
R-TNCES State Space Generation Using
Ontology-Based Method on a Distributed

Cloud-Based Architecture

Chams Eddine Choucha1(B) , Mohamed Oussama Ben Salem2 ,
Moahmed Khalgui1,3 , Laid Kahloul4 , and Naima Souad Ougouti5

1 LISI Laboratory, National Institute of Applied Sciences and Technology (INSAT),
University of Carthage, 1080 Tunis, Tunisia

2 Team Project IMAGES-ESPACE-Dev, UMR 228 EspaceDev IRD UA UM UG UR,
University of Perpignan Via Domitia, 66860 Perpignan, France

3 School of Electrical and Information Engineering, Jinan University,
(Zhuhai Campus), Zhuhai 519070, China

4 LINFI Laboratory, Computer Science Department, Biskra University,
Biskra, Algeria

5 LSSD Laboratory, Computer Science Department, University of Science
and Technology of Oran Mohamed Boudiaf, Bir El Djir, Algeria

Abstract. This paper deals with formal verification (accessibility graph
generation & state space analysis) of RDECSs modeled with specified
reconfigurable timed net condition/event systems (R-TNCESs) where
the properties to be verified to ensure the well behave of systems are
expressed by computation tree logic CTL. Reconfigurable discrete event
control systems (RDECSs) are complex and critical systems, which, make
their formal verification expensive in terms of complexity and memory
occupation. We aim to improve model checking used for formal verifica-
tion of RDECSs by proposing a new approach of state space generation
that considers similarities and a parallel verification of CTL properties. In
this approach, we introduce the modularity concept for verifying systems
by constructing incrementally their accessibility graphs. Furthermore, we
set up an ontology-based history to deal with similarities between two
or several systems by reusing state spaces of similar components that
are computed during previous verification. A distributed cloud-based
architecture is proposed to perform the parallel computation for con-
trol verification time and memory occupation. The paper’s contribution
is applied to a benchmark production system. The evaluation of the pro-
posed approach is performed by measuring the temporal complexity of
several large scale system verification. The results show the relevance of
this approach.

Keywords: Formal verification · Discrete-event system ·
Reconfiguration · Petri net · Ontology

c© Springer Nature Switzerland AG 2021
M. van Sinderen et al. (Eds.): ICSOFT 2020, CCIS 1447, pp. 44–69, 2021.
https://doi.org/10.1007/978-3-030-83007-6_3

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-83007-6_3&domain=pdf
http://orcid.org/0000-0003-0194-4890
http://orcid.org/0000-0002-9227-8151
http://orcid.org/0000-0001-6311-3588
http://orcid.org/0000-0002-9739-7715
https://doi.org/10.1007/978-3-030-83007-6_3

R-TNCES State Space Generation Using Ontology-Based Method 45

1 Introduction

Reconfigurable discrete event control systems (RDECSs) are the trend of future
systems. RDECSs can be reconfigured in a static way (off-line) or in a dynamic
way (automatically at run-time). In the latter, a reconfiguration scenario should
be applied automatically and timely as a response related to dynamic environ-
ment, or user requirements. Therefore, an RDECS may go through several modes
at run-time [3,9], increasing verification process complexity. Formal verification
represents a reliable method to ensure the correctness of RDECSs. Usually, it
consists in generating and analyzing the state spaces of studied systems. How-
ever, with the combinatorial growth, the state space size becomes too big, even
with small sized systems. Hence, model-checking becomes quite challenging for
industry and academia because of the state space explosion problem [19]. Sev-
eral studies have been done to cope with state space explosion problems. The
authors in [18] present symbolic model checking that represents the state space
symbolically instead of explicitly, by exploiting the state graph regularity using
boolean functions. In [6], bounded model checking (BMC) is proposed to look for
a counter-example in executions whose length is limited by an integer k. If no bug
is found, then k is increased until a possible bug is found. The above methods can
proceed efficiently proceed to complex systems verification. However, they use
an implicit representation of state spaces, which present limitation for computa-
tion of quantitative properties (e.g., state probabilities in stochastic models) [2].
With the apparition of new complex systems such as reconfigurable manufactur-
ing systems, reconfigurable wireless networks, etc. [1], techniques and formalisms
used for verification must evolve. Petri nets has been extended by many works.
Reconfigurable Petri nets presented in [15], proposed for reconfigurable systems.
However, although useful, being non-modular formalism, it can cause confusion
to engineers for possible reusing. Timed net condition/event systems (TNCES)
formalism presented in [7] as modular extension of Petri nets to deal with time
constraints. TNCES is used for their particular dynamic behavior, modularity
and interconnection via signals. However, dynamic behavior of reconfigurable
systems is still not supported. Reconfigurable net condition/event systems (R-
TNCESs) are developed as an extension of the TNCES formalism in [20], where
reconfiguration and time properties with modular specification are provided in
the same formalism while keeping the same semantics of TNCESs. With R-
TNCES formalism, physical system processes are easily understood thanks to
modular graphic representations. In addition, it can capture complex charac-
teristics of an RDECS. Formally an R-TNCES is a multi-TNCES defined as a
couple (B,R), where B is a set of TNCESs, and R is a set of reconfiguration rules
[20]. A layer-by-layer verification method is proposed where similarities between
TNCESs are considered. This method is improved in [7] where the authors pro-
pose a new method for accessibility graph generation with less computing time
and less required memory. The previous methods improve classical ones. How-
ever, with large scale systems, their application using a unique machine (i.e., a
centralized system) may be expensive in terms of time.

46 C. E. Choucha et al.

In this paper, we are interested in reconfigurable systems, modeled with the
R-TNCES formalism where the RDECS behavior is represented by the behavior
of control components (CCs) and the communication between them (synchro-
nization) [20]. We propose a new verification method that aims to improve R-
TNCES formal verification. The verification of an R-TNCES requires checking
of each configuration, namely each TNCES. TNCESs which describe configu-
rations often contain similarities called internal similarities. On another hand,
some RDECSs share the same system components, so their model contains sim-
ilarities called external similarities, which implies redundant calculation during
checking of these systems. Thus, in order to avoid many repetitive computation
due to previous problems, we propose in this paper the following contributions:

1. An ontology-based history to facilitate the detection of external similarities:
Ontologies allow us to describe the RDECSs (components, work process, com-
ponent relationships..., etc.) in an abstracted way than the formal model.
Thus, we can efficiently detect the similarities between RDECSs with less
computing time and resources, thank the ontology alignment method [13].
Each model must be accompanied by a system ontology, which describes the
system to be verified. The system ontology is aligned to the ontology-based
history, which contains descriptions of already verified systems. The detected
similarities allow reusing state spaces computed during previous verification.

2. Incremental construction of the accessibility graphs to deal with similari-
ties: The verification of R-TNCES requires the verification of each TNCES
that composes the R-TNCES model. In order to deal with similarities that
TNCESs contain (similar control components), we construct the accessibility
graph in an incremental way in two steps: (i) Fragmentation: During this step,
we proceed to the decomposition of the R-TNCES models into a set of CCs.
Then, we generate an accessibility graph for each different CC, while pre-
serving semantics. (ii) Accessibility graph composition: Accessibility graphs
recovered thanks to ontology alignment, and those computed during the frag-
mentation step are composed following an established composition plan based
on priority order.

