
Marten van Sinderen
Leszek A. Maciaszek
Hans-Georg Fill (Eds.)

15th International Conference, ICSOFT 2020
Online Event, July 7–9, 2020
Revised Selected Papers

Software Technologies

Communications in Computer and Information Science 1447

Communications
in Computer and Information Science 1447

Editorial Board Members

Joaquim Filipe
Polytechnic Institute of Setúbal, Setúbal, Portugal

Ashish Ghosh
Indian Statistical Institute, Kolkata, India

Raquel Oliveira Prates
Federal University of Minas Gerais (UFMG), Belo Horizonte, Brazil

Lizhu Zhou
Tsinghua University, Beijing, China

https://orcid.org/0000-0002-5961-6606
https://orcid.org/0000-0002-7128-4974

More information about this series at http://www.springer.com/series/7899

http://www.springer.com/series/7899

Marten van Sinderen • Leszek A. Maciaszek •

Hans-Georg Fill (Eds.)

Software Technologies
15th International Conference, ICSOFT 2020
Online Event, July 7–9, 2020
Revised Selected Papers

123

Editors
Marten van Sinderen
Information Systems Group
Enschede, The Netherlands

Leszek A. Maciaszek
Wrocław University of Economics Institute
of Business Informatics
Wrocław, Poland

Macquarie University
Sydney, Australia

Hans-Georg Fill
Universität Fribourg
Fribourg, Switzerland

ISSN 1865-0929 ISSN 1865-0937 (electronic)
Communications in Computer and Information Science
ISBN 978-3-030-83006-9 ISBN 978-3-030-83007-6 (eBook)
https://doi.org/10.1007/978-3-030-83007-6

© Springer Nature Switzerland AG 2021
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this book are
believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors
give a warranty, expressed or implied, with respect to the material contained herein or for any errors or
omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

This Springer imprint is published by the registered company Springer Nature Switzerland AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

https://doi.org/10.1007/978-3-030-83007-6

Preface

The present book includes extended and revised versions of a set of selected papers
from the 15th International Conference on Software Technologies (ICSOFT 2020),
exceptionally held as a web-based event, due to the COVID-19 pandemic, during July
7–9, 2020.

ICSOFT 2020 received 95 paper submissions from 36 countries, of which 19 were
accepted and presented as full papers at the conference. After the conference, the
authors of a selection of the presented full papers were invited to submit a revised and
extended version of their paper, having at least 30% new material. This resulted in 12
revised and extended papers (i.e., 13% of the original 95 submissions) that were
included in this book.

The papers were selected by the event chairs and their selection was based on a
number of criteria that included the classifications and comments provided by the
Program Committee members, the session chairs’ assessment, and the verification
of the papers’ revisions and extensions by the program and conference chairs.

The purpose of the ICSOFT conference series, which started in 2006, is to bring
together researchers, engineers, and practitioners interested in software technologies.
The conference areas are “Software Engineering and Systems Development”, “Soft-
ware Systems and Applications”, and “Foundational and Trigger Technologies”.

The topics of the extended and revised papers cover a wide range of some of the
most recent and highly relevant software technologies ranging from model-based
approaches for cyber-physical systems and internet-of-things systems, and machine
learning algorithms for software testing, to semantic methods for cloud and data
applications and formal verification approaches.

We would like to thank all the authors for their contributions and the reviewers who
have helped ensure the quality of this publication.

July 2020 Hans-Georg Fill
Marten van Sinderen

Leszek Maciaszek

Organization

Conference Chair

Leszek Maciaszek Wroclaw University of Economics and Business,
Poland, and Macquarie University, Sydney,
Australia

Program Co-chairs

Marten van Sinderen University of Twente, The Netherlands
Hans-Georg Fill University of Fribourg, Switzerland

Program Committee

Peter Amthor Technische Universität Ilmenau, Germany
Vincent Aranega University of Lille, France
Pasquale Ardimento University of Bari Aldo Moro, Italy
Ethem Arkin Hacettepe University, Turkey
Soumyadip Bandyopadhyay BITS Pilani K K Birla Goa Campus, India, and Hasso

Plattner Institute, Germany
Davide Basile University of Florence, Italy
Yann Ben Maissa INPT, Morocco
Jorge Bernardino Polytechnic of Coimbra - ISEC, Portugal
Mario Berón Universidad Nacional de San Luis, Argentina
Marcello Bersani Politecnico di Milano, Italy
Dominique Blouin Telecom Paris, France
Antonio Bucchiarone Fondazione Bruno Kessler, Italy
Thomas Buchmann University of Bayreuth, Germany
Jonas Bulegon Gassen Antonio Meneghetti Faculdade, Brazil
Andrea Burattin University of Innsbruck, Austria
Fergal Caffery Dundalk Institute of Technology, Ireland
Alejandro Calderón University of Cádiz, Spain
Ana Castillo Universidad de Alcalá, Spain
Ana Cavalli Telecom SudParis, France
Alexandru Cicortas West University of Timisoara, Romania
Lidia López Cuesta Universitat Politècnica de Catalunya, Spain
Sergiu Dascalu University of Nevada, Reno, USA
Cléver Ricardo de Farias University of São Paulo, Brazil
Martina De Sanctis Gran Sasso Science Institute, Italy
Steven Demurjian University of Connecticut, USA
Chiara Di Francescomarino FBK-IRST, Italy
Amleto Di Salle University of L’Aquila, Italy

Francisco Domínguez Mayo University of Seville, Spain
German-Lenin

Dugarte-Peña
Universidad Carlos III de Madrid, Spain

Gencer Erdogan SINTEF, Norway
Morgan Ericsson Linnaeus University, Sweden
Anne Etien Université Lille 1, France
João Faria University of Porto, Portugal
Estrela Ferreira Cruz Instituto Politécnico de Viana do Castelo, Portugal
Felix Garcia Clemente University of Murcia, Spain
Alejandra Garrido Universidad Nacional de La Plata and CONICET,

Argentina
Aritra Ghosh Florida Atlantic University, USA
Paola Giannini University of Piemonte Orientale, Italy
John Gibson Telecom SudParis, France
Ana-Belén Gil-González University of Salamanca, Spain
Gorkem Giray Independent Researcher, Turkey
Ricardo Giuliani Martini Universidade Franciscana, Brazil
Jose Gonzalez University of Seville, Spain
Gregor Grambow Hochschule Aalen, Germany
Christiane Gresse

von Wangenheim
Federal University of Santa Catarina, Brazil

Hatim Hafiddi INPT, Morocco
Ludovic Hamon Le Mans Université, France
Jean Hauck Universidade Federal de Santa Catarina, Brazil
Pedro Henriques University of Minho, Portugal
Jose Herrera Universidad del Cauca, Colombia
Mercedes Hidalgo-Herrero Universidad Complutense de Madrid, Spain
Jose R. Hilera University of Alcala, Spain
Ralph Hoch TU Wien, Austria
Andreas Holzinger Medical University Graz, Austria
Jang-Eui Hong Chungbuk National University, South Korea
Miloslav Hub University of Pardubice, Czech Republic
Zbigniew Huzar Wroclaw University of Science and Technology,

Poland
Ivan Ivanov SUNY Empire State College, USA
Judit Jasz University of Szeged, Hungary
Maria Jose Escalona University of Seville, Spain
Hermann Kaindl TU Wien, Austria
Carlos Kavka ESTECO SpA, Italy
Dean Kelley Minnesota State University, USA
Jun Kong North Dakota State University, USA
Rob Kusters Open Universiteit Nederland, The Netherlands
Wing Kwong Hofstra University, USA
Pierre Laforcade Lium, France
Giuseppe Lami ISTI-CNR, Italy
Yu Lei The University of Texas at Arlington, USA

viii Organization

Pierre Leone University of Geneva, Switzerland
Letitia Li BAE Systems, USA
David Lorenz Open University, Israel
Daniel Lucrédio Federal University of São Carlos, Brazil
Ivan Lukovic University of Novi Sad, Serbia
Stephane Maag Telecom SudParis, France
Ivano Malavolta Vrije Universiteit Amsterdam, The Netherlands
Eda Marchetti ISTI-CNR, Italy
Manuel Mazzara Innopolis University, Russia
Hamid Mcheick University of Quebec at Chicoutimi, Canada
Andreas Meier Zurich University of Applied Sciences, Switzerland
Francesco Mercaldo IIT-CNR, Italy
Antoni Mesquida Calafat Universitat de les Illes Balears, Spain
Gergely Mezei Budapest University of Technology and Economics,

Hungary
Cristian Mihaescu University of Craiova, Romania
Antao Moura Federal Universisty of Campina Grande, Brazil
Christian Muck University of Vienna, Austria
Antonio Muñoz University of Malaga, Spain
Takako Nakatani The Open University of Japan, Japan
Elena Navarro University of Castilla-La Mancha, Spain
Joan Navarro La Salle - Universitat Ramon Llull, Spain
Viorel Negru West University of Timisoara, Romania
Paolo Nesi University of Florence, Italy
Claus Pahl Free University of Bozen-Bolzano, Italy
Marcos Palacios University of Oviedo, Spain
Asier Perallos University of Deusto, Spain
Jennifer Pérez Universidad Politécnica de Madrid, Spain
Dana Petcu West University of Timisoara, Romania
Dietmar Pfahl University of Tartu, Estonia
Giuseppe Polese Università Degli Studi di Salerno, Italy
Mohammad Mehdi

Pourhashem Kallehbasti
University of Science and Technology of Mazandaran,

Iran
Rosario Pugliese Universita’ di Firenze, Italy
Stefano Quer Politecnico di Torino, Italy
Traian Rebedea University Politehnica of Bucharest, Romania
Werner Retschitzegger Johannes Kepler University, Austria
Marcela Xavier Ribeiro Federal University of São Carlos, Brazil
Andres Rodriguez Universidad Nacional de La Plata, Argentina
Colette Rolland Université Paris 1 Panthèon Sorbonne, France
António Rosado da Cruz Instituto Politécnico de Viana do Castelo, Portugal
Gustavo Rossi Universidad Nacional de La Plata, Argentina
Matteo Rossi Politecnico di Milano, Italy
Stuart Rubin University of California, San Diego, USA
Gunter Saake Institute of Technical and Business Information

Systems, Germany

Organization ix

Maria-Isabel
Sanchez-Segura

Carlos III University of Madrid, Spain

Nickolas Sapidis University of Western Macedonia, Greece
Santonu Sarkar BITS Pilani K K Birla Goa Campus, India
Elad Schiller Chalmers University of Technology, Sweden
Peter Schneider-Kamp University of Southern Denmark, Denmark
Eva-Maria Schoen HAW Hamburg, Germany
Istvan Siket Hungarian Academy of Science, Hungary
Kuldeep Singh Carnegie Mellon University, USA
Harvey Siy University of Nebraska at Omaha, USA
Cosmin Stoica Romania
Ketil Stolen SINTEF, Norway
Hiroki Suguri Miyagi University, Japan
Selma Suloglu Rochester Institute of Technology, USA
Claudine Toffolon Université du Maine, France
Michael Vassilakopoulos University of Thessaly, Greece
László Vidács University of Szeged, Hungary
Yan Wang Google, USA
Dietmar Winkler Vienna University of Technology, Austria
Jinhui Yao Xerox Research, USA
Murat Yilmaz Dublin City University, Ireland
Fatiha Zaidi Université Paris-Saclay, France
Zheying Zhang Tampere University, Finland

Additional Reviewers

Jaganmohan
Chandrasekaran

University of Texas at Arlington, USA

Franck Chauvel SINTEF, Norway
Alexandru Cicortas West University of Timisoara, Romania
Enrique Garcia-Ceja SINTEF, Norway
Hana Mkaouar Telecom Paris, France
Mounira Msahli Telecom Paris, France
Nikola Obrenović University of Novi Sad, Serbia

Invited Speakers

Dominik Slezak University of Warsaw, Poland
Wil van der Aalst RWTH Aachen University, Germany
Frank Buschmann Siemens AG, Germany

x Organization

Contents

Shared Autonomous Mobility on Demand: A Fuzzy-Based Approach
and Its Performance in the Presence of Uncertainty 1

Rihab Khemiri, Mohamed Naija, and Ernesto Exposito

Efficient Scheduling of Periodic, Aperiodic, and Sporadic Real-Time Tasks
with Deadline Constraints . 25

Aicha Goubaa, Mohamed Kahlgui, Frey Georg, and Zhiwu Li

R-TNCES State Space Generation Using Ontology-Based Method
on a Distributed Cloud-Based Architecture . 44

Chams Eddine Choucha, Mohamed Oussama Ben Salem,
Moahmed Khalgui, Laid Kahloul, and Naima Souad Ougouti

MLCA: A Model-Learning-Checking Approach for IoT Systems 70
Sébastien Salva and Elliott Blot

A Real-Time Integration of Semantic Annotations into Air Quality
Monitoring Sensor Data . 98

Besmir Sejdiu, Florije Ismaili, and Lule Ahmedi

On Improvement of Formal Verification of Reconfigurable Real-Time
Systems Using TCTL and CTL-Based Properties
on IaaS Cloud Environment . 114

Chams Eddine Choucha, Mohamed Ramdani, Moahmed Khalgui,
and Laid Kahloul

A Genetic Algorithm with Tournament Selection for Automated Testing
of Satellite On-board Image Processing . 134

Ulrike Witteck, Denis Grießbach, and Paula Herber

Model-Based Threat Modeling for Cyber-Physical Systems:
A Computer-Aided Approach . 158

Monika Maidl, Gerhard Münz, Stefan Seltzsam, Marvin Wagner,
Roman Wirtz, and Maritta Heisel

A Machine Learning Based Methodology for Web Systems Codeless
Testing with Selenium . 184

Phuc Nguyen and Stephane Maag

Multilevel Readability Interpretation Against Software Properties:
A Data-Centric Approach. 203

Thomas Karanikiotis, Michail D. Papamichail,
and Andreas L. Symeonidis

Efficient Verification of Reconfigurable Discrete-Event System Using
Isabelle/HOL Theorem Prover and Hadoop . 227

Sohaib Soualah, Yousra Hafidi, Mohamed Khalgui, Allaoua Chaoui,
and Laid Kahloul

A Method for the Joint Analysis of Numerical and Textual IT-System Data
to Predict Critical System States . 242

Patrick Kubiak, Stefan Rass, Martin Pinzger, and Stephan Schneider

Author Index . 263

xii Contents

Shared Autonomous Mobility on Demand:
A Fuzzy-Based Approach and Its Performance

in the Presence of Uncertainty

Rihab Khemiri(B), Mohamed Naija, and Ernesto Exposito

Univ. Pau & Pays Adour, E2S UPPA, LIUPPA, EA3000, 64600 Anglet, France
ernesto.exposito@univ-pau.fr

Abstract. Ride-sharing Autonomous Mobility-on-Demand system (RAMoD),
whereby self-driving vehicles provide coordinated travel services on-demand and
potentially allowing multiple passengers to share a trip, has recently emerged as a
promising solution to cope with several problems such as low vehicle utilization
rates, pollution, and parking spaces. The expected uncertain travel demand on such
systems and its resulting imbalance and insufficient charging resources require an
efficient fleet management strategy. This paper focuses on designing and testing
an integrated strategy for dispatching, rebalancing, and charging by accounting for
the uncertain travel demands. Specifically, we first devise a novel multi-objective
possibilistic (MILP) model, which contemplates the variability and uncertainty
affecting travel demands in the RAMOD systems. The main target is to centralize
the various decisions in order to keep vehicle availabilities balanced over the
planning horizon and the transportation network so that travel requests are satisfied
at a minimum cost. Second, leveraging appropriate strategies, we transform this
fuzzy formulation into an equivalent auxiliary crisp multi-objective model. Due to
the conflicting nature of the considered objectives, a goal programming approach
with specific weights for each goal is used to compute an efficient compromise
solution. Results show the applicability and usefulness of the proposed fuzzy
approach as well as its merits compared to other schemes.

Keywords: Autonomous mobility-on-demand systems · Ride-sharing ·
Dispatching · Rebalancing · Charging · Fuzzy logic

1 Introduction

Personal-vehicles contribute significantly to increasing levels of pollution, traffic con-
gestion, and in several instances the under-utilization of vehicles. Explicitly, in 2015 the
utilization rate of owned automobiles in the U.S. is about 5% [1], certainly unsustainable
practice for the years to come. The urgent need to deal with these trends spurred the
conception of efficient, cost-competitive, and more sustainable transportation systems
such as ride-sharing (e.g. Lyft and Uber) and car-sharing (e.g. Car2Go and Zipcar).

© Springer Nature Switzerland AG 2021
M. van Sinderen et al. (Eds.): ICSOFT 2020, CCIS 1447, pp. 1–24, 2021.
https://doi.org/10.1007/978-3-030-83007-6_1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-83007-6_1&domain=pdf
https://doi.org/10.1007/978-3-030-83007-6_1

2 R. Khemiri et al.

Nevertheless, without efficient fleet management, these emerging transportation sys-
tems will inevitably lead to a problem of vehicle imbalances: due to the asymmetry
between travel destinations and origins, vehicles rapidly depleted in some stations while
becoming accumulated in others, affecting the quality of service.

Autonomous vehicles have the particular advantage of being capable of rebalancing
themselves, in addition to the enhancement of system-wide coordination, cost reduction,
convenience, and potentially rise safety of not needing a human driver.

Accordingly, these distinctive advantages has spurred the device of strategies that
entail to optimally rebalance Autonomous Mobility on Demand (AMoD) systems by
repositioning empty vehicles.

A Specific focus is also given to the development of dispatching strategies that
attempt to optimally assign the customers to self-driving vehicles, in order to satisfy the
customer’s request at each time period. However, as we will show in the literature review
section, most of the proposed strategies either assume deterministic customer requests
or do not integrate operational constraints such as parking capacities and electric vehicle
charging, which restricts their practical application.

In particular, while customer request is relatively predictable, it is subject to con-
siderable uncertainties due to various external factors such as traffic conditions and
weather. Thus, successful rebalancing and dispatching strategies must deal with these
uncertainties. Although some recent research works have been developed to address
this key challenge, these studies consider the uncertainty of demand approximately by
using probability concepts. A probability distribution is generally derived from historical
data. Nevertheless, when there is a lack of such information, the standard probabilistic
approaches are not appropriate. In particular, in several practical situations, the uncer-
tain parameters can be obtained subjectively based on the experience and managerial
judgment. For example, the uncertain customer request may be more suitably expressed
either in imprecise terms (e.g. approximately 500 demand per hour) or in linguistic terms
(e.g. ‘low’, ‘high’ ‘moderate’). However, such vagueness in the critical data cannot be
captured in a stochastic or deterministic formulation, and thus the associated optimal
results may not accomplish the real objective of modeling. Zadeh [2] introduced the
Fuzzy Set Theory and the Possibility Theory to handle the epistemic uncertainty of this
type.

To the best of the authors’ knowledge, the only paper exploring the potential of fuzzy
set theory to deal with uncertainty in AMOD systems is the preliminary version of this
article appeared as [3].

This extended version includes as additional contributions: (i) integration of the
charging process, (ii) integration of a number of real-world constraints such as parking
space limitations, charging stations capacities, and charging duration, which extend the
practical application of the proposed approach, (iii) additional simulation results and
corresponding discussion, and (iv) proofs of all results.

Shared Autonomous Mobility on Demand 3

More specifically, the purpose of this article is to develop and test an integrated strat-
egy for dispatching, rebalancing, and charging decisions for Ridesharing Autonomous
ElectricMobility On-Demand systems. In this regard, we design a three-phase approach,
which starts with introducing a new Multi-Objective Possibilistic Linear Programming
model that handles the uncertainty affecting future travel demand. The goal is to reduce
transportation costs and improve customer satisfaction. In the second phase, the fuzzy
model is converted into an auxiliary crisp MOLP model by applying a combination of
appropriate strategies. Then, thewell-knownGP approach is exploited to find an efficient
compromise solution for the multi-objective problem.

The rest of this article is organized as follows. In the next section, we review some
well-known existing works and outline their limitations. Section 3 provides some basic
notions regarding the fuzzy set theory and the goal programming method. Then, we
detail the model of the RAMoD system in the presence of uncertain travel demand
and formulate the integrated dispatching, rebalancing, and charging problem. Section 5
proposes a three-phase fuzzy strategy to deal with the issue under consideration. In
Sect. 6, computational results are reported to highlight the feasibility of our proposed
approach in practice. The last section concludes this work together with some future
direction of research.

2 Literature Review

The last decade has been marked by the rapid expansion and the promising devel-
opment of AMOD and RAMOD systems. Its multiple strengths have spurred a num-
ber of companies and researchers to aggressively pursue the design and analysis of
these emerging transportation systems. Previous work can be categorized into three
major areas: simulation-based models, model predictive control (MPC) algorithms and
queuing-theoretical models.

In [4], the authors introduce the “Expand and Target” algorithm that has been inte-
grated with scheduling strategies to automatically dispatch self-driving vehicles. They
implement an agent-based simulation framework and evaluate the effectiveness of the
proposed approach based on the New York City taxi data. The results show that the
algorithm greatly enhances the performance of the AMOD systems: increases the travel
success rate by around 8% and decreases the average waiting time for passengers by
around 30%.

Another study conducted in New York City [5] addressed both the problems of
assigning travel requests to vehicles and finding optimal routes for the vehicle fleet
while varying passenger capacities. The results show that a fleet of 3000 vehicles with a
four-passenger capacity or even 2000 vehicles with a ten-passenger capacity can serve
98% of the travel demands, currently supported by more than 13,000 single-occupant
vehicles. However, specificities of the model (for instance, the algorithms employed to
represent the traffic flow) are still unexplained, and only very little information has been
reported in this regard.

4 R. Khemiri et al.

Another study [6] conducted in a similar context of ride-sharing systems for a case
study conducted in Austin implemented a simulation framework in Java. The authors
suggested that shared AMoD systems without introducing dynamic ride-sharing can
increase congestion levels and travel times.

Melbourne,Australia is another city forwhich theperformanceofAMoDsystemshas
been explored using an agent-based simulation tool [7]. This work also has discovered
a quadratic relationship between Vehicle-Kilometres Travelled and AMoD fleet size.
The findings of this simulation model showed that an AMoD system under demand
uncertainty, which provides either ridesharing or car-sharing service could decrease the
fleet size by 84%. This, however, can increase the current Vehicle-Kilometres Travelled
by up to 77% while car-sharing is allowed, and 29% in the ride-sharing systems.

On the other hand, the queueing-theoretical approach is commonly used for themod-
eling and analysis of AMoD systems. Zhang and Pavone [8], for instance, implemented
this method to conduct a real-world case study of New York City. They first cast the
transportation system within a Jackson network model with the concept of “passenger
loss” (i.e. if there are no vehicles parked at a station, instead of waiting, the passengers
will immediately exit the system). Second, the theoretical insights have been leveraged
to design a real-time rebalancing algorithm, where the objective is to reduce the num-
ber of rebalancing self-driving vehicles on the roads, while still maintaining a balance
throughout the transportation network.

An extended and revised version of this paper appeared as [9] by extending the
proposed Jackson network approach by adopting a Baskett–Chandy–Muntz–Palacios
(BCMP) queuing-theoretical framework [10, 11]. Such a BCMP framework allows cap-
turing vehicle routing, stochastic customer arrivals, battery charging-discharging for
electric vehicles as well as traffic congestion.

The significance of the results in these papers could be in providing a rigorous
approach to the problem of rebalancing and routing as well as a rapid determination
of the corresponding performance metrics. However, both of the studies fail to address
the case where several passengers may share the same vehicle that each person travels
alone. Moreover, these works consider a static instead of a dynamic number of travelers
since they only change pick-up location without leaving the system.

In [12], a fog based-architecture was proposed to handle charging and dispatching
problems. The fog-based design delivers the micro-management of electric vehicles
to the fog controller of each zone that is near the passengers, thus minimizing com-
munications and computation delays. Using a queuing model, this paper focuses on
representing multi-class dispatching and charging processes and finding the optimal
number of required vehicles (i.e. vehicle dimensioning) for each zone in order to ensure
a bounded response time. Decisions on the relative proportions of vehicles of the dif-
ferent classes to directly serve passengers or to fully/partially charge are also optimized
so as to minimize the overall number of vehicles in-flow to a given area. While the
proposed dispatching and charging architecture seems promising, the model assume a
certain customer request, fail to address the critical issue of vehicle imbalance and do
not leverage the emerging paradigm of ride-sharing service.

Shared Autonomous Mobility on Demand 5

Due to their capacity to accommodate complex constraints and their simplicity, a
number of previous studies on the control of AMoD and RAMoD systems use a network
flow framework to model the transportation system.

For instance, Rossi et al. [13] investigate the problem of rebalancing and routing a
shared fleet of self-driving vehicles offering on-demand mobility services for a capac-
itated road network, where congestion is susceptible to disrupt throughput. Within the
proposed network flow model, empty rebalancing and customer-carrying vehicles are
represented as flows over the capacitated network. Using the real road network of Man-
hattan, the authors show the efficiency and the superior performance of the proposed
rebalancing and routing algorithm compared to state-of-the-art algorithms. Despite these
significant findings, it was interesting for the authors to investigate other approaches to
reduce congestion, such as ride sharing services. Moreover, the paper fails to explore the
interaction between the power network and such electric fleets and assume that travel
demands are known with certainty.

Salazar et al. [14] devise a multi-commodity network flow optimization approach
that captures the interaction between public transit and AMoD systems. This model
aims to maximize social welfare by minimizing the operational costs generated by the
intermodal AMoD system together with customers’ travel time. Real-world case stud-
ies were undertaken in the transportation networks of Berlin and New York, which
allowed to assess of the significant benefits of intermodal systems such as reducing the
total number of vehicles, travel times, overall costs, and pollutant emissions. However,
the proposed model considers only single-occupant vehicles and fails to capture the
uncertainty effects such as variable travel demand, time-varying traffic congestion, and
transportation delays.

MPC algorithms are amenable to achieve efficient performance and allow for the
incorporation of complex and constrained systems. Accordingly, they have been widely
employed in problems ranging from control to analyze AMoD and RAMoD systems.
MPC algorithm (also called receding horizon control) is an iterative control technique
by which an optimization problem is solved at each stage to produce a series of control
actions up to a given fixed horizon, and the first action is implemented [15].

In [15], a linear discrete-time model to optimize vehicle scheduling and routing
in an AMoD system was proposed allowing the easy inclusion of several real-world
constraints such as vehicle charging constraints. Then, leveraging this formulation an
MPC algorithm was devised for the optimal coordination of the self-driving vehicles
in the transportation network. At each time step, the optimization problem is solved
as a mixed-integer linear program, with the objective of avoiding unnecessary vehicle
rebalancing and servicing passengers as quickly as possible. Although numerical results
demonstrate that the proposed approach outperforms previous strategies, these real-
world data were run for moderately-sized systems and without considering ride-sharing
services.

6 R. Khemiri et al.

A time-expanded network has been exploited in [16] to model the AMoD system.
Such a model allows simultaneously finding the minimum fleet size and the optimal
rebalancing policy. This formulation was adopted to devise anMPC algorithm to operate
the AMoD system in real-time by taking into account short-term forecasts of travel
demand. For this purpose, the authors use a forecasting model trained based on historical
data and neural networks. The complexity of the proposed approach does not depend
on the number of passengers or the number of vehicles. Thus it can be implemented to
control large-scale transportation systems. However, the authors did not indicate if the
proposed MPC algorithm can be employed to effectively control ridesharing systems.

To address the stochasticity of travel demand, [17] introduces a stochastic MPC
algorithm leveraging the uncertainty of demand forecasts for dispatching and rebalancing
self-drivingvehicles in anAMoDsystem.Togenerate the forecasts, TheLongShortTerm
Memory (LSTM) neural network was used to estimate the mean of future travel demand.
The proposed algorithm was tested using real data, and it has been exhibited that the
latter outperforms state-of-the-art non-stochastic approaches. However, the authors did
not discuss if the proposed algorithm can achieve similar gains by predicting stochastic
future demand in the context of ride-sharing systems.

This will be the subject of the paper appeared as [18], which focuses on devising an
MPC approach for RAMoD systems based on the present and future customer request.
The goal of this MPC algorithm is to minimize the weighted combination of the opera-
tional costs and the total travel time (i.e. maximize the social welfare). Despite the fact
that this model was developed to respond to travel requests in a ride-sharing context, the
authors choose to focus only on double-occupancy vehicles and they avoid investigating
high-occupancy models given computational complexity.

To position our researchwork in the extended domain of AMoD systems, we use four
criteria, namely the decision processes handled, the modeling approach used, the source
of uncertainty that the problem deals with, and whether the ride-sharing service has been
addressed. Table 1 shows a summary of the related works analyzed above in accordance
with these four dimensions. The majority of these studies are fairly recent because
AMoD andRAMoD systems are emerging transportation systems. Asmentioned before,
the majority of these studies fall into three specific groups: simulation-based models,
queuing-theoretical models, and MPC algorithms.

Simulationmodels are based on the interaction of complex choicemodels andmicro-
scopic interactions and are a very interestingmodeling approach that allows to accurately
capture transportation systems. Although such a modeling approach has shown its effec-
tiveness to deal with real transport networks, it fails to find an optimal solution for the
problem of controlling AMoD systems.

Queueing-theoretical models are amenable to efficient capture the uncertainty of
the travel demands, which can be adapted to an efficient control synthesis [19]. Such
modeling approaches have been built upon the “Jackson network” concept [20], in which
all road segments are modeled as queues of vehicles waiting to cross an intersection.
According to the Jackson network concept, the new arrivals at each queuing station
occur following the random Poisson process, assuming constant rates of occurrence for
a given random variable. For example, if the random variable is passenger arrival times,
constant rates of occurrence will assume that passengers will arrive at a constant rate

Shared Autonomous Mobility on Demand 7

at a station for a specified period of time. This means that this concept fails to reflect
the time-variant nature of the passenger arrival rates that occurs in the real world, and
thereby reduces realism. Thus, although queuing models can lead to a tractable solution
to the complex challenges of AMoD systems, the outlined drawback restrict the ability
of transport modelers to provide a realistic view of these systems.

Despite the advantage of efficiently implementing time-varying travel demand com-
pared to the previously discussed approaches, themost currentMPC algorithms assume a
deterministic future travel demand.Moreover, the limited number of models that address
uncertainty to forecast travel requests mainly suggest the use of stochastic program-
ming.Whenever historical data is unavailable or even unreliable, reasoning probabilistic
approaches may not be the best option. Thus, the Fuzzy set theory [21] and the possi-
bility theory [2] are adequate to handle such problems with a lack of data knowledge.
Subsequently, it has been successfully adopted for modeling and dealing with uncer-
tainties in a variety of disciplines such as supply chain planning [22], image processing
[23], Business Process modelling [24], web services [25], etc. Despite these advents, the

Table 1. Summary of the analysis of the literature according to four criteria.

Paper Process Method Uncertainty RideSharing

[4] Dispatching Simulation – –

[5] Dispatching and routing Simulation – –

[6] Dispatching and routing Simulation – X

[7] Rebalancing Simulation Demand X

[8] Routing and rebalancing Queuing model – –

[9] Routing, rebalancing and
charging

BCMP queuing network
model

Demand –

[12] charging and dispatching Queuing model – –

[13] Routing and rebalancing Network flow model – –

[14] Routing and rebalancing Network flow model – –

[15] Dispatching, routing and
rebalancing

MPC algorithm – –

[16] Dispatching and
rebalancing

MPC algorithm – –

[17] Dispatching and
rebalancing

MPC algorithm Demand –

[18] Dispatching, routing and
rebalancing

MPC algorithm – X

[3] Dispatching and
rebalancing

Fuzzy logic Demand X

This paper dispatching, rebalancing,
and charging

Fuzzy logic Demand X

8 R. Khemiri et al.

only research work exploring the potential of the fuzzy logic to deal with uncertainties in
AMoD systems is our previous work appeared as [3]. As mentioned in Table 1, the major
technical difference is that in this research work we address the integrated problem for
dispatching, rebalancing, and charging for RAMoD systems, rather than the dispatching
and the rebalancing problem.

In the following section, the basic concepts of the fuzzy set theory and the possibility
theory are summarized.

3 Basic Concepts

This section briefly outlines the fuzzy set theory, the triangular fuzzy numbers and the
goal programming method used in this paper.

3.1 Fuzzy Set Theory

Fuzzy set theory was first suggested by Zadeh [21] to model and handle information
pervaded by uncertainty and imprecision. Moreover, it allows easy integration of sub-
jective experts’ judgments. From a mathematical perspective, a fuzzy set is a class of
elements characterized by a membership function. Unlike classical logic, the attachment
of an element to a class is not anymore binary but rather a matter of degree ranging from
zero to one. There are various kinds of fuzzy numbers. Among these different shapes,
Triangular Fuzzy Numbers and Trapezoidal Fuzzy Numbers (illustrated respectively in
Figs. 1 and 2) are the most popular ones.

3.2 Triangular Fuzzy Numbers

In this paper, the pattern of triangular fuzzy numbers (TFN) is adopted to model the
imprecise travel demands. Due to its various advantages, this kind of fuzzy numbers
has been widely adopted in the literature. Among others, the simplicity of collecting the
required information, intuitiveness (i.e., a decision-maker usually finds it significantly
easier to identify the most pessimistic, optimistic, and likely values of a given business
process), and efficiency in related computations are the key advantages. These benefits
were our principal motivation for adopting the TFNs pattern for representing the impre-
cise information in our problem. For more detailed theoretical justifications of TFN, we
refer the reader to [26, 27].

As depicted in Fig. 1, a TFN Ñ = (n1, n2, n3) where n1, n2, n3 are receptively the
most pessimistic, the most possible and the most optimistic value of Ñ evaluated by the
decision-maker.

Definition 1: The TFN Ñ can be defined by the following membership function:

μÑ (x) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

0, x ≤ n1
x−n1
n2−n1

, n1 < x ≤ n2
n3−x
n3−n2

, n2 < x ≤ n3
0, x > n3

(1)

Shared Autonomous Mobility on Demand 9

Fig. 1. The triangular possibility distribution of Ñ .

Fig. 2. The trapezoidal possibility distribution of Z̃ .

Definition 2: Let A and B two triangular fuzzy numbers defined as N = (n1, n2, n3),
M = (m1, m2, m3). The main operations on these fuzzy numbers can be summarized as
follows:

Ñ1 ⊕ M̃2 = (n1 + m1, n2 + m2, n3 + m3) (2)

Ñ1 �M̃2 = (n1 − m1, n2 − m2, n3 − m3) (3)

Ñ1 ⊗ Ñ2 = (n1 × m1, n2 × m2, n3 × m3) (4)

Ñ1 ⊗ k = (n1 × k, n2 × k, n3 × k), for each k ∈ R (5)

Ñ1

Ñ2
=

(
n1
m3

,
n2
m2

,
n3
m1

)

(6)

(
Ñ1

)−1 =
(

1

n3
,
1

n2
,
1

n1

)

(7)

10 R. Khemiri et al.

3.3 Goal Programming

There are a number of multi-objective decision-making approaches in the scientific
literature. Among them, goal programmingwhich is one of themost powerful techniques
for processing multi-objective models in concrete decision-making. This technique was
originally proposed byCharnes et al. [28] and successfully implemented in several issues
[29, 30]. The popularity of the GP approach is based, among others, on its robustness,
its mathematical flexibility, and its accuracy.

The formulation of the GP approach is based on introducing for each criterion an
expected goal to be achieved and identifying the best solution that minimizes the sum
of the deviations from these objectives. However, the application of the GP method in
practical decision-making problems can face a significant challenge, namely the inte-
gration of decision-makers’ preferences. In such a situation, the use the Weighted Goal
Programming (WGP) method comes in handy.

The basic form of WGP can be written as:

Min
x∈A

n∑

i=1

(
w+
i δ+

i + w−
i δ−

i

)
(8)

Subject to :
Ck(x) ≤ 0, l = 1, 2, ..,L

Fi(x) − δ+
i + δ−

i = gi, i = 1, 2, .., n
δ+
i , δ−

i ≥ 0

Where:

• Ck(x) is the kth constraint.
• gi is the target value of the objective function i.
• Fi(x) is the evaluation of the solution x with respect to criterion i.
• w+

i is the weight attached to the positive deviation.
• w−

i is the weight attached to the negative deviation.
• δ+

i is the positive deviation from the goal gi.
• δ−

i is negative deviation from the goal gi.

4 The Problem Setting

As depicted in the literature review section, significant progress has been achieved in
recent years to control and analyzeAMoD andRAMoD systems. However, these various
initiatives are conducted in urban areas and do not address the specificities of low-density
where travel solutions are scarcer.

The problem considered in this paper is motivated by the Tornado Mobility research
project [31], aiming to study the interaction between connected infrastructures for
mobility services and autonomous vehicles in a low-density environment.

Shared Autonomous Mobility on Demand 11

For this propose, we consider a transportation network partitioned into multiple
stations and served by self-driving vehicles offering on-demand mobility services. All
autonomous vehicles in this transportation network are multiple-occupancy, i.e. they can
serve several customers at any given time without exceeding their carrying capacity.

The considered fleet of self-driving vehicles is endowed with a high level of het-
erogeneity, i.e. transportation costs, carrying capacity, and speeds can be very different
from one vehicle to another.

In the specific context of the Tornado project, passengers can request transportation
to and from in the predefined road network via amobile application. If there are available
cars, one of them will be assigned to carry this customer towards its destination. Other-
wise, the customer will leave the system immediately without any waiting time. This is
because we adopt in our RAMoD system the customer model referred to as a “passenger
loss” model [8, 9]. A consequence of this model is that the number of passengers at
each station is always zero (since users either leave the system or depart immediately
with a car). Such an assumption is well suited for AMoD and RAMoD systems where
a high-quality service is desired [9].

By the trip’s end, the vehicle could either assigned to provide other on-demand
mobility or rebalance itself throughout the transportation network. It could also park in
the drop-off station or even recharge its battery at a charging station.

Each station in the transportation network has a limited number of parking spaces
and charging resources.

Note that the time is measured in discrete and ordered intervals.
The proposed model differs from other traditional approaches, as we do not assume

perfect knowledge of future travel requests; Instead, it was assumed that such critical
information is evaluated by the decision-maker using fuzzy numbers.

5 A Solution Procedure for the Dispatching, Rebalancing
and Charging Problem

To address the challenging problem detailed in the previous section, we propose a three-
phase framework, where the main stages are illustrated in Fig. 3 and detailed in the
following sub-sections.

5.1 Phase I: Formulation of the Dispatching, Rebalancing and Charging Problem

• Notation
Below are the indices, decision variables and parameters used in the formulation of
the problem.

– Indices

t index of time periods (t = 1, 2…, T).
v index of vehicles (v = 1, 2…, V).
s index of stations (s = 1, 2, …, S).

12 R. Khemiri et al.

Fig. 3. A solution procedure for the Dispatching, Rebalancing and Charging problem.

– Parameters

C̃rt,s1,s2 number of travel requests from station s1 to station s2 in period t.
Ds1, s2 distance separating the stations s1 and s2.
SPv sailing speed of the autonomous vehicle v.
Capv carrying capacity of the autonomous vehicle v.
initv,s indicates the availability of the autonomous vehicle v at station s in the

first period. i.e. if vehicle v is initially available at station s, initv,s = 1
and 0 otherwise.

RCv rate of charge of the autonomous vehicle v at a charging station.
RDv rate of discharge of the autonomous vehicle v while driving.
Park_caps number of parking space at the station s.
Ch_caps number of charging station at the station s.

– Decision Variables

Parkv,t,s binary variable specifying if the autonomous vehicle v is parked
in station s during the period t.

Chv,t,s binary variable indicating if the autonomous vehicle v is
charging in station s during the period t.

Waitv,t,s binary variable indicating if the autonomous vehicle v is waiting
in station s during the period t.

Missv,t binary variable specifying if the autonomous vehicle v is on
mission during the period t.

Miss_Tv,s1,s2,t1,t2 binary variable specifying if the autonomous vehicle v is on a
transport mission from the station s1 to the station s2 starting at
period t1 and arriving at period t2.

Shared Autonomous Mobility on Demand 13

Miss_Rv,s1,s2,t1,t2 binary variable specifying if the autonomous vehicle v is on a
rebalancing mission from the station s1 to the station s2 starting
at period t1 and arriving at period t2.

Socv,t shows the state of charge of the autonomous vehicle v over time.
i.e. a value Socv,t= 1 means that the battery of the vehicle v is
fully charged at the end of the period t while Socv,t= 0 means
that the battery of v is depleted at the end of t.

S_Crt,s1,s2 The number of satisfied travel demands from station s1 to station
s2 starting at the period t.

• Mathematical Model
Using the notation of the previous sub-section, a multi-objective possibilistic linear
programming model can be written as:

– Objective Functions
Weconsider twomajor and conflicting goals in our integrated dispatching, rebalanc-
ing, and charging problem: the total cost (TC) and the level of customer satisfaction
((LC̃r)).

Objective 1: Minimizing the total cost.

Minimize TC = ∑T
t1,t2=1

∑S
s1,s2=1

∑V
v=1 RDv ∗ Dists1, s

∗ (Miss_Tv,s1,s2,t1,t2 + Miss_Rv,s1,s2,t1,t2)
(9)

Objective 2: Improving the level of customer satisfaction through minimizing the
number of lost travel demands.

Minimize LC̃r =
∑T

t=1

∑S

s1,s2=1
Cr̃t,s1,s2 − S_Crt,s1,s2 (10)

– Model Constraints

Parkv,t,s, Chv,t,s, Waitv,t,s, Missv,t, Miss_Rv,s1,s2,t1,t2, Miss_Tv,s1,s2,t1,t2
ε {0, 1} t, t1, t2, s, s1, s2, v

(11)

Socv,t ε [0, 1] ∀v, t (12)

S_Crt, s1, s2 ≥ 0 and integer ∀ s1, s2, t (13)

The limitation of the decision variables is presented by the Eqs. (11), (12), and (13):
S_Crt,s1,s2is an integer, Socv,t is ranging from zero to one, while other variables are
binary.

∑S

s=1
Missv,t + Parkv,t,s ∀v, t (14)

Constraints (14) presents the two possible states that an autonomous vehicle can
take, i.e. parking in a station and being on a mission. On the other hand, this equation

14 R. Khemiri et al.

ensures that a vehicle can have just one state at any given time.

Parkv,t,s = Chv,t,s + Waitv,t,s ∀v, t, s (15)

When a vehicle is parked in a station, two different actions can be achieved: it can
charge at a charging point or wait for customers. This is specified using the constraint
(15), which also means that the vehicle can perform just one action at any given time.

Missv,t =
∑S

s1,s2=1

∑

t1,t2≤t
Miss_Rv,s1,s2,t1,t2 + Miss_Tv,s1,s2,t1,t2 ∀v, t (16)

Similarly, when a self-driving vehicle is on a mission, two different actions can
be performed (i) transport one or several passengers from one station to another, and
(ii) travel without passengers to rebalance the RAMoD system. These constraints are
specified using the Eq. (16), which also implies that a self-driving vehicle can perform
only one action at any given time.

initv,s ≥ Miss_Rv,s,s2,t,t2 + Miss_Tv,s,s1,t,t1 + Parkv,t,s
∀v, s, t = 1, s1, s2, t1 = t + (Ds,s1/SPv)

(17)

Equation (17) states that a vehicle cannot be parked at a station s during the first
period if, and only if, it is initially available at this station. Similarly, a self-driving
vehicle v may only travel on a passenger(s) transport mission or a rebalancing mission
from a station s during the first period if, and only if, it is initially available at this station.

Parkv,t,s ≤ ∑
s1 	=s Miss_Rv,s1,s,t1,t−1 + ∑

s2 	=s Miss_Tv,s2,s,t2,t−1 + Parkv,t−1,s

∀v, s, t > 1, t1 = t − (Ds1,s/SPv) − 1, t2 = t + (Ds2,s/SPv) − 1
(18)

Equation (18) ensures that if a self-driving vehicle v is parked at a station s during a
time period t, it must be physically located in s at the beginning of t.

Miss_Tv,s1,s2,t1,t2 ≤ ∑
s3	=s1Miss_Rv,s3,s1,t3,t1−1 + ∑

s4 	=s1Miss_Tv,s4,s1,t4,t1−1 + Parkv,t1−1,s1

∀ v, s1, s2, t1 > 1, t2 = t1 + (Ds1,s2/SPv),
t3 = t1 − (Ds3,s1/SPv) − 1, t4 = t1 − (Ds4,s1/SPv) − 1

(19)
Miss_Rv,s1,s2,t1,t2 ≤ ∑

s3	=s1Miss_Rv,s3,s1,t3,t1−1 + ∑
s4 	=s1Miss_Tv,s4,s1,t4,t1−1 + Parkv,t1−1,s1

∀ v, s1, s2, t1 > 1, t2 = t1 + (Ds1,s2/SPv),
t3 = t1 − (Ds3,s1/SPv) − 1, t4 = t1 − (Ds4,s1/SPv) − 1

(20)

When a self-driving vehicle v is on a mission from station s1 to station s2 beginning
at t1, vmust be physically located in s1 at the beginning of t1. It means, either the vehicle
v i) parked at s1 during the last period (i.e. Parkv,t−1,s1 = 1) or ii) arrived at s1 during the
last period (i.e.Miss_Tv,s3,s1,t3,t1−1 = 1OrMiss_Rv,s4,s1,t4,t1−1 = 1). The constraints (19)
and (20) ensure that this rule is respected respectively for passenger transport missions
and rebalancing missions.

∑V

v=1
Parkv,t,s ≤ Park_caps ∀t, s (21)

Shared Autonomous Mobility on Demand 15

Constraint (21) represents the parking capacity limitation for all time. This means
that the overall number of vehicles parked at a station s during the time period t
(i.e.

∑V
v=1 Parkv,t,s) must not exceed the parking space limitation at the station s (i.e.

Park_caps).

∑V

v=1
Chv,t,s ≤ Ch_caps ∀t, s (22)

Equation (22) indicates the charging capabilities at each station for all time.

S_Crt,s1,s2 ≤ C̃rt,s1,s2 ∀t, s1, s2 (23)

Constraint (23) assures that self-driving vehicles dispatched to transport customer(s)
from one station to another cannot serve more customers than requested.

S_Crt1,s1,s2 ≤
∑V

v=1
Capv ∗ Miss_Tv,s1,s2,t1,t2 ∀ t1, t2 = t1 + (Ds1,s2/SPv), s1, s2 (24)

Constraint (24) guarantees that the number of satisfied travel demands from station
s1 to station s2 starting at the period t1 cannot exceed the overall capacity of the vehicles
dispatched to transport passengers from s1 to s2 starting at t1.

Socv,t ≥ Min(Socv,t−1 +
∑S

s=1
Chv,t,s ∗ RCv, 1) − RDv ∗ Missv,t ∀v, t > 1 (25)

Socv,1 ≥ Min(1 +
∑S

s=1
Chv,1,s ∗ RCv, 1) − RDv ∗ Missv,1 ∀v (26)

Equations (25) and (26) model the evolution of each vehicle’s charge while assuming
that the batteries are fully charged at the beginning of the first period.

Socv,t1 ≥ Miss_Rv,s1,s2,t1,t2 ∗ RDv ∗ (Ds1,s2/SPv)

∀v, s1, s2, t1, t2 = t1 + (Ds1,s2/SPv)
(27)

Socv,t1 ≥ Miss_Tv,s1,s2,t1,t2 ∗ RDv ∗ (Ds1,s2/SPv)

∀v, s1, s2, t1, t2 = t1 + (
Ds1,s2/SPv

) (28)

Equations (27) and (28) are the charge constraints to ensure that each self-driving
vehicle has sufficient charge to accomplish its trip. Specifically, Eq. (27) guaran-
tees enough charge for rebalancing trips, and Eq. (28) guarantees enough charge for
passengers’ trips.

5.2 Phase II: Development of an Axillary Multi-objective Linear Model

In this paper, we adopt the TFNs pattern for representing the imprecise travel request
in the customer satisfaction objective function and constraint (23). As outlined below,
triangular possibility distribution C̃r can be presented by the triplet (Crp, Crm, Cro)
where Crp, Crmand Cro are the most pessimistic value of C̃r, the most possible value
of C̃r, and the most optimistic value of C̃r.

The main goal of this second phase is to treat such fuzzy parameter and transform
the proposed fuzzy formulation into an equivalent auxiliary crisp multi-objective model.

16 R. Khemiri et al.

• Treating the Soft Constraint
To treat the fuzzy travel request in the right-hand side of Eq. (23), the well-
known weighted average method is implemented for the defuzzification process and
transforming the C̃r parameter into an equivalent crisp number.

This method was first developed by Lai and Hwang [33] and has been successfully
implemented in several research studies [34–36] due to its efficiency and simplicity.
In order to do so, we must first identify a minimal acceptable possibility degree of
occurrence for the fuzzy parameter, α. The original fuzzy constraint (23) can then be
represented by a new crisp equation as described below:

S_Crt,s1,s2 ≤ w1Cr
p
t,s1,s2,α + w2Cr

m
t,s1,s2,α + w3Cr

o
t,s1,s2,α ∀t, s1, s2 (29)

Where and w1, w2, and w3 designate respectively the weight of the most pessimistic,
the weight of the most possible, and the weight of the most optimistic of the fuzzy travel
and verifying the following equation:

w1 + w2 + w3 = 1. (30)

In practice, these weights, as well as the minimum acceptable degree of possibility
α, can be subjectively specified on the basis of the decision maker’s knowledge and
experience.

In our framework, we use the concept of most likely values, which is extensively
adopted in the literature [33]. In accordance with this concept, the most optimistic
and pessimistic values should be given a lower weight than the most possible value.
Therefore, similarly to [33], we fix these parameters as follows:

w1 = w3 = 1/6; w2 = 4/6 and α = 0.5. (31)

• Treating the Imprecise Customer Satisfaction Objective Function
Due to the inaccuracy of the travel request parameter in the customer satisfaction
objective function, it is typically not possible to identify an optimal solution to the
problem defined by the Eqs. (9)–(28).

In the academic literature, various approaches are suggested to find compromise
solutions [33, 37–40]. As stated by Hsu and Wang [41], the first four strategies are
predicated on restrictive assumptions and are usually hard to implement in practice, we,
therefore, adopt Lai and Hwang’s approach [33, 35].

Since the imprecise travel request C̃r ismodeled using a triangular-shaped possibility
distribution, the customer satisfaction objective function LC̃r could also be represented
by a triangular possibility distribution. This imprecise goal is geometrically presented
by the three main points (LCrp, 0), (LCrm, 1), and (LCro, 0). It is consequently possible
to minimize the fuzzy goal by pushing these critical points towards the left.

According to Lai and Hwang’s approach, resolving this problem consists of min-
imizing LCrm, maximizing (LCrm − LCrp), and minimizing (LCro − LCrm). Thus,

Shared Autonomous Mobility on Demand 17

our imprecise customer satisfaction objective function can be converted into three crisp
objectives as described below:

Min Z1 = LCrm =
∑T

t=1

∑S

s1,s2=1
Crmt,s1,s2 − S_Crt,s1,s2 (32)

Max Z2 = LCrm − LCrp =
∑T

t=1

∑S

s1,s2=1
(Crmt,s1,s2 − Crpt,s1,s2) − S_Crt,s1,s2

(33)

Min Z3 = LCro − LCrm =
∑T

t=1

∑S

s1,s2=1
(Crot,s1,s2 − Crmt,s1,s2) − S_Crt,s1,s2 (34)

5.3 Phase III: Finding a Preferred Compromise Solution

In the previous phase, the proposed multi-objective possibilistic model has been trans-
formed into an equivalent auxiliary crisp multi-objective model. In this third phase, we
adopt the Weighted Goal Programming method, incorporating specific weights for each
criterion, allowing us to treat this multi-objective model.

Therefore, we can reformulate our problem as below:

1. Min FGP = WTC ∗ δ+
TC + WZ1 ∗ δ+

1 + WZ2 ∗ δ−
2 + WZ3 ∗ δ+

3 (35)

Subject to : (11) − (22), (24) − (29)

TC − δ+
TC = TC∗ (36)

Z1 − δ+
1 = Z∗

1 (37)

Z2 + δ−
2 = Z∗

2 (38)

Z3 − δ+
3 = Z∗

3 (38)

Where:

• TC∗ is the goal calculated based on the mathematical model with the total cost objec-
tive function (9) subject to constraints (11)-(22), (24)–(29), and δ+

TC is the positive
deviation from this goal.

• Z∗
1 is the goal calculated using the mathematical model with the objective function

(32) subject to the constraints (11)–(22), (24)–(29), and δ+
1 is the positive deviation

from this goal.
• Z∗

2 is the goal calculated using the mathematical model with the objective function
(33) subject to the constraints (11)–(22), (24)–(29), and δ−

2 is the negative deviation
from this goal.

• Z∗
3 is the goal calculated using the mathematical model, with the objective function

(34) subject to the constraints (11)–(22), (24)–(29), and δ+
3 is the positive deviation

from this goal.
• WTC,WZ1,WZ2 and WZ3 are the importance weights of the various goals such that
WTC+ WZ1+ WZ2+ WZ3= 1.

18 R. Khemiri et al.

6 Numerical Experiments

In this section, we present numerical experiments to demonstrate the validity and appli-
cability of our integrated strategy for dispatching, rebalancing, and charging decisions,
especially in the presence of imprecise travel demands. Then, we explore the perfor-
mance of the newly suggested strategy, in comparison with other dispatch strategies by
varying travel demand over the forecast horizon.

For all experiments, we consider five stations and a fleet size of 20 self-driving
vehicles.

The forecast horizon is decomposed into ten time periods. Such periods correspond
to 10 different predicted travel demands with TFNs.

At the beginning of the first period, the self-driving vehicles were distributed equally
over the road network, i.e. six vehicles for each station.

The carrying capacity of the vehicles is characterized by a high level of heterogeneity,
which varies from a single capacity to a ten-passenger capacity.

For simplification purposes, we assume that the travel time between two given sta-
tions is a one-time step. Moreover, we consider that the importance weight of the various
goals is the same (i.e.WTC= WZ1= WZ2= WZ3= 1/4).

For all numerical experiments, the suggested approach has been implemented using
the LINGO optimization package.

6.1 Detailed Results

Figure 4 illustrates the results generated by the suggested approach by specifying the
status of self-drive vehicles over the planning horizon.

We remind that a self-driving vehicle can be on a rebalancing mission, be on a
customer(s) transport mission, and be waiting or charging in a station.

These different decisions are constrained by the criteria of minimizing overall costs
and maximizing customer satisfaction in each period of the forecast horizon.

It has been found that the increased cost of transporting a vehicle leads to not using
it if the travel request can be met by vehicles with lower costs. For instance, during
the first period, travel requests were met with the various stations. Especially for S2,
this fuzzy travel demand has been met by using the V5 and V6 with the use of ride-
sharing, while the V7 and V8 remain parked in S2 due to their significantly higher
transportation costs. Similarly, in the second period, V10 and V11 remain parked in S3
as travel demand was met by self-driving vehicles with lower transportation costs (i.e.
V2, V6, and V17). With the increasing travel demands in the third and fourth periods
and directed by the maximization of customer satisfaction, all vehicles in the fleet were
launched on missions, including the most costly ones.

Nevertheless, beyond the 5th time period, the mobilization of all the fleet’s vehicles
becomes insufficient to meet travel request, especially when certain stations are more
popular than others, at the end of the journey, vehicles tend to accumulate in these
stations and deplete in others. This justifies the need to integrate rebalancing decisions
from overloaded stations to under loaded ones as a solution to the problem of vehicle
imbalances. Such decisions are also driven by the cost-minimization criterion. In fact,
the least costly vehicles will be assigned in the first place to rebalancing missions.

Shared Autonomous Mobility on Demand 19

6.2 Performance Analysis

To explore the performance of the proposed strategy (called “D-R-C-RAMoD-Fuzzy”
in this section), we conducted numerical experiments comparing it against other strate-
gies. Specifically, these dispatching strategies are three different variants of the newly
suggested approach.

D-C-RAMoD-Fuzzy: This version is exclusively dedicated to the problem of dispatch-
ing and recharging, and vehicles do not rebalance in any circumstances.
D-R-C-AMoD-Fuzzy:This version uses the samemodel outlined in the previous section
for single-capacity vehicles (i.e. without the use of ride-sharing service).
D-R-C-RAMoD-Perfect: This is the integrated strategy for dispatching, rebalancing,
and charging proposed in the previous section based on exact travel demand as it appears
in the data set as a forecast for the next ten periods. It is an effective approach to finding
the optimal dispatching, rebalancing, and charging policies in the situation where the
customer’s demand is already known in advance. In this way, it can be leveraged to
deliver upper bounds of system performance.

The results of this comparative analysis are summarized in Fig. 5, which provides
an illustration of the number of lost travel requests for each strategy over time.

As intended, the approach with precise travel demands is undoubtedly the most
powerful strategy, with reduced transport costs and a minimum number of lost travel
requests.

The “D-R-C-AMoD-Fuzzy” strategy has by far the most poor performance, with
mean lost travel demands sixfold than that of the “D-R-C-RAMoD-Perfect” approach
and multiplied by four compared to that of our suggested strategy (i.e. D-R-C-RAMoD-
Fuzzy”. That is not unexpected, because here the single-capacity policy is compared to
ride-sharing schemes, where the maximum allowable capacity of vehicles is increased
to ten.

The significant difference in performance between the “D-R-C-RAMoD-Perfect”
strategy and the “D-C-RAMoD-Fuzzy” strategy can also be observed from Fig. 5, illus-
trating the number of lost travel requests over the planning horizon. Specifically, this
strategy has caused a significant increase in the number of lost travel demands over
the planning horizon, with an average of lost travel demands multiplied by three com-
pared to the “D-R-C-RAMoD-Fuzzy” strategy and multiplied by four compared to the
“D-R-C-RAMoD-Perfect” strategy. This is also not surprising, as we can achieve sig-
nificant performance gains by integrating rebalancing trips to ensure a balance between
the number of available vehicles at each station and travel demands.

20 R. Khemiri et al.

Fig. 4. Vehicle scheduling as a function of time.

A considerable performance gain is attributed to the integration of rebalancing poli-
cies as part of the “D-C-RAMoD-Fuzzy” strategy and the fact that several passengers
can share the same trip. Indeed, it can be seen that out of ten different experiments, the
proposed strategy produces an optimal design for six experiments. It also generates solu-
tions that are very close to the optimal plan for the other time periods, with a variance of
35%. These findings demonstrate the robustness of the proposed strategy for managing
the fleet and meeting customer needs, even when travel demand forecasts are tainted by
ambiguity.

Shared Autonomous Mobility on Demand 21

Fig. 5. The number of lost travel requests for each strategy as a function of time.

7 Conclusion

Despite the significant progress achieved in vehicle electrification and automation, the
next decade’s aspirations for large-scale deployments of AMoD and RAMoD services
in metropolitan cities are still threatened by two significant bottlenecks. First, due to
several externalities, the travel demand forecasts are subject to significant uncertainties,
thus resulting in excessive, if not prohibitive, delays for customers if dispatching and
rebalancing decisions fail to address uncertainty on the travel forecasts. Moreover, the
requirement to make additional trips for recharging electric vehicles and in some cases,
a vehicle may need to wait to charge instead of transporting waiting customers can
significantly affect the convenience of AMOD systems and reduce its impact in resolving
urban congestion problems.

In order to target travel demand uncertainty, we suggest the exploitation of the fuzzy
set theory. Indeed, while deterministic or stochastic formulations remain unable to cap-
ture vagueness in the critical data, fuzzy logic is widely agreed to be a key framework for
describing and treating uncertainty. To address the second limitation, the paper suggests
the integration of a smart charging process with dispatching and rebalancing decisions.
The optimal coordination of such decisions proves its efficiency to establish optimal
schedules for electric vehicles charging given travel demand forecasts.

Specifically, the problem is first formulated as a multi-objective possibilistic linear
programmingmodel incorporating two important conflicting goals simultaneously: min-
imizing transportation costs and improving customer satisfaction. The proposed Fuzzy
model is then transformed into an equivalent multi-objective integer linear programming
model by combining two appropriate strategies. In order to guarantee the obtaining of an
efficient compromise solution, the weighted goal programming model is being exploited
reducing the initial problem to a scalar formulation and allowing the decision-maker to

22 R. Khemiri et al.

define an aspiration level for each objective. Numerical experiments demonstrate that
the proposed approach is tractable and practical to deal with real-sized problems and
provides an effective tool for managing dispatching, rebalancing, and charging decisions
in RAMoD systems.

This paper opens the field for numerous important directions for further research.
First, it is of great interest to study the inclusion of routing policies by designing a

comprehensive road network with finite capacity (currently, the road network is mod-
eled with infinite capacity). This research axis can also address congestion effects, thus
leaving an important extension open to study the impact of the proposed strategies on
overall congestion. Second, the proposed framework can be extended to address not only
uncertain travel demand but also fluctuations of several other critical parameters such as
transportation costs, the state of charge electric vehicles, vehicle availability, etc. Third,
we currently examine the RAMoD system independently of other transportation sys-
tems, whereas, in practice, travel demand depends on the different transportation modes.
Future studies will investigate the effect of RAMoD systems on passenger behavior and
the optimal integration of autonomous vehicle fleets with public transport. Finally, it is
of interest to investigate the couplings that could occur between the electric grid and the
charging strategies of an electric-powered RAMoD fleet.

Acknowledgment. This work is financed by national funds FUI 23 under the French TORNADO
project focused on the interactions between autonomous vehicles and infrastructures for mobility
services in low-density areas. Further details of the project are available at https://www.tornado-
mobility.com/.

References

1. Could self-driving cars spell the end of ownership. http://www.wsj.com. Accessed 09 Oct
2020

2. Zadeh, L.A.: Fuzzy sets as a basis for a theory of possibility. Fuzzy Sets Syst. 1(1), 3–28
(1978)

3. Khemiri, R., Expósito, E.: Fuzzy multi-objective optimization for ride-sharing autonomous
mobility-on-demand systems. In: 15th International Conference on Software and Data
Technologies, pp. 284–294. Lieusaint, Paris (2020)

4. Shen,W., Lopes, C.: Managing autonomous mobility on demand systems for better passenger
experience. In: Chen, Q., Torroni, P., Villata, S., Hsu, J., Omicini, A. (eds.) PRIMA 2015.
LNCS (LNAI), vol. 9387, pp. 20–35. Springer, Cham (2015). https://doi.org/10.1007/978-3-
319-25524-8_2

5. Alonso-Mora, J., Samaranayake, S., Wallar, A., Frazzoli, E., Rus, D.: On-demand high-
capacity ride-sharing via dynamic trip-vehicle assignment. Proc. Natl. Acad. Sci. 114(3),
462–467 (2017)

6. Levin, M.W., Kockelman, K.M., Boyles, S.D., Li, T.: A general framework for model-
ing shared autonomous vehicles with dynamic network-loading and dynamic ride-sharing
application. Comput. Environ. Urban Syst. 64, 373–383 (2017)

7. Javanshour, F., Dia, H., Duncan, G.: Exploring the performance of autonomous mobility on-
demand systems under demand uncertainty. Transportmetrica A Transp. Sci. 15(2), 698–721
(2019)

https://www.tornado-mobility.com/
http://www.wsj.com
https://doi.org/10.1007/978-3-319-25524-8_2

Shared Autonomous Mobility on Demand 23

8. Zhang, R., Pavone, M.: Control of robotic mobility-on-demand systems: a queueing-
theoretical perspective. Int. J. Robot. Res. 35(1–3), 186–203 (2016)

9. Iglesias, R., Rossi, F., Zhang, R., Pavone, M.: A BCMP network approach to modeling and
controlling autonomous mobility-on-demand systems. Int. J. Robot. Res. 38(2–3), 357–374
(2019)

10. Baskett, F., Chandy, K.M., Muntz, R.R., Palacios, F.G.: Open, closed, and mixed networks
of queues with different classes of customers. J. ACM 22(2), 248–260 (1975)

11. Kobayashi, H., Gerla, M.: Optimal routing in closed queueing networks. ACM SIGCOMM
Comput. Commun. Rev. 13(2), 26 (1983)

12. Belakaria, S., Ammous, M., Sorour, S., Abdel-Rahim, A.: Optimal vehicle dimensioning
for multi-class autonomous electric mobility on-demand systems. In: IEEE International
Conference on Communications Workshops, pp. 1–6. IEEE, Kansas City (2018)

13. Rossi, F., Zhang, R., Hindy, Y., Pavone, M.: Routing autonomous vehicles in congested
transportation networks: structural properties and coordination algorithms. Auton. Robot.
42(7), 1427–1442 (2018)

14. Salazar, M., Lanzetti, N., Rossi, F., Schiffer, M., Pavone, M.: Intermodal autonomous
mobility-on-demand. IEEE Trans. Intell. Transp. Syst. 21(9), 3946–3960 (2019)

15. Zhang, R., Rossi, F., Pavone, M.: Model predictive control of autonomous mobility-on-
demand systems. In: IEEE International Conference on Robotics and Automation (ICRA),
pp. 1382–1389. IEEE, Stockholm (2016)

16. Iglesias, R., Rossi, F., Wang, K., Hallac, D., Leskovec, J., Pavone, M.: Data-driven model
predictive control of autonomous mobility-on-demand systems. In: IEEE International
Conference on Robotics and Automation (ICRA), pp. 1–7. IEEE, Brisbane (2018)

17. Tsao, M., Iglesias, R., Pavone, M.: Stochastic model predictive control for autonomous
mobility on demand. In: 21st International Conference on Intelligent Transportation Systems
(ITSC), pp. 3941–3948. IEEE, Hawaii (2018)

18. Tsao,M.,Milojevic, D., Ruch, C., Salazar,M., Frazzoli, E., Pavone,M.:Model predictive con-
trol of ride-sharing autonomous mobility-on-demand systems. In: International Conference
on Robotics and Automation (ICRA), pp. 6665–6671. IEEE, Montreal (2019)

19. Salazar, M., Rossi, F., Schiffer, M., Onder, C.H., Pavone, M.: On the interaction between
autonomous mobility-on-demand and public transportation systems. In: 21st International
Conference on Intelligent Transportation Systems (ITSC), pp. 2262–2269. IEEE,Maui (2018)

20. Jackson, J.R.: Networks of waiting lines. Oper. Res. 5(4), 518–521 (1957)
21. Zadeh, L.A.: Fuzzy sets. Inf. Control 8(3), 338–353 (1965)
22. Khemiri, R., Elbedoui-Maktouf, K., Grabot, B., Zouari, B.: A fuzzy multi-criteria decision-

making approach for managing performance and risk in integrated procurement–production
planning. Int. J. Prod. Res. 55(18), 5305–5329 (2017)

23. Ali, M.A.H., Lun, A.K.: A cascading fuzzy logic with image processing algorithm–based
defect detection for automatic visual inspection of industrial cylindrical object’s surface. Int.
J. Adv.Manuf. Technol. 102(1–4), 81–94 (2018). https://doi.org/10.1007/s00170-018-3171-7

24. Sarno, R., Sinaga, F., Sungkono, K.R.: Anomaly detection in business processes using process
mining and fuzzy association rule learning. J. Big Data 7(1), 1–19 (2020). https://doi.org/10.
1186/s40537-019-0277-1

25. Bagga, P., Joshi, A., Hans, R.: QoS based web service selection and multi-criteria decision
making methods. Int. J. Interact. Multimedia Artif. Intell. 5(4), 113–121 (2019)

26. Pedrycz, W.: Why triangular membership functions? Fuzzy Sets Syst. 64(1), 21–30 (1994)
27. Dubois, D., Foulloy, L., Mauris, G., Prade, H.: Probability-possibility transformations,

triangular fuzzy sets, and probabilistic inequalities. Reliable Comput. 10(4), 273–297 (2004)
28. Charnes, A., Cooper, W.W., Ferguson, R.O.: Optimal estimation of executive compensation

by linear programming. Manag. Sci. 1(2), 138–151 (1955)

https://doi.org/10.1007/s00170-018-3171-7
https://doi.org/10.1186/s40537-019-0277-1

24 R. Khemiri et al.

29. Kaucic, M., Barbini, F., Camerota Verdù, F.J.: Polynomial goal programming and parti-
cle swarm optimization for enhanced indexation. Soft. Comput. 24(12), 8535–8551 (2019).
https://doi.org/10.1007/s00500-019-04378-5

30. Bakhtavar, E., Prabatha, T., Karunathilake, H., Sadiq, R., Hewage, K.: Assessment of renew-
able energy-based strategies for net-zero energy communities: a planning model using
multi-objective goal programming. J. Clean. Prod. 272, 122886 (2020)

31. Ruben, C., Dhulipala, S.C., Bretas, A.S., Guan, Y., Bretas, N.G.:Multi-objectiveMILPmodel
for PMUallocation considering enhanced gross error detection: aweighted goal programming
framework. Electr. Pow. Syst. Res. 182, 106235 (2020)

32. Tornado Mobility-Fui Project. https://www.tornado-mobility.com/index.php/en/home-2/.
Accessed 10 Nov 2020

33. Lai, Y.J., Hwang, C.L.: A new approach to some possibilistic linear programming problems.
Fuzzy Sets Syst. 49(2), 121–133 (1992)

34. Wang, R.C., Liang, T.F.: Applying possibilistic linear programming to aggregate production
planning. Int. J. Prod. Econ. 98(3), 328–341 (2005)

35. Liang, T.F.: Distribution planning decisions using interactive fuzzy multi-objective linear
programming. Fuzzy Sets Syst. 157, 1303–1316 (2006)

36. Khemiri, R., Elbedoui-Maktouf, K., Grabot, B., Zouari, B.: Integrating fuzzy TOPSIS and
goal programming for multiple objective integrated procurement-production planning. In:
22nd IEEE International Conference on Emerging Technologies and Factory Automation,
pp. 1–8. IEEE, Limassol (2017)

37. Luhandjula, M.K.: Fuzzy optimization: an appraisal. Fuzzy Sets Syst. 30(3), 257–282 (1989)
38. Sakawa, M., Yano, H.: An interactive fuzzy satisficing method for multiobjective nonlinear

programming problems with fuzzy parameters. Fuzzy Sets Syst. 30(3), 221–238 (1989)
39. Tanaka, H., Asai, K.: Fuzzy linear programming problems with fuzzy numbers. Fuzzy Sets

Syst. 13(1), 1–10 (1984)
40. Tanaka, H., Ichihashi, H., Asai, K.: A formulation of linear programming problems based on

comparison of fuzzy numbers. Control Cybern. 13, 185–194 (1984)
41. Hsu, H.M., Wang, W.P.: Possibilistic programming in production planning of assemble-to-

order environments. Fuzzy Sets Syst. 119(1), 59–70 (2001)

https://doi.org/10.1007/s00500-019-04378-5
https://www.tornado-mobility.com/index.php/en/home-2/

Efficient Scheduling of Periodic,
Aperiodic, and Sporadic Real-Time Tasks

with Deadline Constraints

Aicha Goubaa1,2,3(B), Mohamed Kahlgui2,3, Frey Georg1, and Zhiwu Li4,5

1 Automation and Energy Systems, Saarland University,
66123 Saarbrucken, Germany

2 School of Electrical and Information Engineering, Jinan University,
(Zhuhai Campus), Zhuhai 519070, China

3 National Institute of Applied Sciences and Technology (INSAT),
University of Carthage, 1080 Tunis, Tunisia

4 Institute of Systems Engineering, Macau University of Science and Technology,
Taipa, Macau 999078, China

5 School of Electro-Mechanical Engineering, Xidian University,
Xi’an 710071, China

Abstract. A real-time system is an operating system that guarantees
a certain functionality within a specified time constraint. Such system
is composed of tasks of various types: periodic, sporadic and aperiodic.
These tasks can be subjected to a variety of temporal constraints, the
most important one is the deadline. Thus, a reaction occurring too late
may be useless or even dangerous. In this context, the main problem
of this study is how to configure feasible real-time system having both
periodic, aperiodic and sporadic tasks. This paper shows an approach for
computing deadlines in uniprocessor real-time systems to guarantee real-
time feasibility for hard-deadline periodic and sporadic tasks and provide
good responsiveness for soft-deadline aperiodic tasks. An application to
a case study and performance evaluation show the effectiveness of the
proposed approach.

