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Abstract. The verification of reconfigurable real-time systems that dynamically
change their structures due to external changes in environment or user require-
ments continues to challenge experts which have to face new challenges such as
fault tolerance, response in time, flexibility, modularity, etc. Moreover, such sys-
tems face constraints as real-time requirements, their generated state spaces are
much bigger, consequently, properties to be verified are more complex, which
makes the formal verification more complex. For modeling systems, in this paper,
we use Reconfigurable Timed Net Condition/Event Systems (R-TNCESs) for the
optimal functional and temporal specification. To control the complexity and to
reduce the verification time, a new method of properties verification in a cloud-
based architecture is proposed. The novelty consists of a new method for state
space generation and the decomposition of the complex properties for running
an efficient verification. Moreover, An algorithm is proposed for the incremental
state space generation. An application of the paper’s contribution is carried out
on a case study to illustrate the impact of using this technique. The current results
show the benefits of the paper’s contribution.

Keywords: Discrete-event system · Reconfiguration · R-TNCES ·
Computation Tree Logic · CTL · Cloud computing · Formal verification

1 Introduction

Reconfigurable discrete event control systems (RDECSs) such as manufacturing sys-
tems [11], real time systems and intelligent control systems [10,12] are complex.
RDECSs satisfy several conditions such as concurrency, control and communication.
In fact, RECESs are the trend of future systems. However, ensuring the safety of these
systems is crucial especially when dealing with critical situations. Formal verification
is, therefore, imperative. RDECSs have flexible configurations that allow them to switch
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from a configuration to another due to user requirements or to prevent system malfunc-
tions [6]. This verification consists of two major steps: state-space generation and state-
space analysis. Mentioned steps applications are usually expensive in terms of compu-
tation time and memory occupation (i.e., huge accessibility graph to be generated and
complex properties to be verified) [19]. The authors in [17] proposed to classify prop-
erties automatically and to introduce a priority order during RDECSs verification to
control the high number of properties to be verified. The mentioned method improves
verification by reducing the number of properties to be verified by exploiting relation-
ships among properties (equivalence, composition and dominance). However, when the
property relationship rate is low which is frequent while verifying complex RDECSs,
the said method is equivalent to the classic ones. The authors in [6] proposed a method
for accessibility graph generation with less computing time and less required memory,
while preserving the graph semantics. They start by computing the initial TNCES acces-
sibility graph classically, then making updates on it to compute the remaining TNCESs
accessibility graphs, while considering similarities between them. Previous methods
improve classical ones. However, with large scale systems, their application using a
unique machine (i.e., a centralized system) may be expensive in terms of time and calcu-
lation [13]. Authors in [2] initiate the cloud-based solution for formal method problems.
Authors have proposed a distributed fixed-point algorithm to check CTL properties with
basic operators. The said algorithm can analyze DECS efficiently. However, RDECSs
complexity forced us to move forward with big data solutions for formal method prob-
lems. To cope with RDECSs, Petri nets has been extended and developed by several
works [14]. Reconfigurable Timed Net Condition/Event System (R-TNCES) is a novel
formalism proposed in [18], where reconfiguration and time properties with modular
specification are provided in the same formalism. This Paper deals with RDECSs mod-
eled by R-TNCES. Authors in [2] developed a CTL Model checker in the cloud using
map-reduce. The basic idea is to increase computation power and data availability to
reduce time execution. They perform distributed fixed-point algorithm. However, the
authors do not consider the system model similarities, which involves redundant calcu-
lations during verification. Moreover, this verification method support only simple CTL
properties expressed with a restricted number of operator-quantifier combinations. Both
of layer-by-layer verification proposed in [20] and the formal verification method pro-
posed in [6] focused on the improvement of the state space generation phase, thus, they
neglect state space analysis. The authors in [17] proposed automatic properties classi-
fication and introduced a priority order during RDECSs verification to control the high
number of properties. The said method improves verification by reducing the num-
ber of properties by proposing an approach for exploiting relationships among them
(equivalence, composition and dominance). In [16], the authors proposed Reconfig-
urable Computation Tree Logic R-CTL as an extension of CTL. This logic adds proper-
ties relationships management to deals redundancy caused by relationships (dominance,
composition, and equivalence). RCTL improves version of CTL in terms of expressive-
ness, However processing RCTL properties verification on the generated space in a
sequential way remains hard. Authors in [7] proposed a new method for state space
generation, which extends classical accessibility graphs (AGs) to timed accessibility
graphs (TAGs). The said method is efficient when dealing with reconfigurable real-time
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systems, it allows us to control complexity in the analysis step during verification. In
our previous works, we propose a method for state space generation which, considers
similarities that an R-TNCES can contain, thanks to an ontology-based history. Also,
we proposed in [5] to perform CTL properties verification in a parallel way on a cloud-
based architecture while considering relationships among properties. The said methods
are efficient; However, the first work is only focused on state space generation, and
the second one presents limits when properties are complex and properties relation-
ship rate is low. Therefore, we propose in this paper a new work that comes to fill the
limits of precedent ones. Hence, we proposed a new method that aims to improve R-
TNCES formal verification. Reconfigurable Real-time systems formal verification may
be expensive in terms of computation power and memory occupation, therefore, we
resort to a cloud-based solution to increase computation power (resp. memory occu-
pation) thank to the Infrastructure as a service IaaS (reps. Simple Storage Service S3)
proposed by Amzon [8]. To control systems formal verification complexity we propose
the following contributions:

