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Abstract. Ride-sharing Autonomous Mobility-on-Demand system (RAMoD),
whereby self-driving vehicles provide coordinated travel services on-demand and
potentially allowing multiple passengers to share a trip, has recently emerged as a
promising solution to cope with several problems such as low vehicle utilization
rates, pollution, and parking spaces. The expected uncertain travel demand on such
systems and its resulting imbalance and insufficient charging resources require an
efficient fleet management strategy. This paper focuses on designing and testing
an integrated strategy for dispatching, rebalancing, and charging by accounting for
the uncertain travel demands. Specifically, we first devise a novel multi-objective
possibilistic (MILP) model, which contemplates the variability and uncertainty
affecting travel demands in the RAMOD systems. The main target is to centralize
the various decisions in order to keep vehicle availabilities balanced over the
planning horizon and the transportation network so that travel requests are satisfied
at a minimum cost. Second, leveraging appropriate strategies, we transform this
fuzzy formulation into an equivalent auxiliary crisp multi-objective model. Due to
the conflicting nature of the considered objectives, a goal programming approach
with specific weights for each goal is used to compute an efficient compromise
solution. Results show the applicability and usefulness of the proposed fuzzy
approach as well as its merits compared to other schemes.

Keywords: Autonomous mobility-on-demand systems · Ride-sharing ·
Dispatching · Rebalancing · Charging · Fuzzy logic

1 Introduction

Personal-vehicles contribute significantly to increasing levels of pollution, traffic con-
gestion, and in several instances the under-utilization of vehicles. Explicitly, in 2015 the
utilization rate of owned automobiles in the U.S. is about 5% [1], certainly unsustainable
practice for the years to come. The urgent need to deal with these trends spurred the
conception of efficient, cost-competitive, and more sustainable transportation systems
such as ride-sharing (e.g. Lyft and Uber) and car-sharing (e.g. Car2Go and Zipcar).
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Nevertheless, without efficient fleet management, these emerging transportation sys-
tems will inevitably lead to a problem of vehicle imbalances: due to the asymmetry
between travel destinations and origins, vehicles rapidly depleted in some stations while
becoming accumulated in others, affecting the quality of service.

Autonomous vehicles have the particular advantage of being capable of rebalancing
themselves, in addition to the enhancement of system-wide coordination, cost reduction,
convenience, and potentially rise safety of not needing a human driver.

Accordingly, these distinctive advantages has spurred the device of strategies that
entail to optimally rebalance Autonomous Mobility on Demand (AMoD) systems by
repositioning empty vehicles.

A Specific focus is also given to the development of dispatching strategies that
attempt to optimally assign the customers to self-driving vehicles, in order to satisfy the
customer’s request at each time period. However, as we will show in the literature review
section, most of the proposed strategies either assume deterministic customer requests
or do not integrate operational constraints such as parking capacities and electric vehicle
charging, which restricts their practical application.

In particular, while customer request is relatively predictable, it is subject to con-
siderable uncertainties due to various external factors such as traffic conditions and
weather. Thus, successful rebalancing and dispatching strategies must deal with these
uncertainties. Although some recent research works have been developed to address
this key challenge, these studies consider the uncertainty of demand approximately by
using probability concepts. A probability distribution is generally derived from historical
data. Nevertheless, when there is a lack of such information, the standard probabilistic
approaches are not appropriate. In particular, in several practical situations, the uncer-
tain parameters can be obtained subjectively based on the experience and managerial
judgment. For example, the uncertain customer request may be more suitably expressed
either in imprecise terms (e.g. approximately 500 demand per hour) or in linguistic terms
(e.g. ‘low’, ‘high’ ‘moderate’). However, such vagueness in the critical data cannot be
captured in a stochastic or deterministic formulation, and thus the associated optimal
results may not accomplish the real objective of modeling. Zadeh [2] introduced the
Fuzzy Set Theory and the Possibility Theory to handle the epistemic uncertainty of this
type.

To the best of the authors’ knowledge, the only paper exploring the potential of fuzzy
set theory to deal with uncertainty in AMOD systems is the preliminary version of this
article appeared as [3].

This extended version includes as additional contributions: (i) integration of the
charging process, (ii) integration of a number of real-world constraints such as parking
space limitations, charging stations capacities, and charging duration, which extend the
practical application of the proposed approach, (iii) additional simulation results and
corresponding discussion, and (iv) proofs of all results.
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More specifically, the purpose of this article is to develop and test an integrated strat-
egy for dispatching, rebalancing, and charging decisions for Ridesharing Autonomous
ElectricMobility On-Demand systems. In this regard, we design a three-phase approach,
which starts with introducing a new Multi-Objective Possibilistic Linear Programming
model that handles the uncertainty affecting future travel demand. The goal is to reduce
transportation costs and improve customer satisfaction. In the second phase, the fuzzy
model is converted into an auxiliary crisp MOLP model by applying a combination of
appropriate strategies. Then, thewell-knownGP approach is exploited to find an efficient
compromise solution for the multi-objective problem.

The rest of this article is organized as follows. In the next section, we review some
well-known existing works and outline their limitations. Section 3 provides some basic
notions regarding the fuzzy set theory and the goal programming method. Then, we
detail the model of the RAMoD system in the presence of uncertain travel demand
and formulate the integrated dispatching, rebalancing, and charging problem. Section 5
proposes a three-phase fuzzy strategy to deal with the issue under consideration. In
Sect. 6, computational results are reported to highlight the feasibility of our proposed
approach in practice. The last section concludes this work together with some future
direction of research.

2 Literature Review

The last decade has been marked by the rapid expansion and the promising devel-
opment of AMOD and RAMOD systems. Its multiple strengths have spurred a num-
ber of companies and researchers to aggressively pursue the design and analysis of
these emerging transportation systems. Previous work can be categorized into three
major areas: simulation-based models, model predictive control (MPC) algorithms and
queuing-theoretical models.

