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Abstract. A real-time system is an operating system that guarantees
a certain functionality within a specified time constraint. Such system
is composed of tasks of various types: periodic, sporadic and aperiodic.
These tasks can be subjected to a variety of temporal constraints, the
most important one is the deadline. Thus, a reaction occurring too late
may be useless or even dangerous. In this context, the main problem
of this study is how to configure feasible real-time system having both
periodic, aperiodic and sporadic tasks. This paper shows an approach for
computing deadlines in uniprocessor real-time systems to guarantee real-
time feasibility for hard-deadline periodic and sporadic tasks and provide
good responsiveness for soft-deadline aperiodic tasks. An application to
a case study and performance evaluation show the effectiveness of the
proposed approach.

Keywords: Real-time feasibility · Periodic task · Sporadic task ·
Aeriodic task · Hard deadline · Soft deadline

Nomenclature

Π Real-time system;
P Set of periodic tasks in Π;
S Set of sporadic tasks in Π;
A Set of aperiodic tasks in Π;
n Number of periodic tasks in Π;
m Number of sporadic tasks in Π;
k Number of aperiodic tasks in Π;
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τ0
i Periodic task;

τ0
ij The jth job of τ0

i ;
τ1
e Sporadic task;

τ1
ef The fth job of τ0

e ;
τ2
o Aperiodic task;

R0
i Release time of τ0

i ;
r0ij Release time of the jth job of τ0

i ;
C0

i Worst-case execution time of τ0
i ;

P 0
i Period of τ0

i ;
D0

i Hard relative deadline of τ0
i to be determined;

d0ij Relative deadline of τ0
ij to be determined;

φ0
i Degree of criticality of τ0

i ;
E0

ij End execution time of τ0
ij ;

R1
e Release time of τ1

e ;
r1ef Release time of the fth job of τ1

e ;
C1

e Worst-case execution time of τ1
e ;

P 1
e Minimum interval between the arrival of two successive instances of

τ1
e ;

D1
e Hard relative deadline of τ1

e to be determined;
d1ef Relative deadline of τ1

ef to be determined;
φ1

e Degree of criticality of τ1
e ;

E1
ef End execution time of τ1

ef ;
C2

o WCET of τ2
o ;

D2
o Soft deadline of τ2

o to be determined;
φ2

o Degree of criticality of τ2
o ;

Cs Capacity of the NPS server;
P s Period of the NPS server;

HP Hyper-period;
OC Maximum number of aperiodic tasks’ occurrences estimated on HP ;

Q Maximum cumulative execution time requested by periodic and
sporadic jobs on HP ;

τi1 Periodic or sporadic task;
τi1j1 The j1th job of τi1j1 ;

Δi1j1 Maximum cumulative execution time requested by periodic and
sporadic jobs that have to be executed before τi1j1 ;

βi1j1
l Number of jobs produced by a periodic or sporadic task τl to be

executed before τi1j1 .

1 Introduction

Nowadays, computer systems, to control real-time functions, are considered
among the most challenging systems. As a consequence, real-time systems have
become the focus of much study [4–6]. A real-time system is any system which
has to respond to externally generated input stimuli within a finite and speci-
fied delay. The development of real-time systems is not a trivial task because a
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failure can be critical for the safety of human beings [1–3]. Such system must
react to events from the controlled environment while executing specific tasks
that can be periodic, aperiodic or sporadic. A periodic task is activated on a reg-
ular cycle and must adhere to its hard deadline. It is characterized by its arrival
time, worst-case execution time (WCET), period, relative deadline, and a degree
of criticality that defines its applicative importance. The degree of criticality is
defined as the functional and operational importance of a task. A sporadic task
can arrive to the system at arbitrary points in time, but with defined minimum
inter-arrival time between two consecutive invocations. It is characterized by its
worst-case execution time, minimum inter-arrival time, relative deadline, and a
degree of criticality that defines its applicative importance. These attributes are
known before system execution. Additional information available on-line, is its
arrival time and its absolute deadline. An aperiodic task is activated at random
time to cope with external interruptions, and it is based upon soft deadline. Its
arrival time is unknown at design time. It is characterized by its worst-case execu-
tion time, relative deadline, and a degree of criticality that defines its applicative
importance.