3. A new method parallel CTL properties verification: The method considers
the relationships that exist among properties, performs the verification in
parallel way via SESA tool [16] and considers the similarity that can exist
among properties.

4. An adequate distributed cloud-based architecture to perform parallel exe-
cutions for formal verification: This distributed architecture is composed of
computation units organized in three hierarchical levels that are: Master,
workers, and sub-workers. Data storage is ensured by Amazon simple storage
service S3 [11].

This paper is an extended version of our previous paper [5], presented at the
‘IC-SOFT 2020’ conference. The method improves by

– Improving the ontology alignment method.
– Setting up an adapted algorithm for ontology fusion.
– Integrating CTL properties parallel verification method.

R-TNCES State Space Generation Using Ontology-Based Method 47

The main objective of this paper is to propose a new formal verification method
that improves the classical ones by controlling complexity. As a running example,
we use the FESTO MPS benchmark system presented in [10], to demonstrate
the relevance of the proposed contributions. The obtained results are compared
with different works. The comparison shows that the sate spaces generation is
improved in terms of computed states and execution time (i.e., less complexity
to compute state spaces). The remainder of the paper is organized as follows.
Section 2 presents some required concepts. The distributed formal verification is
presented in Sect. 3. The method and the proposed algorithms are presented in
Sect. 4. Section 5 presents the evaluation of the proposed method. Finally, Sect. 6
concludes this paper and gives an overview about our future work.

2 Background

In this section, we present required concepts to follow the rest of the paper.

2.1 Reconfigurable Timed Net Condition/Event System

R-TNCES represents an extension of TNCESs [17], based on Petri nets and
control components CCs. R-TNCES is used for formal modeling and verification
of RDECSS.

Formalization. An R-TNCES is defined in [20] as a couple RTN = (B,R),
where R is the control module and B is the behavior module. B is a union of
multi TNCES-based CC modules, represented by

B = (P ;T ;F ;W ;CN ;EN ;DC;V ;Z0) (1)

where, 1.P (resp, T) is a superset of places (resp, transitions), 2. F ⊆ (P ×
T) ∪(T × P)1 is a superset of flow arcs. 3. W : (P × T) ∪ (T × P) → {0, 1}
maps a weight to a flow arc, W (x, y) > 0 if (x, y) ∈ F , and W (x, y) = 0 oth-
erwise, where x, y ∈ P ∪ T , 4. CN ⊆ (P × T) (resp, EN ⊆ (T × T)) is a
superset of condition signals (resp, event signals), 5. DC : F ∩ (P × T) →
{[l1, h1], .., [lF∩(P×T), hF∩(P×T)]} is a superset of time constraints on input arcs
of transitions, where ∀ i∈ [1, |F ∩ (P × T)|], li, hi ∈ N and li < hi. 6.
V : T → ∧,∨ maps an event-processing mode (AND or OR) for every tran-
sition. 7. Z0 = (M0,D0), where M0 : P → {0, 1} is the initial marking, and
D0 : P → {0} is the initial clock position. R consists of a set of reconfigura-
tion functions, formalized as follows. R = {r1, .., rn} where: r = (Cond, s, x)
such that: 1. Cond→ {true, false} is the pre-condition of r, which means spe-
cific external instructions, gusty component failures, or the arrival of certain
states. 2. s : TN(∗r) → TN(r∗) is the structure modification instruction such
that TN(∗r)(resp. TN(r∗)) is the original (resp. target) TNCES before (resp.

1 Cartesian product of two sets: A × B = {(a, b)|a ∈ A, b ∈ B}.

48 C. E. Choucha et al.

Table 1. Fundamental structure modification instructions of an R-TNCES.

Instruction Symbol

Add condition signals Cr(cn(x, y))

Add event signals Cr(ev(y, y))

Add control component Cr(CC)

Delete condition signals De(cn(x, y))

Delete event signals De(ev(y, y))

Delete control component De(CC))

After) r application. 3. x : laststate(TN(∗r))→ initialstate(r∗) is the state pro-
cessing function, where laststate(TN(∗r)) (resp. initialstate(TN(r∗))) is the last
(resp. the initial) state of TN(∗r) (resp. TN(r∗)). The application of r makes a
modification of the R-TNCES structure by the mean of instructions presented
in Table 1. We denote by x a place, y a transition, CC a control component
module, and “+” the AND of instructions to represent complex modification
instructions.

R-TNCES Dynamics. The dynamics of R-TNCESs is represented by:

1. The reconfiguration between TNCESs in module behavior B, by applying a
reconfiguration function r when its pre-condition is fulfilled.

2. The firing transition in each TNCES, depends on the rules of firing transitions
in TNCESs and the chosen firing mode.

Reconfiguration changes the system from a configuration to another, however,
the initial and the new configurations can contain similarities. In the original
paper [5], we propose definition of similarities as follow:

Definition 1. Internal similarity is the property of sharing the same physical
process between different configurations of a unique RDECS. Thus, the model
contains similar parts. It is caused by the fact that a reconfiguration is rarely
radical.

Definition 2. External similarity is the property of sharing the same physical
process between configurations of two or several R-TNCESs. It is caused by the
fact that some systems share same components or stations.

2.2 Production Systems: FESTO MPS and THREADING HOLE
SYSTEM

This subsection presents two production systems FESTO MPS and THREADIN
HOLE SYSTEM.

R-TNCES State Space Generation Using Ontology-Based Method 49

CC1

[1,3]

CC11

[4,6] [4,6]

CC2

[2,4] [2,4]

CC3

[2,4]

CC5

[5,7]

CC4

[1,3]

CC6

[4,6]

CC8

[4,6]

CC9

[3,5]

CC10

[1,3]

CC7

[4,6]

p7

p8

p9
t10t9

t8

p1

p2

p3

t1

t2

t3

p4

t4

p5

t5

p6

t6

t7

p10

t11

p11

t12

p12

t13

CC12

[4,6]

p13

t14

p14

t15

p15

t16

p16

t17

p17

t18

p18

t19

t22

p19

t20

p20

t21

p21

p19

p22

t23

p23

t24

p24

t25

t26

p26

t27

p27

t28

p25

t31

p30

t30

p29

t29

p28

p31

t32

p32
t35

p34
t36t34

p33

t33

p35

t37

p36

t38

p37

t39
1,3

12

p17

3]

[

p

7

t

[2

t5

p1

C

[4,

14

21

C

1

16

CC

p

[

t

7

p

[

6

4

t1

tt2

1

[4,6

12

18

p2

CC

1

t3

p4

,4]

8

pp

C CC

14

p21

C2

p2

p9

t2

C7

p

[2,4

5

9

t

6

10

5

t

3]

p3

]