In [4], the authors introduce the “Expand and Target” algorithm that has been inte-
grated with scheduling strategies to automatically dispatch self-driving vehicles. They
implement an agent-based simulation framework and evaluate the effectiveness of the
proposed approach based on the New York City taxi data. The results show that the
algorithm greatly enhances the performance of the AMOD systems: increases the travel
success rate by around 8% and decreases the average waiting time for passengers by
around 30%.

Another study conducted in New York City [5] addressed both the problems of
assigning travel requests to vehicles and finding optimal routes for the vehicle fleet
while varying passenger capacities. The results show that a fleet of 3000 vehicles with a
four-passenger capacity or even 2000 vehicles with a ten-passenger capacity can serve
98% of the travel demands, currently supported by more than 13,000 single-occupant
vehicles. However, specificities of the model (for instance, the algorithms employed to
represent the traffic flow) are still unexplained, and only very little information has been
reported in this regard.
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Another study [6] conducted in a similar context of ride-sharing systems for a case
study conducted in Austin implemented a simulation framework in Java. The authors
suggested that shared AMoD systems without introducing dynamic ride-sharing can
increase congestion levels and travel times.

Melbourne,Australia is another city forwhich theperformanceofAMoDsystemshas
been explored using an agent-based simulation tool [7]. This work also has discovered
a quadratic relationship between Vehicle-Kilometres Travelled and AMoD fleet size.
The findings of this simulation model showed that an AMoD system under demand
uncertainty, which provides either ridesharing or car-sharing service could decrease the
fleet size by 84%. This, however, can increase the current Vehicle-Kilometres Travelled
by up to 77% while car-sharing is allowed, and 29% in the ride-sharing systems.

On the other hand, the queueing-theoretical approach is commonly used for themod-
eling and analysis of AMoD systems. Zhang and Pavone [8], for instance, implemented
this method to conduct a real-world case study of New York City. They first cast the
transportation system within a Jackson network model with the concept of “passenger
loss” (i.e. if there are no vehicles parked at a station, instead of waiting, the passengers
will immediately exit the system). Second, the theoretical insights have been leveraged
to design a real-time rebalancing algorithm, where the objective is to reduce the num-
ber of rebalancing self-driving vehicles on the roads, while still maintaining a balance
throughout the transportation network.

An extended and revised version of this paper appeared as [9] by extending the
proposed Jackson network approach by adopting a Baskett–Chandy–Muntz–Palacios
(BCMP) queuing-theoretical framework [10, 11]. Such a BCMP framework allows cap-
turing vehicle routing, stochastic customer arrivals, battery charging-discharging for
electric vehicles as well as traffic congestion.

The significance of the results in these papers could be in providing a rigorous
approach to the problem of rebalancing and routing as well as a rapid determination
of the corresponding performance metrics. However, both of the studies fail to address
the case where several passengers may share the same vehicle that each person travels
alone. Moreover, these works consider a static instead of a dynamic number of travelers
since they only change pick-up location without leaving the system.

In [12], a fog based-architecture was proposed to handle charging and dispatching
problems. The fog-based design delivers the micro-management of electric vehicles
to the fog controller of each zone that is near the passengers, thus minimizing com-
munications and computation delays. Using a queuing model, this paper focuses on
representing multi-class dispatching and charging processes and finding the optimal
number of required vehicles (i.e. vehicle dimensioning) for each zone in order to ensure
a bounded response time. Decisions on the relative proportions of vehicles of the dif-
ferent classes to directly serve passengers or to fully/partially charge are also optimized
so as to minimize the overall number of vehicles in-flow to a given area. While the
proposed dispatching and charging architecture seems promising, the model assume a
certain customer request, fail to address the critical issue of vehicle imbalance and do
not leverage the emerging paradigm of ride-sharing service.
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Due to their capacity to accommodate complex constraints and their simplicity, a
number of previous studies on the control of AMoD and RAMoD systems use a network
flow framework to model the transportation system.

For instance, Rossi et al. [13] investigate the problem of rebalancing and routing a
shared fleet of self-driving vehicles offering on-demand mobility services for a capac-
itated road network, where congestion is susceptible to disrupt throughput. Within the
proposed network flow model, empty rebalancing and customer-carrying vehicles are
represented as flows over the capacitated network. Using the real road network of Man-
hattan, the authors show the efficiency and the superior performance of the proposed
rebalancing and routing algorithm compared to state-of-the-art algorithms. Despite these
significant findings, it was interesting for the authors to investigate other approaches to
reduce congestion, such as ride sharing services. Moreover, the paper fails to explore the
interaction between the power network and such electric fleets and assume that travel
demands are known with certainty.

Salazar et al. [14] devise a multi-commodity network flow optimization approach
that captures the interaction between public transit and AMoD systems. This model
aims to maximize social welfare by minimizing the operational costs generated by the
intermodal AMoD system together with customers’ travel time. Real-world case stud-
ies were undertaken in the transportation networks of Berlin and New York, which
allowed to assess of the significant benefits of intermodal systems such as reducing the
total number of vehicles, travel times, overall costs, and pollutant emissions. However,
the proposed model considers only single-occupant vehicles and fails to capture the
uncertainty effects such as variable travel demand, time-varying traffic congestion, and
transportation delays.

MPC algorithms are amenable to achieve efficient performance and allow for the
incorporation of complex and constrained systems. Accordingly, they have been widely
employed in problems ranging from control to analyze AMoD and RAMoD systems.
MPC algorithm (also called receding horizon control) is an iterative control technique
by which an optimization problem is solved at each stage to produce a series of control
actions up to a given fixed horizon, and the first action is implemented [15].