Real-time scheduling has been extensively studied in the last three decades.
These studies propose several Feasibility Conditions for the dimensioning of real-
time systems. These conditions are defined to enable a designer to grant that
timeliness constraints associated with an application are always met for all pos-
sible configurations. In this paper, Two main classical scheduling are generally
used in real-time embedded systems: RM and EDF. EDF is a dynamic scheduling
algorithm used in real-time operating systems [8]. EDF is an optimal schedul-
ing algorithm on preemptive uniprocessors, in the following sense: if a collection
of independent jobs (each one characterized by an arrival time, an execution
requirement, and a deadline) can be scheduled (by any algorithm) such that all
the jobs complete by their deadlines, then the EDF will schedule this collection
of jobs such that all of them complete by their deadlines. On the other hand, if
a set of tasks is not schedulable under EDF, then no other scheduling algorithm
can feasibly schedule this task set. Rate Monotonic (RM) for fixed priorities and
Earliest, it was defined by Liu and Layland [7] where the priority of tasks is
inversely proportional to their periods.

Enforcing timeliness constraints is necessary to maintain correctness of a real-
time system. In order to ensure a required real-time performance, the designer
should predict the behavior of a real-time system by ensuring that all tasks
meet their hard deadlines. Furthermore, scheduling both periodic, sporadic and
aperiodic tasks in real-time systems is much more difficult than scheduling a
single type of tasks. Thus, the development of real-time systems is not a trivial
task because a failure can be critical for the safety of human beings [19]. In this
context, the considered problem is how to calculate the effective deadlines (hard
and soft) of the different mixed tasks to guarantee that all tasks will always meet
their deadlines while improving response times for aperiodic tasks.

The major contribution of this work is a methodology defined in the context
of dynamic priority preemptive uniprocessor scheduling to achieve real-time fea-
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sibility of a software system. Differently from earlier work [22], which is based
on maximum deadlines, the deadline calculation in the current work is based
on the degree of criticality of tasks and on their periods. In fact, as the degree
of criticality is defined as the functional and operational importance of a task,
we consider that an important task must be executed ahead, i.e., that its rel-
ative deadline must be well defined to reinforce its execution while using the
EDF scheduling algorithm. The calculation of deadlines is done off-line on the
hyper-period which is the lowest common multiple (LCM) of the periodic tasks’
periods [20]. We suppose that the maximum number of occurrences of aperiodic
tasks in a given interval of time is a random variable with a Poisson distribution
which is a discrete probability distribution that expresses the probability of a
given number of events occurring in a fixed interval of time. This proposed app-
roach consists of two phases. The first one defines the NPS server which serves
periodically aperiodic tasks. In fact, the server can be accounted for in periodic
task schedulability analysis, it has (i) a period which is calculated in such a
way that the periodic execution of the server is repeated as many times as the
maximum number of aperiodic tasks occurrences in the hyper-period, and (ii) a
capacity which is the allowed computing time in each period and it is calculated
based on unused processing time by a given set of periodic and sporadic tasks in
the hyper-period in a such way aperiodic task execution should not jeopardize
schedulability of periodic and sporadic tasks. Then, this approach calculates ape-
riodic tasks soft deadlines while supposing that an aperiodic task, with highest
degree of criticality, gets the highest priority to be executed. The second one
calculates hard deadlines of periodic and sporadic tasks ensuring real-time sys-
tem feasibility while considering the invocation of aperiodic task execution, i.e.,
while considering the maximum cumulative execution time requested by aperi-
odic tasks that may occur before periodic and sporadic jobs on the hyper-period.
Thus, at runtime, even if an aperiodic task occurs, the periodic and sporadic
tasks will certainly respect their deadlines and the response time of aperiodic
task is improved. For each periodic or sporadic task, the maximum among its
calculated jobs deadlines will be its relative deadline. Thus, at runtime, even if an
aperiodic task occurs, the periodic and sporadic tasks will certainly respect their
deadlines and the response time of aperiodic task is improved as the invocation
of aperiodic task execution is considered when calculating hard deadlines.