3

20

1,3
3

4

p

1919

C1 3

5

C

8

p

6

t1

C

[

t1

0

t

7

[1

t2

[2

t1

20

3

2

t

t

7

t

[2,4

5

4]

p

CC

p5

7]

p

[

C5

p8

t9

4

C

6]

p

p

t4

2,4]

0

p1

p

CC

pp7

66

C

t1

16

p

11

17

CC

p

p

t

[5,

15

2222

p1

15

,6]

2

tt

8

p

22

133

p1

t2

3

C

8

t

23

CC

19

p

C12

9

23

[

2

3

t

[4,6

24

C

,6]

4

p

CC

p24

11

4

tt2

1

C

25

p3

CC

35

t

9

t337

p

p3

pp313

t

36

[4

1

33

t3

4,6

p

t

33

38

6]

p25

32

p3

t2

5

p3

37

C

26

32

t

[4

CC

6

p

t

p

4,6

C1

p2

3

t3

33

6]

10

6

t

5

34

[3

t2

[4

3,5

7

p

p3

4,6

5]

p2

344
t3

6]

7

t

36

28

p

8

28

t2

8

29

p29

[

t

9

[1,

30

,3]

p

0

p30

t

0

31

3933

(a) Behavior module of RTNSys01 .

CC1

[1,3]

CC2

[2,4] [2,4]

CC3

[2,4]

CC5

[5,7]

CC4

[1,3]

CC6

[4,6]

CC10

[4,6]

CC8

[3,5]

CC9

[1,3]

CC7

[4,6]

p7

p8

p9
t10t9

t8

p1

p2

p3

t1

t2

t3

p4

t4

p5

t5

p6

t6

t7

p10

t11

p11

t12

p12

t13

p13

t14

p14

t15

p15

t16

p16

t17

p17

t18

p18

t19

t22

p19

t20

p20

t21

p21

p19

p22

t23

p23

t24

p24

t25

t26

p26

t27

p27

t28

p25

t31

p30

t30

p29

t29

p28

(b) Behavior module of RTNSys02 .

Fig. 1. Behavior module of RTNSys01 and RTNSys02 .

FESTO MPS. FESTO MPS is a well-studied system for research and edu-
cational purposes which is defined and detailed in [7,17]. It is composed of
three units. The distribution contains a pneumatic feeder and a converter. It
forwards cylindrical workpieces from the stack to the testing unit. The testing
unit contains the detector, the elevator and the shift out cylinder. The detec-
tion unit performs checks on workpieces for height, material type and color.
Workpieces that successfully pass this check are forwarded to the processing
unit. The processing unit is composed of a rotating disk, drilling machines, a
checker and an evacuator. The drilling of the workpieces is performed as the
primary processing of this MPS. The result of the drilling operation is then
checked by the checking machine and the workpieces is forwarded for further
processing to another mechanical unit. FESTO MPS performs three produc-
tion modes: (i) High mode: when Driller1 and Driller2 are both activated and

50 C. E. Choucha et al.

ready to work simultaneously, (ii) Medium mode: when Driller1 and Driller2
are both activated but work sequentially, (iii) Light mode: when only one driller
is activated at once. We denote Lighti, when Drilleri/i ∈ {1, 2} works. FESTO
MPS is modeled with an R-TNCES RTFESTO{BFESTO, RFESTO} such that:
BFESTO ={High,Medium,Light1, Light2} is the behavior module where the
combination of CCs describes the system modes. As shown in Fig. 1a.

RFESTO ={rH,L1 , rH,L2 , rH,M , rM,H , rM,L2 , rL1,L2} is a set of different sys-
tem reconfigurations. The set of control chains describing FESTO MPS control
system is presented as follows: Cchain1 = CC1, CC2, CC3, CC4,
Cchain2 = CC1, CC2, CC3, CC5, CC6, CC7, CC9, CC10,
Cchain3 = CC1, CC2, CC3, CC5, CC6, CC8, CC9, CC10,
Cchain4 = CC1, CC2, CC3, CC5, CC6, CC11, CC9, CC10,
Cchain5 = CC1, CC2, CC3, CC5, CC6, CC12, CC9, CC10.

This paper uses the description and the R-TNCES model of FESTO MPS for
the construction of the proposed ontology as shown in Fig. 3a.

Threading Hole System. It is modeled using R-TNCES formalism. It is com-
posed of three units:

(i) the distribution unit,
(ii) the testing unit, and
(iii) the processing unit.

The first two units are used in FESTO MPS. The processing unit is composed
of a rotating disk, threading hole machine, a checker and an evacuator per-
form the threading of the workpiece holes as the primary processing task of
the system. The result of the threading operation is then checked by the check-
ing machine and the workpieces are forwarded for finally further processing to
another mechanical unit. Behavior module BTHS and ontology OTHS are pre-
sented in Fig. 1b and Fig. 3b respectively on page 9. such that:

BTHS = {High, Light} is the behavior module shown in Fig. 1b. RTHS =
{rH,L, rH,L} is a set of different system reconfiguration.

The set of control chains describing THS control system is presented as follows:

Cchain1 = CC1, CC2, CC3, CC4,
Cchain2 = CC1, CC2, CC3, CC5, CC6, CC7, CC8, CC9,
Cchain3 = CC1, CC2, CC3, CC5, CC6, CC10, CC8, CC9.

2.3 Ontology Concept

As defined in [14] an ontology is an explicit description of concepts or classes
in a certain domain that constitutes a knowledge base. An ontology is defined
mathematically as quadruple O = (C,S,Re, I) where:

R-TNCES State Space Generation Using Ontology-Based Method 51

Table 2. Generic ontology which modeled RDECSs [5].

Concepts ∈ C RDECS Domain Unit Physical
process

Mode

Properties ∈ S Id: String
Name:
String
Description:
Text
Synonym:
String

Id: String
Name:
String
Synonym:
String

Id: String
Name:
String
Description:
Text
Synonym:
String

Id: String
Name: String
Description:
Text Control
chain: String
Synonym:
String

Id: String
Name:
String
Description:
Text
Synonym:
String

RDECS

Mode

Units

Domain

Physical
 process

OWL:Thing

Has_SubClass

Has_PhysicalProcess Is_Composed_Of Has_Mode

ImplyHas_Domain

Fig. 2. Generic ontology [5].

1. C = c1, .., cm is a set of concepts that refer to a real world objects.
2. S = s1, .., sn is a set of properties that refer to a property of a concept, which

is a value of a simple type such as Integer, String or Date.
3. Re = Re1, .., Rep is a set of relationships defined between concepts.
4. I = i1, .., iq, where each iw is an instance of some concept cx ∈ C. It include

a value for every property sy associated to cx or its ancestors.

An ontology can be presented graphically as a formed graph O = G(C,E) where
C is a set of concepts linked by a set of directed edges E which specifies concept
relations. The function y defines the type of edges, i.e., y : E → T where T is
the set of possible edge types (transitivity, symmetry and reflexivity). In [5], we
define a generic ontology Gen = (C,S,Re, I), which is instantiated to model the
verified RDECS. Table 2 shows the defined concepts ∈ C and their properties
include in S, note that the property synonym is facultative [5]. Figure 2 shows
the relations ∈ Re.