In [15], a linear discrete-time model to optimize vehicle scheduling and routing
in an AMoD system was proposed allowing the easy inclusion of several real-world
constraints such as vehicle charging constraints. Then, leveraging this formulation an
MPC algorithm was devised for the optimal coordination of the self-driving vehicles
in the transportation network. At each time step, the optimization problem is solved
as a mixed-integer linear program, with the objective of avoiding unnecessary vehicle
rebalancing and servicing passengers as quickly as possible. Although numerical results
demonstrate that the proposed approach outperforms previous strategies, these real-
world data were run for moderately-sized systems and without considering ride-sharing
services.
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A time-expanded network has been exploited in [16] to model the AMoD system.
Such a model allows simultaneously finding the minimum fleet size and the optimal
rebalancing policy. This formulation was adopted to devise anMPC algorithm to operate
the AMoD system in real-time by taking into account short-term forecasts of travel
demand. For this purpose, the authors use a forecasting model trained based on historical
data and neural networks. The complexity of the proposed approach does not depend
on the number of passengers or the number of vehicles. Thus it can be implemented to
control large-scale transportation systems. However, the authors did not indicate if the
proposed MPC algorithm can be employed to effectively control ridesharing systems.

To address the stochasticity of travel demand, [17] introduces a stochastic MPC
algorithm leveraging the uncertainty of demand forecasts for dispatching and rebalancing
self-drivingvehicles in anAMoDsystem.Togenerate the forecasts, TheLongShortTerm
Memory (LSTM) neural network was used to estimate the mean of future travel demand.
The proposed algorithm was tested using real data, and it has been exhibited that the
latter outperforms state-of-the-art non-stochastic approaches. However, the authors did
not discuss if the proposed algorithm can achieve similar gains by predicting stochastic
future demand in the context of ride-sharing systems.

This will be the subject of the paper appeared as [18], which focuses on devising an
MPC approach for RAMoD systems based on the present and future customer request.
The goal of this MPC algorithm is to minimize the weighted combination of the opera-
tional costs and the total travel time (i.e. maximize the social welfare). Despite the fact
that this model was developed to respond to travel requests in a ride-sharing context, the
authors choose to focus only on double-occupancy vehicles and they avoid investigating
high-occupancy models given computational complexity.

To position our researchwork in the extended domain of AMoD systems, we use four
criteria, namely the decision processes handled, the modeling approach used, the source
of uncertainty that the problem deals with, and whether the ride-sharing service has been
addressed. Table 1 shows a summary of the related works analyzed above in accordance
with these four dimensions. The majority of these studies are fairly recent because
AMoD andRAMoD systems are emerging transportation systems. Asmentioned before,
the majority of these studies fall into three specific groups: simulation-based models,
queuing-theoretical models, and MPC algorithms.

Simulationmodels are based on the interaction of complex choicemodels andmicro-
scopic interactions and are a very interestingmodeling approach that allows to accurately
capture transportation systems. Although such a modeling approach has shown its effec-
tiveness to deal with real transport networks, it fails to find an optimal solution for the
problem of controlling AMoD systems.

Queueing-theoretical models are amenable to efficient capture the uncertainty of
the travel demands, which can be adapted to an efficient control synthesis [19]. Such
modeling approaches have been built upon the “Jackson network” concept [20], in which
all road segments are modeled as queues of vehicles waiting to cross an intersection.
According to the Jackson network concept, the new arrivals at each queuing station
occur following the random Poisson process, assuming constant rates of occurrence for
a given random variable. For example, if the random variable is passenger arrival times,
constant rates of occurrence will assume that passengers will arrive at a constant rate
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at a station for a specified period of time. This means that this concept fails to reflect
the time-variant nature of the passenger arrival rates that occurs in the real world, and
thereby reduces realism. Thus, although queuing models can lead to a tractable solution
to the complex challenges of AMoD systems, the outlined drawback restrict the ability
of transport modelers to provide a realistic view of these systems.

Despite the advantage of efficiently implementing time-varying travel demand com-
pared to the previously discussed approaches, themost currentMPC algorithms assume a
deterministic future travel demand.Moreover, the limited number of models that address
uncertainty to forecast travel requests mainly suggest the use of stochastic program-
ming.Whenever historical data is unavailable or even unreliable, reasoning probabilistic
approaches may not be the best option. Thus, the Fuzzy set theory [21] and the possi-
bility theory [2] are adequate to handle such problems with a lack of data knowledge.
Subsequently, it has been successfully adopted for modeling and dealing with uncer-
tainties in a variety of disciplines such as supply chain planning [22], image processing
[23], Business Process modelling [24], web services [25], etc. Despite these advents, the

Table 1. Summary of the analysis of the literature according to four criteria.

Paper Process Method Uncertainty RideSharing

[4] Dispatching Simulation – –

[5] Dispatching and routing Simulation – –

[6] Dispatching and routing Simulation – X

[7] Rebalancing Simulation Demand X

[8] Routing and rebalancing Queuing model – –

[9] Routing, rebalancing and
charging

BCMP queuing network
model

Demand –

[12] charging and dispatching Queuing model – –

[13] Routing and rebalancing Network flow model – –

[14] Routing and rebalancing Network flow model – –

[15] Dispatching, routing and
rebalancing

MPC algorithm – –

[16] Dispatching and
rebalancing

MPC algorithm – –

[17] Dispatching and
rebalancing

MPC algorithm Demand –

[18] Dispatching, routing and
rebalancing

MPC algorithm – X

[3] Dispatching and
rebalancing

Fuzzy logic Demand X

This paper dispatching, rebalancing,
and charging

Fuzzy logic Demand X
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only research work exploring the potential of the fuzzy logic to deal with uncertainties in
AMoD systems is our previous work appeared as [3]. As mentioned in Table 1, the major
technical difference is that in this research work we address the integrated problem for
dispatching, rebalancing, and charging for RAMoD systems, rather than the dispatching
and the rebalancing problem.

In the following section, the basic concepts of the fuzzy set theory and the possibility
theory are summarized.

3 Basic Concepts

This section briefly outlines the fuzzy set theory, the triangular fuzzy numbers and the
goal programming method used in this paper.