The remainder of the paper is organized as follows. Section 2 discusses the
related studies. Section 3 presents a computational model, assumptions, and
problem formulation. Section 4 gives the proposed scheduling method. Section 5
presents a case study for evaluating our method. Finally, Sect. 6 summarizes this
paper with our future work.

2 Related Studies

In this section, we present the related works that deal with real-time systems
and scheduling policies.
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Several works deal with the synthesis problem of real-time systems. The
correctness of such systems depends both on the logical result of the compu-
tation and the time when the results are produced. Thus enforcing timeliness
constraints is necessary to maintain correctness of a real-time system. In this con-
text, many approaches have been carried out in the area of schedulability analysis
for meeting real-time requirement [9–14,26]. Some of them [11–13] work on real-
time schedulability without considering the deadlines analysis. Some other [9,10]
seek to schedule tasks to respect energy constraints and consider that deadlines
are given beforehand. Pillai and Shin [26] propose an optimal algorithm for com-
puting the minimal speed that can make a task set schedulable. Furthermore,
these researches does not consider mixed tasks set. Moreover, techniques to cal-
culate tasks’ deadlines are seldom presented. For this reason, the studies that
address this problem are few. The work reported in [15] presents a method that
minimizes deadlines of periodic tasks only. The research in [18] calculates new
deadlines for control tasks in order to guarantee close loop stability of real-time
control systems. On the other hand, several related works, such as in [16,17]
have chosen to manage the tasks of a real-time system by modifying either their
periods or worst-case execution times (WCET). This orientation affects the per-
formance of the system, since increasing the periods degrades the quality of the
offered services, and decreasing the WCET increases the energy consumption.

Furthermore, the research works reported in [23–25] take into account the
energy requirements without considering the deadlines analysis, as long as they
are given beforehand. Indeed, in these researches, the authors seek to schedule
tasks to respect energy constraints. In addition, it is done online, which can be
heavy and expensive.

We note that most of existing studies working on real-time schedulability,
address separately periodic, sporadic or aperiodic tasks but not together. Thus,
the originality of this work compared with related studies is that it

– deals with real-time tasks of various types and constraints simultaneously,
– parameterizes periodic server to execute aperiodic tasks,
– calculates soft deadlines of aperiodic tasks,
– calculates periodic and sporadic tasks hard deadlines which will be certainly

respected online,
– improves response times of aperiodic tasks which can lead to a significant

improvement of the system performance.

3 Assumptions and System Formalization

3.1 System Model

It is assumed in this work that a real-time system Π deals with a combination
of mixed sets of tasks and constraints: periodic and sporadic tasks with hard
constraints, and soft aperiodic tasks. Thus, Π is defined as having three task
sets as presented in Fig. 1.

We assume that all periodic tasks are simultaneously activated at time t = 0;
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Fig. 1. Π’s tasks sets.

3.2 Periodic Task Model

Each periodic task τ0
i , i ∈ [1, ..., n], in P is characterized by: (i) a release time

R0
i which is the time at which a task becomes ready for execution [27], (ii) a

worst-case execution time (WCET) C0
i , (iii) a period P 0

i , (iv) a relative deadline
D0

i to be calculated, and (v) a degree of criticality phi0i . Figure 2 depicts the
task parameters:

Fig. 2. Periodic task parameters.