1. Incremental timed state space generation to facilitate the access to different parts of
the accessibility graph; Certain properties do not require the entire exploration of
the accessibility graph in order to be validated or not, therefore, a partial exploration
of the accessibility graph is sufficient. Indeed, we introduce the modularity and the
time concepts to the state-space generation step, which allows us to access different
parts of the accessibility graph (modules) and help us to face time constraints. This
contribution allows us to proceed to a targeted verification.

2. Decomposition of CTL properties to control complexity during the state-space anal-
ysis. Due to the systems complexity, properties to be verified in order to ensure the
correctness of the system behavior are more complex. Thereby, increasing the com-
plexity of the analysis step. In order to fix the mentioned issue, we check the possi-
bility of decomposition of the complex properties into several simple or less complex
properties that can be verified in less computation time using fewer resources.

3. Development of a distributed cloud-based architecture to perform parallel compu-
tations during formal verification and to store large scale data. The huge generated
state spaces, the high number of properties to be verified, and time constraints forced
us to opt for a big data solution to control the complexity of reconfigurable real-time
systems formal verification. Computation tasks are ensured by the master and the
workers via virtual machines allocated thanks to the EC2 product proposed by ama-
zon. Data storage is ensured by S3.

This paper is an extended version of our previous paper [3], presented at the ‘IC-SOFT
2020’ conference. The method improves by

– Replacing classical accessibility graphs by the Timed accessibility graphs proposed
in [7].

– Using temporal logic TCTL in addition to CTL in order to respond to the real-time
constraints.

– Updating the proposed cloud-based architecture to deal with the verification of
reconfigurable real-time constraints.
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The main objective of this paper is to propose a new formal verification method that
improves the classical ones by controlling complexity. As a running example, a formal
case study is provided to demonstrate the relevance of our contributions. The obtained
results are compared with different works. The comparison shows that the verification
is improved in terms of execution time (i.e., less complexity to perform systems formal
verification).

The remainder of the paper is organized as follows. Section 2 presents some required
concepts. The distributed formal verification is presented in Sect. 3. Section 4 presents
the evaluation of the proposed method. Finally, Sect. 5 concludes this paper and gives
an overview about our future work.

2 Background

In this section, we present basic concepts which are required to follow the rest of the
paper.

