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Chapter 12
A Dynamic Affective Core to Bind 
the Contents, Context, and Value 
of Conscious Experience

Kenneth T. Kishida and L. Paul Sands

Abstract The private and dynamic nature of conscious subjective experience poses 
an empirical challenge that has led neuroscience-based theories about conscious-
ness to note the importance of ‘the hard problem’ of explaining how subjective 
phenomenal experience can arise from neural activity but set it aside and focus on 
the ‘easier’ problems associated with information representation and behavior. This 
approach leaves a major gap in our understanding of the neural mechanisms under-
lying conscious subjective experience and its dynamic nature. However, computa-
tional methods integrated with a variety of tools for measuring human brain activity 
are beginning to link dynamic changes in subjective affect with reproducible neu-
robehavioral signals in humans. In particular, research applying computational rein-
forcement learning theory has shown tremendous utility in investigating human 
choice behavior and the role the dopaminergic system plays in dynamic behavioral 
control. This research is beginning to reveal an explicit connection between the 
dynamics of dopaminergic signals and dynamic changes in subjective affect. 
However, it should be obvious that the dopaminergic system alone is not sufficient 
to explain all of the complexities of affective dynamics. We review foundational 
work, highlight current problems and open questions, and propose a Dynamic 
Affective Core Hypothesis that integrates advances in our understanding of the rep-
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resentation of the content and context of conscious experiences with our nascent 
understanding about how these representations acquire and retain affective subjec-
tive value.

Keywords Consciousness · Reinforcement learning · Dopamine · Serotonin · 
Norepinephrine · Reward prediction error · Subjective experience · Qualia

12.1  Introduction

In “What is it like to be bat?” (Nagel, 1974), Nagel highlights the gap in our ability 
to provide a mechanistic account of subjective phenomenal experience from our 
current knowledge about nervous systems. In a related vein, Chalmers (1996) 
coined the distinction between ‘easy’ problems and ‘the hard problem’ facing inves-
tigations about how physical processes generate subjective phenomenal experience 
(i.e., qualia). The ‘easy problems’ are those for which it is conceivable that we will 
find solutions given the currently known mechanistic working of neural processes; 
the ‘hard problem’ concerns an explanation of how the physical processes could 
possibly give rise to subjective phenomenal experiences a priori. Leading neurosci-
entific theories about consciousness note the importance of subjective phenomenal 
experience but set this ‘hard problem’ aside to instead focus on the ‘easy problems’ 
regarding how nervous systems represent information and control behavior 
(Edelman & Tononi, 2000; Crick & Koch, 2003). In line with others’ ‘faith’ in a 
scientific approach (Churchland & Churchland, 2002; Churchland, 2005), we reject 
this distinction. The ‘hard problem’ is hard, but not in any special way that prevents 
scientific investigation. Instead, it represents the most exciting frontier in human 
neuroscience research. Before we had an empirically based theory of electromagne-
tism, electricity and magnetism must have seemed magical and fundamentally 
unexplainable (through known physical mechanism) to philosophers of the time. 
But, through rigorous empirical investigation and the development of supporting 
mathematical theory, major breakthroughs came in our understanding of a funda-
mental physical phenomenon (Forbes & Mahon, 2014). We believe that (broadly) 
neuroscience research had simply not focused its attention, until recently, to the 
problem of conscious subjective experience in humans. These tides are changing, 
and advances in seemingly disparate areas of research are poised to come together 
through applications of mathematical theory to begin to shed light on how a nervous 
system could give rise to subjective phenomenal feeling.

‘Affective dynamics’—and particularly computational approaches thereof 
(Cunningham et al., 2013)—represent an investigative construct well-suited to push 
past the current boundaries of neuroscience research about dynamic changes in 
emotion-related behavior and move towards a neuroscience of consciousness 
squarely focused on mechanisms giving rise to subjective phenomenal experience. 
Presently, much of the work can be framed into two (admittedly overbroad) domains 
of research: (1) investigations into the role of reinforcement learning in driving 
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dynamic changes in behavior and associated reports about subjective emotional 
reactions, and (2) investigations into the roles of functional networks involving cor-
tical and sub-cortical brain regions in dynamically representing emotion. While 
both domains of research are in and of themselves rich and highly productive, little 
has been done to bridge the divide between them and provide a mechanistic account 
of the dynamics underlying how changes in the environment or behavioral state of 
an individual induce changes in the functional networks representing the vast range 
of observable, dynamic emotional reactions and associated subjective experiences.

Here, we discuss a framework for investigating affective dynamics that is founded 
on computational reinforcement learning theory (Sutton & Barto, 1998) and its tight 
connection to the neurobiology of adaptive behavior. We review the dominant the-
ory for dopamine neuron function (as a generator of a “temporal difference reward 
prediction error” signal) and its role in behavioral control and value updating 
(Montague et al., 1996; Schultz et al., 1997; Montague et al., 2004; Glimcher, 2011; 
Watabe-Uchida et al., 2017). We review how this framework has, to date, been used 
to investigate affective dynamics, but also this approach’s dopamine-centric limita-
tions. We follow this discussion with (1) an extension of temporal difference rein-
forcement learning theory to include a parallel system hypothesized to support 
temporal difference aversive learning; (2) the interaction of these parallel appetitive- 
learning and aversive-learning systems to generate valuation and salience signals; 
and (3) evidence that these valuation and salience signals are fundamental to 
dynamic affective experience. We briefly discuss a candidate set of key neural struc-
tures that we hypothesize are necessary components of a dynamic network for rep-
resenting emotion, and we describe how ascending valuation systems (e.g., 
dopamine- and serotonin-releasing neurons) are integral to this network. We discuss 
how this network relates to the dynamic core hypothesis that was proposed by 
Edelman and Tononi (2000) to explain consciousness—in particular, we note that 
their notion of a dynamic core did not necessitate key elements, and the conse-
quences of these omissions. Crucially, we believe that Edelman and Tononi’s 
‘dynamic core’ appears sufficient for an integrated representation of the contents 
and context of dynamically evolving conscious experiences, but it omits systems 
required to provide those representations affect and value. Thus, we introduce the 
Dynamic Affective Core hypothesis, which updates the original dynamic core 
hypothesis to now necessarily include originally omitted affect and valuation sys-
tems. We discuss the implications of the Dynamic Affective Core hypothesis and 
future directions for this line of research.