Each periodic task τ0
i produces an infinite sequence of identical activities

called jobs τ0
ij [27], where j is a positive integer. Each job τ0

ij is described by:
(i) a release time r0ij , (ii) a relative deadline d0ij , and (iii) an end execution time
E0

ij . We note that
D0

i = max{d0ij} (1)

where i ∈ [1, ..., n].
Finally, we denote by HP the hyper-period which is the lowest common

multiple (LCM) of the periodic tasks’ periods.

HP = LCM{P 0
i } (2)

where i ∈ [1, ..., n].
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3.3 Sporadic Task Model

Each sporadic task τ1
e , e ∈ [1, ...,m], is defined by: (i) a release time R1

e, (ii) a
worst-case execution time C1

e , (iii) a relative deadline D1
e , (iv) a period P 1

e which
measures the minimum interval between the arrival of two successive instances
of a task τ1

e , and (v) a degree of criticality phi1e
Each sporadic task τ1

e produces an infinite sequence of jobs τ1
ef , where f

is a positive integer. Each job τ1
ef is described by: (i) a release time r1ef , (ii)

a relative deadline d1ef , and (iii) end execution time E1
ef . Figure 3 depicts the

sporadic task’s jobs parameters:

D1
e = max{d1ef} (3)

where e ∈ [1, ...,m].

Fig. 3. Sporadic task parameters.

3.4 Aperiodic Task Model

Each aperiodic task τ2
o , o ∈ [1, ..., k], is defined by: (i) a worst-case execution

time C2
o , (ii) a relative soft deadline D2

o, and (iii) a degree of criticality phi2o.
An aperiodic task can arrive in a completely random way. Thus, we model this
number by the Poisson distribution with a parameter λ. We note by OC the
maximum number of aperiodic tasks’ occurrences estimated on the hyper-period.

Let NPS be a periodic server that behaves much like a periodic task, but
created to execute aperiodic tasks. It is defined by: (i) a period P s, and (ii) a
capacity Cs. These parameters will be calculated to meet time requirements of
aperiodic tasks.

3.5 Problem: Feasible Scheduling of Real-Time Tasks with Various
Types

We undertake a real-time system which is composed of mixed tasks sets with
various constraints. Thus, the considered problem is how to configure feasible
scheduling of software tasks of various types (periodic, sporadic and aperiodic)



32 A. Goubaa et al.

and constraints (hard and soft) in the context of dynamic priority, preemptive,
uniprocessor scheduling. To ensure that this system runs correctly, it is necessary
to check whether it respects the following constraints:

– the execution of aperiodic tasks must occur during the unused processing
time by a given set of periodic and sporadic tasks in the hyper-period in such
way aperiodic task execution should not jeopardize schedulability of periodic
and sporadic tasks. This constraint is given by

Cs ≤ HP − Q

where, Cs is the capacity of the NPS server and Q is the maximum cumu-
lative execution time requested by periodic and sporadic jobs on the hyper-
period HP .

– During each hyper-period, each periodic or sporadic job has to be completed
before the absolute deadline using the EDF scheduling algorithm even if an
aperiodic task is executed. In fact, the cumulative execution time requested by
aperiodic tasks must be token into consideration when calculating the tasks’
deadlines. Thus, s an aperiodic task will be executed as soon as possible of
its activation, and periodic and sporadic tasks will meet their deadlines. This
constraint is given by

• For periodic jobs:

∀i ∈ {1, ..., n}, and j ∈ {1, ...,
HP

P 0
i

], E0
ij ≤ r0ij + D0

i (4)

• For sporadic jobs:

∀e ∈ {1, ...,m}, and f ∈ {1, ...,

⌈
HP

P 1
e

⌉
], E1

ef ≤ r1ef + D1
e (5)

In what follows, it is always considered that i ∈ [1...n], e ∈ [1...m], o ∈ [1...k],

j ∈ [1...
HP

P 0
i

], where
HP

P 0
i

denotes the number of jobs produced by task τi on

hyper-period HP and f ∈ [1...�HP

P 0
i

�]. In addition, we suppose that a ztask

lower its value, higher the criticality.