2.1 Reconfigurable Timed Net Condition/Event System

CCi
P1

P2

P3

t1

t2

t3
Event output
Signal arc / Event arc

Event input

Place

Transition

Flow arc

Module boundary

Token

[ , ]Time Interval

Fig. 1. Graphical model of a generic control component modeled by TNCES [3].

R-TNCES is a modeling formalism used to specify and verify reconfigurable Real Time
Systems. R-TNCES is based on Petri nets and control components CCs. A control com-
ponent (CC) is defined as a software unit. Control components are applied as a formal
model of the controller of a physical process and are modeled by TNCES as shown
in Fig. 1. Each CC resumes the physical process in three actions: Activation, working
and termination. An R-TNCES RTN is defined in [20] as a couple RTN = (B,R),
where R is the control module and B is the behavior module. B is a union of multi
TNCES-based CC modules, represented by

B = (P ;T ;F ;W ;CN ;EN ;DC;V ;Z0)
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where,

a) P (resp, T ) is a superset of places (resp, transitions),
b) F is a superset of flow arcs,
c) W : (P × T ) ∪ (T × P ) → {0, 1} maps a weight to a flow arc, W (x, y) > 0 if

(x, y) ∈ F , and W (x, y) = 0 otherwise, where x, y ∈ P ∪ T ,
d) CN (resp, EN ) is a superset of condition signals (resp, event signals),
e) DC is a superset of time constraints on input arcs of transitions,
f) V : T → ∧,∨ maps an event-processing mode for every transition;
g) Z0 = (M0,D0), whereM0 is the initial marking, andD0 is the initial clock position.

R is a set of reconfiguration functions R = {r1, ..., rn}. r is structured as follow:
r = (Cond, s, x) such that:

1. Cond→ {true, false} is the pre-condition of r, which means specific external
instructions, gusty component failures, or the arrival of certain states.

2. s: TN(∗r) → TN(r∗) such that TN(∗r)(resp. TN(r∗)) be the original (resp. tar-
get) TNCES before (resp. after) r application is the structure modification instruc-
tion.

3. x: laststate(TN(∗r)) → initialstate(r∗) is the state processing function, where
laststate(TN(∗r)) (resp. initialstate(TN(r∗))) is the last (resp. the initial) state of
TN(∗r) (resp. TN(r∗)).

2.2 Timed Accessibility Graph

Timed accessibility graphs is an extension on accessibility graphs proposed in [7], dur-
ing model-checking it allows us to control verification complexity thank its time prop-
erty. Timed accessibility graph (TAG) of a TNCES TNS is a structure tAG given by

tAG(St,Ed, SO)

where,

– St denotes the set of reachable states;
– Ed: St → St denotes the set of edges that defines state-transitions such that each
edge is labeled by the executed step;

– s0 denotes the initial state.

A state s ∈ St is a structure given by

State(Mp, P clocks,D)

where,

– Mp is the set of marked places;
– Pclockst s is a vector of integers representing places clock positions;
– D is the delay of the state which denotes the minimal number of time units after
which at least one step becomes enabled.
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2.3 Computation Tree Logic CTL

Computational tree logic CTL is a temporal logic for branching-time based on proposi-
tional logic used by [1] for model checking. CTL can describe the context and branching
of the system state, it models system evaluation as a tree-like structure where each state
can evolve in several ways (i.e., specify behavior systems from an assigned state in
which the formula is evaluated by taking paths). CTL has a two-stage syntax where for-
mulae in CTL are classified into state and path formulae. The former is formed accord-
ing to the following grammar:

Φ :: = true|AP |Φ1 ∧ Φ2|Φ1 ∨ Φ2|¬Φ|Eϕ|Aϕ

While path formulae which express temporal properties of paths are formed according
to the following grammar:

ϕ :: = XΦ|FΦ|GΦ|Φ1UΦ2

where Φ, Φ1 and Φ2 are state formulae. AP is the set of atomic propositions. The CTL
syntax include several operators for describing temporal properties of systems: A (for
all paths), E (there is a path), X(at the next state), F (in future), G (always) and U
(until).