3.1 Fuzzy Set Theory

Fuzzy set theory was first suggested by Zadeh [21] to model and handle information
pervaded by uncertainty and imprecision. Moreover, it allows easy integration of sub-
jective experts’ judgments. From a mathematical perspective, a fuzzy set is a class of
elements characterized by a membership function. Unlike classical logic, the attachment
of an element to a class is not anymore binary but rather a matter of degree ranging from
zero to one. There are various kinds of fuzzy numbers. Among these different shapes,
Triangular Fuzzy Numbers and Trapezoidal Fuzzy Numbers (illustrated respectively in
Figs. 1 and 2) are the most popular ones.

3.2 Triangular Fuzzy Numbers

In this paper, the pattern of triangular fuzzy numbers (TFN) is adopted to model the
imprecise travel demands. Due to its various advantages, this kind of fuzzy numbers
has been widely adopted in the literature. Among others, the simplicity of collecting the
required information, intuitiveness (i.e., a decision-maker usually finds it significantly
easier to identify the most pessimistic, optimistic, and likely values of a given business
process), and efficiency in related computations are the key advantages. These benefits
were our principal motivation for adopting the TFNs pattern for representing the impre-
cise information in our problem. For more detailed theoretical justifications of TFN, we
refer the reader to [26, 27].

As depicted in Fig. 1, a TFN Ñ = (n1, n2, n3) where n1, n2, n3 are receptively the
most pessimistic, the most possible and the most optimistic value of Ñ evaluated by the
decision-maker.

Definition 1: The TFN Ñ can be defined by the following membership function:

μÑ (x) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

0, x ≤ n1
x−n1
n2−n1

, n1 < x ≤ n2
n3−x
n3−n2

, n2 < x ≤ n3
0, x > n3

(1)
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Fig. 1. The triangular possibility distribution of Ñ .

Fig. 2. The trapezoidal possibility distribution of Z̃ .

Definition 2: Let A and B two triangular fuzzy numbers defined as N = (n1, n2, n3),
M = (m1, m2, m3). The main operations on these fuzzy numbers can be summarized as
follows:

Ñ1 ⊕ M̃2 = (n1 + m1, n2 + m2, n3 + m3) (2)

Ñ1 �M̃2 = (n1 − m1, n2 − m2, n3 − m3) (3)

Ñ1 ⊗ Ñ2 = (n1 × m1, n2 × m2, n3 × m3) (4)

Ñ1 ⊗ k = (n1 × k, n2 × k, n3 × k), for each k ∈ R (5)

Ñ1

Ñ2
=

(
n1
m3

,
n2
m2

,
n3
m1

)

(6)

(
Ñ1

)−1 =
(

1

n3
,
1

n2
,
1

n1

)

(7)
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3.3 Goal Programming

There are a number of multi-objective decision-making approaches in the scientific
literature. Among them, goal programmingwhich is one of themost powerful techniques
for processing multi-objective models in concrete decision-making. This technique was
originally proposed byCharnes et al. [28] and successfully implemented in several issues
[29, 30]. The popularity of the GP approach is based, among others, on its robustness,
its mathematical flexibility, and its accuracy.

The formulation of the GP approach is based on introducing for each criterion an
expected goal to be achieved and identifying the best solution that minimizes the sum
of the deviations from these objectives. However, the application of the GP method in
practical decision-making problems can face a significant challenge, namely the inte-
gration of decision-makers’ preferences. In such a situation, the use the Weighted Goal
Programming (WGP) method comes in handy.

The basic form of WGP can be written as:

Min
x∈A

n∑

i=1

(
w+
i δ+

i + w−
i δ−

i

)
(8)

Subject to :
Ck(x) ≤ 0, l = 1, 2, ..,L

Fi(x) − δ+
i + δ−

i = gi, i = 1, 2, .., n
δ+
i , δ−

i ≥ 0

Where:

• Ck(x) is the kth constraint.
• gi is the target value of the objective function i.
• Fi(x) is the evaluation of the solution x with respect to criterion i.
• w+

i is the weight attached to the positive deviation.
• w−

i is the weight attached to the negative deviation.
• δ+

i is the positive deviation from the goal gi.
• δ−

i is negative deviation from the goal gi.

4 The Problem Setting

As depicted in the literature review section, significant progress has been achieved in
recent years to control and analyzeAMoD andRAMoD systems. However, these various
initiatives are conducted in urban areas and do not address the specificities of low-density
where travel solutions are scarcer.

The problem considered in this paper is motivated by the Tornado Mobility research
project [31], aiming to study the interaction between connected infrastructures for
mobility services and autonomous vehicles in a low-density environment.
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For this propose, we consider a transportation network partitioned into multiple
stations and served by self-driving vehicles offering on-demand mobility services. All
autonomous vehicles in this transportation network are multiple-occupancy, i.e. they can
serve several customers at any given time without exceeding their carrying capacity.

The considered fleet of self-driving vehicles is endowed with a high level of het-
erogeneity, i.e. transportation costs, carrying capacity, and speeds can be very different
from one vehicle to another.

In the specific context of the Tornado project, passengers can request transportation
to and from in the predefined road network via amobile application. If there are available
cars, one of them will be assigned to carry this customer towards its destination. Other-
wise, the customer will leave the system immediately without any waiting time. This is
because we adopt in our RAMoD system the customer model referred to as a “passenger
loss” model [8, 9]. A consequence of this model is that the number of passengers at
each station is always zero (since users either leave the system or depart immediately
with a car). Such an assumption is well suited for AMoD and RAMoD systems where
a high-quality service is desired [9].

By the trip’s end, the vehicle could either assigned to provide other on-demand
mobility or rebalance itself throughout the transportation network. It could also park in
the drop-off station or even recharge its battery at a charging station.

Each station in the transportation network has a limited number of parking spaces
and charging resources.

Note that the time is measured in discrete and ordered intervals.
The proposed model differs from other traditional approaches, as we do not assume

perfect knowledge of future travel requests; Instead, it was assumed that such critical
information is evaluated by the decision-maker using fuzzy numbers.