Keywords: Real-time feasibility · Periodic task · Sporadic task ·
Aeriodic task · Hard deadline · Soft deadline

Nomenclature

Π Real-time system;
P Set of periodic tasks in Π;
S Set of sporadic tasks in Π;
A Set of aperiodic tasks in Π;
n Number of periodic tasks in Π;
m Number of sporadic tasks in Π;
k Number of aperiodic tasks in Π;

c© Springer Nature Switzerland AG 2021
M. van Sinderen et al. (Eds.): ICSOFT 2020, CCIS 1447, pp. 25–43, 2021.
https://doi.org/10.1007/978-3-030-83007-6_2

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-83007-6_2&domain=pdf
https://doi.org/10.1007/978-3-030-83007-6_2

26 A. Goubaa et al.

τ0
i Periodic task;

τ0
ij The jth job of τ0

i ;
τ1
e Sporadic task;

τ1
ef The fth job of τ0

e ;
τ2
o Aperiodic task;

R0
i Release time of τ0

i ;
r0ij Release time of the jth job of τ0

i ;
C0

i Worst-case execution time of τ0
i ;

P 0
i Period of τ0

i ;
D0

i Hard relative deadline of τ0
i to be determined;

d0ij Relative deadline of τ0
ij to be determined;

φ0
i Degree of criticality of τ0

i ;
E0

ij End execution time of τ0
ij ;

R1
e Release time of τ1

e ;
r1ef Release time of the fth job of τ1

e ;
C1

e Worst-case execution time of τ1
e ;

P 1
e Minimum interval between the arrival of two successive instances of

τ1
e ;

D1
e Hard relative deadline of τ1

e to be determined;
d1ef Relative deadline of τ1

ef to be determined;
φ1

e Degree of criticality of τ1
e ;

E1
ef End execution time of τ1

ef ;
C2

o WCET of τ2
o ;

D2
o Soft deadline of τ2

o to be determined;
φ2

o Degree of criticality of τ2
o ;

Cs Capacity of the NPS server;
P s Period of the NPS server;

HP Hyper-period;
OC Maximum number of aperiodic tasks’ occurrences estimated on HP ;

Q Maximum cumulative execution time requested by periodic and
sporadic jobs on HP ;

τi1 Periodic or sporadic task;
τi1j1 The j1th job of τi1j1 ;

Δi1j1 Maximum cumulative execution time requested by periodic and
sporadic jobs that have to be executed before τi1j1 ;

βi1j1
l Number of jobs produced by a periodic or sporadic task τl to be

executed before τi1j1 .

1 Introduction

Nowadays, computer systems, to control real-time functions, are considered
among the most challenging systems. As a consequence, real-time systems have
become the focus of much study [4–6]. A real-time system is any system which
has to respond to externally generated input stimuli within a finite and speci-
fied delay. The development of real-time systems is not a trivial task because a

Efficient Scheduling of Periodic, Aperiodic, and Sporadic Real-Time Tasks 27

failure can be critical for the safety of human beings [1–3]. Such system must
react to events from the controlled environment while executing specific tasks
that can be periodic, aperiodic or sporadic. A periodic task is activated on a reg-
ular cycle and must adhere to its hard deadline. It is characterized by its arrival
time, worst-case execution time (WCET), period, relative deadline, and a degree
of criticality that defines its applicative importance. The degree of criticality is
defined as the functional and operational importance of a task. A sporadic task
can arrive to the system at arbitrary points in time, but with defined minimum
inter-arrival time between two consecutive invocations. It is characterized by its
worst-case execution time, minimum inter-arrival time, relative deadline, and a
degree of criticality that defines its applicative importance. These attributes are
known before system execution. Additional information available on-line, is its
arrival time and its absolute deadline. An aperiodic task is activated at random
time to cope with external interruptions, and it is based upon soft deadline. Its
arrival time is unknown at design time. It is characterized by its worst-case execu-
tion time, relative deadline, and a degree of criticality that defines its applicative
importance.

Real-time scheduling has been extensively studied in the last three decades.
These studies propose several Feasibility Conditions for the dimensioning of real-
time systems. These conditions are defined to enable a designer to grant that
timeliness constraints associated with an application are always met for all pos-
sible configurations. In this paper, Two main classical scheduling are generally
used in real-time embedded systems: RM and EDF. EDF is a dynamic scheduling
algorithm used in real-time operating systems [8]. EDF is an optimal schedul-
ing algorithm on preemptive uniprocessors, in the following sense: if a collection
of independent jobs (each one characterized by an arrival time, an execution
requirement, and a deadline) can be scheduled (by any algorithm) such that all
the jobs complete by their deadlines, then the EDF will schedule this collection
of jobs such that all of them complete by their deadlines. On the other hand, if
a set of tasks is not schedulable under EDF, then no other scheduling algorithm
can feasibly schedule this task set. Rate Monotonic (RM) for fixed priorities and
Earliest, it was defined by Liu and Layland [7] where the priority of tasks is
inversely proportional to their periods.

Enforcing timeliness constraints is necessary to maintain correctness of a real-
time system. In order to ensure a required real-time performance, the designer
should predict the behavior of a real-time system by ensuring that all tasks
meet their hard deadlines. Furthermore, scheduling both periodic, sporadic and
aperiodic tasks in real-time systems is much more difficult than scheduling a
single type of tasks. Thus, the development of real-time systems is not a trivial
task because a failure can be critical for the safety of human beings [19]. In this
context, the considered problem is how to calculate the effective deadlines (hard
and soft) of the different mixed tasks to guarantee that all tasks will always meet
their deadlines while improving response times for aperiodic tasks.

The major contribution of this work is a methodology defined in the context
of dynamic priority preemptive uniprocessor scheduling to achieve real-time fea-

28 A. Goubaa et al.

sibility of a software system. Differently from earlier work [22], which is based
on maximum deadlines, the deadline calculation in the current work is based
on the degree of criticality of tasks and on their periods. In fact, as the degree
of criticality is defined as the functional and operational importance of a task,
we consider that an important task must be executed ahead, i.e., that its rel-
ative deadline must be well defined to reinforce its execution while using the
EDF scheduling algorithm. The calculation of deadlines is done off-line on the
hyper-period which is the lowest common multiple (LCM) of the periodic tasks’
periods [20]. We suppose that the maximum number of occurrences of aperiodic
tasks in a given interval of time is a random variable with a Poisson distribution
which is a discrete probability distribution that expresses the probability of a
given number of events occurring in a fixed interval of time. This proposed app-
roach consists of two phases. The first one defines the NPS server which serves
periodically aperiodic tasks. In fact, the server can be accounted for in periodic
task schedulability analysis, it has (i) a period which is calculated in such a
way that the periodic execution of the server is repeated as many times as the
maximum number of aperiodic tasks occurrences in the hyper-period, and (ii) a
capacity which is the allowed computing time in each period and it is calculated
based on unused processing time by a given set of periodic and sporadic tasks in
the hyper-period in a such way aperiodic task execution should not jeopardize
schedulability of periodic and sporadic tasks. Then, this approach calculates ape-
riodic tasks soft deadlines while supposing that an aperiodic task, with highest
degree of criticality, gets the highest priority to be executed. The second one
calculates hard deadlines of periodic and sporadic tasks ensuring real-time sys-
tem feasibility while considering the invocation of aperiodic task execution, i.e.,
while considering the maximum cumulative execution time requested by aperi-
odic tasks that may occur before periodic and sporadic jobs on the hyper-period.
Thus, at runtime, even if an aperiodic task occurs, the periodic and sporadic
tasks will certainly respect their deadlines and the response time of aperiodic
task is improved. For each periodic or sporadic task, the maximum among its
calculated jobs deadlines will be its relative deadline. Thus, at runtime, even if an
aperiodic task occurs, the periodic and sporadic tasks will certainly respect their
deadlines and the response time of aperiodic task is improved as the invocation
of aperiodic task execution is considered when calculating hard deadlines.

The remainder of the paper is organized as follows. Section 2 discusses the
related studies. Section 3 presents a computational model, assumptions, and
problem formulation. Section 4 gives the proposed scheduling method. Section 5
presents a case study for evaluating our method. Finally, Sect. 6 summarizes this
paper with our future work.

2 Related Studies

In this section, we present the related works that deal with real-time systems
and scheduling policies.

Efficient Scheduling of Periodic, Aperiodic, and Sporadic Real-Time Tasks 29

Several works deal with the synthesis problem of real-time systems. The
correctness of such systems depends both on the logical result of the compu-
tation and the time when the results are produced. Thus enforcing timeliness
constraints is necessary to maintain correctness of a real-time system. In this con-
text, many approaches have been carried out in the area of schedulability analysis
for meeting real-time requirement [9–14,26]. Some of them [11–13] work on real-
time schedulability without considering the deadlines analysis. Some other [9,10]
seek to schedule tasks to respect energy constraints and consider that deadlines
are given beforehand. Pillai and Shin [26] propose an optimal algorithm for com-
puting the minimal speed that can make a task set schedulable. Furthermore,
these researches does not consider mixed tasks set. Moreover, techniques to cal-
culate tasks’ deadlines are seldom presented. For this reason, the studies that
address this problem are few. The work reported in [15] presents a method that
minimizes deadlines of periodic tasks only. The research in [18] calculates new
deadlines for control tasks in order to guarantee close loop stability of real-time
control systems. On the other hand, several related works, such as in [16,17]
have chosen to manage the tasks of a real-time system by modifying either their
periods or worst-case execution times (WCET). This orientation affects the per-
formance of the system, since increasing the periods degrades the quality of the
offered services, and decreasing the WCET increases the energy consumption.

Furthermore, the research works reported in [23–25] take into account the
energy requirements without considering the deadlines analysis, as long as they
are given beforehand. Indeed, in these researches, the authors seek to schedule
tasks to respect energy constraints. In addition, it is done online, which can be
heavy and expensive.

We note that most of existing studies working on real-time schedulability,
address separately periodic, sporadic or aperiodic tasks but not together. Thus,
the originality of this work compared with related studies is that it

– deals with real-time tasks of various types and constraints simultaneously,
– parameterizes periodic server to execute aperiodic tasks,
– calculates soft deadlines of aperiodic tasks,
– calculates periodic and sporadic tasks hard deadlines which will be certainly

respected online,
– improves response times of aperiodic tasks which can lead to a significant

improvement of the system performance.

3 Assumptions and System Formalization

3.1 System Model

It is assumed in this work that a real-time system Π deals with a combination
of mixed sets of tasks and constraints: periodic and sporadic tasks with hard
constraints, and soft aperiodic tasks. Thus, Π is defined as having three task
sets as presented in Fig. 1.

We assume that all periodic tasks are simultaneously activated at time t = 0;

30 A. Goubaa et al.

Fig. 1. Π’s tasks sets.

3.2 Periodic Task Model

Each periodic task τ0
i , i ∈ [1, ..., n], in P is characterized by: (i) a release time

R0
i which is the time at which a task becomes ready for execution [27], (ii) a

worst-case execution time (WCET) C0
i , (iii) a period P 0

i , (iv) a relative deadline
D0

i to be calculated, and (v) a degree of criticality phi0i . Figure 2 depicts the
task parameters:

Fig. 2. Periodic task parameters.

Each periodic task τ0
i produces an infinite sequence of identical activities

called jobs τ0
ij [27], where j is a positive integer. Each job τ0

ij is described by:
(i) a release time r0ij , (ii) a relative deadline d0ij , and (iii) an end execution time
E0

ij . We note that
D0

i = max{d0ij} (1)

where i ∈ [1, ..., n].
Finally, we denote by HP the hyper-period which is the lowest common

multiple (LCM) of the periodic tasks’ periods.

HP = LCM{P 0
i } (2)

where i ∈ [1, ..., n].

Efficient Scheduling of Periodic, Aperiodic, and Sporadic Real-Time Tasks 31

3.3 Sporadic Task Model

Each sporadic task τ1
e , e ∈ [1, ...,m], is defined by: (i) a release time R1

e, (ii) a
worst-case execution time C1

e , (iii) a relative deadline D1
e , (iv) a period P 1

e which
measures the minimum interval between the arrival of two successive instances
of a task τ1

e , and (v) a degree of criticality phi1e
Each sporadic task τ1

e produces an infinite sequence of jobs τ1
ef , where f

is a positive integer. Each job τ1
ef is described by: (i) a release time r1ef , (ii)

a relative deadline d1ef , and (iii) end execution time E1
ef . Figure 3 depicts the

sporadic task’s jobs parameters:

D1
e = max{d1ef} (3)

where e ∈ [1, ...,m].

Fig. 3. Sporadic task parameters.

3.4 Aperiodic Task Model

Each aperiodic task τ2
o , o ∈ [1, ..., k], is defined by: (i) a worst-case execution

time C2
o , (ii) a relative soft deadline D2

o, and (iii) a degree of criticality phi2o.
An aperiodic task can arrive in a completely random way. Thus, we model this
number by the Poisson distribution with a parameter λ. We note by OC the
maximum number of aperiodic tasks’ occurrences estimated on the hyper-period.

Let NPS be a periodic server that behaves much like a periodic task, but
created to execute aperiodic tasks. It is defined by: (i) a period P s, and (ii) a
capacity Cs. These parameters will be calculated to meet time requirements of
aperiodic tasks.

3.5 Problem: Feasible Scheduling of Real-Time Tasks with Various
Types

We undertake a real-time system which is composed of mixed tasks sets with
various constraints. Thus, the considered problem is how to configure feasible
scheduling of software tasks of various types (periodic, sporadic and aperiodic)

32 A. Goubaa et al.

and constraints (hard and soft) in the context of dynamic priority, preemptive,
uniprocessor scheduling. To ensure that this system runs correctly, it is necessary
to check whether it respects the following constraints:

– the execution of aperiodic tasks must occur during the unused processing
time by a given set of periodic and sporadic tasks in the hyper-period in such
way aperiodic task execution should not jeopardize schedulability of periodic
and sporadic tasks. This constraint is given by

Cs ≤ HP − Q

where, Cs is the capacity of the NPS server and Q is the maximum cumu-
lative execution time requested by periodic and sporadic jobs on the hyper-
period HP .

– During each hyper-period, each periodic or sporadic job has to be completed
before the absolute deadline using the EDF scheduling algorithm even if an
aperiodic task is executed. In fact, the cumulative execution time requested by
aperiodic tasks must be token into consideration when calculating the tasks’
deadlines. Thus, s an aperiodic task will be executed as soon as possible of
its activation, and periodic and sporadic tasks will meet their deadlines. This
constraint is given by

• For periodic jobs:

∀i ∈ {1, ..., n}, and j ∈ {1, ...,
HP

P 0
i

], E0
ij ≤ r0ij + D0

i (4)

• For sporadic jobs:

∀e ∈ {1, ...,m}, and f ∈ {1, ...,

⌈
HP

P 1
e

⌉
], E1

ef ≤ r1ef + D1
e (5)

In what follows, it is always considered that i ∈ [1...n], e ∈ [1...m], o ∈ [1...k],

j ∈ [1...
HP

P 0
i

], where
HP

P 0
i

denotes the number of jobs produced by task τi on

hyper-period HP and f ∈ [1...�HP

P 0
i

�]. In addition, we suppose that a ztask

lower its value, higher the criticality.

4 Contribution: New Solution for Deadlines Calculation

4.1 Motivation

The proposed methodology deals with real-time tasks of various types and con-
straints simultaneously. This approach is divided into two phases as presented
in Fig. 4:

Efficient Scheduling of Periodic, Aperiodic, and Sporadic Real-Time Tasks 33

– First Phase: consists on parameterizing the NPS server which is a service
task, with a period P s and a capacity Cs, invoked periodically to execute
aperiodic tasks. Then, this approach calculates soft deadlines of aperiodic
tasks while supposing that an aperiodic task, with highest degree of criticality,
gets the highest priority. The NPS can provide a substantial reduction in the
average response time of the aperiodic tasks.

– Second Phase: starts by calculating jobs’deadlines. In fact, for each peri-
odic/sporadic task, it calculates the deadlines of its jobs that occur on the
hyper-period based on the maximum cumulative execution time requested
by i) other periodic/sporadic jobs that will occur before the considered peri-
odic/sporadic job on the hyperperiod based on the degree of criticality, and
ii) aperiodic tasks that may occur before periodic/sporadic job on the hyper-
period. Then, for each periodic/sporadic task, its deadline will be equal to
the maximum of its jobs’ deadlines. Thus, at runtime, even if an aperiodic
task occurs, this methodology ensures certainly real-time system feasibility
of periodic and sporadic tasks.

Fig. 4. New methodology of deadlines calculation.

34 A. Goubaa et al.

4.2 Proposed Approach

In this section, we present the solution that we propose to extend. This solution
is mainly based on the calculation of effective deadlines of mixed tasks set in
order to ensure that the system will run correctly and to satisfy the real-time
feasibility.

Parameterizing Aperiodic Tasks: As mentioned previously, aperiodic tasks
will be run periodically by the periodic server NPS (P s, Cs). As, OC is the
maximum number of aperiodic tasks’ occurrences estimated on the hyper-period,
then, NPS must be activated OC times to serve all possible activations of ape-
riodic tasks that may occur. Thus, its period is calculated as below

P s = �HP

OC
� (6)

Moreover, aperiodic tasks are scheduled by utilizing unused processing time
by a given set of periodic and spordic tasks in the hyper-period. Thus, the
capacity of server is calculated as follows: first, we calculate the unused time by
subtracting the maximum cumulative execution time requested by periodic and
sporadic jobs from HP , and second we divide the obtained result by OC, i.e.,
the possible activation number, to affirm that in each period the same amount
of execution time will be executed, hence the server capacity value.

Cs = �HP − Q

OC
� (7)

where, Q is the maximum cumulative execution time requested by periodic and
sporadic jobs on the hyper-period HP .

Q = (
∑

τ0
i ∈P

(C0
i × HP

P 0
i

)) + (
∑

τ1
e ∈S

(C1
e × �HP

P 1
e

�)) (8)

By assuming that the aperiodic task with the highest degree of criticality,i.e.,
the smallest value of φ2

o, gets the highest priority, we calculate the deadlines D2
o

as following

D2
o =

x=k∑
x=1

C2
x × αx (9)

where,

αx =
{

1 if (φ2
o ≥ φ2

x),
0 else. (10)

Parameterizing Periodic and Sporadic Tasks: At the peak of activity, a
sporadic task τe runs at each P 1

e . In this case, we can estimate the value r1ef

of each job τ1
ef . Therefore, to calculate the deadline of a sporadic task, we fol-

low the same procedure of a periodic task deadline calculation. For that, we

Efficient Scheduling of Periodic, Aperiodic, and Sporadic Real-Time Tasks 35

unify the notation of periodic and sporadic tasks by τi1(Ri1 , Ci1 , Pi1 ,Di1 , φi1),
where i1 in[1, ..., n + m], also for these parameters. For example, let’s con-
sider a system with two tasks: a periodic task τ0

1 (R0
1, C

0
1 , P 0

1 ,D0
1, φ

0
1) and a

sporadic task τ1
1 (R1

1, C
1
1 , P 1

1 ,D1
1, φ

1
1), then they becomes τ1(R1, C1, P1,D1, φ1)

and τ2(R2, C2, P2,D2, φ2).
This solution allows the calculation of deadlines of a task τi1 . We denote by

Δi1j1 the job quantity, coming from periodic and sporadic jobs, to be executed
before the job τi1j1 . In other words, Δi1j1 is the maximum cumulative execution
time requested by jobs that have to be executed before each job τi1j1 .

Δi1j1 is given by

Δi1j1 = (j1 − 1) × Ci1 +
∑

τ∈
l P∪Sandl �=i

(�j1 × Pi1

Pl
� − βi1j1

l) × Cl (11)

where (j1 − 1) × Ci1 represents the cumulative execution time requested by the
previous instances of τi1 , i.e., if we are working on the j1th instance, then we
are sure that there are (j1 − 1) instances that have already been executed, and∑

τ∈
l ∈P∪Sandl �=i(� j1×Pi1

Pl
�−βi1j1

l)×Cl represents the cumulative execution time

requested by the other tasks’ jobs, where βi1j1
l is an integer given by

βi1j1
l =

{
0 if (� j1×Pi1

Pl
� × Pl < j1 × Pi1) or (� j1×Pi1

Pl
� × Pl = j1 × Pi1 and φi1 > φl)

1 if (� j1×Pi1
Pl

� × Pl > j1 × Pi1) or (� j1×Pi1
Pl

� × Pl = j1 × Pi1 and φi1 < φl)

(12)
The value di1j1 that guarantees the feasibility of this job takes the form

di1j1 =

⎧⎪⎨
⎪⎩

∑
τ2
l ∈A(C2

l × �Pi1
P s �) + Ci1 + Δi1j1 − ri1j1

if Δi1j1 > ri1j1 ,∑
τ2
l ∈A(C2

l × �Pi1
P s �) + Ci1 else.

(13)

The deadline Di1 of task τi1 is expressed by

Di1 = max{di1j1} (14)

Finally, Di1 is the fixed deadline for τi1 .

New Solution for Deadline Calculation of Periodic, Sporadic and Ape-
riodic Real-Time Tasks: We can implement our approach by the algorithm
below with complexity O(n).

We use the following functions: NPS Parameters(HP,OC) which is a func-
tion that returns the NPS server parameters, and H Dead Calc(P,S) which
a function that returns the periodic and sporadic hard deadlines. This function
starts by computing jobs deadlines and then for each periodic/sporadic task, it
calculates its fixed deadline to be equal to the maximum of its jobs’ deadlines.

36 A. Goubaa et al.

Algorithm 1. New method for deadline calculation.
Require: P, S,A, OC
Ensure: D0

i , D1
e , D2

o

1: function NPS Parameters(HP, OC)

2: P s = �HP

OC
�

3: Q = (
∑

τ0
i ∈P(C0

i × HP

P 0
i

)) + (
∑

τ1
e ∈S(C1

e × �HP

P 1
e

�))

4: Cs = �HP − Q

OC
�

5: end function
6: for all τ2

o ∈ A do
7: D2

o =
∑x=k

x=1 C2
x × αx

8: end for
9: function H Dead Calc(P, S)

10: for all τl ∈ P ∪ S do
11: Δi1j1 =

∑
τl∈P∪S(Cl × βi1j1

l)
12: if Δi1j1 > ri1j1 then
13: di1j1 =

∑
τ2
l

∈A(C2
l × �Pi1

Ps �) + Ci1 + Δi1j1 − ri1j1

14: else
15: di1j1 =

∑
τ2
l

∈A(C2
l × �Pi1

Ps �) + Ci1

16: end if
17: end for
18: Di1 = max{di1j1}
19: end function

5 Implementation

5.1 Case Study

We present in this section a simple example of an electric oven whose temperature
we want to keep constant after in interruption that may disturb the temperature
stability. For example, we want to keep it at 180 °C after a sudden opening of the
oven’s door as presented in Fig. 5. The oven is heated by an electrical resistance,
the intensity of which can vary. Inside the oven there is also a temperature probe,
which allows to measure and monitor the temperature in the oven.

This system is implemented by three sets: P = {τ0
1 , τ0

2 }, S = {τ1
1 } and

A = {τ2
1 }. The tasks are presented in Table 1:

Efficient Scheduling of Periodic, Aperiodic, and Sporadic Real-Time Tasks 37

Fig. 5. Electric oven modelisation.

Table 1. System tasks.

Task Fonction WCET Period Degree of criticality

τ0
1 Mesures temperature 2 8 1

τ0
2 Heats the oven 2 16 3

τ1
1 Checks temperature value 2 16 2

τ2
1 Adjusts temperature 2 5

We have, HP = LCM{8, 16} = 16s.
Let’s suppose that the parameter λ of the Poisson distribution is equal to 0.5

occurrences in 10 s. Thus, in the hyper-period we have HP
10 ×λ = 16

10 × 0.5 = 1.6,
i.e., OC = 2 occurrences.

The first step is to configure the periodic server.
The periodic server parameters P s and Cs are computed respectively as

following:

According to Eq. (6), P s = �16
2

� = 8

According to Eq. (8), Q = 2 × 2 + 2 × 1 = 6

According to Eq. (7), Cs = �16 − 6
2

� = 5

After that, we calculate the soft deadline of the aperiodic task τ2
1 . According

to Eq. (9)

D2
1 = C2

1 × α1 = 2 × 1 = 2

Second step is the calculation of periodic and sporadic tasks’ deadlines. As
mentioned previously, we unify the notation of periodic and sporadic tasks as
following: τ0

1 becomes τ1, τ0
2 becomes τ2, and τ1

1 becomes τ3.
As an example, we take the calculation of deadline D0

1 for task τ0
1 , i.e.,

D1 for the task τ1. The number of jobs of task τ1 in the hyper-period HP
is HP

P3
= 16

8 = 2 jobs.

Job τ11:
First of all, we calculate the job quantity Δ11. According to Eq. (11), we have
to calculate β11

2 and β11
3 as indicated Eq. (12).

38 A. Goubaa et al.

We have � 1×8
16 � × 16 < 1 × 8, i.e., 0 < 8, then we conclude that β11

2 = 0. In
the same way, we have β11

3 = 0
According to Eq. (11), Δ11 is calculated as following

Δ11 = (1 − 1) × 2 + �1 × 8
16

� − 0) × 2 + �1 × 8
16

� − 0) × 2

= 0 × 2 + 0 × 2 + 0 × 2 = 0

We have r11 = 0, so Δ11 = r11. Thus, according to Eq. (13),

d11 =
∑

τ2
l ∈A

(C2
l × �Pi1

P s
�) + C1

= 2 + 2 = 4

Job τ12:
First of all, we calculate the job quantity Δ12. According to Eq. (11), we have
to calculate β12

2 , and β12
3 as indicated in Eq. (12). We have � 2×8

16 � × 16 < 2 × 8,
i.e., 16 = 16, and φ1 < φ2 then we conclude that β12

2 = 1. In the same way, wa
have β11

3 = 1
According to Eq. (11), Δ12 is calculated as following

Δ12 = (2 − 1) × 2 + �2 × 8
16

� − 1) × 2 + �2 × 8
16

� − 1) × 2

= 1 × 2 + 0 × 2 + 0 × 2 = 2

We have r12 = 8, then Δ12 < r12 and we have
∑

τ2
l ∈A

(C2
l × �Pi1

P s
�) = 2

Thus, according to Eq. (13),

d12 =
∑

τ2
l ∈A

(C2
l × �Pi1

P s
�) + C1 = 2 + 2 = 4

Finally, we calculate the deadline D1 of the task τ1 as bellow

D1 = max{d11, d12} = max{4, 4} = 4

After completing the execution of the proposed approach, the calculated
effective deadlines of the different tasks are given in Table 2.

Table 2. Tasks’ calculated deadlines.

Task τ0
1 τ0

2 τ1
1 τ2

2

Calculated deadline 4 10 6 2

Figure 6 shows the scheduling of tasks after the execution of the proposed
approach. We note that the real-time constraints are respected by the proposed
methodology, and the response time of each aperiodic task is equal to its execu-
tion time, i.e., they are executed with the best response time.

Efficient Scheduling of Periodic, Aperiodic, and Sporadic Real-Time Tasks 39

Fig. 6. Scheduling of tasks after the execution of the proposed approach.

5.2 Performance Evaluation

We have randomly generated instances with 10 to 50 periodic and sporadic tasks.
We compare the proposed approach with the work reported in [15], where the
critical scaling factor (CSF) algorithm is developed.

Figure 7 visualizes simulation that compares the proposed approach with
the work reported in [15], where the critical scaling factor (CSF) algorithm is
developed. We obtain better results in terms of decrease rate of deadlines in
the proposed approach. In fact, the reduction rates of deadlines by using [15]
are smaller than those by using the proposed work. The gain is more significant
when increasing the number of tasks. If 10 tasks are considered, then the gain

10 20 30 40 50

0.2

0.4

0.6

0.8

0.31

0.43

0.59
0.64

0.7

0.2

0.33

0.4

0.47
0.52

Number of total tasks

R
at
es

of
de
ad
lin

es
re
du
ct
io
n

Output of the current work Output of GSF algorithm

Fig. 7. Rates of deadlines reduction in the case of the proposed approach and in the
case of GSF algorithm.

40 A. Goubaa et al.

is equal to (0.31 − 0.2) = 0.11, and if 50 tasks are considered, then the gain is
equal to (0.7 − 0.52) = 0.18.

As it was presented in [22], Fig. 8 shows that the NPS algorithm serves
to improve the aperiodic response time compared to background service (BK),
deferrable server (DS) and total bandwidth server (TBS).

Fig. 8. The improvement of aperiodic tasks response times [22].

5.3 Comparative Study

Table 3 describes the comparison of the developed approach in this paper with
some studies. The originality is manifested by treating different and independent

Table 3. Comparative study.

Work Deadline calculation Tasks’ type Offline/Online

[11]

This work considers

periodic tasks only

It aims to ensure the

system schedulability by

managing the tasks of by

modifying either their

periods or worst-case

execution time without

considering the deadlines

analysis. This orientation

affects the performance of

the system

Online: all the calculations

are done online which can be

expensive in case of errors

[18]

Same as [11] It calculates new

deadlines to improve the

responsiveness in the

context of TBS

Same as [11]

[21]

This work addresses the

problem of mixed tasks

It aims to schedule mixed

tasks while reducing

energy consumption

Same as [11]

The proposed

approach

The main objective of

this work is to calculate

deadlines which guarantee

i) the respect of hard

real-time constraints for

periodic and sporadic

tasks, and ii) the

improvement of aperiodic

tasks response time

It deals with real-time

tasks of various types:

periodic, sporadic and

aperiodic

Offline: which is suitable for

the design phase and

subsequently it is not

expensive in case of errors

Efficient Scheduling of Periodic, Aperiodic, and Sporadic Real-Time Tasks 41

problems together, i.e., periodic, sporadic and aperiodic tasks and hard and soft
real-time constraints tasks simultaneously.

We note that the proposed approach allows to reduce the response time,
to reduce the calculation time for the reason that there is no need to waste
time at doing schedulability tests, to guarantee the meeting of aperiodic tasks
deadlines without jeopardizing schedulability of periodic and sporadic tasks and
thus improves the overall performance of the real-time system.

6 Conclusion

This paper is interested in real-time systems executing periodic, sporadic and
aperiodic tasks. Our study concerns specifically the computing off effective tasks’
deadlines. We propose a new approach that consists on creating the NPS server,
it is a service task invoked periodically to execute aperiodic tasks after having
calculated aperiodic tasks’ soft deadlines. Then, this approach calculates the
periodic and sporadic tasks deadlines based on the degree of criticality of tasks
and while considering the invocation of aperiodic task execution. An application
to a case study and performance evaluation show the effectiveness of the proposed
approach and that the NPS can provide a substantial reduction in the average
response time of the aperiodic tasks. In our future works, we will be interested
in the implementation of the paper’s contribution that will be evaluated by
assuming real case studies.

References

1. Lakdhar, Z., Mzid, R., Khalgui, K., Li, Z., Frey, G., Al-Ahmari, A.: Multiobjective
optimization approach for a portable development of reconfigurable real-time sys-
tems: from specification to implementation. IEEE Trans. Syst. Man Cybern. Syst.
49(3), 623–637 (2018)

2. Anastasia, M., Jarvis, S., Todd, M.: Real-time dynamic-mode scheduling using
single-integration hybrid optimization. IEEE Trans. Autom. Sci. Eng. 13(3), 1385–
1398 (2016)

3. Burns, A., Wellings, A.: Real-Time Systems and Programming Languages: Ada,
Real-Time Java and C/Real-Time POSIX, 4th edn. Addison- Wesley Educational
Publishers Inc., Boston (2009)

4. Ben Meskina, S., Doggaz, N., Khalgui, M., Li, Z.: Reconfiguration-based method-
ology for improving recovery performance of faults in smart grids. J. Inf. Sci.
454–455, 73–95 (2018)

5. Goubaa, A., Khalgui, M., Li, Z., Frey, G., Zhou, M.: Scheduling periodic and
aperiodic tasks with time, energy harvesting and precedence constraints on multi-
core systems. J. Inf. Sci. 520, 86–104 (2020)

6. Ghribi, I., Ben Abdallah, R., Khalgui, M., Li, Z., Alnowibet, K., Platzne, M.:
R-codesign: codesign methodology for real-time reconfigurable embedded systems
under energy constraints. IEEE Access 6, 14078–14092 (2018)

7. Liu, C., Layland, J.: Scheduling algorithms for multiprogramming in a hard-real-
time environment. J. ACM (JACM) 201, 46–61 (1973)

42 A. Goubaa et al.

8. Baruah, S., Goossens, J.: Scheduling real-time tasks: algorithms and complexity.
In: Handbook of Scheduling: Algorithms, Models, and Performance Analysis, vol.
3 (2004)

9. Von der Brüggen, G., Huang, W., Chen, J., Liu, C.: Uniprocessor scheduling strate-
gies for self-suspending task systems. In: 24th International Conference on Real-
Time Networks and Systems, pp. 119–128. Association for Computing Machinery,
USA (2016)

10. Shanmugasundaram, M., Kumar, R., Kittur, H.: Performance analysis of preemp-
tive based uniprocessor scheduling. Int. J. Electr. Comput. Eng. 6(4), 1489–1498
(2016)

11. Gammoudi, A., Benzina, A., Khalgui, M., Chillet, D.: New pack oriented solutions
for energy-aware feasible adaptive real-time systems. In: Fujita, H., Guizzi, G.
(eds.) SoMeT 2015. CCIS, vol. 532, pp. 73–86. Springer, Cham (2015). https://
doi.org/10.1007/978-3-319-22689-7 6

12. Gammoudi, A., Benzina, A., Khalgui, M., Chillet, D., Goubaa, A.: ReConf-pack: a
simulator for reconfigurable battery-powered real-time systems. In: Proceedings of
European Simulation and Modelling Conference (ESM), Spain, pp. 225–232 (2016)

13. Gasmi, M., Mosbahi, O., Khalgui, M., Gomes, L., Li, Z.: R-node: new pipelined
approach for an effective reconfigurable wireless sensor node. IEEE Trans. Syst.
Man Cybern. Syst. 486, 892–905 (2016)

14. Wang, X., Li, Z., Wonham, W.: Dynamic multiple-period reconfiguration of real-
time scheduling based on timed DES supervisory control. IEEE Trans. Industr.
Inf. 121, 101–111 (2015)

15. Balbastre, P., Ripoll, I., Crespo, A.: Minimum deadline calculation for periodic
real-time tasks in dynamic priority systems. IEEE Trans. Comput. 571, 96–109
(2007)

16. Wang, X., Khemaissia, I., Khalgui, M., Li, Z., Mosbahi, O., Zhou, M.: Dynamic low-
power reconfiguration of real-time systems with periodic and probabilistic tasks.
IEEE Trans. Autom. Sci. Eng. 121, 258–271 (2014)

17. Wang, X., Khemaissia, I., Khalgui, M., Li, Z., Mosbahi, O., Zhou, M.: Dynamic
multiple-period reconfiguration of real-time scheduling based on timed DES super-
visory control. IEEE Trans. Industr. Inf. 121, 101–111 (2015)

18. Cervin, A., Lincoln, B., Eker, J., Arzén, K., Buttazzo, G.: The jitter margin and
its application in the design of real-time control systems. In: Proceedings of the
10th International Conference on Real-Time and Embedded Computing Systems
and Applications, Sweden, pp. 1–9 (2004)

19. Wang, X., Li, Z., Wonham, W.: Optimal priority-free conditionally-preemptive
real-time scheduling of periodic tasks based on DES supervisory control. IEEE
Trans. Syst. Man Cybern. Syst. 477, 1082–1098 (2016)

20. Ripoll, I., Ballester-Ripoll, R.: Period selection for minimal hyperperiod in periodic
task systems. IEEE Trans. Comput. 629, 1813–1822 (2012)

21. Yiwen, Z., Haibo, L.: Energy aware mixed tasks scheduling in real-time systems.
Sustain. Comput. Inform. Syst. 23, 38–48 (2019)

22. Goubaa, A., Khalgui, M., Frey, G., Li, Z.: New approach for deadline calculation
of periodic, sporadic and aperiodic real-time software tasks. In: Proceedings of the
15th International Conference on Software Technologies (ICSOFT 2020), 452–460
(2020). ISBN 978-989-758-443-5

23. Chetto, M.: Optimal scheduling for real-time jobs in energy harvesting computing
systems. IEEE Trans. Emerg. Top. Comput. 22, 122–133 (2014)

https://doi.org/10.1007/978-3-319-22689-7_6
https://doi.org/10.1007/978-3-319-22689-7_6

Efficient Scheduling of Periodic, Aperiodic, and Sporadic Real-Time Tasks 43

24. Sun, Y., Yuan, Z., Liu, Y., Li, X., Wang, Y., Wei, Q., Wang, Y., Narayanan, V.,
Yang, H.: Maximum energy efficiency tracking circuits for converter-less energy
harvesting sensor nodes. IEEE Trans. Circuits Syst. II Express Briefs 646, 670–
674 (2017)

25. Yang, J., Wu, X., Wu, J.: Optimal scheduling of collaborative sensing in energy
harvesting sensor networks. IEEE J. Sel. Areas Commun. 333, 512–523 (2015)

26. Pillai, P., Shin, K.: Real-time dynamic voltage scaling for low-power embedded
operating systems. In: Proceedings of the 13th Euromicro Conference on Real-
Time Systems, pp. 59–66. ACM, USA (2001)

27. Buttazzo, G.: Hard Real-Time Computing Systems: Predictable Scheduling Algo-
rithms and Applications, vol. 24. Springer, Boston (2011). https://doi.org/10.1007/
978-1-4614-0676-1

https://doi.org/10.1007/978-1-4614-0676-1
https://doi.org/10.1007/978-1-4614-0676-1

R-TNCES State Space Generation Using
Ontology-Based Method on a Distributed

Cloud-Based Architecture

Chams Eddine Choucha1(B) , Mohamed Oussama Ben Salem2 ,
Moahmed Khalgui1,3 , Laid Kahloul4 , and Naima Souad Ougouti5

1 LISI Laboratory, National Institute of Applied Sciences and Technology (INSAT),
University of Carthage, 1080 Tunis, Tunisia

2 Team Project IMAGES-ESPACE-Dev, UMR 228 EspaceDev IRD UA UM UG UR,
University of Perpignan Via Domitia, 66860 Perpignan, France

3 School of Electrical and Information Engineering, Jinan University,
(Zhuhai Campus), Zhuhai 519070, China

4 LINFI Laboratory, Computer Science Department, Biskra University,
Biskra, Algeria

5 LSSD Laboratory, Computer Science Department, University of Science
and Technology of Oran Mohamed Boudiaf, Bir El Djir, Algeria

Abstract. This paper deals with formal verification (accessibility graph
generation & state space analysis) of RDECSs modeled with specified
reconfigurable timed net condition/event systems (R-TNCESs) where
the properties to be verified to ensure the well behave of systems are
expressed by computation tree logic CTL. Reconfigurable discrete event
control systems (RDECSs) are complex and critical systems, which, make
their formal verification expensive in terms of complexity and memory
occupation. We aim to improve model checking used for formal verifica-
tion of RDECSs by proposing a new approach of state space generation
that considers similarities and a parallel verification of CTL properties. In
this approach, we introduce the modularity concept for verifying systems
by constructing incrementally their accessibility graphs. Furthermore, we
set up an ontology-based history to deal with similarities between two
or several systems by reusing state spaces of similar components that
are computed during previous verification. A distributed cloud-based
architecture is proposed to perform the parallel computation for con-
trol verification time and memory occupation. The paper’s contribution
is applied to a benchmark production system. The evaluation of the pro-
posed approach is performed by measuring the temporal complexity of
several large scale system verification. The results show the relevance of
this approach.

Keywords: Formal verification · Discrete-event system ·
Reconfiguration · Petri net · Ontology

c© Springer Nature Switzerland AG 2021
M. van Sinderen et al. (Eds.): ICSOFT 2020, CCIS 1447, pp. 44–69, 2021.
https://doi.org/10.1007/978-3-030-83007-6_3

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-83007-6_3&domain=pdf
http://orcid.org/0000-0003-0194-4890
http://orcid.org/0000-0002-9227-8151
http://orcid.org/0000-0001-6311-3588
http://orcid.org/0000-0002-9739-7715
https://doi.org/10.1007/978-3-030-83007-6_3

R-TNCES State Space Generation Using Ontology-Based Method 45

1 Introduction

Reconfigurable discrete event control systems (RDECSs) are the trend of future
systems. RDECSs can be reconfigured in a static way (off-line) or in a dynamic
way (automatically at run-time). In the latter, a reconfiguration scenario should
be applied automatically and timely as a response related to dynamic environ-
ment, or user requirements. Therefore, an RDECS may go through several modes
at run-time [3,9], increasing verification process complexity. Formal verification
represents a reliable method to ensure the correctness of RDECSs. Usually, it
consists in generating and analyzing the state spaces of studied systems. How-
ever, with the combinatorial growth, the state space size becomes too big, even
with small sized systems. Hence, model-checking becomes quite challenging for
industry and academia because of the state space explosion problem [19]. Sev-
eral studies have been done to cope with state space explosion problems. The
authors in [18] present symbolic model checking that represents the state space
symbolically instead of explicitly, by exploiting the state graph regularity using
boolean functions. In [6], bounded model checking (BMC) is proposed to look for
a counter-example in executions whose length is limited by an integer k. If no bug
is found, then k is increased until a possible bug is found. The above methods can
proceed efficiently proceed to complex systems verification. However, they use
an implicit representation of state spaces, which present limitation for computa-
tion of quantitative properties (e.g., state probabilities in stochastic models) [2].
With the apparition of new complex systems such as reconfigurable manufactur-
ing systems, reconfigurable wireless networks, etc. [1], techniques and formalisms
used for verification must evolve. Petri nets has been extended by many works.
Reconfigurable Petri nets presented in [15], proposed for reconfigurable systems.
However, although useful, being non-modular formalism, it can cause confusion
to engineers for possible reusing. Timed net condition/event systems (TNCES)
formalism presented in [7] as modular extension of Petri nets to deal with time
constraints. TNCES is used for their particular dynamic behavior, modularity
and interconnection via signals. However, dynamic behavior of reconfigurable
systems is still not supported. Reconfigurable net condition/event systems (R-
TNCESs) are developed as an extension of the TNCES formalism in [20], where
reconfiguration and time properties with modular specification are provided in
the same formalism while keeping the same semantics of TNCESs. With R-
TNCES formalism, physical system processes are easily understood thanks to
modular graphic representations. In addition, it can capture complex charac-
teristics of an RDECS. Formally an R-TNCES is a multi-TNCES defined as a
couple (B,R), where B is a set of TNCESs, and R is a set of reconfiguration rules
[20]. A layer-by-layer verification method is proposed where similarities between
TNCESs are considered. This method is improved in [7] where the authors pro-
pose a new method for accessibility graph generation with less computing time
and less required memory. The previous methods improve classical ones. How-
ever, with large scale systems, their application using a unique machine (i.e., a
centralized system) may be expensive in terms of time.

46 C. E. Choucha et al.

In this paper, we are interested in reconfigurable systems, modeled with the
R-TNCES formalism where the RDECS behavior is represented by the behavior
of control components (CCs) and the communication between them (synchro-
nization) [20]. We propose a new verification method that aims to improve R-
TNCES formal verification. The verification of an R-TNCES requires checking
of each configuration, namely each TNCES. TNCESs which describe configu-
rations often contain similarities called internal similarities. On another hand,
some RDECSs share the same system components, so their model contains sim-
ilarities called external similarities, which implies redundant calculation during
checking of these systems. Thus, in order to avoid many repetitive computation
due to previous problems, we propose in this paper the following contributions:

1. An ontology-based history to facilitate the detection of external similarities:
Ontologies allow us to describe the RDECSs (components, work process, com-
ponent relationships..., etc.) in an abstracted way than the formal model.
Thus, we can efficiently detect the similarities between RDECSs with less
computing time and resources, thank the ontology alignment method [13].
Each model must be accompanied by a system ontology, which describes the
system to be verified. The system ontology is aligned to the ontology-based
history, which contains descriptions of already verified systems. The detected
similarities allow reusing state spaces computed during previous verification.

2. Incremental construction of the accessibility graphs to deal with similari-
ties: The verification of R-TNCES requires the verification of each TNCES
that composes the R-TNCES model. In order to deal with similarities that
TNCESs contain (similar control components), we construct the accessibility
graph in an incremental way in two steps: (i) Fragmentation: During this step,
we proceed to the decomposition of the R-TNCES models into a set of CCs.
Then, we generate an accessibility graph for each different CC, while pre-
serving semantics. (ii) Accessibility graph composition: Accessibility graphs
recovered thanks to ontology alignment, and those computed during the frag-
mentation step are composed following an established composition plan based
on priority order.

3. A new method parallel CTL properties verification: The method considers
the relationships that exist among properties, performs the verification in
parallel way via SESA tool [16] and considers the similarity that can exist
among properties.

4. An adequate distributed cloud-based architecture to perform parallel exe-
cutions for formal verification: This distributed architecture is composed of
computation units organized in three hierarchical levels that are: Master,
workers, and sub-workers. Data storage is ensured by Amazon simple storage
service S3 [11].

This paper is an extended version of our previous paper [5], presented at the
‘IC-SOFT 2020’ conference. The method improves by

– Improving the ontology alignment method.
– Setting up an adapted algorithm for ontology fusion.
– Integrating CTL properties parallel verification method.

R-TNCES State Space Generation Using Ontology-Based Method 47

The main objective of this paper is to propose a new formal verification method
that improves the classical ones by controlling complexity. As a running example,
we use the FESTO MPS benchmark system presented in [10], to demonstrate
the relevance of the proposed contributions. The obtained results are compared
with different works. The comparison shows that the sate spaces generation is
improved in terms of computed states and execution time (i.e., less complexity
to compute state spaces). The remainder of the paper is organized as follows.
Section 2 presents some required concepts. The distributed formal verification is
presented in Sect. 3. The method and the proposed algorithms are presented in
Sect. 4. Section 5 presents the evaluation of the proposed method. Finally, Sect. 6
concludes this paper and gives an overview about our future work.

2 Background

In this section, we present required concepts to follow the rest of the paper.

2.1 Reconfigurable Timed Net Condition/Event System

R-TNCES represents an extension of TNCESs [17], based on Petri nets and
control components CCs. R-TNCES is used for formal modeling and verification
of RDECSS.

Formalization. An R-TNCES is defined in [20] as a couple RTN = (B,R),
where R is the control module and B is the behavior module. B is a union of
multi TNCES-based CC modules, represented by

B = (P ;T ;F ;W ;CN ;EN ;DC;V ;Z0) (1)

where, 1.P (resp, T) is a superset of places (resp, transitions), 2. F ⊆ (P ×
T) ∪(T × P)1 is a superset of flow arcs. 3. W : (P × T) ∪ (T × P) → {0, 1}
maps a weight to a flow arc, W (x, y) > 0 if (x, y) ∈ F , and W (x, y) = 0 oth-
erwise, where x, y ∈ P ∪ T , 4. CN ⊆ (P × T) (resp, EN ⊆ (T × T)) is a
superset of condition signals (resp, event signals), 5. DC : F ∩ (P × T) →
{[l1, h1], .., [lF∩(P×T), hF∩(P×T)]} is a superset of time constraints on input arcs
of transitions, where ∀ i∈ [1, |F ∩ (P × T)|], li, hi ∈ N and li < hi. 6.
V : T → ∧,∨ maps an event-processing mode (AND or OR) for every tran-
sition. 7. Z0 = (M0,D0), where M0 : P → {0, 1} is the initial marking, and
D0 : P → {0} is the initial clock position. R consists of a set of reconfigura-
tion functions, formalized as follows. R = {r1, .., rn} where: r = (Cond, s, x)
such that: 1. Cond→ {true, false} is the pre-condition of r, which means spe-
cific external instructions, gusty component failures, or the arrival of certain
states. 2. s : TN(∗r) → TN(r∗) is the structure modification instruction such
that TN(∗r)(resp. TN(r∗)) is the original (resp. target) TNCES before (resp.

1 Cartesian product of two sets: A × B = {(a, b)|a ∈ A, b ∈ B}.

48 C. E. Choucha et al.

Table 1. Fundamental structure modification instructions of an R-TNCES.

Instruction Symbol

Add condition signals Cr(cn(x, y))

Add event signals Cr(ev(y, y))

Add control component Cr(CC)

Delete condition signals De(cn(x, y))

Delete event signals De(ev(y, y))

Delete control component De(CC))

After) r application. 3. x : laststate(TN(∗r))→ initialstate(r∗) is the state pro-
cessing function, where laststate(TN(∗r)) (resp. initialstate(TN(r∗))) is the last
(resp. the initial) state of TN(∗r) (resp. TN(r∗)). The application of r makes a
modification of the R-TNCES structure by the mean of instructions presented
in Table 1. We denote by x a place, y a transition, CC a control component
module, and “+” the AND of instructions to represent complex modification
instructions.

R-TNCES Dynamics. The dynamics of R-TNCESs is represented by:

1. The reconfiguration between TNCESs in module behavior B, by applying a
reconfiguration function r when its pre-condition is fulfilled.

2. The firing transition in each TNCES, depends on the rules of firing transitions
in TNCESs and the chosen firing mode.

Reconfiguration changes the system from a configuration to another, however,
the initial and the new configurations can contain similarities. In the original
paper [5], we propose definition of similarities as follow:

Definition 1. Internal similarity is the property of sharing the same physical
process between different configurations of a unique RDECS. Thus, the model
contains similar parts. It is caused by the fact that a reconfiguration is rarely
radical.

Definition 2. External similarity is the property of sharing the same physical
process between configurations of two or several R-TNCESs. It is caused by the
fact that some systems share same components or stations.

2.2 Production Systems: FESTO MPS and THREADING HOLE
SYSTEM

This subsection presents two production systems FESTO MPS and THREADIN
HOLE SYSTEM.

R-TNCES State Space Generation Using Ontology-Based Method 49

CC1

[1,3]

CC11

[4,6] [4,6]

CC2

[2,4] [2,4]

CC3

[2,4]

CC5

[5,7]

CC4

[1,3]

CC6

[4,6]

CC8

[4,6]

CC9

[3,5]

CC10

[1,3]

CC7

[4,6]

p7

p8

p9
t10t9

t8

p1

p2

p3

t1

t2

t3

p4

t4

p5

t5

p6

t6

t7

p10

t11

p11

t12

p12

t13

CC12

[4,6]

p13

t14

p14

t15

p15

t16

p16

t17

p17

t18

p18

t19

t22

p19

t20

p20

t21

p21

p19

p22

t23

p23

t24

p24

t25

t26

p26

t27

p27

t28

p25

t31

p30

t30

p29

t29

p28

p31

t32

p32
t35

p34
t36t34

p33

t33

p35

t37

p36

t38

p37

t39
1,3

12

p17

3]

[

p

7

t

[2

t5

p1

C

[4,

14

21

C

1

16

CC

p

[

t

7

p

[

6

4

t1

tt2

1

[4,6

12

18

p2

CC

1

t3

p4

,4]

8

pp

C CC

14

p21

C2

p2

p9

t2

C7

p

[2,4

5

9

t

6

10

5

t

3]

p3

]

3

20

1,3
3

4

p

1919

C1 3

5

C

8

p

6

t1

C

[

t1

0

t

7

[1

t2

[2

t1

20

3

2

t

t

7

t

[2,4

5

4]

p

CC

p5

7]

p

[

C5

p8

t9

4

C

6]

p

p

t4

2,4]

0

p1

p

CC

pp7

66

C

t1

16

p

11

17

CC

p

p

t

[5,

15

2222

p1

15

,6]

2

tt

8

p

22

133

p1

t2

3

C

8

t

23

CC

19

p

C12

9

23

[

2

3

t

[4,6

24

C

,6]

4

p

CC

p24

11

4

tt2

1

C

25

p3

CC

35

t

9

t337

p

p3

pp313

t

36

[4

1

33

t3

4,6

p

t

33

38

6]

p25

32

p3

t2

5

p3

37

C

26

32

t

[4

CC

6

p

t

p

4,6

C1

p2

3

t3

33

6]

10

6

t

5

34

[3

t2

[4

3,5

7

p

p3

4,6

5]

p2

344
t3

6]

7

t

36

28

p

8

28

t2

8

29

p29

[

t

9

[1,

30

,3]

p

0

p30

t

0

31

3933

(a) Behavior module of RTNSys01 .

CC1

[1,3]

CC2

[2,4] [2,4]

CC3

[2,4]

CC5

[5,7]

CC4

[1,3]

CC6

[4,6]

CC10

[4,6]

CC8

[3,5]

CC9

[1,3]

CC7

[4,6]

p7

p8

p9
t10t9

t8

p1

p2

p3

t1

t2

t3

p4

t4

p5

t5

p6

t6

t7

p10

t11

p11

t12

p12

t13

p13

t14

p14

t15

p15

t16

p16

t17

p17

t18

p18

t19

t22

p19

t20

p20

t21

p21

p19

p22

t23

p23

t24

p24

t25

t26

p26

t27

p27

t28

p25

t31

p30

t30

p29

t29

p28

(b) Behavior module of RTNSys02 .

Fig. 1. Behavior module of RTNSys01 and RTNSys02 .

FESTO MPS. FESTO MPS is a well-studied system for research and edu-
cational purposes which is defined and detailed in [7,17]. It is composed of
three units. The distribution contains a pneumatic feeder and a converter. It
forwards cylindrical workpieces from the stack to the testing unit. The testing
unit contains the detector, the elevator and the shift out cylinder. The detec-
tion unit performs checks on workpieces for height, material type and color.
Workpieces that successfully pass this check are forwarded to the processing
unit. The processing unit is composed of a rotating disk, drilling machines, a
checker and an evacuator. The drilling of the workpieces is performed as the
primary processing of this MPS. The result of the drilling operation is then
checked by the checking machine and the workpieces is forwarded for further
processing to another mechanical unit. FESTO MPS performs three produc-
tion modes: (i) High mode: when Driller1 and Driller2 are both activated and

50 C. E. Choucha et al.

ready to work simultaneously, (ii) Medium mode: when Driller1 and Driller2
are both activated but work sequentially, (iii) Light mode: when only one driller
is activated at once. We denote Lighti, when Drilleri/i ∈ {1, 2} works. FESTO
MPS is modeled with an R-TNCES RTFESTO{BFESTO, RFESTO} such that:
BFESTO ={High,Medium,Light1, Light2} is the behavior module where the
combination of CCs describes the system modes. As shown in Fig. 1a.

RFESTO ={rH,L1 , rH,L2 , rH,M , rM,H , rM,L2 , rL1,L2} is a set of different sys-
tem reconfigurations. The set of control chains describing FESTO MPS control
system is presented as follows: Cchain1 = CC1, CC2, CC3, CC4,
Cchain2 = CC1, CC2, CC3, CC5, CC6, CC7, CC9, CC10,
Cchain3 = CC1, CC2, CC3, CC5, CC6, CC8, CC9, CC10,
Cchain4 = CC1, CC2, CC3, CC5, CC6, CC11, CC9, CC10,
Cchain5 = CC1, CC2, CC3, CC5, CC6, CC12, CC9, CC10.

This paper uses the description and the R-TNCES model of FESTO MPS for
the construction of the proposed ontology as shown in Fig. 3a.

Threading Hole System. It is modeled using R-TNCES formalism. It is com-
posed of three units:

(i) the distribution unit,
(ii) the testing unit, and
(iii) the processing unit.

The first two units are used in FESTO MPS. The processing unit is composed
of a rotating disk, threading hole machine, a checker and an evacuator per-
form the threading of the workpiece holes as the primary processing task of
the system. The result of the threading operation is then checked by the check-
ing machine and the workpieces are forwarded for finally further processing to
another mechanical unit. Behavior module BTHS and ontology OTHS are pre-
sented in Fig. 1b and Fig. 3b respectively on page 9. such that:

BTHS = {High, Light} is the behavior module shown in Fig. 1b. RTHS =
{rH,L, rH,L} is a set of different system reconfiguration.

The set of control chains describing THS control system is presented as follows:

Cchain1 = CC1, CC2, CC3, CC4,
Cchain2 = CC1, CC2, CC3, CC5, CC6, CC7, CC8, CC9,
Cchain3 = CC1, CC2, CC3, CC5, CC6, CC10, CC8, CC9.

2.3 Ontology Concept

As defined in [14] an ontology is an explicit description of concepts or classes
in a certain domain that constitutes a knowledge base. An ontology is defined
mathematically as quadruple O = (C,S,Re, I) where:

R-TNCES State Space Generation Using Ontology-Based Method 51

Table 2. Generic ontology which modeled RDECSs [5].

Concepts ∈ C RDECS Domain Unit Physical
process

Mode

Properties ∈ S Id: String
Name:
String
Description:
Text
Synonym:
String

Id: String
Name:
String
Synonym:
String

Id: String
Name:
String
Description:
Text
Synonym:
String

Id: String
Name: String
Description:
Text Control
chain: String
Synonym:
String

Id: String
Name:
String
Description:
Text
Synonym:
String

RDECS

Mode

Units

Domain

Physical
 process

OWL:Thing

Has_SubClass

Has_PhysicalProcess Is_Composed_Of Has_Mode

ImplyHas_Domain

Fig. 2. Generic ontology [5].

1. C = c1, .., cm is a set of concepts that refer to a real world objects.
2. S = s1, .., sn is a set of properties that refer to a property of a concept, which

is a value of a simple type such as Integer, String or Date.
3. Re = Re1, .., Rep is a set of relationships defined between concepts.
4. I = i1, .., iq, where each iw is an instance of some concept cx ∈ C. It include

a value for every property sy associated to cx or its ancestors.

An ontology can be presented graphically as a formed graph O = G(C,E) where
C is a set of concepts linked by a set of directed edges E which specifies concept
relations. The function y defines the type of edges, i.e., y : E → T where T is
the set of possible edge types (transitivity, symmetry and reflexivity). In [5], we
define a generic ontology Gen = (C,S,Re, I), which is instantiated to model the
verified RDECS. Table 2 shows the defined concepts ∈ C and their properties
include in S, note that the property synonym is facultative [5]. Figure 2 shows
the relations ∈ Re.

3 New State Space Generation Method

We present in this section the proposed method for state space verification dur-
ing formal verification of R-TNCESs. We extend the approach proposed in [5].

52 C. E. Choucha et al.

FESTO MPS

Distribution

Test

Process

High

Medium

Low

Converter

Distribution

Tester

Evacuator

Elevator

Rotating-Disk

Checker

Elevator

Driller1

Driller2

OWL:
thing

Has_SubClass

Has_PhysicalProcess

Is_Composed_Of

Has_Mode

Imply

Has_Domain
Production System

(a) Ontology Osys01

Threading Hole
System

Distribution

Test

Process

Converter

Distribution

Tester

Evacuator

Elevator

Rotating-Disk

Checker

Elevator

Threader2

Threader1

OWL:
thing

Has_SubClass

Has_PhysicalProcess

Is_Composed_Of

Has_Mode

Imply

Has_Domain
Production System

(b) Ontology Osys02

Fig. 3. Ontologies that describe Sys01 and Sys02.

Thank to this approach, we minimize temporal complexity by proposing a dis-
tributed architecture on cloud server [8] for similarities detection, accessibility
graph generation and CTL properties verification. Thus, we improve model-
checking of reconfigurable systems and make it more efficient.

3.1 Motivation

The correctness of RDECSs can be ensured by a formal verification. The explo-
ration of the state space is widely used for analyzing models formalized with
R-TNCES, or related formalisms. The complexity of R-TNCES makes the verifi-
cation task complex, because of combinatorial growth of the state space accord-
ing to the model size. The verification of an R-TNCES requires the checking
of each configuration, namely each TNCES. TNCESs that describe the config-
urations often present similarities which implies redundant calculation during

R-TNCES State Space Generation Using Ontology-Based Method 53

Ontology Alignment

Ontology Fusion

Fragmentation &
Elemetary Accessbilty

graph generation

System Model + Ontology Model

Accesibilty graph
composition

A
cc

es
si

bi
lit

y
gr

ap
h

ge
ne

ra
tio

n

U
pd

at
e

D
om

ai
n

 O
nt

ol
og

y

Updated Domain
Ontology

Accessibility graph

Distribute CTL properties
and accessibility graphs

on workers

Check CTL properties via
SESA tool

Verification result

A
cc

es
si

bi
lit

y
gr

ap
h

an
al

ys
is

Fig. 4. Global idea for state space generation.

checking of these systems. Thus we propose an adequate approach that avoids
many repetitive computations. To ensure this objective, this paper proposes a
new method where verification is executed in a distributed architecture to con-
trol R-TNCESs complexity. The formal verification is performed through the
following tasks: fragmentation, alignment and fusion of ontologies, accessibility
graph composition. And CTL properties verification. Figure 4 presents the main
steps of the proposed method and highlight the main improvement still to the
original paper [5].

3.2 Formalization

In this section, we present accessibility graph generation steps according to our
proposed method.

Ontology Alignment. According to the definition presented in [13], aligning
two ontologies is to find a set of correspondences, where each correspondence is
described by: a unique identifier Id, the concept ci ∈ O1, the concept cj ∈ O2

and σij the degree of similarity between ci and cj evaluated in the interval [0,1].
Formally, it is to find |O1| × |O2| correspondences (Idij , ci, cj , σij). A threshold
τ is defined and compared with σij . The correspondence is established only if
σij > τ. We updates the proposed method presented in [5]. Indeed, we propose
a new method for Global similarity σij computation by considering synonyms
between concepts. Therefore, σij is computed through the following steps:

1. Compute semantic similarity by comparing concepts neighbors using Tversky
measurement: Tmij = |(ni∩nj)|

|(ni∩nj)|+α|(ni−nj)+β|(nj−ni)| , where:
ni (resp. nj): Neighbor set of ci (resp. cj).
ni ∩ nj : Number of common neighbors between ci and cj .
ni − nj (resp. nj − ni): Number of neighbors that exist ∈ ni and /∈ nj (resp.
∈nj and /∈ ni).

54 C. E. Choucha et al.

Table 3. Application of ontology alignment on running example where Concept1 ∈
OFESTO and Concept2 ∈ OTHS .

2. Compute lexical similarity, a weighted sum of normalized Leveinstein and
n-gram similarities: SimLexij = α ∗ LevNorm(i, j) + β ∗ g(i, j).

3. Compute semantic similarity by comparing concepts synonyms using Tversky
measurement: SimSynij = |(ni∩nj)|

|(ni∩nj)|+α|(ni−nj)+β|(nj−ni)| , where:
ni (resp. nj): Synonyms set of ci (resp. cj).
ni ∩ nj : Number of common synonyms between ci and cj .
ni − nj (resp. nj − ni): Number of synonyms that exist ∈ ni and /∈ nj (resp.
∈nj and /∈ ni).
The similarity between each pair of synonyms is computed using n − gram
measurement. Note that this similarity is computed only if concept have syn-
onyms.

4. Compute partial similarity of concept descriptions using the cosinus function:
SimDes(A,B) = cos(θ) = A.B

|A||B| =
∑

A×B√∑
A2×

√∑
B2

.

5. Compute linguistic similarity is computed according to the comparison
between lexical similarity SimLex and synonyms similarity SimSyn as fol-
low:
If SimLex(i,j) > SimSyn(i,j), Thus, SimLing(i,j) = αSimLex(i,j) +
βSimDes(i,j).
Otherwise, SimLing(i,j) = αSimSyn(i,j) + βSimDes(i,j). with α = 0.4 and
β = 0.6.

6. Calculate the global similarity which is a weighted sum of linguistic and
semantic similarity: σij = αSimLingij + βTmij , with α = β = 0.5.

Example 1. Let OFESTO and OTHD two ontologies, which describe the produc-
tion systems presented in Subsect. 2.2. Given two concepts Process ∈ OFESTO

and Process ∈ OTHS . Table 3 shows an application of ontology alignment where,
we compute:

i) lexical similarity, which concerns the concepts property “Name”.
ii) semantic similarity, which concerns concepts Neighbors.
iii) description similarity, which concerns the concepts property “Description”.

R-TNCES State Space Generation Using Ontology-Based Method 55

iv) synonyms similarity, which concerns the concepts property “synonyms”.
v) linguistic similarity, which is a weighted sum of lexical/synonyms and

description similarities.
vi) global similarity by combining the said similarities.

σ(Process, Process) = 0.61 (low value) and the threshold τ = 0.8 (fixed). We
conclude that Process ∈ OSysFESTO

and Process ∈ OSysTHS
are non-similar.

Thus, the non-similar and similar parts are efficiently distinguished and redun-
dant calculations are avoided.

g O3

Cor

O2

O1

Og

Fig. 5. Ontology fusion function (g).

Ontology Fusion. According to the definition in [12], ontology fusion is the
process to detect similarities (i.e., correspondent concepts) between two ontolo-
gies and to derive from it a new ontology that brings together all the similarities
and dissimilarities of concepts, while preserving semantics. Formally, ontology
fusion is defined in this paper as a function g, which from two ontologies O1, O2,
a generic ontology Og (presented in Subsect. 2.3) and a set of correspondences
Cor (computed during ontology alignment) product a new ontology O3. The
function g is illustrated in Fig. 5. Ontology fusion proceeds in three steps:

1. Enrich the concept present in the merged ontology with the name of the
similar concept ∈ Cor as a synonym property,

2. detect the class of dissimilar concepts according to the generic ontology , and
3. add the concepts according to their classes in the new ontology,

Example 2. Let apply ontology fusion on the ontologies presented in Example
1. We know that Process ∈ OTHS and Process ∈ OFESTO are non-similar
thank to ontology alignment. Thus, we have to add the concept Process ∈
OFESTO to OTHS which represent our domain ontology. Indeed, first we detect
the class of concept “Process” according to the generic ontology, which is “Unit”.
Then, we add this concept to the domain ontology depending on its class.
Figure 7 shows the result of ontology fusion (i.e., adding non-similar concepts
to our domain ontology).

56 C. E. Choucha et al.

Fig. 6. Operative steps of the ontology fusion function where Waiting is the list of
concepts ∈ OSys.

THREADING
HOLE SYSTEM

Distribution
Converter

Pneumatic
feeder

Tester
Test

Process

Detector

Elevator

Checker

Rotating Disc
EvacuatorThreader2

Threader1

Is_Composed_Of
Has_Physical_Process Imply

Has_Mode

Process

FESTO MPS

Driller1

Driller2
Checker

Rotating Disc

Evacuator

Low
High

Medium

New Added
concept

Fig. 7. Domain ontology OD after the application of ontology fusion.

Fragmentation. Fragmentation consists on decomposing an R-TNCES into a
set of CC and generating elementary accessibility graph EAGs for CCs that are
not concerned by the correspondences computed in the previous step.

Example 3. To show the application of fragmentation, we consider production
systems presented in Subsect. 2.2. They are modeled by RTFESTO (to be verified)
and RTTHS (already verified). Let Cor be a set of correspondences computed
during alignment of OFESTO and OTHS . Table 4 shows application of fragmen-
tation on RTFESTO. It runs in two steps: 1. decomposing RTFESTO into a set
of CC f = {CC1, .., CC12}, and 2. computing elementary accessibility graphs
EAGs of each CC /∈ f ∩ cor. During fragmentation, CCs synchronization tran-
sitions are stored for reuse when composing the accessibility graph AG. Real
RDECSs encompass millions of transitions, which increases accessibility graph
generation complexity. Fragmentation allows us to control complexity. Moreover,
it allows us to deal with internal similarities.

R-TNCES State Space Generation Using Ontology-Based Method 57

Delete CC from Delete CC from

Fragment into a set of CCs .
Add the CCs into the waiting list .

Input

Process

Decision

Output

: R-TNCES Model
: Set of correspondences

No

Yes

No

Yes

Generate Elementary Accessibility graph.Generate Elementary Accessibility graph .

: R-TNCES Model.
: Set of correspondences.

:Set of EAGs.

Fig. 8. Operative steps of the fragmentation function where Waiting is the list of CCs
to be computed.

Table 4. Application of fragmentation on FESTO MPS [5].

System FESTO MPS

f {CC1, .., CC12}
cor {CC1, CC2, CC3, CC4, CC5, CC6, CC10}
EAGs EAGCC7 , EAGCC8 , EAGCC9 ,EAGCC10 , EAGCC11 , EAGCC12

Planning. We set up a priority order for accessibility graph composition. Let
RTN be a system modeled by R-TNCES and described by ontology Osys. We
extract from Osys control chains Cchains. Cchains are then en-queued to a
queue Q depending on their length such as the smallest one is en-queued firstly.

Example 4. By using the behavior module B of RTNFESTO, the composition
plan to be followed for AGFESTO generation for test failure case described by
Cchain1 is presented as follows:

EAGCC1 × EAGCC2 > PAGCC12 × CC3 > PAG123 × CC4.

58 C. E. Choucha et al.

Accessibility Graph Composition. Full accessibility graph AG is computed
by composing EAGs computed during fragmentation step and partial accessibil-
ity graphs PAGs retrieved during ontology alignment step as shown in Fig. 10.
The composition is done according to the established plan.

S'0

EAGcc2

S0

EAGcc1

S3S1 S2 S4

S5S6S8 S7

PAG12

S''0

S'2

S'1

S''2

S''1Composition(EAGcc1,EAGcc2)

Fig. 9. Composition of EAGcc1 & EAGcc2 [5].

Example 5. During AGFESTO generation, several composition of EAGs are
executed. Indeed, we run Composition(EAGCC1 , EAGCC2) function to obtain
PAG12 shown in Fig. 9. It proceeds as follows:

1. Creates initial state S0 by concatenating initial states S′
0 and S′′

0 of both
EAGCC1 and EAGCC2 ,

2. searches the set of enabled transitions from S′
0 and S′′

0 , and
3. checks whether the transition t is a common transition. If yes, then we create

a new state S1 by concatenating the current target states from S′
0 and S′′

0 .
Otherwise, if t belongs only to EAGCC1 , then a new state S1 is obtained
by concatenating the current state S′′

0 from EAGCC2 and the current target
state S′

1 from EAGCC1 and vice versa.

We repeat these steps for the remaining states until we get the whole state
space.

R-TNCES State Space Generation Using Ontology-Based Method 59

Delete the current
node from .

No

Yes ?

Create the Initial State .
Add to the waiting list .

 ?

Search each passable transitions from the
current state.
Add to the set of passable transitions .

No

Yes ? ?

Create the successor State.
Add the new created state to .

Input

Process

Decision

Output

Composition (AG , AG')

:The
Composed accessibility

graph

Fig. 10. Operative steps of the graph composition function, where t is the set of the
fixed passable transition and Waiting is the list of nodes to be computed.

Parallel CTL Properties Verification. In short-term we integrate CTL
properties verification method inspired from methods proposed in [4,17]. This
method consider relationships which exist among properties to be verified
(Equivalence, dominance and composition) and processes the verification in par-
allel way. The method proposed in this paper processes as follow:

– Step 1 (Relationships detection): We extract different relationships that exist
among CTL properties to be verified (Dominance & equivalence).

– Step 2 (Matrix and tree parallelization generation): First, we generate a square
matrix S, where, the value of each element of S describes the nature of rela-
tionship between each pair of properties as follow: S[i, j] = 0 means that
there is no relation between Pi & Pj and S[i, j] = 1 (resp. S[i, j] = 2) means
that there is a dominance (resp. equivalence) relation between Pi & Pj . Then,
we generate parallelization tree in order to coordinate the execution of prop-
erties verification. Indeed, we identify the redundancies and the factorization
between properties to be verified. Each level of the tree represents the prop-

60 C. E. Choucha et al.

erties which can be verified simultaneously. Thus, the verification order of the
CTL properties is established by exploring the parallelization tree by level.