3 New State Space Generation Method

We present in this section the proposed method for state space verification dur-
ing formal verification of R-TNCESs. We extend the approach proposed in [5].

52 C. E. Choucha et al.

FESTO MPS

Distribution

Test

Process

High

Medium

Low

Converter

Distribution

Tester

Evacuator

Elevator

Rotating-Disk

Checker

Elevator

Driller1

Driller2

OWL:
thing

Has_SubClass

Has_PhysicalProcess

Is_Composed_Of

Has_Mode

Imply

Has_Domain
Production System

(a) Ontology Osys01

Threading Hole
System

Distribution

Test

Process

Converter

Distribution

Tester

Evacuator

Elevator

Rotating-Disk

Checker

Elevator

Threader2

Threader1

OWL:
thing

Has_SubClass

Has_PhysicalProcess

Is_Composed_Of

Has_Mode

Imply

Has_Domain
Production System

(b) Ontology Osys02

Fig. 3. Ontologies that describe Sys01 and Sys02.

Thank to this approach, we minimize temporal complexity by proposing a dis-
tributed architecture on cloud server [8] for similarities detection, accessibility
graph generation and CTL properties verification. Thus, we improve model-
checking of reconfigurable systems and make it more efficient.

3.1 Motivation

The correctness of RDECSs can be ensured by a formal verification. The explo-
ration of the state space is widely used for analyzing models formalized with
R-TNCES, or related formalisms. The complexity of R-TNCES makes the verifi-
cation task complex, because of combinatorial growth of the state space accord-
ing to the model size. The verification of an R-TNCES requires the checking
of each configuration, namely each TNCES. TNCESs that describe the config-
urations often present similarities which implies redundant calculation during

R-TNCES State Space Generation Using Ontology-Based Method 53

Ontology Alignment

Ontology Fusion

Fragmentation &
Elemetary Accessbilty

graph generation

System Model + Ontology Model

Accesibilty graph
composition

A
cc

es
si

bi
lit

y
gr

ap
h

ge
ne

ra
tio

n

U
pd

at
e

D
om

ai
n

 O
nt

ol
og

y

Updated Domain
Ontology

Accessibility graph

Distribute CTL properties
and accessibility graphs

on workers

Check CTL properties via
SESA tool

Verification result

A
cc

es
si

bi
lit

y
gr

ap
h

an
al

ys
is

Fig. 4. Global idea for state space generation.

checking of these systems. Thus we propose an adequate approach that avoids
many repetitive computations. To ensure this objective, this paper proposes a
new method where verification is executed in a distributed architecture to con-
trol R-TNCESs complexity. The formal verification is performed through the
following tasks: fragmentation, alignment and fusion of ontologies, accessibility
graph composition. And CTL properties verification. Figure 4 presents the main
steps of the proposed method and highlight the main improvement still to the
original paper [5].

3.2 Formalization

In this section, we present accessibility graph generation steps according to our
proposed method.

Ontology Alignment. According to the definition presented in [13], aligning
two ontologies is to find a set of correspondences, where each correspondence is
described by: a unique identifier Id, the concept ci ∈ O1, the concept cj ∈ O2

and σij the degree of similarity between ci and cj evaluated in the interval [0,1].
Formally, it is to find |O1| × |O2| correspondences (Idij , ci, cj , σij). A threshold
τ is defined and compared with σij . The correspondence is established only if
σij > τ. We updates the proposed method presented in [5]. Indeed, we propose
a new method for Global similarity σij computation by considering synonyms
between concepts. Therefore, σij is computed through the following steps:

1. Compute semantic similarity by comparing concepts neighbors using Tversky
measurement: Tmij = |(ni∩nj)|

|(ni∩nj)|+α|(ni−nj)+β|(nj−ni)| , where:
ni (resp. nj): Neighbor set of ci (resp. cj).
ni ∩ nj : Number of common neighbors between ci and cj .
ni − nj (resp. nj − ni): Number of neighbors that exist ∈ ni and /∈ nj (resp.
∈nj and /∈ ni).

54 C. E. Choucha et al.

Table 3. Application of ontology alignment on running example where Concept1 ∈
OFESTO and Concept2 ∈ OTHS .

2. Compute lexical similarity, a weighted sum of normalized Leveinstein and
n-gram similarities: SimLexij = α ∗ LevNorm(i, j) + β ∗ g(i, j).

3. Compute semantic similarity by comparing concepts synonyms using Tversky
measurement: SimSynij = |(ni∩nj)|

|(ni∩nj)|+α|(ni−nj)+β|(nj−ni)| , where:
ni (resp. nj): Synonyms set of ci (resp. cj).
ni ∩ nj : Number of common synonyms between ci and cj .
ni − nj (resp. nj − ni): Number of synonyms that exist ∈ ni and /∈ nj (resp.
∈nj and /∈ ni).
The similarity between each pair of synonyms is computed using n − gram
measurement. Note that this similarity is computed only if concept have syn-
onyms.

4. Compute partial similarity of concept descriptions using the cosinus function:
SimDes(A,B) = cos(θ) = A.B

|A||B| =
∑

A×B√∑
A2×

√∑
B2

.

5. Compute linguistic similarity is computed according to the comparison
between lexical similarity SimLex and synonyms similarity SimSyn as fol-
low:
If SimLex(i,j) > SimSyn(i,j), Thus, SimLing(i,j) = αSimLex(i,j) +
βSimDes(i,j).
Otherwise, SimLing(i,j) = αSimSyn(i,j) + βSimDes(i,j). with α = 0.4 and
β = 0.6.

6. Calculate the global similarity which is a weighted sum of linguistic and
semantic similarity: σij = αSimLingij + βTmij , with α = β = 0.5.

Example 1. Let OFESTO and OTHD two ontologies, which describe the produc-
tion systems presented in Subsect. 2.2. Given two concepts Process ∈ OFESTO

and Process ∈ OTHS . Table 3 shows an application of ontology alignment where,
we compute:

i) lexical similarity, which concerns the concepts property “Name”.
ii) semantic similarity, which concerns concepts Neighbors.
iii) description similarity, which concerns the concepts property “Description”.

R-TNCES State Space Generation Using Ontology-Based Method 55

iv) synonyms similarity, which concerns the concepts property “synonyms”.
v) linguistic similarity, which is a weighted sum of lexical/synonyms and

description similarities.
vi) global similarity by combining the said similarities.

σ(Process, Process) = 0.61 (low value) and the threshold τ = 0.8 (fixed). We
conclude that Process ∈ OSysFESTO

and Process ∈ OSysTHS
are non-similar.

Thus, the non-similar and similar parts are efficiently distinguished and redun-
dant calculations are avoided.

g O3

Cor

O2

O1

Og

Fig. 5. Ontology fusion function (g).

