action and a pro-
tection goal, there is another association to express that this action harms the
protection goal.

5 Attack Action Catalog

In the following, we describe how attack action catalogs can be structured with
the help of our taxonomy which we presented in Sect. 3. Furthermore, we present
an example of such a catalog.

5.1 Structuring Attack Action Catalogs with the Taxonomy

While Table 1 helps to focus on relevant attack action types for a certain inter-
face, architects and software developers find it hard to identify specific attack
actions based on abstract attack action types: They need an understanding of
actual attack actions rather than abstract categories. There are many threat and
attack catalogs that contain actual attack actions, but it is hard to find relevant
entries, especially for people without a deep security background.

We propose to use our two-dimensional taxonomy to structure catalogs of
specific attack actions. This means that each specific attack action is assigned
to an attack action type and an element of the attack surface. In that way, the
(typically large) set of attack action is clustered into 20 subsets in a way that is
meaningful for threat modeling. Practitioners can find the relevant attack actions
efficiently by looking into the appropriate field of the structured catalog. Hence
the catalog provides a useful way to make security knowledge about attacks
available during threat modeling.

5.2 Example Catalog

In Tables 4 and 5, we provide an example catalog of attack actions against CPSs,
structured according to our taxonomy. The catalog captures the range of attacks
that have been considered in security analyzes for CPSs over many years in
industrial projects, and also reflects the results of penetration tests and real
world incidents. Besides, the catalog was compared and extended with external
resources, e.g. from the Bundesamt für Sicherheit in der Informationsbranche [5],
as well as academic sources like [20]. The catalog is not aiming for completeness.

174 M. Maidl et al.

Instead, the aim is to cover the most relevant cases and include attacks that
exploit typical weaknesses in standard IT technology. To cover attacks that are
specific to domain-related technology (e.g. embedded devices, sensors) or attacks
to specific components like network devices, the catalog can be augmented.

In Table 4, we show the mapping of the attack actions Misuse Credentials
(MC), Exploit Weakness of Access Control (AC), and Submit Malicious Input
(MI). For each of the attack actions, we provide examples in the context of a
specific interface type or a network communication. An empty cell denotes that
the attack action is not relevant for the corresponding attack surface element.

In Table 5, we show the second part of the example catalog. It contains the
attack actions Disclose Data (DD), Tamper Data (TD), and Exhaust Resources
(ER).

Attack actions and their relevance are changing over time, so it is important
to emphasize that such a catalog has to be continuously updated. Furthermore,
it is possible to use the taxonomy to create a catalog for a specific context, e.g.
for critical infrastructures. To do so, the examples can be refined with more
details.

5.3 Further Benefits

The example catalog of Sect. 5.1 illustrates the structuring of attack actions
according to the two-dimensional taxonomy. In this section, we discuss further
ways to use taxonomy-based catalogs in the context of threat modeling.

Specific Catalogs for Types of Components. A CPS consists of heteroge-
neous components like controllers, network devices, and standard IT compo-
nents. By providing a separate catalog for each type of component, attack
actions that are specific to the technologies of that component type can be
listed and provided to practitioners. Such catalogs could either complete or
replace a generic catalog.

Reusing Threat Modeling Results. In practice, often a certain type of CPS is
used as a blueprint for industrial projects. After performing threat modeling
for that type of CPS, the knowledge generated by that process of threat
modeling can be captured in the form of a specific attack action catalog.
More precisely, the entries in the generic catalog(s) can be replaced by more
specific and relevant attacks for the blueprint. In that way, it is possible to
make knowledge reusable for future projects.

Using Catalogs in Tooling for Threat Modeling. The benefits of
taxonomy-based catalogs are significantly increased by automation: We have
developed a prototype for a tool, and are in the piloting phase. Our tool
guides practitioners through the process of threat modeling and presents rel-
evant attack action types when the practitioner is working in a certain part
of the system.

Model-Based Threat Modeling for CPSs 175

Table 4. Attack action catalog for CPSs Part 1 [13].
U
se
r

In
te
rf
ac
e

C
2C

In
te
rf
ac
e

O
S
L
ev
el

A
cc
es
s

Ph
ys
ic
al

In
te
rf
ac
e

N
et
w
or
k
C
om

m
.