5 A Solution Procedure for the Dispatching, Rebalancing
and Charging Problem

To address the challenging problem detailed in the previous section, we propose a three-
phase framework, where the main stages are illustrated in Fig. 3 and detailed in the
following sub-sections.

5.1 Phase I: Formulation of the Dispatching, Rebalancing and Charging Problem

• Notation
Below are the indices, decision variables and parameters used in the formulation of
the problem.

– Indices

t index of time periods (t = 1, 2…, T ).
v index of vehicles (v = 1, 2…, V ).
s index of stations (s = 1, 2, …, S).
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Fig. 3. A solution procedure for the Dispatching, Rebalancing and Charging problem.

– Parameters

C̃rt,s1,s2 number of travel requests from station s1 to station s2 in period t.
Ds1, s2 distance separating the stations s1 and s2.
SPv sailing speed of the autonomous vehicle v.
Capv carrying capacity of the autonomous vehicle v.
initv,s indicates the availability of the autonomous vehicle v at station s in the

first period. i.e. if vehicle v is initially available at station s, initv,s = 1
and 0 otherwise.

RCv rate of charge of the autonomous vehicle v at a charging station.
RDv rate of discharge of the autonomous vehicle v while driving.
Park_caps number of parking space at the station s.
Ch_caps number of charging station at the station s.

– Decision Variables

Parkv,t,s binary variable specifying if the autonomous vehicle v is parked
in station s during the period t.

Chv,t,s binary variable indicating if the autonomous vehicle v is
charging in station s during the period t.

Waitv,t,s binary variable indicating if the autonomous vehicle v is waiting
in station s during the period t.

Missv,t binary variable specifying if the autonomous vehicle v is on
mission during the period t.

Miss_Tv,s1,s2,t1,t2 binary variable specifying if the autonomous vehicle v is on a
transport mission from the station s1 to the station s2 starting at
period t1 and arriving at period t2.
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Miss_Rv,s1,s2,t1,t2 binary variable specifying if the autonomous vehicle v is on a
rebalancing mission from the station s1 to the station s2 starting
at period t1 and arriving at period t2.

Socv,t shows the state of charge of the autonomous vehicle v over time.
i.e. a value Socv,t= 1 means that the battery of the vehicle v is
fully charged at the end of the period t while Socv,t= 0 means
that the battery of v is depleted at the end of t.

S_Crt,s1,s2 The number of satisfied travel demands from station s1 to station
s2 starting at the period t.

• Mathematical Model
Using the notation of the previous sub-section, a multi-objective possibilistic linear
programming model can be written as:

– Objective Functions
Weconsider twomajor and conflicting goals in our integrated dispatching, rebalanc-
ing, and charging problem: the total cost (TC) and the level of customer satisfaction
((LC̃r)).

Objective 1: Minimizing the total cost.

Minimize TC = ∑T
t1,t2=1

∑S
s1,s2=1

∑V
v=1 RDv ∗ Dists1, s

∗ (Miss_Tv,s1,s2,t1,t2 + Miss_Rv,s1,s2,t1,t2)
(9)

Objective 2: Improving the level of customer satisfaction through minimizing the
number of lost travel demands.

Minimize LC̃r =
∑T

t=1

∑S

s1,s2=1
Cr̃t,s1,s2 − S_Crt,s1,s2 (10)

– Model Constraints

Parkv,t,s, Chv,t,s, Waitv,t,s, Missv,t, Miss_Rv,s1,s2,t1,t2, Miss_Tv,s1,s2,t1,t2
ε {0, 1} t, t1, t2, s, s1, s2, v

(11)

Socv,t ε [0, 1] ∀v, t (12)

S_Crt, s1, s2 ≥ 0 and integer ∀ s1, s2, t (13)

The limitation of the decision variables is presented by the Eqs. (11), (12), and (13):
S_Crt,s1,s2is an integer, Socv,t is ranging from zero to one, while other variables are
binary.

∑S

s=1
Missv,t + Parkv,t,s ∀v, t (14)

Constraints (14) presents the two possible states that an autonomous vehicle can
take, i.e. parking in a station and being on a mission. On the other hand, this equation
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ensures that a vehicle can have just one state at any given time.

Parkv,t,s = Chv,t,s + Waitv,t,s ∀v, t, s (15)

When a vehicle is parked in a station, two different actions can be achieved: it can
charge at a charging point or wait for customers. This is specified using the constraint
(15), which also means that the vehicle can perform just one action at any given time.

Missv,t =
∑S

s1,s2=1

∑

t1,t2≤t
Miss_Rv,s1,s2,t1,t2 + Miss_Tv,s1,s2,t1,t2 ∀v, t (16)

Similarly, when a self-driving vehicle is on a mission, two different actions can
be performed (i) transport one or several passengers from one station to another, and
(ii) travel without passengers to rebalance the RAMoD system. These constraints are
specified using the Eq. (16), which also implies that a self-driving vehicle can perform
only one action at any given time.

initv,s ≥ Miss_Rv,s,s2,t,t2 + Miss_Tv,s,s1,t,t1 + Parkv,t,s
∀v, s, t = 1, s1, s2, t1 = t + (Ds,s1/SPv)

(17)

Equation (17) states that a vehicle cannot be parked at a station s during the first
period if, and only if, it is initially available at this station. Similarly, a self-driving
vehicle v may only travel on a passenger(s) transport mission or a rebalancing mission
from a station s during the first period if, and only if, it is initially available at this station.

Parkv,t,s ≤ ∑
s1 	=s Miss_Rv,s1,s,t1,t−1 + ∑

s2 	=s Miss_Tv,s2,s,t2,t−1 + Parkv,t−1,s

∀v, s, t > 1, t1 = t − (Ds1,s/SPv) − 1, t2 = t + (Ds2,s/SPv) − 1
(18)

Equation (18) ensures that if a self-driving vehicle v is parked at a station s during a
time period t, it must be physically located in s at the beginning of t.