12.2  Affective Dynamics as a Phenomenon Resulting 
from Systems Seeking ‘Optimal Control’

Moment-to-moment changes in one’s emotional state can be driven by external and 
internal signals. The environment naturally evolves, and an organism’s nervous sys-
tem ought to track this evolution with its own evolving representations of the envi-
ronment in parallel with representations of its own evolving internal states (e.g., 
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proprioceptive body position, body temperature, energy levels, etc.). Associated 
with these objective quantities are affective, subjective feelings (e.g., hunger, thirst, 
pain, and pleasure). These representations are in turn used to guide adaptive physi-
ological responses and behavior. How nervous systems accomplish this can be 
investigated through a computational framework (Minsky, 1967) where the actual 
“state of an agent” and the actual “state of the environment” can be represented 
explicitly, as can their interactions. Further, representations of the state of an agent 
and the environment can be explicitly represented as hypothetical physical states 
that nervous systems may instantiate. Within such a framework, one can consider 
that as the state of the agent and external environment continuously evolve, the 
affective state of the agent is expected to also continuously evolve. We hypothesize 
that the representation of exteroceptive and interoceptive state- transitions is associ-
ated with representations of the affective emotional valence (i.e., subjective value) 
of these experienced states and actions. This dynamic evolution of emotional sub-
jective experience is the target of our investigation. To be rigorous in our approach, 
we employ a computational framework to aid in making explicit our assumptions 
and hypotheses about the dynamic mechanisms at play.

Artificial intelligence research has developed theory around how the behavioral 
problem (e.g. how to choose how to act and adapt behavior) may be solved with an 
eye towards optimal solutions. One particularly successful line of reasoning has led 
to the development of computational reinforcement learning theory (Sutton & 
Barto, 1998, 2018). Within artificial intelligence research, computational reinforce-
ment learning theory has been used as a core theoretical construct to explore how 
emotions may be integrated into the decision-making processes of computational 
(artificially intelligent) agents (surveyed in Moerland et al., 2018). More specific to 
our line of inquiry is recent empirical work bridging computational reinforcement 
learning theory and human neuroscience that is beginning to connect dopamine 
neuron activity with how the human brain dynamically adapts not only representa-
tions of states and actions, but also representations of associated subjective experi-
ences (Xiang et al., 2013; Rutledge et al., 2014; Eldar & Niv, 2015).

12.2.1  Computational Reinforcement Learning Theory 
and Dopamine

Computational Reinforcement Learning (RL) theory (Sutton & Barto, 1998, 2018) 
provides an explicit framework to investigate processes involved when a theoretical 
agent makes decisions under uncertainty, experiences the consequences of those 
decisions, and makes changes in its approach (i.e., learns) to make ‘better’ decisions 
in the future. This theoretical framework assumes that the agent seeks to maximize 
the ‘reward’ it attains and builds from this fundamental assumption a mathematical 
rendering that incorporates theory about Finite Markov Decision Processes, 
Dynamic Programming, and Monte Carlo Methods (see Sutton & Barto, 1998 and 
a revised edition in 2018 for an authoritative textbook on how these ideas are 
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brought together). Importantly, the agent in question is an abstract computational 
agent—not necessarily a biological one, let alone human. This approach simply 
seeks to find computable optimal solutions to behavioral control and, when such 
computations are intractable, to determine best estimates for these solutions (Bach 
& Dayan, 2017). Moerland and colleagues (Moerland et al., 2018) have recently 
provided an extensive survey of how these ideas have been explored to incorporate 
models of ‘emotions’ into various learning algorithms in AI research. Moerland’s 
survey provides a wide range of hypotheses about how emotions may be repre-
sented in adaptive reinforcement learning algorithms, but empirical support that 
these proposals are actually implemented biologically remains lacking. On the other 
hand, Montague and colleagues’ publication in 1996 (Montague et al., 1996) dem-
onstrated that dopamine neurons in non-human primates encode a key signal in 
reinforcement learning theory—a temporal difference reward prediction error. This 
finding has since been a foundation for research into the basis of adaptive decision- 
making in humans (and non-human animals) and more recently in investigations 
about the neural basis of dynamic changes in subjective experience in humans.

Temporal Difference Reinforcement Learning is a foundational idea that grew 
out of computational reinforcement learning theory research. The basic idea is as 
follows—it is assumed that an agent always seeks to maximize the attainment of 
‘reward’. To do so, it must learn the value of various states and actions that it finds 
itself in and that it has available to it at any given time, respectively. The ‘Value’ (Vt) 
of a particular state at a given time (t), in this context, is simply the sum of the 
reward currently acquired (rt) plus the rewards the agent may attain in the future 
given that it finds itself in that state (rt + 1 + rt + 2 + rt + 3 + …), so:

 V r r r r rt t t t t t T= + + + +…++ + + +1 2 3  (12.1)

We can modify this estimate by incorporating a discounting of future (not yet 
acquired) rewards:

 V r r r r rt t t t t
T

t T= + + + +…++ + + +γ γ γ γ γ0 1
1

2
2

3
3  (12.2)

Here γ is a parameter that is greater than zero, less than one, and therefore shrinks 
exponentially small when raised to increased powers towards T. This causes proxi-
mate rewards to be weighted more heavily than distant future rewards. The chal-
lenge for the agent (with incomplete knowledge of the future) is to estimate this 
value function for any given state it may find itself in. Learning (better estimates of 
Vt) proceeds through experience (real or simulated) where prediction errors (δ) 
about the estimated expected value are used to update (i.e., make corrections to) the 
estimated expected value:

 V Vt t t
′ ← +αδ  (12.3)

In Eq. (12.3), Vt on the right-hand side is changed to Vt
′  by an amount δt (i. e. ,the 

reward prediction error) modulated by the learning rate α. Small fractional changes 

12 A Dynamic Affective Core to Bind the Contents, Context, and Value…



298

Fig. 12.1 Dopamine neurons encode temporal difference reward prediction errors. Dopamine 
neurons change their rate of firing in a manner consistent with ‘temporal difference reward predic-
tion errors’. Left: Recordings of dopamine neuron spike rates during the presentation of rewards 
(squirts of juice) and a conditioning stimulus (e.g. flash of light); figure panel adapted from 
Schultz, Dayan, and Montague (1997). Right: Cartoon depiction of dopamine neuron behavior in 
the different phases of learning depicted in left panel. Top row: Prior to learning, dopamine neu-
rons increase their firing rate in response to unexpected delivery of reward. Middle row: After 
conditioning, with consistent pairing of a predictive stimulus and a reward, dopamine neurons 
increase their firing rate to the predictive stimulus and do not change their firing rate when the 
reward is delivered as expected. Bottom row: After conditioning, dopamine neurons increase their 
firing rate to the predictive stimulus and go silent (firing rate goes to zero) when the expected 
reward is not delivered

in α lead to slower learning, whereas larger α causes δt to have a bigger influence. In 
temporal difference reinforcement learning, the errors—called temporal difference 
reward prediction errors (δt)—are calculated as follows:

 
δ γ= +( ) −+r V Vt t t1  

(12.4)

Note that these errors are determined by incorporating not only the experienced 
reward in the current state (at time “t”: rt), but also a discounted estimate of future 
rewards (γVt + 1); combined, these two terms ((rt + γVt + 1)) are compared to the cur-
rent estimate of value (Vt) and the difference is the “temporal reward prediction 
error”. This reward prediction error term has been hypothesized and demonstrated 
to be encoded by dopamine neuron activity in non-human primates (Fig.  12.1: 
Montague et al., 1996; Schultz et al., 1997; Bayer & Glimcher, 2005; reviewed in 
Glimcher, 2011; for a historical account: Colombo, 2014; Watabe-Uchida et  al., 
2017) and to be consistent with temporal dynamics of blood oxygen level dependent 
responses (measured with functional magnetic resonance imaging) in regions of the 
human brain that are highly innervated by dopamine releasing terminals (Pagnoni 
et al., 2002; Montague et al., 2006).
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The first association between the temporal difference reward prediction error and 
non-human primate dopamine neuron activity was shown in Montague et al. (1996) 
and reviewed in the context of prior work in Schultz et al. (1997). Subsequently, the 
role of reward prediction errors and dopaminergic signaling in mammalian decision 
making grew into a highly impactful field of research (reviews: Montague et al., 
2004; Glimcher, 2011; Colombo, 2014; Watabe-Uchida et al., 2017), with elabora-
tions on this basic framework revealing a consistent role for reward prediction error 
signals guiding human and animal behavior during a wide variety of experimental 
paradigms that require these agents to make incentivized decisions under uncertain 
conditions.

A number of predictions from this basic formulation have been tested and the 
overarching hypothesis upheld, though recent work has challenged the complete-
ness of this idea in humans (Kishida et al., 2011, 2016; Moran et al., 2018; Bang 
et al., 2020). The “temporal difference reward prediction error” (Eq. 12.4) hypoth-
esis for dopamine neuron activity, expressed in words, predicts: (1) increases in DA 
neuron spike activity (from background rates) when “things are better than 
expected”, (2) decreases when “things are worse than expected”, and (3) no change 
when “things are just as expected”. In this interpretation, dopamine neurons are 
always emitting information to downstream neural structures since even no change 
in firing rate carries meaning. This computational hypothesis is strongly supported 
by the timing and amplitude of burst and pause responses in the spike trains of dopa-
mine neurons (Montague et  al., 1996; Schultz et  al., 1997; Fiorillo et  al., 2003; 
Montague et al., 2004; Bayer & Glimcher, 2005; Dayan and Niv, 2008; Watabe- 
Uchida et al., 2017). Further, this hypothesis appears to be supported (at least in 
part) by dopamine release measurements in rodents (Hart et al., 2014; Clark et al., 
2010), single unit recordings of dopamine neurons in humans (Zaghloul et  al., 
2009), and direct measurements of dopamine release in humans (Kishida et  al., 
2016; Moran et al., 2018).

Note, however, that in Kishida et al., 2016 and Moran et al., 2018 it was demon-
strated that sub-second changes in dopamine levels in human striatum are not fully 
explained by the simple reward prediction error hypothesis. In these experiments, 
extracellular dopamine release was measured in humans with sub-second temporal 
resolution during a sequential monetarily incentivized decision-making task 
(Kishida et  al., 2011, 2016). While these measurements were made, participants 
performed a stock market gambling task that elicited reward prediction errors about 
the participants’ investment decisions and market fluctuations. Importantly, partici-
pants’ investments were lodged as percentages of their continuously updated port-
folio. Thus, counterfactual information—what “could have been” had they chosen 
to invest more or less than they actually did—was present on every trial. Kishida 
et  al., 2016 demonstrated that sub-second dopamine fluctuations in the striatum 
integrated the reward prediction error term with a counterfactual prediction error 
term (Fig. 12.2). In other words, dopamine fluctuations in response to better- or 
worse-than-expected outcomes (i.e., reward prediction errors) were depressed or 
even inverted according to the magnitude of missed gains or avoided losses had the 
participants invested one-hundred percent of their portfolio. In this sense, measured 
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Fig. 12.2 Dopamine release in human striatum encodes superposed reward prediction errors and 
counterfactual prediction errors. Direct recordings of dopamine release during a sequential 
decision- making task (a) demonstrates that dopamine release encodes reward reward prediction 
errors (left columns of b and c), but that counterfactual information diminishes or inverts dopami-
nergic encoding of reward prediction errors about actual experience (middle and right columns of 
b and c). Figure panels adapted from Kishida et  al. (2016). (a) Sequential investment game: 
Participants ‘invest’ into a stock market by lodging bets as a percentage of their portfolio. Market 
returns increase or decrease the participant’s portfolio as a function of the percent invested and the 
percent change in the stock price. For market increases and decreases, the amount not invested 
represent missed gains or avoided losses, respectively. These counterfactual outcomes are observed 
to modulate dopamine (panel c) and serotonin (Moran et al., 2018) responses to reward prediction 
errors over actual gains and losses in the game. (b and c) Model predictions (b) and actual dopa-
mine responses (c) for a model that integrates ‘reward prediction errors’ and ‘counterfactual pre-
diction errors’. Green: dopamine responses (predicted (b) or observed (c)) to positive reward 
prediction errors. Red: dopamine responses (predicted (b) or observed (c)) to negative reward 
prediction errors. Left column: Counterfactual outcomes are minimized (investments near 100%) 
and the dopamine response is positive for positive reward prediction errors and negative for nega-
tive reward prediction errors (as predicted by the traditional reward prediction error hypothesis). 
Middle and Right columns: As the bet sizes decrease, the counterfactual terms increase and dimin-
ish (middle column) or invert (right column) the dopamine response to positive and negative 
reward prediction errors. Figure panel (c) adapted from Kishida et al. (2016)