4 Contribution: New Solution for Deadlines Calculation

4.1 Motivation

The proposed methodology deals with real-time tasks of various types and con-
straints simultaneously. This approach is divided into two phases as presented
in Fig. 4:
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– First Phase: consists on parameterizing the NPS server which is a service
task, with a period P s and a capacity Cs, invoked periodically to execute
aperiodic tasks. Then, this approach calculates soft deadlines of aperiodic
tasks while supposing that an aperiodic task, with highest degree of criticality,
gets the highest priority. The NPS can provide a substantial reduction in the
average response time of the aperiodic tasks.

– Second Phase: starts by calculating jobs’deadlines. In fact, for each peri-
odic/sporadic task, it calculates the deadlines of its jobs that occur on the
hyper-period based on the maximum cumulative execution time requested
by i) other periodic/sporadic jobs that will occur before the considered peri-
odic/sporadic job on the hyperperiod based on the degree of criticality, and
ii) aperiodic tasks that may occur before periodic/sporadic job on the hyper-
period. Then, for each periodic/sporadic task, its deadline will be equal to
the maximum of its jobs’ deadlines. Thus, at runtime, even if an aperiodic
task occurs, this methodology ensures certainly real-time system feasibility
of periodic and sporadic tasks.

Fig. 4. New methodology of deadlines calculation.
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4.2 Proposed Approach

In this section, we present the solution that we propose to extend. This solution
is mainly based on the calculation of effective deadlines of mixed tasks set in
order to ensure that the system will run correctly and to satisfy the real-time
feasibility.

Parameterizing Aperiodic Tasks: As mentioned previously, aperiodic tasks
will be run periodically by the periodic server NPS (P s, Cs). As, OC is the
maximum number of aperiodic tasks’ occurrences estimated on the hyper-period,
then, NPS must be activated OC times to serve all possible activations of ape-
riodic tasks that may occur. Thus, its period is calculated as below

P s = �HP

OC
� (6)

Moreover, aperiodic tasks are scheduled by utilizing unused processing time
by a given set of periodic and spordic tasks in the hyper-period. Thus, the
capacity of server is calculated as follows: first, we calculate the unused time by
subtracting the maximum cumulative execution time requested by periodic and
sporadic jobs from HP , and second we divide the obtained result by OC, i.e.,
the possible activation number, to affirm that in each period the same amount
of execution time will be executed, hence the server capacity value.

Cs = �HP − Q

OC
� (7)

where, Q is the maximum cumulative execution time requested by periodic and
sporadic jobs on the hyper-period HP .

Q = (
∑

τ0
i ∈P

(C0
i × HP

P 0
i

)) + (
∑

τ1
e ∈S

(C1
e × �HP

P 1
e

�)) (8)

By assuming that the aperiodic task with the highest degree of criticality,i.e.,
the smallest value of φ2

o, gets the highest priority, we calculate the deadlines D2
o

as following

D2
o =

x=k∑
x=1

C2
x × αx (9)

where,

αx =
{

1 if (φ2
o ≥ φ2

x),
0 else. (10)

Parameterizing Periodic and Sporadic Tasks: At the peak of activity, a
sporadic task τe runs at each P 1

e . In this case, we can estimate the value r1ef

of each job τ1
ef . Therefore, to calculate the deadline of a sporadic task, we fol-

low the same procedure of a periodic task deadline calculation. For that, we
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unify the notation of periodic and sporadic tasks by τi1(Ri1 , Ci1 , Pi1 ,Di1 , φi1),
where i1 in[1, ..., n + m], also for these parameters. For example, let’s con-
sider a system with two tasks: a periodic task τ0

1 (R0
1, C

0
1 , P 0

1 ,D0
1, φ

0
1) and a

sporadic task τ1
1 (R1

1, C
1
1 , P 1

1 ,D1
1, φ

1
1), then they becomes τ1(R1, C1, P1,D1, φ1)

and τ2(R2, C2, P2,D2, φ2).
This solution allows the calculation of deadlines of a task τi1 . We denote by

Δi1j1 the job quantity, coming from periodic and sporadic jobs, to be executed
before the job τi1j1 . In other words, Δi1j1 is the maximum cumulative execution
time requested by jobs that have to be executed before each job τi1j1 .