M
C

–
Ph

is
hi
ng

to
ob
ta
in

a
us
er
’s
pa
ss
w
or
d

–
B
ru
te

fo
rc
e
at
ta
ck

on
w
ea
k
pa
ss
w
or
d

–
Se

tti
ng

pa
ss
w
or
d

th
ro
ug

h
w
ea
k

pa
ss
-

w
or
d
re
co
ve
ry

m
ec
ha
-

ni
sm

–
E
xt
ra
ct

de
fa
ul
t

or
ha
rd
-c
od

ed
pa
ss
w
or
ds

–
B
ru
te

fo
rc
e
at
ta
ck

on
w
ea
k
pa
ss
w
or
ds

–
M
is
us
e
fa
ke

M
A
C

or
IP

ad
dr
es
s
to

au
th
en
ti-

ca
te

–
M
is
us
e

of
te
m
po

ra
ry

or
de
fa
ul
tp

as
sw

or
d

–
B
ru
te
-f
or
ce

at
ta
ck

to
gu

es
s
pa
ss
w
or
d
of

O
S

ac
co
un

t
–

M
is
us
e
of

sh
ar
ed

pa
ss
-

w
or
d
(e
.g
.
sh
ar
ed

be
-

tw
ee
n
si
te
s)

–
So

ci
al

en
gi
ne
er
in
g
to

ob
ta
in

pa
ss
w
or
d

to
se
rv
er

m
an
ag
em

en
t

co
ns
ol
es

or
B
IO

S

A
C

–
M
is
us
e
of

cl
ie
nt
-s
id
e

au
th
en
tic

at
io
n

or
au
-

th
or
iz
at
io
n

–
A
cc
es
s
vi
a
de
bu
gg

in
g

in
te
rf
ac
e

–
M
is
us
e
of

di
re
ct

ob
-

je
ct

re
fe
re
nc
es

e.
g.

in
U
R
L
s

–
Se

ss
io
n
hi
ja
ck
in
g

–
M
is
us
e
of

cl
ie
nt
-s
id
e

au
th
en
tic

at
io
n

or
au
-

th
or
iz
at
io
n

–
Se

cu
ri
ty

do
w
ng

ra
de

th
ro
ug

h
al
go

ri
th
m

ne
go

tia
tio

n
–

M
is
us
e
of

ex
ce
ss
iv
el
y

gr
an
te
d
pr
iv
ile
ge
s

–
B
yp

as
s
of

ki
os
k
m
od

e
–

M
is
us
e

of
op

en
ne
t-

w
or
k
se
rv
ic
e
(e
.g
.T

el
-

ne
t,
V
N
C
)

–
M
is
us
e

of
(u
nn

ec
es
-

sa
ri
ly
)
hi
gh

pr
iv
ile
ge
s

in
O
S

–
M
is
us
e

of
un

lo
ck
ed

us
er

se
ss
io
n

–
A
cc
es
s
th
ro
ug

h
se
rv
er

m
an
ag
em

en
t
co
ns
ol
es

or
B
IO

S
–

R
e-
bo

ot
w
ith

di
ff
er
en
t

O
S
fr
om

C
D
or

U
SB

–
A
cc
es
s

th
ro
ug

h
un

pr
ot
ec
te
d

ne
ar
-

fie
ld

co
m
m
un

ic
at
io
n

pr
ot
oc
ol

–
M
is
us
e

of
ha
rd
w
ar
e

in
te
rf
ac
es

(U
A
R
T,

JT
A
G
)

–
M
is
us
e
of

sh
ut
-d
ow

n
bu
tto

n

M
I

–
C
ro
ss
-s
ite

sc
ri
pt
in
g

–
SQ

L
-i
nj
ec
tio

n
–

M
al
w
ar
e
in
fe
ct
io
n

of
co
m
po

ne
nt

th
ro
ug

h
m
al
ic
io
us

pa
yl
oa
d

–
Fu

zz
in
g
at
ta
ck

–
M
al
w
ar
e
in
fe
ct
io
n

of
co
m
po

ne
nt

th
ro
ug

h
m
al
ic
io
us

pa
yl
oa
d

–
C
ra
sh

du
e
to

ov
er
lo
ad

–
Tr
ic
k

O
S-
us
er

to
in
-

st
al
lo

rr
un

m
al
w
ar
e

–
N
et
w
or
k

pa
ck
et

ex
-

pl
oi
tin

g
vu

ln
er
ab
ili
ty

in
ne
tw
or
k

pr
ot
oc
ol

im
pl
em

en
ta
tio

n
of

th
e

O
S,

e.
g.

pi
ng

-o
f-
de
at
h

–
M
al
w
ar
e
in
fe
ct
io
n

of
co
m
po

ne
nt

th
ro
ug

h
in
fe
ct
ed

U
SB

st
ic
k

176 M. Maidl et al.

Table 5. Attack action catalog for CPSs Part 2 [13].