Definition 1. Equivalence of CTL Formulae: CTL formulae σ1 and σ2 (over AP) are
called equivalent, denoted σ1 ≡ σ2 whenever they are semantically identical. There-
fore, σ1 ≡ σ2 if Sat(σ1) = Sat(σ2) for all transition systems TS over AP such that
Sat(σ) = {s ∈ S|s |= σ}. Table 1 presents an important set of equivalences rules
(expansion and distributive laws).

Table 1. Some equivalence rules for CTL.

Expansion laws

EGφ ≡ φ ∧ EXEGφ

AFφ ≡ φ ∨ AXAFφ

EFφ ≡ φ ∨ EXEFφ

A[φUψ] ≡ ψ ∨ (φ ∧ AXA[φUψ])

E[φUψ] ≡ ψ ∨ (φ ∧ EXE[φUψ])

Distributive laws

AG(σ1 ∧ σ2) ≡ AGσ1 ∧ AGσ2

EF (σ1 ∨ σ2) ≡ EFσ1 ∨ EFσ2

2.4 Infrastructure as a Service IaaS

Cloud computing is an increasingly popular paradigm for ubiquitous, convenient, on-
demand network access to a shared pool of configurable computing resources. In prac-
tice, cloud service providers tend to offer services that can be grouped into three cate-
gories as follows:
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(i) software as a service,
(ii) platform as a service, and
(iii) infrastructure as a service presented in Fig. 2.

IaaS

NetworkingComputing Storage

Fig. 2. Infrastructure as a Service.

IaaS is defined by [8] as web service that provides provision processing, storage,
networks, administrative services needed to store applications and a platform for run-
ning applications [8]. It is designed to make web-scale cloud computing easier for
developers. Amazon Web Services Elastic Compute Cloud (EC2) and Secure Storage
Service (S3) are examples of IaaS offerings as shown in Fig. 2.

3 Distributed Cloud Based Formal Verification

We present in this section the proposed distributed cloud-based formal verification of
R-TNCESs.

3.1 Motivation

R-TNCES is an expressive formalism, which allows considering different aspects of
Reconfigurable real-time systems (time, probability, reconfigurability and concurrency)
[9]. The correctness of systems modeled by R-TNCES can be ensured by formal ver-
ification. However, such a formalism makes the verification process complex, due to
the combinatorial growth of the state space according to the model size, and due to the
high number and complexity of the properties that the designer wants to verify. Thus,
we aim to make model checking more efficient by reducing the time validation of prop-
erties to be verified. Therefore, we propose a new method for R-TNCES verification,
which facilitates both generation and analysis of state space. To ensure our objective,
we implement different tasks that can be presented in two parts as follows:
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Fig. 3.Global idea for the formal verification according to the distributed cloud based verification.

– Part 1: CTL properties verification:
a) Incremental state space generation, which is to construct the state space by part,
b) the complex properties are decomposed to simple or less complex ones, then
c) if possible, we assign a partial graph to the property to be verified.
d) Finally, we proceed to CTL properties verification.

– Part 2: TCTL properties verification:
a) Timed state space generation, which is generated from accessibility graphs com-

puted during part 1, then
b) we proceed to TCTL properties verification.

Figure 3 presents scheduling of the presented tasks.

3.2 Formalization

In this section, we present formal verification steps according to the distributed cloud-
based formal verification of R-TNCESs.

