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Chapter 7
On the Signal-to-Noise Ratio in Real-Life 
Emotional Time Series

Egon Dejonckheere and Merijn Mestdagh

Abstract  How emotions unfold in everyday life, naturally interact with each other 
over time, change in function of different real-life situations or contexts, and how these 
dynamic patterns relate to person-level characteristics are areas of investigation that are 
gaining increased interest among emotion researchers. At the same time, however, 
there is also growing awareness that adequately assessing affect dynamics ‘in the wild’ 
may be harder than previously anticipated. A central predicament is that the data qual-
ity of current daily life studies is often insufficient to pick up on meaningful regularities 
in real-life emotion time series, concealing the true dynamical features of people’s 
affective life. In this chapter, we introduce the signal-to-noise ratio (SNR) as a measure 
of data quality, designed to disentangle the power of people’s latent emotional signal 
from inevitable background noise. Breaking down the SNR into its different constitu-
ents, we lay out an overarching framework with various methodological strategies to 
improve the SNR of real-life affective time series, with the ultimate goal to reliably 
evaluate the internal and external validity of ecological dynamics of affect. Providing 
preliminary empirical evidence, we hope that future daily life studies will implement 
our suggestions, to truly behold the dynamical nature of everyday emotion.

Keywords  Affect dynamics · Signal-to-noise ratio · Measurement error · 
Innovation · Context · Auto-correlation · Measurement burst · Inertia

7.1 � Introduction

Investigating how affective states wax and wane in the realm of everyday life is an 
essential complement to studying emotional responding in standardized, yet often 
artificial, lab settings. Unparalleled in their ecological validity, daily life methods 
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such as experience sampling (ESM) provide researchers with a unique first-seat 
insight into the authentic structure and natural dynamical regularities of people’s 
emotional life. Within individuals, for example, ESM researchers may show interest 
in the circadian rhythms of emotion (e.g., Murray et al., 2009), the ability of an 
emotional state to predict its future trajectory (e.g., emotional inertia, Cole & 
Hollenstein, 2018), the concurrent and temporal interplay between various emo-
tions (e.g., the relation between positive [PA] and negative affect [NA], Dejonckheere 
et al., 2018; emotional augmentation and blunting, Pe & Kuppens, 2012), and natu-
ral emotional change as a function of different internal and external processes or 
stimuli (e.g., emotion regulation, Kalokerinos et al., 2017; encountering negative 
events, Koval et al., 2015). In turn, between individuals, ESM studies may investi-
gate how these dynamical patterns of emotion are informative for various person-
level features or characteristics, such as psychological well-being or maladjustment 
(e.g., Houben et al., 2015), personality traits (e.g., Bringmann et al., 2016) or emo-
tional intelligence (e.g., Robinson et al., 2020).

Although each of these studies typically require a unique and tailored ESM pro-
tocol to validly answer their research questions, a common prerequisite for all their 
designs is that they accurately describe the real-life patterns of people’s emotional 
life. If ESM time series do not reliably represent the natural ebbs and flows of par-
ticipants’ affective experiences, emotion researchers run the risk of drawing errone-
ous conclusions about emotions’ true dynamic properties, their causes and 
consequences (i.e., together referred to as the internal validity of affect dynamics), 
but also how differences in these temporal trajectories of emotion may explain indi-
vidual variation in important person-level variables (i.e., the external validity of 
affect dynamics).

Today, there is growing consensus that an accurate evaluation of the internal and 
external validity of real-life affect dynamics may be harder than previously thought. 
Regarding the internal validity, for example, recent research shows that trying to 
determine a person’s current emotional state is less effective when relying on rather 
complex dynamical models of affect compared to the simplified version of these 
models (Bulteel et al., 2018). This is remarkable, because more complex models 
allow ESM researchers to incorporate multiple streams of information (e.g., per-
sonal or contextual data), and are therefore thought to be a closer approximation of 
reality. In contrast, the very basic models merely rely on a person’s previous emo-
tions to determine his or her current emotional state, disregarding other potentially 
useful sources of information relevant for the conception of an emotional response 
(e.g., Frijda, 1988). Nevertheless, these simple affect dynamic models outperform 
the complex ones in terms of predictive accuracy (Bulteel et al., 2018), raising the 
question whether there may be methodological issues associated with ESM that cur-
rently conceal the complex (yet true) dynamical features of people’s affective life.

Second, also the external validity of affect dynamics was recently questioned in 
various psychological domains. From common symptom types in mental health 
research (Dejonckheere et al., 2019a), to the big five traits in the study of personal-
ity (Hisler et al., 2020; Kalokerinos et al., 2020; Wendt et al., 2020), to multiple 
facets of emotional intelligence (MacCann et al., 2020), recent research shows that 
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more complex metrics of affect dynamics no longer explain individual differences 
in these person-level outcomes once the predictive power of simple mean levels of 
PA and NA is taken into account. Again, the observation that the dynamical regu-
larities of people’s emotional life play a negligible role in our understanding of their 
well-being, personality or emotional intelligence seems to be counter-intuitive and 
contests both the existing theories and intuitive beliefs we hold about emotion: 
Could there be issues with the reliability of ESM emotion time series that obscure a 
meaningful relation?