U
se
r

In
te
rf
ac
e

C
2C

In
te
rf
ac
e

O
S
L
ev
el

A
cc
es
s

Ph
ys
ic
al

In
te
rf
ac
e

N
et
w
or
k
C
om

m
.

D
D

–
R
ea
d

se
ns
iti
ve

da
ta

fr
om

fil
es

or
W
in
do
w
s

re
gi
st
ry
,

e.
g.

pa
ss
w
or
ds
,

op
er
at
io
na
ld

at
a

–
R
ea
d
da
ta

fr
om

pr
oc
es
s

m
em

-
or
y

by
ca
us
in
g

a
co
re

du
m
p

–
St
ea
lm

ed
ia
,i
.e
.

SD
ca
rd
,
U
SB

st
ic
k,

or
ha
rd

di
sk

–
In
st
al
l

ke
yl
og
-

ge
r

–
Ta
ke

a
co
ve
rt

lo
ok

at
a
di
sp
la
y

–
R
ea
d

da
ta

th
ro
ug
h

ha
rd
-

w
ar
e

in
te
rf
ac
es

(U
A
R
T,

JT
A
G
)

–
R
ea
d

cl
ea
r
te
xt

pr
ot
oc
ol
s,

e.
g.

H
T
T
P,
FT

P
–

Sn
iff

da
ta

se
nt

ov
er

un
pr
o-

te
ct
ed

W
L
A
N

T
D

–
M
an
ip
ul
at
e

da
ta

in
fil
es

or
da
ta
ba
se
s

–
M
an
ip
ul
at
e

co
nfi

gu
ra
tio

n
or

so
ft
w
ar
e

–
C
ha
ng
e
da
ta

on
re
m
ov
ab
le

m
e-

di
a

–
M
an
ip
ul
at
e

or
re
pl
ay

m
es
sa
ge

–
M
an
-i
n-
th
e-

m
id
dl
e
at
ta
ck

E
R

–
(M

al
ic
io
us
)

ap
pl
ic
at
io
n
us
es

up
C
PU

or
m
em

or
y

–
Fl
oo
di
ng

th
e

ne
tw
or
k

–
O
cc
up
y

w
ir
e-

le
ss

in
te
rf
ac
es

w
ith

a
ja
m
m
er

Model-Based Threat Modeling for CPSs 177

6 Tool-Support

We use a model-based approach for our tool based on two frameworks. The
first framework is EMF [18] (see Sect. 4) and the second framework is called
Sirius3.

6.1 Sirius

Sirius allows you to create your own eclipse graphical modeling workbench and
diagrams. It builds on EMF and the Acceleo Query Language (AQL)4. AQL
is a specification language similar to the Object Constraint Language (OCL)5.
AQL expressions are used to interact with the model, e.g. to manipulate model
instances or to query data from the model. Sirius has some built-in graphical
elements, for example text fields, nodes, and containers. Diagrams can be spec-
ified in a hierarchical tree structure. The diagrams provide a user-friendly view
of model instances.

6.2 Workflow of Our Tool

The metamodels of Sect. 4 provide the fundamentals for the Sirius editors. We
implemented two editors for different purposes, each having several diagrams.
The first editor enables the user to model a CPS with different components,
interfaces, communications, and data. That editor builds on our previous work
[14]. Therefore, we do not further discuss it in this paper. However, the CPS
editor is essential for the second editor, which uses our taxonomy from Sect. 3.
We provide a simple example to show how our editor works. Figure 6 shows a
CPS which is modeled with our editor. There is the component Host 1 with a
user interface (small box), which can be accessed remotely from a User Browser
via a network communication with the https protocol.

Zone 1

Host 1

Internet (external)

User Browser

communication
 (https)

Fig. 6. Example of a CPS.