Miss_Tv,s1,s2,t1,t2 ≤ ∑
s3	=s1Miss_Rv,s3,s1,t3,t1−1 + ∑

s4 	=s1Miss_Tv,s4,s1,t4,t1−1 + Parkv,t1−1,s1

∀ v, s1, s2, t1 > 1, t2 = t1 + (Ds1,s2/SPv),
t3 = t1 − (Ds3,s1/SPv) − 1, t4 = t1 − (Ds4,s1/SPv) − 1

(19)
Miss_Rv,s1,s2,t1,t2 ≤ ∑

s3	=s1Miss_Rv,s3,s1,t3,t1−1 + ∑
s4 	=s1Miss_Tv,s4,s1,t4,t1−1 + Parkv,t1−1,s1

∀ v, s1, s2, t1 > 1, t2 = t1 + (Ds1,s2/SPv),
t3 = t1 − (Ds3,s1/SPv) − 1, t4 = t1 − (Ds4,s1/SPv) − 1

(20)

When a self-driving vehicle v is on a mission from station s1 to station s2 beginning
at t1, vmust be physically located in s1 at the beginning of t1. It means, either the vehicle
v i) parked at s1 during the last period (i.e. Parkv,t−1,s1 = 1) or ii) arrived at s1 during the
last period (i.e.Miss_Tv,s3,s1,t3,t1−1 = 1OrMiss_Rv,s4,s1,t4,t1−1 = 1). The constraints (19)
and (20) ensure that this rule is respected respectively for passenger transport missions
and rebalancing missions.

∑V

v=1
Parkv,t,s ≤ Park_caps ∀t, s (21)
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Constraint (21) represents the parking capacity limitation for all time. This means
that the overall number of vehicles parked at a station s during the time period t
(i.e.

∑V
v=1 Parkv,t,s) must not exceed the parking space limitation at the station s (i.e.

Park_caps).

∑V

v=1
Chv,t,s ≤ Ch_caps ∀t, s (22)

Equation (22) indicates the charging capabilities at each station for all time.

S_Crt,s1,s2 ≤ C̃rt,s1,s2 ∀t, s1, s2 (23)

Constraint (23) assures that self-driving vehicles dispatched to transport customer(s)
from one station to another cannot serve more customers than requested.

S_Crt1,s1,s2 ≤
∑V

v=1
Capv ∗ Miss_Tv,s1,s2,t1,t2 ∀ t1, t2 = t1 + (Ds1,s2/SPv), s1, s2 (24)

Constraint (24) guarantees that the number of satisfied travel demands from station
s1 to station s2 starting at the period t1 cannot exceed the overall capacity of the vehicles
dispatched to transport passengers from s1 to s2 starting at t1.

Socv,t ≥ Min(Socv,t−1 +
∑S

s=1
Chv,t,s ∗ RCv, 1) − RDv ∗ Missv,t ∀v, t > 1 (25)

Socv,1 ≥ Min(1 +
∑S

s=1
Chv,1,s ∗ RCv, 1) − RDv ∗ Missv,1 ∀v (26)

Equations (25) and (26) model the evolution of each vehicle’s charge while assuming
that the batteries are fully charged at the beginning of the first period.

Socv,t1 ≥ Miss_Rv,s1,s2,t1,t2 ∗ RDv ∗ (Ds1,s2/SPv)

∀v, s1, s2, t1, t2 = t1 + (Ds1,s2/SPv)
(27)

Socv,t1 ≥ Miss_Tv,s1,s2,t1,t2 ∗ RDv ∗ (Ds1,s2/SPv)

∀v, s1, s2, t1, t2 = t1 + (
Ds1,s2/SPv

) (28)

Equations (27) and (28) are the charge constraints to ensure that each self-driving
vehicle has sufficient charge to accomplish its trip. Specifically, Eq. (27) guaran-
tees enough charge for rebalancing trips, and Eq. (28) guarantees enough charge for
passengers’ trips.

5.2 Phase II: Development of an Axillary Multi-objective Linear Model

In this paper, we adopt the TFNs pattern for representing the imprecise travel request
in the customer satisfaction objective function and constraint (23). As outlined below,
triangular possibility distribution C̃r can be presented by the triplet (Crp, Crm, Cro)
where Crp, Crmand Cro are the most pessimistic value of C̃r, the most possible value
of C̃r, and the most optimistic value of C̃r.

The main goal of this second phase is to treat such fuzzy parameter and transform
the proposed fuzzy formulation into an equivalent auxiliary crisp multi-objective model.
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• Treating the Soft Constraint
To treat the fuzzy travel request in the right-hand side of Eq. (23), the well-
known weighted average method is implemented for the defuzzification process and
transforming the C̃r parameter into an equivalent crisp number.

This method was first developed by Lai and Hwang [33] and has been successfully
implemented in several research studies [34–36] due to its efficiency and simplicity.
In order to do so, we must first identify a minimal acceptable possibility degree of
occurrence for the fuzzy parameter, α. The original fuzzy constraint (23) can then be
represented by a new crisp equation as described below:

S_Crt,s1,s2 ≤ w1Cr
p
t,s1,s2,α + w2Cr

m
t,s1,s2,α + w3Cr

o
t,s1,s2,α ∀t, s1, s2 (29)

Where and w1, w2, and w3 designate respectively the weight of the most pessimistic,
the weight of the most possible, and the weight of the most optimistic of the fuzzy travel
and verifying the following equation:

w1 + w2 + w3 = 1. (30)

In practice, these weights, as well as the minimum acceptable degree of possibility
α, can be subjectively specified on the basis of the decision maker’s knowledge and
experience.

In our framework, we use the concept of most likely values, which is extensively
adopted in the literature [33]. In accordance with this concept, the most optimistic
and pessimistic values should be given a lower weight than the most possible value.
Therefore, similarly to [33], we fix these parameters as follows:

w1 = w3 = 1/6; w2 = 4/6 and α = 0.5. (31)

• Treating the Imprecise Customer Satisfaction Objective Function
Due to the inaccuracy of the travel request parameter in the customer satisfaction
objective function, it is typically not possible to identify an optimal solution to the
problem defined by the Eqs. (9)–(28).