Incremental State Space Generation. Incremental state space generation consists
of generating accessibility graphs by part, while preserving models semantics. Let
RTN(R,B) be an R-TNCES model, this task consists in two steps:

(i) Basic accessibility graph generation BAG, which consists of generating accessibil-
ity graphs for each CCi ∈ TNCESj where, i ∈ 0 . . . NumberCC(TNCESj)
and j ∈ 0 . . . NumberTN(B). This step is implemented in Algorithm 1. It takes
an R-TNCESs as input and proceed to BAGs generation through several function
including Generate State Space(CC) which, take a CC modeled by TNCES
and return its accessibility graph using SESA tool [15].
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Algorithm 1. Timed Basic accessibility generation.
Input: RTN : R-TNCES; TN0: TNCES;
Output: S TBAG: Set of elementary accessibility graphs;
for int i = 0 to | ∑

TN | do
for each CC ∈ TN do

if ( !Tagged (CC)) then
Insert(S BAG, Generate State Space(CC));
tag(CC);

end
end
for each BAG ∈ S BAG do

if ( !Tagged (BAG)) then
Insert(S BAG, Generate TBAG(BAG));
tag(BAG);

end
end

end
return S TBAG

Algorithm 2. Accessibility graph construction.
Input: S TBAG: Set of Times basic accessibility graphs ;

∑
CChain: Set of Cchains;

Output: S AG: Set Accessibility graphs;
for int i = 0 to | ∑

CChain | do
AG ← TBAGCC0

i
;

for int j = 0 to | ∑
CCi | do

AG ← Compose(AG, TBAG
CC

j
i
);

end
Insert(S AG, AG)

end
return S AG

(ii) Basic Timed Accessibility Graph BTAG Generation from a Graph BAG, which
consists on generating a new graphs that consider time properties from another
graph, we adopt the algorithm proposed in [7] to proceed to the TBAGs generation
as shown in Fig. 4

(iii) Partial accessibility graphs (PAGs) composition: This step is implemented in Algo-
rithm 2. It consists of composing pair of graphs computed during the first step
(BAGs) and throughout iterations of the second step (PAGs), mainly by using
the function Compose(AG,AG) that takes two graphs and composes them and
returns a new composed graph.

Complex CTL Properties Decomposition. We assume that properties that contain the
operators (∧) or (∨) are complex. Two kinds of complex properties are distinguished
as follows:

– Decomposable: The operators (∧) or (∨) are not linked to factors (State operators
or path quantifiers). This kind of properties are directly splited into a set of sub-
properties (e.g., Φ = P1 ∧ P2 gives σ1 = P1 and σ2 = P2) (Fig. 5).
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Basic Accessibility 
graphs generation

Timed Basic Accessibility 
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Fig. 4. Timed Basic accessibility graph generation.

Complex CTL 
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    decomposition 

Incremental State Space
 generation 

CTL Properties 
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Fig. 5. First step of reconfigurable real time systems verification.

– Non-decomposable: The operators (∧) or (∨) are linked to factors. For this kind of
properties, we firstly applied expansion or distribution laws and then re-check if they
are decomposable or not (Fig. 6).

Complex CTL 
properties 

    decomposition 

Incremental 
State Space
 generation 

CTL Properties 
Assignment to 

  Accessibility graphs   CTL properties
verification

Step 1

Step 2

Step 3

Step 4

Fig. 6. Second step of reconfigurable real time systems verification.

Figure 7 shows the majors steps of complex CTL properties decomposition task.

CTL Properties Assignment to PAGs. We assign to each property one or several
state spaces computed during incremental state space generation. The assignment is
done based on two criteria:

(i) Path quantifier and state operators, and
(ii) places concerned by the property such that we assign the smallest state space that

contains the concerned places.
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Fig. 7. Complex CTL properties decomposition.
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Fig. 8. Third step of reconfigurable real time systems verification.

CTL Properties Verification. In short-term we integrate CTL properties verification
method inspired from methods proposed in [5]. This method consider relationships
which exist among properties to be verified (Equivalence, dominance and composition)
and processes the verification in parallel way (Figs. 8 and 9).

Complex CTL 
properties 

    decomposition 

Incremental 
State Space
 generation 

CTL Properties 
Assignment to 

    Accessibility graphs 
  CTL properties

verification
Step 1 Step 2

Step 3

Step 4

Fig. 9. Fourth step of reconfigurable real time systems verification.