3 https://www.eclipse.org/sirius/.
4 https://www.eclipse.org/acceleo/documentation/.
5 https://www.omg.org/spec/OCL/2.4/PDF.

https://www.eclipse.org/sirius/
https://www.eclipse.org/acceleo/documentation/
https://www.omg.org/spec/OCL/2.4/PDF

178 M. Maidl et al.

Fig. 7. Scoping.

Scoping. The first step is shown in Fig. 7. Its purpose is to set the focus for the
threat analysis. The user can obtain some information from that diagram. First,
there is a graphical representation of the CPS which is extracted from the CPS
model. The box entitled Not in scope denotes the CPS elements that are not in
scope. The box Scope 1 contains the elements that are in scope for the analysis.
It is possible to define different scopes within a model, each of them focusing on
different elements.

The palette on the right side provides different tools for users to create or
manipulate the model. The graphical representation and the Not in Scope con-
tainer have only an informative use, i.e. they only extract some information from
the model and present it to the user.

A new scope, e.g. Scope 1, can be created with the tool New Scope. Each Scope
is an instance of the class ThreatScenarioListing from Fig. 5. Users have multiple
dialogs to set elements of the system in scope. For example, when selecting an
interface to be in scope, they get a list of all available interfaces. Via checkboxes,
it is possible to select the desired ones. To document that an element is in scope,
we instantiate the class inScope of the metamodel (see Fig. 5). Furthermore, the
corresponding element is shown in the green box of the scope.

Analysis. The second step is the core part of threat modeling, i.e. the identifi-
cation and documentation of the attack actions. This step is supported by our
taxonomy from Sect. 3. For all interfaces that are specfied to be in scope, the
user is guided to identify and document attack actions with the dialog shown
in Fig. 8. For each documented attack action, a class AttackAction from Fig. 5
will be instantiated. Our tool filters relevant attack actions according to the

Model-Based Threat Modeling for CPSs 179

Fig. 8. Dialog to document attack actions.

taxonomy, and presents the examples contained in the catalog to the user. Fur-
thermore, the user dialog informes the user about which attack action types
have already covered for the given interface, thereby showing the progress of
coverage. Using the provided text fields, users can describe the attack action
more precisely, give a weakness, and assign assumptions, Alternatively, if there
are reasons why an attack action type is not in scope for that interface, users
document that reason in the dialog.

To filter relevant attack actions, we use following AQL expression as shown
Listing 1. It realizes the mapping of our taxonomy given Tables 2 and 3.

1 i f (e l ement . oc l I sTypeOf (system : : C2C In t e r f a c e)

2 or e l ement . oc l I sTypeOf (system : : Ne two r kUs e r I n t e r f a c e)

3 or e l ement . oc l I sTypeOf (system : : L o c a l U s e r I n t e r f a c e))

4 then
5 t h r e a t s : : AttackAct ionType . e L i t e r a l s → s e l e c t (a | a . name=’MC’ or

a . name=’AC’ or a . name=’MI ’)

6 e l s e i f (e l ement . oc l I sTypeOf (system : : P h y s i c a l I n t e r f a c e))

7 then
8 t h r e a t s : : AttackAct ionType . e L i t e r a l s → s e l e c t (a | a . name=’AC’ or

a . name=’DD’ or a . name=’MI ’ or a . name=’TD’)

9 e l s e i f (e l ement . oc l I sTypeOf (system : : OSL e v e l I n t e r f a c e))

180 M. Maidl et al.

10 then
11 t h r e a t s : : AttackAct ionType . e L i t e r a l s → s e l e c t (a | a . name=’MC’ or

a . name=’TD’ or a . name=’DD’ or a . name=’ER ’ or a . name=’MP’ or
a . name=’AC’)

12 e l s e
13 t h r e a t s : : AttackAct ionType . e L i t e r a l s → s e l e c t (a | a . name=’AC’ or

a . name=’MI ’ or a . name=’TD’ or a . name=’DD’ or a . name=’ER ’)

14 end i f e n d i f e n d i f

Listing 1. AQL expression for filtering relevant attack action types.

element is the CPS’s element for which attack actions shall be identified, i.e.
an interface or network communication. With the expression, we check which
type element is and select the corresponding attack action types for it. After-
ward, users can choose one of them and document it in the model.

7 Related Work

Almorsy et al. [2] introduced a new architecture software security analysis. They
use OCL to formalize system architectural security attack scenarios and security
metrics. Since our approach is model-based (cf. Sect. 3.1), our proposed taxon-
omy can be formalized in a similar way.