fluctuations in dopamine levels within ~700 ms following an outcome corresponded 
with how participants ought to have felt: positive feelings about better-than-expected 
outcomes would be muted or even inverted to negative feelings when regret (over 
not investing more) increases, and negative feelings about worse-than-expected out-
comes would be muted or inverted to positive feelings when relief is high (Fig. 12.2, 
‘regret’ and ‘relief’ would increase with decreasing bet size). In a follow up study, 
Moran and colleagues extended the work and demonstrated that serotonin fluctua-
tions in human striatum encoded an opponent response to the dopamine signal, 
suggesting that dopamine and serotonin are, together, critical in the processing of 
actual and counterfactual reward prediction errors in sequential decision-making 
processes. Unfortunately, however, subjective assessments were not performed in 
these experiments, so the connection between sub-second dopamine and serotonin 
release and subjective experience remains hypothetical.
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The hypothesis that dopamine fluctuations encode fluctuations in positive affect 
may seem obvious, given that dopamine neurons and extracellular dopamine levels 
dynamically encode “reward” prediction errors. This is consistent with pleasure and 
subjective well-being focused emotion literature connecting these emotions and 
related processes to dopamine’s function (Kringelbach & Berridge, 2017). However, 
it is important to note that the term “reward” in the naming of this error term does 
not explicitly mean the “subjective experience of reward”. Rather, this term refers to 
a quantity that a computed objective function aims to maximize, and its connection 
to subjective reward is only implied or useful as an analogy when thinking about 
related computer algorithms from an anthropomorphic perspective. The explicit 
relationship between reward prediction errors, dopamine, and dynamic changes in 
human subjective experience has only recently begun to be explored.

12.2.2  Reinforcement Learning and Affective Dynamics

The formal framework of computational reinforcement learning provides a rich 
landscape for investigating how the brain may generate dynamic changes in emo-
tional behavior and subjective experience (Doya, 2000; Xiang et al., 2013; Eldar 
et al., 2016; Bach & Dayan, 2017; Huys & Renz, 2017; Moerland et al., 2018). For 
example, the development and implementation of computer agents that use modi-
fied reinforcement learning algorithms to incorporate intuited features of emotion 
can generate a wide spectrum of hypotheses about how the human brain may ‘com-
pute’ and generate emotional behaviors with the goal of augmenting artificial intel-
ligence behavior (Moerland et al., 2018). While this approach notes the connection 
between reinforcement learning and hypothesized neural processes, their primary 
focus on machine learning applications is less constrained by or interested in solv-
ing the biological question and more concerned with the augmentation of machine 
learning algorithms. Implementation of ‘emotion algorithms’ in artificial intelli-
gence solutions may in some cases be feasible only in silico and for certain prob-
lems. In this vein, computer and decision scientists discover solutions to optimize 
learning and decision making that may not be possible for biological agents that are 
strictly constrained by limited time and energy, high uncertainty environments, and 
constant threats to existence (Montague, 2006; Bach & Dayan, 2017; Huys & Renz, 
2017). Here, it must be assumed that evolution has shaped the mechanisms underly-
ing emotion-related modifications to behaviors and associated subjective experi-
ence. Thus, empirical work (in conjunction with theory) is necessary to discover 
how the human brain solves the decision-making problem and generates associated 
subjective experiences. Computational neuroscientists trying to discover how emo-
tions are generated are beginning to investigate how neuromodulatory systems (e.g., 
dopaminergic, serotonergic, and noradrenergic neurons) drive not only learning and 
arousal states, but also affective dynamics, mood, and emotion regulation (Doya, 
2002; Etkin et al., 2015; Eldar et al., 2016; Huys & Renz, 2017; Bach & Dayan, 2017).
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One of the first demonstrations that reward prediction errors modulate self- 
reports about subjective feelings came from work investigating social exchange 
(Xiang et al., 2013). In this work, Xiang and colleagues had participants play the 
ultimatum game repeatedly, but with different partners. In the ultimatum game, a 
proposer is given a set amount of money and proposes a split of the money between 
themselves and a partner. The partner then has the choice of accepting the split or 
rejecting the offer, knowing that a rejection means that both players will receive 
nothing (Fehr & Gächter, 2002; Camerer, 2003). In Xiang et al., the participants 
were the partners receiving the offered splits and the proposers were computer 
agents programmed to give similar distributions of offers and to shift their proposals 
(as a group) halfway through the task. In this manner, participants received offers 
that at first may be low or high, but common to the group, and a ‘social norm’ 
learned. Deviations about this norm generated prediction errors about the expected 
offer value, which were exaggerated when ‘the group’ shifted its behavior mid-way 
through the task. Participants playing this task were instructed that they would be 
playing with partners that were all different and independent. Occasionally, partici-
pants were probed about ‘how they felt’ about the most recent offer. Xiang et al., 
report that subjective feelings correlated with the norm prediction error and that the 
norm prediction error correlated with fMRI measured BOLD responses in the 
orbital frontal cortex (Xiang et  al., 2013). Additionally, BOLD responses to the 
norm prediction error were observed in the dorsal and ventral striatum, and bilateral 
anterior insula.

Eldar and colleagues (Eldar et al., 2016) review recent applications of a rein-
forcement learning framework and gambling tasks to investigate affective dynamics 
and mood and hypothesize how the proposed computational models may be used to 
better understand mood disorders. Two key studies form the basis of their argument 
(Rutledge et al., 2014; Eldar & Niv, 2015). Rutledge et al. (2014) investigated emo-
tional reactivity in response to a probabilistic reward task that did not require par-
ticipants to estimate the expected values of choices presented through learning. 
Expected values could be calculated on the spot (per trial) with complete informa-
tion about the risks associated with either a gamble or an alternative ‘sure bet’. They 
demonstrated that dynamic changes in “momentary happiness” were explained by a 
non-linear combination of expected values and associated reward prediction errors 
over a short history of recent trials. Further, they used fMRI to show that BOLD 
responses in the striatum tracked the same task variables that predicted subjective 
happiness ratings. Together, these findings strongly implicate a role for parameters 
estimated using computational reinforcement learning theory (e.g. expected value 
and reward prediction errors) and the dopaminergic system (i.e., dorsal and ventral 
striatal activation to reward prediction errors). in modulating subjective human feel-
ings. Importantly, striatal BOLD imaging signals that track computed reward pre-
diction errors are only circumstantial evidence that these signals are in fact delivered 
by dopamine neuron activity—BOLD imaging tracks physiological activity that 
consumes oxygen in the blood and cannot alone distinguish activity specifically 
driven by dopamine release.
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Eldar and Niv (2015) used a computational reinforcement learning framework to 
investigate a hypothesized bidirectional interaction between the ‘evaluation of out-
comes’ and ‘changes in emotional state’, and how the latter impacts the evaluation 
of future outcomes. Participants played a series of probabilistic slot machine games 
before and after a “wheel-of-fortune” draw that resulted in a surprising large mag-
nitude outcome. The impact of the wheel-of-fortune draw went as one might 
expect—improved mood for a big win and decreased mood for big losses, but the 
impact of mood was also measured on the outcomes of the subsequent smaller out-
come slot machine games. They showed that large magnitude outcomes on the 
wheel-of-fortune game colored the outcomes of the subsequent slot machine games. 
Again, a role for dopamine was implicated by the demonstration of striatal BOLD 
responses to reward prediction errors following wins in the slot machine games. 
Interestingly, the impact of the wheel-of-fortune outcome on striatal responses to 
the slot machine game outcomes differentiated those participants who had an 
increased hypomanic personality. The authors then demonstrate within a reinforce-
ment learning framework that they could account for and predict the behavioral 
observation that mood instability was associated with a positive feedback loop 
where big changes in mood altered the perception of outcomes in subsequent slot 
machine games. Together, the results of their study implicate dopaminergic learning 
signals in modulating dynamic changes in affect, a process that may become desta-
bilized in people with increased mood instability.