– Step 3 (CTL Properties verification): We proceed to the verification of CTL
properties thanks to the SESA Tool developed in [20].

Idle

L
e

ve
l 2

L
e

ve
l 1

Property to be verified Already verified property

Fig. 11. Parallelization tree.

Table 5. CTL properties to be verified.

σFMPS : Set of CTL properties

P1 : AF (p3)

P2 : AF (p4)

P3 : AF (p9)

P4 : AF (p18)

P5 : EF (p33)

P6 : AG(EF (p12) → AF (p18)

P7 : AG(p3 → AF (p30))

Example 6. To show the application of CTL properties verification according to
the proposed method, we consider a set of properties that aims to verify the
safety and vivacity of Sys01 (FESTO MPS). Note that we consider that Sys02
has already been verified, indeed at this stage we have available:

1. State space generated during previous tasks.
2. Result of CTL properties verified during Sys02.

Given σFMPS
a set of properties to verify the safety and the vivacity of Sys01.

First, we proceed to the detection of relationships that exist among the properties
presented in Table 5. Then, we generate the parallelization tree shown in Fig. 11,
after that we check for properties already verified during Sys02, in the present
case it concerns the properties pi/i=1,...4. Finally, we proceed to the verification
of the remaining CTL properties using SESA tool [16].

4 Distributed Cloud-Based State Space Generation

This section presents Cloud-based distributed architecture and how to perform
formal verification on it.

4.1 Distributed Architecture for State Space Generation

In this subsection, we present hierarchical and distributed architectures propose
in the conference paper [5] depicted in Fig. 12. The idea that motivates the
development of this architecture is to increase computation power and storage
availability. It is composed of computational and storage resources. To develop
the architecture shown in Fig. 12 we need the following units.

R-TNCES State Space Generation Using Ontology-Based Method 61

1 0 0

0 1 00 0 1

O
nt

ol
og

ie
s

A
cc

es
si

bi
lit

y
gr

ap
hs

S

yn
ch

ro
ni

za
tio

n
Tr

an
si

tio
ns

 A
m

az
on

 S
im

pl
e

 S
to

ra
ge

 S
er

vi
ce

A
m

az
on

 E
C

2
In

st
an

ce
s

EC2

Sub-Workers

Internet
Internet
Gateway

Fig. 12. Distributed architecture for formal verification.

– Computational units: Execute tasks defined in Subsect. 3.2 by means of M+n
machines where:
(i) M represents the number of machines (i.e., 5 machines in our approach).

The set of machines are composed of a master and four workers W1, ...,W4

that have specific tasks.
(ii) n is the number of sub-workers that execute the high complex tasks (i.e.,

EAGs generation and PAGs composition). n depends on system size.
– Storage unit: represents the allocated cloud database that stores domain

ontologies, EAGs temporary and PAGs permanently.

4.2 Distributed State Space Generation

This subsection presents the process of distributed Formal verification on a cloud
based architecture.

Example 7. The user sends a verification request req(RFESTO:
R-TNCES,OFESTO : Ontology). The master ensures tasks coordination by
receiving the verification request and sending RFESTO and OFESTO to workers
to carry out their tasks as follows. 1. sending simultaneously ontology OFESTO

to workers W1, W4 and RFESTO to worker W2, 2. waiting signals from W1 and
W2 and to receive the composition plan from W4 to forward it to W3. 3. waiting

62 C. E. Choucha et al.

signal from W3 to allow beginning ontology fusion by W1. W1 has two main tasks:
(i) Ontology alignment to extract correspondences and (ii) Ontology fusion to
update domain ontology-based history, we merge OFESTO AND OD.
W2: At the reception of RFESTO, it proceeds to the fragmentation, sends CCs
to sub-workers after applying a load balancer algorithm and sends a signal to
master which announces the end of these two tasks: fragmentation and genera-
tion of EAGs.
W3 receives the composition plan and collects the elements that it needs from
the database for the AG composition. Finally, it sends a signal to master which
announces the end of its task.
W4 is responsible for planning compositional order for full accessibility graph
generation. It extracts the control chains concepts from OFESTO. Then the plan
is sent to the master.

CTL properties presented in Example 6 are performed in the presented archi-
tecture as follow:

– W2: performs Relationships detection,
– W3: performs matrix and palatalization tree generation,
– W4: performs the exploration of the palatalization tree by level, and
– workers perform CTL properties verification and return the result.

4.3 Implementation

In this subsection, we present the main algorithms used in our method.

Algorithm 1. Ontology Fusion.
Input: OD, Osys: Ontology; Cor: Set of correspondences ;
Output: O′

D: Ontology;
for int i = 0 to | ∑

Csys | do
if (Csys ∈ Cor)) then

Enrich(OD, COsys .Name,COD .synonym);
else

Classe ← IdentifyRelationships(CSys, Osys);
Insert(Csys, OD, Classe);

end

end
O′

D ← OD;
end
return O′

D

Algorithm 1 describes the ontology fusion. It takes the domain ontology OD,
the system Ontology Osys, and the set of correspondences Cor and returns a
new updated domain ontology O′

D. It adds the dissimilar verified concepts to
the domain ontology for next verification to process. The functions:

R-TNCES State Space Generation Using Ontology-Based Method 63

Algorithm 2. Fragmentation
Input: RTN : R-TNCES; TN0: TNCES;
Output: S EAG: Set of elementary accessibility graphs;
for int i = 0 to | ∑

TN | do
for each CC ∈ TN do

if (!Tagged (CC)) then
Insert(S EAG,Geneate State Space(CC)); tag(CC);

end

end

end
return S EAG

Algorithm 3. State Space Composition.
Input: S AG: Set of accessibility graphs(EAG, PAG);

∑
CChain: Set of Cchains ;

Output: AG: Set Accessibility graphs;
for int i = 0 to | ∑

CChain | do
AG ← EAGCC0

i
;

for int j = 0 to | ∑
CCi | do

AG ← Compose(AG,EAG
CC

j
i
);

end

end
return AG

– Enrich(O : Ontology, C1.Name : String, C2.synonym : String,) Takes the
value of the property ‘Name’ of the concept C1 and add it as a value of the
property ‘synonym’ of concept C2 in the ontology O,

– IdentifyRelationships(C,O); returns the class of a the concept C in the
onotlogy O according to the generic onotlogy, and

– Insert(C,O,Class) inserts the concept C in the ontology O according to his
class.

Algorithm 2 describes the fragmentation task. It decomposes the R-TNCES in a
set of CCs and generates their accessibility graphs EAGs. Algorithm 3 describes
the steps for the full accessibility graph composition AG. It composes the accessi-
bility graphs recovered thanks to the ontology alignment and the ones computed
during fragmentation to return the full accessibility graph of the verified model.

4.4 Complexity of Distributed State Space Generation

The verification is based on three main functions: (i) the ontology alignment,
(ii) the fragmentation, and (iii) the EAG/PAGs composition. The ontology
alignment complexity on this scale is always polynomial, thus we focus on the
two other function presented respectively in Algorithm2 and 3. As mentioned in
[20], TNCES verification complexity is expressed by O(et) where t is the number
of transition, in our case, we use it for each CC of the verified R-TNCES. For

64 C. E. Choucha et al.

an R-TNCES with TN = |B| the number of TNCESs composing the verified
R-TNCES and C the average number of CCs that every TNCES contains, The
complexity of Algorithm2 is O(TN ×C×et). For a composed graph with n′ the
number of nodes computed by the composition graph function and j the average
number of the enabled transitions from each state, Algorithm3 complexity is
expressed by (n′ × j). Thus, verification time complexity is: O((TN ×C × et) +
(n′ × j)). Therefore, our method complexity is expressed by

O(max O(TN × C × et),O(n′ × j)) = O(TN × C × et).

The complexity of methods presented in [7,20] is:

O(em × TN) with m × TN = TN × C × t.

Thus, to assert that our complexity is better, we have to prove that:

O((TN × C × et) < O((TN × em),

which is intuitively correct.

5 Evaluation

The performance of the proposed verification method is evaluated in this section.
We make a comparison between the proposed method, that uses a distributed
tool to compute accessibility graphs, and the method reported in [7] that uses
Rec-AG tool. Then we proceed to different evaluations in large scale systems by
considering different similarities. The external similarity rate of R-TNCES R1

with descriptive ontology OL is given by the following formula.

ExternalSimilarity(R1) =
(
AlignedConcepts(OL)

Concepts(OL)

)
(2)

where, (i) AlignedConcepts(OL) returns the number of similar concepts between
OL and the related domain ontology OD, (ii) Concepts(OL) returns the total
number of concepts that OL contains. The internal similarity rate is given by
the adapted method used in [7] as follows.

InternalSimilarity(R1) =
(
Max({SimCC(TNi, TNj)}i,j∈0...(n−1) and i<j)

Max(NumberOfCC(TNk))

)

(3)
where, (i) SimCC(TNi, TNj) is the function that returns the number of sim-
ilar control components between two TNCESs, (ii) NumberOfCC takes a
TNCES and returns its number of control components, and (iii) Max returns
the maximum among a set of natural numbers. We define three degrees of
Internal Similarity (resp, External Similarity): High, Medium and low where,
InternalSimilarity (resp, ExternalSimilarity) is 50%–100%, 20%–50% and 0%–
20%.

R-TNCES State Space Generation Using Ontology-Based Method 65

0 100 200 300 400
0

500

1,000

Nodes

C
om

pu
te
d
st
at
es

Low Similarity

0 100 200 300 400

Nodes

Medium Similarity

0 100 200 300 400
0

500

1,000

Nodes

C
om

pu
te
d
st
at
es

High Similarity

Cammili tool
Rec-AG tool
Proposed tool

Fig. 13. Proposed verification in large scale systems considering external similarity.

5.1 Evaluation in Large Scale Systems Considering External
Similarity

We apply the new proposed method on the case study used in [5]. Figure 13
describes the verification result of an R-TNCES model by considering three
levels of external similarity. The model is composed of three TNCESs represented
by three parallel control chains of equal length, with Complexity(CCij) = 3,
i ∈ 1...100 and j ∈ 1...3 (i.e., each CC contains 3 nodes). By analyzing the
plots in Fig. 13, we notice that: In the case of low external similarities, the
number of states computed using the proposed method and the one proposed in
[7] in its best case (i.e., in the case of a high internal similarity rate) becomes
nearly equal with the ascent of the number of system nodes. It is explained by
the fact that the difference in the number of nodes to explore is minimal and
becomes non-significant when the system is larger. Nevertheless, low similarity
must be exploited because it improves the results in both cases of medium and
high internal similarity. In the case of high and medium external similarities:
the proposed method takes advantage of those presented in [2] and [7]. It is
explained by the fact that the number of nodes to explore is reduced. Thanks
to the external similarity that allows us to eliminate redundancies. While in the
three cases, the proposed method presents better results than the one used in

66 C. E. Choucha et al.

States

Nodes
0

100
200
300
400

low
Medium

high

0-100 100-200 200-300 300-400

(1) Rec-AG-Verification

Fig. 14. Proposed verification in large scale systems considering external and internal
similarities.

[2], which generates AGs via the classical methods. The proposed method can
reduce calculations by more than 50%, depending on model size and similarity
rates. This represents the main gain of the paper.

5.2 Evaluation in Large Scale Systems by Considering External
and Internal Similarities

The surfaces in Fig. 14 describe the results of both the proposed method and
the one used in [7], by using three factors: External similarities, internal sim-
ilarity and nodes to be explored for a state generation. In their worst case
(i.e., InternalSimilarity = ExternalSimilarity = 0%) performance of both
methodologies presents limits, with same results using the method reported in
[20]. However, in the remaining cases, the proposed method always presents bet-
ter results according to similarity rates. It performs best with: (i) Less computed
states, thanks to the external source of partial graphs and elimination of internal
redundancies, and (ii) less nodes to be explored for state space generation thus
less complexity to generate a state, thanks to the incremental way used when
composing the accessibility graph.

5.3 Evaluation of CTL Properties Verification Method Considering
Similarities

Let assume we have to verify a system model with 2500 TNCESs. In order to
ensure the well-behave of the system we have to verify at least 4 properties
for each TNCES. Thus, we need to verify 10000 CTL properties. We assume
that the similarity rate among properties: (i) Low in 0, 20%, (ii) Medium in
20, 60%, or (iii) High when more than 60%. The results show in Fig. 15 that the
gain increases proportionally to decomposable properties rate. Thus, the gain is
clearly shown when similarity rate is ‘High’.

R-TNCES State Space Generation Using Ontology-Based Method 67

20% 20% 40% 40% 60% 60% 80% 80% 80%

1.1

1.2

1.3

1.4

1.5

·104

Similarity rates(%)

Ti
m
e
U
ni
ts

Proposed method Sequential method

Fig. 15. Sequential method vs proposed method.

6 Conclusion

This paper deals with formal verification of RDECSs that we model with R-
TNCES. The proposed method aims to improve formal verification by using
a distributed architecture. We developed a distributed architecture with three
hierarchical levels (Master, worker and sub-worker) and a cloud-based-storage
(Amazon Simple Storage S3 [11]). It allows us to increase computational power,
data availability and to perform parallel execution. For the state space gener-
ation steps, we incorporates ontologies for RDECSs verification. We set up an
ontology-based history, which allows us to detect external similarities thanks to
an ontology alignment. Thus, we avoid many redundant calculation. In order
to deal with internal similarities, we introduce modularity concept by affect-
ing specific tasks to each unit of our architecture, including fragmentation and
accessibility graph composition, which allow us to deal with RDECSs fragment
by fragment and to construct incrementally accessibility graphs. For the state
space analysis, we proposed a parallel CTL properties verification, where sim-
ilarities and relationships that can exist among properties are considered. An
evaluation is realized and experimental results are reported. The results prove
the relevance of the developed architecture and the efficiency of the proposed

68 C. E. Choucha et al.

contribution. Future works will: 1. Deploying the distributed architecture in
Amazon Elastic Compute Cloud (EC2) [11]. 2. Incorporate an automatic clas-
sification of properties thank to ontologies. 3. Extending the proposed tool to
support other formalism that models RDECSs and different temporal logics.

References

1. Ben Salem, M.O., Mosbahi, O., Khalgui, M., Jlalia, Z., Frey, G., Smida, M.:
Brometh: methodology to design safe reconfigurable medical robotic systems. Int.
J. Med. Robot. Comput. Assist. Surg. 13(3), e1786 (2017)

2. Camilli, M., Bellettini, C., Capra, L., Monga, M.: CTL model checking in the
cloud using mapreduce. In: 2014 16th International Symposium on Symbolic and
Numeric Algorithms for Scientific Computing (SYNASC), pp. 333–340. IEEE
(2014)

3. Choucha., C.E., Ramdani., M., Khalgui., M., Kahloul., L.: On decomposing
formal verification of CTL-based properties on IAAS cloud environment. In:
Proceedings of the 15th International Conference on Software Technologies -
ICSOFT, vol. 1, pp. 544–551. INSTICC, SciTePress (2020). https://doi.org/10.
5220/0009972605440551

4. Choucha, C.E., Ougouti, N.S., Khalgui, M., Kahloul., L.: R-TNCES verification:
distributed state space analysis performed in a cloud-based architecture. In: Pro-
ceedings of the 33rd Annual European Simulation and Modelling Conference, pp.
96–101. ETI, EUROSIS (2019)

5. Eddine, C.C., Salem, M.O.B., Khalgui, M., Kahloul, L., Ougouti, N.S.: On the
improvement of R-TNCESS verification using distributed cloud-based architecture,
pp. 339–349 (2020). https://doi.org/10.5220/0009836103390349

6. Gadelha, M.Y., Ismail, H.I., Cordeiro, L.C.: Handling loops in bounded model
checking of c programs via k-induction. Int. J. Softw. Tools Technol. Transf. 19(1),
97–114 (2017)

7. Hafidi, Y., Kahloul, L., Khalgui, M., Li, Z., Alnowibet, K., Qu, T.: On methodol-
ogy for the verification of reconfigurable timed net condition/event systems. IEEE
Trans. Syst. Man Cybern. Syst. 99, 1–15 (2018)

8. Hayes, B.: Cloud computing. Commun. ACM 51(7), 9–11 (2008)
9. Khalgui, M., Mosbahi, O., Li, Z., Hanisch, H.M.: Reconfiguration of distributed

embedded-control systems. IEEE/ASME Trans. Mechatron. 16(4), 684–694 (2011)
10. Koszewnik, A., Nartowicz, T., Paw�luszewicz, E.: Fractional order controller to con-

trol pump in FESTO MPS R© PA compact workstation. In: 2016 17th International
Carpathian Control Conference (ICCC), pp. 364–367. IEEE (2016)

11. Murty, J.: Programming Amazon Web Services: S3, EC2, SQS, FPS, and Sim-
pleDB. O’Reilly Media, Inc., Newton (2008)

12. Noy, N.F., Musen, M.A., et al.: Algorithm and tool for automated ontology merg-
ing and alignment. In: Proceedings of the 17th National Conference on Artificial
Intelligence (AAAI-2000). Available as SMI Technical report SMI-2000-0831, vol.
115. sn (2000)

13. Ougouti, N.S., Belbachir, H., Amghar, Y.: Semantic mediation in MedPeer: an
ontology-based heterogeneous data sources integration system. Int. J. Inf. Technol.
Web Eng. (IJITWE) 12(1), 1–18 (2017)

https://doi.org/10.5220/0009972605440551
https://doi.org/10.5220/0009972605440551
https://doi.org/10.5220/0009836103390349

R-TNCES State Space Generation Using Ontology-Based Method 69

14. Ougouti, N.S., Belbachir, H., Amghar, Y.: Proposition of a new ontology-based
p2p system for semantic integration of heterogeneous data sources. In: Handbook
of Research on Contemporary Perspectives on Web-Based Systems, pp. 240–270.
IGI Global (2018)

15. Padberg, J., Kahloul, L.: Overview of reconfigurable petri nets. In: Heckel, R.,
Taentzer, G. (eds.) Graph Transformation, Specifications, and Nets. LNCS, vol.
10800, pp. 201–222. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-
75396-6 11

16. Patil, S., Vyatkin, V., Sorouri, M.: Formal verification of intelligent mechatronic
systems with decentralized control logic. In: Proceedings of 2012 IEEE 17th Inter-
national Conference on Emerging Technologies & Factory Automation (ETFA
2012), pp. 1–7. IEEE (2012)

17. Ramdani, M., Kahloul, L., Khalgui, M.: Automatic properties classification app-
roach for guiding the verification of complex reconfigurable systems. In: ICSOFT,
pp. 625–632 (2018)

18. Souri, A., Rahmani, A.M., Navimipour, N.J., Rezaei, R.: A symbolic model check-
ing approach in formal verification of distributed systems. HCIS 9(1), 4 (2019)

19. Valmari, A.: The state explosion problem. In: Reisig, W., Rozenberg, G. (eds.)
ACPN 1996. LNCS, vol. 1491, pp. 429–528. Springer, Heidelberg (1996). https://
doi.org/10.1007/3-540-65306-6 21

20. Zhang, J., Khalgui, M., Li, Z., Mosbahi, O., Al-Ahmari, A.M.: R-TNCES: a novel
formalism for reconfigurable discrete event control systems. IEEE Trans. Syst. Man
Cybern. Syst. 43(4), 757–772 (2013)

https://doi.org/10.1007/978-3-319-75396-6_11
https://doi.org/10.1007/978-3-319-75396-6_11
https://doi.org/10.1007/3-540-65306-6_21
https://doi.org/10.1007/3-540-65306-6_21

MLCA: A Model-Learning-Checking Approach
for IoT Systems

Sébastien Salva(B) and Elliott Blot

LIMOS - UMR CNRS 6158, Clermont Auvergne University, Clermont-Ferrand, France
sebastien.salva@uca.fr, eblot@isima.fr

Abstract. The Internet of Things (IoT) is a broad concept comprising a wide
ecosystem of interconnected services and devices connected to the Internet. The
IoT concept holds fabulous promises, but security aspects tend to be significant
barriers for the adoption of large-scale IoT deployments. This paper proposes an
approach to assist companies or organisations in the security audit of IoT sys-
tems. This approach called Model Learning and Checking Approach (MLCA)
combines model learning for automatically extracting models from event logs,
and model checking for verifying whether security properties, given under the
form of generic LTL formulas hold on models. The originality of MLCA lies in
the fact that auditors do not have to craft models or to be expert LTL users. The
LTL formula instantiation, which makes security properties concrete, is indeed
semi-automatically performed by means of an expert system composed of infer-
ence rules. The latter encode some expert knowledge, which can be applied again
to the same kind of systems with less efforts. We evaluated MLCA on 5 IoT
systems with security measures provided by the European ENISA institute. We
show that MLCA is very effective in detecting security issues and provides results
within reasonable time.

Keywords: Model learning · Model checking · Expert system · IoT software
systems

1 Introduction

Using the Internet of Things (IoT) to stimulate transformational efficiencies in several
application domains among which manufacturing, automotive, health and smart cities,
is an idea that holds fabulous promises. Indeed, exploiting smart and connected devices
to produce real-time data and to quicker take decisions provides new ways to make
businesses more efficient, and to forge links between the digital world and the real. On
the other hand, after the myriad of cyberattacks on IoT systems revealed during the few
past years, experts have warned that IoT could harm people if IoT is left unsecured.
As many technological concepts are involved under the IoT umbrella, it is indeed not
surprising to observe that IoT systems are vulnerable to a wide range of security attacks.
And it is likely that this security problem will grow more complex in the future, as long
as new technologies and platforms will be proposed.

Many companies or organisations have started to be aware about the importance of
including cyber-security in their IoT solutions. Many of them assess the risks of their
c© Springer Nature Switzerland AG 2021

M. van Sinderen et al. (Eds.): ICSOFT 2020, CCIS 1447, pp. 70–97, 2021.
https://doi.org/10.1007/978-3-030-83007-6_4

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-83007-6_4&domain=pdf
https://doi.org/10.1007/978-3-030-83007-6_4

MLCA: A Model-Learning-Checking Approach for IoT Systems 71

IoT-based services and platforms by means of security audits. There are many ways to
carry out an audit depending on the scope and objectives of the audit itself and on the
resources allocated by the company. But an audit process usually follows many manual
steps such as Define the audit objective, Collect software usage data, or Test the sys-
tems and applications methodically. Most of these activities are time-consuming and
sometimes challenging. Fortunately, some templates or documents can be used to guide
auditors in these steps. For instance, the National Institute of Standards and Technol-
ogy (NIST) has proposed a framework made up of several stages, which can define
the audit plan [26]. The European Telecommunications Standards Institute (ETSI) has
proposed a general method and activities dedicated to undertake testing and risk assess-
ment activities for large scale, networked systems [12]. Others documents related to
security measures, good practices, and threats taxonomy e.g., the reports provided by
the ENISA, Cloud Security Alliance, or OWASP organisations [9,11,27] are proposed
to help derive objectives. The standard ISO/IEC 27030 [17], due to be published in
2022, will provide guidelines for security and privacy in IoT systems. Finally, testing
guides, e.g., [19,27], along with testing tools e.g., [8,25] may be used to conduct the
review.

Despite the strong benefits brought by these approaches, the efforts required for
understanding how an IoT system under audit (SUA) is structured and behaves or for
generating security tests is yet tremendous. These observations motivated us to present
in [29] an approach called MLCA combining model learning and model checking to
assist auditors in the understanding of SUA by means of models, and in the verification
of security properties on these models:

– Model Learning: our approach starts by recovering formal models from an event
log. We use the Labelled Transition System (LTS) to express the behaviours of every
component (devices, servers, etc.) of SUA. These models can be used as documen-
tation or to comprehend the functioning of the components and their interactions;

– Property Instantiation and Model Checking: our approach also takes as inputs
generic security properties, which can be used independently of SUA. Usually, such
properties have to be adapted for every model so that they share the same alpha-
bet. This activity is known to be difficult and time consuming. To make it easier,
MLCA helps auditors make them concrete by means of an expert system composed
of rules, which encode some expert knwoledge about IoT systems. Then, our app-
roach checks whether the LTSs satisfy the security properties, and returns counterex-
amples when issues are detected. The counterexamples may be used to interpret the
results and provide countermeasures.

Contributions: This paper presents an extension of the MLCA algorithms given in
[29], which mainly aims at improving both effectiveness and performance. We indeed
showed that MLCA requires a manual inspection of the generated models to detect
inconsistencies. We propose to enhance MLCA with a new step for assisting auditors in
this model inspection. Besides, we provide a new security property instantiation algo-
rithm, which generates less concrete properties. Consequently, this algorithm allows to
significantly save time during the model checking step. Furthermore, this paper pro-
vides more details about the generation of concrete security properties. This paper also

72 S. Salva and E. Blot

provides an empirical evaluation, which investigates the sensitivity (ratio of true pos-
itives) and specificity (ratio of true negatives) of MLCA and its performance in terms
of execution times. We also compare the MLCA of [29] with this new version. This
empirical evaluation was carried out on event logs collected from 5 IoT systems. This
evaluation shows that our approach allows the detection of security issues with few false
positives or negatives within reasonable time delays.

Paper Organisation: The paper is organised as follows: Sect. 2 discusses related work
and presents our motivations. Section 3 offers an overview of the functioning of MLCA
with a real example of IoT system. The MLCA’s algorithms are detailed in Sect. 4.
We recall some basic definitions and describe the five steps of the approach. The
next section examines experimental results and discusses about the threats to validity.
Section 6 summarises our contributions and draws some perspectives for future work.

2 Related Work

2.1 IoT Audit

A plethora of surveys or papers have exposed the opportunities, challenges, require-
ments, threats or vulnerabilities involved in the IoT security. Among them, several
approaches have been proposed to audit IoT systems. The security audit of IoT devices
is carried out with check lists or threat models in [19,25]. These lists or models have
been devised or extended from the recommendations published by the OWASP organi-
sation [27]. Other works focused on the IoT device audit by decrypting the traffic sent
via TLS [33] so that the TLS traffic can be verified without compromising future traffic.
This king of technique could be used prior to MLCA to obtain readable event logs.

Many approaches also rely on models to analyse the security of IoT systems,
because models offer the advantage of expressing systems without ambiguity. In [14],
security models are devised with data collected from an IoT system. A manual security
analysis is then performed to find potential attack scenarios, evaluate security metrics
and assess the effectiveness of different defence strategies.

Other works introduced specialised model-based testing (MbT) methods. Some of
them are said to be active, i.e. security test cases are built by hands or automatically
generated from a given (formal) specification, and are later used to experiment IoT
systems [1,15,22,23]. These active testing techniques could complement MLCA to get
larger event logs. Other methods are said to be passive because they are based upon
monitoring tools, which detect the violation of security properties by checking rule
satisfiability in the long run [6,20,32].

Several papers addressed the detection of security issues in IoT systems by means
of model checking. The tool IoTSAT [24] is a SMT based framework, which analyses
the IoT system security. IoTSAT models the device-level interactions as in our app-
roach, but also policy-level behaviours and network-level dependencies. SOTERIA [5]
is another model checking tool for IoT software. State-models are extracted from source
code, then SOTERIA checks whether concrete security properties hold on these models.

In comparison to our approach, the works [14,23] go further in the risk assessment
by proposing the evaluation of metrics. IoTSAT also goes further in the modelling of the

MLCA: A Model-Learning-Checking Approach for IoT Systems 73

IoT system environment. But all of these approaches require models or formal proper-
ties, which have to be manually devised. SOTERIA offers the advantage of recovering
state-models on condition that the source code of every component is available. But,
the concrete security properties have to be written by hands. In contrast, MLCA gener-
ates behavioural models and dependency graphs from event logs. Besides, our approach
semi-automatically instantiates generic properties with an expert system. These generic
properties can be reused with several IoT systems. We provide a list of generic proper-
ties derived from the security measures proposed by the ENISA institute.

2.2 Model Learning

MLCA uses a passive model learning algorithm to recover formal models from event
logs. Some papers also presented model learning approaches specialised to communi-
cating systems in the literature [3,21,30]. Mariani et al. proposed in [21] an automatic
detection of failures in log files by means of model learning. The approach segments
an event log with two strategies: per component or per user. The former can be used
with communicating systems to generates one model for each component. CSight [3]
is another tool specialised in the model learning of communicating systems. The main
contribution proposed by CSight lies in the mining of invariants in logs to improve the
model precision. Unfortunately, invariant mining limits the application of this algorithm
to small trace sets only.

We recently proposed the model learning approach CkTail in [30] and presented a
comparison of CkTail with the previous passive techniques. In summary, we showed
that CkTail builds more precise models by means of its trace segmentation algorithm,
which tries to recover user sessions. Besides, compared to CSight, CkTail requires less
constraints. Furthermore, CkTail is the only approach that detects component depen-
dencies and expresses them with dependency graphs. The latter are used in MLCA to
instantiate security properties.

3 MLCA Overview

Fig. 1. Integration of MLCA with some audit stages (in grey) [29].

MLCA aims at assisting auditors to verify whether security properties hold on IoT sys-
tems with the automatic generation of behavioural models from event logs and with the

74 S. Salva and E. Blot

generation of concrete security properties. Our approach can complement several exist-
ing security audit processes, e.g., the NIST or ETSI security audit frameworks. Figure
1 illustrates its integration. Most of the security audit processes include a step allow-
ing auditors to understand the system context. We call it “Establish the context” in the
figure. This step is often manually done by interpreting diverse documents, event logs,
or by using scanning tools. With MLCA, a model learning algorithm is used instead
to recover one behavioural model for every component of the IoT system from event
logs. These models make the system understanding easier. They can also be given to
MbT approaches for assessing the IoT system security with tests. While testing, more
logs may be collected and hence new models can be re-generated to capture more
behaviours.

In the meantime, these formal models can be analysed in an exhaustive manner
to detect further security issues. This analysis is usually automatically performed by
means of security properties modelled with formulas, which are evaluated with a model-
checker. These formulas may express different security aspects, e.g., vulnerabilities. We
focus in this paper on formulas expressing security measures used to protect an IoT sys-
tem against threats. Several papers, e.g., [18,27,34] propose lists of recommendations
dedicated to IoT systems, which can be used as security measures. We chose to consider
the works proposed by the ENISA organisation as they gather the security measures
suggested in several papers and works of other organisations.

3.1 The ENISA Security Measures

The ENISA organisation issued several documents exposing guidelines and security
measures to implement secure IoT software systems with regard to different contexts
(smart plants, hospitals, clouds, etc.). These measures correspond to high-level rec-
ommendations for developers, operators and security experts, which help improve the
security level of IoT devices and communications among them.

The security measures provided by ENISA come from several other documents
written by different organisations or institutes, e.g., ISO, IETF, NIST or Microsoft.
We have chosen to focus on the paper related to security baselines in the context of
critical information infrastructures [11]. This document gathers 57 security technical
measures that should be active in an IoT system. As the models generated by our app-
roach mostly express exchanges among components, we formulated the 12 security
measures related to communications, which cover the following domains: Authentica-
tion, Privacy, Secure and Trusted Communications, Access Control, Secure Interfaces
and Network Services, Secure Input and Output Handling, Trust and Integrity Man-
agement. These security measures are given in Table 1 (left side). We have formulated
them with LTL formulas composed of predicates. Following the terminology used in
[2], we call these formulas property types. The definitions and explanations of the LTL
operators are given in Sect. 4. These property types are formulated by means of the
predicates given in Table 2.

MLCA: A Model-Learning-Checking Approach for IoT Systems 75

Table 1. Some ENISA security measures and LTL formulas expressing them.

3.2 MLCA Requirements

The capability of MLCA in auditing IoT systems depends on several realistic assump-
tions made on a system under audit denoted SUA:

– A1 Event Log: we consider the components of SUA as black-boxes. We assume that
each device, server, or gateway is physically secured and that we only have access to
the network or user interfaces through the network. Event logs include timestamps
given by a global clock. We consider having one event log;

– A2 Message Content: components produce events that include parameter assign-
ments allowing to identify the source and the destination. Other parameter assign-
ments may be used to encode data. Besides, an event is either identified as a request
or a response. Many protocols, e.g. HTTP, allow to easily distinguish both of them;

– A3 Device Collaboration: to learn precise models, we want to recognise sessions
of the system in event logs. We consider two exclusive cases:

• A31: the components of SUA cannot run multiple instances; requests are
processed by a component on a first-come, first served basis. Besides, the

76 S. Salva and E. Blot

Table 2. Predicates defined from 12 ENISA measures related to communications.

Predicate Short Description

Begin Beginning of a new session

End End of a session

From(c) Event coming from c

To(c) Event sent to c

Request Event is a request

Response Event is a response

Input Event is an input

Out put Event is an output

GetUpdate(x) Response including an update file

CmdSearch-Update The component received the order to search for an update

Sensitive(x) Data x is sensitive

Credential(x) Data x is acredential

Encrypted(x) Data x is encrypted

SearchU pdate Component requests for an update

LoginAttempt(c) Authentication attempt with c

Authenticated(c) Successful authentication with c

LoginFail(c) Failed authentication with c

Lockout(c) c is locked due to repetitive authentication failures

PasswordRecovery Component uses a password recovery mechanism

BlackListedWord(x) Message x includes black listed words

ValidResponse Correct response with correct status

ErrorResponse Response containing an error message

Unavailable Component that received the request is unavailable

XSS(x) Data x includes an XSS attack

SQLin jection(x) Data x includes an SQL injection attack

Weakpass(x) Password x is weak or blanck

components follow the request–response exchange pattern (a response is asso-
ciated with one request, a request is associated with responses), or

• A32: the events that belong to the same session are identified by a unique param-
eter assignment.

The session recognition mentioned in A3 helps extract execution traces expressing
complete behaviours of SUA, i.e. disjoint action sequences starting from one of its
initial states and ending in one of its final states. A32 expresses that messages include
an identifier allowing to observe whole collaborations among components. Usually, the
session identification strongly facilitates the trace extraction. Unfortunately, we have
observed that this technique is seldom adopted with IoT systems. Hence, when there is

MLCA: A Model-Learning-Checking Approach for IoT Systems 77

no session identifier, we restrict the functioning of SUA with A31. We have observed
that this assumption can be applied with many wireless or IoT systems.

3.3 A Motivating Example

Fig. 2. The MLCA’s steps.

We now present our Model-Learning-Checking approach MLCA, which aims at helping
audit the security of SUA. It takes as inputs an event log, regular expressions allowing to
format the event log, and generic security properties given under the form of property
types. These property types have a pattern-level form, and have to be instantiated to
make them concrete before being evaluated.

Figure 2 illustrates the 5 successive steps of MLCA. It starts by learning models
from the event log. In short, the event log is firstly formatted by means of the regular
expressions into a sequence of actions of the form a(α) with a a label and α some
parameter assignments. In reference to A1, A2, an action a(α) indicates the sources and
destinations of the messages with two parameters f rom and to. The other parameter
assignments capture data, e.g., acknowledgements or sensor data. Figure 3 illustrates
a simple example of event log along with a regular expression allowing to format the
events into actions. This expression retrieves a label (Req or Resp) and parameters in
the messages (from, to and the remaining data, e.g., cmd:=auth). Figure 4 shows an
example of action sequence where the first five actions are derived from the events of
Fig. 3.

Then, we call the model learning algorithm CkTail to build one LTS L (c1)
for every component c1 of SUA detected in the action sequence. L (c1) shows the
behaviours of c1 in terms of messages exchanged with the other components. Besides,
CkTail generates one dependency graph Dg(c1) expressing how c1 interacts with the
other components of SUA. The detailed functioning of our model learning algorithm is
given in [30], but the auditor does not need to be aware of the details. Figures 5 and 6
illustrate the LTSs and dependency graphs obtained from our action sequence example.
From these models, it becomes easier to understand that the system consists of four
components: c4 is an application sending commands (from users), c1 and c2 are gate-
ways and c3 is an actuator (a smart light bulb). We can deduce from L (c1) and L (c2)
that the first gateway authenticates to the second one after the receipt of commands
from c4. Then, c1 sends to c2 the state of a motion sensor, which seems to be integrated

78 S. Salva and E. Blot

Fig. 3. Example of 5 HTTP messages collected from an IoT system. The regular expression
retrieves a label and 3 parameters here. The label expression will be the label of the action in
the action sequence S.

Fig. 4. Action sequence S.

to the gateway c1. According to the motion sensor state, c2 finally sends the command
“switch:=on” to the smart light bulb c3.

With these models, it becomes easier to interpret the behaviours of SUA. Further-
more, as we now have formal models, different kinds of activities may be automatically
or semi-automatically conducted to discover defects. In particular, the remaining steps
of MLCA aims at checking whether property types hold on those LTSs. But, the LTSs
and property types do not yet share the same alphabet, as the property types are generic.
The auditor should re-formulate them for every LTS with the actions labelled on tran-
sitions. Instead, our approach automatically instantiates property types with the three
next steps. More, precisely, given an LTS L (c1), the step “LTS Completion” automat-
ically extends the LTS semantics; it analyses the LTS paths and injects new labels on
transitions. These labels correspond to some predicates of the property types whose
variables are assigned to concrete values. The step automates the label injection by
using an expert system made up of inference rules, which encode some expert knowl-
edge about SUA. The step produces a new LTS L ′(c1). If we take back our example,
this step completes the LTS L (c2) of Fig. 5 and gives the new LTS L ′(c2) illustrated
in Fig. 7. The transitions of L ′(c2) are still labelled by the actions of the original LTS,
but several new labels appeared. For instance, the expert system has detected a login
attempt to c1 with the credentials {login := toto, password := 1234}, which are also
recognised as sensitive data.

MLCA: A Model-Learning-Checking Approach for IoT Systems 79

Fig. 5. LTSs generated from the action sequence of Fig. 4.

Fig. 6. Dependency graphs generated from the action sequence of Fig. 4.

The step “LTS Verification” helps auditors check the correctness of the previous
step. Indeed, the expert system used to enrich the LTS transitions may suffer from the
classical data acquisition problem. In other words, it may have inaccurate rules or miss-
ing ones. To help auditors check the LTS completion correctness, this step returns the
list of predicates that have not been added on LTS transitions. Besides, it check the
satisfiability of invariants on LTSs. These invariants allow the detection of some incor-
rect LTS transition completions (e.g., a transition whose action is neither a request nor
a response) or missing labels (e.g., every transition must carry either an input or an
output). These transitions are also retuned to auditors.

80 S. Salva and E. Blot

Fig. 7. Example of LTS completion. New propositions (Begin, End, Credential, Sensitive,
ValidResponse, etc.) are injected on transitions.

The next step “Property type instantiation” covers every new LTS and automatically
instantiates the property types. This step returns a set of LTL formulas P(L ′(c1))
exclusively written with atomic propositions. We call them property instances. These
correspond to concrete security properties. Let’s illustrate this step with the LTS L ′(c2)
of Fig. 7 and the property type G((loginAttempt(c)∧ credential(x)) → encrypted(x))
derived from the ENISA measure GP-TM-24. By covering the labels of L ′(c2), we
obtain Dom(c)= {c1} and Dom(x)= {login := toto, password := 1234}. Two property
instances are then derived.

The final step is more classic as it calls a model-checker to verify whether an LTS
L ′(c1) satisfies the LTL formula of P(L ′(c1)). The model-checker either returns true
if a property instance holds or a counterexample path that violates it. This counterex-
ample is particularly useful to understand why a component c1 does not meet a security
property and should help localise a problem in the LTS L ′(c1). Figure 8 shows a exam-
ple of results returned by the model-checker NuSMV [7] after having evaluated if the
LTS L ′(c2) satisfies some property instances derived from five security measures. A
property instance related to GP-TM-24 does not hold because both the login and pass-
word are not encrypted. The interpretation of the counterexample helps deduce that the
credentials are not encrypted (Encrypted(login:=toto), Encrypted(password:=1234) not
found). Such counterexamples may be used to develop an audit report, which should
include recommendations or treatments to security issues.

After this overview of MLCA, we now develop its theoretical background along
with its algorithms in the next section. It is worth noting that a user does not need
to be aware of these details. He/she only needs to have an event log, a list of regular
expressions and our list of property types.

MLCA: A Model-Learning-Checking Approach for IoT Systems 81

Fig. 8. Example of results obtained with the verification of five ENISA measures on the LTS
L (c2). The counterexamples shows the LTS paths that do not satisfy the property instances.

4 The Model Learning Checking Approach

This section details the MLCA’s steps 2 to 5. More details of the model learning step
are available in [29,30]. Before describing these steps, we provide some definitions and
notations to be used throughout the remainder of the paper.

4.1 Preliminary Definitions

As in many works dealing with the modelling of atomic components, e.g., [4,13], we
express the behaviours of components with the well established Labelled Transition
System (LTS) model. An LTS is defined in terms of states and transitions labelled by
actions, themselves taken from a general action set L.

Definition 1 (LTS). A Labelled Transition System (LTS) is a 4-tuple 〈Q,q0,Σ,→〉
where:

• Q is a finite set of states;
• q0 is the initial state;
• Σ ⊆ L is a finite set of labels,
• →⊆ Q× (P(Σ) \ { /0})×Q is a finite set of transitions (where P(Σ) denotes the

powerset of Σ). A transition (q,L,q′) is also denoted q
L−→ q′.

82 S. Salva and E. Blot

An execution trace is a finite sequence of labels in L∗. ε denotes the empty sequence.
The concatenation of two traces σ1, σ2 is denoted σ1.σ2.

Furthermore, we express security properties with LTL formulas, which concisely
formalise them with the help of a small number of special logical operators and temporal
operators [16]. Given a set of atomic propositions AP and p ∈ AP, LTL formulas are
constructed by using the following grammar φ ::= p | (φ) | ¬φ | φ1 ∨φ2 | Xφ | φ1Uφ2.
Additionally, a LTL formula can be constructed with the following operators, each of
which is defined in terms of the previous ones:

� de f
= p∨¬p, ⊥ de f

= ¬�, φ1 ∧φ2
de f
= ¬(¬φ1∨¬φ2), φ1 → φ2

de f
= ¬φ1 ∨φ2, Fφ

de f
= �Uφ,

Gφ
de f
= ¬F(¬φ).
SF(φ) denotes the set of sub-formulas of φ. This set is is defined inductively as fol-

lows: SF(p)
de f
= {p}; SF(¬φ)

de f
= {¬φ}∪SF(φ); SF(φ1 ∨φ2)

de f
= {φ1 ∨φ2}∪SF(φ1)∪

SF(φ2); SF(Xφ)
de f
= {Xφ}∪SF(φ); SF(Uφ)

de f
= {Uφ}∪SF(φ). When the other oper-

ators are used, their definitions allow to inductively recover the set of sub-formulas as
well.

4.2 Property Type

We use property types to express general features, which are independent of the type
of system under audit. A property type is a specialised LTL formula whose atomic
propositions are predicates, a predicate being either an expression of one or more vari-
ables defined on some specific domains, or a nullary predicate, which corresponds to an
atomic proposition.

Definition 2 (Property Type).

– Pred denotes a set of predicates of the form P (nullary predicate) or P(x1, . . . ,xk)
with x1, . . . ,xk some variables that belong to the set denoted X;

– The domain of a predicate variable x ∈ X is written Dom(x);
– A property type Φ is a LTL formula built up from predicates in Pred.P denotes the
set of property types.

Property types cannot be evaluated by model-checkers as they are composed of
predicates. They require to be instantiated before, i.e. predicate variables have to
assigned to values. The instantiation of a property type is called a property instance.
It has the same LTL structure as its property type, but the instantiated predicates now
form propositions.

Definition 3 (Property Instance). A property instance φ of the property type Φ is a
LTL formula resulting from the instantiation of the predicates of Φ.

The function that instantiates a property type to one property instance, i.e. which
associates each variable of the predicates to a value, is called a binding:

Definition 4 (Property Binding). Let X ′ be a finite set of variables {x1, . . . , xk} ⊆ X.
A binding is a function b : X ′ → Dom(X ′), with Dom(X ′) = Dom(x1)×·· ·×Dom(xk).

MLCA: A Model-Learning-Checking Approach for IoT Systems 83

Applying a binding to the variables of a property type gives a property instance
related to this binding. For instance, applying {x → pass := ”1234”} to Sensitive(x) →
Encrypted(x) returns the property instance Sensitive(pass := ”1234”) → Encrypted(
pass := ”1234”).

The writing of property types is not a straightforward activity in the sense that it
requires a good expert knowledge on LTL. This is why we provide a set of property
types in Sect. 3.1. We recommend writing property types by firstly formulating general
security concepts with predicates, and by applying or composing the LTL patterns given
in [10] on those predicates. These patterns help structure LTL formulas with precise and
correct statements that model common situations, e.g., the absence of events, or cause-
effect relationships.

In order to reduce execution times, our algorithms take advantage of particular for-
mula, which we call conditional property types. These will be useful to enhance the
property type instantiation algorithm given in Sect. 4.5. Intuitively, a conditional prop-
erty type is formed by an implication. It is worth noting that the definition given below
identifies some conditional property types but is not exhaustive.

Definition 5 (Conditional Property Types).

1. Φ is a conditional property type iff Φ is a property type of the form:
P→Q,G(P→Q), F(P→Q),GP→Q, (P→Q)∨Φ2,G((P→Q)∨Φ2), F((P→
Q)∨ Φ2) with P a predicate or a conjunction of predicates, Q a predicate or a
disjunction of predicates, and Φ2 an LTL formula;

2. antecedent(Φ) denotes the antecedent of the implication of Φ, which is either equal
to P or FP here;

3. consequent(Φ)
de f
= Q.

We provide, in Sect. 3.1, 12 property types modelling the security measures of
the ENISA organisation related to communications. These property types are made
up of the predicates given in Table 2. For example, the security measure GP-TM-
38 recommends to encrypts sensitive data, which is formulated as G(Sensitive(x) →
Encrypted(x)). GP-TM-24 recommends encrypting authentication credentials. This
measure is formulated as: G((LoginAttempt(c) ∧Credential(x) → Encrypted(x)),
which intuitively means that every time a component attempts to log in to another
component c by using credentials x, then x must be encrypted. GP-TM-53 sug-
gests that error messages must not expose sensitive information. This is formulated
with G((ErrorResponse ∨¬ValidResponse) → (¬(BlackListedWord(x))). This for-
mula intuitively means that every HTTP response composed of an error message or
having a status higher than 299 must not include blacklisted words. If we apply the
binding {c → c1,x → login := toto} on the second property type, we obtain the prop-
erty instance G((LoginAttempt(c1)∧Credential(login := toto)→Encrypted(login :=
toto)).

4.3 MLCA Step 2: LTS Completion

Model-checkers cannot directly check the satisfiability of property types on LTSs as
the properties are made up of predicate variables. This step prepares the property

84 S. Salva and E. Blot

type instantiation by helping auditors complete the LTS transitions with some pred-
icates of Pred, i.e. the predicates used to write the property types. Once this step is
finished we obtain new LTSs that share the same alphabet as the property types. As
an LTS encodes concrete behaviours, this step actually adds instantiated predicates of
Pred, i.e. predicates whose variables are assigned to concrete values found in the LTS
actions. Completing the LTS transitions with these instantiated predicates comes down
to analysing/interpreting LTS transitions or paths and to add new labels on transitions
to extend the LTS semantics. To performs this activity in an automatic manner, this step
uses an expert system, made up of inference rules, which encode some expert knowl-
edge about SUA. The expert system offers the benefits to automate the LTS transition
completion and to save time by allowing to reuse it on several IoT systems.

We represent inference rules with this format: When conditions on facts Then
actions on facts (format taken by the Drools inference engine [28]). The facts, which
belong to the knowledge base of the expert system, are here the transitions of an LTS. To
ensure that the transition completion is performed in a finite time and in a deterministic
way, the inference rules have to meet these hypotheses:

– Finite complexity: a rule can only be applied a limited number of times on the same
knowledge base,

– Soundness: the inference rules are Modus Ponens (simple implications that lead to
sound facts if the original facts are true).

We devised 28 inference rules, which are available in [31]. These can be categorised
as follows:

– Structural information: two rules are used to add the propositions “Begin” and
“End”, which describe the beginning and end of user sessions in LTS paths;

– Nature of the actions: 9 rules add information about the nature of the actions. Given

a transition q1
{a(α)}−−−−→ q2, some rules analyse the parameter assignments in α and

complete the transition with new propositions expressing that a(α) is a request or a
response, an input or an output, the component that sent a(α), etc. Other rules anal-
yse α to interpret if the action corresponds to an error response (analysis of the values
in α to detect words like “error” or analysis of HTTP status, etc.). For instance, the
first rule of Fig. 9 adds the proposition ValidResponse if the transition expresses
a response whose HTTP status is between 200 and 299. The status inspection is
performed by the procedure isOk();

– Security information: the other rules add predicates related to security on LTS tran-
sitions. For instance, we devised a rule that checks whether some parameters are
encrypted. Other rules analyse the LTS paths to try recognise specific patterns (tran-
sition sequences containing specific words), e.g., authentication attempts, successful
or failed authentications. For instance, the second rule of Fig. 9 detects a correct
authentication. It adds the proposition “LoginAttempt(c)” on the transition labelled
by the credentials and “Authenticated(c)” on the transition whose action encodes a
correct authentication with the external component c.

MLCA: A Model-Learning-Checking Approach for IoT Systems 85

Fig. 9. Inference rule examples [29].

Once the expert system has completed the LTS L (c1), we obtain a new LTS
denoted L ′(c1).

4.4 MLCA Step 3: LTS Verification

The notion of expert system, used in the previous step, suffers from some limitations as
most of the current AI applications. One of them relates to the difficulty of knowledge
acquisition. In other terms, the expert system rules may be incomplete or not adapted to
SUA. For instance, the rule “Authentication” of Fig. 9 is based on the keywords “login”
and “password” for recognising a successful authentication, but other keywords might
be used instead. With this example, the expert system can be easily completed with
new rules. But, some rules also depend of external tools, which might provide incorrect
information. We observed this case for the rule dedicated to the recognition of data
encryption. This rule relies on a tool, which often returns false positives or negatives,
especially when the data length is short. This is why the auditors have to inspect the
LTSs to assess the transition completion correctness. We propose two solutions to help
auditors in this verification:

– the expert system notices and returns the names of the rules, which have not been
triggered previously. The returned list of rules warns the auditor that some predicates
have not been added on transitions;

– this step also automatically checks whether invariants hold on every LTS transitions.
We provide a set of 7 invariants written with property types. The first 4 invariants are
used to detect missing labels that have to be found on LTS transitions. The remain-
ing ones are used to detect incorrect label completion on transitions. The predicate
variables c and c2, which are used with some invariants, only refer to components.
To make these invariants concrete, we assign both variables to the components that
belong to the set C. Then, we check whether the invariants hold on the LTSs by
calling a model-checker. When an invariant is not satisfied, the LTS transition is
returned to the auditor, so that he/she can manually review it.

86 S. Salva and E. Blot

Table 3. Invariant used to verify the LTS transition completion correctness.

4.5 MLCA Step 4: Property Type Instantiation

Given an LTS L ′(c1), this step aims at instantiating the property types of P to obtain
a set of property instances that can be evaluated on the paths of L ′(c1). We denote
P(L ′(c1)) this set of property instances. Intuitively, a property type Φ is instantiated
with bindings, which assign values to the predicate variables of Φ. This step derives
these bindings from the labels (instantiated predicates) added on the LTS transitions by
the expert system previously.

We proposed in [29] a preliminary algorithm implementing the property type
instantiation. To illustrate this algorithm, consider the property type G(Sensitive(x) →
Encrypted (x)) modelling the ENISA security measure GP-TM-38 and an LTS L ′(c1)
having the labels Sensitive(login:=toto), Encrypted(login:=toto), Encrypted(resp:=”
HTTP/1.1 200 OK...”). The Property Type Instantiation algorithm builds the set Dom(x)
= {login := toto,resp := ”HTTP/1.1200OK...”}. Consequently, two bindings and two
property instances are automatically built. Hence, despite the need for checking the LTS
completion correctness, an auditor does not have to be an expert in LTL for using our
approach.

We showed in [29] that the time complexity of the Property Type Instantiation algo-
rithm is polynomial, but it is manifest that the LTS size and the number of predicate
values found on the LTS transitions will increase the number of generated property
instances and then negatively affect execution times, as verifying whether LTL formu-
las hold is usually time consuming.

From this statement, we now propose to focus on an enhancement of the algo-
rithm given in [29] to lower the time complexity of MLCA. We indeed observed
that our algorithm produces a set of pointless property instances in the sense that
these formulas are always true. Consider the previous example of property type, that
is G(Sensitive(x) → Encrypted(x)) along with the LTS L ′(c1) having the same
labels Sensitive(login:=toto), Encrypted(login:=toto), Encrypted(resp:=”HTTP/1.1
200 OK...”). The last label gives the binding {x→ resp := ”HTTP/1.1 200 OK...”} and
the property type G(Sensitive(resp := ”HTTP/1.1 200 OK...”)→ Encrypted(resp :=
”HTTP/1.1 200 OK...”)). The latter will always be true, as the antecedent part of the
formula Sensitive(resp := “...′′) will always be false (the predicate Sensitive(resp:=“...”)
is not labelled on any transition of L ′(c1)). This statement can be observed with the
conditional property types given in Definition 5. This is formulated by the following
proposition:

Proposition 1. Let Φ be a conditional property type such that there exist
P1(x1, . . . ,xk) ∈ antecedent(Φ) and P2(x1, . . . ,xk) ∈ consequent(Φ). X’ is the finite set

MLCA: A Model-Learning-Checking Approach for IoT Systems 87

of predicate variables of Φ. Let P2(v1, . . . ,vk) := true be an instantiated predicate of
P2(x1, . . . ,xk) and b : X ′ → Dom(X ′) such that b′ : {x1 → v1, . . . ,xk → vk} is a restric-
tion of b.

The property instance ϕ := b(Φ) resulting from the instantiation of Φ with b is
always true.

Sketch of Proof of Proposition 1: let us consider the conditional property type Φ :=
P → Q with P a predicate or a conjunction of predicates, Q a predicate or a disjunction
of predicates.

The property instance ϕ derived from Φ with b is denoted ϕ := ϕ1 → ϕ2.
ϕ2 := P2(v1, . . . ,vk) or ϕ2 := P2(v1, . . . ,vk)∨ ϕ′

2 with ϕ′
2 an LTL formula, such that

P2(x1, . . . ,xk) ∈ SF(Q) and b′ : {x1 → v1, . . . ,xk → vk} is the restriction of b over
{x1, . . . , xk}.

As a consequence, as P2(v1, . . . ,vk) is true, ϕ2 is also true. As ϕ2 is true, ϕ1 →
ϕ2 is true whatever the evaluation of ϕ1. Finally, ϕ := b(Φ) is always true. The same
reasoning can be applied on the other conditional property types of Definition 5. �

In reference to Proposition 1, we now provide a new implementation of the prop-
erty type instantiation in Algorithm 1. The main difference between this algorithm and
the previous one lies in lines 4–6. It begins by storing the predicates of the property
type Φ in a set PS, which contains the predicates from which bindings will be com-
puted (in contrast to the previous algorithm where all the predicates were considered).
Now, if Φ is recognised as a conditional property type, if it includes two predicates P1,
P2 having the same variables and if P1 belongs to the antecedent part of Φ whereas
P2 belongs to the consequent part, then P2 is removed from PS. Removing P2 from
PS allows to ignore the predicate values leading to pointless property type instances,
as in our example. In lines 7–10, Algorithm 1 covers the LTS transitions and every
label P(v1, . . . ,vk) to generate domains of values on condition that the related predicate
P(x1, . . . ,xk) belong to PS. Afterwards, the property types are instantiated as before.

The time complexity of Algorithm 1 is proportional to |P|(p2 + | → |p+ |D|).
This complexity is higher than the one of the first algorithm, but it should return less
property instances. As a consequence, MLCA should verify less property instances and
hence consume less time with this algorithm. This is confirmed in our evaluation results
(Sect. 5).

4.6 MLCA Step 5: Property Instance Verification

Given an LTS L ′(c1), this step comes down to calling a model-checker for verifying
whether L ′(c1) satisfies the property instances of P(L ′(c1)). If the model-checker
detects a counterexample path that violates a property instance φ ∈ P(L ′(c1)), our
approach reports the security measure related to φ, which is not (correctly) imple-
mented. Our approach also returns the counterexample so that auditors may analyse
it to comprehend the captured failure scenario.

88 S. Salva and E. Blot

Algorithm 1. Property Type Instantiation 2.
input : LTS L ′(c1), property type set P
output: Property instance set P (L ′(c1))

1 Compute Dom(deps) from Dg(c1);
2 X ′ := /0;
3 foreach Φ ∈ P do
4 PS set of of predicates of Φ;
5 if Φ is a conditional property type and ∃P1(x1, . . . ,xk),P2(x1, . . . ,xk) ∈ PS : P1(x1, . . . ,xk) ∈

SF(antecedant(Φ))∧P2(x1, . . . ,xk) ∈ SF(consequent(Φ)) then
6 PS := PS\{P2(x1, . . . ,xk)};

7 foreach l ∈ L with s1
L−→ s2 ∈→L ′(c1) do

8 if l = P(v1, . . . ,vk) and P(x1, . . . ,xk) ∈ PS then
9 Dom(xi) = Dom(xi)∪{vi}(1 ≤ i ≤ k);

10 X ′ := X ′ ∪ {x1, . . . ,xk};

11 if X ′ is not equal to the set of predicate variables of Φ then
12 return a warning;

13 else
14 D := Dom(x1)×·· ·×Dom(xn) with X ′ = {x1, . . . ,xn};

15 foreach binding b ∈ DX ′
do

16 φ := b(Φ);
17 P (L ′(c1)) =P (L ′(c1))∪{φ};

4.7 Limitations

Fig. 10. Some MLCA limitations.

Our approach suffers from some limitations. The first is related to the need for formu-
lating security measures with property types. Even though we propose a substantial set
of property types, auditors might need further formulas for their own use. But, writing
LTL formulas requires some expertise and experience.

The generalisation of our approach is also restricted by the requirements A1-A3.
In particular, the event logs must be formatted by means of regular expressions so that
the action types can be identified. Although we have observed that this task is not too
difficult to carry out on HTTP messages, it is manifest that this is not generalisable to
any kind of protocols, especially those encrypting some parts of the message content.

We also have showed that Algorithm 1 may return warnings showing that property
types cannot be instantiated. Figure 10 summarises the main reasons. The two first ones

MLCA: A Model-Learning-Checking Approach for IoT Systems 89

(left side of the figure) concern SUA: it might not implement some features. Here, the
auditor has to establish and decide if SUA is secure even though a security feature is
missing. Additionally, a property type may not be instantiated on account of the models
(right side of the figure). On the one hand, the LTSs are generated by a model learning
algorithm, which may infer under-approximated (rejection of valid behaviours) or over-
approximated (acceptance of invalid behaviours) models. It is worth noting that the
model learning tools available in the literature tend to generate more and more precise
models, which accept most of legal behaviours and reject most of anomalous ones [30].
On the other hand, the LTSs may be incorrectly completed by the second step of MLCA.
As stated earlier, the resulting LTSs should be manually reviewed.

4.8 Implementation

Our approach is implemented as a tool chain, which gathers three tools: CkTail, which
implements a model learning approach specialised for communicating systems, SMV-
maker, which completes the LTSs produced by CkTail by means of an expert system and
instantiates property types, and the model-checker NuSMV. The tools, source codes,
examples of property types and traces are available in [31]. These tools were employed
to evaluate our approach with several case studies.

5 Empirical Evaluation

The experiments presented in this section aim to assess the capabilities of our algo-
rithms to verify whether security measures are active on models inferred from logs in
terms of precision (exact detection of active and inactive security measures) and per-
formance. This section supplements our preliminary evaluation proposed in [29] as we
study the capabilities of our algorithms through 3 research questions and as we consider
more systems. These research questions are:

– RQ1: is MLCA able to detect active security measures? RQ1 investigates the sen-
sitivity of MLCA, that is its capability to identify the security measures related to
communications that are truly implemented on IoT systems;

– RQ2: is MLCA able to detect inactive security measures? RQ2 investigates the
specificity of MLCA, that is its capability to uncover the security measures that
are not considered or incorrectly implemented;

– RQ3: how long does MLCA take to verify whether security measures are correctly
implemented? RQ3 studies the performance of our algorithms and how they scale
with the size of the event logs, and with the number of the property types.

5.1 Empirical Setup

This study was conducted on five IoT systems integrating varied devices, gateways and
external cloud servers communicating over HTTP. We assembled and configured these
systems using the available security options. From these systems, we collected event
logs composed of HTTP messages on gateways or servers.

90 S. Salva and E. Blot

– S1 is composed of 3 motion sensors that turn on a light-bulb when they detect move-
ments. They communicate through a gateway; all of them have user interfaces, which
may be used for configuration. The main purpose of this system is to focus on clas-
sical attacks (code injection, brute force, availability) and on the related security
measures GP-TM 22, 25, 38, 52, 53;

– S2 includes a motion sensor, a switch and an IP camera. The motion sensor commu-
nicates with the switch in clear-text, and with the camera with encrypted messages.
The camera also communicates with external clouds requiring authentication and
encryption. In this system, we mainly focus on security measures related to encryp-
tion and authentication, GP-TM 22, 24, 25, 26, 38, 42, 53;

– S3 is composed of 3 IP cameras, which communicate with external cloud servers.
Two cameras can update their software remotely. This system aims at focusing on
security measures related to update mechanisms, GP-TM 18, 19, 38, 48, 53;

– S4 is made up of a temperature sensor, which communicates with a gateway. A user
can connect to the gateway for reading temperature curves. We devised this system
so that the gateway is vulnerable to XSS code injections. Here, we mainly focus on
security measures related to encryption, authentication, and code injection, GP-TM
22, 24, 25, 26, 38, 42, 52, 53;

– S5 is composed of an IP camera, which interacts with a NTP, a SMTP, and an FTP
server. The camera authenticates to the FTP server (with encrypted credentials), and
to the SMTP server (with unencrypted credentials). A user can connect to the camera
to get images or videos. With this system, we mainly focus on security measures
related to encryption and authentication, GP-TM 22, 24, 26, 38, 42, 52, 53.

5.2 RQ1: Is MLCA Able to Detect Active Security Measures?

To answer RQ1, we initially experimented the above systems by hands. We gathered a
first set of event logs that capture “normal behaviours” and generated first models with
CkTail. From these, we identified the testable components, on which we applied a set
of penetration testing tools specialised to Web applications. During this testing stage,
we collected larger event logs. From them, we generated the final models used for the
evaluation.

Besides, we manually analysed the source codes of the software used by the devices
(sensors, gateways) when available and the event logs to list the ENISA security mea-
sures that are active and those that are not (correctly) implemented . This task allowed
us to compare the results of MLCA with our observations and hence to measure the
sensitivity and specificity of our approach.

For this evaluation, we considered the 12 property types given in Table 1. We ran
MLCA to generate the LTSs and property instances from these property types. To not
perform an unbiased evaluation, we considered two cases: the case where we did not
manually completed the generated LTSs denoted “w/o modification” and the case where
we manually completed them as required in the third step of the approach, denoted “w/
modifications”. And finally, we called the model-checker NuSMV to check whether the
property instances hold on the LTSs.

For this research question, we measured the sensitivities of MLCA (rate of correct
property instances that evaluate to true) using Algorithm 1 “w/o modification” and “w/

MLCA: A Model-Learning-Checking Approach for IoT Systems 91

modifications”. The comparison of our previous MLCA algorithms given in [29] can-
not be based on sensitivity measurements as both approaches generate different sets of
property instances (in general terms, the numbers of conditional positives are different).
To compare both algorithms, we measured their number of false positives FP, i.e. the
number of unsatisfied property instances, which should hold.

Results:

Table 4. False positives (FP) and Sensitivity of MLCA.

IoT syst #instantiated
property
types/total

FP w/o modif.
MLCA of [29]

FP w/o modif.
MLCA

Sensitivity w/o
modif. MLCA

Sensitivity w/
modif. MLCA

S1 44/60 3 3 97.5% 98.33%

S2 14/36 0 0 100% 100%

S3 19/36 0 0 100% 100%

S4 13/24 0 0 100% 100%

S5 26/48 0 0 100% 100%

Table 4 summarises the results of our experiments. Col. 2 gives the ratio of property
types that have been instantiated over the property types available for all the compo-
nents of a system. For instance, S1 has 5 components, hence 5*12 property types can be
used. 44 property types were instantiated for this system. None of the systems allowed
to instantiate all the property types. This result was expected as none of the systems
implement all the security features considered in the security measures, e.g., password
recovery for S1, or authentication for some components of S2, S3. Then, Col. 3 and 4
give the number of false positives observed with MLCA of [29] and the MLCA algo-
rithms presented in this paper. The two last columns provide the sensitivity of MLCA
without or with manual modifications of the LTSs (after the third step of MLCA).

Firstly, col. 3 and 4 confirm that our new property instance algorithm (Algorithm 1)
does not change the number of false positives. Col. 5 shows that the overall sensitivity of
MLCA “w/o modification” is 99,5%. When we manually complete the LTSs the overall
sensitivity increases up to 99,66 %. The sensitivity is below 100 % with S1. After
inspection, we observed that the difference of sensitivity “w/o modification” and “w/
modifications” with S1 comes from an inference rule of the expert system, which tries to
recognise whether parameters are encrypted. This rule computes the message entropy,
but this technique is sometimes not precise enough to recognise encryption. Hence some
LTS transitions were incorrectly completed with predicates of the form Encrypted(x).
We did not find any better solution at the moment. Still with S1, the sensitivity “w/
modifications” remains below 100% on account of a false positive related to the security
measure GP-TM-25. We observed that this measure is detected as active on account of
an over-generalisation of the LTSs. Apart from this issue related to model learning, these
results tend to show that MLCA is very effective to check whether security measures
are correctly implemented since the sensitivity of MLCA is close to 100%.

92 S. Salva and E. Blot

Table 5. Specificity of MLCA.

IoT syst #instantiated
property types
/total

Specificity w/o
modif. MLCA of
[29]

Specificity w/o
modif. MLCA

Specificity w/
modif. MLCA

S1 44/60 99.07% 99.07% 99.07%

S2 14/36 91.66% 91.66% 91.66%

S3 19/36 92.86% 92.86% 92.86%

S4 13/24 100% 100% 100%

S5 26/48 67.57% 67.57% 89.19%

5.3 RQ2: Is MLCA Able to Detect Inactive Security Measures?

We measured the specificity of our approach, that is the rate of inactive security mea-
sures that are correctly identified by MLCA. We recall that a security measure is
detected as inactive for a given system when a property instance derived from this secu-
rity measure does not hold on an LTS. We considered the same models generated for
RQ1 along with the same property types. In the same way, to not perform an unbiased
evaluation, we considered the two cases “w/o modification” and “w/ modifications”.

Results: Table 5 shows the specificity measurements of our algorithms. The number of
instantiated property types and the number of property instances given in Col. 2 remain
the same. Col. 3 and 4 compare the specificity of MLCA of [29] with the algorithms
presented in this paper. Next, Col. 4 and 5 allow to compare the specificity without or
with manual modifications of the LTSs.

The overall specificity without modification of the LTSs is 91.8% with both algo-
rithms. Again, this confirms that the property instance optimisation used in Algorithm
1 does not modify the results of MLCA. We observe that MLCA returns some false
negatives, most of them being observed with S5. After inspection, we observed that
most of these false negatives come again from the expert system rule related to encryp-
tion recognition. Here, this rule has detected that many encrypted messages are not
encrypted. After the manual modification of the LTSs, the specificity reaches 96,12%.
The remaining false negatives come from some LTS under-approximations, i.e. rejec-
tions by the LTSs of some correct behaviours.

These results tend to show that MLCA is very effective for detecting inactive secu-
rity measures since the overall specificity of MLCA is higher than 91% without modifi-
cation of the models. We believe that the benefits of automatically learning models and
instantiating LTL formulas exceed the drawback of having a few false negatives.

5.4 RQ3: How Long Does MLCA Take to Verify Whether Security Measures
Are Correctly Implemented?

To answer RQ3, we performed three experiments. We firstly studied how the tool scales
with the size of the event logs. We collected 20 new event logs from S5 by varying
the number of events between 500 to 100000, then we measured execution times. We

MLCA: A Model-Learning-Checking Approach for IoT Systems 93

Fig. 11. Execution times vs. number of events.

Fig. 12. Execution times vs. number of property types.

also studied how the tool scales with the number of property types. We measured the
execution times of MLCA by using the event log of S5 and by increasing the property
type number from 0 to 100. Finally, we measured the execution times obtained with the
MLCA of [29] and the MLCA algorithms proposed in this paper on the 5 IoT systems.
We also collected the number of generated property instances with both algorithms.
These Experiments were carried out on a computer with 1 Intel® CPU i5-6500 @
3.2GHz and 32GB RAM.

Results: Figure 11 depicts, with the curve Total, execution times in seconds w.r.t. the
event log sizes. We observe that MLCA returns results within reasonable time even
with large event logs. But, the curve follows a quadratic regression and reveals that our
tool does not scale well. To understand this problem, we completed the figure with two
additional curves depicting the times required to learn models and the times consumed
by the other steps of the approach (Steps 2–5). These two curves clearly show that the
scaling problem comes from the model learning algorithm CkTail.

Figure 12 depicts execution times in seconds w.r.t. the number of property types
given as inputs. We observe that the curve follows a linear regression, showing that the

94 S. Salva and E. Blot

tool scales well according to the number of property types. Even with 100 property
types, execution times remain reasonable.

Table 6. Number of property instances and execution times measured on the 5 IoT systems.

IoT Syst #property instance
MLCA of [29]

#property instance
MLCA

Execution times
MLCA of [29]

Execution times
Algorithm 1

S1 823 334 31708 4533

S2 37 37 509 510

S3 39 39 165 162

S4 80 68 76 60

S5 128 88 372 252

Table 6 compares the number of generated property instances along with execution
times in seconds for the five IoT systems between the MLCA of [29] and the algorithms
we proposed in this paper. In average, we observe that the new MLCA algorithms help
reduce execution times by 28% thanks to the optimisations performed to reduce the
set of generated property instances. With some systems (S2 and S3), we observe that
both algorithms return the same amount of property instances and around the same
execution times. With these systems, the property types that are instantiated are not
conditional property types. In contrast, we observe that using Algorithm 1 with S1
allows to strongly reduce the set of property instances and to lower the execution time
by 85%.

These results tend to show that MLCA can be used in practice even with large event
logs, but it suffers from insufficient scalability, on account of the model learning step.
These results also confirm that Algorithm 1 allows to save execution time.

5.5 Threat to Validity

Some threats to validity can be identified in our evaluation. The first factor, which may
threaten external validity, applies to the case studies. Most of them are IoT systems
using HTTP. But many communicating systems rely on other kinds of protocols, from
which it may be more difficult to identify senders, receivers, requests or responses.
Hence, we cannot conclude that our results are generalisable to IoT systems. This is
why we deliberately avoid drawing any general conclusion. This threat is somewhat
mitigated by the fact that HTTP is used by numerous communicating systems. However,
the HTTP traffic should also be decipherable so that MLCA can recognise behavioural
patterns and add predicates on LTS transitions. It is manifest that more experimentations
are required on further kinds of systems.