Because these issues with the internal and external validity of affect dynamics 
will be an important concern for next-generation ESM research to address (e.g., 
Wendt et al., 2020), this chapter provides an overview of different methodological 
strategies to increase the data quality of emotion time series. Essentially, each strat-
egy fits in an overarching framework that has the ultimate goal to increase the 
signal-to-noise ratio (SNR) of the emotional time series ESM researchers investi-
gate, and combining multiple strategies in your future ESM protocol will likely be 
most effective to reliably evaluate the internal and external validity of real-life affect 
dynamics (Dejonckheere et al., 2020).1

7.2 � What Is the Signal-to-Noise Ratio of a Time Series?

While the SNR is an established metric in many other time series disciplines (e.g., 
audiology, Shojaei et al., 2016; biochemistry, Beal, 2015; econometrics, Saothayanun 
& Thangjai, 2018), it is a relatively unknown concept in the study of psychology. 
Although the operationalization and substantive interpretation may slightly vary 
across disciplines, the SNR can be easily applied to psychological time series data 
as well.

At its core, the SNR can be understood as a measure of data quality (Yu et al., 
2018). As the name gives away, the SNR compares the power of desired signal to 
the power of background noise generated by a system (e.g., fMRI scanners, ecosys-
tems, stock markets, etc.; Welvaert & Rosseel, 2013):

	
SNR

power signal

power noise
=

	 (7.1)

Broadly defined, the signal concerns the stream of meaningful information the 
system produces, while background noise refers to random (i.e., unpredictable) 
environmental interferences that distort that signal. As Eq. (7.1) illustrates, higher 
SNR values indicate higher data quality. Specifically, ratios higher than 1 imply that 

1 In this book chapter, we elaborate on some of the ideas formulated in our response Reply to: 
Context matters for affective chronometry (Dejonckheere et  al., 2020) to Lapate and Heller’s 
(2020) commentary on our original article (Dejonckheere et al., 2019a). Because this chapter con-
stitutes a conceptual extension of our reply, some theoretical overlap is inevitable.
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the power of a system’s signal effectively outweighs the power of background noise, 
and that meaningful information can be detected. In contrast, SNRs smaller than 1 
indicate that the power of a system’s signal is exceedingly overruled by the power 
of random environmental influences, making it very hard to recover meaningful 
system information.

In the psychology of affect, researchers consider emotional systems (e.g., human 
beings responding to their natural environment; Loossens et al., 2020). Here too, the 
observed affective time series of ESM participants can be decomposed into a signal 
and noise term (Dejonckheere et al., 2020). A common and popular way to statisti-
cally operationalize the power of people’s true emotional signal is to define it as the 
variance of a latent auto-regressive (AR) model of order 1 [i.e., an AR(1) model] 
(Schuurman et al., 2015; Schuurman & Hamaker, 2019):

	
power signal NA a NAt t t= = +






−Var

˜ ˜

1 ε
	 (7.2)

As can be seen from Eq. (7.2), an individual’s true or latent (negative) affective 
signal NA  is defined by two terms. First, it is determined by a person-specific AR 
parameter (a) that captures the degree with which an individual’s current latent 
affective state (e.g., a participant’s true level of momentary NA

˜
 assessed at time 

point t) can be predicted from his or her previous latent affective state (e.g., a par-
ticipant’s true level of momentary NA

˜
 assessed at time point t − 1). In dynamical 

system terms, this part of the equation refers to a person’s attractor strength 
(Kuppens et al., 2010b), and reflects the speed with which an individual generally 
returns to his or her emotional baseline or homebase after responding to a stimulus 
that is of personal relevance (with higher a indicating slower return; Chow et al., 
2005). Indeed, people’s emotional reactions do not unfold in a vacuum, but are 
embedded in a larger context of personally relevant stimuli and events they respond 
to (Frijda, 1988). The collection of these contextual stimuli is situation-specific (i.e., 
different for each t), and cannot be captured by the person-specific AR parameter. 
They are therefore represented by a second term εt, generally referred to as innova-
tion or dynamic noise (Schuurman et al., 2015). This dynamic noise term roughly 
corresponds to the intensity of the emotional stimulus a person reacts to at time 
point t, and carries over to next time points via the person-specific AR relation 
(hence the name dynamic noise; Schuurman & Hamaker, 2019).