Δi1j1 is given by

Δi1j1 = (j1 − 1) × Ci1 +
∑

τ∈
l P∪Sandl �=i

(�j1 × Pi1

Pl
� − βi1j1

l ) × Cl (11)

where (j1 − 1) × Ci1 represents the cumulative execution time requested by the
previous instances of τi1 , i.e., if we are working on the j1th instance, then we
are sure that there are (j1 − 1) instances that have already been executed, and∑

τ∈
l ∈P∪Sandl �=i(� j1×Pi1

Pl
�−βi1j1

l )×Cl represents the cumulative execution time

requested by the other tasks’ jobs, where βi1j1
l is an integer given by

βi1j1
l =

{
0 if (� j1×Pi1

Pl
� × Pl < j1 × Pi1) or (� j1×Pi1

Pl
� × Pl = j1 × Pi1 and φi1 > φl)

1 if (� j1×Pi1
Pl

� × Pl > j1 × Pi1) or (� j1×Pi1
Pl

� × Pl = j1 × Pi1 and φi1 < φl)

(12)
The value di1j1 that guarantees the feasibility of this job takes the form

di1j1 =

⎧⎪⎨
⎪⎩

∑
τ2
l ∈A(C2

l × �Pi1
P s �) + Ci1 + Δi1j1 − ri1j1

if Δi1j1 > ri1j1 ,∑
τ2
l ∈A(C2

l × �Pi1
P s �) + Ci1 else.

(13)

The deadline Di1 of task τi1 is expressed by

Di1 = max{di1j1} (14)

Finally, Di1 is the fixed deadline for τi1 .

New Solution for Deadline Calculation of Periodic, Sporadic and Ape-
riodic Real-Time Tasks: We can implement our approach by the algorithm
below with complexity O(n).

We use the following functions: NPS Parameters(HP,OC) which is a func-
tion that returns the NPS server parameters, and H Dead Calc(P,S) which
a function that returns the periodic and sporadic hard deadlines. This function
starts by computing jobs deadlines and then for each periodic/sporadic task, it
calculates its fixed deadline to be equal to the maximum of its jobs’ deadlines.



36 A. Goubaa et al.

Algorithm 1. New method for deadline calculation.
Require: P, S,A, OC
Ensure: D0

i , D1
e , D2

o

1: function NPS Parameters(HP, OC)

2: P s = �HP

OC
�

3: Q = (
∑

τ0
i ∈P(C0

i × HP

P 0
i

)) + (
∑

τ1
e ∈S(C1

e × �HP

P 1
e

�))

4: Cs = �HP − Q

OC
�

5: end function
6: for all τ2

o ∈ A do
7: D2

o =
∑x=k

x=1 C2
x × αx

8: end for
9: function H Dead Calc(P, S)

10: for all τl ∈ P ∪ S do
11: Δi1j1 =

∑
τl∈P∪S(Cl × βi1j1

l )
12: if Δi1j1 > ri1j1 then
13: di1j1 =

∑
τ2
l

∈A(C2
l × �Pi1

Ps �) + Ci1 + Δi1j1 − ri1j1

14: else
15: di1j1 =

∑
τ2
l

∈A(C2
l × �Pi1

Ps �) + Ci1

16: end if
17: end for
18: Di1 = max{di1j1}
19: end function

5 Implementation

5.1 Case Study

We present in this section a simple example of an electric oven whose temperature
we want to keep constant after in interruption that may disturb the temperature
stability. For example, we want to keep it at 180 °C after a sudden opening of the
oven’s door as presented in Fig. 5. The oven is heated by an electrical resistance,
the intensity of which can vary. Inside the oven there is also a temperature probe,
which allows to measure and monitor the temperature in the oven.