There are also some threats to internal validity. The quality of the models produced
by the first step of the approach strongly depends on the size and the formatting of
the event logs. We showed in the evaluation that we can obtain some false positives
/ negatives on account of the lack of precision of the models. At the moment, none

MLCA: A Model-Learning-Checking Approach for IoT Systems 95

of the passive model learning tool generates “exact” models, they usually are slightly
under- or over-approximated. We also mentioned that the outcomes of MLCA depend
on the manual LTS verification carried out in Step 3. It is manifest that the outcomes
of this step vary in accordance with the auditor knowledge and expertise. To avoid
this potential threat, we considered two cases: no modification of the LTSs and manual
modification. The first case gives the worst sensitivity and specificity of MLCA on the
five IoT systems considered for the evaluation.

6 Conclusion

This paper has proposed the design and evaluation of an approach called MLCA
(Model-Learning-Checking Approach), which combines model learning and model
checking to help audit the security of IoT systems. It requires an event log along with
security properties modelled with property types. The latter are generic LTL formulas,
which can be used independently of the IoT system under audit. We provide 12 property
types expressing some security measures provided by the ENISA organisation. MLCA
automatically generates models from the event log, then it assists auditors in the gener-
ation of concrete properties by instantiating property types. This instantiation is carried
out by an expert system made up of inference rules, which encode some expert knowl-
edge about the kind of system under audit. Our evaluation, performed on 5 IoT systems,
showed that MLCA is effective in detecting security issues, and that it can be used in
practice on large event logs.

Nevertheless, several aspects need to be investigated in the future. The model learn-
ing approach requires some assumptions to generate precise models. We will investigate
if some of them could be relaxed so that more systems under audit could be considered.
Our evaluation showed that the use of an expert system offers a great potential for
instantiating property types, especially when auditors are non-expert LTL users. How-
ever, this benefit strongly depends on the successful implementation of the expert sys-
tem rules. We indeed observed in the experimentations that a few property types were
not completely instantiated on account of the lack of precision of some rules. This is
why the property type instantiation and LTS completion steps require a review to detect
potential issues. Finding a way to get rid of this manual step is hence another direction
for future work.

Acknowledgement. Research supported by the French Project VASOC (Auvergne-Rhône-Alpes
Region) https://vasoc.limos.fr/.

References

1. Ahmad, A., Bouquet, F., Fourneret, E., Le Gall, F., Legeard, B.: Model-based testing as a
service for iot platforms. In: Margaria, T., Steffen, B. (eds.) ISoLA 2016. LNCS, vol. 9953,
pp. 727–742. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-47169-3 55

2. Beschastnikh, I., Brun, Y., Abrahamson, J., Ernst, M.D., Krishnamurthy, A.: Using declar-
ative specification to improve the understanding, extensibility, and comparison of model-
inference algorithms. IEEE Trans. Softw. Eng. 41(4), 408–428 (2015). https://doi.org/10.
1109/TSE.2014.2369047

https://vasoc.limos.fr/
https://doi.org/10.1007/978-3-319-47169-3_55
https://doi.org/10.1109/TSE.2014.2369047
https://doi.org/10.1109/TSE.2014.2369047

96 S. Salva and E. Blot

3. Beschastnikh, I., Brun, Y., Ernst, M.D., Krishnamurthy, A.: Inferring models of concur-
rent systems from logs of their behavior with Csight. In: Proceedings of the 36th Inter-
national Conference on Software Engineering, pp. 468–479. ICSE 2014, ACM, New
York, NY, USA (2014). https://doi.org/10.1145/2568225.2568246, http://doi.acm.org/10.
1145/2568225.2568246

4. van der Bijl, M., Rensink, A., Tretmans, J.: Compositional testing with iOCO. In: Petrenko,
A., Ulrich, A. (eds.) FATES 2003. LNCS, vol. 2931, pp. 86–100. Springer, Heidelberg
(2004). https://doi.org/10.1007/978-3-540-24617-6 7

5. Celik, Z.B., McDaniel, P., Tan, G.: Soteria: automated iot safety and security analy-
sis. In: 2018 USENIX Annual Technical Conference (USENIX ATC 18), pp. 147–158.
USENIX Association, Boston, MA (July 2018). https://www.usenix.org/conference/atc18/
presentation/celik

6. Chaabouni, N., Mosbah, M., Zemmari, A., Sauvignac, C., Faruki, P.: Network intrusion
detection for iot security based on learning techniques. IEEE Commun. Surv. Tutor. 21(3),
2671–2701 (2019). https://doi.org/10.1109/COMST.2019.2896380

7. Cimatti, A., et al.: NuSMV 2: an opensource tool for symbolic model checking. In:
Brinksma, E., Larsen, K.G. (eds.) CAV 2002. LNCS, vol. 2404, pp. 359–364. Springer, Hei-
delberg (2002). https://doi.org/10.1007/3-540-45657-0 29

8. Costin, A., Zaddach, J.: Iot malware: Comprehensive survey, analysis framework and case
studies (2018)

9. CSA: Security guidance for early adopters of the internet of things (iot), cloud security
alliance, white paper (2015)

10. Dwyer, M.B., Avrunin, G.S., Corbett, J.C.: Patterns in property specifications for finite-state
verification. In: Proceedings of the 1999 International Conference on Software Engineer-
ing (IEEE Cat. No.99CB37002), pp. 411–420 (May 1999). https://doi.org/10.1145/302405.
302672

11. ENISA: Baseline security recommendations for iot in the context of critical information
infrastructures, Technical report (2017). https://www.enisa.europa.eu/publications/baseline-
security-recommendations-for-iot

12. ETSI: Methods for testing & specification; risk-based security assessment and testing
methodologies, Technical report (2015). https://www.etsi.org/

13. Falcone, Y., Jaber, M., Nguyen, T.H., Bozga, M., Bensalem, S.: Runtime verification of
component-based systems. In: Barthe, G., Pardo, A., Schneider, G. (eds.) SEFM 2011 - Pro-
ceedings of the 9th International Conference on Software Engineering and Formal Methods.
Lecture Notes in Computer Science (LNCS), vol. 7041, pp. 204–220. Springer, Montev-
ideo, Uruguay, November 2011. https://doi.org/10.1007/978-3-642-24690-6 15, https://hal.
archives-ouvertes.fr/hal-00642969

14. Ge, M., Hong, J.B., Guttmann, W., Kim, D.S.: A framework for automating security analysis
of the internet of things. J. Netw. Comput. Appl. 83, 12–27 (2017). https://doi.org/10.1016/
j.jnca.2017.01.033, http://www.sciencedirect.com/science/article/pii/S1084804517300541

15. Gutiérrez-Madroñal, L., La Blunda, L., Wagner, M.F., Medina-Bulo, I.: Test event generation
for a fall-detection iot system. IEEE Internet Things J. 6(4), 6642–6651 (2019). https://doi.
org/10.1109/JIOT.2019.2909434

16. Holzmann, G.: The SPIN Model Checker: Primer and Reference Manual, 1st edn., Addison-
Wesley Professional, Boston (2011)

17. ISO: Iso/iec 27030 information technology - security techniques - guidelines for security and
privacy in internet of things (iot) (2019)

18. Khan, M.A., Salah, K.: Iot security: review, blockchain solutions, and open challenges.
Future Gener. Comput. Syst. 82, 395–411 (2018). https://doi.org/10.1016/j.future.2017.11.
022, http://www.sciencedirect.com/science/article/pii/S0167739X17315765

https://doi.org/10.1145/2568225.2568246
http://doi.acm.org/10.1145/2568225.2568246
http://doi.acm.org/10.1145/2568225.2568246
https://doi.org/10.1007/978-3-540-24617-6_7
https://www.usenix.org/conference/atc18/presentation/celik
https://www.usenix.org/conference/atc18/presentation/celik
https://doi.org/10.1109/COMST.2019.2896380
https://doi.org/10.1007/3-540-45657-0_29
https://doi.org/10.1145/302405.302672
https://doi.org/10.1145/302405.302672
https://www.enisa.europa.eu/publications/baseline-security-recommendations-for-iot
https://www.enisa.europa.eu/publications/baseline-security-recommendations-for-iot
https://www.etsi.org/
https://doi.org/10.1007/978-3-642-24690-6_15
https://hal.archives-ouvertes.fr/hal-00642969
https://hal.archives-ouvertes.fr/hal-00642969
https://doi.org/10.1016/j.jnca.2017.01.033
https://doi.org/10.1016/j.jnca.2017.01.033
http://www.sciencedirect.com/science/article/pii/S1084804517300541
https://doi.org/10.1109/JIOT.2019.2909434
https://doi.org/10.1109/JIOT.2019.2909434
https://doi.org/10.1016/j.future.2017.11.022
https://doi.org/10.1016/j.future.2017.11.022
http://www.sciencedirect.com/science/article/pii/S0167739X17315765

MLCA: A Model-Learning-Checking Approach for IoT Systems 97

19. Lally, G., Sgandurra, D.: Towards a framework for testing the security of iot devices consis-
tently. In: Saracino, A., Mori, P. (eds.) Emerging Technologies for Authorization and Authen-
tication, pp. 88–102. Springer International Publishing, Cham (2018)

20. Maksymyuk, T., Dumych, S., Brych, M., Satria, D., Jo, M.: An iot based monitoring frame-
work for software defined 5g mobile networks. In: Proceedings of the 11th International
Conference on Ubiquitous Information Management and Communication. IMCOM 2017,
Association for Computing Machinery, New York, NY, USA (2017). https://doi.org/10.1145/
3022227.3022331

21. Mariani, L., Pastore, F.: Automated identification of failure causes in system logs. In: Soft-
ware Reliability Engineering, 2008. ISSRE 2008. 19th International Symposium on Soft-
ware Reliability Engineering (ISSRE), pp. 117–126, November 2008. https://doi.org/10.
1109/ISSRE.2008.48

22. Matheu-Garcı́a, S.N., Ramos, J.L.H., Gómez-Skarmeta, A.F., Baldini, G.: Risk-based auto-
mated assessment and testing for the cybersecurity certification and labelling of iot devices.
Comput. Stand. Interfaces 62, 64–83 (2019)

23. Matheu Garcia, S.N., Hernández-Ramos, J., Skarmeta, A.: Toward a cybersecurity certifica-
tion framework for the internet of things. IEEE Secur. Priv. 17, 66–76 (2019). https://doi.org/
10.1109/MSEC.2019.2904475

24. Mohsin, M., Anwar, Z., Husari, G., Al-Shaer, E., Rahman, M.A.: Iotsat: A formal framework
for security analysis of the internet of things (iot). In: 2016 IEEE Conference on Commu-
nications and Network Security (CNS), pp. 180–188, October 2016. https://doi.org/10.1109/
CNS.2016.7860484

25. Nadir, I., et al.: An auditing framework for vulnerability analysis of iot system, pp. 39–47
(June 2019). https://doi.org/10.1109/EuroSPW.2019.00011

26. NIST: Framework for improving critical infrastructure cybersecurity, version 1.1, standards
and technology, Technical report (2018). https://doi.org/10.6028

27. OWASP: Owasp testing guide v3.0 project (2020). http://www.owasp.org/index.php/
Category:OWASP Testing Project#OWASP Testing Guide v3

28. “Red-Hat-Software”: The business rule management system drools, March 2020. https://
www.drools.org/

29. Salva, S., Blot, E.: Verifying the application of security measures in iot software systems with
model learning. In: van Sinderen, M., Fill, H., Maciaszek, L.A. (eds.) Proceedings of the 15th
International Conference on Software Technologies, pp. 350–360, ICSOFT 2020, Lieusaint,
ScitePress, Paris, France, 7–9 July 2020. https://doi.org/10.5220/0009872103500360

30. Salva, S., Blot, E.: Cktail: model learning of communicating systems. In: Proceedings of the
15th International Conference on Evaluation of Novel Approaches to Software Engineering,
ENASE 2020, Prague, CZECH REPUBLIC, 5–6 May 2020

31. Salva, S., Blot, E.: Verifying the application of security measures in iot software systems with
model learning, companion site (2020). https://perso.limos.fr/∼sesalva/tools/mlc/. Accessed
Oct 2020

32. Siby, S., Maiti, R.R., Tippenhauer, N.O.: Iotscanner: Detecting and classifying privacy
threats in iot neighborhoods. CoRR abs/1701.05007 (2017). http://arxiv.org/abs/1701.05007

33. Wilson, J., Wahby, R., Corrigan-Gibbs, H., Boneh, D., Levis, P., Winstein, K.: Trust but
verify: Auditing the secure internet of things, pp. 464–474 (July 2017). https://doi.org/10.
1145/3081333.3081342

34. Zhang, Z.K., Cho, M.C.Y., Shieh, S.: Emerging security threats and countermeasures in iot.
In: Proceedings of the 10th ACM Symposium on Information, Computer and Communica-
tions Security, pp. 1–6. ASIA CCS15, Association for Computing Machinery, New York,
NY, USA (2015). https://doi.org/10.1145/2714576.2737091

https://doi.org/10.1145/3022227.3022331
https://doi.org/10.1145/3022227.3022331
https://doi.org/10.1109/ISSRE.2008.48
https://doi.org/10.1109/ISSRE.2008.48
https://doi.org/10.1109/MSEC.2019.2904475
https://doi.org/10.1109/MSEC.2019.2904475
https://doi.org/10.1109/CNS.2016.7860484
https://doi.org/10.1109/CNS.2016.7860484
https://doi.org/10.1109/EuroSPW.2019.00011
https://doi.org/10.6028
http://www.owasp.org/index.php/Category:OWASP_Testing_Project#OWASP_Testing_Guide_v3
http://www.owasp.org/index.php/Category:OWASP_Testing_Project#OWASP_Testing_Guide_v3
https://www.drools.org/
https://www.drools.org/
https://doi.org/10.5220/0009872103500360
https://perso.limos.fr/~sesalva/tools/mlc/
http://arxiv.org/abs/1701.05007
https://doi.org/10.1145/3081333.3081342
https://doi.org/10.1145/3081333.3081342
https://doi.org/10.1145/2714576.2737091

A Real-Time Integration of Semantic
Annotations into Air Quality Monitoring Sensor

Data

Besmir Sejdiu1(B) , Florije Ismaili1 , and Lule Ahmedi2

1 Contemporary Sciences and Technologies, South East European University,
Tetovo, Macedonia

{bs26916,f.ismaili}@seeu.edu.mk
2 Faculty of Electrical and Computer Engineering, University of Prishtina, Prishtinë, Kosova

lule.ahmedi@uni-pr.edu

Abstract. Nowadays, air pollution is one of the most serious problems in the
world, therefore the real-time monitoring air quality is considered as necessity.
Internet of Things (IoT) devices, such as sensors, enable real-time air quality mon-
itoring, which produce sensed data continuously in the stream data, and transmit
these data to a centralized server. Raw sensor stream data is useless unless properly
annotated. Hence, the researchers proposed Semantic Sensor Web (SSW), which
is a combination of SensorWeb and technologies of SemanticWeb. However, how
to advance techniques for integration of the semantic annotations in real-time is
still an open issue that should be addressed. This research focuses on real-time
integration of semantics into heterogeneous sensor stream data with context in the
IoT. In this context, an IoT real-time air quality monitoring system and different
semantic annotations are developed for sensor stream data in the format of Sensor
Observation Service (SOS).

Keywords: Sensor stream data · Semantic annotations · Semantic Sensor Web
(SSW) · Internet of Things (IoT)

1 Introduction

The Internet of Things (IoT) is new revolution of the Internet. It refers to the billions of
physical devices around the world that are now connected to the Internet, all collecting
and sharing data. Sensors are one of the main components that enable IoT, which send
the observation in stream data.

Furthermore, sensor data are enabled to theweb through the SensorWeb. SensorWeb
by incorporating technologies of the Semantic Web creates the Semantic Sensor Web.
In this way, sensor data stream can be annotated with semantics by providing machine-
interpretable descriptions on what the data represents, where it originates from, how it
can be related to its surroundings, who is providing it, and what are the quality, technical,
and non-technical attributes [3]. The real-time integration of sensor data as dynamic data
with semantics is defined as real-time semantic annotation, while sensor data that are

© Springer Nature Switzerland AG 2021
M. van Sinderen et al. (Eds.): ICSOFT 2020, CCIS 1447, pp. 98–113, 2021.
https://doi.org/10.1007/978-3-030-83007-6_5

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-83007-6_5&domain=pdf
http://orcid.org/0000-0002-2786-5384
http://orcid.org/0000-0002-3627-0147
http://orcid.org/0000-0003-0384-6952
https://doi.org/10.1007/978-3-030-83007-6_5

A Real-Time Integration of Semantic Annotations 99

stored in repository (data store) as static data, and then integrated with semantics is
defined as non-real-time semantic annotation [16].

Organizations like Open Geospatial Consortium (OGC) and World Wide Web Con-
sortium (W3C) have proposed several standards for sensor data. The OGC defines stan-
dardization for the SensorWeb named SensorWeb Enablement (SWE). It’s a framework
and a set of standards that allow exploitation of sensors and sets of sensors connected to
a communication network. Is founded on the concept of “Web Sensor” using standard
protocols and application interfaces [13].

This paper is an extended version of conference proceedings [15]. In [15], we have
investigated on how to integrate semantic annotations into the sensor stream data. In par-
ticular, we have discussed the annotation techniques for real-time integration of seman-
tics into heterogeneous sensor observation data and sensor metadata with context in
the IoT. Different from conference proceedings [15], in this paper system architecture
is advanced by adding new features such as archival data stream, an ontology, OGC
standards, and Xlink annotated SOS. Also, implemented system is advanced as shown
in Fig. 7.

The paper is organized as follows: Sect. 2 provides a discussion on literature review
for semantic annotations to the sensor stream data. Section 3 is an overview of the
difference between sensor streaming versus traditional streaming, semantic annotations
concepts, and selection of technologies and standards for semantic annotations. An
overview of the system architecture is presented in Sect. 4, while Sect. 5 represents
the implemented system, including received sensor data format, integration of semantic
annotations to the sensor data, and system outputs. Finally, Sect. 6 concludes the paper
and identifies some of the future perspectives of the semantic integrations into the sensor
stream data.

2 Literature Review

Recently, some researchers have already shown up with several investigations related
to semantic enrichment of sensor stream data. Authors in [1] brought together semantic
web and data mining in the context of IoT with a focus on sensors as interconnected
devices, concluding that practical data mining applications can be built by usage of real
world sensors ontologies, query mechanisms and linked sensor data available. SSW is
described as a synthesis of sensor data and semantic metadata in [17]. It represents an
approach by OGC and SemanticWebActivity of theW3C to provide meaning for sensor
data. Construction of a Semantic Sensor Observation Service (SemSOS) based on the
SWE standards is discussed in [7], by adding semantic annotations to sensor data and
by using the ontology models to reason over sensor observations.

An extension of the SWE framework in order to support standardized access to
sensor data is described in [11]. Furthermore, they list as future work the extension of
SOS server with semantics, since the lack of semantically rich mechanism is seen as a
significant issue, which makes it hard to explore related concepts, subgroups of sensor
types, or other dependencies between the sensors and data collected.

100 B. Sejdiu et al.

3 Background

Currently, billions of interconnected IoT devices produce sensed data continuously in
the stream data, and transmit these data to a centralized server. Due to the dramatically
increase of streaming data, their management and exploitation has become increasingly
important and difficult to process and integrate the semantic to sensor data stream in
real time. Therefore, the selection of technologies and standards for technique develop-
ment of real-time integration of semantics into heterogeneous sensor observation data
and sensor metadata with context in the IoT is highly important. The proposed real-time
semantic annotation system utilizes Spark Streaming1, Apache Kafka2, Apache Cassan-
dra database3, and standards like OGC Sensor Web Enablement standards, which will
be discussed below.

3.1 Sensor Streaming Versus Traditional Streaming

The distinction between traditional data stream processing and sensor data stream
processing is important because the sensory data stream have their own features [5]:

• The sensor data streams are only samples of entire population,while traditional stream-
ing such as network streams, data of web logs, stock market, etc. represent the entire
population of the data.

• The sensor data streams are considered noisy compared with traditional streaming
data. Traditional streaming data is exact and error-free. Sometimes the environmental
effect on the deployed sensor networks can also play a negative role on the sensed
values.Whileweb logs andwebclick streams are considered accurate values compared
with data generated from sensor networks.

• The sensor data streams is typically of moderate size as compared to overwhelming
storage and processing of huge data in traditional streams.

3.2 Semantic Annotations

IoT applications are enabled using heterogeneous sensors, which send observational
data referred to as sensor stream data to a remote server. Raw sensor stream data is
useless unless properly annotated. Therefore, the researchers proposed Semantic Sensor
Web (SSW), which is a combination of Sensor Web and technologies of Semantic Web.
Based on study [14], the explored publications show that major number of research are
accepting the proposed industry standards, such as SWE, and techniques that can be
used for annotating sensor data, such as Resource Description Framework in attributes
(RDFa), XML Linking Language (Xlink), and Semantic Annotations for WSDL and
XMLSchema (SAWSDL), by different organizations likeOGCandW3C [18].However,
how to advance techniques for integration of the semantic annotations in real-time is
still an open issue that should be addressed.

1 http://spark.apache.org.
2 https://kafka.apache.org.
3 http://cassandra.apache.org.

http://spark.apache.org
https://kafka.apache.org
http://cassandra.apache.org

A Real-Time Integration of Semantic Annotations 101

3.3 Technologies

The proposed real-time integrated semantic annotations to the sensor stream data for the
IoT utilizes:

• Spark Streaming: Several stream data processing systems including Spark Streaming,
Storm, Google Data Flow, and Flink have emerged to support real-time analytics for
the streaming data sets [10]. Majority studies conclude that Spark Streaming works
best with high throughput when the incoming volume is huge [6]. Therefore, we
have chosen Sparking Streaming to develop our system for real-time integration of
semantic annotations to sensor stream data. Spark Streaming is an extension of the
Apache Spark that enables to build scalable fault-tolerant IoT applications for real-
time processing sensor stream data. It can receive data from different input sources
such as Apache Kafka, TCP sockets, Flume, Kinesis, Hadoop Distributed File System
(HDFS), or Twitter, and can be processed using complex algorithms expressed with
high-level functions like map, join, reduce and window. Finally, processed streaming
data can be published in IoT real-time applications or can be pushed out to databases
or file systems.

• Apache Kafka: Is a distributing streaming platform with capabilities to publish and
subscribe to streams of records, similar to a message queue or enterprise messaging
system, store streams of records in a fault-tolerant durable way, and process streams
of records as they occur. Kafka is generally used for building real-time streaming data
pipelines that reliably get data between systems or applications [9]. In our system
Kafka is used as middleware between sensor stream data and Spark Streaming.

• Apache Cassandra database: Is a free and open source, distributed store for structure
data that scale-out on cheap, commodity hardware or cloud infrastructure make it the
perfect platform for mission-critical data. It is designed to handle large amounts of
data across many commodity servers, providing high availability with no single point
of failure. The Spark Streaming interacts well with Cassandra database. Therefore,
in our system, the sensor stream data with their semantic annotations processed by
Spark Streaming are stored in Cassandra database.

3.4 Standards

The OGC defines standardization for the Sensor Web named Sensor Web Enablement
(SWE), which is divided into two parts [12]:

• SWE Information Model: Is comprised of conceptual language encodings that permits
sensor observations visibility on the Internet. The SWE information model includes
the following specifications: Sensor Model Language (SensorML), Observation and
Measurement (O&M), and Transducer Model Language (TransducerML).

• SWE Service Model: Is a set ofWeb Service specifications that allow a client to search
and find the required information. The SWE Service model includes the following
specifications: SensorObservation Service (SOS), SensorAlert Service (SAS), Sensor
Planning Service (SPS), and Web Notification Services (WNS).

102 B. Sejdiu et al.

To encode semantic annotations and data gathered by sensors, in this paper is used
SOS O&M, which will be discussed in Sect. 5.2.

4 An Overview of the System Architecture

In the Fig. 1, an overview of the system architecture for real-time integration of semantics
into heterogeneous sensor stream data with context in the Internet of Things is presented.
Asmentioned above, the proposed real-time semantic annotation system utilizes Apache
Kafka, Spark Streaming, Apache Cassandra database, and SOS O&M standards.

The heterogeneous sensor stream data from the IoT-based sensor device is wire-
lessly transmitted to serve as the “producer” for the Kafka server. The “producer”
client publishes streams of data to Kafka “topics” distributed across one or more clus-
ter nodes/servers called “brokers”. The published streams of data from Kafka are then
processed by Apache Spark Streaming in parallel and real-time.

Kafka server is utilized to receive various formats of sensor data streams (e.g. text,
binary, JSON, XML etc.), and to transform them in a particular format that will be
processed by Spark Streaming.

Sensor Stream
Data

. . .

Outputss1

s2

s3

s4
IoT Real-

Time
Monitoring

Systems

WSNs

Sensor Gateway

Standard WiFi
Router

OGC
Standards

Archival
Data

Streams

Real-time Processing of Sensor Stream
Data with Semantic Annotations

XLink
Annotated

SOS
Ontology

Fig. 1. An overview of the system architecture [15].

The Spark Streaming enables a real-time integration of semantics into heteroge-
neous sensor stream data with context in the IoT, by using sensor metadata, archival
data streams, mining data streams, association rules for adding semantic annotations
with concept definitions from ontologies or other semantic sources, which allows the
understanding of senor data and metadata elements. The semantic annotations will be
implemented into SOS O&M by using stakes, such as XLink (without including XPath)
and Embedded (only a single value-scalar of semantic annotation) to add annotations in
XML files. These annotations can point to extra sources of information (e.g. a file), or
Uniform Resource Name (URN).

The enriched sensor stream data with the semantic annotations results will be stored
in the Cassandra database, and will be displayed in IoT real-time monitoring system.

A Real-Time Integration of Semantic Annotations 103

It is worth mentioning that Spark Streaming will process sensor data stream in format
of OGC standards like SWE, respectively version 2.0 of the SOS standard to encode
semantic annotations and data gathered by sensors [4].

The detailed description is presented in Sect. 5.2 where an example of integration of
semantic annotations into the sensor stream data with context in the IoT is given.

5 System Implementation

An IoT real-time air quality monitoring system is developed to visualize sensor stream
data and their semantic annotations, based on web platform. Sensor data of Hydrom-
eteorological Institute of Kosovo (HMIK4) are used, through World Air Quality Index
API (AQI API). The AQI API can be used for advanced programmatic integration, such
as: access to more than 11000 station-level and 1000 city-level data, station name and
coordinates, search station by name, geo-location query based on latitude/longitude,
individual Air Quality Index (AQI) for all pollutants, current weather conditions, etc. [2].

5.1 Input Sensor Stream Data

The system receives raw sensor stream data fromAQI API in JSON format, as presented
in Fig. 2, which supports measuring in real-time of the following parameters:

• Carbon Monoxide (co),
• Humidity (h),
• Nitrogen Dioxyde (no2),
• Ozone (o3),
• Pressure (p),
• PM10 (pm10),
• PM25 (pm25),
• Sulphur Dioxide (so2),
• Temperature (t),
• Wind (w), and
• Water Gauge (wg).

As shown in Fig. 2, JSON data contains also attributes such as: data (station data: idx
- unique id for the city monitoring station, aqi - real time air quality information, time -
measurement time information, s - local measurement time, and tz - station time zone),
city (information about the monitoring station: name - name of the monitoring station,
geo - latitude/longitude of the monitoring station, and url - url for the attribution link),
attributions (EPA Attribution for the station), and iaqi (measurement time information:
pm25 - individual AQI for the PM2.5, v - individual AQL for the PM2.5).

Data received by sensors every 6 min, through AQI API, are represented in
corresponding numerical formats, e.g. in −3.8 (°C) for temperature parameter.

4 http://ihmk-rks.net/.

http://ihmk-rks.net/

104 B. Sejdiu et al.

5.2 Processing Sensor Stream Data by Integrating Semantic Annotations

In our system, an ontology name ‘onto-core.owl’ is created (see Fig. 3). Here different
semantic annotations for sensor stream data are developed, such as:

• #AIQ_Index,
• #Air_Pollution_Level, and
• #Health_Implications

#AIQ_Index annotation– is an index for reportingdaily air quality, and tells howclean
or polluted air is. United States Environmental Protection Agency (EPA5) calculates
the AQI for five major air pollutants regulated by Clean Air Act: ground-level ozone,
particle pollution (also known as particulate matter), carbon monoxide, sulfur dioxide,
and nitrogen dioxide. The AQI range values is from 0 to 500.

According to EPA, the higher the AQI value, the greater the level of air pollution
and the greater the health center (take the maximum of all individual AQI), as presented
Eq. 1:

AQI = max(AQIPM2.5,AQIPM10,AQIO3, ...) (1)

#Air_Pollution_Level annotation – based on the AQI value, its divided into six ‘Air
Quality Index Levels of Health Concern’ categories:

• Good (AQI is 0 to 50)
• Moderate (AQI is 51 to 100)
• Unhealthy for Sensitive Groups (101 to 150)
• Unhealthy (AQI is 151 to 200)
• Very Unhealthy (AQI is 201 to 300)
• Hazardous (AQI is 301 to 500)

#Health_Implications annotation – each of six categories described above, corre-
sponds to a different level of health concert. #Health Implications annotation tells what
they mean, for example “Unhealthy for Sensitive Groups” category means: ‘Although
general public is not likely to be affected at this AQI range, people with lung disease,
older adults and children are at a greater risk from exposure to ozone, whereas persons
with heart and lung disease, older adults and children are at greater risk from the presence
of particles in the air.’, or for “Moderate” category: ‘Air quality is acceptable; however,
for some pollutants there may be a moderate health concern for a very small number of
people who are unusually sensitive to air pollution.’

The above described annotations are developed into ontology named ‘ont-core’.
After describing different types of the semantic annotations for sensor stream data,

in the following is presented the process of semantic annotations.
The sensor stream data may arrive in different formats to Kafka server (JSON format

- in our case), which will transform them in a specific format that will be processed by
Spark Streaming. After that, through the Spark Streaming, based on measuring values,
the sensor data streamwill semantically be annotated and converted inSOSO&Mformat.

5 https://www.epa.gov.

https://www.epa.gov

A Real-Time Integration of Semantic Annotations 105

{
"status": "ok",
"data": {
"aqi": 58,
"idx": 12402,
"attributions": [
{
"url": "http://worldweather.wmo.int",
"name":"World Meteorological Organization - surface synoptic

observations (WMO-SYNOP)"
},
{

"url": "http://ihmk-rks.net/",
"name": "Instituti Hidrometeorologjik i Kosovës",
"logo": "Kosovo-IHMK.png"

},
{
"url": "https://waqi.info/",
"name": "World Air Quality Index Project"
}

],
"city": {
"geo": [42.648872, 21.137121],
"name": "Prishtine - IHMK, Kosovo",
"url": "https://aqicn.org/city/kosovo/prishtine-ihmk"

},
"dominentpol": "pm25",
"iaqi": {
"co": { "v": 33.3 }, "h": { "v": 76 },
"no2": { "v": 6.2 }, "o3": { "v": 23.3 },
"p": { "v": 1015.7 }, "pm10": { "v": 17 },
"pm25": { "v": 58 }, "so2": { "v": 6.3 },
"t": { "v": 1.6 },"w": { "v": 14 },
"wg": { "v": 23 }

},
"time": {
"s": "2020-03-25 20:00:00",
"tz": "+01:00",
"v": 1585166400

},
"debug": { "sync": "2020-03-26T04:17:09+09:00" }

}}

Fig. 2. Sensor stream data - JSON format [15].

106 B. Sejdiu et al.

Fig. 3. ‘Ont-core.owl’ ontology.

A fragment of an example of integrated semantic annotations to the SOS O&M format
by using stakes like XLink and Embedded, is presented in Fig. 4.

SOS O&M observation document comprise zero or multiple observationData
entries, and each store an instance of an observation. In the following are presented
common observation properties (the prefix gml indicates that this element is defined in
OGC 07-033, while the prefix om indicates that the element is defined in OGC 10-025r1)
[8]:

• gml:identifier (mandatory): identifies or refers to a specific observation.
• om:phenomenonTime (mandatory): describes the time instant or time period for which
the observation contains sensor data.

• om:resultTime (mandatory): provides the timewhen the result became available (often
this is identical to the phenomenonTime).

• om:procedure (mandatory): the identifier of the sensor instance that has generated the
observation.

• om:observedProperty (mandatory): the identifier of the phenomenon that was
observed.

• om:featureOfInterest (mandatory): an identifier of the geometric feature (e.g. sensor
station) to which the observation is associated.

• om:result (mandatory): the observed value, the type of the result is restricted to the
types shown in Table 1.

A Real-Time Integration of Semantic Annotations 107

We have developed a new type of observation to add, named ‘SemObservation’ with
‘gml:Sem MeasureType’ result type, as shown and described in Table 2.

<sos:Observation ...="">
<observationData>

<om:OM_Observation gml:id="o23525">
<om:type xlink:href="http://www.opengis.net/def/ observationType/OGC-

OM/2.0/OM_Measurement"/>
<om:phenomenonTime>

<gml:TimeInstant gml:id="phenomenonTime_1">
<gml:timePosition>2020-03-25T20:00:00+09:00</gml:timePosition>

</gml:TimeInstant>
</om:phenomenonTime>
<om:resultTime xlink:href="#phenomenonTime_1"/>
<om:procedure xlink:href="http://myserver/ontologies/ont-

core.owl#Sensor562415"/>
<om:observedProperty xlink:href="http://myserver/ontologies/ont-

core.owl#PM25"/>
<om:featureOfInterest xlink:href="http://myserver/ontologies/ont-

core.owl#Prishtine"/>
<om:result xsi:type="gml:SemMeasureType" uom="pm25">

<value>58</value>
<sem-annotations>
<annotation xlink:href="http://myserver/ontologies/ont-

core.owl#Air_Pollution_Level_Moderate"/>
<annotation embedded:AIQ_Index ="58"/>
<annotation xlink:href="http://myserver/ontologies/ont-

core.owl#Health_Implications_Moderate"/>
</sem-annotations>

</om:result>
</om:OM_Observation>

</observationData>
. . .
</sos:Observation>

Fig. 4. An example of integrated semantic annotations to the sensor stream data [15].

For clearer explanation of semantic integration to sensor observation data, Fig. 5
illustrates (a) the concept of the O&M and relationship between the entities involved in
observations, (b) data streams generated from wireless sensor networks, (c) the sen-
sor data integrated with sensor metadata, archival data streams and the ontological
knowledge, and finally, (d) the semantic annotated data with attributes: sem-annotations
data, the observed value, unit, metadata, location, timestamp, result type, and gml:id of
observation.

108 B. Sejdiu et al.

Table 1. Overview of observation types [8].

Observation type Result type Description Example

Measurement gml:MeasureType Scalar
numerical
value with
unit of
measurement

<om:result
uom=“Cel”>36</om:result>

Count observation xs:integer Count of an
observed
property

<om:result>12</om:result>

Truth observation xs:boolean Truth value
(often
existence) of
an observed
property

<om:result>true</om:result>

Category observation gml:ReferenceType Value from a
controlled
vocabulary

<om:result xlink:title=“storm”
xlink:href=http://en.wikipedia.
org/wiki/Storm
xsi:type=“gml:ReferenceType”/>

Text observation xs:string Any kind of
textual
description of
an observed
property

<om:result>some
text</om:result>

om:ComplexObservation
with swe: DataArray

swe:DataArray Compact
representation
of multiple
observation
values (e.g.
time series),
this
observation
types needs to
be further
restricted and
enhanced by
guidance in
future
revisions of
the profile

–

5.3 System Outputs

To display the heterogeneous sensor stream data and their semantic annotations, is devel-
oped an real time IoT application in the ASP.NET Core MVC, a cross-platform, high-
performance, open source framework for building modern, cloud-based, and Internet-
connected applications. The ‘DataStax C# for Apache Cassandra’ is used to read data
fromApache Casandra database. It’s a modern, feature-rich and highly tunable C# client

A Real-Time Integration of Semantic Annotations 109

Table 2. The developed SemObservation observation type [15].

Observation type Result type Description Example

Sem observation gml: Sem
Measure Type

Inside the result element,
two children elements
will be added: value and
sem-annotations. The
value element will
contain a scalar numerical
value, while the
sem-annotations element
will contain one or more
annotation empty
elements

<om:result xsi:type=“gml:
SemMeasureType”
uom=“pm25”>
<value>58</value>
<sem-annotations>
<annotation
xlink:href =“http://myserver/
ontologies/ont-core.owl#Air_
Pollution_Level_Modera
te”/>
<annotation embedded:
AIQ_Index=“58”/>
<annotation
xlink:href =“http://myserver/
ontologies/ont-core.owl#Hea
lth_Implications_Modera
te”/>
</sem-annotations>
</om:result>

library. To display the data in the map, is used Leaflet, an open-source JavaScript library
for interactive web maps. Leaflet is designed with simplicity, performance and usability
in mind. It works efficiently across all major desktop and mobile platforms out of the
box, taking advantage of HTML5 and CSS3 on modern browsers while being accessible
on older ones too.

As shown in Fig. 6 and Fig. 7 (map & table view), the users can observe the quality
of air pollution on certain geographical points in map marked as measuring nodes.
Each node (marker) has an AQI Index, to indicate air pollution. When clicking over a
whatever marker, the latest measurement values obtained for that point will be shown,
such as: PM2.5, PM10, O3, NO2, SO2, CO, Temperature, Pressure, Humidity, Wind,
Water Gauge, and semantic annotations, such as: #AQI Index, #Air Pollution Level, and
#Health Implications.

110 B. Sejdiu et al.

Fig. 5. Integrating semantics to sensor observation data [15].

Fig. 6. System outputs: map view [15].

A Real-Time Integration of Semantic Annotations 111

Fig. 7. System outputs: table view.

6 Conclusions and Future Work

WSNs are one of the main components of the IoT. They produce the observed data in
continuous form, known as sensor stream data and transmit to the server for further
processing. Raw sensor data are useless unless properly annotated. By adding semantic
annotations with concept definitions from ontologies, it’s possible the interpretation and
understanding of sensor data streams.

First, this study provides a literature review related to the topic of the integration of
semantics into sensor data for the IoT. Next, is describes the distinction between tradi-
tional data stream processing and sensor data stream processing. Then, are presents the
selected technologies and standards (such as Spark Streaming, Apache Kafka, Apache
Cassandra, and OGC standards) which are used to develop the proposed system. After
that, an overview of the system architecture for real-time integration of semantics into
heterogeneous sensor stream data with context in the Internet of Things is presented.
Finally, an system implementation of an IoT real-time air quality monitoring system is
presented, including:

• input sensor stream data in JSON format of the following measuring parameters:
carbon monoxide, humidity, nitrogen dioxyde, ozone, pressure, pm10, pm25, sulphur
dioxide, temperature, wind, and water gauge;

• processing sensor stream data by integrating semantic annotations to the sensor
stream data in SOS O&M format, and a new type of observation SemObservation
(with gml:Sem MeasureType result type) is developed;

112 B. Sejdiu et al.

• system outputs to display the heterogeneous sensor stream data and their semantic
annotations in map and table view format.

This paper is an extended version of conference proceedings [15]. Different from this
conference proceedings, in this paper system architecture is advanced by adding new
features such as archival data stream, an ontology, OGC standards, and Xlink annotated
SOS.

Extending the systemwithmore advanced real-time annotation techniques of seman-
tics such as XPath annotations, development of techniques for real-time interpretation
of semantic annotations, and to evaluate the system performance is left for future work.

References

1. Aggarwal, C.C., Ashish, N., Sheth, A.: The internet of things: a survey from the data-centric
perspective. In: Aggarwal, C.C. (ed.) Managing and Mining Sensor Data, pp. 383–428.
Springer, Boston (2013). https://doi.org/10.1007/978-1-4614-6309-2_12

2. Aqicn: API – Air Quality Programmatic APIs. https://aqicn.org/api. Accessed 20 Feb 2020
3. Barnaghi, P., Wang, W., Henson, C., Taylor, K.: Semantics for the Internet of Things: early

progress and back to the future. Int. J. Semant. Web Inf. Syst. (IJSWIS) 8(1), 1–21 (2012)
4. Bröring, A., Stasch, C., Echterhoff, J.: OGC sensor observation service interface standard.

Open Geospatial Consortium Interface Standard, 12-006 (2012)
5. Elnahrawy, E.: Research directions in sensor data streams: solutions and challenges. Rutgers

University, Technical report. DCIS-TR-527 (2003)
6. Gorasiya, D.V.: Comparison of open-source data stream processing engines: spark streaming,

flink and storm. Technical report (2019). https://doi.org/10.13140/RG.2.2.16747.49440
7. Henson, C.A., Pschorr, J.K., Sheth, A.P., Thirunarayan, K.: SemSOS: semantic sensor obser-

vation service. In: International SymposiumonCollaborative Technologies and Systems, CTS
2009, pp. 44–53. IEEE (2009)

8. Jirka, S., Stasch, Ch., Bröring, A.: OGC Best Practice for Sensor Web Enablement,
Lightweight SOSProfile for Stationary In-Situ Sensors.OpenGeospatialConsortium.Version
1.0, ref. no. 11-169r1 (2014)

9. Kafka Apache: Kafka Apache – A distributed streaming platform. https://kafka.apache.org.
Accessed 15 Feb 2020

10. Karimov, J., Rabl, T., Katsifodimos,A., Samarev, R., Heiskanen,H.,Markl, V.: Benchmarking
distributed stream data processing systems. In: Proceedings of the IEEE 34th International
Conference on Data Engineering (ICDE), Paris, France (2018)

11. Lee, Y.J., Trevathan, J., Atkinson, I., Read, W.: The integration, analysis and visualization of
sensor data from dispersed wireless sensor network systems using the SWE framework. J.
Telecommun. Inf. Technol. 4, 86 (2015)

12. OGC Standards: Open Geospatial Consortium (OGC). https://www.ogc.org/docs/is/.
Accessed 05 Jan 2020

13. Pradilla, J., Palau, C., Esteve, M.: SOSLITE: Lightweight Sensor Observation Service (SOS)
for the Internet of Things (IOT). ITU Kaleidoscope: Trust in the Information Society,
Barcelona (2016)

14. Sejdiu, B., Ismaili, F., Ahmedi, L.: Integration of semantics into sensor data for the IoT - a
systematic literature review. Int. J. Semant. Web Inf. Syst. (IJSWIS) 16(4), Article 1 (2020)

15. Sejdiu, B., Ismaili, F., Ahmedi, L.: A real-time integration of semantics into heterogeneous
sensor streamdatawith context in the Internet ofThings. In: The 15th InternationalConference
on Software Technologies (ICSOFT 2020), Lieusaint - Paris, France, 07–09 July 2020 (2020)

https://doi.org/10.1007/978-1-4614-6309-2_12
https://aqicn.org/api
https://doi.org/10.13140/RG.2.2.16747.49440
https://kafka.apache.org
https://www.ogc.org/docs/is/

A Real-Time Integration of Semantic Annotations 113

16. Sejdiu, B., Ismaili, F., Ahmedi, L.: A management model of real-time integrated semantic
annotations to the sensor stream data for the IoT. In: The 16th International Conference on
Web Information Systems and Technologies (WEBIST 2020), Budapest, Hungary, 03–05
November 2020 (2020)

17. Sheth, A., Henson, C., Sahoo, S.: Semantic sensor web. IEEE Internet Comput. 12(4), 78–83
(2008). https://doi.org/10.1109/MIC.2008.87

18. W3C Semantic Sensor Network Incubator Group (SSN-XG): Semantic Sensor Network
Ontology. https://www.w3.org/2005/Incubator/ssn/ssnx/ssn. Accessed 25 Feb 2020

https://doi.org/10.1109/MIC.2008.87
https://www.w3.org/2005/Incubator/ssn/ssnx/ssn

On Improvement of Formal Verification
of Reconfigurable Real-Time Systems Using
TCTL and CTL-Based Properties on IaaS

Cloud Environment

Chams Eddine Choucha1(B) , Mohamed Ramdani1 , Moahmed Khalgui1,2 ,
and Laid Kahloul3

1 LISI Laboratory, National Institute of Applied Sciences and Technology (INSAT),
University of Carthage, 1080 Tunis, Tunisia

2 School of Electrical and Information Engineering, Jinan University (Zhuhai Campus),
Zhuhai 519070, China

3 LINFI Laboratory, Computer Science Department, Biskra University, Biskra, Algeria

Abstract. The verification of reconfigurable real-time systems that dynamically
change their structures due to external changes in environment or user require-
ments continues to challenge experts which have to face new challenges such as
fault tolerance, response in time, flexibility, modularity, etc. Moreover, such sys-
tems face constraints as real-time requirements, their generated state spaces are
much bigger, consequently, properties to be verified are more complex, which
makes the formal verification more complex. For modeling systems, in this paper,
we use Reconfigurable Timed Net Condition/Event Systems (R-TNCESs) for the
optimal functional and temporal specification. To control the complexity and to
reduce the verification time, a new method of properties verification in a cloud-
based architecture is proposed. The novelty consists of a new method for state
space generation and the decomposition of the complex properties for running
an efficient verification. Moreover, An algorithm is proposed for the incremental
state space generation. An application of the paper’s contribution is carried out
on a case study to illustrate the impact of using this technique. The current results
show the benefits of the paper’s contribution.

Keywords: Discrete-event system · Reconfiguration · R-TNCES ·
Computation Tree Logic · CTL · Cloud computing · Formal verification

1 Introduction

Reconfigurable discrete event control systems (RDECSs) such as manufacturing sys-
tems [11], real time systems and intelligent control systems [10,12] are complex.
RDECSs satisfy several conditions such as concurrency, control and communication.
In fact, RECESs are the trend of future systems. However, ensuring the safety of these
systems is crucial especially when dealing with critical situations. Formal verification
is, therefore, imperative. RDECSs have flexible configurations that allow them to switch

c© Springer Nature Switzerland AG 2021
M. van Sinderen et al. (Eds.): ICSOFT 2020, CCIS 1447, pp. 114–133, 2021.
https://doi.org/10.1007/978-3-030-83007-6_6

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-83007-6_6&domain=pdf
http://orcid.org/0000-0003-0194-4890
http://orcid.org/0000-0002-8723-5827
http://orcid.org/0000-0001-6311-3588
http://orcid.org/0000-0002-9739-7715
https://doi.org/10.1007/978-3-030-83007-6_6

On Improvement of Formal Verification 115

from a configuration to another due to user requirements or to prevent system malfunc-
tions [6]. This verification consists of two major steps: state-space generation and state-
space analysis. Mentioned steps applications are usually expensive in terms of compu-
tation time and memory occupation (i.e., huge accessibility graph to be generated and
complex properties to be verified) [19]. The authors in [17] proposed to classify prop-
erties automatically and to introduce a priority order during RDECSs verification to
control the high number of properties to be verified. The mentioned method improves
verification by reducing the number of properties to be verified by exploiting relation-
ships among properties (equivalence, composition and dominance). However, when the
property relationship rate is low which is frequent while verifying complex RDECSs,
the said method is equivalent to the classic ones. The authors in [6] proposed a method
for accessibility graph generation with less computing time and less required memory,
while preserving the graph semantics. They start by computing the initial TNCES acces-
sibility graph classically, then making updates on it to compute the remaining TNCESs
accessibility graphs, while considering similarities between them. Previous methods
improve classical ones. However, with large scale systems, their application using a
unique machine (i.e., a centralized system) may be expensive in terms of time and calcu-
lation [13]. Authors in [2] initiate the cloud-based solution for formal method problems.
Authors have proposed a distributed fixed-point algorithm to check CTL properties with
basic operators. The said algorithm can analyze DECS efficiently. However, RDECSs
complexity forced us to move forward with big data solutions for formal method prob-
lems. To cope with RDECSs, Petri nets has been extended and developed by several
works [14]. Reconfigurable Timed Net Condition/Event System (R-TNCES) is a novel
formalism proposed in [18], where reconfiguration and time properties with modular
specification are provided in the same formalism. This Paper deals with RDECSs mod-
eled by R-TNCES. Authors in [2] developed a CTL Model checker in the cloud using
map-reduce. The basic idea is to increase computation power and data availability to
reduce time execution. They perform distributed fixed-point algorithm. However, the
authors do not consider the system model similarities, which involves redundant calcu-
lations during verification. Moreover, this verification method support only simple CTL
properties expressed with a restricted number of operator-quantifier combinations. Both
of layer-by-layer verification proposed in [20] and the formal verification method pro-
posed in [6] focused on the improvement of the state space generation phase, thus, they
neglect state space analysis. The authors in [17] proposed automatic properties classi-
fication and introduced a priority order during RDECSs verification to control the high
number of properties. The said method improves verification by reducing the num-
ber of properties by proposing an approach for exploiting relationships among them
(equivalence, composition and dominance). In [16], the authors proposed Reconfig-
urable Computation Tree Logic R-CTL as an extension of CTL. This logic adds proper-
ties relationships management to deals redundancy caused by relationships (dominance,
composition, and equivalence). RCTL improves version of CTL in terms of expressive-
ness, However processing RCTL properties verification on the generated space in a
sequential way remains hard. Authors in [7] proposed a new method for state space
generation, which extends classical accessibility graphs (AGs) to timed accessibility
graphs (TAGs). The said method is efficient when dealing with reconfigurable real-time

116 C. E. Choucha et al.

systems, it allows us to control complexity in the analysis step during verification. In
our previous works, we propose a method for state space generation which, considers
similarities that an R-TNCES can contain, thanks to an ontology-based history. Also,
we proposed in [5] to perform CTL properties verification in a parallel way on a cloud-
based architecture while considering relationships among properties. The said methods
are efficient; However, the first work is only focused on state space generation, and
the second one presents limits when properties are complex and properties relation-
ship rate is low. Therefore, we propose in this paper a new work that comes to fill the
limits of precedent ones. Hence, we proposed a new method that aims to improve R-
TNCES formal verification. Reconfigurable Real-time systems formal verification may
be expensive in terms of computation power and memory occupation, therefore, we
resort to a cloud-based solution to increase computation power (resp. memory occu-
pation) thank to the Infrastructure as a service IaaS (reps. Simple Storage Service S3)
proposed by Amzon [8]. To control systems formal verification complexity we propose
the following contributions:

1. Incremental timed state space generation to facilitate the access to different parts of
the accessibility graph; Certain properties do not require the entire exploration of
the accessibility graph in order to be validated or not, therefore, a partial exploration
of the accessibility graph is sufficient. Indeed, we introduce the modularity and the
time concepts to the state-space generation step, which allows us to access different
parts of the accessibility graph (modules) and help us to face time constraints. This
contribution allows us to proceed to a targeted verification.

2. Decomposition of CTL properties to control complexity during the state-space anal-
ysis. Due to the systems complexity, properties to be verified in order to ensure the
correctness of the system behavior are more complex. Thereby, increasing the com-
plexity of the analysis step. In order to fix the mentioned issue, we check the possi-
bility of decomposition of the complex properties into several simple or less complex
properties that can be verified in less computation time using fewer resources.

3. Development of a distributed cloud-based architecture to perform parallel compu-
tations during formal verification and to store large scale data. The huge generated
state spaces, the high number of properties to be verified, and time constraints forced
us to opt for a big data solution to control the complexity of reconfigurable real-time
systems formal verification. Computation tasks are ensured by the master and the
workers via virtual machines allocated thanks to the EC2 product proposed by ama-
zon. Data storage is ensured by S3.

This paper is an extended version of our previous paper [3], presented at the ‘IC-SOFT
2020’ conference. The method improves by

– Replacing classical accessibility graphs by the Timed accessibility graphs proposed
in [7].

– Using temporal logic TCTL in addition to CTL in order to respond to the real-time
constraints.

– Updating the proposed cloud-based architecture to deal with the verification of
reconfigurable real-time constraints.

On Improvement of Formal Verification 117

The main objective of this paper is to propose a new formal verification method that
improves the classical ones by controlling complexity. As a running example, a formal
case study is provided to demonstrate the relevance of our contributions. The obtained
results are compared with different works. The comparison shows that the verification
is improved in terms of execution time (i.e., less complexity to perform systems formal
verification).

The remainder of the paper is organized as follows. Section 2 presents some required
concepts. The distributed formal verification is presented in Sect. 3. Section 4 presents
the evaluation of the proposed method. Finally, Sect. 5 concludes this paper and gives
an overview about our future work.

2 Background

In this section, we present basic concepts which are required to follow the rest of the
paper.

2.1 Reconfigurable Timed Net Condition/Event System

CCi
P1

P2

P3

t1

t2

t3
Event output
Signal arc / Event arc

Event input

Place

Transition

Flow arc

Module boundary

Token

[,]Time Interval

Fig. 1. Graphical model of a generic control component modeled by TNCES [3].

R-TNCES is a modeling formalism used to specify and verify reconfigurable Real Time
Systems. R-TNCES is based on Petri nets and control components CCs. A control com-
ponent (CC) is defined as a software unit. Control components are applied as a formal
model of the controller of a physical process and are modeled by TNCES as shown
in Fig. 1. Each CC resumes the physical process in three actions: Activation, working
and termination. An R-TNCES RTN is defined in [20] as a couple RTN = (B,R),
where R is the control module and B is the behavior module. B is a union of multi
TNCES-based CC modules, represented by

B = (P ;T ;F ;W ;CN ;EN ;DC;V ;Z0)

118 C. E. Choucha et al.

where,

a) P (resp, T) is a superset of places (resp, transitions),
b) F is a superset of flow arcs,
c) W : (P × T) ∪ (T × P) → {0, 1} maps a weight to a flow arc, W (x, y) > 0 if

(x, y) ∈ F , and W (x, y) = 0 otherwise, where x, y ∈ P ∪ T ,
d) CN (resp, EN) is a superset of condition signals (resp, event signals),
e) DC is a superset of time constraints on input arcs of transitions,
f) V : T → ∧,∨ maps an event-processing mode for every transition;
g) Z0 = (M0,D0), whereM0 is the initial marking, andD0 is the initial clock position.

R is a set of reconfiguration functions R = {r1, ..., rn}. r is structured as follow:
r = (Cond, s, x) such that:

1. Cond→ {true, false} is the pre-condition of r, which means specific external
instructions, gusty component failures, or the arrival of certain states.

2. s: TN(∗r) → TN(r∗) such that TN(∗r)(resp. TN(r∗)) be the original (resp. tar-
get) TNCES before (resp. after) r application is the structure modification instruc-
tion.

3. x: laststate(TN(∗r)) → initialstate(r∗) is the state processing function, where
laststate(TN(∗r)) (resp. initialstate(TN(r∗))) is the last (resp. the initial) state of
TN(∗r) (resp. TN(r∗)).

2.2 Timed Accessibility Graph

Timed accessibility graphs is an extension on accessibility graphs proposed in [7], dur-
ing model-checking it allows us to control verification complexity thank its time prop-
erty. Timed accessibility graph (TAG) of a TNCES TNS is a structure tAG given by

tAG(St,Ed, SO)

where,

– St denotes the set of reachable states;
– Ed: St → St denotes the set of edges that defines state-transitions such that each
edge is labeled by the executed step;

– s0 denotes the initial state.

A state s ∈ St is a structure given by

State(Mp, P clocks,D)

where,

– Mp is the set of marked places;
– Pclockst s is a vector of integers representing places clock positions;
– D is the delay of the state which denotes the minimal number of time units after
which at least one step becomes enabled.

On Improvement of Formal Verification 119

2.3 Computation Tree Logic CTL

Computational tree logic CTL is a temporal logic for branching-time based on proposi-
tional logic used by [1] for model checking. CTL can describe the context and branching
of the system state, it models system evaluation as a tree-like structure where each state
can evolve in several ways (i.e., specify behavior systems from an assigned state in
which the formula is evaluated by taking paths). CTL has a two-stage syntax where for-
mulae in CTL are classified into state and path formulae. The former is formed accord-
ing to the following grammar:

Φ :: = true|AP |Φ1 ∧ Φ2|Φ1 ∨ Φ2|¬Φ|Eϕ|Aϕ

While path formulae which express temporal properties of paths are formed according
to the following grammar:

ϕ :: = XΦ|FΦ|GΦ|Φ1UΦ2

where Φ, Φ1 and Φ2 are state formulae. AP is the set of atomic propositions. The CTL
syntax include several operators for describing temporal properties of systems: A (for
all paths), E (there is a path), X(at the next state), F (in future), G (always) and U
(until).

Definition 1. Equivalence of CTL Formulae: CTL formulae σ1 and σ2 (over AP) are
called equivalent, denoted σ1 ≡ σ2 whenever they are semantically identical. There-
fore, σ1 ≡ σ2 if Sat(σ1) = Sat(σ2) for all transition systems TS over AP such that
Sat(σ) = {s ∈ S|s |= σ}. Table 1 presents an important set of equivalences rules
(expansion and distributive laws).

Table 1. Some equivalence rules for CTL.

Expansion laws

EGφ ≡ φ ∧ EXEGφ

AFφ ≡ φ ∨ AXAFφ

EFφ ≡ φ ∨ EXEFφ

A[φUψ] ≡ ψ ∨ (φ ∧ AXA[φUψ])

E[φUψ] ≡ ψ ∨ (φ ∧ EXE[φUψ])

Distributive laws

AG(σ1 ∧ σ2) ≡ AGσ1 ∧ AGσ2

EF (σ1 ∨ σ2) ≡ EFσ1 ∨ EFσ2

2.4 Infrastructure as a Service IaaS

Cloud computing is an increasingly popular paradigm for ubiquitous, convenient, on-
demand network access to a shared pool of configurable computing resources. In prac-
tice, cloud service providers tend to offer services that can be grouped into three cate-
gories as follows:

120 C. E. Choucha et al.

(i) software as a service,
(ii) platform as a service, and
(iii) infrastructure as a service presented in Fig. 2.

IaaS

NetworkingComputing Storage

Fig. 2. Infrastructure as a Service.

IaaS is defined by [8] as web service that provides provision processing, storage,
networks, administrative services needed to store applications and a platform for run-
ning applications [8]. It is designed to make web-scale cloud computing easier for
developers. Amazon Web Services Elastic Compute Cloud (EC2) and Secure Storage
Service (S3) are examples of IaaS offerings as shown in Fig. 2.

3 Distributed Cloud Based Formal Verification

We present in this section the proposed distributed cloud-based formal verification of
R-TNCESs.

3.1 Motivation

R-TNCES is an expressive formalism, which allows considering different aspects of
Reconfigurable real-time systems (time, probability, reconfigurability and concurrency)
[9]. The correctness of systems modeled by R-TNCES can be ensured by formal ver-
ification. However, such a formalism makes the verification process complex, due to
the combinatorial growth of the state space according to the model size, and due to the
high number and complexity of the properties that the designer wants to verify. Thus,
we aim to make model checking more efficient by reducing the time validation of prop-
erties to be verified. Therefore, we propose a new method for R-TNCES verification,
which facilitates both generation and analysis of state space. To ensure our objective,
we implement different tasks that can be presented in two parts as follows:

On Improvement of Formal Verification 121

YesNo

Possible
Assignment ?

No YesComplex
Property ?

Incremental Accessibility
graph generation

PAGs to Sub-properties
assignment

CTL property decomposition
 and

CTL properties verification

R: R-TNCES Model

Timed accessibility graph
generation

 : Set of CTL Properties

TCTL properties
verification

 : Set of TCTL Properties

 Verification Result

Fig. 3.Global idea for the formal verification according to the distributed cloud based verification.

– Part 1: CTL properties verification:
a) Incremental state space generation, which is to construct the state space by part,
b) the complex properties are decomposed to simple or less complex ones, then
c) if possible, we assign a partial graph to the property to be verified.
d) Finally, we proceed to CTL properties verification.

– Part 2: TCTL properties verification:
a) Timed state space generation, which is generated from accessibility graphs com-

puted during part 1, then
b) we proceed to TCTL properties verification.

Figure 3 presents scheduling of the presented tasks.

3.2 Formalization

In this section, we present formal verification steps according to the distributed cloud-
based formal verification of R-TNCESs.

Incremental State Space Generation. Incremental state space generation consists
of generating accessibility graphs by part, while preserving models semantics. Let
RTN(R,B) be an R-TNCES model, this task consists in two steps:

(i) Basic accessibility graph generation BAG, which consists of generating accessibil-
ity graphs for each CCi ∈ TNCESj where, i ∈ 0 . . . NumberCC(TNCESj)
and j ∈ 0 . . . NumberTN(B). This step is implemented in Algorithm 1. It takes
an R-TNCESs as input and proceed to BAGs generation through several function
including Generate State Space(CC) which, take a CC modeled by TNCES
and return its accessibility graph using SESA tool [15].

122 C. E. Choucha et al.

Algorithm 1. Timed Basic accessibility generation.
Input: RTN : R-TNCES; TN0: TNCES;
Output: S TBAG: Set of elementary accessibility graphs;
for int i = 0 to | ∑

TN | do
for each CC ∈ TN do

if (!Tagged (CC)) then
Insert(S BAG, Generate State Space(CC));
tag(CC);

end
end
for each BAG ∈ S BAG do

if (!Tagged (BAG)) then
Insert(S BAG, Generate TBAG(BAG));
tag(BAG);

end
end

end
return S TBAG

Algorithm 2. Accessibility graph construction.
Input: S TBAG: Set of Times basic accessibility graphs ;

∑
CChain: Set of Cchains;

Output: S AG: Set Accessibility graphs;
for int i = 0 to | ∑

CChain | do
AG ← TBAGCC0

i
;

for int j = 0 to | ∑
CCi | do

AG ← Compose(AG, TBAG
CC

j
i
);

end
Insert(S AG, AG)

end
return S AG

(ii) Basic Timed Accessibility Graph BTAG Generation from a Graph BAG, which
consists on generating a new graphs that consider time properties from another
graph, we adopt the algorithm proposed in [7] to proceed to the TBAGs generation
as shown in Fig. 4

(iii) Partial accessibility graphs (PAGs) composition: This step is implemented in Algo-
rithm 2. It consists of composing pair of graphs computed during the first step
(BAGs) and throughout iterations of the second step (PAGs), mainly by using
the function Compose(AG,AG) that takes two graphs and composes them and
returns a new composed graph.

Complex CTL Properties Decomposition. We assume that properties that contain the
operators (∧) or (∨) are complex. Two kinds of complex properties are distinguished
as follows:

– Decomposable: The operators (∧) or (∨) are not linked to factors (State operators
or path quantifiers). This kind of properties are directly splited into a set of sub-
properties (e.g., Φ = P1 ∧ P2 gives σ1 = P1 and σ2 = P2) (Fig. 5).

On Improvement of Formal Verification 123

Model Model

Basic Accessibility
graphs generation

Timed Basic Accessibility
graphs generation

Fig. 4. Timed Basic accessibility graph generation.

Complex CTL
properties

 decomposition

Incremental State Space
 generation

CTL Properties
Assignment to

 Accessibility graphs CTL properties
verificationStep 1 Step 2

Step 3

Step 4

Fig. 5. First step of reconfigurable real time systems verification.

– Non-decomposable: The operators (∧) or (∨) are linked to factors. For this kind of
properties, we firstly applied expansion or distribution laws and then re-check if they
are decomposable or not (Fig. 6).

Complex CTL
properties

 decomposition

Incremental
State Space
 generation

CTL Properties
Assignment to

 Accessibility graphs CTL properties
verification

Step 1

Step 2

Step 3

Step 4

Fig. 6. Second step of reconfigurable real time systems verification.

Figure 7 shows the majors steps of complex CTL properties decomposition task.

CTL Properties Assignment to PAGs. We assign to each property one or several
state spaces computed during incremental state space generation. The assignment is
done based on two criteria:

(i) Path quantifier and state operators, and
(ii) places concerned by the property such that we assign the smallest state space that

contains the concerned places.

124 C. E. Choucha et al.

: Set of CTL properties
 to be verified

Applied expansion & distributive laws

Split property to atomic sub-properties

Update set of CTLproperties to be
verified

Atomic
Property ?

Decomposable ?
YES

: Updated Set of CTL
properties to be verified

NO

YES

NO

Decomposable ?

YES
NO

Fig. 7. Complex CTL properties decomposition.

Complex CTL
properties

 decomposition

Incremental
State Space
 generation CTL Properties

Assignment to
 Accessibility graphs

 CTL properties
verification

Step 1 Step 2

Step 3

Step 4

Fig. 8. Third step of reconfigurable real time systems verification.

CTL Properties Verification. In short-term we integrate CTL properties verification
method inspired from methods proposed in [5]. This method consider relationships
which exist among properties to be verified (Equivalence, dominance and composition)
and processes the verification in parallel way (Figs. 8 and 9).

Complex CTL
properties

 decomposition

Incremental
State Space
 generation

CTL Properties
Assignment to

 Accessibility graphs
 CTL properties

verification
Step 1 Step 2

Step 3

Step 4

Fig. 9. Fourth step of reconfigurable real time systems verification.

3.3 Distributed Architecture for Formal Verification

In this subsection, we present the proposed distributed cloud-based architectures shown
in Fig. 10. The idea that motivates the development of this architecture is to increase

On Improvement of Formal Verification 125

Internet
GATEWAY

Workers

Database

Master

User

Fig. 10. Distributed cloud-based architecture.

computation power and storage availability. It is composed of computational and stor-
age resources. To develop the architecture shown in Fig. 10, we use IaaS to allocate the
following resources:

– Computation resources: which represent the master that coordinates the executed
tasks, and the workers that execute the presented tasks above.

– Storage resources: represents the allocated cloud database that stores accessibility
graphs computed during verification.

3.4 Reconfigurable Real-Time System Verification in a Distributed Cloud-Based
Architecture

The Reconfigurable real-time system verification is performed on the proposed archi-
tecture as follow

– Master: has the coordinator role it:
• Receives the verification request;
• Sends to each worker the task to perform (Accessibility graph generation, Prop-
erties decomposition and assignment, and CTL or TCTL properties verifica-
tion);

• Stores and retrieves data from storage unit.
– workers: perform different tasks received from the Master and return the results.

Note that the TCTL properties are considered as non-decomposable, thus the Master
distributes them to the works for parallel verification by considering the time con-
straints.

4 Experimentation

In this section, to validate and demonstrate the gain of our proposed contributions, we
use a formal case study.

126 C. E. Choucha et al.

Fig. 11. Behavior model with three configurations process.

4.1 Case Study

To demonstrate the performance and the gain of the proposed contribution, we use R-
TNCES formalism to model a sequential system S01, used in the original conference
paper [3], which is denoted by RTNS01(BS01 , RS01). S01 is composed of 11 physical
processes modeled by 11 CCs. The behavior module of the system (BS01) is modeled
graphically as shown in Fig. 11. This model covers three configurations (C1, C2, C3). It
is assumed that every configuration has one control chain (CChaini

) as follows.

– CChain1 : CC1, CC2, CC3, CC9.
– CChain2 : CC1, CC2, CC3, CC4, CC5, CC11, CC7, CC8.
– CChain3 : CC1, CC2, CC3, CC10, CC5, CC6, CC7, CC8.

This behavior module can be reconfigured automatically and timely between the
three configurations (Ci, i = 1, ..., 3), according to the environment changes or
to the user requirements. RTNS01 can apply six different reconfiguration scenar-
ios according to the control module RS01 , which are described as follows: RS01 =
(C1, C2); (C1, C3);(C2, C1); (C2, C3); (C3, C1); (C3, C2).

4.2 Application

In this section, we present the application of the formal verification of RTNS01 accord-
ing to the cloud-based formal verification.

Incremental State Space Generation. In order to generates RTNS01 accessibility
graphAGRTNS01

, we apply Algorithms 1 and 2. First, we generates accessibility graphs
for each physical process, which are denoted by (TBAGi, i =1, ...,11). Then, we pro-
ceed to successive pair graphs compositions until we constitute AGRTNS01

. Table 2

On Improvement of Formal Verification 127

1 0 0

1 0 0

0 1 0

0 0 1 1 0 0

0 1 01 0 0

0 0 1

1 0 0

1 0 0

0 0 1

1 0 0

0 0 1 0 0 1

1 0 0o 0 1

0 0 1

0 1 0

1 0 0

0 1 0

1 0 0 1 0 0

1 0 00 1 0

1 0 0

Current State.

Tragated State.

Processed Transition.

Exclusive Transition Exclusive Transition

Synchronization Transition

Fig. 12. Example of accessibility graphs composition according to the transition type.

Table 2. Incremental state space generation [3].

R-TNCES model Control chains PAGs

RTNS01 CChain1 (CC1, CC2); (CC1, CC2, CC3); (CC1, CC2, CC3, CC9)

CChain2 (CC1, CC2, CC3, CC4),
(CC1, CC2, CC3, CC4, CC5),
(CC1, CC2, CC3, CC4, CC5, CC11),
(CC1, CC2, CC3, CC4, CC5, CC11, CC7),
(CC1, CC2, CC3, CC4, CC5, CC11, CC7, CC8)

CChain3 (CC1, CC2, CC3, CC10),
(CC1, CC2, CC3, CC10, CC5),
(CC1, CC2, CC3, CC10, CC5, CC6),
(CC1, CC2, CC3, CC4, CC5, CC6, CC7),
(CC1, CC2, CC3, CC4, CC5, CC6, CC7, CC8)

shows PAGs computed during the first step of the system verification. Note that each
computed PAG is stored in the cloud database. Moreover, Fig. 12 shows an example of
a pair graphs composition.

Decomposition of CTL Properties. In order to validate the basic behavior of the
system and to guarantee that system model satisfies the good requirements, we must
ensure the CTL functional properties. In particular, to ensure: a) The safety, the system
allows only one process to be executed at any time, i.e., no activation of two CCs from
two different configurations at the same time, b) the liveness, whenever any process
wants to change the configuration, it will eventually be allowed to do so, and c) the
non-blocking, any active CC is eventually ended. Table 3 presents the above mentioned
properties specified by CTL.

128 C. E. Choucha et al.

Table 3. Set of CTL properties to be verified [3].

σ: Set of CTL Properties

P1: EF (p3), P2: AF (p9),

P3: AF (p15), P4: AF (p21),

P5: AF (p24), P6: AF (p17),

P7: AF (p32), P8: AF (p35)

P9: EF (p12 ∧ EG(p24)),

P11: EG(p12 ∧ EGp35)),

P12: EG(p12 ∧ EG(p33)),

P13: ¬EF (p27 ∧ EG(p24)),

P14: EF (p12) ∧ EF (p18),

P15: AF (p12) ∧ EG(p33) ∧ EG(p21) ∧ AF (p24),

P16: AF (p12) ∧ EG(p33) ∧ EG(p21) ∧ AF (p24)

Table 4. CTL properties decomposition and assignment [3].

σ: Set of CTL properties Decomposition Assignment

P1: EF (p3), P2: AF (p9), P3: AF (p15),
P4: AF (p21), P5: AF (p24), P6: AF (p17),
P7: AF (p32), P8: AF (p35)

Non-decomposable P1: TBAG1 , P2: CC1, CC2, CC3 ,
P3: CC1, ..., CC5 ,
P4: CC1, ..., CC7 ,
P5: CC1, ..., CC8 ,
P6: CC,..., CC6 ,
P7: CC,..., CC11

P9: EF (p12 ∧ EG(p24)),
P12: EG(p12 ∧ EG(p33)),
P13: ¬EF (p27 ∧ EG(p24)),

Non-decomposable P9: CC1, ..., CC8 ,
P12: CC1, ..., CC11 ,
P13: CC1, ..., CC8

P14: EF (p12) ∧ EF (p18) P ′
14: EF (p12)

P ′′
14: EF (p18)

P ′
14: CC1, ..., CC4

P ′′
14: CC1, ..., CC6

P15: AF ((p12) ∧ EG((p33)) ∧
EG(p21)) ∧ AF (p24)

P ′
15: AF (p12)

P ′′
15: EG((p33)∧EG(p21))

P ′′′
15 : AF (p24

P ′
15: CC1, ..., CC4 ,

P ′′
15: CC1, ..., CC7 ,

P ′′′
15 : CC1, ..., CC8

P16: AF (p12) ∧ EG(p33) ∧ EG(p21) ∧
AF (p24)

P ′
16: AF (P12)

P ′′
16: ¬AF (p30)

P ′
16: CC1, ..., CC4 ,

P ′′
16: CC1, ..., CC10

Assignment of CTL Properties to PAGs. We apply the possible decomposition to the
CTL properties in σ, then we assign each property to be verified to the correspondent
accessibility graph (BAG or PAG). The results are shown in Table 4.