Another study that has embraced the reinforcement learning framework to inves-
tigate the impact of emotional outcomes on future decisions was performed by 
Katahira and colleagues (2015). Many studies have used monetary incentives to 
demonstrate the interaction of estimates of expected value, reward prediction errors, 
and human decision-making. The advantage of monetary incentives is the inherent 
quantitative nature of the reinforcer, so incorporating money as the reward in the 
reinforcement learning framework is relatively straightforward. Katahira and col-
leagues tackled an important problem in a creative way. They asked whether 
decision- making under uncertainty where emotional outcomes (that are inherently 
subjective) could be modeled and understood in the quantitative reinforcement 
learning framework. Here they employed a probabilistic “reward and punishment” 
task where, instead of money, participants received feedback in the form of subjec-
tively pleasant or unpleasant pictures, respectively. Images were drawn from the 
international affective picture system data base (Lang et al., 2007). While the cate-
gories of pleasant, neutral, or unpleasant images could be estimated a priori from 
the IAPS database, it is unclear what the motivational value of each image would be 
per participant. Typically, in reinforcement learning modeling, the learning rate (α) 
and future discount rate (γ) are estimated as free parameters while fitting the models 
to participant behavior. Katahira and colleagues allowed the ‘motivational value’ of 
each image category to also be a free parameter and could thus estimate from behav-
ior a quantity that would otherwise be a private subjective value. They compared 
behavioral and brain responses fit to reinforcement learning models for this task to 
a monetarily incentivized task modeled in a similar manner and demonstrated both 
appetitive and aversive prediction errors in the striatum for both the emotionally 
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evocative task and the monetarily incentivized task. Other co-activated regions 
included bilateral insula and precuneus.

Model-based reinforcement learning algorithms have been used to explore how 
emotion regulation via (re)appraisal processes may be implemented in neural sys-
tems (Etkin et al., 2015; Huys & Renz, 2017). Model-based (versus model-free) 
reinforcement learning refers to an approach wherein the decision-making agent 
uses a model of the environment to speed learning. If a model of the environment is 
available, an agent can use it to simulate experiences and significantly enhance the 
rate of learning compared to solely experience-dependent (i.e., model-free) algo-
rithms (Sutton & Barto, 1998, 2018). There is plenty of evidence that suggests 
humans (and other biological agents) use such models in their decision-making. Yet, 
the physical manifestation in neural systems of these representations and simulated 
experiences remains up for clarification. Nevertheless, model-based algorithms 
serve as an excellent framework to investigate mechanisms supporting emotion 
regulation or control. Etkin and colleagues (Etkin et al., 2015) have proposed the 
use of model-based reinforcement learning to unify diverse findings about the neu-
ral structures involved in the spectrum of emotion regulation strategies. In their 
framework, emotions are generated as part of the typical value-based decision- 
making process, whereas regulation of these emotions are thought of as meta to the 
generation process: ‘actions’ taken by the emotion regulation system are themselves 
‘decided’ upon within a value-based decision-making process that adjudicates 
between the value of different state-action pairs representing emotion states and 
associated behavioral repertoires. They argue for a spectrum of model-based to 
model-free strategies for emotion regulation and suggest key differences in neural 
network dynamics that support each strategy. In a similar manner, Huys and Renz 
argue for the need of meta-reasoning over a model-based valuation framework to 
account for the nature of emotional appraisals and the flexibility of emotional 
responses.

The strengths of using a computational reinforcement learning framework to 
investigate mechanisms supporting affective dynamics include the formal nature of 
the description of its algorithms (Bach & Dayan, 2017; Huys & Renz, 2017) and the 
flexibility to explore variations on the core theme (Moerland et  al., 2018). The 
exploration of methods to incorporate ‘emotion computations’ into reinforcement 
learning in artificial intelligence research (e.g., Moerland et al., 2018) provides a 
likely never-ending stream of ‘thought experiments’ that may or may not be relevant 
to the biology of human emotions. Accordingly, research that constrains the space 
of possible solutions using empirical results is necessary.

12.2.3  Limitations of ‘Dopamine/TD-Reward’: Centric Models

Over the last two and a half decades, the success in applying computational rein-
forcement learning algorithms to elucidate the neurobiological basis of human (and 
non-human animal) decision-making has been fueled by the singular demonstration 
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that dopamine neurons encode the temporal difference reward prediction error 
(Fig. 12.1 and Eq. 12.4; Montague et al., 1996; Schultz et al., 1997). The empirical 
results discussed above that relate reinforcement learning to human affective 
dynamics all have the reward prediction error and dopamine’s hypothesized role at 
their core. This core concept served as an anchor in these early days, but there are 
significant challenges to this construct that must be overcome. Dopamine neurons 
signal temporal difference reward prediction errors by emitting a burst (an increase 
in firing rate for positive reward prediction error), pause (halt in firing rate for nega-
tive reward prediction error), or no change (reward prediction error equals zero) in 
activity (Fig. 12.1, Montague et al., 1996; Schultz et al., 1997; Watabe-Uchida et al., 
2017). This asymmetry poses a problem for encoding aversive input—a missed 
reward and a loss of any magnitude would be treated the same: a pause in dopamine 
neuron activity. This means that a dopamine neuron-centric system (acting in this 
manner) cannot parametrically encode aversive prediction errors. Likewise, theories 
of emotion that rely only on the dopaminergic system do not appear to be able to 
account for subjective feelings in the negative domain, but instead focus largely on 
the positive dimensions like pleasure (Kringelbach & Berridge, 2017).