This system is implemented by three sets: P = {τ0
1 , τ0

2 }, S = {τ1
1 } and

A = {τ2
1 }. The tasks are presented in Table 1:
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Fig. 5. Electric oven modelisation.

Table 1. System tasks.

Task Fonction WCET Period Degree of criticality

τ0
1 Mesures temperature 2 8 1

τ0
2 Heats the oven 2 16 3

τ1
1 Checks temperature value 2 16 2

τ2
1 Adjusts temperature 2 5

We have, HP = LCM{8, 16} = 16s.
Let’s suppose that the parameter λ of the Poisson distribution is equal to 0.5

occurrences in 10 s. Thus, in the hyper-period we have HP
10 ×λ = 16

10 × 0.5 = 1.6,
i.e., OC = 2 occurrences.

The first step is to configure the periodic server.
The periodic server parameters P s and Cs are computed respectively as

following:

According to Eq. (6), P s = �16
2

� = 8

According to Eq. (8), Q = 2 × 2 + 2 × 1 = 6

According to Eq. (7), Cs = �16 − 6
2

� = 5

After that, we calculate the soft deadline of the aperiodic task τ2
1 . According

to Eq. (9)

D2
1 = C2

1 × α1 = 2 × 1 = 2

Second step is the calculation of periodic and sporadic tasks’ deadlines. As
mentioned previously, we unify the notation of periodic and sporadic tasks as
following: τ0

1 becomes τ1, τ0
2 becomes τ2, and τ1

1 becomes τ3.
As an example, we take the calculation of deadline D0

1 for task τ0
1 , i.e.,

D1 for the task τ1. The number of jobs of task τ1 in the hyper-period HP
is HP

P3
= 16

8 = 2 jobs.

Job τ11:
First of all, we calculate the job quantity Δ11. According to Eq. (11), we have
to calculate β11

2 and β11
3 as indicated Eq. (12).
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We have � 1×8
16 � × 16 < 1 × 8, i.e., 0 < 8, then we conclude that β11

2 = 0. In
the same way, we have β11

3 = 0
According to Eq. (11), Δ11 is calculated as following

Δ11 = (1 − 1) × 2 + �1 × 8
16

� − 0) × 2 + �1 × 8
16

� − 0) × 2

= 0 × 2 + 0 × 2 + 0 × 2 = 0

We have r11 = 0, so Δ11 = r11. Thus, according to Eq. (13),

d11 =
∑

τ2
l ∈A

(C2
l × �Pi1

P s
�) + C1

= 2 + 2 = 4

Job τ12:
First of all, we calculate the job quantity Δ12. According to Eq. (11), we have
to calculate β12

2 , and β12
3 as indicated in Eq. (12). We have � 2×8

16 � × 16 < 2 × 8,
i.e., 16 = 16, and φ1 < φ2 then we conclude that β12

2 = 1. In the same way, wa
have β11

3 = 1
According to Eq. (11), Δ12 is calculated as following

Δ12 = (2 − 1) × 2 + �2 × 8
16

� − 1) × 2 + �2 × 8
16

� − 1) × 2

= 1 × 2 + 0 × 2 + 0 × 2 = 2

We have r12 = 8, then Δ12 < r12 and we have
∑

τ2
l ∈A

(C2
l × �Pi1

P s
�) = 2

Thus, according to Eq. (13),

d12 =
∑

τ2
l ∈A

(C2
l × �Pi1

P s
�) + C1 = 2 + 2 = 4

Finally, we calculate the deadline D1 of the task τ1 as bellow

D1 = max{d11, d12} = max{4, 4} = 4

After completing the execution of the proposed approach, the calculated
effective deadlines of the different tasks are given in Table 2.