Unfortunately, we are unable to directly observe people’s true emotional signal. 
There is a degree of measurement error (ω) associated with each emotional assess-
ment t that conceals participants’ true momentary affective response. These random 
and unpredictable distortions are caused by moment-specific biases such as, for 
example, inattention, reactivity and fatigue (e.g., Fuller-Tyszkiewicz et al., 2013). 
Compared to innovation or dynamic noise, these interferences are restricted to each 
particular emotional assessment, and therefore do not resonate to subsequent assess-
ments (Schuurman et  al., 2015; Schuurman & Hamaker, 2019). The variance in 
measurement error across all momentary assessments represents the power of mea-
surement noise:
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power noise t= ( )Var ω

	 (7.3)

In sum, the combination of Eqs. (7.2) and (7.3) illustrates that participants’ 
observed level of momentary (e.g., negative) affect can be understood as:

	 NA a NAt t t t= + +−

˜

1 ε ω 	 (7.4)

Accordingly, we can define the SNR of an affective time series as:

	

SNR
NA a NAt t t

t

=
= +








( )

−Var

Var

˜ ˜

1 ε

ω
	 (7.5)

7.3 � Determinants of the Signal-to-Noise Ratio

Equation (7.5) explains us how we can impact, and ultimately maximize the SNR of 
the affective time series we investigate. After all, attempts to advance the SNR lead 
to better data quality in ESM (Yu et al., 2018), promoting a more reliable evaluation 
of the internal and external validity of real-life affect dynamics.

But how troublesome is the SNR situation in contemporary ESM research really? 
To get an indication, we reanalyzed 15 prototypical ESM studies reported in 
Dejonckheere et al. (2019a), and computed the SNR for participants’ PA and NA 
time series following Eq. (7.5) (see also Dejonckheere et al., 2020). As shown in 
Fig. 7.1, many of the datasets had median SNRs that barely exceeded the critical 
threshold of 1, which would indicate that 50% of the participants in that particular 
ESM study presented affective time series in which the level of estimated measure-
ment noise overruled the power of their latent emotional signal. For the total sample 
in our meta-analysis (n = 1777), 30% of the subjects had an emotional SNR smaller 
than 1 for PA, and 42% for NA. Although each individual ESM study was carried 
out to answer a different research question, and their protocols, affect items and 
sample characteristics are therefore unique in design, these numbers suggest that the 
quality of current ESM time series is below par. This could explain why real-life 
affect dynamics have poor internal and external validity (e.g., Bulteel et al., 2018; 
Dejonckheere et al., 2020; Wendt et al., 2020): Current practices in ESM research 
prohibit the detection of meaningful dynamical regularities in emotion time series.

Then how may we boost the SNR of ESM time series? To guide the reader 
through the next sections, Fig. 7.2 presents a graphical overview of the different 
determinants that make up this metric (a, ε and ω), which researchers can impact to 
improve the SNR. For each determinant, we visualize two simulated affective time 
series that result in a low and high SNR (while the value of other determinants is 
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Fig. 7.1  Evaluating the SNR in conventional ESM research. The median SNR for PA (blue bars) 
and NA (red bars) for each of the 15 datasets reported in Dejonckheere et al. (2019a) (n = 1777), 
with the error bars indicating the 95% confidence interval (derived from 2000 bootstraps)

held constant). Metaphorically, you can think of the time series depicted in Fig. 7.2 
as a pearl necklace: The string reflects a person’s latent continuous emotional 
response ( NA

˜
), while the beads represent a series of discrete affect ratings (NAt). To 

increase the SNR of an emotional time series, researchers should pursue substan-
tially pronounced emotional strings (ε), and place the individual beads in such a 
way that they closely mirror the participant’s original emotional response (both in 
time [a] and in deviation [ω]). In the next paragraphs, we will discuss how this anal-
ogy translates into concrete guidelines for each determinant.
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a.

b.

c.

Fig. 7.2  Graphical representation of the various constituents (a, ε and ω) that make up the 
SNR. Hypothetical emotional trajectory of an individual who reacts to a negative contextual stimu-
lus at time point 3. The continuous blue line represents that person’s actual (latent) emotional 
response, while the discrete red dots depict his (observed) affective intensity ratings. The left and 
right columns refer to scenarios that exhibit a high and low SNR, respectively. (a) Manipulation of 
the temporal measurement resolution (short versus long time intervals). (b) Manipulation of the 
stimulus’ emotional intensity (strong versus low emotional intensity). (c) Manipulation of the mea-
surement noise associated with the affect ratings (assessments that are noise-free versus over-
whelmed by measurement noise)
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7.3.1 � Recovering the Latent AR Parameter: Temporal 
Measurement Resolution

As mentioned earlier, the AR parameter a captures the degree with which a person’s 
latent emotional reaction generally lingers after an affective stimulus was intro-
duced (Kuppens et  al., 2010a), and indicates how well we can predict its future 
(linear) trajectory (Headey & Wearing, 1989). When a is high, we describe a per-
son’s emotional recovery function as highly inert and resistant to the influence of 
internal regulatory processes (i.e., low attractor strength; see Fig.  7.3 panel A; 
Kuppens et al., 2010b). In contrast, when a is low, that person’s emotional respond-
ing is highly susceptible to the system’s regulatory forces, which will impact its 
original trajectory (i.e., high attractor strength; see Fig. 7.3 panel B).