Ontology Fusion. According to the definition in [12], ontology fusion is the
process to detect similarities (i.e., correspondent concepts) between two ontolo-
gies and to derive from it a new ontology that brings together all the similarities
and dissimilarities of concepts, while preserving semantics. Formally, ontology
fusion is defined in this paper as a function g, which from two ontologies O1, O2,
a generic ontology Og (presented in Subsect. 2.3) and a set of correspondences
Cor (computed during ontology alignment) product a new ontology O3. The
function g is illustrated in Fig. 5. Ontology fusion proceeds in three steps:

1. Enrich the concept present in the merged ontology with the name of the
similar concept ∈ Cor as a synonym property,

2. detect the class of dissimilar concepts according to the generic ontology , and
3. add the concepts according to their classes in the new ontology,

Example 2. Let apply ontology fusion on the ontologies presented in Example
1. We know that Process ∈ OTHS and Process ∈ OFESTO are non-similar
thank to ontology alignment. Thus, we have to add the concept Process ∈
OFESTO to OTHS which represent our domain ontology. Indeed, first we detect
the class of concept “Process” according to the generic ontology, which is “Unit”.
Then, we add this concept to the domain ontology depending on its class.
Figure 7 shows the result of ontology fusion (i.e., adding non-similar concepts
to our domain ontology).

56 C. E. Choucha et al.

Fig. 6. Operative steps of the ontology fusion function where Waiting is the list of
concepts ∈ OSys.

THREADING
HOLE SYSTEM

Distribution
Converter

Pneumatic
feeder

Tester
Test

Process

Detector

Elevator

Checker

Rotating Disc
EvacuatorThreader2

Threader1

Is_Composed_Of
Has_Physical_Process Imply

Has_Mode

Process

FESTO MPS

Driller1

Driller2
Checker

Rotating Disc

Evacuator

Low
High

Medium

New Added
concept

Fig. 7. Domain ontology OD after the application of ontology fusion.

Fragmentation. Fragmentation consists on decomposing an R-TNCES into a
set of CC and generating elementary accessibility graph EAGs for CCs that are
not concerned by the correspondences computed in the previous step.

Example 3. To show the application of fragmentation, we consider production
systems presented in Subsect. 2.2. They are modeled by RTFESTO (to be verified)
and RTTHS (already verified). Let Cor be a set of correspondences computed
during alignment of OFESTO and OTHS . Table 4 shows application of fragmen-
tation on RTFESTO. It runs in two steps: 1. decomposing RTFESTO into a set
of CC f = {CC1, .., CC12}, and 2. computing elementary accessibility graphs
EAGs of each CC /∈ f ∩ cor. During fragmentation, CCs synchronization tran-
sitions are stored for reuse when composing the accessibility graph AG. Real
RDECSs encompass millions of transitions, which increases accessibility graph
generation complexity. Fragmentation allows us to control complexity. Moreover,
it allows us to deal with internal similarities.

R-TNCES State Space Generation Using Ontology-Based Method 57

Delete CC from Delete CC from

Fragment into a set of CCs .
Add the CCs into the waiting list .

Input

Process

Decision

Output

: R-TNCES Model
: Set of correspondences

No

Yes

No

Yes

Generate Elementary Accessibility graph.Generate Elementary Accessibility graph .

: R-TNCES Model.
: Set of correspondences.

:Set of EAGs.

Fig. 8. Operative steps of the fragmentation function where Waiting is the list of CCs
to be computed.

Table 4. Application of fragmentation on FESTO MPS [5].

System FESTO MPS

f {CC1, .., CC12}
cor {CC1, CC2, CC3, CC4, CC5, CC6, CC10}
EAGs EAGCC7 , EAGCC8 , EAGCC9 ,EAGCC10 , EAGCC11 , EAGCC12

Planning. We set up a priority order for accessibility graph composition. Let
RTN be a system modeled by R-TNCES and described by ontology Osys. We
extract from Osys control chains Cchains. Cchains are then en-queued to a
queue Q depending on their length such as the smallest one is en-queued firstly.

Example 4. By using the behavior module B of RTNFESTO, the composition
plan to be followed for AGFESTO generation for test failure case described by
Cchain1 is presented as follows:

EAGCC1 × EAGCC2 > PAGCC12 × CC3 > PAG123 × CC4.

58 C. E. Choucha et al.

Accessibility Graph Composition. Full accessibility graph AG is computed
by composing EAGs computed during fragmentation step and partial accessibil-
ity graphs PAGs retrieved during ontology alignment step as shown in Fig. 10.
The composition is done according to the established plan.

S'0

EAGcc2

S0

EAGcc1

S3S1 S2 S4

S5S6S8 S7

PAG12

S''0

S'2

S'1

S''2

S''1Composition(EAGcc1,EAGcc2)

Fig. 9. Composition of EAGcc1 & EAGcc2 [5].

Example 5. During AGFESTO generation, several composition of EAGs are
executed. Indeed, we run Composition(EAGCC1 , EAGCC2) function to obtain
PAG12 shown in Fig. 9. It proceeds as follows:

1. Creates initial state S0 by concatenating initial states S′
0 and S′′

0 of both
EAGCC1 and EAGCC2 ,

2. searches the set of enabled transitions from S′
0 and S′′

0 , and
3. checks whether the transition t is a common transition. If yes, then we create

a new state S1 by concatenating the current target states from S′
0 and S′′

0 .
Otherwise, if t belongs only to EAGCC1 , then a new state S1 is obtained
by concatenating the current state S′′

0 from EAGCC2 and the current target
state S′

1 from EAGCC1 and vice versa.

We repeat these steps for the remaining states until we get the whole state
space.

R-TNCES State Space Generation Using Ontology-Based Method 59

Delete the current
node from .

No

Yes ?

Create the Initial State .
Add to the waiting list .

 ?

Search each passable transitions from the
current state.
Add to the set of passable transitions .

No

Yes ? ?

Create the successor State.
Add the new created state to .

Input

Process

Decision

Output

Composition (AG , AG')

:The
Composed accessibility

graph

Fig. 10. Operative steps of the graph composition function, where t is the set of the
fixed passable transition and Waiting is the list of nodes to be computed.

Parallel CTL Properties Verification. In short-term we integrate CTL
properties verification method inspired from methods proposed in [4,17]. This
method consider relationships which exist among properties to be verified
(Equivalence, dominance and composition) and processes the verification in par-
allel way. The method proposed in this paper processes as follow:

– Step 1 (Relationships detection): We extract different relationships that exist
among CTL properties to be verified (Dominance & equivalence).

– Step 2 (Matrix and tree parallelization generation): First, we generate a square
matrix S, where, the value of each element of S describes the nature of rela-
tionship between each pair of properties as follow: S[i, j] = 0 means that
there is no relation between Pi & Pj and S[i, j] = 1 (resp. S[i, j] = 2) means
that there is a dominance (resp. equivalence) relation between Pi & Pj . Then,
we generate parallelization tree in order to coordinate the execution of prop-
erties verification. Indeed, we identify the redundancies and the factorization
between properties to be verified. Each level of the tree represents the prop-

60 C. E. Choucha et al.

erties which can be verified simultaneously. Thus, the verification order of the
CTL properties is established by exploring the parallelization tree by level.