The paper by Halkidis et al. [8] evaluates the protection that selected security
patterns of Blakley and Heath [4] offer against attacks. As attack categories, the
authors make use of STRIDE. The analyzed system is annotated with stereo-
types in order to check whether security patterns have been used sufficiently.
This approach of using stereotypes can be compared with our interface types,
e.g. there is a stereotype ApplicationEntryPoint that corresponds to our user
interface. The difference to our taxonomy is that the annotations are not asso-
ciated with attack actions, but are associated with security patterns.

Uzunov and Fernández [20] introduce system elements (called decomposition
layers) to describe threat patterns. The system elements are similar to our attack
surface elements, e.g. the decomposition layer ‘User interaction’corresponds to
a user interface. In contrast to our work, the authors do not use the system
elements for structuring the threat patterns.

CAPEC (cf. Sect. 3.4) is often used as a comprehensive repository for attack
descriptions rather than as a taxonomy. An example is Adams et al. [1], where
CAPEC is used as source to identify relevant attacks, by using machine learning
and natural language processing. Another example is the approach of [12] to
leverage the CAPEC repository for finding relevant attacks, based on problem
patterns, solution patterns, and context patterns.

Xiong and Lagerström performed a literature review on threat modeling [21].
This literature review lists many papers on threat modeling approaches that
are based on (semi-)formal methods for representing threats, like game theory,
Petri nets, Dolev-Yao threat model, PrT nets, Hidden Markov models, Byzantine
model, flow model, and others. The usage of taxonomies in these approaches is
different to our use. The taxonomy does not represent threats, but provides a

Model-Based Threat Modeling for CPSs 181

structure for knowledge databases. Other papers covered in that literature review
describe the use of threat modeling in a specific domain.

There are numerous risk management processes, e.g. CORAS [6], that require
a detailed identification of threat scenarios. CORAS has its own modeling lan-
guage and provides guidelines on how the method can be carried out. The method
is model-based and has tool-support. The identification of threat scenarios is
often performed in brainstorming sessions which does not necessarily follow a
systematic procedure. Our taxonomy can be used as an input for those sessions
to create CORAS diagrams.

Shevchenko et al. [16] evaluates methods for threat modeling of cyber-
physical systems. They list twelve methods and rate them according to 5 criteria.
The usage of an attack action catalog is no criteria. Some of the methods can
be enhanced with an attack action catalog.

Khan et al. [10] apply STRIDE-based threat modeling to cyber-physical sys-
tems and apply their adapted method on a real world example. They state 10
possible threat consequences (TC) as an example. The authors use data flow
diagrams (DFD) to model a cyber-physical system and link the DFD elements
to TCs. The method of the paper is on a high level and our taxonomy can be
applied after their method.

Currently, our taxonomy only allows us to analyze a system with regard to
security. The LINDDUN methodology of Deng et al. [7] introduces privacy threat
categories which have been derived from STRIDE. The relation of STRIDE to
privacy may help to transfer our taxonomy into the privacy context, as well.

8 Conclusion

After having presented a two-dimensional taxonomy in previous work, we pre-
sented our tool support in the present paper. We first presented a metamodel that
formalizes the taxonomy and the dependencies to the system model’s elements,
i.e. the attack surface. Based on that metamodel, we developed a graphical edi-
tor that filters relevant attack actions and that allows documenting the threat
model systematically. To provide flexibility, the tool provides functionalities to
import different attack action catalog. The current piloting of the tool and the
taxonomy in the industrial context promises good results. Further feedback from
practitioners will continuously be integrated into the tool.

Currently, our taxonomy, the attack action catalogs, and the tool are limited
to the domain of CPS. The transfer to other domains requires us to adapt the
first dimension, i.e. to define the elements of attack surfaces in other domains.
Currently, we are working on system models for cloud-based systems which shall
be used as input for security analyses, too. The new attack surface can be derived
from that model, which makes it easy to adopt our taxonomy for cloud-based
systems. Concerning attack action types, first experiments have shown that the
types used in this paper are also suitable in the domain of cloud applications.