CTL and TCTL Properties Verification. CTL properties are distributed according to
their assignment one by one on workers by the Master, then workers proceed to their
verification using the SESA tool [15]. Where, TCTL properties are non-decomposable
thus their distribution depends on time constraints. Table 5 shows a set of TCTL prop-
erties. The order of verification of the mentioned properties is: P1, P2 > P3, P4, P6 >
P7 > P5.

On Improvement of Formal Verification 129

Table 5. TCTL properties to be verified.

σFMPS : Set of TCTL properties

P1: EF [1, 3]p3 = 1,

P2: EF [10, 18]p9 = 1,

P3: EF [10, 28]p12 = 1,

P4: EF [9, 41]p18 = 1,

P5: EF [26, 43]p24 = 1,

P6: EF [10, 18]p27 = 1,

P7: EF [20, 42]p33 = 1,

20% 20% 40% 40% 60% 60% 80% 80% 80%

1.5

2

2.5

3

·104

Decomposable Properties rates(%)

Ti
m

e
U

ni
ts

Proposed method Classic method [7] RCTL method [16]

Fig. 13. Classic methods VS Proposed method.

4.3 Evaluation

In this subsubsection, the evaluation of the proposed method is presented considering
two factors: The decomposable rate and the complex CTL properties rate.

130 C. E. Choucha et al.

0 10 20 30 40 50 60 70 80
0

0.5

1

1.5

2

2.5

·104

Complex CTL properties rate(%)

Ti
m

e
U

ni
ts

Classic method [6]
Proposed method

RCTL method [16]

Fig. 14. Improved performance of proposed method verification.

Evaluation of CTL Properties Verification Method Considering Different Decom-
posable Ratex. Let assume we have to verify a system model with 2500 TNCESs. In
order to ensure the well-behave of the system we have to verify at least 4 properties
for each TNCES. Thus, we need to verify 10000 CTL properties. We assume that the
properties to be verified are complex and the rate of decomposable one can be:

(i) Low in 0, 20%,
(ii) Medium in 20, 60%, or
(iii) High when more than 60%.

The results show in Fig. 13 that the gain increases proportionally to decomposable
properties rate. Thus, the gain is clearly shown when similarity rate is ‘High’. This
is explained by the fact that, when properties are decomposed their verification is less
complex [4].

On Improvement of Formal Verification 131

Evaluation of CTL Properties Verification Method Considering Complex CTL
Properties Rate. Figure 14 we can observe an important gain when performing par-
allel verification thanks to the proposed architecture. This gain is explained by the fact
that the proposed architecture allows us to reduce considerably times execution by

(i) Avoiding redundant calculation,
(ii) Avoiding wait time execution,
(iii) Performing several properties verification at the same time.

5 Conclusion

This work deals with the formal verification of reconfigurable real-time systems mod-
eled by R-TNCES using CTL and TCTL specifications. In this paper, we present a
cloud-based solution for the formal verification problem. A distributed cloud-based
architecture is developed with two hierarchical levels (Master and worker) where,
data storage is ensured by Amazon Simple Storage S3 (Murty, 2008)). It allows us to
increase computational power, data availability, and to perform parallel execution. The
proposed method aims to improve state space analysis by using a hybrid distributed
cloud-based architecture for computation tasks. Developed architecture is composed
of:

1. A local workstation, where simple computation tasks are executed. First, a classi-
fication algorithm is applied in order to distinguish between simple and composed
properties. Then, we compute a matrix relationships that mention any eventual rela-
tionship between each couple of properties. Finally, we generate a parallelization
tree that we explore to extract a suitable execution order for each property to be
verified.

2. A virtual workstation, where complex tasks are computed. Virtual machines use
SESA tool to perform CTL properties verification and stores results in the shared
memory.

We introduce the modularity and the timed concept to the generated state spaces which
allow us to execute the generation step in a parallel way via several workers (virtual
machines) and to deal with time constraints. We detect the complex CTL properties
and decompose them into several simple or less complex properties, then proceed to
their verification via workers using the SESA tool [15]. The TCTL properties are them
verified following the order established by the master according to the time constraints.
Incremental Timed state space generation and the decomposition of CTL properties
allow us to run a targeted verification, which is less complex and more efficient in
terms of execution time. This work opens several perspectives; first, we plan to apply
our approach in the verification of real-case with complex properties to check the func-
tional and the temporal specifications. Then, automatize the detection of complex prop-
erties by using the IA thanks to ontologies. Also, we plan to introduce a deep learning
method to detect similar behavior of systems, which will allow us to reduces complex-
ity during verification. Besides, To apply our methodology in the verification process
of many research fields in (i) smart systems like smart grids, (ii) robotics, (iii) vehicular
technologies, and other more evaluations of the proposed contributions.

132 C. E. Choucha et al.

References

1. Baier, C., Katoen, J.P.: Principles of Model Checking. MIT Press, Cambridge (2008)
2. Camilli, M., Bellettini, C., Capra, L., Monga, M.: CTL model checking in the cloud using

mapreduce. In: 2014 16th International Symposium on Symbolic and Numeric Algorithms
for Scientific Computing (SYNASC), pp. 333–340. IEEE (2014)

3. Choucha, C.E., Ramdani, M., Khalgui, M., Kahloul, L.: On decomposing formal verification
of CTL-based properties on IaaS cloud environment. In: Proceedings of the 15th Interna-
tional Conference on Software Technologies, Volume 1: ICSOFT, pp. 544–551. INSTICC,
SciTePress (2020). https://doi.org/10.5220/0009972605440551

4. Choucha, C.E., Salem, M.B., Khalgui, M., Kahloul, L., Ougouti, N.S.: On the improvement
of R-TNCESs verification using distributed cloud-based architecture. In: Proceedings of the
15th International Conference on Software Technologies, Volume 1: ICSOFT, pp. 339–349.
INSTICC, SciTePress (2020). https://doi.org/10.5220/0009836103390349

5. Choucha, C.E., Ougouti, N.S., Khalgui, M., Kahloul., L.: R-TNCES verification: distributed
state space analysis performed in a cloud-based architecture. In: Proceedings of the the 33rd
Annual European Simulation andModelling Conference, pp. 96–101. ETI, EUROSIS (2019)

6. Hafidi, Y., Kahloul, L., Khalgui, M., Li, Z., Alnowibet, K., Qu, T.: On methodology for
the verification of reconfigurable timed net condition/event systems. IEEE Trans. Syst. Man
Cybern. Syst. 99, 1–15 (2018)

7. Hafidi, Y., Kahloul, L., Khalgui, M., Ramdani, M.: Newmethod to reduce verification time of
reconfigurable real-time systems using R-TNCESs formalism. In: Damiani, E., Spanoudakis,
G., Maciaszek, L.A. (eds.) ENASE 2019. CCIS, vol. 1172, pp. 246–266. Springer, Cham
(2020). https://doi.org/10.1007/978-3-030-40223-5 12

8. Hayes, B.: Cloud computing. Commun. ACM 51(7), 9–11 (2008)
9. Housseyni, W., Mosbahi, O., Khalgui, M., Li, Z., Yin, L., Chetto, M.: Multiagent architecture

for distributed adaptive scheduling of reconfigurable real-time tasks with energy harvesting
constraints. IEEE Access 6, 2068–2084 (2017)

10. Järvensivu, M., Saari, K., Jämsä-Jounela, S.L.: Intelligent control system of an industrial
lime kiln process. Control. Eng. Pract. 9(6), 589–606 (2001)

11. Khalgui, M., Hanisch, H.M.: Reconfiguration protocol for multi-agent control software
architectures. IEEE Trans. Syst. Man Cybern. Part C (Appl. Rev.) 41(1), 70–80 (2011)

12. Khalgui, M., Mosbahi, O., Li, Z., Hanisch, H.M.: Reconfiguration of distributed embedded-
control systems. IEEE/ASME Trans. Mechatron. 16(4), 684–694 (2011)

13. Koubâa, A., Qureshi, B., Sriti, M.F., Javed, Y., Tovar, E.: A service-oriented cloud-based
management system for the internet-of-drones. In: 2017 IEEE International Conference on
Autonomous Robot Systems and Competitions (ICARSC), pp. 329–335. IEEE (2017)

14. Padberg, J., Kahloul, L.: Overview of reconfigurable Petri nets. In: Heckel, R., Taentzer,
G. (eds.) Graph Transformation, Specifications, and Nets. LNCS, vol. 10800, pp. 201–222.
Springer, Cham (2018). https://doi.org/10.1007/978-3-319-75396-6 11

15. Patil, S., Vyatkin, V., Sorouri, M.: Formal verification of intelligent mechatronic systems
with decentralized control logic. In: Proceedings of 2012 IEEE 17th International Confer-
ence on Emerging Technologies & Factory Automation (ETFA 2012), pp. 1–7. IEEE (2012)

16. Ramdani, M., Kahloul, L., Khalgui, M., Li, Z., Zhou, M.: RCTL: new temporal logic for
improved formal verification of reconfigurable discrete-event systems. IEEE Trans. Autom.
Sci. Eng. 1–14 (2020). https://doi.org/10.1109/TASE.2020.3006435

17. Ramdani, M., Kahloul, L., Khalgui, M.: Automatic properties classification approach for
guiding the verification of complex reconfigurable systems. In: ICSOFT, pp. 625–632 (2018)

18. Zhang, J., et al.: R-TNCES: a novel formalism for reconfigurable discrete event control sys-
tems. IEEE Trans. Syst. Man Cybern. Syst. 43(4), 757–772 (2013)

https://doi.org/10.5220/0009972605440551
https://doi.org/10.5220/0009836103390349
https://doi.org/10.1007/978-3-030-40223-5_12
https://doi.org/10.1007/978-3-319-75396-6_11
https://doi.org/10.1109/TASE.2020.3006435

On Improvement of Formal Verification 133

19. Zhang, J., et al.: Modeling and verification of reconfigurable and energy-efficient manufac-
turing systems. Discret. Dyn. Nat. Soc. 2015 (2015)

20. Zhang, J., Khalgui, M., Li, Z., Mosbahi, O., Al-Ahmari, A.M.: R-TNCES: a novel formalism
for reconfigurable discrete event control systems. IEEE Trans. Syst. Man Cybern. Syst. 43(4),
757–772 (2013)

A Genetic Algorithm with Tournament
Selection for Automated Testing

of Satellite On-board Image Processing

Ulrike Witteck1(B), Denis Grießbach1(B), and Paula Herber2(B)

1 Institute of Optical Sensor Systems, German Aerospace Center (DLR),
Berlin-Adlershof, Germany

{ulrike.witteck,denis.griessbach}@dlr.de
2 Embedded Systems Group, University of Münster, Münster, Germany

paula.herber@uni-muenster.de

Abstract. In the satellite domain, on-board image processing technolo-
gies are subject to extremely strict requirements with respect to reliabil-
ity and accuracy in hard real-time. In this paper, we address the prob-
lem of automatically selecting test cases from a huge input domain that
are specifically tailored to provoke mission-critical behavior of satellite
on-board image processing applications. Due to the large input domain
of such applications, it is infeasible to exhaustively execute all possible
test cases. Moreover, the high number of input parameters and com-
plex computations make it difficult to find specific test cases that cause
mission-critical behavior. To overcome this problem, we define a test app-
roach that is based on a genetic algorithm combined with input param-
eter partitioning. We partition the input parameters into equivalence
classes to automatically generate a reduced search space with complete
coverage of the input domain. Based on the reduced search space, we
run a genetic algorithm to automatically select test cases that provoke
worst case execution times and inaccurate results of the satellite on-board
image processing application. For this purpose, we define a two-criteria
fitness function and evaluate two different selection methods with a case
study from the satellite domain. We show the efficiency of our test app-
roach on experimental results from the Fine Guidance System of the
ESA medium-class mission PLATO.

Keywords: Image processing · Software testing · Genetic algorithms

1 Introduction

Several on-board image processing applications in the satellite domain are sub-
ject to extremely strict requirements especially with regard to reliability and
mathematical accuracy in hard real-time. Therefore, it is important to test such
applications extensively. However, their huge input domain makes manual testing
error-prone and time-consuming. Executing all possible test cases is impossible.
c© Springer Nature Switzerland AG 2021
M. van Sinderen et al. (Eds.): ICSOFT 2020, CCIS 1447, pp. 134–157, 2021.
https://doi.org/10.1007/978-3-030-83007-6_7

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-83007-6_7&domain=pdf
https://doi.org/10.1007/978-3-030-83007-6_7

A Genetic Algorithm with Tournament Selection 135

Due to this problem, we are looking for a test approach that automatically
and systematically generates test cases for testing satellite on-board image pro-
cessing applications. However, the automated test generation for such applica-
tions poses two major challenges: first, a huge amount of possible test cases
because of a large number of input parameters that make a systematic and effi-
cient coverage of the whole input domain infeasible. Second, due to complex
algorithmic computations it is difficult to select test cases with a high probabil-
ity to provoke mission-critical behavior. That are scenarios where, for example,
the real-time behavior of the system or the delivered mathematical accuracy
does not meet specified requirements. Such scenarios may cause system failures,
damages, or unexpected behavior during mission lifetime.

In [3,7,8,14–16], the authors investigate various real-time embedded systems
with huge input domains and complex functional behavior. However, the pre-
sented approaches are not designed to search for test cases provoking real-time
critical behavior and scenarios where the mathematical accuracy of the applica-
tion gets critically low at the same time.

In this paper, we present an approach to automatically generate test cases
that provoke mission-critical behavior using a genetic algorithm. It is based on
the master thesis of the first author [17] and is an extended version of our
test approach presented in [20]. The key idea of our approach presented in [20]
is twofold: first, we apply an existing test partitioning approach [19] to auto-
matically generate a test set that is complete with respect to multidimensional
coverage criteria but provides a significantly smaller search space than the full
combination of all possible input scenarios. Second, we propose a genetic algo-
rithm that automatically searches for test cases that provoke mission-critical
behavior within this reduced search space, namely test cases that provoke long
execution times and mathematically inaccurate results.

Compared to [20], this paper makes the following contributions:

– We provide a concise summary of our test partitioning approach [19], and
give more details on its integration into our genetic test approach to reduce
the search space.

– We extend our genetic algorithm with a new selection method, namely tour-
nament selection.

– We show with experimental results from the PLAnetary Transits and Oscilla-
tion of stars (PLATO) mission that tournament selection provokes test cases
with much longer execution times and much smaller accuracy than the pre-
viously used stochastic universal sampling method.

– We identify and discuss the equivalence classes of the most mission-critical
test cases for our case study, and draw conclusions about the sources and
causes of mission-critical behavior.

We investigate the efficiency of our test approach using the Fine Guidance
System (FGS) algorithm of the European Space Agency (ESA) mission PLATO
as a case study. The FGS calculates high-precision attitude data of the spacecraft
by comparing tracked star positions in image frames taken on-board with known
star positions from a star catalog. The experimental results demonstrate the

136 U. Witteck et al.

efficiency of the genetic approach with regard to the automated search of specific
test cases tailored for robustness testing.

This paper is structured as follows: Sect. 2 describes the concept of parti-
tion testing and genetic algorithms in general as well as gives an introduction of
the PLATO mission and the PLATO FGS algorithm. Section 3 outlines related
work on the use of genetic algorithms for test case generation. Section 4 presents
our genetic algorithm. First, it presents the automated generation of a reduced
search space by means of equivalence classes and multidimensional coverage cri-
teria. Then, it provides our description of the algorithm components. There-
after, it gives an overview of our automated test case generation approach. Our
implementation and experimental results are presented in Sect. 5. Finally, Sect. 6
provides a summary of the main results and gives an outlook on future work.

2 Preliminaries

In this section, we introduce the concept of equivalence class partition testing
and genetic algorithms in general. Moreover, we give an overview of the PLATO
mission as well as its mission-critical FGS algorithm.

2.1 Equivalence Class Partition Testing

Large input or output domains of applications often lead to a huge amount
of possible test cases. That makes testing inefficient and time-consuming. It is
therefore preferable to examine only as many test cases as necessary to satisfy
specified test criteria. However, the selection of specific test cases from a huge
input or output domain is a major problem when testing applications [19].

A possible solution to this problem is equivalence class partition testing. The
approach partitions the input or output domain in disjoint sub-domains, the
equivalence classes. That means equivalence classes represent subsets of param-
eter values that completely covers the input or output domain. The test approach
assumes that all elements in one class provoke the same system behavior accord-
ing to a given specification. Hence, it is sufficient to test only a few test cases of
each equivalence class to cover the whole input or output domain. The selection
of test cases from equivalence classes can be performed using various criteria,
e.g. border values, special values, or randomly selected test cases [19].

Equivalence class partition testing removes redundant test cases but com-
pletely covers the whole input or output domain. Thus, it makes testing more
efficient and less time-consuming compared to exhaustive testing [19].

2.2 Genetic Algorithms

Manual test case selection for embedded software tests is often error-prone and
inefficient. Especially, a large number of input parameter combinations makes
manual testing expensive. A solution to this problem is a genetic algorithm
designed to automatically search for test cases specifically tailored to provoke

A Genetic Algorithm with Tournament Selection 137

erroneous behavior, i.e. the violation of given system requirements. Thus, the test
case design becomes an optimization problem: the genetic algorithm searches for
parameter combinations in the input domain that satisfy given test criteria [20].

In general, a genetic algorithm is a search-based method that solves complex
optimization problems. Utilizing a cost function the approach evaluates automat-
ically generated optimization parameters with respect to predefined test criteria.
It rapidly provides high-quality solutions to a problem. It is therefore able to
efficiently solve a search problem [1,12,20].

Genetic algorithms are inspired by the concept of biological evolution. Solu-
tions to a problem experience evolutionary mechanisms like selection, mutation,
and recombination. In terms of genetic algorithms, solutions to a problem are
treated as individuals composed of a specified number of genes. In each gener-
ation, the genetic algorithm creates a population of individuals from previously
generated individuals. This is done until a population satisfies a certain crite-
rion. The survival probability of an individual, e.g. the probability to select an
individual into the next generation, depends on its fitness value. The fitness
value measures the quality of an individual with respect to specified criteria.
The genetic algorithm calculates the fitness value for each individual by means
of the cost function. The selection strategy affects the convergence of the genetic
algorithm. A common problem is that the algorithm provides a locally optimal
solution because of too high convergence. On the other hand, if the convergence
is too low solutions do not evolve. To preserve diversity in the population, the
genetic algorithm generates new individuals by applying crossover and muta-
tion mechanisms. The goal of crossover is to generate a better population by
exchanging genes from fitter individuals. The mutation mechanism preserves
the diversity of genes by inserting new genes into the population [5,9,12,20].

Genetic algorithms provide the advantage to run on parallel processors. More-
over, they are able to solve different complex, computation-intensive problems,
with many possible solutions in a wide search-space. They also allow to auto-
matically search in a huge input domain for optimal test data that provoke a
specified behavior of the software application [1,5,9,20].

2.3 Case Study: PLATO Mission

PLATO is an ESA mission in the long-term space scientific program “cosmic
vision”. The main goal of the PLATO mission is to find and characterize Earth-
like exoplanets orbiting in the habitable zone of solar-type stars.

The scientific objective is achieved by long uninterrupted ultra-high precision
photometric monitoring of large samples of bright stars. This requires a very
large Field of View (FoV) as well as a low noise level. The novelty of the mission
is its multi-camera approach to achieve a high pupil size and the required FoV.
24 normal cameras monitor stars fainter than magnitude 8 at a cycle time of
25 s. In addition, two fast cameras observe stars brighter than magnitude 8 at a
cycle time of 2.5 s. The cameras are equipped with four Charge Coupled Devices
(CCDs) in the focal plane, each with 4510 × 4510 pixels. Each fast camera is
connected to a data processing unit that runs the FGS algorithm. The algorithm

138 U. Witteck et al.

calculates attitude data with an accuracy of milliarcseconds from the acquired
CCD image data.

In each cycle, the FGS reads a 6 × 6 pixel sub-image for each guide star from
a full CCD-image. Guide stars are predefined stars in a star catalog that satisfy
given criteria. A linear center of mass calculation estimates the initial centroid
position in each sub-image. Subsequently, the FGS algorithm refines each cen-
troid using a Gaussian Point Spread Function (PSF) observation model. The PSF
describes the distribution of starlight over CCD pixels. Based on measured pixel
intensities, the algorithm determines the PSF model including centroid position,
intensity, image background, and PSF-width. To refine these parameters, the
FGS algorithm applies a non-linear least square fitting method.

The quality of the centroid calculation depends on the input star signal and
its distribution over several pixels. If the star signal in a pixel is little interfered
by noise and the Signal-to-Noise Ratio (SNR) is high, the star information is
usable. At least 5 linear independent observations are necessary to estimate the
5 parameters of the observation model. The distribution of the star signal over
pixels depends on the star position on the Focal Plane Assembly (FPA), the
sub-pixel position, the magnitude, and the PSF shape. If the star signal in the
image pixels is not sufficiently good, then the centroid estimation is less accurate
or the algorithm does not converge or converges late [19].

After calculating the centroid parameters of each star, the FGS algorithm
transforms the pixel coordinates of the calculated centroid position into a star
direction vector. The algorithm calculates the attitude data by means of the
QUaternion ESTimator (QUEST) algorithm from at least two star directions
and its corresponding reference vectors from a given star catalog [6]. The QUEST
algorithm also measures the validity of the input data by means of the scalar
TASTE test [13]. If at least one input star is misidentified, the TASTE value is
high [6]. In our test approach, we use the value as a qualitative measure of the
mathematical accuracy of the FGS algorithm and denote it as quality index [20].

The input of the FGS algorithm is a combination of stars. Since the star
parameters of a single star affect the performance and accuracy of the centroid
calculation, the performance and accuracy of the FGS algorithm also depend
on the combination of input stars. The calculated attitude data is unusable if
the FGS result is incorrect or the delivery is too late. In this case, all captured
science data cannot be further processed and the mission is lost [20]. Hence,
the FGS is regarded as mission-critical component, which therefore requires an
extensive test procedure [11].

3 Related Work

Various papers present automated software test approaches that are based on
genetic algorithms. In [7,14–16], the authors used genetic algorithms to automat-
ically generate test data for structural-oriented tests, like control flow testing and
data flow testing as well as for function-oriented tests, for example examining
the temporal behavior of an application [20].

A Genetic Algorithm with Tournament Selection 139

In [15], the authors present a genetic algorithm for structural testing. Their
algorithm uses data flow dependencies of a program to automatically optimize
test data. The study shows that genetic algorithms are feasible to automatically
generate test data that achieve high coverage of variable definition and reference
paths in the program code. Further, the study shows that data generated by the
genetic algorithm achieves higher coverage of the program flow graph in fewer
generations compared to data generated by random testing. However, we look
for a test approach that does not depend on the internal system structure [20].

Sthamer et al. [14], present an evolutionary approach to investigate the tem-
poral behavior of embedded systems. Their approach automatically searches
for input situations where the system under test violates specified timing con-
straints. For this purpose, they defined a fitness function based on the execu-
tion time. As a case study, the authors used an engine control system. The
experiments demonstrate that the evolutionary approach generates test data
that detect errors in the timing behavior of systems with large input domain
and strict timing constraints. The study shows that the evolutionary approach
is applicable to different test goals as well as for testing systems of various
application fields. However, our goal is to consider temporal behavior as well as
mathematical accuracy of image processing applications for various input val-
ues. Therefore, we define a fitness function that includes additional metrics to
evaluate the individuals [20].

All of these approaches show that genetic algorithms improve the software
test efficiency. The studies confirm that genetic algorithms are suitable to auto-
matically generate test cases that satisfy special test criteria from a large input
domain. However, to reach optimal results it is important to adapt the fitness
function to the specific problem [20].

4 Genetic Test Approach

Many satellite on-board image processing applications require a high number
of different input parameters and perform complex algorithmic computations.
This makes it hard to systematically and efficiently capture the input domain to
find test cases that are tailored to provoke real-time critical behavior or scenarios
where the mathematical accuracy gets critically low. But, we need such test cases
to verify compliance of the satellite on-board image processing application with
strict requirements in reliability and mathematical accuracy in hard real-time.

To overcome this problem, we define a test approach based on a genetic
algorithm that automatically searches for test cases that increase the robustness
of a satellite on-board image processing application. Our key idea is a novel
two-criteria fitness function that is specifically tailored for the satellite domain.
In this paper, we updated our genetic algorithm with a new selection method,
namely tournament selection, to increase the selection pressure.

Figure 1 gives an overview of our proposed approach. As the figure depicts,
the input of our genetic algorithm (see Sect. 4.3) is a parameter specification
to configure it and an automated generated, reduced test set with complete
coverage on the input domain.

140 U. Witteck et al.

Select Init
Population

Init
Population

Fitness
Evaluation

Termination
Conditions

met?
Selection

Parent
Population

Crossover
Child

Population
Mutated

Population Mutation

Genetic Algorithm

Complete
Test Set

Improved
Test Set

Configuration
Parameters

no

yes

Fig. 1. Overview of the automated test case generation approach [20].

We generate the complete test set by means of an equivalence class partition-
ing approach for on-board satellite image processing applications presented in
[19]. In this paper, we present our equivalence class definitions for the FGS input
parameters as well as our multidimensional coverage criteria to systematically
select only one representative input from each equivalence class combination.
Our genetic algorithm selects test cases from the complete test set and evaluates
them according to their fitness values. It iteratively evolves promising test cases
using evolutionary mechanisms, namely selection, crossover, and mutation. As a
result, it delivers test cases that satisfy given test criteria.

4.1 Assumptions and Limitations

In this paper, we consider systems whose inputs are objects in an image. In our
case study, the observed objects are stars uniformly distributed in the image [6].
We take four star parameters into account that affect run time and mathematical
accuracy of the FGS algorithm: position in the image, magnitude, sub-pixel
position, and PSF shape. Performance and mathematical accuracy of the FGS
algorithm also depend on the number and distribution of preselected guide stars.
Previous experiments have shown that 30 input stars provide sufficiently good
results. Therefore, we define a combination of 30 stars as a test case.

Moreover, we specify that a test set consists of several test stars. A test
star covers a special combination of equivalence classes. We denote a test set
as complete if it reaches full coverage on the input domain with respect to the
coverage criteria presented in Sect. 4.2. Thus the set includes one star for each
equivalence class combination.

In our test approach, we use the TASTE-value as a qualitative measure of
the mathematical accuracy of the FGS algorithm. Hence, a low quality index
corresponds to high accuracy of the FGS algorithm [20].

A Genetic Algorithm with Tournament Selection 141

4.2 Automated Search Space Reduction

A distinctive feature of satellite on-board image processing algorithms is their
large input domain. That makes the search space of the genetic algorithm incred-
ibly high. Our key idea is to use a reduced test set with complete coverage on
the input domain as search space for our genetic algorithm. To automatically
generate such a test set, we use the partitioning approach given in [19].

We define equivalence classes for input parameters that mainly affects the
distribution of the star signal over pixels and thus have an impact on the math-
ematical accuracy and execution time of the FGS algorithm. We define the set
of input parameters I as input domain. The parameter set contains of position
on the FPA P, star magnitude M, sub-pixel position E as well as PSF shape G.

In the following, we present our equivalence class definitions of the input
parameters and our multidimensional coverage criteria. Subsequently, we explain
the automated generation of a reduced test set that is complete with respect to
our multidimensional coverage criteria.

Position on the FPA. Due to optical aberrations of the telescope, the PSF
shape of a star is wider at the FPA border regions than close to the center. A
small PSF leads to a low number of pixels with a high SNR, if the other input
parameters provide sufficient good, constant values. In case of a wide PSF, more
pixels contain a signal but the SNR is low. However, both cases can be sufficient
for an accurate parameter estimation [19]. As described in [19] we partition the
FPA in circular ring areas as shown in Fig. 2. The rectangles present the full
CCDs of the fast camera. The circular ring sectors represent the equivalence
classes of parameter P. The tester defines the initial radius r0 and the angle θ0
of the circular vectors.

More formally, we partition the parameter P into equivalence classes P(ri,θj).
Each class P(ri,θj) corresponds to a circular ring sector of the FPA with inner
radius ri−1 and outer radius ri as well as right polar angle θj−1 and left polar
angle θj .

P = P(r0,θ0) ∪ P(r0,θ1) ∪ ... ∪ P(r0,θm) ∪ ... ∪ P(rn,θm) (1)

n is the number of radius borders and m is the number of polar angle borders.
Let S denote the set of available stars. A star s ∈ S is a representative of

equivalence class P(ri,θj) if following condition holds:

ri−1 ≤ p(s) < ri, with p(s) =
√

xs
2 + ys

2 (2)

and
θj−1 ≤ t(s) < θj , with t(s) = arctan

xs

ys
(3)

where (xs, ys) is the position of star s on the FPA, p(s) is the star distance to
the FPA center and t(s) is the polar angle of star s [19].

142 U. Witteck et al.

−4000 −2000 0 2000 4000

−4000

−2000

0

2000

4000

r0
θ0

x [pixel]

y
[p
ix
el
]

Fig. 2. FPA equivalence class example [19].

Position in the Pixel. Besides the star position on the FPA, the sub-pixel
position of the star also affects the SNR in a pixel. Most star information is
accumulated only in few pixels with high SNR if the star centroid is positioned
in the pixel center. If the star centroid is positioned in a pixel corner or near a
pixel border then the star information is distributed more evenly over several
pixels. Therefore, more pixels have an adequate SNR. The other pixels in the
image have a low SNR. But due to movement of the telescope, the centroid may
move to neighbor pixels and causes variations in the pixel illumination and the
apparent centroid position. Hence, we partition the pixels into 4 equally sized
areas as shown in Fig. 3. Areas with the same pattern represent one equivalence
class.

We define equivalence classes Ei with i = 0...3 of input parameter E such
that

E = E0 ∪ E1 ∪ ... ∪ E3. (4)

For the definition of the equivalence classes, we specify the lower left corner l
and the upper right corner u of the central pixel area by

l = (
a

2
− b

2
,
a

2
− b

2
) and u = (

a

2
+

b

2
,
a

2
+

b

2
). (5)

A Genetic Algorithm with Tournament Selection 143

xl

yl

yu

xu

E0

E1

E2

E3

Fig. 3. Sub-pixel equivalence class example [19].

a is the pixel size and b is the width of the central pixel area. The last value
depends on the ratio r of the central pixel area to the complete pixel. The tester
specifies this ratio. A star is a representative of an equivalence class if it satisfies
the corresponding condition.

E0 : (0 ≤ ex(s) < xl ∨ xu ≤ ex(s) < a) ∧ (0 ≤ ey(s) < yl ∨ yu ≤ ey(s) < a)
E1 : (0 ≤ ex(s) < xl ∨ xu ≤ ex(s) < a) ∧ yl ≤ ey(s) < yu

E2 : xl ≤ ex(s) < xu ∧ (0 ≤ ey(s) < yl ∨ yu ≤ ey(s) < a)
E3 : xl ≤ ex(s) < xu ∧ yl ≤ ey(s) < yu

(6)
ex(s) and ey(s) return the x-coordinate and y-coordinate of star s in the pixel
respectively [19].

Magnitude. The measured star flux (photo-electrons per second) affects the
pixel illumination. That is the accumulated number of photo-electrons in a pixel.
The star flux is non-linear to the star magnitude. A low magnitude corresponds
to a high number of photo-electrons. That leads to a higher SNR per pixel.

A useful partitioning of the magnitude values into equivalence classes is not
obvious. Hence, we partition the flux value range into equidistant parts that
represent the equivalence classes. Figure 4 illustrates our partitioning idea.

7.0 6.6 6.3 6.0 5.8 5.7 5.5 magnitude

0.5 × 106 0.7 × 106 0.9 × 106 1.1 × 106 1.3 × 106 1.5 × 106 1.7 × 106 photon number

Fig. 4. Magnitude equivalence class example [19].

144 U. Witteck et al.

To compute the upper limit of a sub-range, we define Eq. (7).

Fmj
= F7.0 + j

F5.5 − F7.0

IM
(7)

Fmj
is the flux of a star with magnitude mj and j = 1...IM represents the j-th

equivalence class of parameter M. F5.5 and F7.0 correspond to the numbers of
photons for magnitude 5.5 and 7.0. For each flux limit we calculate the magnitude
value using Eq. (8).

m = −2.5 log

(
Fm

F0TQA

)
(8)

Thus we partition the parameter M into equivalence classes Ml.

M = Ml1 ∪ ... ∪ Mlj ∪ ... ∪ M5.5 (9)

with lj ∈ IR and 5.5 ≤ lj < 7.0. Each equivalence class Mlj is a magnitude sub-
range with upper limit lj . Each star s is a representative of equivalence class Mlj

if it satisfies the condition in Eq. (10).

lj−1 ≤ m(s) < lj (10)

where m(s) denotes the observed magnitude of star s. The tester specifies the
number of equivalence classes IM ∈ IN of the parameter M [18].

PSF Shape. The accuracy of the centroid calculation also depends on the PSF
shape. In the best case scenario, the shape is a symmetric Gaussian-PSF. Then,
the observation model perfectly fits the star. Therefore, the accuracy of the
centroid calculation is high. However, in reality, the PSF shape is non-Gaussian.
In that case, the observation model is less accurate and movements lead to
stronger variations in the expected centroid positions [18].

Thus, we partition the input parameter G in two equivalence classes GG and
GNG since two PSF shapes are distinctive. If a star has a Gaussian-PSF shape
it is in class GG otherwise it is in class GNG [19]. In this paper, we only consider
more realistic stars with non-Gaussian PSF shape.

Multidimensional Coverage Criteria. While individual parameter values
might lead to an accurate estimation in short time, a combination of parameters
may change the quality of the results. To measure the coverage of a test set with
respect to input parameter combinations we define multidimensional coverage
criteria on the input domain I = {P,M, E ,G}.

The individual coverage of an input parameter denotes the ratio of equiv-
alence classes that are covered by at least one test star from a given test set
to the number of equivalence classes of this input parameter. Equations (11)
to (14) define the individual coverage for the input parameters P,M, E and G
respectively.

CP =
covered elements of P

|P| (11)

A Genetic Algorithm with Tournament Selection 145

CM =
covered elements of M

|M| (12)

CE =
covered elements of E

|E| (13)

CG =
covered elements of G

|G| (14)

The Cartesian product of the equivalence classes of the input parameters P,
M, E and G is the coverage domain for our multidimensional coverage criteria.
Hence, an input combination is a tuple of equivalence classes (Pi,Mj , Ek, Gl),
where Pi ∈ P, Mj ∈ M, Ek ∈ E and Gl ∈ G [18]. Furthermore, tuple of
parameter values ((p, t),m, e, g) ∈ (Pi,Mj , Ek, Gl) represents a test star. The
following example clarifies these definitions.

Example 1.
(
(1969.4, 322.5), 6.5, (0.3, 0.2), G

) ∈ (P(3239,360) ×M6.6 ×E2 ×GNG)
The test star is a representative of FPA area with outer radius 2687 and outer
polar angle 225◦. The star belongs to equivalence class M6.6 because its magni-
tude value is between 6.3 and 6.6. The star center is located in the lower-middle
pixel sub-area. That corresponds to the vertical pixel areas and therefore to
equivalence class E2. The star is part of equivalence class GNG, because it has
a non-Gaussian-PSF shape.

Our multidimensional coverage criterion is fully satisfied if the test stars
in a test set cover all possible input combinations at least once. In contrast
to [19], we only consider realistic stars with non-Gaussian PSF shape. Hence,
the number of required covered input combinations for complete coverage in
this paper is |P ×M×E|. In the following, we denote a test set that completely
covers the input domain with respect to our multidimensional coverage criteria
as a complete test set. The multidimensional coverage C results from the ratio
of input combinations covered by at least one test star to the total number of
input combinations [19].

C =
covered input combinations

|P × M × E| (15)

Automated Test Set Generation. Our test set generation algorithm uses
the previous definitions to automatically and systematically generate a reduced
test set that completely covers the input domain of the satellite on-board image
processing application according to our multidimensional coverage criteria. First,
the algorithm calculates the equivalence class borders for each input parameter
based on the tester specifications. Subsequently, it assigns each test star of a
given test set to the corresponding equivalence classes of each input parameter.
For each equivalence class, combination only one test star is used. Thus, the
algorithm removes redundant test stars from the test set.

Based on Eqs. (11) to (15) the algorithm computes the individual coverage of
each input parameter and the multidimensional coverage. The algorithm uses the

146 U. Witteck et al.

coverage values to assess a given test set with respect to its coverage on the input
domain of the satellite on-board image processing application. Moreover, the
algorithm systematically generates test stars for equivalence class combinations
that are not covered. In this way, it efficiently inserts missing but relevant test
stars. If the given test set is empty, the algorithm generates a new test set that
completely satisfies the multidimensional coverage criteria.

The generation algorithm automatically increases the multidimensional cov-
erage and therefore the error detection capability of the given test set. As a
result, we get a complete but reasonably small test set [19]. We use this auto-
mated generated test set as search space of our genetic algorithm. The following
sections describe the genetic approach in more detail.

4.3 Genetic Algorithm

The goal of our genetic algorithm is to automatically search for test cases in
an automated generated test set that provoke mission-critical behavior with
respect to run time and mathematical accuracy. In the following, we describe
the components and strategies of our genetic approach.

Individual Representation. In terms of our genetic algorithm, a test case
represents an individual with 30 genes, analogous to a test case with 30 stars.
Our individual representation is based on the equivalence class definitions
described in Sect. 4.2. We define a gene as a tuple of equivalence class iden-
tifiers (iP , iM , iE , iG) where P defines the position of the star in the image, M
the magnitude of the star, E the sub-pixel position, and G the PSF shape [20].
Figure 5 illustrates the individual representation of an example individual.

2000

6.6

3

NG

2000

6.6

0

NG

. . .

2000

6.0

0

NG

Individual

Genes

iP

iM

iE

iG

Fig. 5. Individual representation.

Initial Population. As search space, our genetic algorithm uses the automated
generated test set that is complete with respect to our multidimensional coverage
criteria. The generation procedure is presented in Sect. 4.2.

A Genetic Algorithm with Tournament Selection 147

For each individual, the genetic algorithm randomly selects 30 stars from its
search space. Each selected star in an individual covers a different combination of
equivalence classes. This prevents that in the end an individual contains the same
star 30 times. The genetic algorithm generates individuals until the required
population size specified by the tester is reached [20].

Fitness Function. By means of a fitness function, the genetic algorithm cal-
culates a fitness value for each individual to evaluate its suitability to survive.

In Eq. (16), we define a two-criteria fitness function that depends on execution
time and quality index of the FGS execution. To capture a trade-off between both
parameters and to define the impact of the parameters on the new generation,
we apply the weighted sum with weighting factors wtime and wtaste.

fitness(c) = ftime(c) · wtime + ftaste(c) · wtaste,

with ftime(c) =
time
atime

, ftaste(c) =
taste
ataste

,

0 ≤ wtime, wtaste ≤ 1 and wtime + wtaste = 1

(16)

fitness(c) provides the fitness of an individual c. Individuals that cause long
execution times and a high quality index, i.e. a low accuracy, have a high fitness
value. ftime(c) calculates the fitness value of an individual c with respect to the
FGS execution time. ftaste(c) calculates the fitness value of an individual c with
respect to the quality index. Since both metrics have different magnitudes, we
normalize the values using reference values before combining them in the fitness
function. The tester defines both reference value atime and ataste for example as
average of execution times or quality values measured by random testing.

Input: population, wtime, wtaste, atime, ataste

Output: fitTime, fitTaste

1 maximalFit = 0;
2 foreach individual ∈ population do
3 time, taste = FGS(individual);
4 fitValue = time

atime
· wtime + taste

ataste
· wtaste;

5 if fitValue > maximalFit then
6 maximalFit = fitValue;
7 fitTime = time;
8 fitTaste = taste;

9 end
10 individual.fit = fitValue;

11 end

Algorithm 1. Fitness evaluation.

Algorithm 1 describes the evaluation process of our genetic algorithm. The
algorithm sends each individual in the population as input to the FGS algorithm

148 U. Witteck et al.

and calculates its fitness value by means of our fitness function. Algorithm 1 also
provides the longest execution time fitTime and worst quality index fitTaste of
the current population [20].

Selection. In [20], we used the stochastic universal sampling method as selection
mechanism for our genetic algorithm. Since the fitness values of individuals are
very tight, the selection probability of each individual is nearly the same. That
means the selection pressure is very low and individuals with low fitness value are
selected into the next generation. To increase the selection pressure we replace
the selection mechanism with the efficient tournament selection method.

The genetic algorithm selects k individuals with replacement from the current
population and selects the individual with the highest fitness value to the new
population. This step is repeated until the new population reaches the specified
population size. k is the tournament size and is defined by the tester. In this way,
the tester is able to adapt the selection pressure. A low tournament size leads
to a low selection pressure while a large tournament size causes a high selection
pressure [4]. Algorithm 2 describes the steps of the tournament selection.

Input: currentPopulation, popsize, k
Output: selectedPopulation

1 selectedPopulation ← ∅;
2 for i ← 1 to popsize do
3 bestFitness = 0;
4 bestIndividual ← 0;
5 for j ← 1 to k do
6 tournamentIndividual ← getRandomIndividual(currentPopulation);
7 if bestFitness < tournamentIndividual.fitness then
8 bestIndividual ← tournamentIndividual;
9 bestFitness = tournamentIndividual.fitness;

10 end

11 end
12 selectedPopulation ← selectedPopulation ∪ bestIndividual;

13 end

Algorithm 2. Tournament selection.

Crossover. Our genetic algorithm performs the parameterized uniform
crossover strategy to insert new individuals [5, p. 89]. The crossover mecha-
nism randomly chooses two not yet selected individuals as parents from the
population. For every single gene of the parents, the genetic algorithm decides
according to the crossover probability pc whether the genes are exchanged or
not. Because an individual should not contain a test star twice, the genes do not
cross if one of them is already contained in its target individual.

The genetic algorithm applies the crossover operator to each individual pair in
the population. As a result, the crossover mechanism returns a child population
containing new individuals. We define that the tester specifies the crossover
probability pc [20].

A Genetic Algorithm with Tournament Selection 149

Mutation. The mutation process decides according to a mutation probabil-
ity pm for each gene of each individual in the population whether the gene
mutates or not. In case the gene mutates, the genetic algorithm randomly selects
a new star from its search space, which is not contained in the individual, as
a gene. Depending on the mutation probability pm, the mutation function pre-
serves the diversity in the population or inserts minimal changes to find test
cases that locally provoke critical behavior [5]. The tester specifies the mutation
probability pm. As a result, the mutation process returns a mutated population
[20].

Termination Condition. The genetic algorithm terminates if it reaches a
defined number of generations, the best solution has not improved in the last n
generations [2], or the FGS algorithm execution time exceeds a specific value. The
tester defines these criteria [20]. There is no termination condition with respect
to the quality index since no PLATO requirements exist for this measure.

4.4 Automated Test Generation

The goal of our proposed test approach is to find star combinations that provoke
long execution times as well as inaccurate results of the satellite on-board image
processing application. We automatically generate a reduced search space for the
genetic algorithm that is complete with respect to our multidimensional coverage
criteria presented in Sect. 4.2. For the search space generation, we apply the
partitioning test approach presented in [19]. The generated test set contains one
star per equivalence class combination of the parameters. Without using stars
having unrealistic Gaussian-PFS shape, this results in approximately 7.7×10−53

possible combinations of 30 stars as FGS input. Testing all possible combinations
is still infeasible. Hence, our key idea is a genetic algorithm that is specifically
tailored to find particular test cases in a large input domain.

Algorithm 3 gives an overview of the structure of our defined genetic algo-
rithm using the components described in Sect. 4.3. The complete test set TS,
which is significantly reduced by the partitioning approach, is the search space
of our genetic algorithm. The algorithm creates the initial population by ran-
domly selecting stars from its test set until the population size popSize is reached.
Using our two-criteria fitness function, the algorithm calculates the fitness value
for each individual based on the execution time and quality index delivered by
the FGS algorithm. By specifying the parameter weights wtime and wtaste, the
tester is flexible to define the test goal.

Based on the fitness values, our genetic algorithm selects the fittest individ-
uals from each tournament with k individuals into a new population. On the
newly selected population, Algorithm 3 performs the crossover by means of the
parameterized uniform crossover strategy. The crossover function generates new
individuals by mixing genes of selected individuals according to the crossover
probability pc. Subsequently, the genetic algorithm applies the mutation opera-
tor to the newly generated child population. Our genetic algorithm iteratively

150 U. Witteck et al.

Input: TS, popSize, wtime, wtaste, atime, ataste, pc, pm, T, maxTime, k
Output: P

1 P ← ∅;
2 t = fitTime = fitTaste = 0;
3 P ← getInitialPopulation(popSize);
4 popFit, fitTime, fitTaste ← evaluation(wtime, wtaste, atime, ataste);
5 while t < T and fitTime < maxTime do
6 P ← selection(k);
7 P ← crossover(pc);
8 P ← mutation(pm);
9 popFit, fitTime, fitTaste ← evaluation(wtime, wtaste, atime, ataste);

10 t++;

11 end

Algorithm 3. Genetic algorithm.

evolves individuals until it reaches a predefined maximum number of generations
T or the achieved maximum execution time of a generation exceeds a specified
maximum execution time maxTime. Algorithm 3 provides a population P of
individuals that provoke the longest execution times and lowest mathematical
accuracies of the satellite on-board image processing algorithm.

Using the genetic algorithm, our test approach improves an already reduced
test set to efficiently provoke worst-case execution time and inaccurate results of
the FGS algorithm. If the test detects violations of the requirements, the FGS
algorithm has to be corrected and tested again [20].

5 Evaluation

We have implemented our test approach to investigate its efficiency to generate
specific test cases that provoke mission-critical behavior for satellite on-board
image processing applications. We used the FGS algorithm of the PLATO mis-
sion as a case study.

Our objective is to evaluate our approach for the development and test of
the FGS algorithm implementation. In particular, we test execution time and
mathematical accuracy of the algorithm under realistic hardware conditions. For
that purpose, we run the FGS algorithm on a GR-XC6S FPGA development
board [10] running at 50 MHz.

In our experiments, we have used a complete test set that covers all equiva-
lence class combinations defined in Sect. 4.2 as search space of the genetic algo-
rithm. We have used the following start parameters to calculate the equivalence
classes of the FGS input parameters P, M, E , and G as described in Sect. 4.2:

– Initial radius r0 of FPA partitioning: 2290 pixel
– Initial polar angle θ0 of FPA partitioning: 45◦

– Number of magnitude sub-ranges: 6
– Ratio r of central sub-area to pixel area: 0.25

A Genetic Algorithm with Tournament Selection 151

As a result, we get 32 equivalence classes of parameter P, 6 equivalence classes for
parameter M, and 4 equivalence classes for input parameter E . Since Gaussian-
PSF stars are unrealistic, we eliminate them from the test set. This significantly
reduces the number of possible star combinations to 7.7×10−53 to cover the whole
input domain of the FGS algorithm. We generate a complete test set by means
of the partitioning approach presented in [19]. Our test application randomly
selects star combinations from this test set and sends picture sequences of 1000
times steps for each star to the development board, where the FGS algorithm
calculates the attitude data. As a result, the test application receives execution
time and quality index for each time step and averages them over all time steps.
Based on these values, our genetic algorithm calculates the fitness value of the
executed star combination.

Table 1. Genetic algorithm configuration.

Population size 20

Number of genes 30

Max execution time [ms] 300

atime [ms] 3.5

ataste 5.5 × 10−10

pc 0.5

pm 0.06

Maximum generation number 100

Tournament size 7

In this paper, we updated the configuration specified in [20]. Table 1 lists all
parameters that we used for the configuration of our genetic algorithm. In con-
trast to [20], we have taken the standard deviation of the maximum execution
times and quality indexes from previous experiments as reference values atime

and ataste respectively. Moreover, we increased the maximum generation number
to 100 since the results in [20] indicates that fitter individuals will be found if
the maximum number of generations is increased. Due to our updated selection
method, the configuration includes a new parameter to define the tournament
size for each selection process. We set this value to 7. As stated in [4], tourna-
ment sizes of 2, 4 or 7 individuals are often used. However, for our problem a
tournament size of 7 provides the best results.

Similar to [20], we have set the population size to 20 due to time reasons. Fur-
ther, we have set the maximum execution time of the FGS algorithm to 300 ms
according to PLATO requirements. There are no termination conditions with
respect to the quality index as no PLATO requirement exists for this measure.
We have performed 10 independent runs of each experiment and averaged the
results since genetic algorithms involve randomness due to the random selection
of the initial population as well as the crossover and mutation process.

152 U. Witteck et al.

Fig. 6. Experimental results.

In the first two experiments, our genetic algorithm optimizes solutions for
one fitness criteria: either execution time or quality index. For that, we have set
the respective weighting factor wtime or wtaste to 1 and the other to 0. Thus,
the calculated fitness value corresponds to the execution time or quality index
respectively. The fitness values of both experiments are shown in Fig. 6 by the
solid lines. The upper left part of Fig. 6 presents the average of the highest exe-
cution time per generation over 10 runs. As the figure shows, the execution times
do not violate the PLATO timing requirement. The upper right part shows the
average of the highest quality index per generation over 10 runs. Both diagrams
show that the execution time as well as the quality index already increase signif-
icantly in the first 20 generations. However, both diagrams indicate that higher
execution times and quality indexes will be found if the number of generations
would be increased for both experiments.

In a third experiment, we have set wtime and wtaste to 0.5 each to investigate
the capability of our genetic algorithm provoking a long execution time and
a high quality index at the same time. The corresponding execution time and
quality index are shown in the upper parts of Fig. 6 by the dashed lines. As the
figure shows, the execution times do not violate the timing requirement. The
execution time and quality index slightly decrease in some generations in favor of
a lower accuracy or higher execution time respectively. That is possible because
an individual with a short execution time may be fitter compared to another
individual with a longer execution time, because of a much higher quality index.

A Genetic Algorithm with Tournament Selection 153

The resulting evolution of the averaged fitness values per generation is shown
in the lower part of Fig. 6 by the dashed line. Like in the first experiments,
the fitness value significantly increases in the first 20 generations. However, the
fitness value continues to increase over all generations.

Figure 6 compares the resulting fitness values of the genetic algorithm using
the tournament selection (TOS), indicated by the dashed line, with the fitness
values generated using the stochastic universal sampling (SUS) selection method,
indicated by the loosely dashed line. In both experiments, we set the weight-
ing factors wtime and wtaste to 0.5. Compared to the results reached with the
stochastic universal sampling selection method that is used in [20], we reach
much higher execution times, quality indexes as well as fitness values using the
tournament selection method. Moreover, with tournament selection, the fitness
values increase significantly faster in the first generations compared to stochastic
universal sampling selection. Thus, fewer generations are needed to select better
individuals. With the stochastic universal sampling method, the selection pres-
sure is too low. The individuals have nearly the same fitness value. Therefore, all
individuals are selected with almost equal probability into the new population.
Using the tournament selection method the tester is able to adapt the selection
pressure to the specific problem by selecting the tournament size. A larger tour-
nament size leads to higher selection pressure. As Fig. 6 shows, a higher selection
pressure leads to higher execution time, quality index, and fitness value.

We have compared our experimental results with random testing. For that,
we have randomly selected combinations of 30 stars from our complete test set.
Figure 6 shows the measured execution times, quality index, and fitness value
of the random test by the dotted lines. The results are averaged over 10 runs.
We have calculated the fitness values using our fitness function with wtime and
wtaste equals 0.5. Per generation, the maximum fitness values are selected from
20 random test cases. Figure 6 shows, the maximum fitness value reached by ran-
dom testing is lower compared to the genetic algorithm using the tournament
selection method or the stochastic universal sampling selection method. This
demonstrates that our genetic algorithm is more capable to find a higher execu-
tion time and higher quality index (i.e. lower mathematical accuracy) executing
fewer test cases compared to random testing [20].

We also evaluate in which equivalence classes the fittest individuals of each
run from our third experiment end up. The left part of Fig. 7 illustrates the
standard deviation of the number of stars per radius. The figure depicts that
stars near the FPA center are more likely to provoke worst case execution time
and high quality indexes of the FGS algorithm. The right part of Fig. 7 shows
the standard deviation of the number of stars per polar angle. Four circular ring
sectors stand out where many stars end up. In these areas, stars may be more
affected by optical aberrations of the telescope.

Considering the radius and the polar angle all equivalence classes of param-
eter P with maximum radius r0 as well as all equivalence classes with left polar
angle 45, 90, 225, and 270 provide test stars that are able to provoke mission
critical behavior of the FGS algorithm.

154 U. Witteck et al.

Fig. 7. Selected test stars per FPA radius and FPA polar angle.

Fig. 8. Selected test stars per pixel class.

Regarding the pixel position, most stars fall into the pixel corner class E0, as
Fig. 8 demonstrates. Due to the movement of the telescope, stars in the corner
area are more likely to move to neighboring pixels than stars located in the
center class. Due to the movement, the pixel illumination and the apparent star
position varies. That leads to inaccurate centroid calculations. In this case, more
iterations are needed to refine the centroid position of a star, which means the
execution time increases, and the mathematical accuracy decreases. As Fig. 8
shows, stars in the pixel center, i.e. E3, are less suited to provoke the intended
behavior of the FGS algorithm since the accuracy of these stars is less affected
by movements.

Figure 9 depicts the standard deviation of the number of stars per magnitude
class. The figure shows fittest individuals are bright stars, i.e. stars with low
magnitude. That means stars in equivalence classes M5.5 and M5.7 are suitable
to provoke mission critical behavior of the FGS algorithm.

Regarding the combination of the parameters, the experiment demonstrates
that stars with low magnitude, located near the FPA center in the circular ring
sectors with upper angle 90, 135, 225, or 270 and with its centroid located in

A Genetic Algorithm with Tournament Selection 155

Fig. 9. Selected test stars per magnitude.

a pixel corner are most suited to provoke long execution times and inaccurate
mathematical results of the FGS algorithm. However, we need further investi-
gations to rule out the possibility of a systematic error, e.g. stars are shifted
on the FPA by an offset, in the test data. Nevertheless, the experiment shows
that our genetic algorithm is capable to efficiently find equivalence class com-
binations that provide test cases suitable to provoke long execution times and
mathematical inaccurate results of the FGS algorithm.

Note that our genetic algorithm automatically provides test sets that have
high execution times and quality indexes in a few generations. Hence, it improves
the efficiency of the software testing process. However, it will never examine all
possible 7.7 × 10−53 star combinations. Therefore, we can not rule out if there
are other combinations that provoke longer execution times or higher quality
indexes. But it increases the confidence in the robustness of the satellite on-
board image processing application [20].

6 Conclusion

Due to complex computations performed by satellite on-board image processing
applications, it is difficult to find test cases that provoke mission-critical behavior
in a huge input domain. In this paper, we have presented a genetic algorithm
that automatically finds test cases that provoke real-time critical behavior or
scenarios where the mathematical accuracy gets critically low.

We first reduce the number of required test cases by using the partitioning
test approach proposed in [19]. In this paper, we summarize the definition of
equivalence classes for each input parameter to remove redundant test cases from
a given test set as well as the definition of multidimensional coverage criteria to
insert missing but relevant test cases. By means of the partitioning approach, we
get a reasonably small test set that completely covers the whole input domain.

We have defined the complete test set as search space of our genetic algo-
rithm. This makes the search faster since the search space is significantly smaller
than the full combination of all possible input scenarios. Moreover, we have

156 U. Witteck et al.

defined a two-criteria fitness function that is based on execution time and math-
ematical accuracy of a given satellite on-board image processing application.
Using that function our genetic algorithm automatically steers the search to test
cases that provoke long execution times or inaccurate results or both. The tester
is able to specify which criterion has more impact on the fitness value of a test
case.

Using the selection method presented in [20], the individuals do not evolve
because of too low selection pressure. In this paper, we changed the selection
method of our genetic algorithm to tournament selection to increase the selec-
tion pressure. Moreover, using the updated selection method the tester is able
to adapt the selection pressure by changing the tournament size. Additionally,
the tester specifies the input parameters of the genetic algorithm, for example,
population size, termination conditions, etc. This makes our genetic algorithm
flexible and adaptable to different test goals and various on-board image pro-
cessing applications.

To demonstrate the efficiency of our genetic approach, we have investigated
the capability of the algorithm to automatically find test cases that support
robustness testing of a given satellite on-board image processing application. As
a case study, we used the FGS algorithm as an application with high criticality
for the PLATO mission. In our experiments, the updated genetic algorithm auto-
matically evolves test cases with higher execution times and lower mathematical
accuracy of the FGS algorithm compared to the genetic algorithm presented in
[20] as well as random testing. The experiments demonstrate that our genetic
algorithm finds equivalence class combinations that provide more suitable test
cases than others.

In this paper, we have considered the TASTE value as a qualitative measure
of mathematical accuracy. To investigate the accuracy of the application more
precisely, we plan to consider errors of the results, e.g. angle errors for each
axis, as criteria for the mathematical accuracy. Further, we have evaluated our
approach by means of a single satellite on-board image processing application.
Since our approach is flexible, the useability for other applications, e.g. blob
feature extraction in the robotics domain, can be investigated [20].

References

1. Alander, J.T., Mantere, T.: Automatic software testing by genetic algorithm opti-
mization, a case study. In: Proceedings of the 1st International Workshop on Soft
Computing Applied to Software Engineering, pp. 1–9 (1999)

2. Bhandari, D., Murthy, C., Pal, S.K.: Variance as a stopping criterion for genetic
algorithms with elitist model. Fund. Inform. 120(2), 145–164 (2012)

3. Bringmann, E., Krämer, A.: Systematic testing of the continuous behavior of auto-
motive systems. In: International Workshop on Software Engineering for Automo-
tive Systems, pp. 13–20. ACM (2006)

4. Fang, Y., Li, J.: A review of tournament selection in genetic programming. In:
Cai, Z., Hu, C., Kang, Z., Liu, Y. (eds.) International Symposium on Intelligence
Computation and Applications. LNCS, vol. 6382, pp. 181–192. Springer, Heidelberg
(2010). https://doi.org/10.1007/978-3-642-16493-4 19

https://doi.org/10.1007/978-3-642-16493-4_19

A Genetic Algorithm with Tournament Selection 157

5. Gerdes, I., Klawonn, F., Kruse, R.: Evolutionäre Algorithmen: Genetische Algo-
rithmen - Strategien und Optimierungsverfahren - Beispielanwendungen. vieweg,
1 edn. (2004)

6. Grießbach, D.: Fine guidance system performance report. Technical report.
PLATO-DLR-PL-RP-0003, DLR (2020)

7. Hänsel, J., Rose, D., Herber, P., Glesner, S.: An evolutionary algorithm for the
generation of timed test traces for embedded real-time systems. In: International
Conference on Software Testing, Verification and Validation (ICST), pp. 170–179.
IEEE Computer Society (2011)

8. Huang, W., Peleska, J.: Complete model-based equivalence class testing. Int. J.
Softw. Tools Technol. Transf. 18(3), 265–283 (2016)

9. Girgis, M.R.: Automatic test data generation for data flow testing using a genetic
algorithm. J. Univ. Comput. Sci. 11(6), 898–915 (2005)

10. Pender Electronic Design GmbH: Gr-xc6s-product sheet (2011)
11. Pertenais, M.: Instrument technical requirement document. Technical report.

PLATO-DLR-PL-RS-0001, DLR (2019)
12. Sharma, A., Patani, R., Aggarwal, A.: Software testing using genetic algorithms.

Int. J. Comput. Sci. Eng. Surv. 7(2), 21–33 (2016). https://doi.org/10.5121/ijcses.
2016.7203

13. Shuster, M.D.: The taste test. Adv. Astronaut. Sci. 132 (2008)
14. Sthamer, H., Baresel, A., Wegener, J.: Evolutionary testing of embedded systems.

In: Proceedings of the 14th International Internet & Software Quality Week (QW
2001), pp. 1–34 (2001)

15. Varshney, S., Mehrotra, M.: Automated software test data generation for data flow
dependencies using genetic algorithm. Int. J. 4(2), 472–479 (2014)

16. Wegener, J., Mueller, F.: A comparison of static analysis and evolutionary testing
for the verification of timing constraints. Real-Time Syst. 21(3), 241–268 (2001)

17. Witteck, U.: Automated test generation for satellite on-board image processing.
Master thesis. TU Berlin (2018)

18. Witteck, U., Grießbach, D., Herber, P.: Test input partitioning for automated
testing of satellite on-board image processing algorithms. In: Proceedings of the
14th International Conference on Software Technologies - Volume 1: ICSOFT, pp.
15–26. INSTICC, SciTePress (2019). https://doi.org/10.5220/0007807400150026

19. Witteck, U., Grießbach, D., Herber, P.: Equivalence class definition for automated
testing of satellite on-board image processing. In: van Sinderen, M., Maciaszek,
L. (eds.) Software Technologies. ICSOFT 2019. Communications in Computer and
Information Science, vol. 1250, pp. 3–25. Springer, Cham (2020). https://doi.org/
10.1007/978-3-030-52991-8 1

20. Witteck, U., Grießbach, D., Herber, P.: A genetic algorithm for automated test gen-
eration for satellite on-board image processing applications. In: Proceedings of the
15th International Conference on Software Technologies - Volume 1: ICSOFT, pp.
128–135. INSTICC, SciTePress (2020). https://doi.org/10.5220/0009821101280135

https://doi.org/10.5121/ijcses.2016.7203
https://doi.org/10.5121/ijcses.2016.7203
https://doi.org/10.5220/0007807400150026
https://doi.org/10.1007/978-3-030-52991-8_1
https://doi.org/10.1007/978-3-030-52991-8_1
https://doi.org/10.5220/0009821101280135

Model-Based Threat Modeling
for Cyber-Physical Systems:
A Computer-Aided Approach

Monika Maidl1(B), Gerhard Münz1, Stefan Seltzsam1, Marvin Wagner2,
Roman Wirtz2, and Maritta Heisel2

1 Siemens AG, Otto-Hahn-Ring 6, 81739 Munich, Germany
{monika.maidl,muenz.gerhard,stefan.seltzsam}@siemens.com

2 University of Duisburg-Essen, Duisburg, Germany
{marvin.wagner,roman.wirtz,maritta.heisel}@uni-due.de

Abstract. Harming the security of a Cyber-Physical System (CPS) can
lead to substantial damage and endanger for life because such a system
includes many devices that interact with the physical world. Following
the principle of security-by-design, the consideration of security should
take place as early as possible during software development. However,
the current state of the art often lacks systematic documentation of pos-
sible threats, and the identification of all relevant threats is not a trivial
task.

In previous work, we presented a taxonomy of relevant attack actions
for CPSs. The distinguishing feature of the taxonomy is its two-
dimensional structure. We map typical attack actions to the attack sur-
face. The attack surface is described by the component’s interfaces which
can be misused by attackers to gain access to a component, thus poten-
tially harming the security of the system. On top of this taxonomy, we
described an example of an attack action catalog. The application of our
taxonomy and the attack action catalog still requires manual effort from
practitioners, e.g. when looking up relevant attack actions.

Therefore, we developed a tool based on our taxonomy which we
present in the present paper. In a first step, we formalized our tax-
onomy in form of a metamodel. Each threat model is an instance of
that metamodel. The metamodel reflects the way in which the taxonomy
links attack actions with parts of the system. Furthermore, we created a
graphical editor that assists practitioners in creating the threat model.
Based on the taxonomy’s metamodel and attack action catalogs, the tool
pre-filters relevant attack actions and allows to systematically document
them in the threat model. Our tool provides different views on the threat
model, thus helping to focus on the relevant aspects for a specific task.

Keywords: Security threats · Threat modeling · Attack actions ·
Taxonomy · Catalog · Tool-support

c© Springer Nature Switzerland AG 2021
M. van Sinderen et al. (Eds.): ICSOFT 2020, CCIS 1447, pp. 158–183, 2021.
https://doi.org/10.1007/978-3-030-83007-6_8

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-83007-6_8&domain=pdf
https://doi.org/10.1007/978-3-030-83007-6_8

Model-Based Threat Modeling for CPSs 159

1 Introduction

Cyber-Physical Systems (CPSs) are running in many places, especially in critical
infrastructures. These systems interact with the physical world, e.g. by moni-
toring values measured with sensors. The recent development in the context of
the Internet-of-Things leads to increasing use of CPSs, also into private homes.
Usually, a CPS is composed of different components that communicate with each
other via interfaces. Due to their connected nature and their dissemination, CPSs
are often subject to attacks. Therefore, it is essential to design critical systems
with adequate security measures in place, following security standards like IEC
62443 [9].

The term threat modeling summarizes methods that deal with identifying
and documenting incidents that may have an impact on the system’s security.

Shostack [17] defines the term as follows: “Threat modeling is the use of
abstractions to aid in thinking about risks.” Uzunov and Fernández [20] give an
alternative definition: “Threat modeling is a process that can be used to analyze
potential attacks or threats, and can also be supported by threat libraries or
attack taxonomies.”

The knowledge about such threats can be captured in so-called threat
libraries which exist for many types of systems. Security engineers can look
up relevant threats and document them for their concrete system. However,
these libraries often do not follow a common structure for the different threat
descriptions.

A well-known taxonomy for security is STRIDE [11]. STRIDE provides six
categories for typical threat categories. The disadvantage of the taxonomy is
its generic nature, i.e. the categories are not mapped to specific elements of
the system. Therefore, the application of STRIDE requires high expertise from
security engineers.

In previous work, we presented a two-dimensional taxonomy that addresses
the disadvantage of STRIDE by mapping typical attack actions to the attack
surface [13]. The first dimension of this taxonomy is similar to STRIDE since
it denotes The new approach is to combine this attack action dimension with
a second dimension: The second dimension, which we call the attack surface
dimension, consists of the system elements that constitute the attack surface
of the system. It is described by the elements that allow some interaction, i.e.
the component’s interfaces. Attackers may perform malicious actions at these
points, thus leading to harm to the system’s security. The taxonomy allows
creating catalogs of typical attack actions to CPSs. Practitioners can use these
catalogs to look up relevant attack actions for the system they analyze.

Although our taxonomy and the attack action catalogs assist practitioners in
identifying relevant threats, manual effort is still required, e.g. when documenting
the identified threats. To support practitioners in systematically identifying and
documenting relevant threats to the system, we developed a tool based on our
taxonomy following a model-based approach. We first formalize the taxonomy
and its dependencies to the system model by developing a metamodel. For the
attack surface, we make use of our metamodel for CPS which we presented in

160 M. Maidl et al.

Weakness

Threat scenario

A�ack ac�on

Protec�on goal Confiden�ality

Availability

Integrity

CPS element/
A�ack surface

User Interface

OS-Level Access

C2C Interface

Physical Interface

Network
Communica�on

targets

leads to
viola�on ofexploits

MC AC MI DD TD ER

Fig. 1. Threat modeling terminology [13].

previous work [14]. Our metamodel includes the elements of a threat model, i.e.
a systematic listing of threats to a system. The focus of our metamodel is to
show the dependencies between the aspects of threats and different elements of
the system, thereby reflecting the relation between the two dimensions of the
taxonomy. To instantiate the metamodel, i.e. to create a threat model for a
previously modelled system, we provide a graphical editor. The editor allows
to systematically analyze the system, and it pre-filters relevant attack actions
based on the provided interfaces. Furthermore, it is possible to embed attack
action catalogs into the editor, thus ensuring flexibility for different development
projects. To help practitioners in focusing on relevant aspects, our editor provides
different views on the model.

The remainder of the paper is structured as follows: In Sect. 2, we describe
the terminology which we use in this paper. In Sect. 3, we describe the taxon-
omy for which we present our tool support in this paper. It is followed by its
formalization in form of our metamodel in Sect. 4. Section 5.1 explains how cat-
alogs can be structured with our taxonomy, and we provide an example of a
catalog. Our graphical editor to create a threat model is described in Sect. 6. We
discuss related work in Sect. 7 and conclude the paper with a summary of our
contributions and an outlook on future work in Sect. 8.

2 Terminology

The terminology in the context of threat modeling varies between different stan-
dards and publications. To have a common understanding for this paper, we
provide an overview of the used terminology in Fig. 1.

The output of threat modeling is a list of Threat scenarios. Each threat
scenario consists of the following elements: an Attack action, a CPS element as
part of the Attack surface, a Weakness, and a Protection goal. As protection
goals, we consider the CIA triad Confidentiality, Integrity, and Availability.

The threat scenario describes how an attack action leads to the violation of
a protection goal by exploiting a weakness. The attack action targets an element
of the attack surface of the CPS, i.e. an interface or network communication.

Model-Based Threat Modeling for CPSs 161

In some cases, a sequence of attack actions are required for the violation of
protection goals, and these are described as part of the threat scenarios.

For illustration, we describe the example of a threat scenario: An attacker,
pretending to be a legitimate device of the CPS, sends manipulated configuration
(attack action) to an embedded component that is accessible via a C2C inter-
face. As a result, the configuration of the control program is changed (violating
the protection goal ‘integrity of configuration’), and the embedded component
behaves in an unintended way.

The goal of threat modeling is to consider all relevant attack actions against
the CPS. To support this, we use categories of attack surface elements and attack
action types. The elements marked in gray provides an overview of the categories
which we use for our taxonomy (see Sect. 3). The attack surface denotes the first
dimension, and the attack action types are the second dimension.

3 Two-Dimensional Taxonomy

In the following, we describe our two-dimensional taxonomy. We provide a two-
dimensional taxonomy of attack actions for the scope of CPSs. Section 5.1 later
exemplifies the usage of the taxonomy by describing a catalog of attack actions.

We first describe the two dimensions and show how we combine them for our
taxonomy. Finally, we compare the taxonomy with existing ones, i.e. STRIDE
[11] and CAPEC [15].

3.1 Attack Surface Dimension

The first dimension lists the parts of a system that form the attack surface,
i.e. those points of a system at which an attack action may be performed. The
elements of the attack surface depend on the type of system, and reflect the tech-
nical scope and level of detail typically considered in threat modeling. In this
work, a CPS is viewed as a set of different types of components like embedded
devices and hosts (workstations and servers) that are running standard oper-
ating systems and domain-specific applications and services. The components
communicate through a combination of network protocols. In previous work,
we proposed a metamodel for CPSs which is intended to be used as a basis
of security analysis and specifies the elements of the attack surface of a CPS
[14]. These elements form the attack surface dimension, and in the following, we
explain them in detail.

The primary parts of an attack surface are the interfaces of the system com-
ponents, as interfaces are the parts of the system that are open for interaction.
Corresponding to the scope and level of detail considered in this paper, the var-
ious interfaces related to operating systems are covered by one abstract attack
surface element, and the same holds for network communication.

User Interface. User interfaces are designed to let human users interact with
the system. User interfaces can be realized in different ways, e.g. as a graph-
ical user interface of an application running on the local computer, as a

162 M. Maidl et al.

web-based user interface accessed over the network via a web browser, or
as a human-machine interface realized with an embedded device. Apart from
interfaces for regular users of the CPS, user interfaces for administration pur-
poses need to be covered as well. User interfaces are usually associated with
user accounts to implement user identification, authentication, and autho-
rization.

Component-to-Component (C2C) Interface. These interfaces are similar
to user interfaces but are designed to allow interaction between components
instead of humans. Typically, an application running on a system component
calls a service that runs on another component according to some proto-
col. C2C interfaces implement protocols and may include authentication and
authorization. Typically, the protocol used by some C2C interface is utiliz-
ing standard network services that are implemented as part of the operating
system. Interfaces (e.g. APIs) that exist internally in a component without
being accessible by other components are not considered as C2C interfaces
but considered as part of OS level access.