Following this interpretation, a can be understood as a person-level indicator of 
the (linear) self-predictability of an affective state over time, and people’s (observed) 
affective time series are known to vary in the amount of auto-regression they exhibit 
(Bos et al., 2019; Bulteel et al., 2018). Although a is considered person-specific, and 
we therefore cannot directly boost its magnitude to maximize the SNR, the upper 
limit of its estimation is determined by measurement practices (Dejonckheere et al., 
2020). Specifically, because a refers to the temporal (un)predictability of a latent 
affective state (i.e., How well can I predict a person’s true emotion level at the next 
time point?), the relative size of this parameter will naturally depend on the tempo-
ral assessment resolution that was used during the study protocol (see Fig. 7.2 panel 
A): Larger time intervals between consecutive measurement occasions t–1 and t 
will diminish the predictive accuracy of future affective states, and typically result 
in lower AR parameters (Bulteel et  al., 2018). For example, making the average 
time interval between two consecutive measurement twice as long will reduce the 
estimated AR parameter by a power of 2 (e.g., from .40 to .16).

Intuitively, this makes sense, as the lingering effect of an emotional response 
generally diminishes as time after the instigating stimulus elapses (Anderson & 
Adolphs, 2014; Hemenover, 2003). As such, a measurement protocol in which suc-
cessive measurements are simply too far apart will not be able to adequately capture 
the meaningful recovery of a person’s emotional system, because full recovery 
likely took place in between measurement occasions (e.g., Schiepek et al., 2016). In 
other words, as a guiding principle, it is crucial that the temporal spacing between 
consecutive measurements is smaller than the rate of change of the emotions under 
study (Boker et al., 2009). When researchers assess emotional change with a higher 
temporal resolution, the serial dependency between consecutive emotional assess-
ments increases (Ram et al., 2017), which allows for more fine-grained distinctions 
between individuals in terms of their personal AR parameter.

To illustrate the impact of a study’s adopted assessment resolution on the recov-
ery of participants’ individual AR parameter, Fig.  7.4 visualizes three empirical 
ESM protocols from previous research that significantly differ in the average time 
interval between their emotional assessments (i.e., 1  day versus 104  min versus 
13 min, respectively). For each protocol, we present the distribution of personal AR 
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Fig. 7.3  Comparing the AR estimation in an equidistant measurement protocol versus micro-level 
measurement burst design. Simulated emotion time series for different hypothetical participants 
who react to a negative contextual stimulus at time point 3. The continuous blue lines represent 
their actual (latent) emotional response, while the discrete red dots depict their (observed) affective 
intensity ratings. (a) Participant who exhibits low attractor strength in an equidistant measurement 
protocol, which is adequately captured by the AR estimation. (b) Participant who exhibits high 
attractor strength in an equidistant measurement protocol, which is poorly captured by the AR 
estimation. (c) Participant who exhibits low attractor strength in a micro-level measurement burst 
design, which is adequately captured by the AR estimation. (d) Participant who exhibits high 
attractor strength in a micro-level measurement burst design, which is adequately captured by the 
AR estimation

parameters for PA, alongside the corresponding boxplot. Although a direct compari-
son between protocols is difficult due to other study-specific characteristics (e.g., 
total study duration, number of items per assessment, unique participant features, 
etc.), the boxplots suggest that longer time windows result in lower emotional AR 
estimations. Moreover, when longer time intervals between assessments exist, the 
proportion of participants that shows an AR parameter that does not significantly 

7  On the Signal-to-Noise Ratio in Real-Life Emotional Time Series



140

Dejonckheere et al. (2017; 1 day)

Koval & Kuppens (2012; 13 min)

Dejonckheere et al. (2019; 104 min)

AR parameter (a)

Fig. 7.4  Evaluating the role of temporal assessment resolution on the estimation of people’s AR 
parameter. For each dataset, the raincloud plot visualizes the distribution of participants’ personal 
auto-regressive effects in PA (i.e., the mean of emotion items relaxed and happy). The average time 
interval between two measurement occasions is presented between brackets. To maximize a fair 
comparison between studies, we only selected the first 30 affect ratings for each participant to 
estimate a. The red dashed line indicates the corresponding significance threshold

differ from zero increases (for an estimation based on 30 time points; i.e., 90, 82, 
and 62%, respectively). Conceptually, a non-significant AR parameter seems 
counter-intuitive, as it suggests that the momentary affect ratings of such an indi-
vidual are completely instantaneously determined, and no carry-over effect in the 
form of emotional recovery between assessments takes place (i.e., there is no emo-
tional inertia). Because such a motion is highly unlikely in real life, we assume that 
the temporal resolution of the assessment protocol was simply too low to adequately 
capture these individuals’ emotional recovery.

But how do we determine the appropriate time scale with which emotions should 
be assessed? Ideally, a scenario in which we continuously monitor changes in an 
affective state (i.e., where the interval between t–1 and t is virtually zero) would 
enable the most accurate AR estimation. Following our necklace metaphor, this 
would imply that ESM researchers drastically increase the number of individual 
beads, in order to adequately reconstruct participants’ underlying emotional 
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recovery function. However, to date, we can only access changes in experiential 
phenomena via repeated discrete self-reports, which is inherently intrusive and bur-
densome for participants (Schimmack, 2003; Stone et  al., 2003). As such, these 
constraints preclude an endless expansion of the assessment frequency adopted in 
an ESM protocol.