Another important aspect will be the consideration of other software qual-
ities such as privacy. LINDDDUN [7] will be a good starting point for this

182 M. Maidl et al.

adoption since it brings STRIDE to the context of privacy. Another important
topic would be to identify overlaps between different qualities. For example, the
protection goal of confidentiality is relevant for both security and privacy. The
same countermeasures can therefore be applied to improve both qualities.

About our tool, we plan to add more catalogs to it and to make these cat-
alogs publicly available via the Internet. Other practitioners and research may
contribute to this resource with their own catalogs.

References

1. Adams, S.C., Carter, B.T., Fleming, C.H., Beling, P.A.: Selecting system spe-
cific cybersecurity attack patterns using topic modeling. In: 17th IEEE Interna-
tional Conference on Trust, Security and Privacy in Computing and Communica-
tions/12th IEEE International Conference on Big Data Science and Engineering,
TrustCom/BigDataSE 2018, New York, NY, USA, 1–3 August 2018, pp. 490–497
(2018). https://doi.org/10.1109/TrustCom/BigDataSE.2018.00076

2. Almorsy, M., Grundy, J., Ibrahim, A.S.: Automated software architecture secu-
rity risk analysis using formalized signatures. In: 35th International Conference on
Software Engineering, ICSE 2013, San Francisco, CA, USA, 18–26 May 2013, pp.
662–671 (2013). https://doi.org/10.1109/ICSE.2013.6606612

3. Berger, B.J., Sohr, K., Koschke, R.: Automatically extracting threats from
extended data flow diagrams. In: Caballero, J., Bodden, E., Athanasopoulos, E.
(eds.) Proceedings of the Engineering Secure Software and Systems - 8th Interna-
tional Symposium, ESSoS 2016, London, UK, 6–8 April 2016, pp. 56–71. Springer,
Cham (2016). https://doi.org/10.1007/978-3-319-30806-7 4

4. Blakley, B., Heath, C.: The open group security forum: security design patterns.
Technical guide. TheOpen Group (2004)

5. BSI: Industrial control system security - top 10 threats and countermeasures
2016. Bsi-cs 005e—version 1.20 of 08/01/2016, federal office for information
security (BSI) (2016). https://www.allianz-fuer-cybersicherheit.de/ACS/DE/ /
downloads/BSI-CS 005E.pdf? blob=publicationFile&v=3

6. Dahl, H., Hogganvik, I., Stølen, K.: Structured semantics for the CORAS security
risk modelling language. In: Proceedings of 2nd International Workshop on Inter-
operability solutions on Trust, Security, Policies and QoS for Enhanced Enterprise
Systems (IS-TSPQ’07) (2007)

7. Deng, M., Wuyts, K., Scandariato, R., Preneel, B., Joosen, W.: A privacy threat
analysis framework: supporting the elicitation and fulfillment of privacy require-
ments. Requir. Eng. 16(1), 3–32 (2011). https://doi.org/10.1007/s00766-010-0115-
7

8. Halkidis, S.T., Tsantalis, N., Chatzigeorgiou, A., Stephanides, G.: Architectural
risk analysis of software systems based on security patterns. IEEE Trans. Depend-
able Secur. Comput. 5(3), 129–142 (2008). https://doi.org/10.1109/TDSC.2007.
70240

9. IEC 62443: Industrial communication networks - network and system security -
security for industrial automation and control systems. In: International Standard,
International Electrotechnical Commission (IEC) (2013–2018)

10. Khan, R., McLaughlin, K., Laverty, D., Sezer, S.: Stride-based threat modeling for
cyber-physical systems. In: 2017 IEEE PES Innovative Smart Grid Technologies
Conference Europe (ISGT-Europe), pp. 1–6. IEEE (2017)

https://doi.org/10.1109/TrustCom/BigDataSE.2018.00076
https://doi.org/10.1109/ICSE.2013.6606612
https://doi.org/10.1007/978-3-319-30806-7_4
https://www.allianz-fuer-cybersicherheit.de/ACS/DE/_/downloads/BSI-CS_005E.pdf?__blob=publicationFile&v=3
https://www.allianz-fuer-cybersicherheit.de/ACS/DE/_/downloads/BSI-CS_005E.pdf?__blob=publicationFile&v=3
https://doi.org/10.1007/s00766-010-0115-7
https://doi.org/10.1007/s00766-010-0115-7
https://doi.org/10.1109/TDSC.2007.70240
https://doi.org/10.1109/TDSC.2007.70240