OS Level Access. There are various possible ways of how an attacker can
interact with the operating system of a component. This includes local APIs
and files, as well as the installation and modification of software, and network
services that are implemented as part of the operating system. We use the
element OS level access to represent the range of actual OS interfaces. This
corresponds to the typical scope and level of detail of security analyses for
CPSs, where the interfaces of the operating system are not modeled in all
detail.

Physical Interface. These interfaces require physical access or physical prox-
imity to the component to interact with the system. This is often relevant
for CPSs with components that are widely deployed across sites. Included
are interfaces used to communicate with the component, such as serial ports,
USB port, local diagnosis or management interfaces, and near-field commu-
nication, e.g. Bluetooth. Other kinds of physical interactions are covered as
well, such as manipulating the hardware and removing a hard drive.

Network Communication. User interfaces and C2C interfaces may involve
network communication between different components of the CPS, using a
protocol. Communication takes place over a potentially complex network
infrastructure composed of network cables and network devices like routers
and firewalls. We use Network Communication as an element of the attack
surface that subsumes all possibilities to attack the communication between
components of the CPS. An attacker could e.g. perform wiretapping at an
accessible LAN port, or hack into a network device to disturb the communi-
cation. This abstraction corresponds to the typical scope and level of detail
of the design of CPSs, which builds on an existing network infrastructure
such as the Internet or production networks.

Model-Based Threat Modeling for CPSs 163

3.2 Attack Action Type Dimension

Attack actions are a central part of threat scenarios, as shown in Sect. 2, and
describe the action an attacker takes at the attack surface of the system. Hence
it is straightforward to use types of attack actions as a dimension of our taxon-
omy. Actual attack actions are often creative ways to interact with the system
in an unintended way, and hence the known attack actions are very heteroge-
neous. Therefore it is not straightforward to find suitable types. We devised the
following guiding principles for the development of our attack action types.

1. Focus on actions that an attacker performs at some location of the attack
surface.

2. Strictly differentiate between attack actions and harm. As detailed in
Sect. 3.5, after the identification of a relevant attack action for a CPS, it
is a separate step to analyze whether a protection goal can be violated by
that attack action.

3. Common attack actions should be assignable to one of the attack action types
in a straightforward way. As a reference for common attack actions, we use the
list compiled from industrial projects, as well as external sources [5]. Coverage
of ‘esoteric’attack actions has less priority.

4. Keep it simple: For good usability, the list of attack action types should not
be too long, and easy to grasp.

As the next step, we considered existing taxonomies, in particular STRIDE and
the taxonomy-level of CAPEC. To meet the guiding principles, we performed
some adaptations. Section 3.4 contains a detailed comparison of the attack action
types with the taxonomies of STRIDE and CAPEC, showing the adaptations.

The following list presents the attack action types, which form the attack
action type dimension of our taxonomy. We argue for each case that the first
two principles are fulfilled.

MC. Misuse credentials: Attacker obtains the authentication credentials for the
account of a legitimate user and uses these to get access.
Note that this type covers all attack actions that relate to passwords, e.g.
actions like obtaining passwords by social engineering, or guessing the pass-
word. Such attacks are very common indeed. Login interfaces are part of
the attack surface. And as misuse of a password is not in itself harmful, the
second principle is also observed.

AC. Exploit weakness of access control: Attacker circumvents or breaks access
control and gets access.
This type covers the actions of attackers who are confronted with some form
of access control. Access control is located at places where interaction with
users or other components is expected, and hence the first principle is fulfilled.
The second principle is observed by the same argument as for MC. One could
argue that credentials are part of access control, but we decided to single out
the misuse of credentials as a separate type, as AC is about exploiting (usually
technical) weaknesses, while MC is about misusing legitimate credentials.

164 M. Maidl et al.

MI. Submit malicious input: Attacker enters or sends malicious data or com-
mands.
This type comprises many common attack actions, in particular many actions
against Web applications like SQL-injection. The first principle is fulfilled
since interfaces that take input are open for interaction and hence are part
of the attack surface. The second principle is fulfilled as it requires separate
considerations to determine harm that might be caused by malicious input.

DD. Disclose data: Attacker reads or sniffs data.
This type comprises attack actions where an attacker can easily read data
at the attack surface, e.g. by sniffing clear-text protocols. So the first princi-
ple is observed. Concerning the second principle, note that this type stands
for various actions in which data is read at a place directly accessible to
the attacker. Whether such reading results in harm, by violating the protec-
tion goal of confidentiality, is a different (although in this case fairly easy)
consideration: Determining whether the data that can be read is sensitive.

TD. Tamper data: Attacker manipulates data.
This type is similar to the type DD. The difference is that this type covers
attacks where data is manipulated at the attack surface.

ER. Exhaust resources: Attacker uses up limited, shared resources needed by
the system.
This type covers attack actions that exploit the use of shared resources, e.g.
CPU, memory, or network bandwidth. The attack surface for these actions
is some form of access to the shared resource, e.g. the possibility to run
applications on the operating system, or the possibility to send traffic in a
network. So the first principle is fulfilled. Concerning the second principle,
like in the two previous cases, it might be easy to determine the harm that
follows from the exhaustion of a shared resource, but this attack action type
focuses on the ways how to perform the exhaustion.

The example attack action catalog in Tables 4 and 5 shows that the third
principle is met, by mapping a range of common attack actions to our attack
action types.

3.3 Two-Dimensional Taxonomy

As the attack action types of Sect. 3.2 stand for attack actions at the attack
surface, it is a natural step to relate the attack action types with the attack
surface elements of Sect. 3.1. Table 1 shows the mapping, where the statements
in each field express the relation. In most cases, the statements are straightfor-
ward, while some statements clarify the relevant aspects of the attack surface.
Furthermore, some attack actions are not relevant for certain elements of the
attack surface, resulting in empty fields in the table.

The two-dimensional taxonomy helps to systematically cover attack actions
for the attack surface of a system.

We provide some explanations for the statements in the table: The attack
action types DD and TD are considered for user and C2C interfaces. By design,

Model-Based Threat Modeling for CPSs 165

Table 1. Two-dimensional taxonomy [13].

User
interface

C2C
interface

OS level
access

Physical
interface

Network
comm.

MC Attacker
misuses
credential to
authenticate
to the user
interface

Attacker
misuses
credential to
authenticate
to the
C2C-interface

Attacker
misuses
credential to
obtain access
to the
operating
system

Attacker
misuses
credential to
obtain access
to physical
interface

AC Attacker
exploits
weakness in
the access
control of the
user interface

Attacker
exploits
weakness in
the access
control of the
C2C interface

Attacker
exploits
weakness in
the access
control of the
operating
system

Attacker
exploits
weakness in
the access
control of the
physical
interface

MI Attacker
enters
malicious
input at the
user interface

Attacker sends
malicious
input to the
C2C interface

Attacker sends
malicious
input to some
OS level
interface

Attacker
enters
malicious
input at the
physical
interface

DD Attacker reads
data out of
memory

Attacker reads
data via
physical
interface

Attacker sniffs
network com-
munication

TD Attacker
manipulates
data stored in
memory

Attacker
manipulates
data via
physical
interface

Attacker
manipulates
network com-
munication

ER Attacker
exhausts
resources of
the operating
system

Attacker
exhausts
network
resources

these interfaces display data and provide functionality for editing. Using this
functionality is not an attack action. If the access to a user or C2C interface
is meant to be restricted, then the attack action types MC and AC apply and
cover possible ways an attacker can get access despite the access protection.

The last row of Table 1 shows that the attack action type ER is only consid-
ered for OS level access and network access. Only at these elements of the attack
surface, an attacker has direct access to limited resources, like CPU, memory,
or network bandwidth. In contrast, user interfaces, C2C interfaces, and physical
interfaces do not provide direct access to resources. Malformed input to these
interfaces that causes the receiving component to crash, e.g. due to overload, is
covered by the type MI.

The column for OS level access reflects the fact that this element of the attack
surface comprises various interfaces of the operating system. For MC, the user
accounts of the operating system are in focus. The attack action type AC refers
to the various access control mechanisms of the operating system, e.g. privilege
of processes and file permissions. It comprises attacks to exploit weaknesses in
these mechanisms, e.g. to obtain higher privileges. Malicious input (MI) can

166 M. Maidl et al.

Table 2. Mapping of taxonomy categories - STRIDE [13].

Category Description MC AC MI DD TD ER

Spoofing of user
identity

Impersonating something or
someone else.

� �

Tampering with
data

Modifying data or code �

Repudiation Denying to have performed an
action

Information dis-
closure

Exposing information to
someone not authorized to see
it

�

Denial of service Deny or degrade service to
users

� �

Elevation of priv-
ilege

Gain capabilities without
proper authorization

� �

take the form of malware that exploits vulnerabilities in the operating system.
Malicious input may originate from a user with OS level access who is tricked
into downloading and executing malware. Another path of malicious input is
specially crafted packets sent to a network service of the operating system.

For network communication, as explained in Subsect. 3.1, the scope and level
of detail applied in the design of a CPS usually does not include the net-
work infrastructure. Hence, threat modeling for a CPS focuses on attack actions
against the network communication between components. These attack actions
are disclosing (DD), tampering (TD), and exhausting resource (ER). The attack
action types MC, AC, and MI are not relevant as the network communication
does not process credentials, does not implement access control, and does not
handle inputs. These tasks are performed by the protocol stack of the corre-
sponding user or C2C interface.

3.4 Comparison with Other Taxonomies

In a systematic literature review on threat analysis of software systems performed
by Tuma et al. [19], five methodologies make use of some sort of knowledge base,
are applicable to the architectural or design level, and take the architectural
design as input. Three of them use STRIDE [7,8,17] as taxonomy, the remaining
two refer to CAPEC [2,3]. As our taxonomy also provides a knowledge base and is
supposed to be used in the same context of threat analysis, this section provides
a detailed comparison with STRIDE and CAPEC.

STRIDE. STRIDE [11] is a well-known categorization model for threats against
computer systems. It has been developed by Microsoft and is integrated in the

Model-Based Threat Modeling for CPSs 167

Microsoft Threat Modeling Tool1. STRIDE is a mnemonic for six threat cate-
gories: Spoofing, Tampering, Repudiation, Information disclosure, Denial of ser-
vice, and Elevation of privilege.

We found that some of the STRIDE categories refer to the impact of a
successful attack (e.g. denial of service) rather than to the actual action an
attacker performs. To avoid confusion, our taxonomy clearly focuses on attack
actions that describe what an attacker does. The impact of an attack action can
be assessed in a subsequent step by determining the violated protection goals.

Table 2 shows how the STRIDE categories can be mapped to our attack
action types. As can be seen, the STRIDE categories Tampering and Infor-
mation disclosure are directly related to the attack action types TD and DD.
Spoofing can be achieved by misusing credentials of existing accounts (MC), or
by exploiting an access control weakness (AC). Denial of service is typically
caused by malicious input (MI), such as a specially crafted packet leading to a
segmentation fault, or by exhausting limited resources (ER), e.g. with a flooding
attack. Malicious input (MI) as well as bypassing access control (AC) can lead
to Elevation of privilege.

We did not map the STRIDE category Repudiation to any of our attack
actions types. This is because we see repudiation as violation of a protection
goal (i.e. non-repudiation), not an attack action. In fact, various attack actions
can be used with the goal to repudiate an action, such as tampering log files.
But our types focus on the action of the attacker rather than the goal of the
action.

The main extension of our attack action types compared to STRIDE is the
attack action type MI, which includes all kinds of injection attacks, such as SQL
injection, code injection through exploitation of a buffer overflow vulnerability,
infection of a system with malware etc. In STRIDE, these attacks do not have
an explicit category but can only be categorized indirectly by the harm they
cause (e.g. denial of service).

STRIDE itself does not include an attack surface dimension. The Microsoft
Threat Modeling Tool allows us to associate STRIDE categories with elements
of a Data Flow Diagram (DFD), which contains processes, data stores, external
interactors, and data flows between them. However, the combination of STRIDE
categories and DFD elements is not used to provide a better understanding of a
STRIDE category for a DFD element. More importantly, DFDs do not reflect the
different parts of the attack surface of a system. So the combination of STRIDE
with DFDs lacks the possibility to create a catalog of relevant attack actions for
each attack surface element, similar to the ones in Tables 4 and 5.

CAPEC. The Common Attack Pattern Enumeration and Classification
(CAPEC) [15], maintained by MITRE2, provides a catalog of attack patterns.

1 Microsoft Threat Modeling Tool (last access: May 25, 2021): https://www.microsoft.
com/en-us/securityengineering/sdl/threatmodeling.

2 MITRE: https://www.mitre.org/ (last access: May 18, 2021).

https://www.microsoft.com/en-us/securityengineering/sdl/threatmodeling
https://www.microsoft.com/en-us/securityengineering/sdl/threatmodeling
https://www.mitre.org/

168 M. Maidl et al.

Table 3. Mapping of taxonomy categories - CAPEC [13].

Mechanism of
attack

Description MC AC MI DD TD ER

Engage in decep-
tive interactions

Spoofing and social engineer-
ing

� � �

Abuse existing
functionality

Manipulation of data or sys-
tem behavior by misusing sys-
tem functionality

� � � �

Manipulate data
structures

Manipulation of data by
exploiting a system vulnera-
bility

� �

Manipulate sys-
tem resources

Manipulation of shared
resources

� �

Inject unex-
pected items

Manipulation of system
behavior through malicious
input

�

Employ prob-
abilistic tech-
niques

Fuzzing and bruteforcing � �

Manipulate tim-
ing and state

Exploitation of concurrency
issues (e.g. race condition)

� �

Collect and ana-
lyze information

Theft of information � �

Subvert access
control

Exploitation of access control
weakness

�

In CAPEC version 3.2, attack patterns are classified according to two differ-
ent schemes. The first scheme is called domains of attack and assigns attack
patterns to the categories Software, Hardware, Communications, Supply chain,
Social engineering, and Physical security. These categories refer to the type of
weakness that is exploited, such as a software vulnerability, a weak physical
control, or an unaware user. We found that CAPEC attack patterns in the
domain Communications largely correspond to the attack actions associated to
our attack surface element Network Communication. Similarly, most attack pat-
terns belonging to Hardware and Physical security are related to the attack
actions of the attack surface element Physical Interface. For the other domains,
however, we did not find any clear correlation with the different elements of the
attack surface.

The second CAPEC classification scheme is called mechanisms of attack and
refers to general attacking techniques, which is similar to the attack action
dimension of our taxonomy. Table 3 shows a mapping of our attack action types
to CAPEC mechanisms of attack. Attack patterns belonging to the mechanism
Engage in deceptive interactions range from attacks targeting user credentials
and clickjacking to DLL injection and DNS spoofing. In our taxonomy, these

Model-Based Threat Modeling for CPSs 169

attacks are separated into the attack action types MC, AC, and MI. Simi-
larly, Abuse of existing functionality covers a broad spectrum of attack pat-
terns that, in our taxonomy, belong to different attack action types. As can
be seen, the attack mechanisms Manipulate data structures, Manipulate sys-
tem resources, and Manipulate timing and state are related to the attack action
types MI and TD. These two types distinguish between attacks sending mali-
cious input to a system interface, and attacks tampering data (e.g. configuration
files) directly, whereas the three CAPEC mechanisms differentiate between types
of manipulated data and resources. The mechanism Employ probabilistic tech-
niques includes password brute-forcing, which relates to the exploitation of an
access control weakness (AC), and fuzzing attacks, which corresponds to sending
potentially malicious input to an interface (MI). Collect and analyze information
subsumes active and passive information gathering techniques, belonging to the
attack action types MI and DD, respectively.

All in all, we can state that CAPEC’s approach to classify attack patterns
into mechanisms of attacks has some similarities to the attack action dimension
of our taxonomy. The attack surface dimension of our taxonomy, however, is
not reflected in CAPEC. Some CAPEC domains of attack are slightly related
to specific attack surface elements, but in general, CAPEC domains of attack
refer to types of exploited weaknesses. As a consequence, CAPEC lacks the
possibility to easily query attack patterns that are relevant for a specific attack
surface element of a CPS.

3.5 Using the Taxonomy for Threat Modeling

In the process of threat modeling, our taxonomy helps to obtain a list of threat
scenarios as described in Sect. 2. The elements of the attack surface that need
to be considered can be directly extracted from the design of the CPS. In the
first step of threat modeling, for each of these elements and each relevant attack
action type, attack actions are looked up from the catalog.

Once an attack action is found to be relevant, the next step is to analyze
whether the attack action could lead to the violation of a protection goal of the
CPS. This is an essential step of threat modeling, in which know-how about the
architecture of the system is combined with a thorough understanding of the
protection goals for the data and functionalities of the system. If a path to the
violation of a protection goal has been found, a threat scenario is documented.
The threat scenario is completed by describing the weakness of the CPS that is
exploited by the attack action. Usually, the attack action is directly associated
with a weakness, so this step is not challenging. For example, the infection with
malware is exploiting unpatched vulnerabilities, while a brute force attack on a
password is exploiting weak passwords. In fact, it would be a natural extension
of an attack action catalog to link the attack actions to related weaknesses and
hints for security measures. For example, enforcing a strong password policy is
a security measure to protect against brute forcing.

After threat modeling has been completed, the weaknesses are used as a basis
to select (additional) security measures for the CPS.

170 M. Maidl et al.

NetworkZone

Function

DataNetworkCommunication

InterfaceComponent

System

Fig. 2. Relevant artifacts of the system’s metamodel.

We point out some aspects of using the taxonomy with an example: A com-
ponent has several user interfaces and C2C interfaces. The relevant attack action
types, namely MC, AC, and MI, are analyzed for each of these interfaces. This
helps to identify weaknesses in the design of access control for these interfaces,
and weaknesses in the processing of inputs. The component also has several
physical interfaces, and the need to adequately protect each of them may have
been overlooked during design. Going through the attack action types helps to
identify the critical gaps. Furthermore, the component runs a standard oper-
ating system that needs to be securely configured and hardened. The attack
action types allow the architect to understand which parts of the OS need par-
ticular protection, e.g. by encrypting files, disabling unneeded network services,
or implementing other hardening measures. For each of the network communica-
tions of the CPS, the attack action types DD, TD, and ER are analyzed, and as
a result, the architect might decide to use another protocol or a secure channel
for a protocol.

4 Metamodel

As a first step towards tool support, we formalize our taxonomy and the relations.
Based on the Eclipse Modeling Framework (EMF) [18], we create a metamodel
for this purpose. The notation of metamodels EMF is similar to UML class
diagrams. For better readability and space reasons, we have decomposed the
metamodel into four sub-metamodels System, ThreatModel, ThreatScenarioList-
ing, ProtectionGoal. The gray elements in the metamodels are taken from our
CPS system model [14]. Classes with a cursive name are abstract classes. The
focus of our metamodel is on the dependencies between the aspects of threats
and the different elements of the system, thereby reflecting the relation between
the two dimensions of the taxonomy as presented in Sect. 3.

4.1 CPS Metamodel

We use the metamodel for cyber-physical systems (CPS) from our previous work
[14] as a starting point. It contains the elements of the attack surface, i.e. the
interfaces and network communication. In the present paper, we focus on the

Model-Based Threat Modeling for CPSs 171

«Enumeration»
ImpactScale

- red
- orange
- yellow
- green

«Enumeration»
ImpactCategory

- Safety
- Degradation
- BreachesLegal
- BreachesContractual
- LossIntellectual
- LossReputation

System

ProtectionGoal
impact : ImpactScale
impactCategory : ImpactCategory

ThreatModel ThreatScenarioListing

Fig. 3. Metamodel of ThreatModel.

crucial parts of the CPS metamodel that are important for the implementation
of the taxonomy. Figure 2 shows this compact version. The System class is the
root element of the sub-metamodel. It contains four other classes: (i) Network-
Zone representing network zones in a CPS, (ii) Component which can be further
refined to specific types, e.g. a host, (iii) NetworkCommunication representing
the communication between two components, and (iv) Data (represents data
which is processed in a CPS). A component has a set of Interfaces. These inter-
faces offers some functionalities (class Function) to other components. Later on,
we map attack actions to the different interface types (see Sect. 3.1). Our editor
uses this information for filtering relevant attack actions (see Table 1).

4.2 Threat Model

The second sub-metamodel, which is shown in Fig. 3, shows how the other three
sub-metamodels are linked. The root element is the ThreatModel which has an
association to the system. This way, the threat model can make references to
the elements of the system, and the automatic mapping of attack actions to
the interfaces can be used. A threat model consists of ThreatRiskAnalysiss and
ProtectionGoals, both of which are further refined in the next sub-sections.

A protection goal has two attributes. First, there is the attribute impact
of the type ImpactScale. This attribute expresses how severe a violation of the
protection goal would be. We use an enumeration for the ImpactScale. This
enumeration has four literals red, orange, yellow, and green. Red means a high
impact and green means a low impact. Orange and yellow are between them.
Orange means a higher impact than yellow.

The second attribute is impactCategory which has the type ImpactCategory
in form of an enumeration. It has the six literals Safety, Degradation, Breach-
esLegal, BreachesContractual, LossIntellectual, and LossReputation. The impact
category describes what kind the impact has to the system. We use these six
categories because they are the most common ones.

172 M. Maidl et al.

4.3 Protection Goals

FunctionData

IntegrityConfidentiality Availability

ProtectionGoal
impact : ImpactScale
impactCategory : ImpactCategory

Fig. 4. Metamodel of ProtectionGoal.

Figure 4 shows the third sub-metamodel. The class ProtectionGoal is an abstract
class. It has the three specializations Confidentiality, Integrity, and Availability
which are equal to the CIA triad. Confidentiality and integrity have an associa-
tion to some data processed by the System. This way, the metamodel provides
the possibility to document which data shall be protected. The metamodel for
CPS as presented in [14] includes the relation of data to components and network
communications, i.e. where data is stored and transferred. Availability has an
association to a function of the System. An interface of a component offers some
functions (see Fig. 2). Thus, an availability goal denotes that the availability of
a function shall be preserved.

4.4 Threat Scenario Listing

InterfaceNetworkCommunication
«Enumeration»

AttackActionType
- DD
- TD
- MC
- ER
- AC
- MI

ProtectionGoal

AttackAction
type : AttackActionType
weakness : String

NetworkZone

NetworkCommunication

Interface

ComponentinScopeThreatScenarioListing

Fig. 5. Metamodel of ThreatScenarioListing.

Figure 5 shows the last sub-metamodel. The ThreatScenarioListing is part of a
threat model. A threat model can have multiple threat scenario listings for dif-
ferent perspectives. Each analysis consists of inScope-classes and a set of Attack-
Actions. inScope has the purpose to express that a part of a system (Network-
Communication, Component, Interface, or NetworkZone) is in scope for that

Model-Based Threat Modeling for CPSs 173

analysis. So, not each element has to be in scope, and it can be filtered what
shall be analyzed. Attack actions are also part of a threat scenario listing. Each
attack action has the attribute type which has the type AttackActionType which
is an enumeration and has six literals DD, TD, MC, ER, AC, and MI. These are
the abbreviations of attack actions as shown in Table 1. They form the second
dimension of our taxonomy. Furthermore, there is the attribute weakness that
documents the weakness exploited by the attack action. The associations from
an attack action to a NetworkCommunication and an Interface are to express
that an attack action is performed at this element of the attack surface. They
form the other dimension of the taxonomy. Between an attack action and a pro-
tection goal, there is another association to express that this action harms the
protection goal.

5 Attack Action Catalog

In the following, we describe how attack action catalogs can be structured with
the help of our taxonomy which we presented in Sect. 3. Furthermore, we present
an example of such a catalog.

5.1 Structuring Attack Action Catalogs with the Taxonomy

While Table 1 helps to focus on relevant attack action types for a certain inter-
face, architects and software developers find it hard to identify specific attack
actions based on abstract attack action types: They need an understanding of
actual attack actions rather than abstract categories. There are many threat and
attack catalogs that contain actual attack actions, but it is hard to find relevant
entries, especially for people without a deep security background.

We propose to use our two-dimensional taxonomy to structure catalogs of
specific attack actions. This means that each specific attack action is assigned
to an attack action type and an element of the attack surface. In that way, the
(typically large) set of attack action is clustered into 20 subsets in a way that is
meaningful for threat modeling. Practitioners can find the relevant attack actions
efficiently by looking into the appropriate field of the structured catalog. Hence
the catalog provides a useful way to make security knowledge about attacks
available during threat modeling.

5.2 Example Catalog

In Tables 4 and 5, we provide an example catalog of attack actions against CPSs,
structured according to our taxonomy. The catalog captures the range of attacks
that have been considered in security analyzes for CPSs over many years in
industrial projects, and also reflects the results of penetration tests and real
world incidents. Besides, the catalog was compared and extended with external
resources, e.g. from the Bundesamt für Sicherheit in der Informationsbranche [5],
as well as academic sources like [20]. The catalog is not aiming for completeness.

174 M. Maidl et al.

Instead, the aim is to cover the most relevant cases and include attacks that
exploit typical weaknesses in standard IT technology. To cover attacks that are
specific to domain-related technology (e.g. embedded devices, sensors) or attacks
to specific components like network devices, the catalog can be augmented.

In Table 4, we show the mapping of the attack actions Misuse Credentials
(MC), Exploit Weakness of Access Control (AC), and Submit Malicious Input
(MI). For each of the attack actions, we provide examples in the context of a
specific interface type or a network communication. An empty cell denotes that
the attack action is not relevant for the corresponding attack surface element.

In Table 5, we show the second part of the example catalog. It contains the
attack actions Disclose Data (DD), Tamper Data (TD), and Exhaust Resources
(ER).

Attack actions and their relevance are changing over time, so it is important
to emphasize that such a catalog has to be continuously updated. Furthermore,
it is possible to use the taxonomy to create a catalog for a specific context, e.g.
for critical infrastructures. To do so, the examples can be refined with more
details.

5.3 Further Benefits

The example catalog of Sect. 5.1 illustrates the structuring of attack actions
according to the two-dimensional taxonomy. In this section, we discuss further
ways to use taxonomy-based catalogs in the context of threat modeling.

Specific Catalogs for Types of Components. A CPS consists of heteroge-
neous components like controllers, network devices, and standard IT compo-
nents. By providing a separate catalog for each type of component, attack
actions that are specific to the technologies of that component type can be
listed and provided to practitioners. Such catalogs could either complete or
replace a generic catalog.

Reusing Threat Modeling Results. In practice, often a certain type of CPS is
used as a blueprint for industrial projects. After performing threat modeling
for that type of CPS, the knowledge generated by that process of threat
modeling can be captured in the form of a specific attack action catalog.
More precisely, the entries in the generic catalog(s) can be replaced by more
specific and relevant attacks for the blueprint. In that way, it is possible to
make knowledge reusable for future projects.

Using Catalogs in Tooling for Threat Modeling. The benefits of
taxonomy-based catalogs are significantly increased by automation: We have
developed a prototype for a tool, and are in the piloting phase. Our tool
guides practitioners through the process of threat modeling and presents rel-
evant attack action types when the practitioner is working in a certain part
of the system.

Model-Based Threat Modeling for CPSs 175

Table 4. Attack action catalog for CPSs Part 1 [13].
U
se
r

In
te
rf
ac
e

C
2C

In
te
rf
ac
e

O
S
L
ev
el

A
cc
es
s

Ph
ys
ic
al

In
te
rf
ac
e

N
et
w
or
k
C
om

m
.

M
C

–
Ph

is
hi
ng

to
ob
ta
in

a
us
er
’s
pa
ss
w
or
d

–
B
ru
te

fo
rc
e
at
ta
ck

on
w
ea
k
pa
ss
w
or
d

–
Se

tti
ng

pa
ss
w
or
d

th
ro
ug

h
w
ea
k

pa
ss
-

w
or
d
re
co
ve
ry

m
ec
ha
-

ni
sm

–
E
xt
ra
ct

de
fa
ul
t

or
ha
rd
-c
od

ed
pa
ss
w
or
ds

–
B
ru
te

fo
rc
e
at
ta
ck

on
w
ea
k
pa
ss
w
or
ds

–
M
is
us
e
fa
ke

M
A
C

or
IP

ad
dr
es
s
to

au
th
en
ti-

ca
te

–
M
is
us
e

of
te
m
po

ra
ry

or
de
fa
ul
tp

as
sw

or
d

–
B
ru
te
-f
or
ce

at
ta
ck

to
gu

es
s
pa
ss
w
or
d
of

O
S

ac
co
un

t
–

M
is
us
e
of

sh
ar
ed

pa
ss
-

w
or
d
(e
.g
.
sh
ar
ed

be
-

tw
ee
n
si
te
s)

–
So

ci
al

en
gi
ne
er
in
g
to

ob
ta
in

pa
ss
w
or
d

to
se
rv
er

m
an
ag
em

en
t

co
ns
ol
es

or
B
IO

S

A
C

–
M
is
us
e
of

cl
ie
nt
-s
id
e

au
th
en
tic

at
io
n

or
au
-

th
or
iz
at
io
n

–
A
cc
es
s
vi
a
de
bu
gg

in
g

in
te
rf
ac
e

–
M
is
us
e
of

di
re
ct

ob
-

je
ct

re
fe
re
nc
es

e.
g.

in
U
R
L
s

–
Se

ss
io
n
hi
ja
ck
in
g

–
M
is
us
e
of

cl
ie
nt
-s
id
e

au
th
en
tic

at
io
n

or
au
-

th
or
iz
at
io
n

–
Se

cu
ri
ty

do
w
ng

ra
de

th
ro
ug

h
al
go

ri
th
m

ne
go

tia
tio

n
–

M
is
us
e
of

ex
ce
ss
iv
el
y

gr
an
te
d
pr
iv
ile
ge
s

–
B
yp

as
s
of

ki
os
k
m
od

e
–

M
is
us
e

of
op

en
ne
t-

w
or
k
se
rv
ic
e
(e
.g
.T

el
-

ne
t,
V
N
C
)

–
M
is
us
e

of
(u
nn

ec
es
-

sa
ri
ly
)
hi
gh

pr
iv
ile
ge
s

in
O
S

–
M
is
us
e

of
un

lo
ck
ed

us
er

se
ss
io
n

–
A
cc
es
s
th
ro
ug

h
se
rv
er

m
an
ag
em

en
t
co
ns
ol
es

or
B
IO

S
–

R
e-
bo

ot
w
ith

di
ff
er
en
t

O
S
fr
om

C
D
or

U
SB

–
A
cc
es
s

th
ro
ug

h
un

pr
ot
ec
te
d

ne
ar
-

fie
ld

co
m
m
un

ic
at
io
n

pr
ot
oc
ol

–
M
is
us
e

of
ha
rd
w
ar
e

in
te
rf
ac
es

(U
A
R
T,

JT
A
G
)

–
M
is
us
e
of

sh
ut
-d
ow

n
bu
tto

n

M
I

–
C
ro
ss
-s
ite

sc
ri
pt
in
g

–
SQ

L
-i
nj
ec
tio

n
–

M
al
w
ar
e
in
fe
ct
io
n

of
co
m
po

ne
nt

th
ro
ug

h
m
al
ic
io
us

pa
yl
oa
d

–
Fu

zz
in
g
at
ta
ck

–
M
al
w
ar
e
in
fe
ct
io
n

of
co
m
po

ne
nt

th
ro
ug

h
m
al
ic
io
us

pa
yl
oa
d

–
C
ra
sh

du
e
to

ov
er
lo
ad

–
Tr
ic
k

O
S-
us
er

to
in
-

st
al
lo

rr
un

m
al
w
ar
e

–
N
et
w
or
k

pa
ck
et

ex
-

pl
oi
tin

g
vu

ln
er
ab
ili
ty

in
ne
tw
or
k

pr
ot
oc
ol

im
pl
em

en
ta
tio

n
of

th
e

O
S,

e.
g.

pi
ng

-o
f-
de
at
h

–
M
al
w
ar
e
in
fe
ct
io
n

of
co
m
po

ne
nt

th
ro
ug

h
in
fe
ct
ed

U
SB

st
ic
k

176 M. Maidl et al.

Table 5. Attack action catalog for CPSs Part 2 [13].

U
se
r

In
te
rf
ac
e

C
2C

In
te
rf
ac
e

O
S
L
ev
el

A
cc
es
s

Ph
ys
ic
al

In
te
rf
ac
e

N
et
w
or
k
C
om

m
.

D
D

–
R
ea
d

se
ns
iti
ve

da
ta

fr
om

fil
es

or
W
in
do
w
s

re
gi
st
ry
,

e.
g.

pa
ss
w
or
ds
,

op
er
at
io
na
ld

at
a

–
R
ea
d
da
ta

fr
om

pr
oc
es
s

m
em

-
or
y

by
ca
us
in
g

a
co
re

du
m
p

–
St
ea
lm

ed
ia
,i
.e
.

SD
ca
rd
,
U
SB

st
ic
k,

or
ha
rd

di
sk

–
In
st
al
l

ke
yl
og
-

ge
r

–
Ta
ke

a
co
ve
rt

lo
ok

at
a
di
sp
la
y

–
R
ea
d

da
ta

th
ro
ug
h

ha
rd
-

w
ar
e

in
te
rf
ac
es

(U
A
R
T,

JT
A
G
)

–
R
ea
d

cl
ea
r
te
xt

pr
ot
oc
ol
s,

e.
g.

H
T
T
P,
FT

P
–

Sn
iff

da
ta

se
nt

ov
er

un
pr
o-

te
ct
ed

W
L
A
N

T
D

–
M
an
ip
ul
at
e

da
ta

in
fil
es

or
da
ta
ba
se
s

–
M
an
ip
ul
at
e

co
nfi

gu
ra
tio

n
or

so
ft
w
ar
e

–
C
ha
ng
e
da
ta

on
re
m
ov
ab
le

m
e-

di
a

–
M
an
ip
ul
at
e

or
re
pl
ay

m
es
sa
ge

–
M
an
-i
n-
th
e-

m
id
dl
e
at
ta
ck

E
R

–
(M

al
ic
io
us
)

ap
pl
ic
at
io
n
us
es

up
C
PU

or
m
em

or
y

–
Fl
oo
di
ng

th
e

ne
tw
or
k

–
O
cc
up
y

w
ir
e-

le
ss

in
te
rf
ac
es

w
ith

a
ja
m
m
er

Model-Based Threat Modeling for CPSs 177

6 Tool-Support

We use a model-based approach for our tool based on two frameworks. The
first framework is EMF [18] (see Sect. 4) and the second framework is called
Sirius3.

6.1 Sirius

Sirius allows you to create your own eclipse graphical modeling workbench and
diagrams. It builds on EMF and the Acceleo Query Language (AQL)4. AQL
is a specification language similar to the Object Constraint Language (OCL)5.
AQL expressions are used to interact with the model, e.g. to manipulate model
instances or to query data from the model. Sirius has some built-in graphical
elements, for example text fields, nodes, and containers. Diagrams can be spec-
ified in a hierarchical tree structure. The diagrams provide a user-friendly view
of model instances.

6.2 Workflow of Our Tool

The metamodels of Sect. 4 provide the fundamentals for the Sirius editors. We
implemented two editors for different purposes, each having several diagrams.
The first editor enables the user to model a CPS with different components,
interfaces, communications, and data. That editor builds on our previous work
[14]. Therefore, we do not further discuss it in this paper. However, the CPS
editor is essential for the second editor, which uses our taxonomy from Sect. 3.
We provide a simple example to show how our editor works. Figure 6 shows a
CPS which is modeled with our editor. There is the component Host 1 with a
user interface (small box), which can be accessed remotely from a User Browser
via a network communication with the https protocol.

Zone 1

Host 1

Internet (external)

User Browser

communication
 (https)

Fig. 6. Example of a CPS.

3 https://www.eclipse.org/sirius/.
4 https://www.eclipse.org/acceleo/documentation/.
5 https://www.omg.org/spec/OCL/2.4/PDF.

https://www.eclipse.org/sirius/
https://www.eclipse.org/acceleo/documentation/
https://www.omg.org/spec/OCL/2.4/PDF

178 M. Maidl et al.

Fig. 7. Scoping.

Scoping. The first step is shown in Fig. 7. Its purpose is to set the focus for the
threat analysis. The user can obtain some information from that diagram. First,
there is a graphical representation of the CPS which is extracted from the CPS
model. The box entitled Not in scope denotes the CPS elements that are not in
scope. The box Scope 1 contains the elements that are in scope for the analysis.
It is possible to define different scopes within a model, each of them focusing on
different elements.

The palette on the right side provides different tools for users to create or
manipulate the model. The graphical representation and the Not in Scope con-
tainer have only an informative use, i.e. they only extract some information from
the model and present it to the user.

A new scope, e.g. Scope 1, can be created with the tool New Scope. Each Scope
is an instance of the class ThreatScenarioListing from Fig. 5. Users have multiple
dialogs to set elements of the system in scope. For example, when selecting an
interface to be in scope, they get a list of all available interfaces. Via checkboxes,
it is possible to select the desired ones. To document that an element is in scope,
we instantiate the class inScope of the metamodel (see Fig. 5). Furthermore, the
corresponding element is shown in the green box of the scope.

Analysis. The second step is the core part of threat modeling, i.e. the identifi-
cation and documentation of the attack actions. This step is supported by our
taxonomy from Sect. 3. For all interfaces that are specfied to be in scope, the
user is guided to identify and document attack actions with the dialog shown
in Fig. 8. For each documented attack action, a class AttackAction from Fig. 5
will be instantiated. Our tool filters relevant attack actions according to the

Model-Based Threat Modeling for CPSs 179

Fig. 8. Dialog to document attack actions.

taxonomy, and presents the examples contained in the catalog to the user. Fur-
thermore, the user dialog informes the user about which attack action types
have already covered for the given interface, thereby showing the progress of
coverage. Using the provided text fields, users can describe the attack action
more precisely, give a weakness, and assign assumptions, Alternatively, if there
are reasons why an attack action type is not in scope for that interface, users
document that reason in the dialog.

To filter relevant attack actions, we use following AQL expression as shown
Listing 1. It realizes the mapping of our taxonomy given Tables 2 and 3.

1 i f (e l ement . oc l I sTypeOf (system : : C2C In t e r f a c e)

2 or e l ement . oc l I sTypeOf (system : : Ne two r kUs e r I n t e r f a c e)

3 or e l ement . oc l I sTypeOf (system : : L o c a l U s e r I n t e r f a c e))

4 then
5 t h r e a t s : : AttackAct ionType . e L i t e r a l s → s e l e c t (a | a . name=’MC’ or

a . name=’AC’ or a . name=’MI ’)

6 e l s e i f (e l ement . oc l I sTypeOf (system : : P h y s i c a l I n t e r f a c e))

7 then
8 t h r e a t s : : AttackAct ionType . e L i t e r a l s → s e l e c t (a | a . name=’AC’ or

a . name=’DD’ or a . name=’MI ’ or a . name=’TD’)

9 e l s e i f (e l ement . oc l I sTypeOf (system : : OSL e v e l I n t e r f a c e))

180 M. Maidl et al.

10 then
11 t h r e a t s : : AttackAct ionType . e L i t e r a l s → s e l e c t (a | a . name=’MC’ or

a . name=’TD’ or a . name=’DD’ or a . name=’ER ’ or a . name=’MP’ or
a . name=’AC’)

12 e l s e
13 t h r e a t s : : AttackAct ionType . e L i t e r a l s → s e l e c t (a | a . name=’AC’ or

a . name=’MI ’ or a . name=’TD’ or a . name=’DD’ or a . name=’ER ’)

14 end i f e n d i f e n d i f

Listing 1. AQL expression for filtering relevant attack action types.

element is the CPS’s element for which attack actions shall be identified, i.e.
an interface or network communication. With the expression, we check which
type element is and select the corresponding attack action types for it. After-
ward, users can choose one of them and document it in the model.

7 Related Work

Almorsy et al. [2] introduced a new architecture software security analysis. They
use OCL to formalize system architectural security attack scenarios and security
metrics. Since our approach is model-based (cf. Sect. 3.1), our proposed taxon-
omy can be formalized in a similar way.

The paper by Halkidis et al. [8] evaluates the protection that selected security
patterns of Blakley and Heath [4] offer against attacks. As attack categories, the
authors make use of STRIDE. The analyzed system is annotated with stereo-
types in order to check whether security patterns have been used sufficiently.
This approach of using stereotypes can be compared with our interface types,
e.g. there is a stereotype ApplicationEntryPoint that corresponds to our user
interface. The difference to our taxonomy is that the annotations are not asso-
ciated with attack actions, but are associated with security patterns.

Uzunov and Fernández [20] introduce system elements (called decomposition
layers) to describe threat patterns. The system elements are similar to our attack
surface elements, e.g. the decomposition layer ‘User interaction’corresponds to
a user interface. In contrast to our work, the authors do not use the system
elements for structuring the threat patterns.

CAPEC (cf. Sect. 3.4) is often used as a comprehensive repository for attack
descriptions rather than as a taxonomy. An example is Adams et al. [1], where
CAPEC is used as source to identify relevant attacks, by using machine learning
and natural language processing. Another example is the approach of [12] to
leverage the CAPEC repository for finding relevant attacks, based on problem
patterns, solution patterns, and context patterns.

Xiong and Lagerström performed a literature review on threat modeling [21].
This literature review lists many papers on threat modeling approaches that
are based on (semi-)formal methods for representing threats, like game theory,
Petri nets, Dolev-Yao threat model, PrT nets, Hidden Markov models, Byzantine
model, flow model, and others. The usage of taxonomies in these approaches is
different to our use. The taxonomy does not represent threats, but provides a

Model-Based Threat Modeling for CPSs 181

structure for knowledge databases. Other papers covered in that literature review
describe the use of threat modeling in a specific domain.

There are numerous risk management processes, e.g. CORAS [6], that require
a detailed identification of threat scenarios. CORAS has its own modeling lan-
guage and provides guidelines on how the method can be carried out. The method
is model-based and has tool-support. The identification of threat scenarios is
often performed in brainstorming sessions which does not necessarily follow a
systematic procedure. Our taxonomy can be used as an input for those sessions
to create CORAS diagrams.

Shevchenko et al. [16] evaluates methods for threat modeling of cyber-
physical systems. They list twelve methods and rate them according to 5 criteria.
The usage of an attack action catalog is no criteria. Some of the methods can
be enhanced with an attack action catalog.

Khan et al. [10] apply STRIDE-based threat modeling to cyber-physical sys-
tems and apply their adapted method on a real world example. They state 10
possible threat consequences (TC) as an example. The authors use data flow
diagrams (DFD) to model a cyber-physical system and link the DFD elements
to TCs. The method of the paper is on a high level and our taxonomy can be
applied after their method.

Currently, our taxonomy only allows us to analyze a system with regard to
security. The LINDDUN methodology of Deng et al. [7] introduces privacy threat
categories which have been derived from STRIDE. The relation of STRIDE to
privacy may help to transfer our taxonomy into the privacy context, as well.

8 Conclusion

After having presented a two-dimensional taxonomy in previous work, we pre-
sented our tool support in the present paper. We first presented a metamodel that
formalizes the taxonomy and the dependencies to the system model’s elements,
i.e. the attack surface. Based on that metamodel, we developed a graphical edi-
tor that filters relevant attack actions and that allows documenting the threat
model systematically. To provide flexibility, the tool provides functionalities to
import different attack action catalog. The current piloting of the tool and the
taxonomy in the industrial context promises good results. Further feedback from
practitioners will continuously be integrated into the tool.

Currently, our taxonomy, the attack action catalogs, and the tool are limited
to the domain of CPS. The transfer to other domains requires us to adapt the
first dimension, i.e. to define the elements of attack surfaces in other domains.
Currently, we are working on system models for cloud-based systems which shall
be used as input for security analyses, too. The new attack surface can be derived
from that model, which makes it easy to adopt our taxonomy for cloud-based
systems. Concerning attack action types, first experiments have shown that the
types used in this paper are also suitable in the domain of cloud applications.

Another important aspect will be the consideration of other software qual-
ities such as privacy. LINDDDUN [7] will be a good starting point for this

182 M. Maidl et al.

adoption since it brings STRIDE to the context of privacy. Another important
topic would be to identify overlaps between different qualities. For example, the
protection goal of confidentiality is relevant for both security and privacy. The
same countermeasures can therefore be applied to improve both qualities.

About our tool, we plan to add more catalogs to it and to make these cat-
alogs publicly available via the Internet. Other practitioners and research may
contribute to this resource with their own catalogs.

References

1. Adams, S.C., Carter, B.T., Fleming, C.H., Beling, P.A.: Selecting system spe-
cific cybersecurity attack patterns using topic modeling. In: 17th IEEE Interna-
tional Conference on Trust, Security and Privacy in Computing and Communica-
tions/12th IEEE International Conference on Big Data Science and Engineering,
TrustCom/BigDataSE 2018, New York, NY, USA, 1–3 August 2018, pp. 490–497
(2018). https://doi.org/10.1109/TrustCom/BigDataSE.2018.00076

2. Almorsy, M., Grundy, J., Ibrahim, A.S.: Automated software architecture secu-
rity risk analysis using formalized signatures. In: 35th International Conference on
Software Engineering, ICSE 2013, San Francisco, CA, USA, 18–26 May 2013, pp.
662–671 (2013). https://doi.org/10.1109/ICSE.2013.6606612

3. Berger, B.J., Sohr, K., Koschke, R.: Automatically extracting threats from
extended data flow diagrams. In: Caballero, J., Bodden, E., Athanasopoulos, E.
(eds.) Proceedings of the Engineering Secure Software and Systems - 8th Interna-
tional Symposium, ESSoS 2016, London, UK, 6–8 April 2016, pp. 56–71. Springer,
Cham (2016). https://doi.org/10.1007/978-3-319-30806-7 4

4. Blakley, B., Heath, C.: The open group security forum: security design patterns.
Technical guide. TheOpen Group (2004)

5. BSI: Industrial control system security - top 10 threats and countermeasures
2016. Bsi-cs 005e—version 1.20 of 08/01/2016, federal office for information
security (BSI) (2016). https://www.allianz-fuer-cybersicherheit.de/ACS/DE/ /
downloads/BSI-CS 005E.pdf? blob=publicationFile&v=3

6. Dahl, H., Hogganvik, I., Stølen, K.: Structured semantics for the CORAS security
risk modelling language. In: Proceedings of 2nd International Workshop on Inter-
operability solutions on Trust, Security, Policies and QoS for Enhanced Enterprise
Systems (IS-TSPQ’07) (2007)

7. Deng, M., Wuyts, K., Scandariato, R., Preneel, B., Joosen, W.: A privacy threat
analysis framework: supporting the elicitation and fulfillment of privacy require-
ments. Requir. Eng. 16(1), 3–32 (2011). https://doi.org/10.1007/s00766-010-0115-
7

8. Halkidis, S.T., Tsantalis, N., Chatzigeorgiou, A., Stephanides, G.: Architectural
risk analysis of software systems based on security patterns. IEEE Trans. Depend-
able Secur. Comput. 5(3), 129–142 (2008). https://doi.org/10.1109/TDSC.2007.
70240

9. IEC 62443: Industrial communication networks - network and system security -
security for industrial automation and control systems. In: International Standard,
International Electrotechnical Commission (IEC) (2013–2018)

10. Khan, R., McLaughlin, K., Laverty, D., Sezer, S.: Stride-based threat modeling for
cyber-physical systems. In: 2017 IEEE PES Innovative Smart Grid Technologies
Conference Europe (ISGT-Europe), pp. 1–6. IEEE (2017)

https://doi.org/10.1109/TrustCom/BigDataSE.2018.00076
https://doi.org/10.1109/ICSE.2013.6606612
https://doi.org/10.1007/978-3-319-30806-7_4
https://www.allianz-fuer-cybersicherheit.de/ACS/DE/_/downloads/BSI-CS_005E.pdf?__blob=publicationFile&v=3
https://www.allianz-fuer-cybersicherheit.de/ACS/DE/_/downloads/BSI-CS_005E.pdf?__blob=publicationFile&v=3
https://doi.org/10.1007/s00766-010-0115-7
https://doi.org/10.1007/s00766-010-0115-7
https://doi.org/10.1109/TDSC.2007.70240
https://doi.org/10.1109/TDSC.2007.70240

Model-Based Threat Modeling for CPSs 183

11. Kohnfelder, L., Grag, P.: The threats to our products. Technical report. Microsoft
Co-oporation (2009). https://adam.shostack.org/microsoft/The-Threats-To-Our-
Products.docx

12. Li, T., Paja, E., Mylopoulos, J., Horkoff, J., Beckers, K.: Security attack analysis
using attack patterns. In: 2016 IEEE Tenth International Conference on Research
Challenges in Information Science (RCIS), pp. 1–13 (2016). https://doi.org/10.
1109/RCIS.2016.7549303

13. Maidl, M., Münz, G., Seltzsam, S., Wagner, M., Wirtz, R., Heisel, M.: Threat mod-
eling for cyber-physical systems: a two-dimensional taxonomy approach for struc-
turing attack actions. In: van Sinderen, M., Fill, H., Maciaszek, L.A. (eds.) Proceed-
ings of the 15th International Conference on Software Technologies, ICSOFT 2020,
Lieusaint, Paris, France, 7–9 July 2020, pp. 160–171. ScitePress (2020). https://
doi.org/10.5220/0009829901600171

14. Maidl, M., Wirtz, R., Zhao, T., Heisel, M., Wagner, M.: Pattern-based model-
ing of cyber-physical systems for analyzing security. In: Proceedings of the 24th
European Conference on Pattern Languages of Programs. EuroPLop 2019, pp.
23:1–23:10. ACM, New York, NY, USA (2019). https://doi.org/10.1145/3361149.
3361172. https://doi.acm.org/10.1145/3361149.3361172

15. MITRE: Common Attack Pattern Enumeration and Classification (CAPEC).
https://capec.mitre.org (2019)

16. Shevchenko, N., Frye, B.R., Woody, C.: Threat modeling for cyber-physical system-
of-systems: methods evaluation. Carnegie Mellon University Software Engineering
Institute. Technical report (2018)

17. Shostack, A.: Threat Modeling - Designing for Security, 1st edn. Wiley, Hoboken
(2014)

18. Steinberg, D., Budinsky, F., Paternostro, M., Merks, E.: EMF: Eclipse Modeling
Framework 2.0, 2nd edn. Addison-Wesley Professional, Boston (2009)

19. Tuma, K., Calikli, G., Scandariatoa, R.: Threat analysis of software systems: a
systematic literature review. J. Syst. Softw. 144, 275–294 (2018)

20. Uzunov, A.V., Fernández, E.B.: An extensible pattern-based library and taxonomy
of security threats for distributed systems. Comput. Stand. Interfaces 36(4), 734–
747 (2014)

21. Xiong, W., Lagerström, R.: Threat modeling - a systematic literature review. Com-
put. Secur. 84, 53–69 (2019). https://doi.org/10.1016/j.cose.2019.03.010

https://adam.shostack.org/microsoft/The-Threats-To-Our-Products.docx
https://adam.shostack.org/microsoft/The-Threats-To-Our-Products.docx
https://doi.org/10.1109/RCIS.2016.7549303
https://doi.org/10.1109/RCIS.2016.7549303
https://doi.org/10.5220/0009829901600171
https://doi.org/10.5220/0009829901600171
https://doi.org/10.1145/3361149.3361172
https://doi.org/10.1145/3361149.3361172
https://doi.acm.org/10.1145/3361149.3361172
https://capec.mitre.org
https://doi.org/10.1016/j.cose.2019.03.010

A Machine Learning Based Methodology
for Web Systems Codeless Testing

with Selenium

Phuc Nguyen and Stephane Maag(B)

Télécom SudParis, Samovar, Institut Polytechnique de Paris,
19 Place Marguerite Perey, 91120 Palaiseau, Cedex, France

stephane.maag@telecom-sudparis.eu

Abstract. Web system testing is a crucial software development cycle.
However, though there are real needs for testing these complex systems,
it often requires specific skills in testing and/or technical programming.
Moreover, the lifecycles of web systems are today very dynamic. They
are often modified, updated, integrating new data, links, widgets, etc.
Therefore, the testing processes and scripts for these systems have to be
modified as well which can be very costly in terms of time and resources.
Based on that context, this paper aims at reducing these prerequisites
and constraints for tester in proposing a codeless testing automation
framework. Our approach is based on Selenium and a machine learning
technique to propose generic testing scripts that can be automatically
tuned to the tested use cases. Experiments are provided leading to rele-
vant results demonstrating the success of our methodology.

Keywords: Codeless web testing · Automation testing · Selenium ·
Machine learning · SVM

1 Introduction

Web system testing is a crucial software development cycle. In an era where a
single software bug can cause massive financial losses, quality assurance testing is
paramount for any software product. It is a stage where the errors and issues still
present in the system should be discovered and fixed. Besides, this can be a costly
process [14,25]. Resources (including time and people) are spent to prepare the
test case scenarios and to execute them. Its cost is estimated to be between 40%
and 80% of the total cost of development [16]. While automated testing methods
appear to take over the role of the human tester, the issues of reliability and the
capability of the testing method still need to be resolved. For example, testing all
the functionalities implemented in the web page services can be a real pain. For
that purpose, there are tools to ease automate some of this pain away. One of the
most used way to deal with it, especially due to its efficiency, is using a browser
automation system like Selenium [10] in order to run specific tests on installed
browsers and return results, raising potential failures in browsers as they crop up.
c© Springer Nature Switzerland AG 2021
M. van Sinderen et al. (Eds.): ICSOFT 2020, CCIS 1447, pp. 184–202, 2021.
https://doi.org/10.1007/978-3-030-83007-6_9

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-83007-6_9&domain=pdf
http://orcid.org/0000-0003-3740-3586
http://orcid.org/0000-0002-0305-4712
https://doi.org/10.1007/978-3-030-83007-6_9

A Machine Learning Based Methodology for Web Systems Codeless Testing 185

Nevertheless, processing with automated testing tools such as Selenium [10]
still raises concerns. Since tests are repetitive and require a lot of maintenance, a
small change or modification in the content of a webpage may cause a test fail (e.g.,
adding a ‘-’ or changing a text in a page [22]). This is a real challenge for indus-
trial and researchers who study and propose approaches to deal with this problem-
atic.One current popular domain is about “Codeless FunctionalTestAutomation”
or “Machine Learning/Artificial Intelligence (ML/AI) in test automation”. The
objective is to process the machines figuring out how to automate the software/web
service product under test. The machine can detect or predict the changes and
adopt those changes to the suitable test cases. Codeless testing provides the testers
a way to efficiently reduce the cost of test automation creation, test execution,
and maintenance. In our work, we examine on Selenium and the benefits of using
machine learning in automated web application testing. The motivation is to uti-
lize the selenium framework in the world of automated testing and define a novel
machine learning approach for codeless testing which can enable to test multiple
web services without using any code. This paper is an extension of our previous
publication [22] in which we herein present an extended use case focused on the
Form in a web service. This studied use case is more complex than the previous
one. For that reason, our methodology has been extended as well in particular in
the use of the machine learning technique. New experiments, that needed much
more computing resources, are performed and the results are discussed.

Therefore, the main contributions of our paper are:

– we propose a “codeless testing” framework based on the Selenium toolkit and
support vector machine,

– we integrating our novel use case in our defined framework and implementing
generic test cases to test the submit of Form within multiple web pages,

– we perform several experiments and obtain results that illustrate the suc-
cess of our approach. We demonstrate that our method helps in decreasing
implementation and maintenance costs of automated tests.

Finally, our paper is organised in six sections. Section 2 presents the basis of
our approach whose Selenium and the codeless testing concept. Section 3 defines,
presents and details our ML-based web testing framework. In the Sect. 4, we
perform our experiments and discuss our interesting results. The state of art is
then presented in Sect. 5 while we conclude and propose perspectives in Sect. 6.

2 Preliminaries

2.1 The Selenium Framework

Selenium [10] is a suite of automation testing tools which allows the testers run
the tests directly on the target browser, drive the interactions on the required
web page and rerun them without any manual input. Selenium has become
very popular among testers because of the various advantages it offers. With
its advent in 2004, Selenium made the life of automation testers easier and is

186 P. Nguyen and S. Maag

now a favorite tool for many automation testers. Selenium was invented with the
introduction of a basic tool named as “JavaScriptTestRunner”, by Jason Huggins
at ThoughtWorks to test their internal Time and Expenses application. Now it
has gained popularity among software testers and developers as an open-source
portable automation testing framework. Nowadays, Selenium is currently used
in production in many large companies as Netflix, Google, HubSpot, Fitbit, and
more. According to [3,5], there are 42,159 companies that use Selenium, taking
26.83% market share in software testing tool (see Fig. 2 and Fig. 1).

Fig. 1. Selenium used by company area.

Fig. 2. Selenium used by company revenue.

The primary reason behind such overwhelming popularity of Selenium is
that it is open source. This not only helps keep the costs in check but also
ensures that companies are using a tool that will get continually updated. Other
reasons include the multi-dimensional flexibility that it offers in terms of scripting
languages, operating systems, browsers, and integration with other tools. This
widens the scale of reach and test coverage, enabling enterprises to deliver a
web application that is highly reliable and functional. Selenium test scripts can
be written in Java, Python, C#, PHP, Ruby, Perl and .Net. This allows a large
number of testers to easily use it without any language barriers. It can be carried
out on Windows, MacOS, and Linux, using any browsers out of Mozilla Firefox,
Internet Explorer, Chrome, Safari, and Opera. This enables a thorough cross
browser compatibility testing with strong environment support.

A Machine Learning Based Methodology for Web Systems Codeless Testing 187

Selenium suite includes three major components (Fig. 3), each tool has the
different approach for automation testing. The testers or developers can choose
tools out of it depending upon the testing requirement.

– Selenium IDE
Selenium IDE, earlier known as Selenium recorder, is a tool used to record,
edit, debug and replay functional tests. Selenium IDE is implemented as an
extension to the Chrome browser and add-on in Firefox browser. With Sele-
nium IDE plugin, the testers can do simple record-and-playback of interac-
tions with the browser, they can also export tests in any of the supported
programming languages like Ruby, Java, PHP, Javascript, etc.

– Selenium Grid
Selenium Grid allows the testers to run parallel automated tests on multiple
machines and browsers at the same time. The main function of this tool is
to save time. If the test suite is large, the testers can use Selenium Grid
to reduce the time running. Considering how scripts normally run slow on
a browser, using performance-improving techniques such as parallel testing
can help with the problem. Testers can also use it to test one application
in different browsers in parallel, when one machine is running Firefox, the
other – Chrome, and so on. Testers can also create different configurations
with Grid, combining different versions of browsers and operating systems.
Needless to say that when used in large production environments, Grid is a
huge time-saver.

– Selenium Webdriver
Selenium Webdriver (which is also known as Selenium 2.0 or 3.0 currently
version) is an enhanced version of Selenium RC and the most used tool. Sele-
nium Webdriver is by far the most important component of Selenium Suite. It
provides a programming interface to create and execute automation scripts.
It accepts commands via client API and sends them to browsers. Selenium
WebDriver allows testers to choose a programming language of their choice to
create test scripts. Test scripts are written in order to identify web elements
on web pages and then desired actions are performed on those elements. Sele-
nium Webdriver currently supports most popular browsers (Chrome, Firefox,
Opera, etc.). Every browser has different drivers to run tests. In our “codeless
testing framework”, we use Selenium Webdriver to conduct the automated
tests on multiple popular web browsers.

188 P. Nguyen and S. Maag

Fig. 3. Selenium suite components.

2.2 Codeless Testing

Although those advantages listed above, Selenium still has its cons. The most
challenge of using Selenium in automation testing is steep learning curve. Testers
require high technical skills to accurately design and maintain test automa-
tion. Maintenance including modification and updating Selenium test code in
an efficient way is a very common problem in automated test. The impact of
the changes occur in the web under test could suffer during its development.
Change or modification from web User Interface (UI) or from its structure to
its elements or its attributes will make the whole test suites collapse. Nowadays,
one of automated testing trends - Codeless Testing was introduced to resolve
those problems.

Codeless Testing for web services refers to the methodology which use a
generic test case to test multiple websites. This approach allows any tester with-
out deep programming knowledge to perform tests. Organizations started adapt-
ing tools and approaches to simplify test automation and empower team mem-
bers who lacked sophisticated programming skills [19]. “Codeless” tools were
originally meant to help the tester avoid the hours of programming that are usu-
ally necessary to get the most out of testing logic. While their objective was to
address programming complexity, most tools in the market adapted a no-code
approach by avoiding the code, but not really addressing the logical complex-
ity in testing. A common misconception is that codeless test automation tools
should completely avoid code. We believe this is actually a disservice, as very
soon users will start hitting roadblocks. Testing requirements are typically as
vast as application development. It is hard to believe that all testing require-
ments could be addressed with some canned, pre-packaged solution. Some level
of logic development flexibility is required, but in a way so that the user does not
get bogged down by the syntactical complexities. Note that, though the name
codeless testing, but it does not mean it is completely code free. While a tester
can generate most of the tests code free, certain tests may still need some coding.
Testers can use codeless testing for keeping up with the deployment needs.

A Machine Learning Based Methodology for Web Systems Codeless Testing 189

3 An ML-Based Web Testing Framework

Fig. 4. The architecture of codeless testing framework.

The architecture overview of our codeless testing framework is illustrated in
Fig. 4, defined in [22]. As mentioned in the previous sections, our framework
is combined Selenium and Machine Learning algorithm, it is composed by four
main components.

– Selenium Webdriver Component.
This is the major module, plays a role as an engine to drive the browser for
automating website and for testing. As referring in Fig. 2, Selenium Webdriver
[11] (or Selenium 2.0) is the core module in our testing framework. Selenium
WebDriver plays as a browser automation framework that accepts commands
and sends them to a browser. It is implemented through a browser-specific
driver. It controls the browser by directly communicating with it. The flex-
ibility that Selenium Webdriver provides is almost unmatched in the test
automation world.

– Scraping Data Component.
This scraping tool was implemented in Python. We utilize BeautifulSoup [2]
as a web scraping library to pull data out of DOM in HTML or XML format.

– Processing Data Component.
This component has a role to process the data after pulling from HTML DOM
file, it will clean and extract the useful data, then transform the clean data
to the next stage for training.

– SVM Model.
An machine learning model to recognise or predict the search element pattern
which appeared in HTML data of testing website.

190 P. Nguyen and S. Maag

3.1 Scraping and Processing Web Data

Fig. 5. The structure of scraping tool.

The general architecture of scraping tool is showed in Fig. 5 [22]. The main target
of scraping tool is exactly as its name - to collect HTML data and their position
in the DOM tree from the website which is driven by Selenium Webdriver. We
use both Selenium Webdriver and Request library to send a HTTP request to the
URL of the webpage we want to access. We discover that some websites with
heavy render JavaScript will not response to the request module. Also, some
website can detect the request is done automated (not by human browsing) by
their tool, it will deny to establish the connection. Selenium Webdriver works
fine with almost major of websites, however the speed is recorded as very slow
since Selenium needs to open the real browsers to perform tasks. Moreover, using
different browsers (Chrome, Firefox, Opera, etc.) will have different behaviours
of navigation website. For example, some website are optimized for Chrome but
not Firefox or vice versa, or some website are completely crashed on Microsoft
Edge browser. Therefore, we use both modules Selenium Webdriver and Request
library [9] to ensure that our scraping tool can adapt with most of websites to
collect at most as data it can. First, using request library for speed up the test, if
request fail, then Selenium Webdriver will do its job. Moreover, each website has
its different DOM structure, thousands of websites will have thousands of DOM
structures, therefore it’s a challenge process to automate retrieve the data from
multiple of websites concurrently. However, our scraping tool able to scrape and
collect variety of websites. For summary, our scraping tool follows two tasks:

1. Query the website using requests or Selenium WebDriver and return its
HTML content.

2. Using BeautifulSoup [2] and LXML [8] libraries to go through the HTML
structure of each website, parse HTML content and extract the useful data.

A Machine Learning Based Methodology for Web Systems Codeless Testing 191

3.2 Support Vector Machines (SVM) Model

Fig. 6. SVM model detects search box pattern.

According to [12], Support Vector Machines (SVM) are supervised learning mod-
els with associated learning algorithms that analyze data used for classification
and regression analysis. In addition to performing linear classification, SVMs can
efficiently perform a non-linear classification using what is called the kernel trick,
implicitly mapping their inputs into high-dimensional feature spaces. To adapt
with the changing of website is very challenging task in web testing taking into
account the fact that web HTML elements are keep changing dynamically in both
structure and attribute value. In our proposed framework, the objective of SVM
model is to recognize the pattern of web elements corresponding to search box in
each website as illustrated in the Fig. 6 of [22]. Specifically, the SVM model will
learn the HTML structure of each website, in case of any modification in term
of element web, the SVM model will find the similar pattern of HTML web and
adjust its model according to the changes (Fig. 6). For the next testing, if the web-
site is changed, the SVM model will detect its changes and “guide” the Selenium
code to adapt automatically with it. In this case, the test code will not be broken
and can be reused. More specific, the goal of the SVM is to train a model that
assigns new unseen web element into a particular category. It achieves this by cre-
ating a linear partition of the feature space into two categories. In each website,
structured data is extracted for each HTML element, they have to be turned into
proper feature vectors. We use SVM model to recognize the feature importance
of each web element corresponding to its density and apply in the feature impor-
tance property of our model. We have tried many features and preprocessing steps
as part of our cross-validation routine, and we kept the ones yielding best perfor-
mance and moved them in the final model. Feature importance gives a score for
each feature attribute, the higher of the score, the more important or more rele-
vant of the feature is. Therefore, the weight for each element attribute is assigned
according to its frequency and informative ranking.

3.3 Data Collection and Analysis

In order to have the dataset for our training SVM model, we need to gather the
large amount of data. By using the scraping tool described in section A, we are

192 P. Nguyen and S. Maag

successful to retrieve the data from the list of 5000 websites provided by [7]. This
data contains one millions URLs on top ranking of Alexa [1]. Our tool can scrape
any website has the search functionality, it will pull down the web elements cor-
responding to the search box. Since the collected raw data is undesired format,
unorganized, and extremely large. Therefore in further steps, we need to use the
processing tool to enhance the data quality. The main steps for preprocessing data
are formatting, cleaning. Data cleaning is applied to remove messy data, duplicate
data and manage missing values. Formatting is required to ensure that all vari-
ables within the same attribute are consistently written. Once structured data
is extracted for each HTML element, they have to be turned into proper feature
vectors.

4 Experimental Studies

Testing Method.
To test our “codeless testing” framework, our experiences focus on two function-
alities of websites: “search-functionality” and “contact-functionality”.

1. Search - Functionality.
First, let follow the scenario: if the users want to use Google to search for the
term “Codeless Testing”, normally they will open their favourite browser, let say
Chrome to navigate to the website of Google. After the official site of Google
page fully loaded, the users need to locate the search box, then type the search
term “Codeless Testing”. All of this manual steps performed by human can be
completely replaced those steps by our codeless testing framework. By analyz-
ing the multiple search activities on various websites, we can group the search
scenario in three cases:

– Case 1 (Traditional search): we call it traditional because the search box is
appeared directly in the website interface, the user can easily locate it and
enter the search query. We studied that 80–90% search websites are designed
in this case 1. For example: google, youtube, yahoo, amazon, etc., (Fig. 7).

Fig. 7. Case 1 search type: traditional search.

A Machine Learning Based Methodology for Web Systems Codeless Testing 193

– Case 2 (Hidden bar search): The search bar is hidden, the users are required
extra step by clicking the search button to activate/open the search bar. Once
the search bar appears, the user can enter their search phase as normal (Fig. 8).

Fig. 8. Case 2 search type: hidden search box.

– Case 3 (Pattern/Condition Search): the websites have many filters/criteria
for search, the users must select the right criteria to proceed. For instance,
some hotel or housing websites only allow users to select the special search key
in their pattern database (region, type of house, size of house, prize, room,...).
Or in particular website only allow the users to perform the search on specify
content provided in their database, if the users type random search query, or
the query is not corresponding to their form, there will be nothing to return
(Fig. 9).

Fig. 9. Case 3 search type: filters/criteria search.

194 P. Nguyen and S. Maag

Test Scenario for Search Functionality
In order to test the search functionality in website, we defined three verdicts in
our generic test case: pass, fail, error.

– The test is considers as pass when a browser is fully load the website, the
“search term” is entered in the search box, the website must return the answer
corresponding to the “search term”.

– Browser must be able to load full website and be navigated to the search box,
if website is not loaded =⇒ fail.

– If any website does not contain a search box or does not have the search
functionality in their services =⇒ error.

– When entering “search term” in the search box =⇒ “search term” must be
appeared inside the search box, if it is not appeared =⇒ fail.

– Search box must accept any type of query as string for input (number, text,
special characters...).

– If there is condition/limit/boundary/criteria for input search (case 3 as
described above) =⇒ not consider in our test case =⇒ error.

– If a website requires more than a step rather than type search term (case 3)
=⇒ error.

– Website must return the result for the search term =⇒ “no result found or
nothing found” is still consider as a pass case

2. Contact - Functionality.
For further verifying the efficiency of our framework, we decided to use our code-
less framework to test an additional functionality of web service: the functionality
of contact page. According to [4], a contact page is a common web page on a web-
site for visitors to contact the organization or individual providing the website.
The contact page typically contains one or more of the following items: an email
address, telephone number, links to social media of the owner’s website, and a
contact form for a text message or inquiry. The contact form can be a set of input
boxes to collect the feedback or the request from users. In our experiment, we
assume that the user will have these behaviours when using this contact services:
the user will surf to the contact web page, he will fill his information (name, email
address...), then write his questions in the comment box, after that he will send
that message to the website. If the message is sent correctly, we consider this is
the pass case, otherwise the verdict will be fail, we also define the verdict is error
if the website does not contain the contact form as illustrated in Fig. 10.

4.1 Experiments Setup

In the experiment phase, we test our framework on the dataset.

Project Tools
In order to run the experiment, we setup our computer environment as below:

– Python 3.6.8
– Dependencies: Keras/Tensorflow, scikit-learn: core platform to anal-

yse/process data and training SVM model

A Machine Learning Based Methodology for Web Systems Codeless Testing 195

– Libraries: Selenium, Request HTTP, Beautiful Soup, LXML
– Jupyter Notebook App: online web-base platform to visualize the data

Fig. 10. The general contact form of website.

Testbed

– OS: x86-64 Microsoft Windows 10 Pro, version 10.0.18363, Build 18363
– Processor: Intel c© CoreTM i7-7500U CPU @ 2.70 GHz × 2
– Memory: 16 GB
– SSD: 512 GB
– Dataset:

• Metadata: 1.3 Mb in csv format. 1000 rows× 7 columns
• Training set: 70% metadata in npy format (numpy array)
• Test set: 20% metadata in npy format (numpy array)

– Browsers: (Table 1)

Table 1. Browser version [22].

Chrome 78.0.3904.70 (Official Build) (64-bit)

Firefox 70.0 (64-bit)

Opera 76.0.3809.132

Internet Explorer 11.418.18362

Microsoft Edge 44.18362.387.0 Build 18362

4.2 Results and Discussions

Automation Testing Against Multiple Web Sites. To evaluate the effi-
ciency of our framework, we conducted the test using a generic test case against

196 P. Nguyen and S. Maag

Table 2. Testing search-functionality against 1000 web sites [22].

Pass Fail Error

Chrome 48% 18% 34%

Firefox 57% 16% 27%

Opera 47% 12% 41%

Internet Explorer 9% 19% 72%

Microsoft Edge 17% 19% 64%

Table 3. Testing contact-functionality against 1000 web sites.

Pass Fail Error

Chrome 14% 12% 74%

Firefox 17% 15% 68%

Opera 16% 15% 69%

Internet Explorer 7% 17% 76%

Microsoft Edge 13% 13% 74%

on 1000 websites chosen randomly on the list of Alexa described in Sect. 5, the
results are showed in Table 2 and Table 3 following.