Further, there is now a significant body of literature that suggests that dopaminer-
gic signaling may be more complex (Bromberg-Martin et al., 2010; and Lammel 
et al., 2014; Watabe-Uchida et al., 2017). Electrophysiological (and more recently 
optical) recordings of putative dopamine neurons in the VTA and SN (in nonhuman 
primates and rodents) during a variety of behavioral task demands provide evidence 
that dopamine neurons respond to a wide range of positive, negative, and neutral 
stimuli. This may not be surprising given the significant heterogeneity in the molec-
ular, cellular, and neuroanatomical characteristics that differentiate dopamine neu-
rons (Watabe-Uchida et al., 2012; Lammel et al., 2014; Beier et al., 2015; Lerner 
et al., 2015; Gantz et al., 2018).

As such, a large number of signals have been proposed to be encoded by dopa-
mine neurons. One parsimonious way to frame these signals is to split them into 
‘positive’ (or at least neutral) and ‘negative’ valence categories. We start with the 
positive or neutral valence category of signals as these responses may be seen as an 
extension of the foundational notion that dopamine neurons encode TD-error sig-
nals that, as has been discussed, may be associated with primary rewards or also 
predictors (e.g., context and cues) of those rewards (Montague et al. 1996; Schultz 
et al., 1997). Then we will review and discuss the more controversial implications 
of dopamine neuron encoding of aversive or negatively valent stimuli.

12.2.4  Dopaminergic Response to Novelty and Surprise…

Some of the earlier evidence that suggested dopamine neurons encoded more than 
just a TD reward prediction error came from neural recordings in non-human pri-
mates (reviewed in Bromberg-Martin et  al., 2010). In these experiments, it was 
shown that putative (electrophysiologically characterized) dopamine neurons 
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responded in a brief burst in activity to surprising sensory events. These signals 
were diminished if the sensory stimulus became predictable and were absent when 
the animal was asleep (Takikawa et al., 2004; Strecker & Jacobs, 1985; Steinfels 
et al., 1983). These signals also appeared to be sensitive to the attentional demands 
of competing tasks, in that the ‘alerting response’ (following Bromberg-Martin 
et al., 2010) in dopamine neurons to unanticipated sensory stimuli could only be 
elicited when the animal was in a passive resting state, not engaged in a more 
highly-valued, goal-directed activity (Strecker & Jacobs, 1985; Horvitz et al., 1997; 
Horvitz, 2002).

This idea that a subset of dopamine neurons respond to surprising stimuli or 
novelty (Ljungberg et al., 1992) has been supported by more recent work in rodents 
(Menegas et al., 2017). Here, Watabe-Uchida and colleagues used fiber-fluorometry 
to monitor dopamine axons across the striatum. They observed differences in the 
dopaminergic response to novel cues when they compared responses in the ventral 
striatum and the posterior tail of the striatum. Importantly, these responses were 
monitored in mice performing a classical conditioning task where the reward pre-
diction error hypothesis could be tested. Dopamine responses in the posterior tail of 
the striatum responded strongly to novel cues, whereas the dopamine response in 
the ventral striatum did not—at least not until the novel cue was reliably paired with 
a reward. Like the data generated in nonhuman primates, the dopamine responses 
(in the posterior tail of the striatum) to novel cues diminished with experience, but 
these responses also occurred tied to a variety of stimuli including rewarding, aver-
sive, and neutral sensory stimuli (Menegas et al., 2017). Additionally, Menegas and 
colleagues were also able to show two important controls for these responses within 
the same experimental paradigm: (1) specificity of dopamine neuron activity 
through genetic control over the reporter, but also (2) that reward prediction errors 
could explain the activity observed in the ventral striatum-projecting dopamine neu-
rons, but could not explain the activity in the posterior tail of the striatum.

Interestingly, it has been reported that dopamine neurons in the VTA can pro-
mote wakefulness and arousal (Eban-Rothschild et al., 2016; Taylor et al., 2016), 
and that a class of putative dopamine neurons residing in the dorsal raphe are acti-
vated by salient stimuli and, in so doing, also promote arousal and wakefulness (Lu 
et al., 2006; Cho et al., 2017). These latter cells are atypical in that most investiga-
tions of dopaminergic activity focus on the main populations of dopamine neurons 
found in the VTA and SN.

12.2.5  Dopaminergic Responses Regarding Context 
and Information…

‘New, potentially informative sensory stimuli’ is one way to characterize “novel” or 
“surprising” cues. Along these lines, it has also been shown that dopamine neurons 
will respond as though they detect changes in the sensory features of rewards 
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(Takahashi et al., 2017), can be modulated by changes in context (Nakahara et al., 
2004), and can respond preferentially to sensory signals that provide advance infor-
mation (Bromberg-Martin & Hikosaka, 2009).

Schoenbaum and colleagues (Takahashi et al., 2017) recorded single-unit activ-
ity of putative dopaminergic neurons in rats during an odor-guided choice task. In 
this task, odors signaled the availability of vanilla or chocolate milk of varying 
quantities. They were able to demonstrate that the rats showed no distinguishable 
preference for chocolate or vanilla flavoring, but did track the quantitative value 
(quantity of milk) delivered. The recorded dopamine neurons tracked the prediction 
error of the value association (reward prediction errors over the quantity of milk 
delivered). But also, notably, when the flavor of the reward delivered was different 
from what was expected (vanilla instead of chocolate, or vice-versa), dopamine 
neurons showed an additional burst in activity. This was true even when the quantity 
of milk was the same as expected. The authors interpret this as a kind of prediction 
error over sensory features, which is consistent with the idea that dopamine neurons 
encode surprising sensory signals—here, the flavor of the milk. These experiments 
nicely control the expectation of sensory stimulation while modulating information 
in a surprising way about the reward delivered. Such additional information may not 
be directly related to the value of what was ingested, but may be used as an informa-
tive signal that the context of the behavioral task may have changed.

Hikosaka and colleagues (Nakahara et al., 2004) have demonstrated the ability of 
dopamine neurons to track reward prediction errors about informative cues 
(Bromberg-Martin & Hikosaka, 2009), and also shown dopaminergic activity that is 
best explained by models that also account for contextual changes (Nakahara et al., 
2004). Nakahara et  al. (2004) used electrophysiological recordings of putative 
dopamine neurons in non-human primates, a classical conditioning task, a context- 
dependent conditioning task, and computer modeling to demonstrate that at least 
two classes of dopamine neurons could be identified: dopamine neurons that track 
classic temporal difference reward prediction errors and dopamine neurons that 
detect context-dependent reward prediction errors.