3.3 Distributed Architecture for Formal Verification

In this subsection, we present the proposed distributed cloud-based architectures shown
in Fig. 10. The idea that motivates the development of this architecture is to increase
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Database
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User

Fig. 10. Distributed cloud-based architecture.

computation power and storage availability. It is composed of computational and stor-
age resources. To develop the architecture shown in Fig. 10, we use IaaS to allocate the
following resources:

– Computation resources: which represent the master that coordinates the executed
tasks, and the workers that execute the presented tasks above.

– Storage resources: represents the allocated cloud database that stores accessibility
graphs computed during verification.

3.4 Reconfigurable Real-Time System Verification in a Distributed Cloud-Based
Architecture

The Reconfigurable real-time system verification is performed on the proposed archi-
tecture as follow

– Master: has the coordinator role it:
• Receives the verification request;
• Sends to each worker the task to perform (Accessibility graph generation, Prop-
erties decomposition and assignment, and CTL or TCTL properties verifica-
tion);

• Stores and retrieves data from storage unit.
– workers: perform different tasks received from the Master and return the results.

Note that the TCTL properties are considered as non-decomposable, thus the Master
distributes them to the works for parallel verification by considering the time con-
straints.

4 Experimentation

In this section, to validate and demonstrate the gain of our proposed contributions, we
use a formal case study.
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Fig. 11. Behavior model with three configurations process.

4.1 Case Study

To demonstrate the performance and the gain of the proposed contribution, we use R-
TNCES formalism to model a sequential system S01, used in the original conference
paper [3], which is denoted by RTNS01(BS01 , RS01). S01 is composed of 11 physical
processes modeled by 11 CCs. The behavior module of the system (BS01) is modeled
graphically as shown in Fig. 11. This model covers three configurations (C1, C2, C3). It
is assumed that every configuration has one control chain (CChaini

) as follows.

– CChain1 : CC1, CC2, CC3, CC9.
– CChain2 : CC1, CC2, CC3, CC4, CC5, CC11, CC7, CC8.
– CChain3 : CC1, CC2, CC3, CC10, CC5, CC6, CC7, CC8.

This behavior module can be reconfigured automatically and timely between the
three configurations (Ci, i = 1, ..., 3), according to the environment changes or
to the user requirements. RTNS01 can apply six different reconfiguration scenar-
ios according to the control module RS01 , which are described as follows: RS01 =
(C1, C2); (C1, C3);(C2, C1); (C2, C3); (C3, C1); (C3, C2).

4.2 Application

In this section, we present the application of the formal verification of RTNS01 accord-
ing to the cloud-based formal verification.

Incremental State Space Generation. In order to generates RTNS01 accessibility
graphAGRTNS01

, we apply Algorithms 1 and 2. First, we generates accessibility graphs
for each physical process, which are denoted by (TBAGi, i =1, ...,11). Then, we pro-
ceed to successive pair graphs compositions until we constitute AGRTNS01

. Table 2
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Fig. 12. Example of accessibility graphs composition according to the transition type.

Table 2. Incremental state space generation [3].

R-TNCES model Control chains PAGs

RTNS01 CChain1 (CC1, CC2); (CC1, CC2, CC3); (CC1, CC2, CC3, CC9)

CChain2 (CC1, CC2, CC3, CC4),
(CC1, CC2, CC3, CC4, CC5),
(CC1, CC2, CC3, CC4, CC5, CC11),
(CC1, CC2, CC3, CC4, CC5, CC11, CC7),
(CC1, CC2, CC3, CC4, CC5, CC11, CC7, CC8)

CChain3 (CC1, CC2, CC3, CC10),
(CC1, CC2, CC3, CC10, CC5),
(CC1, CC2, CC3, CC10, CC5, CC6),
(CC1, CC2, CC3, CC4, CC5, CC6, CC7),
(CC1, CC2, CC3, CC4, CC5, CC6, CC7, CC8)

shows PAGs computed during the first step of the system verification. Note that each
computed PAG is stored in the cloud database. Moreover, Fig. 12 shows an example of
a pair graphs composition.