Alternatively, instead of focusing on the appropriate number of assessments, 
ESM researchers should be equally concerned with the timing of these assessments 
(i.e., the exact temporal location of the different discrete beads to recover people’s 
latent emotional signal; Kuiper & Ryan, 2018). That is, although inflating the num-
ber of discrete measurement occasions will result in shorter time intervals between 
occasions (when the study duration is held constant), chances still exist these assess-
ments largely fail to accurately describe people’s emotional recovery function when 
they are prompted at wrong moments (e.g., Fig. 7.3 panel B). Instead of holding on 
to measurement intervals that are more or less equidistant in time (which is common 
practice in contemporary ESM research), a more tailored ESM protocol that tempo-
rarily amplifies the rate of affective assessments when participants significantly 
deviate from their affective homebase, may enable a more accurate evaluation of 
their personal AR parameter (e.g., Schiepek et al., 2016). The flexible interval width 
of this micro-level measurement burst design (e.g., Stawski et al., 2015) softens the 
natural trade-off between increasing sample frequency and participant burden: 
Researchers may adequately assess participants’ emotional recovery function while 
the total number of to be completed assessments should not be drastically increased 
(e.g., compare upper versus lower panels in Fig. 7.3). Although this approach may 
enable a better AR estimation, possible impediments to this type of measurement 
design include the implementation of online computational models in ESM soft-
ware to determine whether participants are out of their personal affective equilib-
rium, the acquaintance with statistical models that do not require equally spaced 
time points (e.g., continuous-time Ornstein-Uhlenbeck models; Oravecz et  al., 
2009), and variable study durations across participants (when total number of 
assessments is held constant) that could lead to differences in the ecological validity 
of people’s affective time series.

7.3.2 � Maximizing the Event-Specific Noise Term: Strong 
Contextual Stimuli

Innovation or dynamical noise ε refers to the variance in a person’s affective 
responding that cannot be explained by the latent AR model (Schuurman et  al., 
2015). Consequently, this error term is thought to capture change in people’s emo-
tional trajectory that does not stem from endogenous feedback processes (i.e., the 
person-specific AR parameter), but from the various contextual stimuli people 
encounter and react to in their environment. Although this noise term ε is serially 
uncorrelated and specific for each t, it may shape the value of subsequent latent 
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emotional states via the AR relation (Dejonckheere et  al., 2020). As such, this 
situation-specific error term ε more or less refers to the (subjective) emotional inten-
sity of the stimuli that people process.2 For example, the sudden suffering of a goal 
of one’s favorite soccer team will trigger an emotional reaction that cannot be accu-
rately predicted from a person’s previous emotional state (because it is unexpected), 
but it will have its effect on subsequent emotional assessments (in the form of emo-
tional recovery).

In line with our necklace analogy, ε reflects the shape of people’s underlying 
emotional string (i.e., explosive versus flat). Strong affect-laden stimuli, situations 
or events evoke strong emotional reactions, and increase the likelihood that people 
are temporarily thrusted out of their affective homebase (Chow et al., 2005). In turn, 
the emotional recovery process will be sizeable, which evidently produces a more 
pronounced emotional signal (see Fig.  7.2 panel B). The more pronounced this 
emotional signal, the easier it is to detect, as it effectively overrides the inevitable 
background noise associated with measurement practices. As such, exposing par-
ticipants to events or situations that elicit strong emotional reactions may offer new 
opportunities to increase the SNR of the respective emotional ESM time series 
(Dejonckheere et al., 2020; Lapate & Heller, 2020).

At first sight, it may feel counter-intuitive that ESM researchers would want to 
control the contextual input their participants receive. After all, this data collection 
method is recognized for its ecological validity (Myin-Germeys et al., 2018; Trull 
& Ebner-Priemer, 2009), and is used to understand how emotions naturally come 
and go in the realm of ordinary life without any top-down interventions. This is in 
stark contrast with traditional lab research, where researchers experimentally induce 
isolated emotional states under controlled and standardized circumstances, and 
therefore have perfect insight in the causes and consequences of an emotional 
response. Because of the intrinsic tension between ecological validity and standard-
ization, a downside to ESM (compared to experimental studies) is that real-life 
affect ratings are often equivocal, determined by a complex synergy of multiple 
ill-defined stimuli (Dejonckheere et al., 2019a). Not only are ESM researchers rela-
tively clueless about the exact emotion-eliciting stimuli that shape participants’ 
affective responses, the situations and events people experience on a daily basis are 
often emotionally unprovocative and short-lived (Dejonckheere et  al., 2020). 
Bypassing these inherent limitations of ESM to get a closer indication of the con-
textual input participants receive, without carelessly undermining the ecological 
validity of this method, may boost the emotional signal value found in ESM 
time series.