In the academic literature, various approaches are suggested to find compromise
solutions [33, 37–40]. As stated by Hsu and Wang [41], the first four strategies are
predicated on restrictive assumptions and are usually hard to implement in practice, we,
therefore, adopt Lai and Hwang’s approach [33, 35].

Since the imprecise travel request C̃r ismodeled using a triangular-shaped possibility
distribution, the customer satisfaction objective function LC̃r could also be represented
by a triangular possibility distribution. This imprecise goal is geometrically presented
by the three main points (LCrp, 0), (LCrm, 1), and (LCro, 0). It is consequently possible
to minimize the fuzzy goal by pushing these critical points towards the left.

According to Lai and Hwang’s approach, resolving this problem consists of min-
imizing LCrm, maximizing (LCrm − LCrp), and minimizing (LCro − LCrm). Thus,
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our imprecise customer satisfaction objective function can be converted into three crisp
objectives as described below:

Min Z1 = LCrm =
∑T

t=1

∑S

s1,s2=1
Crmt,s1,s2 − S_Crt,s1,s2 (32)

Max Z2 = LCrm − LCrp =
∑T

t=1

∑S

s1,s2=1
(Crmt,s1,s2 − Crpt,s1,s2) − S_Crt,s1,s2

(33)

Min Z3 = LCro − LCrm =
∑T

t=1

∑S

s1,s2=1
(Crot,s1,s2 − Crmt,s1,s2) − S_Crt,s1,s2 (34)

5.3 Phase III: Finding a Preferred Compromise Solution

In the previous phase, the proposed multi-objective possibilistic model has been trans-
formed into an equivalent auxiliary crisp multi-objective model. In this third phase, we
adopt the Weighted Goal Programming method, incorporating specific weights for each
criterion, allowing us to treat this multi-objective model.

Therefore, we can reformulate our problem as below:

1. Min FGP = WTC ∗ δ+
TC + WZ1 ∗ δ+

1 + WZ2 ∗ δ−
2 + WZ3 ∗ δ+

3 (35)

Subject to : (11) − (22), (24) − (29)

TC − δ+
TC = TC∗ (36)

Z1 − δ+
1 = Z∗

1 (37)

Z2 + δ−
2 = Z∗

2 (38)

Z3 − δ+
3 = Z∗

3 (38)

Where:

• TC∗ is the goal calculated based on the mathematical model with the total cost objec-
tive function (9) subject to constraints (11)-(22), (24)–(29), and δ+

TC is the positive
deviation from this goal.

• Z∗
1 is the goal calculated using the mathematical model with the objective function

(32) subject to the constraints (11)–(22), (24)–(29), and δ+
1 is the positive deviation

from this goal.
• Z∗

2 is the goal calculated using the mathematical model with the objective function
(33) subject to the constraints (11)–(22), (24)–(29), and δ−

2 is the negative deviation
from this goal.

• Z∗
3 is the goal calculated using the mathematical model, with the objective function

(34) subject to the constraints (11)–(22), (24)–(29), and δ+
3 is the positive deviation

from this goal.
• WTC,WZ1,WZ2 and WZ3 are the importance weights of the various goals such that
WTC+ WZ1+ WZ2+ WZ3= 1.
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6 Numerical Experiments

In this section, we present numerical experiments to demonstrate the validity and appli-
cability of our integrated strategy for dispatching, rebalancing, and charging decisions,
especially in the presence of imprecise travel demands. Then, we explore the perfor-
mance of the newly suggested strategy, in comparison with other dispatch strategies by
varying travel demand over the forecast horizon.

For all experiments, we consider five stations and a fleet size of 20 self-driving
vehicles.

The forecast horizon is decomposed into ten time periods. Such periods correspond
to 10 different predicted travel demands with TFNs.

At the beginning of the first period, the self-driving vehicles were distributed equally
over the road network, i.e. six vehicles for each station.

The carrying capacity of the vehicles is characterized by a high level of heterogeneity,
which varies from a single capacity to a ten-passenger capacity.

For simplification purposes, we assume that the travel time between two given sta-
tions is a one-time step. Moreover, we consider that the importance weight of the various
goals is the same (i.e.WTC= WZ1= WZ2= WZ3= 1/4).

For all numerical experiments, the suggested approach has been implemented using
the LINGO optimization package.

6.1 Detailed Results

Figure 4 illustrates the results generated by the suggested approach by specifying the
status of self-drive vehicles over the planning horizon.

We remind that a self-driving vehicle can be on a rebalancing mission, be on a
customer(s) transport mission, and be waiting or charging in a station.

These different decisions are constrained by the criteria of minimizing overall costs
and maximizing customer satisfaction in each period of the forecast horizon.

It has been found that the increased cost of transporting a vehicle leads to not using
it if the travel request can be met by vehicles with lower costs. For instance, during
the first period, travel requests were met with the various stations. Especially for S2,
this fuzzy travel demand has been met by using the V5 and V6 with the use of ride-
sharing, while the V7 and V8 remain parked in S2 due to their significantly higher
transportation costs. Similarly, in the second period, V10 and V11 remain parked in S3
as travel demand was met by self-driving vehicles with lower transportation costs (i.e.
V2, V6, and V17). With the increasing travel demands in the third and fourth periods
and directed by the maximization of customer satisfaction, all vehicles in the fleet were
launched on missions, including the most costly ones.