– Step 3 (CTL Properties verification): We proceed to the verification of CTL
properties thanks to the SESA Tool developed in [20].

Idle

L
e

ve
l 2

L
e

ve
l 1

Property to be verified Already verified property

Fig. 11. Parallelization tree.

Table 5. CTL properties to be verified.

σFMPS : Set of CTL properties

P1 : AF (p3)

P2 : AF (p4)

P3 : AF (p9)

P4 : AF (p18)

P5 : EF (p33)

P6 : AG(EF (p12) → AF (p18)

P7 : AG(p3 → AF (p30))

Example 6. To show the application of CTL properties verification according to
the proposed method, we consider a set of properties that aims to verify the
safety and vivacity of Sys01 (FESTO MPS). Note that we consider that Sys02
has already been verified, indeed at this stage we have available:

1. State space generated during previous tasks.
2. Result of CTL properties verified during Sys02.

Given σFMPS
a set of properties to verify the safety and the vivacity of Sys01.

First, we proceed to the detection of relationships that exist among the properties
presented in Table 5. Then, we generate the parallelization tree shown in Fig. 11,
after that we check for properties already verified during Sys02, in the present
case it concerns the properties pi/i=1,...4. Finally, we proceed to the verification
of the remaining CTL properties using SESA tool [16].

4 Distributed Cloud-Based State Space Generation

This section presents Cloud-based distributed architecture and how to perform
formal verification on it.

4.1 Distributed Architecture for State Space Generation

In this subsection, we present hierarchical and distributed architectures propose
in the conference paper [5] depicted in Fig. 12. The idea that motivates the
development of this architecture is to increase computation power and storage
availability. It is composed of computational and storage resources. To develop
the architecture shown in Fig. 12 we need the following units.

R-TNCES State Space Generation Using Ontology-Based Method 61

1 0 0

0 1 00 0 1

O
nt

ol
og

ie
s

A
cc

es
si

bi
lit

y
gr

ap
hs

S

yn
ch

ro
ni

za
tio

n
Tr

an
si

tio
ns

 A
m

az
on

 S
im

pl
e

 S
to

ra
ge

 S
er

vi
ce

A
m

az
on

 E
C

2
In

st
an

ce
s

EC2

Sub-Workers

Internet
Internet
Gateway

Fig. 12. Distributed architecture for formal verification.

– Computational units: Execute tasks defined in Subsect. 3.2 by means of M+n
machines where:
(i) M represents the number of machines (i.e., 5 machines in our approach).

The set of machines are composed of a master and four workers W1, ...,W4

that have specific tasks.
(ii) n is the number of sub-workers that execute the high complex tasks (i.e.,

EAGs generation and PAGs composition). n depends on system size.
– Storage unit: represents the allocated cloud database that stores domain

ontologies, EAGs temporary and PAGs permanently.

4.2 Distributed State Space Generation

This subsection presents the process of distributed Formal verification on a cloud
based architecture.

Example 7. The user sends a verification request req(RFESTO:
R-TNCES,OFESTO : Ontology). The master ensures tasks coordination by
receiving the verification request and sending RFESTO and OFESTO to workers
to carry out their tasks as follows. 1. sending simultaneously ontology OFESTO

to workers W1, W4 and RFESTO to worker W2, 2. waiting signals from W1 and
W2 and to receive the composition plan from W4 to forward it to W3. 3. waiting

62 C. E. Choucha et al.

signal from W3 to allow beginning ontology fusion by W1. W1 has two main tasks:
(i) Ontology alignment to extract correspondences and (ii) Ontology fusion to
update domain ontology-based history, we merge OFESTO AND OD.
W2: At the reception of RFESTO, it proceeds to the fragmentation, sends CCs
to sub-workers after applying a load balancer algorithm and sends a signal to
master which announces the end of these two tasks: fragmentation and genera-
tion of EAGs.
W3 receives the composition plan and collects the elements that it needs from
the database for the AG composition. Finally, it sends a signal to master which
announces the end of its task.
W4 is responsible for planning compositional order for full accessibility graph
generation. It extracts the control chains concepts from OFESTO. Then the plan
is sent to the master.

CTL properties presented in Example 6 are performed in the presented archi-
tecture as follow:

– W2: performs Relationships detection,
– W3: performs matrix and palatalization tree generation,
– W4: performs the exploration of the palatalization tree by level, and
– workers perform CTL properties verification and return the result.

4.3 Implementation

In this subsection, we present the main algorithms used in our method.

Algorithm 1. Ontology Fusion.
Input: OD, Osys: Ontology; Cor: Set of correspondences ;
Output: O′

D: Ontology;
for int i = 0 to | ∑

Csys | do
if (Csys ∈ Cor)) then

Enrich(OD, COsys .Name,COD .synonym);
else

Classe ← IdentifyRelationships(CSys, Osys);
Insert(Csys, OD, Classe);

end

end
O′

D ← OD;
end
return O′

D

Algorithm 1 describes the ontology fusion. It takes the domain ontology OD,
the system Ontology Osys, and the set of correspondences Cor and returns a
new updated domain ontology O′

D. It adds the dissimilar verified concepts to
the domain ontology for next verification to process. The functions:

R-TNCES State Space Generation Using Ontology-Based Method 63

Algorithm 2. Fragmentation
Input: RTN : R-TNCES; TN0: TNCES;
Output: S EAG: Set of elementary accessibility graphs;
for int i = 0 to | ∑

TN | do
for each CC ∈ TN do

if (!Tagged (CC)) then
Insert(S EAG,Geneate State Space(CC)); tag(CC);

end

end

end
return S EAG

Algorithm 3. State Space Composition.
Input: S AG: Set of accessibility graphs(EAG, PAG);

∑
CChain: Set of Cchains ;

Output: AG: Set Accessibility graphs;
for int i = 0 to | ∑

CChain | do
AG ← EAGCC0

i
;

for int j = 0 to | ∑
CCi | do

AG ← Compose(AG,EAG
CC

j
i
);

end

end
return AG

– Enrich(O : Ontology, C1.Name : String, C2.synonym : String,) Takes the
value of the property ‘Name’ of the concept C1 and add it as a value of the
property ‘synonym’ of concept C2 in the ontology O,

– IdentifyRelationships(C,O); returns the class of a the concept C in the
onotlogy O according to the generic onotlogy, and

– Insert(C,O,Class) inserts the concept C in the ontology O according to his
class.

Algorithm 2 describes the fragmentation task. It decomposes the R-TNCES in a
set of CCs and generates their accessibility graphs EAGs. Algorithm 3 describes
the steps for the full accessibility graph composition AG. It composes the accessi-
bility graphs recovered thanks to the ontology alignment and the ones computed
during fragmentation to return the full accessibility graph of the verified model.