To counter the fact that emotion ratings in daily life are often multi-determined, 
and that it is therefore challenging to isolate their direct cause, anchoring affective 

2 Some frameworks in the affect dynamics literature (e.g., Loossens et al., 2020) additionally break 
down εt into an innovation part (that captures deterministic contextual input) and a stochastic part 
(that captures built-in system noise). A more detailed discussion of this subdivision is beyond the 
scope of this chapter, but it explains the fractional translation of ε into the (perceived) emotional 
intensity of a stimulus.
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assessments to specific events or stimuli could be worthwhile. In anchored ESM 
protocols, researchers track emotional change in daily life in relation to particular 
incidents or affairs. Instead of global momentary emotional assessments (e.g., How 
sad do you feel right now?), participants are instructed to rate their momentary emo-
tion levels with regard to a specific and well-defined stimulus (e.g., How sad do you 
feel right now, regarding your [partner, back pain, pregnancy, exams, job, etc.]?). 
The selection of relevant stimuli may be fixed and determined a priori when 
researchers have a specific research question in mind (e.g., How do different emo-
tions in the context of recent parenthood unfold?: How [stressed, happy, etc.] are 
you about your new-born right now?) or could be introduced bottom-up in the 
moment by the participants themselves. Here, participants first report on the event 
or stimulus that is currently most emotionally relevant via an open-ended question 
(e.g., Describe the event or affair that triggers your current emotions.). Next, via 
follow-up assessments, the natural emotional recovery with respect to the articu-
lated event is evaluated, and new momentary relevant stimuli are disclosed that will 
serve as an input for subsequent affective assessments. Although this design would 
allow ESM researchers to delineate ecological emotional responses in relation to 
isolated stimuli, the possibility to assign conditional dependencies across measure-
ments (where participants’ responses at time t serve as input for their evaluations at 
time t + 1, t + 2, etc.) is currently lacking in many contemporary ESM applications. 
Furthermore, it remains to be investigated to what extent people are truly able to 
detach their emotional evaluation related to a single stimulus from their global 
affective state (e.g., carry-over effects between stimuli, Schmidt & Schmidt, 2016), 
and if these type of assessments do not induce stronger emotional reactivity (e.g., 
Schwarz, 1999).

Anchoring emotional assessments in ESM does not tackle the problem that the 
events and situations people encounter on a regular basis may not be very emotion-
ally moving (i.e., their emotional string is not very pronounced). Moreover, because 
individuals act in their own personal ecology, the contextual input they receive may 
differ in numerous ways (Kahneman et al., 2004), which hampers a direct compari-
son of their affective time series. Here, quasi-experimental ESM studies, in which 
researchers track natural emotional change around a standardized and impactful 
stressor could be promising (Dejonckheere et al., 2020). Researchers may introduce 
that stressor into the daily lives of their participants top-down (e.g., a Trier Social 
Stress Task; Koval & Kuppens, 2012), or they may anticipate the occurrence of a 
real-life event to design a study around (e.g., the release of exam results, 
Dejonckheere et  al., 2019b; Kalokerinos et  al., 2019; Metalsky et  al., 1993; the 
implementation of COVID-19 lockdown measures, Dejonckheere et  al., 2021; 
Taquet et al., 2020; the onset of a depressive episode, Wichers et al., 2016; the death 
of a beloved one, Folkman, 1997). In both cases, all subjects are exposed to the 
same compelling stimulus, which allows a more controlled comparison of their 
emotional trajectory, but real-life stressors have the strength that they are unparal-
leled in their ecological quality. However, a possible downside to these naturalistic 
stimuli is that they are sometimes relatively difficult to predict prospectively, which 
may result in longer study durations (e.g., Folkman, 1997) or smaller sample sizes 
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(e.g., Dejonckheere et  al., 2021;  Wichers et  al., 2016). Nevertheless, this quasi-
experimental approach can reconcile both the naturalistic qualities of ESM and the 
more standardized setting of lab experiments (Dejonckheere et al., 2019b).

7.3.3 � Reducing Momentary Measurement Noise: Assessing 
Measurement Error

Finally, ESM researchers can also improve the SNR of an affective time series by 
diminishing the measurement error ω that is associated with their assessment proce-
dures (see Fig. 7.2 panel C). Attempts to reduce the incidental distortions inherent 
to people’s momentary affect ratings may produce a closer approximation of their 
true emotional response, and therefore minimize the bias present in their AR param-
eter estimation (e.g., Staudenmayer & Buonaccorsi, 2005). Thus, in line with our 
necklace metaphor, ω indicates the extent with which the individual beads properly 
link up with the underlying string, indicating how much the discrete affect ratings 
deviate from a person’s latent emotional signal.

Although the ubiquity of measurement noise in affective time series is com-
monly accepted among ESM researchers, this issue is largely ignored in the affect 
dynamics literature (e.g., Schuurman et al., 2015; Schuurman & Hamaker, 2019). 
Not only do emotion researchers often calculate affect dynamic measures from 
observed affect intensity scores (Dejonckheere et al., 2019a; Wendt et al., 2020), in 
an attempt to minimize participant burden or annoyance, they are generally reluc-
tant to include exact repetitions of an item within the same momentary question-
naire (Schimmack, 2003). Singular items, however, prohibit an explicit momentary 
reliability assessment, leaving researchers in the dark about the exact amount of 
measurement error present in people’s affect ratings. Instead of indirectly evaluat-
ing measurement noise via estimation procedures, future ESM designs could there-
fore benefit from randomly repeating (at least) one item at each measurement 
occasion, in order to get a direct indication of the measurement error associated 
with their protocol.