Nevertheless, beyond the 5th time period, the mobilization of all the fleet’s vehicles
becomes insufficient to meet travel request, especially when certain stations are more
popular than others, at the end of the journey, vehicles tend to accumulate in these
stations and deplete in others. This justifies the need to integrate rebalancing decisions
from overloaded stations to under loaded ones as a solution to the problem of vehicle
imbalances. Such decisions are also driven by the cost-minimization criterion. In fact,
the least costly vehicles will be assigned in the first place to rebalancing missions.
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6.2 Performance Analysis

To explore the performance of the proposed strategy (called “D-R-C-RAMoD-Fuzzy”
in this section), we conducted numerical experiments comparing it against other strate-
gies. Specifically, these dispatching strategies are three different variants of the newly
suggested approach.

D-C-RAMoD-Fuzzy: This version is exclusively dedicated to the problem of dispatch-
ing and recharging, and vehicles do not rebalance in any circumstances.
D-R-C-AMoD-Fuzzy:This version uses the samemodel outlined in the previous section
for single-capacity vehicles (i.e. without the use of ride-sharing service).
D-R-C-RAMoD-Perfect: This is the integrated strategy for dispatching, rebalancing,
and charging proposed in the previous section based on exact travel demand as it appears
in the data set as a forecast for the next ten periods. It is an effective approach to finding
the optimal dispatching, rebalancing, and charging policies in the situation where the
customer’s demand is already known in advance. In this way, it can be leveraged to
deliver upper bounds of system performance.

The results of this comparative analysis are summarized in Fig. 5, which provides
an illustration of the number of lost travel requests for each strategy over time.

As intended, the approach with precise travel demands is undoubtedly the most
powerful strategy, with reduced transport costs and a minimum number of lost travel
requests.

The “D-R-C-AMoD-Fuzzy” strategy has by far the most poor performance, with
mean lost travel demands sixfold than that of the “D-R-C-RAMoD-Perfect” approach
and multiplied by four compared to that of our suggested strategy (i.e. D-R-C-RAMoD-
Fuzzy”. That is not unexpected, because here the single-capacity policy is compared to
ride-sharing schemes, where the maximum allowable capacity of vehicles is increased
to ten.

The significant difference in performance between the “D-R-C-RAMoD-Perfect”
strategy and the “D-C-RAMoD-Fuzzy” strategy can also be observed from Fig. 5, illus-
trating the number of lost travel requests over the planning horizon. Specifically, this
strategy has caused a significant increase in the number of lost travel demands over
the planning horizon, with an average of lost travel demands multiplied by three com-
pared to the “D-R-C-RAMoD-Fuzzy” strategy and multiplied by four compared to the
“D-R-C-RAMoD-Perfect” strategy. This is also not surprising, as we can achieve sig-
nificant performance gains by integrating rebalancing trips to ensure a balance between
the number of available vehicles at each station and travel demands.
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Fig. 4. Vehicle scheduling as a function of time.

A considerable performance gain is attributed to the integration of rebalancing poli-
cies as part of the “D-C-RAMoD-Fuzzy” strategy and the fact that several passengers
can share the same trip. Indeed, it can be seen that out of ten different experiments, the
proposed strategy produces an optimal design for six experiments. It also generates solu-
tions that are very close to the optimal plan for the other time periods, with a variance of
35%. These findings demonstrate the robustness of the proposed strategy for managing
the fleet and meeting customer needs, even when travel demand forecasts are tainted by
ambiguity.
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Fig. 5. The number of lost travel requests for each strategy as a function of time.

7 Conclusion

Despite the significant progress achieved in vehicle electrification and automation, the
next decade’s aspirations for large-scale deployments of AMoD and RAMoD services
in metropolitan cities are still threatened by two significant bottlenecks. First, due to
several externalities, the travel demand forecasts are subject to significant uncertainties,
thus resulting in excessive, if not prohibitive, delays for customers if dispatching and
rebalancing decisions fail to address uncertainty on the travel forecasts. Moreover, the
requirement to make additional trips for recharging electric vehicles and in some cases,
a vehicle may need to wait to charge instead of transporting waiting customers can
significantly affect the convenience of AMOD systems and reduce its impact in resolving
urban congestion problems.

In order to target travel demand uncertainty, we suggest the exploitation of the fuzzy
set theory. Indeed, while deterministic or stochastic formulations remain unable to cap-
ture vagueness in the critical data, fuzzy logic is widely agreed to be a key framework for
describing and treating uncertainty. To address the second limitation, the paper suggests
the integration of a smart charging process with dispatching and rebalancing decisions.
The optimal coordination of such decisions proves its efficiency to establish optimal
schedules for electric vehicles charging given travel demand forecasts.

Specifically, the problem is first formulated as a multi-objective possibilistic linear
programmingmodel incorporating two important conflicting goals simultaneously: min-
imizing transportation costs and improving customer satisfaction. The proposed Fuzzy
model is then transformed into an equivalent multi-objective integer linear programming
model by combining two appropriate strategies. In order to guarantee the obtaining of an
efficient compromise solution, the weighted goal programming model is being exploited
reducing the initial problem to a scalar formulation and allowing the decision-maker to
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define an aspiration level for each objective. Numerical experiments demonstrate that
the proposed approach is tractable and practical to deal with real-sized problems and
provides an effective tool for managing dispatching, rebalancing, and charging decisions
in RAMoD systems.

This paper opens the field for numerous important directions for further research.
First, it is of great interest to study the inclusion of routing policies by designing a

comprehensive road network with finite capacity (currently, the road network is mod-
eled with infinite capacity). This research axis can also address congestion effects, thus
leaving an important extension open to study the impact of the proposed strategies on
overall congestion. Second, the proposed framework can be extended to address not only
uncertain travel demand but also fluctuations of several other critical parameters such as
transportation costs, the state of charge electric vehicles, vehicle availability, etc. Third,
we currently examine the RAMoD system independently of other transportation sys-
tems, whereas, in practice, travel demand depends on the different transportation modes.
Future studies will investigate the effect of RAMoD systems on passenger behavior and
the optimal integration of autonomous vehicle fleets with public transport. Finally, it is
of interest to investigate the couplings that could occur between the electric grid and the
charging strategies of an electric-powered RAMoD fleet.
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