The percentage of result getting error is high does not imply that our frame-
work is defective. It happened due to the fact that we did the test on 1000
websites chosen randomly. Therefore, there are plenty of websites that do not
have the search functionality an contact functionality. Moreover, we observed
that most modern websites nowadays, the designers has replaced the contact
page with the FAQ page following a direct interaction by a chat-bot, mean-
while the user can have the instant reply by a virtual robot. This case is not in
our context of experimental, therefore we obtained most of the results are error
verdict.

Through Table 2 and Table 3, we can see that Internet Explorer and Microsoft
Edge perform the worst. It make senses since Microsoft has stopped support
for Internet Explorer. Microsoft Edge is replaced as the main and fast browser
in Windows. However, the Selenium Webdriver for Microsoft Edge is not fully
supported and still under development. We encountered that Internet Explorer
and Microsoft Edge will crash if testing more than 20 websites concurrently.
Through the experience result for automation testing the search functionality
showed in Fig. 11, Firefox performs the best in term of pass case but it is after
Chrome when dealing with the error case. Chrome is the best browser can handle
error. We experienced that Chrome is a good choice when testing the websites
which are rendered heavily with JavaScript, while Firefox still suffers for those
sites. Opera is fairly good in our test. We were also surprise with the performance
of Opera consider that it is not as popular as Chrome and Firefox.

A Machine Learning Based Methodology for Web Systems Codeless Testing 197

Fig. 11. Automation testing against multiple web sites [22].

Testing with Extension (add-On). During our experiment, we encountered
that our test will be interrupted if there is pop-up suddenly appearing during
the test. The pop-up can be any type (advertisement, data privacy, etc.) but the
most appearance is the pop up which requires to accept the term and privacy
when browsing website as seen in Fig. 10. Without clicking the accept button,
there is no way to browse the website further. Considering that the test is running
automated under Selenium code, there is no interference by manual hand to click
the accept button. Therefore, the test mostly will be broken if facing with pop up.
In order to solve this problem, we must add the blocking pop-up extension to the
browser. This has the trade-off, adding extension allows to test pop-up websites,
but in return, the speed of test will be very slow. The reason is, adding extension
is done in Selenium code, therefore, every time running test, the webdriver will
add automated the extension in the browser again. Therefore, the performance
will be slow down (Fig. 12).

Fig. 12. Pop-up blocks the browser in Yahoo site.

198 P. Nguyen and S. Maag

For the experiment, we chose two extensions below due to their efficiency in
blocking pop up, there are more than 10 millions users using those extensions:

– Ublock [13]: is a free and open-source, cross-platform browser extension for
content-filtering, including ad-blocking.

– I dont care about cookie [6]: This browser extension removes cookie warnings
from almost all websites and saves thousands of unnecessary clicks.

Since the above extensions are only full supported for Chrome and Firefox,
therefore in this experiment, I only run the test on two those browsers. The test
was run on randomly 20 websites concurrently on each browser in two modes:
with extension and without extension. The Table 3 and Table 4 illustrate our
results.

Through Table 4, we can see that using extension to block the popup is very
effective during the test. It help to enhance the pass case and reduce the fail
case. However, the speed to run the test with add-on is very slow, mostly double
time comparing with the test without add-on as shown in Fig. 13. We also note
that Firefox is more efficient in Chrome in term of time performance in both
cases: with and without extension as illustrated in Fig. 13.

Table 4. Verdict result when testing with/without extension [22].

With extension Without extension

Pass Fail Error Pass Fail Error

Chrome 12 2 6 9 5 6

Firefox 11 3 6 9 5 6

Fig. 13. Browser with extension testing [22].

Cross Browsers Testing. Through the experiment in Sect. 7.1, we have seen
that Firefox is the most efficient browser in our framework, Chrome and Opera
perform fairly good. Internet Explorer and Microsoft Edge are the least efficient
browsers. In order to compare the speed performance of those five browsers. We
chose randomly 10 websites and run those same websites on each browser, then
measure the running time. We chose only 10 websites because Internet Explorer

A Machine Learning Based Methodology for Web Systems Codeless Testing 199

Fig. 14. Cross browsers testing [22].

and Microsoft Edge will crash if running large number of websites at the same
time.

As seen in Fig. 14, Firefox is the fastest browser during the test. Internet
Explorer performs the worst since it has been abandoned from Microsoft a time
ago. Note that, the result was shown in Fig. 14 is for reference only. Depending on
the websites and network, each browser will have the different behaviours. This
mean, in some contexts, Chrome is faster than Firefox or Opera. This is due to
the fact that there are websites designed or optimized for a specific browser. For
example, when searching on Google site, if the browser is Chrome the website
may present “richer” content – something more dynamic and styled which may
have a heavy reliance on Javascript and CSS.

Precision of Codeless Framework in Testing. In this section, we demon-
strates the performance of our codeless framework by evaluate the model via its
precision rate. We used five most popular browsers to test 50 specific websites on
both case: search-functionality and contact-functionality. By using one generic
test case, we conducted the test on 50 fixed websites (not random websites) to
verify the accuracy of three verdict: pass, fail, error.

Table 5. Precision rates.

Precision
(Search-Functionality)

Precision
(Contact-Functionality)

Chrome 93% 66%

Firefox 94% 68%

Opera 90% 65%

Microsoft Explorer 82% 54%

Microsoft Edge 88% 64%

As shown in Table 5, our codeless framework archives the high precision rate
when testing search-functionality on three browsers: Chrome, Firefox, Opera.

200 P. Nguyen and S. Maag

This results thank to the full supporting and integration of selenium driver for
those three web browsers, while Microsoft Explorer and Microsoft Edge are not
in this case. In compare with search-functionality, the precision rate of contact-
functionality is less. This happened due to the fact that most modern websites
have wider variety of contact form, our training model has limit data to be
adapted with this changes. In general, the result in Table 5 confirms our proposed
method: combining machine learning technique with selenium, a generic test case
can be adapted to test multiple websites, this will help the tester in reducing
time and effort to maintain the test code.

5 State of the Art

There are several recent papers in the literature proposing automation testing
methods based on machine learning techniques [15,18,20,21,24]. However, none
of them has proposed a novel of codeless for web service testing. Moreover, in the
market area, many start-up companies with several tools have entered the mar-
ket recently, all with the promise of solving the coding skill conundrum. There
is a lot of buzz about no-code or low-code concepts, and companies such as
Salesforce promote plug-and-play offerings. Some testing tools such as Testcraft,
TestSigma, Ranorex, Tricentis, Leapwork, etc. advertise that they can provide
this option by building a user-friendly UI on top of the code layer and also
enabling switching between two modes. They promote that testers can still write
scripts and receive detailed feedback but skip the coding part. However, when
it comes to test automation, we believe there is an issue with how “codeless”
is being interpreted. The majority of these tools are trivializing the real-world
complexity of testing. Although automation testing techniques have been stud-
ied for years by industrial and researchers [17], codeless testing is a rather novel
discipline. Despite the above mentioned tools, there are very few papers or ini-
tiatives dedicated to codeless testing. We may cite the very recent patent [23] in
which the Rapid Automation First-pass Testing (RAFT) framework is depicted.
However, whether in the proposed tools or the few published methodologies
descriptions, the details are not provided. In our paper, we present a generic
framework allowing to focus on codeless testing integrating ML technique.

6 Conclusion and Perspectives

Herein, we have proposed a novel framework for testing websites using “codeless
testing automation”. Our main purposes is to ease the functional testing of
web systems to human testers without specific skills in testing or programming
language. Besides, our approach deals to testing websites in a generic way that is
dynamically adaptable to any data changes into the scraped pages. By that way,
we aim at reducing time and effort to change or modify test code. Selenium has
been used. For defining our approach, we did use a machine learning technique
(SVM) to recognize the feature importance of each web element corresponding
to its density and apply in the feature importance property of our model. We

A Machine Learning Based Methodology for Web Systems Codeless Testing 201

successfully evaluated our approach on a new use case that consists to validate
the correct function of submitting a contact form through a specific web page.
The experiments as well as the results show that our framework can be efficient
to perform the automation testing with most of standard websites by using the
generic test case without rewriting the test code.

As perspectives, we aim at tackling more complex use cases. In our current
paper and our previous publication [22], some relevant use cases have been pro-
cessed. Though they provide complexities, they are related to specific data that
can be considered as static (presence of fields). In the future, we will study how
to test websites with dynamic data (eventually provided by database). Further-
more, we are currently tackling how to accelerate the codeless testing automation
by processing Selenium Grid through virtualized environment. Finally, we will
expand our approach to other ML techniques such as neural ones.

References

1. Alexa top website ranking. https://www.alexa.com/topsites/countries/FR
2. Beautiful soup documentation. https://www.crummy.com/software/BeautifulSo

up/bs4/do
3. Companies using selenium. https://enlyft.com/tech/products/selenium
4. Contact page. https://en.wikipedia.org/wiki/Contact$ $page
5. Enlyft. https://enlyft.com/tech/products/selenium
6. Idontcareaboutcookie blocking popup extention. https://www.i-dont-care-about-

cookies.eu/
7. List of top one million website on alexa ranking
8. Lxml toolkit. https://lxml.de/
9. Request library. https://pypi.org/project/requests/2.7.0/

10. Selenium automates browsers. https://selenium.dev/
11. Selenium webdriver document. https://selenium-python.readthedocs.io/locating-

elements.html
12. Support vector machine. https://en.wikipedia.org/wiki/Support-vector machine
13. Ublock blocking popup extension. https://github.com/gorhill/uBlock
14. Ameur-Boulifa, R., Cavalli, A.R., Maag, S.: Verifying complex software control

systems from test objectives: application to the ETCS system. In: Proceedings
of the 14th International Conference on Software Technologies, ICSOFT 2019,
Prague, Czech Republic, 26–28 July 2019, pp. 397–406 (2019). https://doi.org/10.
5220/0007918203970406

15. Rosenfeld, A., Kardashov, O., Zang, O.: Automation of android applications func-
tional testing using machine learning activities classification. In: IEEE/ACM 5th
International Conference on Mobile Software Engineering and Systems (MOBILE-
Soft) (2018)

16. Eldh, S., Hansson, H., Punnekkat, S., Pettersson, A., Sundmark, D.: A framework
for comparing efficiency, effectiveness and applicability of software testing tech-
niques. In: Testing: Academic and Industrial Conference - Practice And Research
Techniques, TAIC PART 2006, Proceedings, pp. 169–170 (2006)

17. Fewster, M., Graham, D.: Software Test Automation. Addison-Wesley Reading,
Boston (1999)

https://www.alexa.com/topsites/countries/FR
https://www.crummy.com/software/BeautifulSoup/bs4/do
https://www.crummy.com/software/BeautifulSoup/bs4/do
https://enlyft.com/tech/products/selenium
https://en.wikipedia.org/wiki/Contact$_$page
https://enlyft.com/tech/products/selenium
https://www.i-dont-care-about-cookies.eu/
https://www.i-dont-care-about-cookies.eu/
https://lxml.de/
https://pypi.org/project/requests/2.7.0/
https://selenium.dev/
https://selenium-python.readthedocs.io/locating-elements.html
https://selenium-python.readthedocs.io/locating-elements.html
https://en.wikipedia.org/wiki/Support-vector_machine
https://github.com/gorhill/uBlock
https://doi.org/10.5220/0007918203970406
https://doi.org/10.5220/0007918203970406

202 P. Nguyen and S. Maag

18. Joshi, N.: Survey of rapid software testing using machine learning. Int. J. Trend
Res. Dev. 3, 91–93 (2016)

19. Lalanne, F., Cavalli, A.R., Maag, S.: Quality of experience as a selection criterion
for web services. In: Yétongnon, K., Chbeir, R., Dipanda, A., Gallo, L. (eds.)
Eighth International Conference on Signal Image Technology and Internet Based
Systems, SITIS 2012, Sorrento, Naples, Italy, 25–29 November, pp. 519–526. IEEE
Computer Society (2012)

20. Li, J.J., Ulrich, A., Bai, X., Bertolino, A.: Advances in test automation for software
with special focus on artificial intelligence and machine learning. Softw. Qual. J.
28(1), 245–248 (2019). https://doi.org/10.1007/s11219-019-09472-3

21. Nguyen, D.M., Do, H.N., Huynh, Q.T., Vo, D.T., Ha, N.H.: Shinobi: a novel app-
roach for context-driven testing (CDT) using heuristics and machine learning for
web applications: an analysis of chemosensory afferents and the projection pattern
in the central nervous system. In: Duong, T., Vo, N.S. (eds.) Industrial Networks
and Intelligent Systems, INISCOM 2018, Lecture Notes of the Institute for Com-
puter Sciences, Social Informatics and Telecommunications Engineering, vol. 257,
pp. 86–102. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-05873-9 8

22. Nguyen, D.P., Maag, S.: Codeless web testing using selenium and machine learn-
ing. In: van Sinderen, M., Fill, H., Maciaszek, L.A. (eds.) Proceedings of the
15th International Conference on Software Technologies, ICSOFT 2020, Lieusaint,
Paris, France, 7–9 July 2020, pp. 51–60. ScitePress (2020). https://doi.org/10.
5220/0009885400510060

23. Patel, A., Arkadyev, A., Sharma, R., Liang, R., Kota, S.B.: Rapid automation
first-pass testing framework, uS Patent App. 16/207,618 (2020)

24. Bhojan, R.J., Vivekanandan, K., Ramyachitra, D., Ganesan, S.: A machine learning
based approach for detecting non-deterministic tests and its analysis in mobile
application testing. Int. J. Adv. Res. Comput. Sci. 9, 1–5 (2019)

25. Shariff, S.M., Li, H., Bezemer, C.P., Hassan, A.E., Nguyen, T.H., Flora, P.: Improv-
ing the testing efficiency of selenium-based load tests. In: 2019 IEEE/ACM 14th
International Workshop on Automation of Software Test (AST), pp. 14–20. IEEE
(2019)

https://doi.org/10.1007/s11219-019-09472-3
https://doi.org/10.1007/978-3-030-05873-9_8
https://doi.org/10.5220/0009885400510060
https://doi.org/10.5220/0009885400510060

Multilevel Readability Interpretation Against
Software Properties: A Data-Centric Approach

Thomas Karanikiotis , Michail D. Papamichail(B) , and Andreas L. Symeonidis

Electrical and Computer Engineering Department, Aristotle University of Thessaloniki,
Intelligent Systems & Software Engineering Labgroup, Information Processing Laboratory,

Thessaloniki, Greece
{thomas.karanikiotis,mpapamic}@issel.ee.auth.gr,

asymeon@eng.auth.gr

Abstract. Given the wide adoption of the agile software development paradigm,
where efficient collaboration as well as effective maintenance are of utmost
importance, the need to produce readable source code is evident. To that end,
several research efforts aspire to assess the extent to which a software component
is readable. Several metrics and evaluation criteria have been proposed; however,
they are mostly empirical or rely on experts who are responsible for determining
the ground truth and/or set custom thresholds, leading to results that are context-
dependent and subjective. In this work, we employ a large set of static analy-
sis metrics along with various coding violations towards interpreting readability
as perceived by developers. Unlike already existing approaches, we refrain from
using experts and we provide a fully automated and extendible methodology built
upon data residing in online code hosting facilities. We perform static analysis at
two levels (method and class) and construct a benchmark dataset that includes
more than one million methods and classes covering diverse development scenar-
ios. After performing clustering based on source code size, we employ Support
Vector Regression in order to interpret the extent to which a software component
is readable against the source code properties: cohesion, inheritance, complexity,
coupling, and documentation. The evaluation of our methodology indicates that
our models effectively interpret readability as perceived by developers against the
above mentioned source code properties.

Keywords: Developer-perceived readability · Readability interpretation ·
Size-based clustering · Support vector regression

1 Introduction

The term readability can be described as “the ease of a reader to understand a written
text”. In the case of standard text (literature, news, post, etc.) this definition is straight
forward; however from a software engineering point of view and in specific when we
refer to source code, readability is a complex concept linked to several factors beyond
the understanding of the specifics of each programming language. These factors are the
comprehension of the purpose, the control flow, and the functionality that the source

c© Springer Nature Switzerland AG 2021
M. van Sinderen et al. (Eds.): ICSOFT 2020, CCIS 1447, pp. 203–226, 2021.
https://doi.org/10.1007/978-3-030-83007-6_10

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-83007-6_10&domain=pdf
http://orcid.org/0000-0001-6117-8222
http://orcid.org/0000-0001-8973-0293
http://orcid.org/0000-0003-0235-6046
https://doi.org/10.1007/978-3-030-83007-6_10

204 T. Karanikiotis et al.

code serves, aggregated at the level of code block, method, class, component and/or
system.

The vital importance of readability as a software quality attribute is more than evi-
dent considering the fact that according to several studies, reading code is one of the
most time and effort-consuming tasks while maintaining software [15,17]. This is also
reflected in the definition of ISO/IEC 25010:2011 [7], which suggests that readabil-
ity can be used as a measure to define the extent to which a software component is
maintainable. This fact makes no surprise as readability is crucial for maintainability-
related tasks like fixing bugs as well as evolving the source code so as to cover future
requirements (both functional and non-functional). On top of the above, according to
Knight and Myers, checking for readability issues has a positive impact in several qual-
ity attributes such as portability, maintainability, and reusability and should thus con-
stitute a special part of the software inspection procedure [9]. Finally, given the reuse-
oriented software development paradigm which has become state-of-the-practice, the
need to produce readable software is even more prominent.

Given the importance of readability, several research efforts are directed towards
assessing the extent to which software components are readable [1,3,13,18] using static
analysis metrics, such as the widely used Halstead metrics [6]. Upon building readabil-
ity evaluation models, these approaches are in essence effective, however they exhibit
certain inherent weaknesses. At first, the majority of the proposed approaches relies on
quality experts who are responsible for defining the readability degree of each software
component under evaluation and/or determining the appropriate thresholds of metrics
that result in the desirable readability degree. In addition, given that expert-aided eval-
uation is both time and resources consuming, the used datasets are often small and thus
cover only limited development scenarios. All the above lead to subjective evaluation,
which is also depicted in the absence of a certain standardization in terms of defin-
ing the factors that influence readability (this absence is reflected in readability-related
features that are usually selected intuitively and are based on the authors expertise in
certain use cases). Finally, providing a single readability score without actionable rec-
ommendations regarding the certain axes that need improvement makes it difficult for
developers to perform targeted audits.

In this work, we aspire to overcome the aforementioned limitations by proposing
a data-driven readability interpretation methodology applicable at both method and
class levels. To that end, we employ data residing in online code hosting facilities
(i.e. GitHub) in order to build a fully-automated and interpretable readability evalua-
tion methodology that expresses the extent to which a software component (method or
class) is readable as perceived by developers. In order to accomplish that, we extend
our previous work [8], where we proposed a generic methodology for readability inter-
pretation at method level. Here, upon performing static analysis in more that 1 million
methods and classes included in the most popular and reused GitHub Java projects, we
define a readability score at both method and class levels based on the compliance of
the respective component with the widely accepted code writing practices as reflected
in the number of identified violations. In order to cover various assessment scenarios,
we employ clustering for segmenting our dataset into coherent groups that share sim-
ilar (within cluster) characteristics. Subsequently, for each cluster, we employ Support

Multilevel Readability Interpretation Against Software Properties 205

Vector Regression and build models that enable a comprehensive and interpretable eval-
uation of the readability degree on five axes, each corresponding to a primary source
code property: cohesion, inheritance, complexity, coupling, and documentation.

Summarizing, the advances of this work with respect to our previous paper [8] are
the following:

• The extension of the previous models that evaluate readability on a method level and
on three independent axes, in order to also measure readability on a class level, based
on primary source code properties, cohesion and inheritance and on the aggregation
of the methods readability scores.

• The formulation of our ground truth, aggregating the coding violations based not
only on their severity, but also on the frequency with which they appear on the
training corpus.

• The creation of a web application1 for the demonstration of our methodology on a
set of projects.

The rest of this paper is organized as follows. Section 2 provides background infor-
mation on static analysis metrics and reviews current approaches on readability estima-
tion, while Sect. 3 describes our benchmark dataset and designs a scoring mechanism
for the readability degree of source code components. The developed models are dis-
cussed in Sect. 4, while Sect. 5 evaluates the efficiency of our readability interpretation
methodology against different axes. Finally, Sect. 6 presents the web application built
to apply our approach, while Sects. 7 and 8 conclude the paper and provide insight for
further research.

2 Related Work

The recent needs of an effective software development process that assures the expec-
tations of the end-users have made the assessment of software quality necessity, while
the adoption of agile software development procedures has changed the focus of the
research community towards maintainability, as it is a crucial factor for software health
and evolution. Readability has always been highly related to maintainability and, thus,
a lot of research approaches aspire to evaluate the readability of a given code or pro-
pose fixes that could improve the code comprehensibility. Despite the fact that many
research approaches have been proposed for various purposes, such as an editor that
could help the developer improve the code readability [14], it has been proven that
these approaches usually fail to quantify the readability of a software component and,
thus, measure the quality improvements [11]. Therefore, there is a high need of a sys-
tem that could evaluate readability as perceived by the community of developers and
measure its improvements in practice.

The first step towards the evaluation of software readability was made by Buse et al.
[1]. The authors built a system that could evaluate the readability of a given code and
classify it as “more readable” or “less readable”, using metrics related to the structure,
the documentation and the logical complexity of the code. The metrics were selected in

1 https://readability-evaluator.netlify.app/.

https://readability-evaluator.netlify.app/

206 T. Karanikiotis et al.

an expert-based logic from the authors, who, upon evaluation, proved that only the first
8 principal components contain almost 95% of the total variability.

The work of Buse et al. inspired a lot of subsequent approaches. Dorn [3] uses
mainly structural and visual perception features, aspiring to quantify features that
improve visual readability. The evaluation was based on 5,000 human participants and
concluded that it can achieve almost 2.3 times better results than any other approach. On
the other hand, Posnett et al. [13] extended the approach made by Buse et al. , adding
the size of the given code into the model that quantifies readability, due to the size
dependency the rest of the features appear to have. In the same approach, the impor-
tance of the Halstead’s V [6] was identified, as it contains high explanatory power.
These approaches formed the basis for a study [10], which aspired to quantify the read-
ability of open source projects over time and proved that they usually achieve quite high
readability scores, even after a lot of changes.

Scalabrino et al. [18] proposed the use of textual features as a crucial improvement
of the previous approaches. In order to support their suggestion, the authors conducted
an empirical study. Their model was based both on textual and structural features, such
as the number of terms coexisting both in identifiers and in comments, comments read-
ability and the number of full-word identifiers. The study concluded that this model can
easily outperform the previous approaches, indicating that the textual features can also
contain valuable information. In their next work [19], the authors aspired to extend the
previous model by adding new textual features, while for the empirical study more than
5,000 people were recruited. The new results proved that the addition of the new tex-
tual features improved the model’s accuracy, outperforming the current state-of-the-art
models, while a correlation between better readability models and FindBug warnings
was established. Contrary to the previous approaches, Choi et al. [2] were only based
on structural features to build a model that could quantify code readability. The authors
created a tool, named Instant R. Gauge, which was able to achieve more than 70%
accuracy on human-annotated data.

Last but not least, Fakhoury et al. [5] examined the performance of the related
approaches on readability evaluation, conducting a study about readability commits
and the respective code improvements. The results showed that the readability models
proposed in the bibliography are not able to detect and quantify the readability improve-
ments introduced by the readability commits.

In this work, in an attempt to overcome the limitations depicted in the observa-
tions made by Fakhoury, we propose a generic data-driven methodology for evaluating
readability both at method and class level. Using data residing in online code hosting
facilities, we formulate our ground truth based on commonly accepted coding practices
and aspire to evaluate the readability of a software component, as it is perceived by
the developers, refraining from the use of experts. In an effort to provide interpretable
results, we made use of Support Vector Regression models to analyze the quality of
the source code and evaluate the readability of a software class or method on three
independent axes, each corresponding to a primary code property.

Multilevel Readability Interpretation Against Software Properties 207

3 Readability as Perceived by Developers

3.1 Benchmark Dataset

In an effort to define readability as perceived by developers, our primary design choice
is harnessing the deluge of the available data residing in online code hosting facilities
so as to formulate a ground truth that expresses the extent to which a software compo-
nent is readable. In an effort to cover various evaluation scenarios, we perform analysis
at both method and class levels. In specific, our dataset contains more than 1 million
methods and classes included in the most popular (as reflected in the number of GitHub
stars) and reused (as reflected in the number of GitHub forks) GitHub Java projects.
We perform static analysis in order to compute two types of information: a) a large
set of static analysis metrics that quantify six major source code properties: cohesion,
inheritance, complexity, coupling, documentation, and size, and b) the identification of
various coding violations regarding widely accepted code writing practices. Given their
scope and impact, these violations are categorized into eight categories (Best Practices,
Documentation, Design, Code Style, Error Prone, Performance, Multithreading, and
Security) and three levels of severity (Minor, Major, and Critical). Upon selecting only
the violations that are related to readability and in an effort to maintain the purity of our
ground truth, we eliminate the violations that fall into the categories of Performance,
Multithreading, and Security.

Table 1. Dataset statistics.

Metric V alue

Number of GitHub projects 330

Number of classes 172, 065

Number of methods 1, 002, 990

Number of static analysis metrics 27

Number of code properties 6

Number of coding violations 193

Number of violations categories 5

Lines of code analyzed 9, 359, 380

Certain statistics regarding the benchmark dataset are given in Table 1, while Table 2
presents the calculated static analysis metrics along with their associated property. It is
worth noting that the metrics referring to cohesion and inheritance are only applicable
at class level. The static analysis metrics were calculated using the SourceMeter [20]
tool, while the identification of coding violations was performed using the PMD tool
[12].

The aforementioned tables have been altered from the respective ones in [8], in
order to incorporate also the necessary data and source code metrics for the evaluation
of readability in class level.

208 T. Karanikiotis et al.

Table 2. Overview of the computed static analysis metrics.

Code property Metric name Metric description

Cohesion LCOM5 Lack of cohesion in methods

Complexity NL Nesting level

WMC Weighted methods per class

HDIF Halstead difficulty

HEFF Halstead effort

HNDB Halstead number of delivered bugs

HPL Halstead program length

HPV Program vocabulary

HTRP Time required to program

HVOL Volume

McCC McCabe’s cyclomatic complexity

MI Maintainability index

Coupling NII Number of incoming invocations

NOI Number of outgoing invocations

Inheritance DIT Depth of inheritance tree

NOA Number of ancestors

NOC Number of children

NOD Number of descendants

NOP Number of parents

Documentation CD Comment density

CLOC Comment lines of code

DLOC Documentation lines of code

TCD Total comment density

TCLOC Total comment lines of code

Size LOC Lines of code

LLOC Logical lines of code

NOS Number of statements

3.2 Clustering Based on Size

Given that our benchmark dataset includes more than 1 million methods and classes that
exhibit high diversity both in terms of size and scope, our first step involves applying
clustering techniques so as to split the code components in a set of cohesive clusters that
share similar characteristics. This design choice originates from the fact that in practice,
methods and classes of different size usually serve different functionalities or follow
different architectures. For instance, methods with a small number of lines of code (<5)
are mainly used as setters/getters or specific utilities (read data from files, middleware
functions etc.), while larger ones mainly provide more advanced functionality. The same

Multilevel Readability Interpretation Against Software Properties 209

applies for classes, as size can be used as a measure of the number of functionalities
they serve. As a result, from a static analysis metrics perspective, they should be handled
accordingly.

Figure 1 presents the histogram (logarithmic scale) of the lines of code regarding the
analyzed components. Figure 1(a) refers to methods, while Fig. 1(b) refers to classes.
Given the distributions, it is obvious that the dataset covers a wide range of development
scenarios.

(a) (b)

Fig. 1. Distribution of lines of code at (a) class and (b) package level.

(a) (b)

Fig. 2. Overview of cohesion for different clusterings at (a) method and (b) class level.

Upon examining the data and in an effort to eliminate any introduced bias from
the high frequency of setters/getters and methods that provide no functionality (empty
methods), our first step involves removing the methods that have less than 3 lines of
code combined with minimal complexity as reflected in the values of McCabe Cyclo-
matic Complexity (≤1). These methods correspond to 29.43% of the dataset (295,204

210 T. Karanikiotis et al.

methods). Similarly, for the case of classes, we eliminate those that appear to have less
than 10 lines of code and only one method. These classes correspond to 30.56% of the
dataset (52,582 classes).

Our next step involves applying clustering using the k-Means algorithm. During this
process and in order to identify the optimal number of clusters, we calculated the cohe-
sion as expressed by the within sum of squares regarding different clusterings. Figure 2
illustrates the calculated cohesion for the cases where the number of clusters varies from
2 to 8. Figure 2(a) depicts the analysis results at method level, while Fig. 1(b) refers to
classes. Given the provided results, we selected five as the optimal number of clusters
for both cases.

Table 3. Overview of the formulated clusters.

Cluster Methods Classes

Number of methods LOC Range Mean silhouette Number of classes LOC Range Mean silhouette

#1 481,399 (70.0%) [1, 10] 0.76 98,563 (83.4%) [11, 96] 0.79

#2 155,871 (22.7%) [11, 24] 0.47 15,566 (13.2%) [97, 294] 0.49

#3 40, 571 (5.9%) [25, 51] 0.49 3, 258 (2.7%) [295, 744] 0.58

#4 8, 417 (1.2%) [52, 112] 0.49 647 (0.5%) [745, 1868] 0.53

#5 1, 262 (0.2%) >112 0.47 126 (0.1%) >1868 0.55

The formulated clusters are presented in Table 3. For assessing the results of the
clustering procedure, we used mean silhouette value [16] which combines the criteria
of both cohesion and separation and is given by the following equations as they were
originally presented in [8]:

s(i) =
b(i) − a(i)

max{a(i), b(i)} (1)

a(i) =
1

|Ci| − 1

∑

j∈Ci,i �=j

d(i, j) (2)

b(i) = min
1

|Ci|
∑

j∈Ck,k �=i

d(i, j) (3)

In the above equations a(i) refers to the mean euclidean distance between i and
all other data points in the same cluster, where d(i, j) is the euclidean distance between
data points i and j in the clusterCi. On the other hand, b(i) represents the smallest mean
euclidean distance of i to all points in any other cluster, of which i is not a member. As
shown in Table 3, the mean silhouette value regarding the five formulated clusters at
method level ranges from 0.47 to 0.76, while at class level it ranges from 0.49 to 0.79.
Finally, the mean silhouette values for the whole clustering at method and class level
are 0.68 and 0.73, respectively.

Finally, in an effort to refrain from having clusters that exhibit high similarities in
terms of the behaviour of the static analysis metrics and thus facilitate the modelling
procedure, we merge clusters #2 and #3 into one cluster that represents the cluster of

Multilevel Readability Interpretation Against Software Properties 211

medium size methods (and medium size classes) and clusters #4 and #5 into one that
represents the cluster of large size methods (and large size classes). These two clusters
along with cluster #1 that represents small size methods (and small size classes) are
going to be used during modelling.

3.3 Defining Ground Truth

After having constructed our final clusters at both levels, each corresponding to a differ-
ent size category, the next step involves the formulation of the readability score which
will be used as the information basis for building our readability evaluation models. To
that end, we use the number of identified violations as our information basis upon which
we compute the readability score for each source code component (method or class) that
reflects the extend to which it is readable. The number of identified violations represents
the compliance of the source code with widely accepted coding practices which create
a common ground between developers and thus are crucial for determining the ease of
a developer to read and comprehend a code fragment; in other words its readability.

Given that each violation affects the source code in a different manner along with
the fact that based on their impact, violations are categorized into three severity degrees
(Minor,Major, and Critical), one could argue that these severity degrees could be used
as weights for calculating a total number of identified violations for a certain com-
ponent. Although this strategy appears to be reasonable from a quality perspective, it
assumes that all violations of a certain severity (e.g. the “Minor” ones) have the same
impact, which is not always the case, especially considering the fact that this category
includes more than 70 different violations. In an effort to overcome this limitation and
given that our methodology is data-driven, we evaluate the significance of each violation
based on its occurrence frequency in the benchmark dataset. The higher the occurrence
frequency of a certain violation, the lower the significance. Given the aforementioned
strategy, we resort in computing the significance (weight) for each violation using the
following equation:

w(viol) = log(
MaxV iolFreq

freq(viol) + 1
) (4)

In the above equation, MaxV iolFreq refers to the highest occurrence frequency
among all violations, while freq(viol) refers to the occurrence frequency of the respec-
tive violation. The term +1 is used in order to eliminate the cases where a certain vio-
lation has zero occurrences and thus its weight would be infinite. Finally, given that
the occurrence frequency among violations exhibits very high differences which do
not necessarily reflect the actual difference in their significance, we use logarithm as a
smoothing factor.

212 T. Karanikiotis et al.

Fig. 3. Overview of the calculated weighs for all violations. (Color figure online)

Figure 3 depicts the calculated weights for all identified violations. Each bar refers
to a certain violation, while the color ranges based on its categorization into the three
aforementioned severity levels (Blue for “Minor”, Green for “Major” and Red for “Crit-
ical”). As shown in the figure, in many cases the typical categorization differs from the
calculated significance based on the analysis results originating from the benchmark
dataset.

Having computed the weights for all violations, the readability score for a certain
component is based on the following equations:

IdentifiedV iolations(i) =
K∑

viol=1

w(viol) ∗ freq(viol) (5)

V iolPerLoc(i) =
IdentifiedV iolations(i)

LLOC(i)
(6)

RScore(i) = 1 − Normed{V iolPerLoc(i)} (7)

In the above equations, IdentifiedV iolations(i) refers to the calculated number
of identified violations of the i − th component (method or class), while w(viol) and
freq(viol) represent the weight and the occurrence frequency of a certain violation.
V iolPerLoc(i) refers to the number of identified violations per Lines of Code regard-
ing the i − th component included in the dataset, while LLOC(i) refers to the number
of logical lines of code. Finally, RScore(i) refers to the reusability score for a certain
component which is calculated as the normalized values of V iolPerLoc(i) in the range
[0, 1]. It should be noted that Eqs. 6 and 7 are used exactly like Eqs. 4 and 6 in [8], while
we altered the calculation of the identified violations (Eq. 5), in order to incorporate the
impact of each violation.

Multilevel Readability Interpretation Against Software Properties 213

(a) (b)

Fig. 4. Overview of the distribution of the readability scores at (a) method and (b) class level.

Figure 4 depicts the boxplots of the readability scores for the three formulated clus-
ters at both method (Fig. 4(a)) and class levels (Fig. 4(b)). Given the boxplots in both
levels, it is obvious that in all clusters, the majority of the scores is distributed among a
large interval and thus covers a wide range of evaluation scenarios. In the case of meth-
ods, the cluster of “small methods” appears to have the highest range, which makes
no surprise given that it contains almost 70% of the dataset and thus contains meth-
ods that exhibit significant differences in terms of adopting certain coding practices.
Finally, it is worth noting that the “large methods” cluster appears to have the highest
mean readability score. Although this may be surprising, it is logical from a software
engineering point of view given that our dataset originates from the “best” GitHub Java
projects as reflected in their adoption by the community of developers. These projects
have hundreds of contributors and thus need to comply with certain code writing prac-
tices in order to ensure efficient collaboration, especially in the more complex parts of
the source code.

GitHub

Top Java
Repositories

Sta�c Analysis
Metrics

Code
Viola�ons

Complexity

Documenta�on

Coupling +

Readabilty
Evalua�on

Small

Medium

Large

Inheritance

Cohesion

Fig. 5. Overview of readability evaluation system.

214 T. Karanikiotis et al.

4 System Design

In this section we design our readability interpretation system (shown in Fig. 5) appli-
cable at both method and class levels based on the values of a large set of static analysis
metrics that quantify five major source code properties; cohesion, inheritance, complex-
ity, coupling, and documentation.

4.1 Data Preprocessing

The preprocessing stage is used to examine the set of available metrics, detecting the
overlays between them, in order to reduce the dimensions of the dataset and form the
final set of metrics that will be used in our model. Specifically, we compute the pairwise
correlations among all metrics to eliminate metrics that appear to be interdependent.
Figure 6 illustrates the heatmap with the results of the correlation analysis at method
level, while Fig. 7 at class level.

Given the heatmap for the case of methods, we can easily notice the high corre-
lations between metrics that belong to the same category (e.g. Complexity, Coupling
and Documentation), while metrics between different categories appear to have lower
correlations. From a software quality point of view, the results seem quite reasonable.
For instance, a method with high Halstead Effort (HEFF) has a high probability to also
exhibit highHalstead Time Required to Program (HTRP) (with a correlation value of 1),
while there is no clue about the Number of Incoming Invocations (NII) or the Number
of Outgoing Invocations (NOI)(with a correlation value of 0.00027 and 0.16 respec-
tively). In the case of classes and given that cohesion is only quantified by the metric
LCOM5, the heatmap illustrates the correlation of the metrics that refer to inheritance.

Fig. 6. Heatmap representation of correlation analysis at method level.

Multilevel Readability Interpretation Against Software Properties 215

Fig. 7. Heatmap representation of correlation analysis at class level.

Table 4. The final metrics used in our model.

Code property Level Metrics

Complexity Method NL, HDIF, HPV, McCC, MI

Coupling Method NII, NOI

Documentation Method CD, CLOC, DLOC

Cohesion Class LCOM5

Inheritance Class DIT, NOP, NOC

The correlation analysis showed that a lot of metrics coming from the same category
are highly correlated. For each metric category, upon examining the highly correlated
metrics and keeping one metric for each of these groups, the final dataset consists of the
metrics depicted in Table 4, as noted from [8].

4.2 Model Construction

As already mentioned, in the case of methods, we calculate one readability score per
each metric category, i.e. the readability score concerning the Complexity metrics, the
Coupling metrics and the Documentation metrics, evaluates the readability of each
method from the perception of each axis separately. These three values are then aggre-
gated to form the final readability score of the source code. As for the classes, we follow
a similar approach as we calculate one readability score for each one of the categories
Inheritance and Cohesion. Given the hierarchical structure of the source code in object-
oriented programming, the third readability evaluation axis for a certain class originates
from the already calculated readability score regarding its methods.

For the evaluation of the readability score of one method upon each metrics cate-
gory, a well-known regression model was used, the Support Vector Regression (SVR)
model [4]. Our methodology involves creating for each size cluster one SVR model that
evaluates each code property. As a result, we resort in nine independent SVR models
for the case of methods (three for each cluster) that evaluate Complexity, the Coupling,
and Documentation, while in the case of classes we have six that evaluate Cohesion and
Inheritance. The target of each model is the respective readability score as described

216 T. Karanikiotis et al.

in the previous section. The various parameters of each model are depicted in Tables
5 (originally created in [8]) and 6, which refer to methods and classes, respectively.
g stands for gamma parameter, tol for tolerance as stopping criterion and C for the
regularization parameter.

Table 5. The parameters of the regression models at method level.

Cluster Category g tol C

Small Complexity 0.001 0.001 256

Coupling 0.001 0.0001 256

Documentation 0.001 0.01 256

Medium Complexity 0.01 0.1 256

Coupling 0.01 0.01 256

Documentation 0.001 0.01 64

Large Complexity 0.001 0.01 32

Coupling 0.2 0.1 64

Documentation 0.15 0.001 256

Table 6. The parameters of the regression models at class level.

Cluster Category g tol C

Small Cohesion 0.001 0.001 256

Inheritance 0.1 0.0001 256

Medium Cohesion 0.001 0.001 1

Inheritance 0.2 0.01 64

Large Cohesion 0.001 0.1 64

Inheritance 0.7 0.0001 256

As for the training process of each constructed model, we follow a 80/20 training-
testing split, while we validate the performance of each model by using 10-fold cross-
validation. Tables 7 and 8 present the training and testing errors for each trained model
after performing cross-validation applicable at method and class level, respectively. The
results in Table 7 are slightly different from the respective ones in [8], due to the differ-
ent set of projects used.

At method level and for a certain cluster, the output of each one of the three models
represents the readability score of the method regarding the respective property. The
final readability score of the method is simply calculated by a weighted average of the
three scores, where the weights are based on the number of metrics included in each
property. As already mentioned in the preprocessing stage, 5 metrics are included in

Multilevel Readability Interpretation Against Software Properties 217

Table 7. The cross-validation errors of the regression models at method level.

Cluster Category Training Testing

MAE MS MAE MSE

Small Complexity 20.24% 6.53% 20.37% 6.55%

Coupling 22.73% 7.41% 22.90% 7.53%

Documentation 23.46% 7.69% 23.60% 7.76%

Medium Complexity 18.23% 5.34% 21.02% 7.39%

Coupling 21.95% 6.77% 22.17% 6.88%

Documentation 21.84% 6.74% 22.06% 6.88%

Large Complexity 16.84% 4.87% 21.55% 7.44%

Coupling 19.29% 6.33% 21.42% 7.48%

Documentation 19.15% 6.21% 22.84% 8.75%

Table 8. The cross-validation errors of the regression models at class level.

Cluster Category Training Testing

MAE MSE MAE MSE

Small Cohesion 18.70% 5.78% 18.50% 5.61%

Inheritance 18.53% 5.70% 18.49% 5.64%

Medium Cohesion 23.36% 8.04% 23.38% 8.05%

Inheritance 22.93% 7.86% 23.65% 8.29%

Large Cohesion 22.49% 7.49% 26.60% 10.02%

Inheritance 21.05% 6.96% 26.95% 10.20%

Complexity and 2 metrics are included in Coupling, while Documentation involves 3
metrics. Thus, the final aggregation function is depicted in the following equation:

RSmethod = 0.5 · Scmplx + 0.2 · Scpl + 0.3 · Sdoc (8)

where RSmethod is the final readability score of the method, Scmplx is the readability
score regarding Complexity, Scpl the readability score regarding Coupling and Sdoc

the readability score regarding the Documentation. Regarding classes, we follow the
same strategy for evaluating the code properties, while the third axis originates from the
calculated readability score regarding its methods. Thus the final aggregation function
at class level is the following:

RSclass = 0.2 · Scoh + 0.6 · Sinh + 0.2 · Smethods (9)

where RSclass is the final readability score of the class, Scoh is the readability score
regarding Cohesion, Sinh the readability score regarding Inheritance and Smethods the
mean readability score of the methods included in the class.

218 T. Karanikiotis et al.

Small Size Cluster Medium Size Cluster Large Size Cluster

Fig. 8. Error histograms of all size clusters at method level.

Small Size Cluster Medium Size Cluster Large Size Cluster

Fig. 9. Error histograms of all size clusters at class level.

Finally, in an effort to evaluate the efficiency of our models, we calculate the errors
of the training and testing. Figure 8 illustrates the training and testing histograms for
all size clusters at method level, while Fig. 9 depicts the respective error histograms at
class level. At both levels, the models seem to be trained effectively, as the training and
testing errors are low and lie mostly around 0. At the same time, the distributions of the
two errors are quite similar and the differences are minimal, indicating that the models
avoided overfitting.

5 Evaluation

In this section we evaluate our constructed methodology for estimating software read-
ability in a set of diverse axes. At first, in an effort to evaluate the effectiveness and
efficiency of our system, we apply our methodology on a set of diverse projects that
exhibit different characteristics. As for the second axis and towards assessing whether
the calculated readability scores are reasonable from a quality perspective, we perform
manual inspection on the values of the static analysis metrics regrading methods and
classes that received both low and high readability scores. Finally, in an attempt to eval-
uate the effectiveness of our approach in practice, we harness the readability evaluation
results in order to improve the readability degree of a certain Java method.

Multilevel Readability Interpretation Against Software Properties 219

5.1 Readability Estimation Evaluation

Table 9. The readability score interpretation on evaluation repositories.

Repo Num. of methods Num. of classes Total LOC Method level Class level

Actual Predicted Actual Predicted

#1 5,847 1,925 48,371 41.15% 45.81% 72.75% 65.83%

#2 3,034 493 19,207 49.74% 46.16% 65.18% 61.21%

#3 985 136 9,787 45.84% 40.62 69.54% 62.09%

#4 94 16 671 39.74% 49.12% 56.75% 60.73%

In the first step towards assessing the validity of our system, we evaluate its effi-
ciency based on the readability scores computed for four randomly selected reposi-
tories (around 10K methods and 80K Lines of Code) that exhibit significant differ-
ences in terms of size (number of methods and total lines of code) and scope. Table 9
presents certain statistics regarding the size and the readability evaluation for the exam-
ined repositories. In specific, the table contains the number of methods and classes
as well as the lines of code along with the mean values regarding the actual and the
predicted overall readability scores at both levels. In addition, in an effort to further
examine the readability interpretation results against the evaluated source code prop-
erties, Fig. 10 illustrates the percentage of the methods that received low, medium and
high readability scores. Low score refers to values below 0.33 (or 33%), medium refers
to values in the interval (0.33, 0.66], while high refers to scores above 0.7 (or 70%).

Fig. 10. Percentage of scores per category.

220 T. Karanikiotis et al.

According to the provided results, it is obvious that the overall predicted readability
score, which occurs as an aggregation of the respective scores for the three source code
properties, aligns with the one computed using the number of identified violations. In
the case of classes, the difference between the actual and the predicted score lies in the
interval [3%, 5%] in most cases, while in the case of classes this difference lies in the
interval [4%, 7%]. The highest difference in the case of methods appears in the small-
est repository. Upon manually examining its methods, we identified several methods
which are outliers from a static analysis metrics point of view (empty methods). These
methods were given a very high score and thus the mean predicted score appears to
be positively biased. In addition, given the mean values of the readability score for the
examined properties, according to which the mean score in all cases lies in the interval
[40%, 60%], one may conclude that our models do not exhibit bias towards making pre-
dictions around a certain value. This is also reflected in the distribution of the scores as
illustrated in Fig. 10.

Upon further examining the calculated readability scores in terms of decomposing
the final score into the three different axes under evaluation and in an effort to assess
whether the calculated scores are logical from a quality perspective, we examined the
variance of the scores for each respective property. The results at method level showed
that the scores regarding documentation exhibit the lowest variance, while the ones
regarding complexity appear to have the highest variance. This makes no surprise given
that the way of documenting source code in a certain project depends on the design
choices made by the main contributors that drive the development process and thus
refers to the project as a whole. As a result, the within-project variance of the docu-
mentation scores are expected to be low. This is reflected in the percentage of methods
receiving low, medium, and high values regarding the four examined projects. On the
other hand, complexity and coupling are properties that fully depend on the provided
functionality and thus methods with different scope and target may exhibit high differ-
ences. This is also reflected in the percentage of methods receiving different readability
evaluation, where in the cases of coupling and complexity this percentage is almost
evenly distributed in all four projects.

5.2 Example Readability Estimation

In order to further assess the effectiveness of our models and evaluate it from a soft-
ware quality perspective, we examined the methods and classes that received high or
low readability score for each size cluster, along with the values of the related static
analysis metrics that led to the predicted score. Table 10 presents these values regard-
ing six different methods (two for each cluster) that received low and high readability
score, respectively, while Table 11 refers to six different classes selected using the same
criteria.

As for the methods of low size, it is obvious that the method that received low
readability score appears to have no documentation as reflected in the zero value of
the Comments Density (CD) metric. On top of that and given the number of outgoing
invocations (11), it appears to be highly coupled as it calls eleven other methods during
its execution. As a result, the low readability score is logical from a quality perspec-
tive. The same applies for the method which received high score given that it appears

Multilevel Readability Interpretation Against Software Properties 221

Table 10. Overview of the static analysis metrics per property for methods with different quality
scores.

Metric name Small size cluster Medium size cluster Large size cluster

High score (85.52%) Low score (20.58%) High score (83.71%) Low score (18.95%) High score (87.43%) Low score (12.37%)

NL 0 1 2 3 1 4

HDIF 7 18 20.62 33.09 5.67 46.31

HPV 18 36 30 69 74 195

McCC 1 1 3 6 1 226

MI 114.7 102.6 100.75 80.71 73.84 −17.41

NII 0 0 1 2 0 1

NOI 1 11 2 6 4 13

CD 0.36 0.29 0.34 0.07 0.11 0.006

CLOC 4 0 8 2 10 2

DLOC 4 0 8 0 5 0

Table 11. Overview of the static analysis metrics per property for methods with different quality
scores.

Metric name Small size cluster Medium size cluster Large size cluster

High score (88.36%) Low score (17.73%) High score (85.2%) Low score (19.60%) High score (80.01%) Low score (5.12%)

LCOM5 0 3 1 7 1 17

DIT 1 1 2 2 1 3

NOP 1 1 2 1 1 4

NOC 0 0 1 22 4 6

to exhibit almost no coupling and has an average documentation level. It is worth not-
ing that both methods exhibit high scores in terms of complexity. As for the classes
that belong to the small size cluster, the one receiving low score appears to have low
cohesion as it could be split int 3 cohesive classes (based on the value of LCOM5).

As for the methods of medium size, it is obvious that the method that received low
readability score appears to be more complex and coupled than the one that received
high score as reflected in the values of McCabe Cyclomatic Complexity (McCC) and
Nesting Level (NL), as well as in the number of incoming and outgoing invocations. In
addition, the method which received a low score exhibits significantly higher volume as
reflected in the value of Halstead Program Volume (HPV), which is calculated from the
number of distinct and total operations and operands. Similar to the case of the classes
that belong to the small cluster, the medium-size class that received low score appears
lack both in terms of cohesion and inheritance as compared to the one that received high
score. These differences are obvious given the values of the metrics LCOM5 and NOC.

The same conclusions are drawn, while inspecting the computed values of the static
analysis metrics of the methods and classes included in the large size cluster. At method
level, it is worth noting that as size increases, the impact of complexity into the read-
ability degree becomes even more evident. This is reflected in the high difference in the
values of Maintainability Index (MI) between the two methods of the large size cluster.
At class level the same applies for the cohesion. Given all the above, the readability
evaluation in all twelve cases (six methods and six classes) appears to be logical and
can be explained by the values of the static analysis metrics.

222 T. Karanikiotis et al.

5.3 Application of Readability Enhancement in Practice

Further assessing the effectiveness of our readability evaluation system in terms of pro-
viding actionable recommendations that can be used in practice during development,
we resort to the exploration of a certain use-case where we harness the results of our
system towards improving the readability degree of a certain method.

Fig. 11. Initial version of method.

Figure 11 presents the initial source code of the method under evaluation. This
method is responsible for updating a certain database along with the backup database
and works in two different modes. The first mode refers to the case when the variable
ForceUpdate is true and involves updating the main database along with the backup
database, while the second refers to the case when the variable ForceUpdate is false
and involves only updating cache. At this point, it is worth noting that no update oper-
ation should be performed in the main database in cases when isUpdateReady is false
or synchronization is not complete (isSynchCompleted is false). Upon evaluating the
respective method using our trained models the overall readability score is 0.428 (or
42.8%), while the scores for the three properties were as follows: 0.637 (or 63.7%)
for the Complexity, 0.472 (or 47.2%) for the Coupling, and 0.052 (or 5.2%) for the
Documentation. Given these results, it is obvious that our method lacks proper docu-
mentation, while at the same time we can see that there is a relatively large nesting level
as reflected in the NL value which is 3.

We try to optimize our method in two directions. At first, we add detailed documen-
tation explaining the different control flow paths in order to improve the comprehensi-
bility of the code. Our second audit targets reducing complexity by refactoring the nav-
igation to the different available control flow paths and thus improve clarity. Figure 12
presents the optimized version of the source code, which originates from the aforemen-
tioned audits. Upon evaluating the optimized version, the overall readability score is

Multilevel Readability Interpretation Against Software Properties 223

Fig. 12. Final version of method.

0.80 (or 80%), while the scores regarding the three properties were as follows: 0.833
(or 83.3%) for the Complexity, 0.472 (or 47.2%) for the Coupling, and 0.963 (or 96.3%)
for the Documentation. As given by the comparison of the two code fragments, which
are functionally equal, the performed audits had a significant impact on the readabil-
ity degree, which is reflected in the scores. Finally, given that the two code fragments
have the same number of incoming and outgoing invocations, the score regarding the
coupling property remains the same. Finally, there is still room for improvement by
splitting the method into multiple methods each being responsible for a certain task. In
that way, we can also improve coupling.

6 Readability Evaluation Web Application

In an effort to test our readability interpretation methodology in practice, we developed
a prototype service2 that is deployed as a web application. Figure 13 illustrates the web
interface, where users are able to overview the readability interpretation results (right
part of the screen) along with the source code of the respective component (left part
of the screen) regarding several evaluation scenarios that took place in the context of
this paper. On top of that and using the interactive editor, users will be able to use the
trained models for evaluating their source code components and get actionable feedback
towards improving the readability of their code.

2 https://readability-evaluator.netlify.app/.

https://readability-evaluator.netlify.app/

224 T. Karanikiotis et al.

Fig. 13. Overview of the interface of the Source Code Readability Evaluator.

7 Threats to Validity

Our approach towards readability evaluation interpretation seems to achieve high inter-
nal validity, as it has already been proved from the evaluation. The limitations and
threats to the external validity of our approach span along the following axes: a) limita-
tions imposed by the definition of our ground truth, and b) the selection of our bench-
mark dataset.

Our design choice to quantify readability based on the compliance of the source
code with widely accepted coding practices as reflected in the number of identified
violations originates from the fact that the primary target of coding violations is to set
up a common ground between the development community in terms of following cer-
tain code writing guidelines. Apart from preventing the occurrence of various types of
errors (already known and documented), this common ground is crucial for improving
the understandability of the source code and thus influences readability. Furthermore,
given that we interpret readability as perceived by developers, our benchmark dataset
is built upon harnessing crowdsourcing information regarding the popularity and the
degree of reuse for a large number of GitHub Java projects. This information reflects
the high adoption of the selected projects among the community of developers and thus
was considered appropriate towards formulating our benchmark dataset. Of course, our
methodology can be applied as-is using a different benchmark dataset that covers the
individual needs of specific evaluation scenarios.

Multilevel Readability Interpretation Against Software Properties 225

8 Conclusions and Future Work

In this work, we proposed a multilevel readability evaluation methodology, that can
interpret readability as perceived by developers in an automated way, based on a large
set of static analysis metrics and coding violations. Our methodology can express the
extent to which a software class or method is readable in a way that a developer can
easily comprehend. Upon assessing the performance of our approach on a set of diverse
axes, our system is proven to be effective in evaluating readability on various axes, both
for class and method components, which correspond to primary source code properties.
Upon attempting to evaluate the effectiveness of our methodology also in providing
actionable and applicable recommendations towards audits that can enhance the read-
ability degree of the project under evaluation, our system can be a valuable tool for
developers.

Future work relies on several directions. At first, we can expand our dataset by
adding additional projects with different characteristics and thus improve the ability
of our models to generalize. Finally, the design of our target variable can be further
investigated for the incorporation of additional metrics other than violations.

References

1. Buse, R., Weimer, W.: Learning a metric for code readability. IEEE Trans. Softw. Eng. 36,
546–558 (2010). https://doi.org/10.1109/TSE.2009.70

2. Choi, S., Kim, S., Kim, J., Park, S.: Metric and tool support for instant feedback of
source code readability. Tech. Gaz. 27(1), 221–228 (2020). https://doi.org/10.17559/tv-
20181030091239

3. Dorn, J.: A general software readability model. Master Thesis, University of Virginia,
Department of Computer Science (2012)

4. Drucker, H., Burges, C.J.C., Kaufman, L., Smola, A.J., Vapnik, V.: Support vector regres-
sion machines. In: Mozer, M.C., Jordan, M.I., Petsche, T. (eds.) Advances in Neural Infor-
mation Processing Systems 9, pp. 155–161. MIT Press (1997). http://papers.nips.cc/paper/
1238-support-vector-regression-machines.pdf

5. Fakhoury, S., Roy, D., Hassan, S.A., Arnaoudova, V.: Improving source code readability:
theory and practice. In: Proceedings of the 27th International Conference on Program Com-
prehension, ICPC 2019, pp. 2–12. IEEE Press (2019). https://doi.org/10.1109/ICPC.2019.
00014

6. Halstead, M.H.: Elements of software science (Operating and programming systems series).
Elsevier Science Inc., USA (1977)

7. ISO: ISO/IEC 25010 (2020). https://iso25000.com/index.php/en/iso-25000-standards/iso-
25010. Accessed 20 March 2020

8. Karanikiotis, T., Papamichail, M., Gonidelis, I., Karatza, D., Symeonidis, A.: A data-driven
methodology towards interpreting readability against software properties. In: ICSOFT, pp.
61–72 (2020). https://doi.org/10.5220/0009891000610072

9. Knight, J.C., Myers, E.A.: An improved inspection technique. Commun. ACM 36(11), 50–
61 (1993)

10. Mannan, U.A., Ahmed, I., Sarma, A.: Towards understanding code readability and its impact
on design quality, pp. 18–21 (2018). https://doi.org/10.1145/3283812.3283820

11. Pantiuchina, J., Lanza, M., Bavota, G.: Improving code: The (mis) perception of quality
metrics, pp. 80–91 (2018). https://doi.org/10.1109/ICSME.2018.00017

https://doi.org/10.1109/TSE.2009.70
https://doi.org/10.17559/tv-20181030091239
https://doi.org/10.17559/tv-20181030091239
http://papers.nips.cc/paper/1238-support-vector-regression-machines.pdf
http://papers.nips.cc/paper/1238-support-vector-regression-machines.pdf
https://doi.org/10.1109/ICPC.2019.00014
https://doi.org/10.1109/ICPC.2019.00014
https://iso25000.com/index.php/en/iso-25000-standards/iso-25010
https://iso25000.com/index.php/en/iso-25000-standards/iso-25010
https://doi.org/10.5220/0009891000610072
https://doi.org/10.1145/3283812.3283820
https://doi.org/10.1109/ICSME.2018.00017

226 T. Karanikiotis et al.

12. PMD tool (2020). https://pmd.github.io. Accessed March 2020
13. Posnett, D., Hindle, A., Devanbu, P.: A simpler model of software readability. In: Proceed-

ings of the 8thWorking Conference onMining Software Repositories, MSR 2011, pp. 73–82.
Association for Computing Machinery, New York (2011). https://doi.org/10.1145/1985441.
1985454

14. Prabhu, R., Phutane, N., Dhar, S., Doiphode, S.: Dynamic formatting of source code in
editors. In: 2017 International Conference on Innovations in Information, Embedded and
Communication Systems (ICIIECS), pp. 1–6 (2017). https://doi.org/10.1109/ICIIECS.2017.
8276008

15. Raymond, D.R.: Reading source code. In: Proceedings of the 1991 Conference on Centre for
Advanced Studies on Collaborative Research, pp. 3–16 (1991)

16. Rousseeuw, P.J.: Silhouettes: a graphical aid to the interpretation and validation of clus-
ter analysis. J. Comput. Appl. Math. 20, 53–65 (1987). https://doi.org/10.1016/0377-
0427(87)90125-7

17. Rugaber, S.: The use of domain knowledge in program understanding. Ann. Softw. Eng. 9,
143–192 (2000). https://doi.org/10.1023/A:1018976708691

18. Scalabrino, S., Linares-Vásquez, M., Poshyvanyk, D., Oliveto, R.: Improving code readabil-
ity models with textual features. In: 2016 IEEE 24th International Conference on Program
Comprehension (ICPC), pp. 1–10 (2016). https://doi.org/10.1109/ICPC.2016.7503707

19. Scalabrino, S., Linares-Vásquez, M., Oliveto, R., Poshyvanyk, D.: A comprehensive model
for code readability. J. Softw. Evol. Process 30(6), e1958 (2018)

20. SourceMeter static analysis tool (2020). https://www.sourcemeter.com/. Accessed March
2020

https://pmd.github.io
https://doi.org/10.1145/1985441.1985454
https://doi.org/10.1145/1985441.1985454
https://doi.org/10.1109/ICIIECS.2017.8276008
https://doi.org/10.1109/ICIIECS.2017.8276008
https://doi.org/10.1016/0377-0427(87)90125-7
https://doi.org/10.1016/0377-0427(87)90125-7
https://doi.org/10.1023/A:1018976708691
https://doi.org/10.1109/ICPC.2016.7503707
https://www.sourcemeter.com/

Efficient Verification of Reconfigurable
Discrete-Event System Using
Isabelle/HOL Theorem Prover

and Hadoop

Sohaib Soualah1,4(B) , Yousra Hafidi1,2,4(B) , Mohamed Khalgui1(B) ,
Allaoua Chaoui3(B) , and Laid Kahloul2(B)

1 LISI Laboratory, National Institute of Applied Sciences and Technology,
University of Carthage, 1080 Tunis, Tunisia

2 LINFI Laboratory, Computer Science Department, Biskra University,
Biskra, Algeria

3 MISC Laboratory, Faculty of NTIC, University Constantine 2,
Abdelhamid Mehri, Constantine, Algeria

4 University of Tunis El Manar, Tunis, Tunisia

Abstract. This paper deals with the modelling and verification of recon-
figurable discrete event systems using model driven engineering Hadoop.
Hadoop is therefore a platform for establishing a dialogue between sev-
eral machines. Its objectives are to solve the main problems of Hard disk
size and of computing powers limitations. Isabelle/HOL is an interac-
tive/automated theorem prover that combines the functional program-
ming paradigm with high order logic (HOL), which makes it efficient for
developing solid formalizations. In this paper, we are interested in recon-
figurable discrete event systems, which we formalise using Isabelle/HOL.
The proposed method consists of formalising a reconfigurable discrete
event system with Isabelle/HOL, using Hadoop, we apply the distributed
verification to perform an efficient verification of systems. The reason of
this choice consists in the fact that theorem proving deals with the verifi-
cation of infinite systems while model checking deals with finite systems
and suffers from the well known state space explosion problem. Further-
more, thanks to Hadoop it can apply the distributed verification, which
means more reduction in verification time. We implement the contribu-
tions of this paper using Hadoop platform and Isabelle tool. Finally, we
illustrate the proposed method through FESTO MPS case study.

Keywords: Reconfigurable discrete-event systems · Hadoop · Formal
verification · Theorem prover · Isabelle/HOL

1 Introduction

The development of systems in the industry is improved productivity, but will
have the challenge of safety. The development of safe systems is considered as an
c© Springer Nature Switzerland AG 2021
M. van Sinderen et al. (Eds.): ICSOFT 2020, CCIS 1447, pp. 227–241, 2021.
https://doi.org/10.1007/978-3-030-83007-6_11

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-83007-6_11&domain=pdf
http://orcid.org/0000-0002-5162-5989
http://orcid.org/0000-0002-3543-6731
http://orcid.org/0000-0001-6311-3588
http://orcid.org/0000-0003-3751-8084
https://doi.org/10.1007/978-3-030-83007-6_11

228 S. Soualah et al.

important task because any failure can be critical according to a domain (e.g., air
and railway traffic control [9], manufacturing systems [10], real time systems and
intelligent control systems [10]). Many researchers are working in this context,
which give as result new types of systems. One of this system is Reconfigurable
discrete event systems (RDESs) are characterized by their discrete nature and
their structures change over time. An RDES is defined as a hardware or software
automation system capable of modifying its internal structure to answer the
compromise exibility vs performance [7], which means guarantee performance
by giving response to customer’s needs. Two types of reconfigurations: static
and dynamic [16]. The static reconfigurations is applied offline before running
the system. The dynamic reconfigurations is applied automatically at run-time
without any interruption. The latter can be executed: (1) manually by users,
(2) automatically by agents (robot, machine, schedule, etc.), and (3) in a hybrid
way which is the combination of the two types. In the last few years, there has
been a growing interest from researchers in the safety of reconfigurable discrete
event systems, they are following many verification approaches [7].

To deal with the safety of reconfigurable discrete event systems, many existing
works have been proposed in this perspective of safety, adopt formal verification
to check the hardware and software of systems, which give as result new for-
malisms and improved verification methods. Formal verification is a technique
to check system properties and requires mathematical experiences and skills.
Model checking [2] is one of the most used solutions to validate systems, such
as manufacturing systems [10], telecommunication systems [4], and transport
networks [3]. It presents an automatic verification technique to check functional
properties. Model-checking uses mathematical methods to verify if a property is
satisfied in a given system model. If the property is violated, a counter exam-
ple of the system execution is provided. Some researchers have improved the
verification using model checking.

Recently, several related works on formal verification methods, using model-
checking [2], are used to validate the safety of reconfigurable discrete event sys-
tems.

The work reported in [6] presents a new methodology for formal verification of
reconfigurable discrete event control systems (RDECSs), where is based on the
checking of reconfiguration scenarios (inter-verification) and also the checking
of the internal behavior of each configuration (intra-verification). The required
properties of the system are specified using the computation tree logic (CTL) and
verified using model checking. Authors in [5] propose an extension to the IEC
61499 [12] standard called Reconfigurable Function Block, encapsulating several
reconfiguration scenarios in one function block. In order to verify the system and
to evaluate its performance, authors model it using a class of Petri nets called
GR-TNCES [11]. After that, PRISM is used as a model checker to verify the
safety of each reconfiguration scenario of the system. In [17], authors propose a
new extension of TNCES formalism named reconfigurable net condition/event
systems (R-TNCESs). This last allows to deal with reconfiguration and time
properties with modular specification in the same formalism.

Efficient Verification of Reconfigurable Discrete-Event System 229

We find that all those works presented above are important for the verification
task of RDESs. However, there is some negligence regarding analysed properties.
Actually, the complexity of model checking depends on two parameters: the
size of the model, and the number of properties to be verified. For instance,
Bounded Model Checking (BMC) is based on a reduction of model checking to
satisfiability formulae [8]. Therefore, the large increase in the system state space
that produces the well known “state explosion problem”. Thus, our ability to
do model checking depends on our ability to deal with a large model of the
system and the number of the properties. In addition, the verification task in
this all works is applicted in one machine, which means the time of verification
is significant. On the contrary, if the verification task is distributed over several
machines. For several years now, the world of computing has entered an era in
which the main problem is no longer how to acquire data but rather how to
manage the enormous amount of data that we are able to acquire. Managing
such large amounts of data poses problems. One of these problems is how to
organize and treat for this data: a single machine does not have the power to
perform sufficiently fast treats on the data. The solution to these problems is
to use several machines: by sharing their hard drive, the machines from a much
larger storage group, and sharing their processor (and/or graphics card), the
machines form a much more efficient computing group. This is where Hadoop
intervenes, to bring context, tools and conventions in order to quickly set up
such a cluster, store data and run programs in a distributed way. A cluster is
a set of computers connected to each other by a network and able to organize
themselves to distribute the load (computing or storage). Each computer in this
cluster is called a node. We use, in this work theorem proving Isabelle/HOL
for the formalization and verification of RDESs, it is characterized by the use
of high-order logic powerful expression language. Using such a theorem proving
has several advantages [15]. First, it gives a certificate to formal proof when it
succeeds. Second, when the verification of the given property fails, it generates a
counterexample as a proof to the formula negation, instead of a sequence of states
or trees labeled with states, as in traditional model checkers. Thanks to Hadoop
[13], it can apply the distributed verification, which means more reduction time.
This paper presents the following contributions:

In this paper, we are interested in reconfigurable discrete event systems,
which we formalise using Isabelle/HOL. The proposed method consists of formal-
ising a reconfigurable discrete event system with Isabelle/HOL, using Hadoop,
we apply the distributed verification to perform an efficient verification of sys-
tems.

– In this paper, we use the results of our previous work [15] for formalising
RDESs.

– In order to reduce verification time, we use Hadoop for efficient verification.

The difference between our previous work presented in [15] and our current work
is:

In previous work [15], the main idea is to analyse the properties of the sys-
tem after defining relations between them. Thus, we can later reduce their num-

230 S. Soualah et al.

ber according to these relations. In the current work, we distribute the proper-
ties of the system in several machines after that we do the verification. Thus,
we can later reduce the verification time. Consequently, we aim to reduce the
execution time of the verification task. To this end, we first formalise RDES
with Isabelle/HOL using our previous work [15] and we propose a new verifi-
cation method, which allows us to distribute the properties of the system in
several machines. According to distribution of properties, we will do the ver-
ification for this properties in each machine. We can summarise our work as
follows: 1) Formalise a reconfigurable discrete event system with Isabelle/HOL.
2) Distributed verification in order to reduce verification time. A formal case
study is presented to illustrate the feasibility of our proposed contributions.
Results show that the proposed contributions reduce the verification time by
distributing of properties to be verified for the reconfigurable discrete event sys-
tem. The remainder of the paper is organized as follows. Section 2 presents a
background about Isabelle/HOL theorem prover, FESTO Modular Production
System, and Hadoop. Section 3 involves details and the formalisation of our pro-
posed method. Section 3 illustrates the performance evaluation of the suggested
approach. Finally, Sect. 2 concludes the paper and highlights some perspectives
of the work.

2 Background

In this section, we present details about Isabelle/HOL theorem proving, FESTO
Modular Production System, and Hadoop.

2.1 Isabelle/HOL Theorem Proving

Isabelle/HOL is a theorem prover based totally on the aggregate of the functional
programming paradigm with high order logic (HOL), which makes it efficient
for developing solid formalizations. [14]. Using Isabelle/HOL, we can formalize a
system and prove its properties (i.e., formalize systems, formulating lemmas and
theorems on them) [1]. Isabelle/HOL has a high degree of credibility for created
proofs because it allows us to prove every step, and consequently the complete
proof is correct. Isabelle has a number of methods, to describe data structures.
In the following, we show the main Isabelle concepts used in this paper.

– The theory: The main concept enveloping all elements used to write a program
in Isabelle/HOL.

– Types bool, nat and list: These are the most important predefined types.
Although the lists are already predefined, and can define their own type.

– Types synonym: Synonym types are abbreviations for existing types.
– Function: In most cases, defining a recursive function is as simple as other

definitions.
– Record: A record in Isabelle is an element enveloping more than one type, to

define another type.
– Lemma: is used to prove a function or properties.

Efficient Verification of Reconfigurable Discrete-Event System 231

2.2 FESTO Modular Production System

The FESTO modular production system is taken as a as running example in
this paper. Festo MPS consists of three stations: Distribution, Testing and Pro-
cessing Station. Figure 1, shows ten physical units composing this situation. The
Distribution station is formed of a pneumatic feeder and a converter which trans-
mits cylindrical workpieces from a stock to the Test station. The Test Station is
composed of a detector, a tester and an elevator. It performs tests on workpieces
for height, type of material and color. Workpieces that satisfy these tests are
transmitted to the Processing Station, which is composed of a rotating disk, a
drill machine and a control machine. The rotating disk is composed of locations
to contain and transport workpieces from the input position, to the drilling posi-
tion, to the control position and finally to the output position. We assume in
this paper that FESTO performs in different production modes by using two
drilling machines Driller1 and Driller2, as follows:

– light1 production mode (L1): (respectively light 2 production mode (L2)):
Only Driller1 (respectively Driller2) describes the system behavior in which
work-pieces are drilled by machine Drilleri (i in 1 ... 2).

– Medium production mode (M): Driller1 or Driller2 are activated but used
sequentially to drill workpieces (i.e., Driller1 or Driller2 works).

– High production mode (H): Driller1 and Driller2 are activated and used
simultaneously to drill two pieces in the same time.

Fig. 1. The behavior module of the system [15].

In Fig. 2 we depict the possible reconfiguration modes considered in our paper.
The system reconfigures in order to avoid any problem caused by a physical fault
(i.e., when Driller1 or Driller2 breakdown) or to answer user requirements. The
reconfiguration behavior of the studied system loses its usefulness when both
machines Driller1 and Driller2 are broken. In the last case, the system totaly
stops.

232 S. Soualah et al.

Fig. 2. FESTO possible reconfiguration mode [15].