Bromberg-Martin and Hikosaka (2009) used a choice task to demonstrate that 
macaques preferentially choose options that lead to advance information about the 
magnitude of reward to be delivered at a later time. Not only did monkeys display 
this behavioral preference, but dopamine neurons that showed reward prediction 
error responses to reward delivery and predictive cues also showed responses that 
increased when predictive advanced information was provided.

Together, these experiments highlight a strong connection between dopamine 
neuron activity and surprising information and the importance of context. New 
information or surprising changes in the environment may have intrinsic value to a 
system that is geared towards learning statistical structure about appetitive pro- 
survival events. New information or a surprising change in the context of delivered 
signals would be important to alert to and may simultaneously be treated as poten-
tially rewarding and potentially punishing. In this sense, one might expect to also 
see an aversive expectation error response signaled in parallel with what we are 
hypothesizing as a dopaminergic appetitive expectation error reported above. These 
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responses would not necessarily be learned ones, but rather an intrinsic valuation 
response to any ‘new information’ or events experienced for the first time that could 
be unlearned should the subsequent associations be consistently positive or negative.

12.2.6  Dopaminergic Responses to Aversive Stimuli…?

The range of signals encoded above may generally be thought of as signals of posi-
tive valence, or at least not worse than neutral. However, there has been a significant 
amount of work demonstrating dopaminergic activity to aversive stimuli, including 
noxious electric shock (Guarraci & Kapp, 1999; Young, 2004; Brischoux et  al., 
2009; Zweifel et  al., 2011; de Jong et  al., 2019), tail pinch (Mantz et  al., 1989; 
Zweifel et al., 2011), air puff to the eye (Matsumoto & Hikosaka, 2009) or face 
(Cohen et  al., 2012), stress (Abercrombie et  al., 1989; Anstrom & Woodward, 
2005), and social defeat (Cao et al., 2010). Questions that remain in all investiga-
tions of dopamine neuron function include whether the characterized neurons are in 
fact dopamine neurons (Ungless & Grace, 2012). Further, it is unclear whether the 
experimental paradigms that demonstrate dopamine neuron activity to aversive 
stimuli control for alternative possibilities (Tanimoto et al., 2004). For instance, any 
of these apparent aversive events may not be interpreted as aversive, since many of 
the animals may not have had any experience with these kinds of stimulation prior 
to the initial work of the experimenter. Thus, any of these seemingly aversive stim-
uli could also be interpreted by the animal as simply ‘novel’ or ‘potentially informa-
tive’ in an otherwise highly controlled environment.

12.2.7  Summary and Discussion 
of Dopamine-Centric Limitations

Altogether, these studies demonstrate that dopaminergic encoding of temporal dif-
ference reward prediction errors is only part of the story. There is clear evidence that 
at least a subset of dopamine neurons encode temporal difference reward prediction 
errors (Montague et al., 1996; Watabe-Uchida et al., 2017). Dopamine release in 
human striatum also encodes reward prediction errors, but also appears to integrate 
this term with contextual information about counterfactual outcomes (Kishida et al., 
2016; Moran et al., 2018). This latter point raises questions about the mechanisms 
that lead to dopaminergic encoding of counterfactual prediction errors—‘are these 
signals a result of modulation of dopamine-releasing terminals that natively would 
otherwise encode standard reward prediction errors, or are these terminals silent 
while counterfactual prediction errors are signaled by a different subset of dopamine- 
releasing neurons that innervate the same region of tissue?’. Above, we described 
work from the animal literature that shows that dopamine neuron activity seems to 
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encode contextual and informative signals, and possibly even aversive signals. It is 
not clear whether these studies controlled for the possibility that the stimuli used to 
represent “non-rewarding” signals do not have appetitive associations acquired pre-
viously (e.g., due to routine animal handling procedures) or intrinsically, in that the 
stimuli that we associate with being neutral or aversive may be interpreted very 
differently by experimental animals that experience life very differently from organ-
isms in the wild.

Another major question that is not answered by most of the studies above is the 
degree to which temporal difference learning is or is not at play for these dopami-
nergic responses. Except for the studies that confirm that dopamine neurons encode 
temporal difference reward prediction errors, temporal difference reinforcement 
learning models are not tested nor can be tested given the design of the reported 
experiments. Based on the data and results reported in such studies, temporal differ-
ence reinforcement learning cannot be ruled out. It may be that the reported dopa-
mine responses are encoding temporal difference reward prediction errors in each of 
these cases but the experiments are not designed in a modeling-friendly manner, or 
that the ‘receptive field’ of the dopamine neuron responses under investigation may 
be tuned to a different objective function.

The foundational work in attempting to build a computational hypothesis about 
the generation of affective dynamics from reinforcement learning algorithms by 
Xiang, Rutledge, and Eldar and colleagues (Xiang et  al., 2013; Rutledge et  al., 
2014; Eldar & Niv, 2015) exposes the core role of reward prediction errors (presum-
ably encoded by dopamine neuron activity) in dynamically modulating subjective 
feelings and mood. However, the models that link reward prediction errors to 
dynamic changes in happiness or mood do not provide an obvious mechanistic 
account for how these signals may be integrated in the brain, specifically in pro-
cesses that lead to the generation of subjective feelings.

In the case of the subjective happiness model (Rutledge et al., 2014), the model 
demonstrates that recent expected value estimates and reward prediction errors are 
correlated with changes in subjective ratings. The non-linear model that they pro-
vide is descriptive in the relationship between the role of value estimates and predic-
tion errors about these expected reward values. Notably, these model terms are 
shown to correspond to activity in regions of the brain known to track these signals 
(independent of their connection to subjective ratings), and the insula is demon-
strated to become active during the introspective report. Xiang et al. also implicate 
the striatum, orbital frontal cortex and insula (Xiang et al., 2013). These findings are 
an important first step in connecting neural computations and subjective experience 
but do not yield a clear computational hypothesis about the neural mechanisms that 
implement the integration of these signals into a subjective experience. Likewise, 
Eldar and Niv’s work (Eldar & Niv, 2015) clearly demonstrates the two-way inter-
action of immediately signaled reward prediction errors and a longer-term impact of 
mood-related computations and the impact of these interacting signals on subjective 
ratings. But, the models developed to account for these changes do not clearly indi-
cate how the brain might encode such calculations.
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We believe that the joint demonstrations that dopamine neurons encode temporal 
difference reward prediction errors and that humans and non-human model organ-
isms use this signal to guide value guided behavior provides a solid foundation to 
build computational hypotheses about how the brain generates dynamically chang-
ing subjective experiences. However, to fully capitalize on this foundation, we must 
seek to explain disparate findings about potential alternative roles for dopamine 
neuron signals while building upon our current best theories about the connection 
between dopamine neuron signals and behavioral control (Montague et al., 1996; 
Schultz et al., 1997; Montague et al., 2004; Glimcher, 2011).