Table 2. Tasks’ calculated deadlines.

Task τ0
1 τ0

2 τ1
1 τ2

2

Calculated deadline 4 10 6 2

Figure 6 shows the scheduling of tasks after the execution of the proposed
approach. We note that the real-time constraints are respected by the proposed
methodology, and the response time of each aperiodic task is equal to its execu-
tion time, i.e., they are executed with the best response time.
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Fig. 6. Scheduling of tasks after the execution of the proposed approach.

5.2 Performance Evaluation

We have randomly generated instances with 10 to 50 periodic and sporadic tasks.
We compare the proposed approach with the work reported in [15], where the
critical scaling factor (CSF) algorithm is developed.

Figure 7 visualizes simulation that compares the proposed approach with
the work reported in [15], where the critical scaling factor (CSF) algorithm is
developed. We obtain better results in terms of decrease rate of deadlines in
the proposed approach. In fact, the reduction rates of deadlines by using [15]
are smaller than those by using the proposed work. The gain is more significant
when increasing the number of tasks. If 10 tasks are considered, then the gain
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Fig. 7. Rates of deadlines reduction in the case of the proposed approach and in the
case of GSF algorithm.
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is equal to (0.31 − 0.2) = 0.11, and if 50 tasks are considered, then the gain is
equal to (0.7 − 0.52) = 0.18.

As it was presented in [22], Fig. 8 shows that the NPS algorithm serves
to improve the aperiodic response time compared to background service (BK),
deferrable server (DS) and total bandwidth server (TBS).

Fig. 8. The improvement of aperiodic tasks response times [22].

5.3 Comparative Study

Table 3 describes the comparison of the developed approach in this paper with
some studies. The originality is manifested by treating different and independent

Table 3. Comparative study.

Work Deadline calculation Tasks’ type Offline/Online

[11]

This work considers

periodic tasks only

It aims to ensure the

system schedulability by

managing the tasks of by

modifying either their

periods or worst-case

execution time without

considering the deadlines

analysis. This orientation

affects the performance of

the system

Online: all the calculations

are done online which can be

expensive in case of errors

[18]

Same as [11] It calculates new

deadlines to improve the

responsiveness in the

context of TBS

Same as [11]

[21]

This work addresses the

problem of mixed tasks

It aims to schedule mixed

tasks while reducing

energy consumption

Same as [11]

The proposed

approach

The main objective of

this work is to calculate

deadlines which guarantee

i) the respect of hard

real-time constraints for

periodic and sporadic

tasks, and ii) the

improvement of aperiodic

tasks response time

It deals with real-time

tasks of various types:

periodic, sporadic and

aperiodic

Offline: which is suitable for

the design phase and

subsequently it is not

expensive in case of errors
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problems together, i.e., periodic, sporadic and aperiodic tasks and hard and soft
real-time constraints tasks simultaneously.

We note that the proposed approach allows to reduce the response time,
to reduce the calculation time for the reason that there is no need to waste
time at doing schedulability tests, to guarantee the meeting of aperiodic tasks
deadlines without jeopardizing schedulability of periodic and sporadic tasks and
thus improves the overall performance of the real-time system.

6 Conclusion

This paper is interested in real-time systems executing periodic, sporadic and
aperiodic tasks. Our study concerns specifically the computing off effective tasks’
deadlines. We propose a new approach that consists on creating the NPS server,
it is a service task invoked periodically to execute aperiodic tasks after having
calculated aperiodic tasks’ soft deadlines. Then, this approach calculates the
periodic and sporadic tasks deadlines based on the degree of criticality of tasks
and while considering the invocation of aperiodic task execution. An application
to a case study and performance evaluation show the effectiveness of the proposed
approach and that the NPS can provide a substantial reduction in the average
response time of the aperiodic tasks. In our future works, we will be interested
in the implementation of the paper’s contribution that will be evaluated by
assuming real case studies.
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