4.4 Complexity of Distributed State Space Generation

The verification is based on three main functions: (i) the ontology alignment,
(ii) the fragmentation, and (iii) the EAG/PAGs composition. The ontology
alignment complexity on this scale is always polynomial, thus we focus on the
two other function presented respectively in Algorithm2 and 3. As mentioned in
[20], TNCES verification complexity is expressed by O(et) where t is the number
of transition, in our case, we use it for each CC of the verified R-TNCES. For

64 C. E. Choucha et al.

an R-TNCES with TN = |B| the number of TNCESs composing the verified
R-TNCES and C the average number of CCs that every TNCES contains, The
complexity of Algorithm2 is O(TN ×C×et). For a composed graph with n′ the
number of nodes computed by the composition graph function and j the average
number of the enabled transitions from each state, Algorithm3 complexity is
expressed by (n′ × j). Thus, verification time complexity is: O((TN ×C × et) +
(n′ × j)). Therefore, our method complexity is expressed by

O(max O(TN × C × et),O(n′ × j)) = O(TN × C × et).

The complexity of methods presented in [7,20] is:

O(em × TN) with m × TN = TN × C × t.

Thus, to assert that our complexity is better, we have to prove that:

O((TN × C × et) < O((TN × em),

which is intuitively correct.

5 Evaluation

The performance of the proposed verification method is evaluated in this section.
We make a comparison between the proposed method, that uses a distributed
tool to compute accessibility graphs, and the method reported in [7] that uses
Rec-AG tool. Then we proceed to different evaluations in large scale systems by
considering different similarities. The external similarity rate of R-TNCES R1

with descriptive ontology OL is given by the following formula.

ExternalSimilarity(R1) =
(
AlignedConcepts(OL)

Concepts(OL)

)
(2)

where, (i) AlignedConcepts(OL) returns the number of similar concepts between
OL and the related domain ontology OD, (ii) Concepts(OL) returns the total
number of concepts that OL contains. The internal similarity rate is given by
the adapted method used in [7] as follows.

InternalSimilarity(R1) =
(
Max({SimCC(TNi, TNj)}i,j∈0...(n−1) and i<j)

Max(NumberOfCC(TNk))

)

(3)
where, (i) SimCC(TNi, TNj) is the function that returns the number of sim-
ilar control components between two TNCESs, (ii) NumberOfCC takes a
TNCES and returns its number of control components, and (iii) Max returns
the maximum among a set of natural numbers. We define three degrees of
Internal Similarity (resp, External Similarity): High, Medium and low where,
InternalSimilarity (resp, ExternalSimilarity) is 50%–100%, 20%–50% and 0%–
20%.

R-TNCES State Space Generation Using Ontology-Based Method 65

0 100 200 300 400
0

500

1,000

Nodes

C
om

pu
te
d
st
at
es

Low Similarity

0 100 200 300 400

Nodes

Medium Similarity

0 100 200 300 400
0

500

1,000

Nodes

C
om

pu
te
d
st
at
es

High Similarity

Cammili tool
Rec-AG tool
Proposed tool

Fig. 13. Proposed verification in large scale systems considering external similarity.

5.1 Evaluation in Large Scale Systems Considering External
Similarity

We apply the new proposed method on the case study used in [5]. Figure 13
describes the verification result of an R-TNCES model by considering three
levels of external similarity. The model is composed of three TNCESs represented
by three parallel control chains of equal length, with Complexity(CCij) = 3,
i ∈ 1...100 and j ∈ 1...3 (i.e., each CC contains 3 nodes). By analyzing the
plots in Fig. 13, we notice that: In the case of low external similarities, the
number of states computed using the proposed method and the one proposed in
[7] in its best case (i.e., in the case of a high internal similarity rate) becomes
nearly equal with the ascent of the number of system nodes. It is explained by
the fact that the difference in the number of nodes to explore is minimal and
becomes non-significant when the system is larger. Nevertheless, low similarity
must be exploited because it improves the results in both cases of medium and
high internal similarity. In the case of high and medium external similarities:
the proposed method takes advantage of those presented in [2] and [7]. It is
explained by the fact that the number of nodes to explore is reduced. Thanks
to the external similarity that allows us to eliminate redundancies. While in the
three cases, the proposed method presents better results than the one used in

66 C. E. Choucha et al.

States

Nodes
0

100
200
300
400

low
Medium

high

0-100 100-200 200-300 300-400

(1) Rec-AG-Verification

Fig. 14. Proposed verification in large scale systems considering external and internal
similarities.

[2], which generates AGs via the classical methods. The proposed method can
reduce calculations by more than 50%, depending on model size and similarity
rates. This represents the main gain of the paper.

5.2 Evaluation in Large Scale Systems by Considering External
and Internal Similarities

The surfaces in Fig. 14 describe the results of both the proposed method and
the one used in [7], by using three factors: External similarities, internal sim-
ilarity and nodes to be explored for a state generation. In their worst case
(i.e., InternalSimilarity = ExternalSimilarity = 0%) performance of both
methodologies presents limits, with same results using the method reported in
[20]. However, in the remaining cases, the proposed method always presents bet-
ter results according to similarity rates. It performs best with: (i) Less computed
states, thanks to the external source of partial graphs and elimination of internal
redundancies, and (ii) less nodes to be explored for state space generation thus
less complexity to generate a state, thanks to the incremental way used when
composing the accessibility graph.

5.3 Evaluation of CTL Properties Verification Method Considering
Similarities

Let assume we have to verify a system model with 2500 TNCESs. In order to
ensure the well-behave of the system we have to verify at least 4 properties
for each TNCES. Thus, we need to verify 10000 CTL properties. We assume
that the similarity rate among properties: (i) Low in 0, 20%, (ii) Medium in
20, 60%, or (iii) High when more than 60%. The results show in Fig. 15 that the
gain increases proportionally to decomposable properties rate. Thus, the gain is
clearly shown when similarity rate is ‘High’.

R-TNCES State Space Generation Using Ontology-Based Method 67

20% 20% 40% 40% 60% 60% 80% 80% 80%

1.1

1.2

1.3

1.4

1.5

·104

Similarity rates(%)

Ti
m
e
U
ni
ts

Proposed method Sequential method

Fig. 15. Sequential method vs proposed method.

6 Conclusion

This paper deals with formal verification of RDECSs that we model with R-
TNCES. The proposed method aims to improve formal verification by using
a distributed architecture. We developed a distributed architecture with three
hierarchical levels (Master, worker and sub-worker) and a cloud-based-storage
(Amazon Simple Storage S3 [11]). It allows us to increase computational power,
data availability and to perform parallel execution. For the state space gener-
ation steps, we incorporates ontologies for RDECSs verification. We set up an
ontology-based history, which allows us to detect external similarities thanks to
an ontology alignment. Thus, we avoid many redundant calculation. In order
to deal with internal similarities, we introduce modularity concept by affect-
ing specific tasks to each unit of our architecture, including fragmentation and
accessibility graph composition, which allow us to deal with RDECSs fragment
by fragment and to construct incrementally accessibility graphs. For the state
space analysis, we proposed a parallel CTL properties verification, where sim-
ilarities and relationships that can exist among properties are considered. An
evaluation is realized and experimental results are reported. The results prove
the relevance of the developed architecture and the efficiency of the proposed

68 C. E. Choucha et al.

contribution. Future works will: 1. Deploying the distributed architecture in
Amazon Elastic Compute Cloud (EC2) [11]. 2. Incorporate an automatic clas-
sification of properties thank to ontologies. 3. Extending the proposed tool to
support other formalism that models RDECSs and different temporal logics.