Model-Based Threat Modeling for CPSs 183

11. Kohnfelder, L., Grag, P.: The threats to our products. Technical report. Microsoft
Co-oporation (2009). https://adam.shostack.org/microsoft/The-Threats-To-Our-
Products.docx

12. Li, T., Paja, E., Mylopoulos, J., Horkoff, J., Beckers, K.: Security attack analysis
using attack patterns. In: 2016 IEEE Tenth International Conference on Research
Challenges in Information Science (RCIS), pp. 1–13 (2016). https://doi.org/10.
1109/RCIS.2016.7549303

13. Maidl, M., Münz, G., Seltzsam, S., Wagner, M., Wirtz, R., Heisel, M.: Threat mod-
eling for cyber-physical systems: a two-dimensional taxonomy approach for struc-
turing attack actions. In: van Sinderen, M., Fill, H., Maciaszek, L.A. (eds.) Proceed-
ings of the 15th International Conference on Software Technologies, ICSOFT 2020,
Lieusaint, Paris, France, 7–9 July 2020, pp. 160–171. ScitePress (2020). https://
doi.org/10.5220/0009829901600171

14. Maidl, M., Wirtz, R., Zhao, T., Heisel, M., Wagner, M.: Pattern-based model-
ing of cyber-physical systems for analyzing security. In: Proceedings of the 24th
European Conference on Pattern Languages of Programs. EuroPLop 2019, pp.
23:1–23:10. ACM, New York, NY, USA (2019). https://doi.org/10.1145/3361149.
3361172. https://doi.acm.org/10.1145/3361149.3361172

15. MITRE: Common Attack Pattern Enumeration and Classification (CAPEC).
https://capec.mitre.org (2019)

16. Shevchenko, N., Frye, B.R., Woody, C.: Threat modeling for cyber-physical system-
of-systems: methods evaluation. Carnegie Mellon University Software Engineering
Institute. Technical report (2018)

17. Shostack, A.: Threat Modeling - Designing for Security, 1st edn. Wiley, Hoboken
(2014)

18. Steinberg, D., Budinsky, F., Paternostro, M., Merks, E.: EMF: Eclipse Modeling
Framework 2.0, 2nd edn. Addison-Wesley Professional, Boston (2009)

19. Tuma, K., Calikli, G., Scandariatoa, R.: Threat analysis of software systems: a
systematic literature review. J. Syst. Softw. 144, 275–294 (2018)

20. Uzunov, A.V., Fernández, E.B.: An extensible pattern-based library and taxonomy
of security threats for distributed systems. Comput. Stand. Interfaces 36(4), 734–
747 (2014)

21. Xiong, W., Lagerström, R.: Threat modeling - a systematic literature review. Com-
put. Secur. 84, 53–69 (2019). https://doi.org/10.1016/j.cose.2019.03.010

https://adam.shostack.org/microsoft/The-Threats-To-Our-Products.docx
https://adam.shostack.org/microsoft/The-Threats-To-Our-Products.docx
https://doi.org/10.1109/RCIS.2016.7549303
https://doi.org/10.1109/RCIS.2016.7549303
https://doi.org/10.5220/0009829901600171
https://doi.org/10.5220/0009829901600171
https://doi.org/10.1145/3361149.3361172
https://doi.org/10.1145/3361149.3361172
https://doi.acm.org/10.1145/3361149.3361172
https://capec.mitre.org
https://doi.org/10.1016/j.cose.2019.03.010

	Model-Based Threat Modeling for Cyber-Physical Systems: A Computer-Aided Approach
	1 Introduction
	2 Terminology
	3 Two-Dimensional Taxonomy
	3.1 Attack Surface Dimension
	3.2 Attack Action Type Dimension
	3.3 Two-Dimensional Taxonomy
	3.4 Comparison with Other Taxonomies
	3.5 Using the Taxonomy for Threat Modeling

	4 Metamodel
	4.1 CPS Metamodel
	4.2 Threat Model
	4.3 Protection Goals
	4.4 Threat Scenario Listing

	5 Attack Action Catalog
	5.1 Structuring Attack Action Catalogs with the Taxonomy
	5.2 Example Catalog
	5.3 Further Benefits

	6 Tool-Support
	6.1 Sirius
	6.2 Workflow of Our Tool

	7 Related Work
	8 Conclusion
	References