2.3 Hadoop

Hadoop [13] is therefore a platform for establishing a dialogue between several
machines in a cluster. Its objectives are to solve the main problems of handling
large amounts of data. Hard disk size limitation and limitation of computing
powers is tow problems. To solve these problems, Hadoop is structured into two
main layers:

– HDFS: Hadoop File system, a virtual file system that stores multiple machines
in a cluster

– Hadoop MapReduce: a Java software framework for developing distributed
executable programs using the MapReduce algorithm developed by Google.

A MapReduce job consists of several phases:

– 1. Preprocessing of input data.
– 2. Split: separation of the data into treatable blocks and formatted as (key,

value).
– 3. Map: application of the map function on all pairs (key, value) formed from

the input data, this produces other pairs (key, value) in the output,
– 4. Shuffle & Sort: redistribution of data so that the pairs produced by Map

with the same keys are on the same machines,
– 5. Reduce: aggregation of pairs with the same key to obtain the final result.

Example. We have a text file toto.txt and we need to count the occurrence of
each word in the text:

– Preprocessing of input data, e.g.: possible decompression of the file.
– Split: separates data into treatable blocks and formatted as (key, value), (nb-

line, line).
– Map: application of the map function on all pairs (offset, line) formed from

the input data, it produces other pairs (word, 1) in output.
– Shuffle & Sort: redistribution of data so that the pairs produced by Map with

the same keys are on the same machines

Efficient Verification of Reconfigurable Discrete-Event System 233

– Reduce: aggregation of pairs with the same key to obtain the final result
(word, nb-occurrences).

Figure 3 depicts the overall MapReduce word count process.

Fig. 3. The job MapReduce word count.

3 Efficient RDES Verification Using Isabelle/HOL and
Hadoop

RDES is a complex system. Therefore, the verification of RDES is a difficult
task. The time of verification depends on the size of the system and the number
of properties to be verified. We propose in this paper a new method for the
distributed verification of RDES with Isabelle/HOL and Hadoop. We aim to
reduce the execution time of verification by distributing the number of properties
to be verified. The improvement of verification time is obtained by using several
machines to do the verification at the same time. Figure 4 presents an overview of
our proposed contributions, after formalize an RDES with Isabelle/HOL starts
by distributing the properties on several machines then do the verification.

3.1 Formalisation of RDES in Isabelle/HOL

Based on our previous work [15], a RDES consists of: a set of reconfiguration
rules that it uses to pass from a configuration to another. A configuration is
a stable situation that has a certain duration in which a system performs an
activity, i.e., system’s components are in a specific communication with each
other.

Definition 1: A RDES is a structure defined as follows:
RDES = (B, RR) where: B is the behaviour and RR reconfiguration rules of
the system.

Definition 2: RDES Behavior. The behaviour of a system B is the union of m
configurations, represented as follows:

234 S. Soualah et al.

Fig. 4. Overview of our method.

B = Conf0, Conf1, Conf2, ..., Confi, ...Confm Where: (1) conf0 is the initial
configuration, (2) Confi represented by the following tuple:

Confi = (U , L) Where: (1) U : the set of units, (2) L: the set of links between
units.

Definition 3: RDES Reconfigurations Rules. The reconfigurations rules of a
system RR is a set of transformations between configurations. RR = {ri,...,rm}
allowing automatic transformations between configurations. A reconfiguration
rule of a RDES ri (Conf , Conf ′) is a structure changing the system from a
configuration Conf to another one Conf ′ defined as follows:

ri (Conf , Conf ′isastructurechangingthesystem) = (Condition, Operation,
S−Conf , D−Conf), where: (1) Condition ∈ {True, False}: the pr-condition
of ri,

(2) Operation is including the addition/removal of units and links from a
source Confi, to obtain a target Confj configuration,

(3) S − Conf denotes the configuration Confi before the application of ri
and (4) D − Conf denotes the target configuration Confj after the recon-

figuration rule ri is applied. The reconfiguration rule ri for the transformation
from a Confi to another Confj configuration, when we apply a reconfiguration
scenario. If Condition = True, ri is executable, otherwise it cannot be executed.

Efficient Verification of Reconfigurable Discrete-Event System 235

The transformation from Confi to Confj . Figure 5 shows RDES formalization
in Isabelle/HOL.

Fig. 5. Isabelle formalisation Isa System.

3.2 Distributed Verification Using Hadoop

The challenge in the reconfigurable systems verification process is the reduction
of verification time. We propose in this section our distributed verification. The
goal of such a step is to minimise the verification time by using several machines
running simultaneously. The main idea of this step is based on distributing the
number of properties to be verified over machines do the verification at the same
time.

236 S. Soualah et al.

Formalisation. Before introducing the new suggested method, we present the
general schema of proofs in the Isabelle/HOL as a lemma. A lemma consists of:
1) name is the name of proof, 2) formula is the property to be verified, and 3)
proof goal a proof goal is the suitable result. Figure 6 presents the global schema
of the proof. Let us denote by P a proof written in the Isabelle/HOL, by f a
formula of P and by Ci a configuration of the system where i in 1..n. The next

Fig. 6. The Global schema of proof.

step after generating the RDES system in Isabelle/HOL consists of improving
the verification. To this end, we adopt MapReduce technique to get a distributed
verification. MapReduce has two main tasks: Map and Reduce, where Blocks of
data (properties) distributed across different machines are processed by Map
tasks in parallel. A results are aggregated in Reducers. The data exchanged
between Map and Reduce are pairs (key, value):

– A key: it is any type of data: integer, text. . .
– A value: it is any type of data.

In our case the pairs (key, value) are represented: (Ci, Pj). Mapper, Reducer,
and its job in the next subsections we show in detail.

Mapper. The Map function receives an input pair and can produce any number
of output pairs. The pairs in and out are (key, value). Map tasks each process
a pair and produce 0...n pairs. The same keys and/or values may be produced.
Hadoop launches a Map instance for each line of each data file to be processed.
Each instance processes the assigned line and produces output pairs. Figure 7
depicts the Map function.

Reducer. The Reduce function receives a list of input pairs. These are the pairs
produced by the Map instances. Reduce can produce any number of pairs in the
output, but usually exactly one. Entry pairs processed by an instance of Reduce

Efficient Verification of Reconfigurable Discrete-Event System 237

Fig. 7. The Map function.

all have the same key. Hadoop runs an instance of Reduce for each different key
that Map instances have generated, and only provides them with pairs with the
same key. That’s what aggregates the values. In general, Reduce must process
values, in our case a process is the verification step. Figure 8 depicts the Reduce
function.

Fig. 8. The Reduce function.

A MapReduce Job

– 1. Preprocessing of input data.
– 2. Split: separation of the data into treatable blocks and formatted as (key,

value).
– 3. Map: application of the map function on all pairs (key, value) formed from

the input data, this produces other pairs (key, value) in the output,
– 4. Shuffle & Sort: redistribution of data so that the pairs produced by Map

with the same keys are on the same machines,
– 5. Reduce: aggregation of pairs with the same key to obtain the final result.

Running Example. In this section, we apply the proposed approach to the
RDES in order to illustrate our contribution. For the production system FESTO
as running example Table 1. The important properties to be verified in the system
are safety, liveness, and deadlock-free. In this example, the concerned safety
property is validated when at most one units is active in the state (i.e., impossible
to activate two units in two different configurations at the same time). The
liveness and the non-blocking properties are verified if any request to change a
configuration is satisfied after a finite time. To validate the system, we investigate

238 S. Soualah et al.

Table 1. Isabelle proofs.

lemmal1:” ((getUnit (Unit1))) ” by (simp add:
Unit1 def)
lemmal2:”((getUnit (Unit7)) ∨ (getSUnit (Unit8)
))” by (simp add: Unit7 def , Unit8 def)
lemmal3: ” (getUnit (Unit9))” by (simp add:
Unit9 def)
lemmal4: ” (getUnit (Unit2)) ”by (simp add:
Unit2 def)
lemmal5: ” (getUnit (Unit9))” by (simp
add:Unit9 def)
lemmal6: ” (getUnit (Unit2)) ” by (simp add:
Unit2 def)
lemmal7:”((getUnit (Unit9)) (getUnit(Unit8) ∨
(getUnit (Unit7)))) ” by (simp add: Unit9 def)
lemmal8: ”((getUnit (Unit8) ∨ (getUnit(Unit7))

(getUnit (Unit9))))” by (simp add:Unit8 def ,
Unit7 def , Unit9 def)
lemmal9: ”(getSUnit (Unit5)) ” by (simp add:
Unit5 def)
lemmal10: ” ((getUnit (Unit8)) ∧ (getUnit (Unit7))
) (getUnit (Unit9)) ” by (simp add: Unit8 def ,
Unit7def , Unit9 def)
lemmal11: ” ((getUnit (Unit1)) getUnit (Unit10)
))” by (simp add: Unit1 def , Unit10 def)

that every configuration respects its activation conditions. Some details of our
formal verification (i.e., Proofs in the Isabelle/HOL) are shown in Table 1.

A MapReduce job for our example:

– 1. Preprocessing of input data
– 2. Split: In Table 2 shows the separation of the data in pairs (Ci, Pj), where

i in 1..n, and j in 1..m.
– 3. Map: Application of the map function is presented above on all pairs (Ci,

Pj) formed from the input data, this produces other pairs (Ci, bool) in output
as shown in Table 3, where bool Boolean represent the verification result of
Pj of input pairs (Ci, Pj).

– 4. Shuffle & Sort: The system sorts/groups the pairs according to the key
(Ci), in a list [(Ci, [bool1,bool2, ...]), ...] as shown in Table 4.

– 5. Reduce: For each group of data with the same key (Ci) is called the reduce
function is shown in Table for the aggregation of values with the same key
(Ci) to obtain the final result ((Ci), (bool1 ∧ bool2 ∧ ...)), as shown in Table 5.

Efficient Verification of Reconfigurable Discrete-Event System 239

Table 2. The Input pairs of map.

(C1, L1), (C1, L2)

(C1, L7), (C1, L3), (C1, L4)

(C2, L5), (C2, L8), (C1, L9)

(C3, L10), (C3, L6), (C3, L11)

Table 3. The output of Map.

(C1, true), (C1, true), (C1, true)

(C1, true), (C1, true)

(C2, true), (C2, true), (C1, true)

(C3, true), (C3, true), (C3, true)

Table 4. The system groups the pairs.

(C1, [true, true, true, true, true])

(C2, [true, true, true])

(C3, [true, true, true])

Table 5. The output of Reduce.

(C1, (true ∧ true ∧ true ∧ true ∧ true)) = (C1, true)

(C2, (true ∧ true ∧ true)) = (C2, true)

(C3, (true ∧ true ∧ true)) = (C3, true)

4 Performance Evaluation

Figure 9 shows two curves corresponding to the verification process with and
without using our proposed method. The values of the abscises axis correspond
to the number of properties when the system runs two times. The ordinate
axis correspond to the verification time. The curve in blue corresponds to the
verification without the proposed method. The curve in red corresponds to the
distributed verification using proposed method. It is important to note that the
verification time decreases gradually when we use the proposed method. The
reduction in the verification time is followed by a distribution in the number of
properties.

240 S. Soualah et al.

Fig. 9. Comparison between verification process with and without using the proposed
algorithm.

5 Conclusion

This paper deals with the modeling and verification of reconfigurable dis-
crete event systems using Hadoop and Isabelle/Hol theorem prover. The pro-
posed improvement exploits the MapReduce technique for distribution of proofs.
Instead of layer by layer verification, the proposed method uses more than
machine to reduce verification time. Our method is divided into two steps, step:
1) we formalize the system in Isabelle/HOL. Step: 2) the second step is applying
the distributed verification, it serves to distribute the properties to be verified
over machines., which greatly reduces verification time. In a future work, we plan
to implement an automatic middleware on ISABELLE allowing to generate the
system automatically. We plan also to deal the correctness of the generated result
itself.

References

1. Ali, T., Nauman, M., Alam, M.: An accessible formal specification of the UML
and OCL meta-model in Isabelle/HOL. In: 2007 IEEE International Multitopic
Conference, pp. 1–6. IEEE (2007)

2. Clarke, E.M., Henzinger, T.A., Veith, H., Bloem, R.: Handbook of Model Checking,
vol. 10. Springer, Heidelberg (2018). https://doi.org/10.1007/978-3-319-10575-8

3. Dotoli, M., Epicoco, N., Falagario, M., Cavone, G.: A timed petri nets model for
performance evaluation of intermodal freight transport terminals. IEEE Trans.
Autom. Sci. Eng. 13(2), 842–857 (2016)

4. Girault, C., Valk, R.: Petri Nets for Systems Engineering: A Guide to Model-
ing, Verification, and Applications. Springer, Heidelberg (2013). https://doi.org/
10.1007/978-3-662-05324-9

5. Guellouz, S., Benzina, A., Khalgui, M., Frey, G.: Reconfigurable function blocks:
extension to the standard IEC 61499. In: 2016 IEEE/ACS 13th International Con-
ference of Computer Systems and Applications (AICCSA), pp. 1–8. IEEE (2016)

https://doi.org/10.1007/978-3-319-10575-8
https://doi.org/10.1007/978-3-662-05324-9
https://doi.org/10.1007/978-3-662-05324-9

Efficient Verification of Reconfigurable Discrete-Event System 241

6. Hafidi, Y., Kahloul, L., Khalgui, M., Li, Z., Alnowibet, K., Qu, T.: On methodol-
ogy for the verification of reconfigurable timed net condition/event systems. IEEE
Trans. Syst. Man Cybern.: Syst. 50, 3577–3591 (2018)

7. Hafidi, Y., Kahloul, L., Khalgui, M., Ramdani, M.: New method to reduce veri-
fication time of reconfigurable real-time systems using R-TNCESs formalism. In:
Damiani, E., Spanoudakis, G., Maciaszek, L.A. (eds.) ENASE 2019. CCIS, vol.
1172, pp. 246–266. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-
40223-5 12

8. Jiang, Y., Liu, J., Dowek, G., Ji, K.: SCTL: towards combining model checking
and proof checking. arXiv preprint arXiv:1606.08668 (2016)

9. Khalgui, M., Mosbahi, O., Hanisch, H.M., Li, Z.: Retracted article: a multi-agent
architectural solution for coherent distributed reconfigurations of function blocks.
J. Intell. Manuf. 23(6), 2531–2549 (2012). https://doi.org/10.1007/s10845-011-
0556-y

10. Khalgui, M., Mosbahi, O., Li, Z., Hanisch, H.M.: Reconfiguration of distributed
embedded-control systems. IEEE/ASME Trans. Mechatron. 16(4), 684–694 (2010)

11. Khlifi, O., Mosbahi, O., Khalgui, M., Frey, G.: GR-TNCES: new extensions of R-
TNCES for modelling and verification of flexible systems under energy and memory
constraints. In: 2015 10th International Joint Conference on Software Technologies
(ICSOFT), vol. 1, pp. 1–8. IEEE (2015)

12. Lewis, R.: Modelling control systems using IEC 61499: Applying function blocks
to distributed systems. No. 59, IET (2001)

13. Lin, J., Dyer, C.: Data-intensive text processing with MapReduce. Synth. Lect.
Human Lang. Technol. 3(1), 1–177 (2010)

14. Meghzili, S., Chaoui, A., Strecker, M., Kerkouche, E.: On the verification of UML
state machine diagrams to colored petri nets transformation using Isabelle/HOL.
In: 2017 IEEE International Conference on Information Reuse and Integration
(IRI), pp. 419–426. IEEE (2017)

15. Soualah, S., Hafidi, Y., Khalgui, M., Chaoui, A., Kahloul, L.: Formalization and
verification of reconfigurable discrete-event system using model driven engineer-
ing and Isabelle/HOL. In: Proceedings of the 15th International Conference on
Software Technologies: ICSOFT, pp. 250–259 (2020)

16. Zhang, J., Frey, G., Al-Ahmari, A., Qu, T., Wu, N., Li, Z.: Analysis and control
of dynamic reconfiguration processes of manufacturing systems. IEEE Access 6,
28028–28040 (2017)

17. Zhang, J., Khalgui, M., Li, Z., Mosbahi, O., Al-Ahmari, A.M.: R-TNCES: a novel
formalism for reconfigurable discrete event control systems. IEEE Trans. Syst. Man
Cybern.: Syst. 43(4), 757–772 (2013)

https://doi.org/10.1007/978-3-030-40223-5_12
https://doi.org/10.1007/978-3-030-40223-5_12
http://arxiv.org/abs/1606.08668
https://doi.org/10.1007/s10845-011-0556-y
https://doi.org/10.1007/s10845-011-0556-y

AMethod for the Joint Analysis of Numerical
and Textual IT-System Data to Predict Critical

System States

Patrick Kubiak1(B) , Stefan Rass2 , Martin Pinzger2 , and Stephan Schneider3

1 Volkswagen Financial Services AG, Brunswick, Germany
patrick.kubiak@vwfs.com

2 Alpen-Adria-University, Klagenfurt, Austria
{stefan.rass,martin.pinzger}@aau.at
3 University of Applied Sciences Kiel, Kiel, Germany

stephan.schneider@fh-kiel.de

Abstract. We present a method for the joint analysis of textual and numerical
IT-system data usable to predict possibly critical system states. Towards a com-
parative discussion culminating in a justified model and method choice, we apply
logistic regression, random forest and neural networks to the prediction of criti-
cal system states. Our models consume a set of different monitoring performance
metrics and log file events. To ease the analysis of IT-systems, our models judge
the future system state using one binary outcome variable for the system state’s
criticality as “alarm” or “no alarm”. Moreover, we use feature importance mea-
sures to give IT-operators guidance on which system parameters, i.e., features, to
consider primarily when responding to an alarm. We evaluate our models using
different configurations, including (among others) the demanded lead time win-
dow for incident response, and a set of common performancemeasures. This paper
is an extension to previous work that adds details on how to jointly process textual
and numerical data.

Keywords: Machine learning · IT-operations · AIOps

1 Introduction

One of the major challenges for IT-operations departments is to manage a complex and
heterogeneous IT-infrastructure landscape. This situation results in a heterogeneous tool-
box of monitoring systems as well as a large number of different IT-system parameters
that IT-operators have to monitor. Commonly, each monitoring system has its own set
of rules to notify IT-operators in any case a system state turns from regular operation
into a critical state. In some instances, such rules come as isolated thresholds for each
IT-system parameter of interest, whose excess or undercut generates notifications, i.e.,
alarms. Furthermore, IT-systems store necessary information to judge the system state
in different data sources having a non-compatible kind of format, i.e., numerical moni-
toring data and textual log file data. In this paper, we present a novel method to combine

© Springer Nature Switzerland AG 2021
M. van Sinderen et al. (Eds.): ICSOFT 2020, CCIS 1447, pp. 242–261, 2021.
https://doi.org/10.1007/978-3-030-83007-6_12

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-83007-6_12&domain=pdf
http://orcid.org/0000-0002-4312-8499
http://orcid.org/0000-0003-2821-2489
http://orcid.org/0000-0002-5536-3859
http://orcid.org/0000-0003-1810-8813
https://doi.org/10.1007/978-3-030-83007-6_12

A Method for the Joint Analysis of Numerical and Textual IT-System Data 243

data from these two major data sources of IT-operations departments usable formachine
learning (ML) models. We aim to use such a combined data set to i) judge the system
state using one binary outcome instead of a set of different isolated alarms; ii) predict
incoming critical system states using an experimental setup for data acquisition and iii)
analyze the influence of monitoring metrics and log file events on the system state using
a single ML model. We give a detailed procedure to transform textual log file data into
a suitable format to be usable with numeric monitoring data for a joint analysis and
predictive inference. Furthermore, we apply a set of classification methods, i.e., logistic
regression (LogReg), random forest (RF) and neural networks (NN), on this data set to
achieve i) and ii), and for a comparative study of the three methods. We evaluate the pre-
diction quality of our models using a set of common diagnostic metrics. For iii), we use
RF importance measures, i.e., mean decrease in accuracy (MDA) and mean decrease
in Gini (MDG), to explain the reasons why each model did or did not raise an alarm.
Hence, we use feature importance measures as a tool to analyze the influence of each
monitoring metric and log file event as triggers for (critical) changes of the system state.

This paper will answer following research questions (RQ):

1. RQ1: How can we join numeric and textual IT-system data to be usable in a single
ML model?

2. RQ2: How accurate are different models to predict the system state in the form of a
binary classification problem?

3. RQ3: Which features do have the biggest influence on the system state and can be
considered as most promising triggers, i.e., root causes, for changes?

We start with a related work section to demarcate this paper from previous work. In
Sect. 3, we present a short description of our experimental setup that is similar to the
configuration of our previous paper [1]. The focus of this paper is a detailed description
of the data preparation process, which was necessary to “unify” data of heterogeneous
types (textual and numeric) and out of multiple sources, as presented in Sect. 4. We
extended our experiments using other MLmethods as presented in Sect. 5. Furthermore,
we used a diverse set of evaluation metrics and changed the approach to evaluate the
relevance of features on the binary outcome that classifies the overall system state as
normal or critical. Previous work [1] suggested a relatively simple importance measure
by taking a relative count of how often a feature appeared as significant in a model (a
decision tree), relative to all cases (technically, a conditional probability for the feature to
appear or not appear in the predictionmodel). Thiswork adopts themore popular concept
of importance measures of the relative count of appearance (conditional probability of
feature significance) is agnostic of the level of appearance in the tree. This extended
work allows us a more detailed evaluation of our models and more informative results as
presented in Sect. 6. We close our work with new findings related to threats of validity
in Sect. 7 and a conclusion in Sect. 8.

2 Related Work

The IT-operations domain is a predestined field for ML researchers since it generates a
huge amount of data, which often exceeds human analysis capabilities. MostMLmodels

244 P. Kubiak et al.

in the literature focus either on numerical or textual data and leave possible advantages
of a joint analysis unexplored. However, the literature offers a vast lot different papers
related to this domain, which enable practitioners to maximize the availability of IT-
systems due to automation, issue prevention, easier problem determination and faster
troubleshooting [2]. We can achieve such advancements using processual recommen-
dations [3, 4], e.g., ITIL, or ML methods that accelerate the understanding of data and
improve its potential as valuable resource for organizations. We consider symptoms
monitoring and detected error reporting as main monitoring mechanisms for our work.
Symptoms refer to as side-effects in case of abnormal behavior of IT-systems while
errors occur when things go wrong and the system state differs to the expected system
state [5]. Errors are undetected until monitoring systems or system users observe any
differences in the system state. Symptom monitoring is the standard mechanism to per-
manently check if any threshold violations of runtime metrics, e.g., CPU utilization,
occurred [5]. Detected errors are typically protocolled in log files that are an extensive
collection of all system events. Onmonitoring data, different researchers applied, among
others, regression methods [6, 7] or classification methods [8–10]. Often, we prefer to
transform log file data into sequences of log file events beforehand. Thus, correspond-
ing ML methods consume event-driven input data and allow us to apply event pattern
mining [11–14] or event summarization methods [15, 16]. Among others, one approach
discovers whether there is correlation between the system load intensity, recorded by
monitoring agents, and the occurrence of computational intensive log file events [17].
Nevertheless, the analysis of both data sources in a complementary manner has not be
exhaustively explored yet.We recommend two surveys [5, 18] to interested readers to get
a more comprehensive selection of available ML methods in the IT-operations domain.
Furthermore, we proposed a method selection guide for practitioners in dependency of
the type of data and the application in an earlier work [2].

3 Experimental Setup for Data Acquisition

For data acquisition, we used an experimental concept for an automated load and per-
formance test scenario to simulate real-life user interactivities on a small-scale digital
twin of a real-life IT-system environment [1]. This IT-system resembles a productive
system without being one and allows us to fully control and manipulate the systems
behavior as requested. Since the IT-system is a training environment and mainly used
for occasional (and non-periodically happening) user trainings, there was no continuous
system load on it. Therefore, we developed test scripts to emulate regular system load,
such as client transactions sent to the system, and load peaks. Here, we used VuGen
(link) and scheduled the test scripts using LoadRunner Enterprise (link), which both are
software products of Micro Focus. This step was necessary to generate the required lot
of anomalies in short time, which we would otherwise have to collect over long periods
(possibly months to years) on a productive system. The major advantage of this setup
is to produce any sort of behavior to generate data for model training that satisfies our
requirements best, e.g., a balanced data set. In particular, such an experimental setup
allowed us to trigger rare events and anomalies of diverse kinds to the amount and extent
required [1]. Thus, we consider artificially generated system load intensity based on real

A Method for the Joint Analysis of Numerical and Textual IT-System Data 245

transactions of an industrial IT-system to obtain the data to evaluate our method and
models.

3.1 Application Architecture and Implementation

The IT-system of our choice is a Javaweb application. The contract management system
(CMS) is an on premise cloud application hosted at our data center running on an
OpenStack environment. Figure 1 presents the architecture of the CMS.

Fig. 1. Architecture of the CMS [1]

We use a platform as a service (PaaS) as frontend component of the CMS and an
infrastructure as a service (IaaS) as backend component of the CMS. Both components
run on Linux RHEL 7.x operating system but use different application runtime frame-
works. The PaaS uses WildFly (link) while the IaaS uses JBoss EAP (link). However,
both components generate own log file data with a varying structure. For the collection
of the monitoring metrics, we used DX Application Performance Management (link) on
both components. Table 1 presents the sizing of the PaaS and IaaS components.

Table 1. Sizing of the PaaS and IaaS

PaaS IaaS

CPU 4 x Intel Xeon CPU E5-2680 v4 @
2.40 GHz

8 x Intel Xeon CPU E5-2680 v4 @
2.40 GHz

Memory 8 GB 8 GB

Disk space 4 GB 20 GB

Section 3.3 presents a description of obtained log file messages and monitoring
metrics, which then refer to as features of our predictive models.

246 P. Kubiak et al.

3.2 Load and Performance Test Design

To generate necessary system load on our testbed, we triggered a varying number of
virtual users (vUsers) on the system that act in the same way as human system users do.
Hence, the vUsers call a set of system transactions, e.g., search for existing contracts in
the database or create new contracts, and the CMS does not recognize any deviation to
human users. The only difference depends on the scripted induction of the system load
since the vUsers follow a predefined schedule and call system transactions without any
breaks what human users naturally do. However, we designed a concept for a 10-day
long experiment for data acquisition and let a varying number of simultaneous working
vUsers be the trigger for the system load intensity. From data quality perspective, we
aim to evaluate the suitability of our models with data whose underlying generative
processes are entirely known to us. Thus, patterns can be explained and “noise” under
normal conditions is distinguishable from load-induced anomalies. We produced system
load for 8 h on each test day. To avoid patterns, we scheduled stepwise load peaks with
a varying intensity to the CMS, which refer to as anomalies that we aim to predict. After
each load peak, the system returned to a similar baseline that refers to as normal system
state. Figure 2 presents an example of the induced system load of one test day.

Fig. 2. System load of one test day

We triggered the changes of the system state in a 15-min interval to guarantee a
balanced data set containing as much records for each system state as possible. We
recognized a significantly negative influence on the accuracy of our models resulting
from too imbalanced data in an earlier experiment. We used a rule-based approach for
the data labeling related to the number of vUsers working on the system as presented in
Sect. 4.4. Due to internal regulations of the enterprise, we had to limit our experimental
setup to amaximum load intensity generated by≤25 vUsers. This is one threat to validity
and further discussed in Sect. 7.

3.3 Description of Monitoring Metrics and Log File Messages

The monitoring agents collected a set of groups of performance metrics, which consist
of at least one but mostly of more metrics. For example, the CPU is a single measure

A Method for the Joint Analysis of Numerical and Textual IT-System Data 247

while the agents collect measures for response times of over 50 different JavaBeans.
Table 2 presents an overview of the collected groups of monitoring metrics.

Table 2. Collected groups of monitoring metrics [1]

Group of monitoring metrics Description

Average response time (AR) The average response time in ms of a JavaBean
from the method call to the response

Memory pools (MP) The dedicated part of the heap memory in bytes,
which allocates memory for all instances and arrays
at runtime

Concurrent invocations (CI) The number of simultaneous calls of a JavaBean

CPU The CPU utilization in %

% time spent in garbage collection (GC) The percentage time within an interval, in which
obsolete in-memory code is removed

Sockets (SO) The number of available communication end points
of the IT-system

From performance perspective, we can assume a critical system state if the IT-system
meets at least one of the following conditions:

1. The values of the AR group of metrics increase significantly
2. The values of the AR and CI group of metrics increase at the same time
3. The value of the GC metric exceeds ≈25%
4. The values of the SO group of metrics range in the area of 0 over a longer period

For confidentiality reasons, we are unable to provide an overview of the exact log
file messages and their meaning since inferences to the CMS are prohibited. Thus, Table
3 only presents an abstract overview of the log file messages grouped by their semantic
meaning.

The total amount of different log file messages is 42 and all of them are error mes-
sages. We assume that errors are the most promising indicators to observe misbehavior
on log file level. Therefore, we exclusively filtered out errors from the raw log file data
and used them in our predictive models as described in Sect. 4.1.

4 Data Preparation

The core of our method is to unify textual and numerical IT-system data in one predictive
model. In the following section, we describe necessary steps to transform the textual data
in a numerical form joinable with the monitoring data. Afterwards, we applied a set of
standard practices to analyze corresponding features in case of their predictive power and
reduced the model complexity by removing features that did not satisfy the requirement
of increasing the predictive ability.

248 P. Kubiak et al.

Table 3. Overview of the log file messages

Description Number of different Messages
in the harvested logs

Component

PaaS IaaS

Session data expired 12 X X

Exception handling 8 X X

Remote procedure call failed 5 X X

Session timeout 2 X X

Loading of language ID failed 1 X

Generation of a new contract
failed

1 X

Database connection failed 1 X

Error for some input string 1 X

Top level exception 1 X

Unexpected value 1 X

Some internal error 1 X

Failed to call a JavaBean 1 X

Some connection error 4 X

Invalid search request 1 X

Database error 1 X

Some missing parameter value 1 X

4.1 Extracting Error Event Sequences from Log Files

It is a common practice to transform raw log file data into event sequences since the
analysis of structured log file events is much easier than exploring log file messages in
the overall textual corpus, e.g., using appropriate forms of visualization. Furthermore,
such log file event sequences allow us to apply different ML methods as described in
Sect. 2. However, we focus on a timestamp-based structure of log file events in the form
of an event-occurrence-matrix (EOM) as prerequisite for our method. Commonly, we
can apply three different methods to obtain such a target structure from raw textual log
file data: log parsers, classification or clustering methods. As described in Sect. 4.2,
we applied clustering algorithms for this task since such methods identify clusters, i.e.,
log file events, in the data autonomously at the costs of accuracy (in comparison to log
parser and classification methods). The major advantage is that clustering methods in
this case offer a high degree of flexibility and may require less parameter tuning. We do
not necessarily need deep knowledge about the log file structure, which is a requirement
to develop specific (and possibly rigid) extractors, i.e., log parsers. Moreover, we avoid
preparing any labeled training data as it is necessary to apply classification methods.
However, log files contain a lot of information, which are not directly related to misbe-
havior and we want to train our models exclusively on conditions that lead to potential

A Method for the Joint Analysis of Numerical and Textual IT-System Data 249

issues. Therefore, we filtered out error messages beforehand using regular expressions.
We extracted 786,522 error messages out of approximately 95 million log file messages
in total. Afterwards, we applied a set of information retrieval techniques to shrink the
remaining error messages to text parts, which are necessary to generate the EOM. For
example, we removed record specific data, e.g., unique identifiers (IDs), which may
confuse clustering algorithms in the way that they may group error messages with same
semantics into different clusters.

4.2 Numerical Representation and Clustering of Log File Messages

After we cleaned the texts in the log file data to the minimum extent required, we aim
to transform the structure in the form of a timestamp-based EOM. A document-term-
matrix (DTM) allows to convert text into numbers by counting the number of times
each word, i.e., term, appears in the given document corpus. A DTM is a matrix, in
which the element in row i and column j gives the number of appearance of term j
(associated to the column) in the document i (associated to the row) and allows us to
apply clusteringmethods on this – hereby numerical – representation of text [19]. For the
clustering task, we applied the Density-Based Spatial Clustering of Applications with
Noise (DBSCAN) algorithm [20]. In comparison to other clustering algorithms, e.g.,
K-means, the major advantage of DBSCAN is that it works without an a priori guess for
the number of clusters. Given that we may hardly expect how many and what different
kinds of messages will be in the logs to come, this is a crucial advantage. For the data
in this work, we let a CMS generate logs for a period of 10 days. We explicitly refrain
from manually digging into perhaps millions of rows in the raw log file to point out the
applicability of the method with only least or no domain knowledge. In case that domain
knowledge is available, refined results may be obtainable upon replacing DBSCAN by a
more “pre-informed” clustering at this step. Nevertheless, in absence of specific domain
knowledge, DBSCAN is a simple method to apply [1]. For our experiments, we took
DBSCAN configured withminPts = 4 and ε = 0.4 after testing different configurations
without considerable differences for the result. ε refers to as the radius andminPts refers
to as the minimum number of points falling into the proximity of the cluster-center to
reasonably call such an accumulation of points a “cluster”. We obtained 28 clusters
and 6 noise points for the PaaS logs and 14 clusters and 4 noise points for the IaaS
logs. Unlike K-means or hierarchical clustering algorithms, DBSCAN does not force
all observations into clusters. Hence, it has the ability to remove noise into separate
noise clusters and prevents distorted clusters [21]. Now, we combine obtained cluster
and timestamp information to generate the EOM having the structure of Table 4.

Each cluster then directly defines another indicator, i.e., feature xi in the models;
at each time t. Then, we can assign the error messages at this time to some cluster,
corresponding to setting the variable xi = 1 if error messages related to this cluster were
found, i.e., they occurred, in the log, or xi = 0 otherwise. Finally, the set of 0-1-valued
variables x1, x2, . . . , x28 for the 28 clusters in the PaaS logs and x29, x30, . . . , x42 for
the 14 clusters in the IaaS logs are the first part of the data set. Afterwards, we joined
the EOM with the numeric monitoring data using the timestamp as primary key and
obtained the final data set with 196 features.

250 P. Kubiak et al.

Table 4. Event-occurrence-matrix

Timestamp PaaS
Event
1

… PaaS
Event
28

IaaS
Event
1

… IaaS
Event
14

xx:xx:xx 1 … 0 0 … 1

xx:xx:xx 0 … 1 1 … 1

4.3 Feature Analysis and Dimension Reduction

A data set with 196 features is not easy to handle and may unnecessarily increase the
complexity of our models. Therefore, we applied a set of standard practices to exclude
features that do not improve the predictive power of the models. Removing such features
results in a smaller data set that can significantly improve the efficiency and results ofML
models [22]. Without any effort, we can directly remove 60 features. This features were
constants having zero values due to the fact that the export of themonitoring data consists
of each a column for all available JavaBeans regardless the CMS called corresponding
JavaBeans within the 10 days or not. In other words, there were no measures for 60
monitoring metrics. To further decrease the dimensionality of the data set, we applied
following statistical practices:

1. Remove features with low variance since they often suffer of little predictive
information and have no positive influence to the skill of ML models [23]

2. Remove highly correlated features using a threshold of ≥0.9 [24] to judge the
correlation as very strong

3. Remove outliers using the interquartile method [25]
4. Remove missing values using listwise deletion [26]

Step 2)may be optional in dependency of the appliedMLmethods. Strong correlation
among features leads to the phenomenon of multi-collinearity. This can be troubling for
some ML methods [23] and is a key problem for binary logistic regression [27], which
is one of our choices for the prediction task. Finally, these steps reduced the number of
features to 47 out of initial 196 features.

4.4 Data Labeling

For the labeling, we chose a deterministic approach based on the number of vUsers
working simultaneously on the CMS since we assume the number of vUsers on the
system as main trigger for the system load intensity. We added a column called “Alarm”
that refers to as label of each record where Alarm = 1 denotes a critical system state
and Alarm = 0 denotes a normal system state. We defined the following rules to label
the data [1]:

1. Normal system state:≥5 and ≤17 vUsers working on the CMS
2. Critical system state:≥18 and ≤25 vUsers working on the CMS

A Method for the Joint Analysis of Numerical and Textual IT-System Data 251

Remark: it should be kept inmind that a deterministic labelingwill generally produce
data on which regression models may fail due to separation. Hence, a manual labeling
or at least a manual check of a sample of the machine-generated labels is advisable, if
regressionmodels are to be evaluated. On the contrary, a divergence problemwhen fitting
a regression model can in turn be an indicator of determinism and a pointer towards a
trial with a deterministic (e.g., decision tree) model.

Internal regulations of the enterprise limited our experiments. We assume that a
maximum of 25 vUser never really exhausted available resources of the CMS, i.e., the
system was never overloaded or reached a serious critical system state. However, we
deemed this experimental setup as suitable to get a first feeling in case of evaluating our
method. Nevertheless, a critical discussion related to the limitations is part of Sect. 7 to
ensure transparency to the readers.

5 Modeling and Evaluation

For the classification task, we applied three different ML methods: LogReg, RF and
NN and evaluated their suitability using 16 different configuration cases and a set of
common performance measures as described in the following sections. Our general
prediction scheme is illustrated in Fig. 3. It visualizes the basic idea of our novel method
for a joint analysis of time series data collected by monitoring agents and discrete event
data.

Fig. 3. General prediction scheme [1]

5.1 Choice of Classification Methods

Our initial choice for the classification task is LogReg since it is the de facto standard
method for binary classification problems [28]. Moreover, it tells us - during the fitting

252 P. Kubiak et al.

– if the dependent variable, i.e., alarm, has a deterministic dependence in question [1].
That is, either:

1. There is a stochastic element governing whether or not an alarm is raised, then the
logistic model is a reasonable choice and the fitting of coefficients will converge

2. There is a deterministic process behind the alerts to occur, in which case the model
fitting (a maximum likelihood optimization algorithm) will fail to converge, which
is then the information that the logistic regression model is not a good choice.

In the case of 2), the LogReg tells us that we should rather fit a more “deterministic”
model. In our previous work [1], we applied decision trees as our second choice since
the LogReg in some cases failed to converge. We decided to rethink this decision since
tree based models suffer of high variance and obtained results may be quite different
in dependency of the randomly sampled data [29] in our evaluation design. Thus, we
decided to use RF as alternative method, which reduces the variance of bagging as well
as reduces the correlation between trees without increasing the variance too much [30].
Moreover, RF offers out-of-the-box analysis of the feature importance using the MDA
and MDG measures, which enables us to identify features that are most likely relevant
to judge the system state of the CMS. Additionally, we applied NN to complete the
selection of candidates for the classification task since they are known to be powerful
prediction methods and extend the evaluation of this work.

5.2 Configuration Cases

We want our models not only to classify the system state at current time t, we aim to
predict incoming critical system states with a lead timewindow of t+1, t+5, t+10 and t+15
using historic records at t−1, t−5, t−10 and t−15. Thus, we construct a set of 16 different
cases, i.e., training data sets, in the following way [1]:

We denote the lead time window as �t and the historic observations over a fixed
time window as �h. Now, we proceed as follows: At time t, collect all records within
period H = [t − �h, t] and concatenate these records into a larger training data set that
contains all data within this time window. In this way, we obtain a data set, in which
each xi occurs with multiple copies in the record. For example, if there fall three records
into the past history, each carrying the features x1, . . . , xk , we obtain a record with a
feature set of x(0)

1 , . . . , x(0)
k , x(1)

1 , . . . , x(1)
k and x(2)

1 , . . . , x(2)
k where x(j)

i refers to as the i
th feature at j timestamps prior to t. Hence, with the feature set constructed as above,
Alarm = 1 if and only if there was an alarm in the records between t and t + �t. Thus,
we set Alarm = 1 if there was an alarm falling into [t, t + �t] and we instantiate the
current recordwith historic observations collected from all records falling into the period
[t − �h, t]. Otherwise, we set Alarm = 0 since there has be no race condition occurred
after t within �t, which we aim to predict on the current system state and history. We
consider following configurations for the evaluation of our models as presented in Table
5.

Each configuration case differs in its setting in case of �t and �h, which we both
measure in minutes. We aim to identify whether a set of varying �t and �h influences
the results in case of the prediction accuracy or the importance of the features and their

A Method for the Joint Analysis of Numerical and Textual IT-System Data 253

Table 5. Configuration cases [1]

Lead time (�t) Number of historic observations
(�h)

1 5 10 15

1 C1 C5 C9 C13

5 C2 C6 C10 C14

10 C3 C7 C11 C15

15 C4 C8 C12 C16

multiple copies to possibly identify somewhat like a prediction limit if the accuracy
significantly decreases. Naturally, we would expect a larger retrospective window to
increase the prediction accuracy, and likewise, the accuracy would be expected to dete-
riorate, the larger the forecasting window is made (i.e., the farer we attempt to look into
the future). The second expectation turns out to be not the case.

5.3 Evaluation Design

The settings of the configuration cases allow us to test our models in case of a varying
prediction horizon and history to identify whether there is an impact on the model
results or not. Each of the cases (C1-16) represents a new data set, which we considered
independently for training and test of our models. Thus, we fitted at least 16 models
for each of the three classification methods. Furthermore, we fitted each model using
a loop with 100 runs where we generate randomly sampled data for training and test
in each of the runs. Unfortunately, we are unable to provide results for the NN for 100
runs but still present that their prediction quality seems to be similar to LogReg and RF
after training and applying them once on all configuration cases. The reason is related
to high computational time for evaluation of each case, repeating the evaluation 100
times for every method and running this experiment was considered as impractical. We
evaluate the performance of our models using a set of common performance metrics,
which we determine for every single run. These metrics are: accuracy, precision, recall,
F1-Score and the Matthews correlation coefficient (MCC). Here, we follow a standard
practice to evaluate our models on a broad range of performance metrics for a fair and
honest evaluation. This practice is preferred over using a single metric that is being
optimized (Zhang/Zhou 2014) as we only focused on the accuracy measure in our prior
work. For all measures, we can consider the model quality as higher if the measures are
higher with a maximum value of 1, which refers to as perfect classification. We remark
that in the IT-operations domain we should give more attention to the recall than to
the precision measure. This is because a miss, i.e., false negative, of predictive models
in this area may cause expensive (tangible or intangible) damage, i.e., a service break,
for organizations. Recall penalizes misses with high costs and is more reliable in this
case. However, in each run, we additionally calculate the MDA and MDG measures to
evaluate the importance of the features for the fitted RF. For evaluation of experimental
studies, the popularity of both measures increases since both confirmed practical utility

254 P. Kubiak et al.

[31] although there is a lack of clearance regarding their inner workings [31, 32].We aim
to use this information to identify the most promising indicators for the CMS turning
into a critical system state. Moreover, we give practitioners, i.e., IT-operators, guidance
at hand on which system parameters to focus on primarily if our models raise alarms
to answer the “why” the system is turning into a critical state. For IT-operators, this is
invaluable and can significantly ease the determination of root causes.

6 Results

Let us now present our results in case of the predictive quality along the set of per-
formance measures and then present the analysis of the feature importance, which we
exclusively obtained for the RF.

6.1 Performance Metrics

We start our evaluation with the results of the single run of the NN for all configuration
cases as presented in Table 6.

Table 6. Results of the NN for a single run

Case Accuracy Precision Recall F1-score MCC

1 0.97 0.96 0.98 0.97 0.94

2 0.93 0.93 0.93 0.93 0.86

3 0.94 0.88 0.95 0.92 0.87

4 0.95 0.94 0.90 0.92 0.88

5 0.99 1.00 0.99 0.99 0.98

6 0.99 0.99 0.99 0.99 0.97

7 0.99 0.99 0.98 0.98 0.97

8 0.98 0.96 0.98 0.97 0.96

9 1.00 1.00 1.00 1.00 1.00

10 0.97 0.98 0.97 0.96 0.93

11 0.97 0.96 0.95 0.95 0.93

12 0.99 0.98 0.98 0.98 0.97

13 0.99 0.96 1.00 0.98 0.96

14 0.98 0.97 0.98 0.97 0.95

15 0.98 0.97 0.98 0.98 0.95

16 0.99 0.99 0.98 0.98 0.97

For the single run, we obtained extremely high values for each performance mea-
sure for all configuration cases. During the model fitting and testing a set of different

A Method for the Joint Analysis of Numerical and Textual IT-System Data 255

parametrizations for the NN, we obtained some interesting findings related to our exper-
imental setup for data acquisition and the resulting data set(s). For each configuration
case, we divided the data into training, test and validation data as it is common. We
obtained high performance measures on the training as well as on the test and valida-
tion data. During model training, we recognized that the training loss steadily decreases
while the validation loss steadily increases. Mostly, this indicates that the model suf-
fers of overfitting. However, since our NN performed very good on training as well
as on unseen test data, we assume that the model has a good generalization capability,
which rules out overfitting as possible cause for the high performancemetrics. The diver-
gence of training and validation loss may indicate that the prediction results are high but
not very confident. The reasons could be related to our deterministic approach for the
labeling and the fact, that a maximum of 25 vUsers never really overloaded the CMS.
Assuming that the feature values are too similar in both cases for records labeled with
1 or 0 may be a reason for the high prediction quality. In other words, the values do not
vary enough for both labels and a clear allocation is missing. Further tests with different
parametrization of the NN showed that NN with a low number of hidden layers, e.g., 1,
and a low number of neurons, e.g., 2, counteracts the drift of the training and validation
loss without a considerable decrease of the prediction quality. The losses differ more
in case of deep NN having more hidden layers and a high number of neurons, e.g., 32,
64 or 128. In case of deep NN, we could counteract the increasing difference between
the losses using a sigmoid hidden layer after a rectified linear unit (ReLu). Generally,
the deep NN seem to perform better using sigmoid activation functions, e.g., hyperbolic
tangent function, rather than using ReLu’s. Thus, we assume that a set of <5 features
is highly correlated with the binary target and the classification strongly depends on
very few features. After analysis, we obtained that there is a considerable correlation
between the target and the CPU and GC features (at least about 0.75). In the following,
we present a selection of the obtained results for the LogReg and RF. We do this case
wise and illustrate the results using boxplots. Figure 4 shows the performance for case
1 of LogReg and RF of 100 runs with in each randomly sampled training and test data.

Fig. 4. Results of LogReg and RF for case 1 over 100 runs

We see that both classifier achieved good prediction quality within 100 runs but RF
outperforms the LogReg in case of all performance metrics having median values of

256 P. Kubiak et al.

0.96 (accuracy), 0.96 (precision), 0.95 (recall), 0.95 (F1-Score) and 0.91 (MCC) while
the median values for LogReg are 0.91 (accuracy), 0.91 (precision), 0.91 (recall), 0.91
(F1-Score) and 0.83 (MCC). These results confirm the very good performance of the
NN for the classification task on the data of the CMS. We remark that it is difficult to
compare the results of a single run for NN and 100 runs for LogReg and RF but as a first
impression, all of the three classification methods show a very strong predictive ability.
The results of all remaining cases are similarly high without considerable differences.
Thus, we summarize that a lead time window of 15 min has no apparent influence on the
prediction accuracy. Due to our experimental setup, 15 min are the maximum horizon to
forecast the system state of the CMS since we triggered changes of the system state every
15 min to the system as described in Sect. 3.2. This circumstance limits the forecasting
horizon within our experiment for further analysis. However, we moreover investigated
that an increasing number of past observations considered for analysis of cases with an
identic lead time window significantly decreases the range of upper and lower quartiles
and the whiskers. Thus, we obtained more stable results with less variation along the
100 runs. Figure 5 illustrates the results of case 13 of LogReg and RF.

Fig. 5. Results of LogReg and RF for case 13 over 100 runs

For example, the quartiles of the recall measures of LogReg for case 1 are 0.96/0.86
and thewhiskers are 1.00/0.77whileweobtained0.92/0.88 for the quartiles and0.96/0.83
for the whiskers of case 13. For RF, the recall measures of case 1 of the quartiles are
1.00/0.90 and the whiskers are 1.00/0.80 while for case 13, the quartiles are 0.91/0.87
and the whiskers are 0.95/0.82. This effect is consistently presents in all cases if the
number of past observations increases and the lead time window remains unchanged.
Summarized, we obtained (very) good prediction quality for LogReg, RF and NN and
more stable, i.e., a less degree of variation, results if we consider more past observations
to predict the system state with the same lead time window.

6.2 Feature Importance

To give IT-operators guidance about which features are most likely to be important for
the judgement of the system state, we use MDA and MDG. The first one quantifies the
feature importance by measuring the change of the prediction quality if the measures

A Method for the Joint Analysis of Numerical and Textual IT-System Data 257

of the feature are randomly permuted, compared to the original observation. On the
other hand, MDG is the sum of all decreases in Gini impurity to a given feature that
the RF uses to form a split, normalized by the number of trees [33]. Similar to the
performance measures, we calculated measures for MDA and MDG in each run and
illustrate a selection of the results using boxplots. Figure 6 presents the results of MDG
for case 1 that have a value of ≥5.

Fig. 6. MDG for case 1 over 100 runs

We see that MDG judges 5 features as important if the threshold is set to ≥5. These
features are CPU,GC and three different features of the AR group ofmetrics, i.e., calls of
JavaBeans. Using the same threshold forMDA, it judges 17 features in total as important.
For the sake of space, Fig. 7 illustrates the results of the top-10 ranked features only.

We clearly see the overlap: all of the five features that MDG judged as important,
MDA judges as important as well. Both measures show that the CPU utilization is the
predominant feature. This impression confirms in case of the analysis of other configura-
tion cases, which we but do not illustrate. For example, the increasing lead time window
of case 4 increases the importance of the CPU up to aMDGmedian value of 66.83.MDA
confirms this increase for case 4 having a median value of 31.92 for the CPU feature.
Moreover, MDA judges the occurrence of an IaaS log file event as important for case 4,
after all in 10 of the runs having amedian value of 5.40. The importance of log file events
is confirmed in several configuration cases, e.g., case 8 and 12, byMDA aswell asMDG.
Unfortunately, we are unable to derive any generic assumption for this effect since the
importance of log file events occurs more likely sporadic. Nevertheless, it confirms the
interplay of both types of IT-system data with the overall system state. Summarized,
the CPU utilization is after analysis the most promising indicator for the system turning
into critical in the most configuration cases having consistently MDA and MDG values
of at least ≥5. Furthermore, the CPU utilization is the only feature that consistently
shows to be important including its past observations, i.e., t−5 etc., for configurations
considering multiple copies of the past observations in their data sets. This is consistent

258 P. Kubiak et al.

Fig. 7. MDA for case 1 over 100 runs (top-10 ranked features)

with our labeling approach based on the number of vUsers since each user very likely
increases the CPU load. However, our results show that we moreover identified different
AR, CI, MP or log file related features to be important in different configuration cases.
We assume that these features would be difficult to investigate using domain knowledge
only. IT-systems contain a high number of different system parameters and their impact
to the system state may be hard to recognize without a statistical analysis. Thus, our
method and models deliver advanced knowledge about the underlying IT-system and its
inner workings related to the overall system state.

7 Threats to Validity

We acknowledge our experimental setup for data acquisition as main threat to construct
validity and assume that the low load intensity on the CMS biased the evaluation of
the predictive models. At the data-level, we identified that some of the measures of the
features do not significantly differ independently whether the label is either 1 or 0. This
is the result of:

1. A system state that probably never seriously endangered due to the maximum of 25
vUsers working on the CMS at the same time

2. An experimental and deterministic labeling on data that probably does not contain
measures representing a real critical system state

We assume that our experimental setup for data acquisition is the main trigger for
the conspicuous high performance metrics. Nevertheless, we addressed the threat of
internal validity using an evaluation design with different configuration cases and 100
runs with randomly sampled data for training and test. Thus, at the algorithm-level we
considered various parametrizations for our models, trained them on different data and
tested them on unseen data to avoid phenomenon like overfitting to be the cause for

A Method for the Joint Analysis of Numerical and Textual IT-System Data 259

the high prediction accuracy. Furthermore, we applied a set of different performance
measures to ensure a fair and honest evaluation. In case of external validity, we propose
a generalizable methodical approach for the joint analysis of textual and numerical IT-
system data to predict the system state. However, the nature of ML methods is that they
exclusively depend on the data used for the model fitting. Thus, our results are specific
to the industrial IT-system used for data acquisition.

Despite all these threats and countermeasures, we emphasize that the main contribu-
tion of this work is the process and outline of steps that starts from heterogeneous data
of incompatible type (numeric and textual), going through a data type unification for
admissibility for statistical analysis, whose interpretation is presented with a discussion
of potential pitfalls and possible conclusions. Thus, the threats to validity do not extend
to the described method itself.

8 Conclusion and Future Work

We present a method to predict the overall state of IT-systems using a combination of
heterogeneous data sources. Our method breaks down limitations of analyzing data with
incompatible formats by compiling textual log file information and numeric data into a
single prediction model. This method is designed towards explainability to identify root
causes with help of statistical methods, whichmay ease the initiation of countermeasures
to avoid system downtimes. We achieved following results:

1. On RQ1:We used a set of different data preparation processes to unify textual and
numerical IT-system data in a single ML model. Our method requires a minimum
degree of domain knowledge and is applicable to any IT-system (although data
preparation processes always depend on the specific application and data) but is
conceptually generalizable to incorporate domain knowledge if available.

2. On RQ2:We see that all models achieved high prediction quality even if the results
of the NN seem to outperform LogReg and RF results. We admit that this impression
may be biased since 100 runs on randomly sampled data to evaluate the NN were
impractical due to the required computational time for training and testing.

3. On RQ3: The analysis of the feature importance points out the CPU utilization as
most promising indicator to judge the system state. Thus, is should be considered as
preferred root cause in case of alarms. It is also admitted that this result is to be taken
specific for the experimental setup and may come out of different in other practical
instances of systems. Nonetheless, the general reasoning behind this finding does
apply to other settings than we described.

Our method and evaluation design allow us to analyze and to predict the overall
system state using various available system parameters, covering a wide and diverse
range of sources and formats. By analyzing the feature importance, we clearly see that
monitoringmetrics aswell as log file events affect the system state andmay be considered
as root causes in different configuration cases. This analysis allows us to give IT-operators
substantiated guidance on which system parameters to focus on in case of alarms. We
believe that such a statistical analysis along all available system parameters accelerates

260 P. Kubiak et al.

the decisionmaking of IT-operators.Moreover, we think that a detailed analysiswould be
hard to beat if we only consider domain knowledge and experience of the IT-operators
although both are not negligible. Future work will complement the evaluation of our
method by experts, i.e., monitoring architects and IT-operators. The expert evaluation
will focus and the feasibility, utility and usability of our method in case of its practical
applicability. Moreover, we will publish results of an empirical study that investigates
the applicability of ML methods specific to the IT-operations area in general. Among
others, this study will analyze the tradeoff between high accuracy vs. high explainability
of ML models for prediction of IT incidents.

References

1. Kubiak, P., Rass, S., Pinzger, M.: IT-Application Behaviour Analysis: Predicting Critical
System States onOpenStack usingMonitoring PerformanceData and Log Files, pp. 589–596.
SCITEPRESS - Science and Technology Publications, Lieusaint - Paris (2020)

2. Kubiak, P., Rass, S.: An overview of data-driven techniques for IT-service-management. IEEE
Access 6, 63664–63688 (2018)

3. Hochstein, A., Tamm, G., Brenner, W.: Service-oriented IT management: benefit, cost and
success factors. In: Proceedings of the 13th European Conference on Information Systems,
Information Systems in a Rapidly Changing Economy, Regensburg, Germany (2005)

4. Potgieter, B.C., Botha, J.H., Lew, C.: Evidence that use of the ITIL framework is effective. In:
Proceedings of the 8thAnnualConference of theNationalAdvisoryCommittee onComputing
Qualifications, Tauranga, New Zealand, pp. 160–167 (2005)

5. Salfner, F., Lenk,M.,Malek,M.:A survey of online failure predictionmethods.ACMComput.
Surv. (CSUR), 42, 1–42 (2010)

6. Andrzejak, A., Silva, L.: Deterministic models of software aging and optimal rejuvena-
tion schedules. In: 2007 10th IFIP/IEEE International Symposium on Integrated Network
Management, pp 159–168. IEEE, Munich (2007)

7. Cheng, F.-T., Wu, S.-L., Tsai, P.-Y., et al.: Application cluster service scheme for near-zero-
downtime services. In: Proceedings of the 2005 IEEE International Conference on Robotics
and Automation, pp. 4062–4067. IEEE, Barcelona (2005)

8. Murray, J., Hughes, G., Kreutz-Delgado, K.: Hard drive failure prediction using non-
parametric statistical methods. In: Proceedings of the ICANN/ICONIP (2003)

9. Kiciman, E., Fox, A.: Detecting application - level failures in component-based inernet
services. IEEE Trans. Neural Netw. 16, 1027–1041 (2005)

10. Shen, J., Wan, J., Lim, S.-J., Yu, L.: Random-forest-based failure prediction for hard disk
drives. Int. J. Distrib. Sens. Netw. 14, 155014771880648 (2018). https://doi.org/10.1177/155
0147718806480

11. Zeng, C., Tang, L., Li, T., et al.: Mining temporal lag from fluctuating events for correlation
and root cause analysis. In: Proceedings of the 10th International Conference on Network and
Service Management (CNSM), Rio de Janeiro, Brazil (2014)

12. Kiran, R.U., Shang, H., Toyoda, M., Kitsuregawa, M.: Discovering recurring patterns in time
series. In: Proceedings of the International Conference on Extending Database Technology,
Brussels, Belgium (2015)

13. Kiyota, N., Shimamura, S., Hirata, K.: Extracting mutually dependent multisets. In:
Yamamoto, A., Kida, T., Uno, T., Kuboyama, T. (eds.) DS 2017. LNCS (LNAI), vol. 10558,
pp. 267–280. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-67786-6_19

https://doi.org/10.1177/1550147718806480
https://doi.org/10.1007/978-3-319-67786-6_19

A Method for the Joint Analysis of Numerical and Textual IT-System Data 261

14. Zöller, M.-A., Baum, M., Huber, M.F.: Framework for mining event correlations and time
lags in large event sequences. In: Proceedings of the IEEE 15th International Conference on
Industrial Informatics (INDIN), Emden, Germany (2017)

15. Kiernan, J., Terzi, E.: Constructing comprehensive summaries of large event sequences. ACM
Trans. Knowl. Discov. Data (TKDD) 3, 1–31 (2009)

16. Jiang, Y., Perng, C.S., Li, T.: Natural event summarization. In: Proceedings of the 20th ACM
International Conference on Information and Knowledge Management (2011)

17. Luo, C., Fu, Q., Lou, J.-G., et al.: Correlating events with time series for incident diagnosis. In:
Proceedings of the 20th ACM SIGKDD International Conference on Knowledge Discovery
and Data Mining, New York, NY, USA (2014)

18. Li, T., et al.: Data-driven techniques in computing system management. ACM Comput. Surv.
50(3), 1–43 (2017). https://doi.org/10.1145/3092697

19. Imai, K.: Quantitative Social Science: An Introduction. Princeton University Press, Wood-
stock (2017)

20. Ester, M., Kriegel, H.-P., Sander, J., Xiaowei, X.: A density-based algorithm for discovering
clusters in large spatial databases with noise. In: Proceedings of the Second International
Conference on Knowledge Discovery and Data Mining (KDD’96), pp. 226–231 (1996)

21. Raschka, S., Mirjalili, V.: Machine Learning mit Python und Scikit-Learn und TensorFlow:
das umfassende Praxis-Handbuch für Data Science, Deep Learning und Predictive Analytics,
2nd Edn. mitp, Frechen (2018)

22. Zhang, S., Zhang, C., Yang, Q.: Data preparation for data mining. Appl. Artif. Intell. 17,
375–381 (2003). https://doi.org/10.1080/713827180

23. Kuhn, M., Johnson, K.: Feature Engineering and Selection: A Practical Approach for
Predictive Models. CRC Press, Taylor & Francis Group, Boca Raton (2020)

24. Schober, P., Boer, C., Schwarte, L.A.: Correlation coefficients: appropriate use and interpre-
tation. Anesth. Analg. 126, 1763–1768 (2018)

25. Salgado, C.M., Azevedo, C., Proença, H., Vieira, S.: Noise versus outliers. In: Secondary
Analysis of Electronic Health Records, pp. 163–183. Springer, Cham (2016). https://doi.org/
10.1007/978-3-319-43742-2_14

26. Sauer, S.: Moderne Datenanalyse mit R: Daten einlesen, aufbereiten, visualisieren und
modellieren. Springer, Wiesbaden (2018). https://doi.org/10.1007/978-3-658-21587-3

27. Senaviratna, N.A.M.R, Cooray, T.M.J.A.: Diagnosing multicollinearity of logistic regression
model. In: AJPAS, pp. 1–9 (2019). https://doi.org/10.9734/ajpas/2019/v5i230132

28. Hosmer, D.W., Lemeshow, S.: Applied Logistic Regression, 2nd edn.Wiley, NewYork (2000)
29. James, G., Witten, D., Hastie, T., Tibshirani, R.: An introduction to statistical learning: with

applications in R. Springer, New York (2013). https://doi.org/10.1007/978-1-4614-7138-7
30. Hastie, T., Tibshirani, R., Friedman, J.: The Elements of Statistical Learning: Data Mining,

Inference, and Prediction, 2nd edn. Springer, New York (2009). https://doi.org/10.1007/978-
0-387-84858-7

31. Louppe, G., Wehenkel, L., Sutera, A., Geurts, P.: Understanding variable importances in
forests of randomized trees. In: Proceedings of the 26th International Conference on Neural
Information Processing Systems (2013)

32. Genuer, R., Poggi, J.-M., Tuleau-Malot, C.: Variable selection using random forests. Pattern
Recogn. Lett. 31, 2225–2236 (2010)

33. Calle, M.L., Urrea, V.: Letter to the editor: stability of random forest importance measures.
Brief. Bioinform. 12, 86–89 (2011). https://doi.org/10.1093/bib/bbq011

https://doi.org/10.1145/3092697
https://doi.org/10.1080/713827180
https://doi.org/10.1007/978-3-319-43742-2_14
https://doi.org/10.1007/978-3-658-21587-3
https://doi.org/10.9734/ajpas/2019/v5i230132
https://doi.org/10.1007/978-1-4614-7138-7
https://doi.org/10.1007/978-0-387-84858-7
https://doi.org/10.1093/bib/bbq011

Author Index

Ahmedi, Lule 98

Blot, Elliott 70

Chaoui, Allaoua 227
Choucha, Chams Eddine 44, 114

Exposito, Ernesto 1

Georg, Frey 25
Goubaa, Aicha 25
Grießbach, Denis 134

Hafidi, Yousra 227
Heisel, Maritta 158
Herber, Paula 134

Ismaili, Florije 98

Kahlgui, Mohamed 25
Kahloul, Laid 44, 114, 227
Karanikiotis, Thomas 203
Khalgui, Moahmed 44, 114
Khalgui, Mohamed 227
Khemiri, Rihab 1
Kubiak, Patrick 242

Li, Zhiwu 25

Maag, Stephane 184
Maidl, Monika 158
Münz, Gerhard 158

Naija, Mohamed 1
Nguyen, Phuc 184

Ougouti, Naima Souad 44

Papamichail, Michail D. 203
Pinzger, Martin 242

Ramdani, Mohamed 114
Rass, Stefan 242

Salem, Mohamed Oussama Ben 44
Salva, Sébastien 70
Schneider, Stephan 242
Sejdiu, Besmir 98
Seltzsam, Stefan 158
Soualah, Sohaib 227
Symeonidis, Andreas L. 203

Wagner, Marvin 158
Wirtz, Roman 158
Witteck, Ulrike 134

	Preface
	Organization
	Contents
	Shared Autonomous Mobility on Demand: A Fuzzy-Based Approach and Its Performance in the Presence of Uncertainty
	1 Introduction
	2 Literature Review
	3 Basic Concepts
	3.1 Fuzzy Set Theory
	3.2 Triangular Fuzzy Numbers
	3.3 Goal Programming

	4 The Problem Setting
	5 A Solution Procedure for the Dispatching, Rebalancing and Charging Problem
	5.1 Phase I: Formulation of the Dispatching, Rebalancing and Charging Problem
	5.2 Phase II: Development of an Axillary Multi-objective Linear Model
	5.3 Phase III: Finding a Preferred Compromise Solution

	6 Numerical Experiments
	6.1 Detailed Results
	6.2 Performance Analysis

	7 Conclusion
	References

	Efficient Scheduling of Periodic, Aperiodic, and Sporadic Real-Time Tasks with Deadline Constraints
	1 Introduction
	2 Related Studies
	3 Assumptions and System Formalization
	3.1 System Model
	3.2 Periodic Task Model
	3.3 Sporadic Task Model
	3.4 Aperiodic Task Model
	3.5 Problem: Feasible Scheduling of Real-Time Tasks with Various Types

	4 Contribution: New Solution for Deadlines Calculation
	4.1 Motivation
	4.2 Proposed Approach

	5 Implementation
	5.1 Case Study
	5.2 Performance Evaluation
	5.3 Comparative Study

	6 Conclusion
	References

	R-TNCES State Space Generation Using Ontology-Based Method on a Distributed Cloud-Based Architecture
	1 Introduction
	2 Background
	2.1 Reconfigurable Timed Net Condition/Event System
	2.2 Production Systems: FESTO MPS and THREADING HOLE SYSTEM
	2.3 Ontology Concept

	3 New State Space Generation Method
	3.1 Motivation
	3.2 Formalization

	4 Distributed Cloud-Based State Space Generation
	4.1 Distributed Architecture for State Space Generation
	4.2 Distributed State Space Generation
	4.3 Implementation
	4.4 Complexity of Distributed State Space Generation

	5 Evaluation
	5.1 Evaluation in Large Scale Systems Considering External Similarity
	5.2 Evaluation in Large Scale Systems by Considering External and Internal Similarities
	5.3 Evaluation of CTL Properties Verification Method Considering Similarities

	6 Conclusion
	References

	MLCA: A Model-Learning-Checking Approach for IoT Systems
	1 Introduction
	2 Related Work
	2.1 IoT Audit
	2.2 Model Learning

	3 MLCA Overview
	3.1 The ENISA Security Measures
	3.2 MLCA Requirements
	3.3 A Motivating Example

	4 The Model Learning Checking Approach
	4.1 Preliminary Definitions
	4.2 Property Type
	4.3 MLCA Step 2: LTS Completion
	4.4 MLCA Step 3: LTS Verification
	4.5 MLCA Step 4: Property Type Instantiation
	4.6 MLCA Step 5: Property Instance Verification
	4.7 Limitations
	4.8 Implementation

	5 Empirical Evaluation
	5.1 Empirical Setup
	5.2 RQ1: Is MLCA Able to Detect Active Security Measures?
	5.3 RQ2: Is MLCA Able to Detect Inactive Security Measures?
	5.4 RQ3: How Long Does MLCA Take to Verify Whether Security Measures Are Correctly Implemented?
	5.5 Threat to Validity

	6 Conclusion
	References

	A Real-Time Integration of Semantic Annotations into Air Quality Monitoring Sensor Data
	1 Introduction
	2 Literature Review
	3 Background
	3.1 Sensor Streaming Versus Traditional Streaming
	3.2 Semantic Annotations
	3.3 Technologies
	3.4 Standards

	4 An Overview of the System Architecture
	5 System Implementation
	5.1 Input Sensor Stream Data
	5.2 Processing Sensor Stream Data by Integrating Semantic Annotations
	5.3 System Outputs

	6 Conclusions and Future Work
	References

	On Improvement of Formal Verification of Reconfigurable Real-Time Systems Using TCTL and CTL-Based Properties on IaaS Cloud Environment
	1 Introduction
	2 Background
	2.1 Reconfigurable Timed Net Condition/Event System
	2.2 Timed Accessibility Graph
	2.3 Computation Tree Logic CTL
	2.4 Infrastructure as a Service IaaS

	3 Distributed Cloud Based Formal Verification
	3.1 Motivation
	3.2 Formalization
	3.3 Distributed Architecture for Formal Verification
	3.4 Reconfigurable Real-Time System Verification in a Distributed Cloud-Based Architecture

	4 Experimentation
	4.1 Case Study
	4.2 Application
	4.3 Evaluation

	5 Conclusion
	References

	A Genetic Algorithm with Tournament Selection for Automated Testing of Satellite On-board Image Processing
	1 Introduction
	2 Preliminaries
	2.1 Equivalence Class Partition Testing
	2.2 Genetic Algorithms
	2.3 Case Study: PLATO Mission

	3 Related Work
	4 Genetic Test Approach
	4.1 Assumptions and Limitations
	4.2 Automated Search Space Reduction
	4.3 Genetic Algorithm
	4.4 Automated Test Generation

	5 Evaluation
	6 Conclusion
	References

	Model-Based Threat Modeling for Cyber-Physical Systems: A Computer-Aided Approach
	1 Introduction
	2 Terminology
	3 Two-Dimensional Taxonomy
	3.1 Attack Surface Dimension
	3.2 Attack Action Type Dimension
	3.3 Two-Dimensional Taxonomy
	3.4 Comparison with Other Taxonomies
	3.5 Using the Taxonomy for Threat Modeling

	4 Metamodel
	4.1 CPS Metamodel
	4.2 Threat Model
	4.3 Protection Goals
	4.4 Threat Scenario Listing

	5 Attack Action Catalog
	5.1 Structuring Attack Action Catalogs with the Taxonomy
	5.2 Example Catalog
	5.3 Further Benefits

	6 Tool-Support
	6.1 Sirius
	6.2 Workflow of Our Tool

	7 Related Work
	8 Conclusion
	References

	A Machine Learning Based Methodology for Web Systems Codeless Testing with Selenium
	1 Introduction
	2 Preliminaries
	2.1 The Selenium Framework
	2.2 Codeless Testing

	3 An ML-Based Web Testing Framework
	3.1 Scraping and Processing Web Data
	3.2 Support Vector Machines (SVM) Model
	3.3 Data Collection and Analysis

	4 Experimental Studies
	4.1 Experiments Setup
	4.2 Results and Discussions

	5 State of the Art
	6 Conclusion and Perspectives
	References

	Multilevel Readability Interpretation Against Software Properties: A Data-Centric Approach
	1 Introduction
	2 Related Work
	3 Readability as Perceived by Developers
	3.1 Benchmark Dataset
	3.2 Clustering Based on Size
	3.3 Defining Ground Truth

	4 System Design
	4.1 Data Preprocessing
	4.2 Model Construction

	5 Evaluation
	5.1 Readability Estimation Evaluation
	5.2 Example Readability Estimation
	5.3 Application of Readability Enhancement in Practice

	6 Readability Evaluation Web Application
	7 Threats to Validity
	8 Conclusions and Future Work
	References

	Efficient Verification of Reconfigurable Discrete-Event System Using Isabelle/HOL Theorem Prover and Hadoop
	1 Introduction
	2 Background
	2.1 Isabelle/HOL Theorem Proving
	2.2 FESTO Modular Production System
	2.3 Hadoop

	3 Efficient RDES Verification Using Isabelle/HOL and Hadoop
	3.1 Formalisation of RDES in Isabelle/HOL
	3.2 Distributed Verification Using Hadoop

	4 Performance Evaluation
	5 Conclusion
	References

	A Method for the Joint Analysis of Numerical and Textual IT-System Data to Predict Critical System States
	1 Introduction
	2 Related Work
	3 Experimental Setup for Data Acquisition
	3.1 Application Architecture and Implementation
	3.2 Load and Performance Test Design
	3.3 Description of Monitoring Metrics and Log File Messages

	4 Data Preparation
	4.1 Extracting Error Event Sequences from Log Files
	4.2 Numerical Representation and Clustering of Log File Messages
	4.3 Feature Analysis and Dimension Reduction
	4.4 Data Labeling

	5 Modeling and Evaluation
	5.1 Choice of Classification Methods
	5.2 Configuration Cases
	5.3 Evaluation Design

	6 Results
	6.1 Performance Metrics
	6.2 Feature Importance

	7 Threats to Validity
	8 Conclusion and Future Work
	References

	Author Index