References

1. Ben Salem, M.O., Mosbahi, O., Khalgui, M., Jlalia, Z., Frey, G., Smida, M.:
Brometh: methodology to design safe reconfigurable medical robotic systems. Int.
J. Med. Robot. Comput. Assist. Surg. 13(3), e1786 (2017)

2. Camilli, M., Bellettini, C., Capra, L., Monga, M.: CTL model checking in the
cloud using mapreduce. In: 2014 16th International Symposium on Symbolic and
Numeric Algorithms for Scientific Computing (SYNASC), pp. 333–340. IEEE
(2014)

3. Choucha., C.E., Ramdani., M., Khalgui., M., Kahloul., L.: On decomposing
formal verification of CTL-based properties on IAAS cloud environment. In:
Proceedings of the 15th International Conference on Software Technologies -
ICSOFT, vol. 1, pp. 544–551. INSTICC, SciTePress (2020). https://doi.org/10.
5220/0009972605440551

4. Choucha, C.E., Ougouti, N.S., Khalgui, M., Kahloul., L.: R-TNCES verification:
distributed state space analysis performed in a cloud-based architecture. In: Pro-
ceedings of the 33rd Annual European Simulation and Modelling Conference, pp.
96–101. ETI, EUROSIS (2019)

5. Eddine, C.C., Salem, M.O.B., Khalgui, M., Kahloul, L., Ougouti, N.S.: On the
improvement of R-TNCESS verification using distributed cloud-based architecture,
pp. 339–349 (2020). https://doi.org/10.5220/0009836103390349

6. Gadelha, M.Y., Ismail, H.I., Cordeiro, L.C.: Handling loops in bounded model
checking of c programs via k-induction. Int. J. Softw. Tools Technol. Transf. 19(1),
97–114 (2017)

7. Hafidi, Y., Kahloul, L., Khalgui, M., Li, Z., Alnowibet, K., Qu, T.: On methodol-
ogy for the verification of reconfigurable timed net condition/event systems. IEEE
Trans. Syst. Man Cybern. Syst. 99, 1–15 (2018)

8. Hayes, B.: Cloud computing. Commun. ACM 51(7), 9–11 (2008)
9. Khalgui, M., Mosbahi, O., Li, Z., Hanisch, H.M.: Reconfiguration of distributed

embedded-control systems. IEEE/ASME Trans. Mechatron. 16(4), 684–694 (2011)
10. Koszewnik, A., Nartowicz, T., Paw�luszewicz, E.: Fractional order controller to con-

trol pump in FESTO MPS R© PA compact workstation. In: 2016 17th International
Carpathian Control Conference (ICCC), pp. 364–367. IEEE (2016)

11. Murty, J.: Programming Amazon Web Services: S3, EC2, SQS, FPS, and Sim-
pleDB. O’Reilly Media, Inc., Newton (2008)

12. Noy, N.F., Musen, M.A., et al.: Algorithm and tool for automated ontology merg-
ing and alignment. In: Proceedings of the 17th National Conference on Artificial
Intelligence (AAAI-2000). Available as SMI Technical report SMI-2000-0831, vol.
115. sn (2000)

13. Ougouti, N.S., Belbachir, H., Amghar, Y.: Semantic mediation in MedPeer: an
ontology-based heterogeneous data sources integration system. Int. J. Inf. Technol.
Web Eng. (IJITWE) 12(1), 1–18 (2017)

https://doi.org/10.5220/0009972605440551
https://doi.org/10.5220/0009972605440551
https://doi.org/10.5220/0009836103390349

R-TNCES State Space Generation Using Ontology-Based Method 69

14. Ougouti, N.S., Belbachir, H., Amghar, Y.: Proposition of a new ontology-based
p2p system for semantic integration of heterogeneous data sources. In: Handbook
of Research on Contemporary Perspectives on Web-Based Systems, pp. 240–270.
IGI Global (2018)

15. Padberg, J., Kahloul, L.: Overview of reconfigurable petri nets. In: Heckel, R.,
Taentzer, G. (eds.) Graph Transformation, Specifications, and Nets. LNCS, vol.
10800, pp. 201–222. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-
75396-6 11

16. Patil, S., Vyatkin, V., Sorouri, M.: Formal verification of intelligent mechatronic
systems with decentralized control logic. In: Proceedings of 2012 IEEE 17th Inter-
national Conference on Emerging Technologies & Factory Automation (ETFA
2012), pp. 1–7. IEEE (2012)

17. Ramdani, M., Kahloul, L., Khalgui, M.: Automatic properties classification app-
roach for guiding the verification of complex reconfigurable systems. In: ICSOFT,
pp. 625–632 (2018)

18. Souri, A., Rahmani, A.M., Navimipour, N.J., Rezaei, R.: A symbolic model check-
ing approach in formal verification of distributed systems. HCIS 9(1), 4 (2019)

19. Valmari, A.: The state explosion problem. In: Reisig, W., Rozenberg, G. (eds.)
ACPN 1996. LNCS, vol. 1491, pp. 429–528. Springer, Heidelberg (1996). https://
doi.org/10.1007/3-540-65306-6 21

20. Zhang, J., Khalgui, M., Li, Z., Mosbahi, O., Al-Ahmari, A.M.: R-TNCES: a novel
formalism for reconfigurable discrete event control systems. IEEE Trans. Syst. Man
Cybern. Syst. 43(4), 757–772 (2013)

https://doi.org/10.1007/978-3-319-75396-6_11
https://doi.org/10.1007/978-3-319-75396-6_11
https://doi.org/10.1007/3-540-65306-6_21
https://doi.org/10.1007/3-540-65306-6_21

	R-TNCES State Space Generation Using Ontology-Based Method on a Distributed Cloud-Based Architecture
	1 Introduction
	2 Background
	2.1 Reconfigurable Timed Net Condition/Event System
	2.2 Production Systems: FESTO MPS and THREADING HOLE SYSTEM
	2.3 Ontology Concept

	3 New State Space Generation Method
	3.1 Motivation
	3.2 Formalization

	4 Distributed Cloud-Based State Space Generation
	4.1 Distributed Architecture for State Space Generation
	4.2 Distributed State Space Generation
	4.3 Implementation
	4.4 Complexity of Distributed State Space Generation

	5 Evaluation
	5.1 Evaluation in Large Scale Systems Considering External Similarity
	5.2 Evaluation in Large Scale Systems by Considering External and Internal Similarities
	5.3 Evaluation of CTL Properties Verification Method Considering Similarities

	6 Conclusion
	References