In a derivative effort to somehow mitigate the bias of measurement noise in 
affective time series, it is common practice in ESM research to average an ad hoc 
selection of specific same-valenced emotion items to construct a global positive or 
negative affective composite (Dejonckheere et  al., 2019a). Combining individual 
emotion items into a single construct is thought to compensate for some of the mea-
surement error associated with each individual rating (e.g., Nunnally, 1994), which 
may produce a higher SNR for the aggregated time series. To evaluate how this 
averaging procedure impacts the SNR, we compared the SNRs of each individual 
emotion item versus the two global PA and NA composites for a traditional ESM 
dataset (Sels et al., 2017). As shown in Fig. 7.5, the SNR for the two affective aggre-
gates PA and NA is remarkably higher than for those of the same-valenced indi-
vidual emotion items (except for stressed).
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Fig. 7.5  Investigating the SNR of individual emotion items versus global PA and NA constructs 
in Sels et al. (2017). The median SNR for positive (blue bars) and negative (red bars) affect items 
or constructs, with the error bars indicating the 95% confidence interval (derived from 2000 
bootstraps)

Nevertheless, when an emotional time series carries little signal, attempts to 
reduce measurement error will have little effect on the overall SNR. As such, proce-
dures to reduce measurement noise are best used in combination with signal 
improvement strategies, because it is an illusion to believe researchers can entirely 
eliminate the measurement error associated with psychological self-report. 
Furthermore, it should be noted that the within-person internal consistencies of 
multi-item PA and NA constructs remain generally low (Dejonckheere et al., 2019a). 
This leaves the question to what extent the adopted discrete emotion items are truly 
interchangeable indicators of a global PA or NA composite, and what these aver-
aged constructs really capture if their momentary reliabilities are so remarkably 
low. A more considerate and theory-driven selection of specific emotion-items 
could result in global PA and NA constructs that are both internally reliable and less 
sensitive to measurement error.
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7.4 � Combining Different Strategies to Improve 
the Signal-to-Noise Ratio

In this chapter, we introduced an overarching framework to promote the SNR of 
emotional time series in ESM research. Drawing from Eq. 7.5, this framework was 
structured around three key determinants that make up an emotional SNR. On the 
one hand, we discussed how researchers could seek to increase the power of partici-
pants’ true emotional signal by fine-tuning AR estimations (a) or investigating more 
pronounced emotional reactions (ε). On the other hand, we advised researchers to 
evaluate and to reduce the measurement noise (ω) associated with their ESM proto-
col by creating reliable same-valenced affective composites instead of relying on 
singular emotion items. In the previous paragraphs, we explained how these general 
propositions translated into concrete design choices for each determinant individu-
ally (see Table 7.1 for an overview), but ideally ESM researchers may wish to apply 
these strategies to their protocol simultaneously, in order to optimize the quality of 
their time series data in the best possible way.

As a proof-of-concept that the combination of outlined strategies adds to an 
improved SNR, Panel A of Fig. 7.6 visualises how the median SNR of a real ESM 
study sample changes under different (artificial) strategy scenarios. In this ESM 
study (Dejonckheere et al., 2019b; Kalokerinos et al., 2019), we tracked the emo-
tional trajectories of 101 first-year students around an impactful and personally rel-
evant event, the release of their exam results. Students were instructed to rate both 
their unanchored momentary PA and NA (Please indicate how positive/negative you 
are feeling right now?), as well as multiple discrete emotion items anchored to their 
grades (When you think about your grades right now, how [content, happy, proud, 
relieved, angry, anxious, ashamed, disappointed, stressed] are you feeling?). Same-
valenced emotion items were averaged at each measurement occasion to create an 
anchored PA and NA time series, and we computed an additional global anchored 
affective construct in which combined all items together (PA-NA). Finally, to simu-
late scenarios with different temporal resolutions, we relied both on participants’ 
original time series, as well as a trimmed version in which we only considered every 
fifth emotional assessment.

Table 7.1  Summary of the proposed design strategies for each SNR determinant

SNR goal Design strategy

Improve AR estimation (a) –  Increase temporal assessment resolution
–  Micro-level measurement burst design

Boost situational input (ε) –  Anchor emotional assessments to specific stimuli
–  Introduce/anticipate strong contextual events

Reduce measurement noise (ω) – � Explicitly assess measurement error via exact item 
repetitions

–  Reliably combine same-construct items

SNR Signal-to-noise ratio, AR Auto-regression
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a.

b.