Decomposition of CTL Properties. In order to validate the basic behavior of the
system and to guarantee that system model satisfies the good requirements, we must
ensure the CTL functional properties. In particular, to ensure: a) The safety, the system
allows only one process to be executed at any time, i.e., no activation of two CCs from
two different configurations at the same time, b) the liveness, whenever any process
wants to change the configuration, it will eventually be allowed to do so, and c) the
non-blocking, any active CC is eventually ended. Table 3 presents the above mentioned
properties specified by CTL.
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Table 3. Set of CTL properties to be verified [3].

σ: Set of CTL Properties

P1: EF (p3), P2: AF (p9),

P3: AF (p15), P4: AF (p21),

P5: AF (p24), P6: AF (p17),

P7: AF (p32), P8: AF (p35)

P9: EF (p12 ∧ EG(p24)),

P11: EG(p12 ∧ EGp35)),

P12: EG(p12 ∧ EG(p33)),

P13: ¬EF (p27 ∧ EG(p24)),

P14: EF (p12) ∧ EF (p18),

P15: AF (p12) ∧ EG(p33) ∧ EG(p21) ∧ AF (p24),

P16: AF (p12) ∧ EG(p33) ∧ EG(p21) ∧ AF (p24)

Table 4. CTL properties decomposition and assignment [3].

σ: Set of CTL properties Decomposition Assignment

P1: EF (p3), P2: AF (p9), P3: AF (p15),
P4: AF (p21), P5: AF (p24), P6: AF (p17),
P7: AF (p32), P8: AF (p35)

Non-decomposable P1: TBAG1 , P2: CC1, CC2, CC3 ,
P3: CC1, ..., CC5 ,
P4: CC1, ..., CC7 ,
P5: CC1, ..., CC8 ,
P6: CC,..., CC6 ,
P7: CC,..., CC11

P9: EF (p12 ∧ EG(p24)),
P12: EG(p12 ∧ EG(p33)),
P13: ¬EF (p27 ∧ EG(p24)),

Non-decomposable P9: CC1, ..., CC8 ,
P12: CC1, ..., CC11 ,
P13: CC1, ..., CC8

P14: EF (p12) ∧ EF (p18) P ′
14: EF (p12)

P ′′
14: EF (p18)

P ′
14: CC1, ..., CC4

P ′′
14: CC1, ..., CC6

P15: AF ((p12) ∧ EG((p33)) ∧
EG(p21)) ∧ AF (p24)

P ′
15: AF (p12)

P ′′
15: EG((p33)∧EG(p21))

P ′′′
15 : AF (p24

P ′
15: CC1, ..., CC4 ,

P ′′
15: CC1, ..., CC7 ,

P ′′′
15 : CC1, ..., CC8

P16: AF (p12) ∧ EG(p33) ∧ EG(p21) ∧
AF (p24)

P ′
16: AF (P12)

P ′′
16: ¬AF (p30)

P ′
16: CC1, ..., CC4 ,

P ′′
16: CC1, ..., CC10

Assignment of CTL Properties to PAGs. We apply the possible decomposition to the
CTL properties in σ, then we assign each property to be verified to the correspondent
accessibility graph (BAG or PAG). The results are shown in Table 4.

CTL and TCTL Properties Verification. CTL properties are distributed according to
their assignment one by one on workers by the Master, then workers proceed to their
verification using the SESA tool [15]. Where, TCTL properties are non-decomposable
thus their distribution depends on time constraints. Table 5 shows a set of TCTL prop-
erties. The order of verification of the mentioned properties is: P1, P2 > P3, P4, P6 >
P7 > P5.
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Table 5. TCTL properties to be verified.

σFMPS : Set of TCTL properties

P1: EF [1, 3]p3 = 1,

P2: EF [10, 18]p9 = 1,

P3: EF [10, 28]p12 = 1,

P4: EF [9, 41]p18 = 1,

P5: EF [26, 43]p24 = 1,

P6: EF [10, 18]p27 = 1,

P7: EF [20, 42]p33 = 1,

20% 20% 40% 40% 60% 60% 80% 80% 80%

1.5

2

2.5

3

·104

Decomposable Properties rates(%)

Ti
m

e
U

ni
ts

Proposed method Classic method [7] RCTL method [16]

Fig. 13. Classic methods VS Proposed method.

4.3 Evaluation

In this subsubsection, the evaluation of the proposed method is presented considering
two factors: The decomposable rate and the complex CTL properties rate.
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Fig. 14. Improved performance of proposed method verification.

Evaluation of CTL Properties Verification Method Considering Different Decom-
posable Ratex. Let assume we have to verify a system model with 2500 TNCESs. In
order to ensure the well-behave of the system we have to verify at least 4 properties
for each TNCES. Thus, we need to verify 10000 CTL properties. We assume that the
properties to be verified are complex and the rate of decomposable one can be:

(i) Low in 0, 20%,
(ii) Medium in 20, 60%, or
(iii) High when more than 60%.

The results show in Fig. 13 that the gain increases proportionally to decomposable
properties rate. Thus, the gain is clearly shown when similarity rate is ‘High’. This
is explained by the fact that, when properties are decomposed their verification is less
complex [4].
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Evaluation of CTL Properties Verification Method Considering Complex CTL
Properties Rate. Figure 14 we can observe an important gain when performing par-
allel verification thanks to the proposed architecture. This gain is explained by the fact
that the proposed architecture allows us to reduce considerably times execution by

(i) Avoiding redundant calculation,
(ii) Avoiding wait time execution,
(iii) Performing several properties verification at the same time.

5 Conclusion

This work deals with the formal verification of reconfigurable real-time systems mod-
eled by R-TNCES using CTL and TCTL specifications. In this paper, we present a
cloud-based solution for the formal verification problem. A distributed cloud-based
architecture is developed with two hierarchical levels (Master and worker) where,
data storage is ensured by Amazon Simple Storage S3 (Murty, 2008)). It allows us to
increase computational power, data availability, and to perform parallel execution. The
proposed method aims to improve state space analysis by using a hybrid distributed
cloud-based architecture for computation tasks. Developed architecture is composed
of:

1. A local workstation, where simple computation tasks are executed. First, a classi-
fication algorithm is applied in order to distinguish between simple and composed
properties. Then, we compute a matrix relationships that mention any eventual rela-
tionship between each couple of properties. Finally, we generate a parallelization
tree that we explore to extract a suitable execution order for each property to be
verified.

2. A virtual workstation, where complex tasks are computed. Virtual machines use
SESA tool to perform CTL properties verification and stores results in the shared
memory.

We introduce the modularity and the timed concept to the generated state spaces which
allow us to execute the generation step in a parallel way via several workers (virtual
machines) and to deal with time constraints. We detect the complex CTL properties
and decompose them into several simple or less complex properties, then proceed to
their verification via workers using the SESA tool [15]. The TCTL properties are them
verified following the order established by the master according to the time constraints.
Incremental Timed state space generation and the decomposition of CTL properties
allow us to run a targeted verification, which is less complex and more efficient in
terms of execution time. This work opens several perspectives; first, we plan to apply
our approach in the verification of real-case with complex properties to check the func-
tional and the temporal specifications. Then, automatize the detection of complex prop-
erties by using the IA thanks to ontologies. Also, we plan to introduce a deep learning
method to detect similar behavior of systems, which will allow us to reduces complex-
ity during verification. Besides, To apply our methodology in the verification process
of many research fields in (i) smart systems like smart grids, (ii) robotics, (iii) vehicular
technologies, and other more evaluations of the proposed contributions.
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