Fig. 7.6  Combining multiple strategies to improve the SNR in ESM time series. The results in 
both panels rely on data reported in Dejonckheere et al. (2019b) and Kalokerinos et al. (2019), in 
which we followed the emotional trajectories of 101 first-year students around the time they 
received their exam results. (a) The median SNR for different strategy scenarios, with the error 
bars indicating the 95% confidence interval (derived from 2000 bootstraps). (b) Real affective time 
series for an example participant with a high SNR (22.43). Time point zero indicates the first emo-
tional assessment after the student consulted his or her exam results

As Panel A of Fig. 7.6 suggests, implementing multiple strategies in an ESM 
protocol at once markedly improves the SNR of emotion time series. First, for each 
scenario, the median SNR is almost around twice as high than those of most of the 
traditional ESM studies in Fig. 7.1, hinting at a positive impact of studying strong 
contextual stimuli on participants’ emotional signal. Second, a comparison of the 
unanchored PA and NA items versus the anchored assessment of different discrete 
emotions shows that some (but not all) anchored emotion items bring about slight 
increases in the SNR (e.g., stressed but not angry). This suggests that assessing 
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(some) emotional states in relation to a specific stimulus could potentially benefit 
the SNR. Third, averaging single anchored emotion items into an anchored global 
PA and NA composite drastically boosts the SNR, and its value increases even more 
when a global affective composite is considered (PA-NA). This indicates that the 
practice of averaging affect items reduces the measurement error associated with 
each individual emotion rating. Finally, when comparing the anchored PA and time 
series of the trimmed versus complete dataset, the SNR is considerably higher when 
a more fine-grained temporal assessment resolution is adopted. This suggests that 
an AR estimation is more accurate when the time interval between consecutive mea-
surements is compressed.

But how does a high SNR visually manifest in an empirical ESM time series? 
Panel B of Fig. 7.6 depicts the PA time series for a participant with one of the high-
est SNRs in the study sample (SNR 22.43). First, the unexpected and sudden jump 
around the release of that participant’s exam results indicates the introduction of a 
strong emotional stimulus, kicking that person out of emotional equilibrium and 
allowing emotional recovery to take place. Second, the aggregation of discrete emo-
tion items into a global affective composite score clearly smooths the affective sig-
nal, eliminating some of the incidental and irregular drops and spikes that shape 
individual emotion ratings (which may be attributed to measurement error).

7.4.1 � Interdependencies Among Design Strategies

Although the results in Fig. 7.6 suggest that implementing multiple design strate-
gies positively amplifies the SNR, it is important to acknowledge that their effect is 
not necessarily additive. Similarly, the separate review for each individual SNR 
determinant does not imply that each design strategy independently impacts the 
SNR. As such, mutually comparing the effect of different design strategies is prob-
ably meaningless. There may be positive structural dependencies between the dif-
ferent strategies we discussed, making it difficult to disentangle their unique 
contribution in improving the SNR.

In contrast, it is equally possible that negative associations between particular 
design strategies exist, carrying an opposite impact on the SNR. That is, a proposed 
strategy to improve one SNR determinant may unintentionally compromise another 
one. For example, repeatedly exposing participants to micro-level measurement 
burst cycles has the goal to improve AR estimations, but could also induce increased 
annoyance with the protocol, resulting in more measurement error. Similarly, inves-
tigating real-life emotions in relation to a personally relevant and impactful event 
may boost the innovation parameter, but could equally introduce more missing data 
due to the study’s increased interference with people’s lives, impeding accurate AR 
estimations. As a final example, multiple items per construct may reduce the mea-
surement error associated with each individual question, but result in longer momen-
tary assessments, which is known to predict poor compliance (Eisele et al., 2020). 
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Depending on how all of these design choices relatively impact each determinant, 
SNR values may increase, decrease or remain unaltered. In either case, this uncer-
tainty calls for future ESM studies that explicitly test how the SNR changes in func-
tion of various design alternatives.

7.4.2 � Design Strategy Implementation Constraints

Finally, we realize that many of the outlined propositions may currently be difficult 
to implement, and that the resulting ESM protocols drastically differ from conven-
tional ESM research practices today. For one, there are practical constraints. For 
example, regarding the implementation of micro-level measurement burst cycles, 
the possibility to model people’s emotional trajectory online (needed to instanta-
neously detect abrupt changes in affect), is currently lacking in standard ESM appli-
cations. Similarly, in the context of anchoring idiosyncratic emotional assessments, 
installing input-output dependencies between consecutive measurements is not 
straightforward with modern ESM software. Technical advances are needed to 
remove these barriers.

Second, some of the design strategies presented challenge the way ESM research-
ers traditionally model affect dynamics. For example, tracking people’s emotional 
reaction in response to an impactful stressor likely yields time series that are not 
stationary, violating a statistical assumption that underlies some of the commonly 
investigated affect dynamics (e.g., emotional inertia or network density; Bringmann 
et al., 2013; Pe et al., 2015). Relatedly, the repeated use of measurement burst cycles 
violates the assumption of equally spaced time points, preventing for instance a 
standard assessment of people’s global level of emotional instability (Jahng et al., 
2008). In sum, potential adjustments to traditional ESM designs will close the door 
for some commonly studied affect dynamic metrics. At the same time, however, 
novel design strategies allow researchers to model dynamical patterns in affect in a 
more nuanced and fine-grained manner.

7.5 � Conclusion

When interested in the real-life dynamics of emotion, this book chapter invites ESM 
researchers to raise the bar when it comes to the data quality of their studies. The 
SNR in traditional ESM research is typically substandard, which demands future 
daily life studies to experiment with more exotic design approaches to effectively 
disentangle people’s true emotional reactions form inevitable background noise. 
Only then will we be able to reliably assess the internal and external validity of real-
life affect dynamics.
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