12.3  Extending Temporal Difference Reinforcement 
Learning as a Functional Motif That Underlies 
Affective Dynamics: Valence Partitioned 
Reinforcement Learning

Temporal difference reinforcement learning algorithms were conceived to answer 
the problem of how an agent might learn about the value of different states in order 
to choose states that maximize ‘reward’ (Sutton & Barto, 1998). The computer 
agents implementing these algorithms obviously do not experience subjective 
reward; rather, the calculations aim to maximize a quantitative value defined by the 
algorithms’ objective function (s). A major result in this line of research was tempo-
ral difference reinforcement learning, which provides an optimal way to learn from 
experience and generate optimal estimates of the value of different states, given the 
specified objective function. Thus, given good estimates of the expected ‘reward’ 
value, an agent can implement a policy to choose in a specified manner. It is intui-
tive to connect this objective function to reward since we psychologically associate 
reward with pleasure and generally seek to maximize this in our own subjective 
lives. However, the learning algorithm could also be applied to generate optimal 
estimates for other values that an organism (or agent) may need to track, such as the 
expected harm value or the expected cost of various acts. Given optimally derived 
estimates of what states lead to more harm (now and into the future), policies can be 
implemented to act to avoid these states. Likewise, a nervous system may need to 
track the expected ‘information’ value, which could then be used in policies aimed 
at building models or explore versus exploit tradeoff decisions (e.g., when there is 
‘more than expected’ entropy in the environment a system may benefit from more 
exploration before exploiting based on its current estimates).

This line of thinking and theory-based proposals that hypothesize that the sero-
tonergic system may act as an opponent signal to reward prediction errors signaled 
by dopamine (Daw et al., 2002; Dayan & Huys, 2008) led us to hypothesize that the 
temporal difference learning algorithm may be used by other systems in the brain. 
We remain agnostic as to which systems in the brain may provide these kinds of 
signals but note that other (non-reward responsive) dopamine neurons and the 
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serotonin system are prime candidates. For now, we outline a simple extension of 
traditional temporal difference reinforcement learning (specifically Q-learning, 
Watkins, 1989; Watkins & Dayan, 1992) by which we partition valence into two 
independent dimensions: positive and negative (Montague et al., 2016).

12.3.1  Classic Reward Versus Valence-Partitioned Temporal 
Difference Reinforcement Learning

First, we describe the classic (unidimensional valence) approach to temporal differ-
ence Q-learning. Then we extend this approach by one step and partition the valence 
of inputs such that experienced appetitive and aversive outcomes are handled by 
independent systems before being integrated at the level of an overall value esti-
mate. Again, the goal of Q-learning is to learn to act optimally (e.g., take actions in 
order to maximize reward) in uncertain environments based on past experience. 
Here, the Quality of an action (a) in a given state (s) is given by Q(s, a) rather than 
simply the value of a sate (as implied in Eqs. 12.1–12.4) and is updated by the famil-
iar temporal difference reward prediction error (δt):

 
Q s a Q s at t t t t, ,( ) ← ( ) + ∗α δ

 
(12.5)

α is again the learning rate that determines how quickly the agent updates its 
expected value for the state-action pair. The temporal difference reward prediction 
error in Q-learning can be calculated as follows:

 
δ γt t t

a
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(12.6)

Again, this should look very familiar to Eq.  12.4 above—now, r(st, at) is the 
reward collected at time t following the state-action pair that occurs at time t; γ is 
once again a discounting parameter that weights how forward looking the agent is. 
The value of the future state (st  +  1) depends on the available actions ( a) . Here, 
max




a
tQ s a+( )1,  represents that value of future states when the agent chooses the 

action a out of all possible actions a  that maximizes the expected state-action value 
in the immediate future state st + 1. Using these Q-value estimates, the agent will 
enact its choice policy. The softmax policy is one policy that allows agents to make 
choices that balance exploiting current Q-value estimates versus exploring alterna-
tive actions so that Q-value estimates can be improved through experience. The 
softmax equation looks like this:
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12 A Dynamic Affective Core to Bind the Contents, Context, and Value…



312

Equation (12.7) represents a Boltzmann distribution that specifies the probability 
P(st, at) that action at will be chosen in state st given the current estimates of Q(st, ai). 
at, i represents each of the possible actions, indexed by i while in state st. τ is a ‘tem-
perature’ parameter that parameterizes the exploration versus exploitation trade-off: 
higher temperature values increase the variability of choices (weighted by the 
expected value Q(∙)) while lower temperatures crystalize behavior such that actions 
with current maximum Q(∙) estimates are always chosen.

To overcome limitations of the ‘dopamine/TD-reward’-centric models, we 
extend the traditional unidimensional valent Q-learning framework by partitioning 
the ‘reward’ and ‘valuation system’ into valence-specific ‘Positive’ (appetitive) and 
‘Negative’ (aversive) systems. In this way, each system can be thought of as having 
a kind of receptive field for only appetitive or aversive inputs, respectively. We call 
this approach “Valence Partitioned” such that each system independently computes 
TD prediction errors and updates separate Q-values for positive (P) and negative (N) 
value estimates:
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These “P” and “N” systems independently track the positive quality (QP(st, at)) 
and the negative quality (QN(st, at)) of state-action pairs, respectively. The P and N 
system Q-values are updated according to their own independent learning rates (αP, 
αN, respectively). They are updated by temporal difference prediction errors as in 
unidimensional Q-learning but do so only for their respective valence-specific 
receptive fields.

For the positive-valence P system, the appetitively oriented TD prediction error 
(δ t

P ) takes the form:
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where γP is the P system temporal discounting parameter directly analogous to the 
standard unidimensional Q-learning model temporal discounting parameter.

The negative-valence N system similarly encodes an aversively oriented TD pre-
diction error term (δ t

N ):
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where γN is the N system temporal discounting parameter. Notably, the P system 
only tracks appetitive outcomes (Eq. 12.10, outcomet > 0) and the N system only 

K. T. Kishida and L. P. Sands



313

tracks aversive outcomes (Eq. 12.11, outcomet < 0); otherwise, both systems ignore 
outcomes that are not within their receptive field (treats the opponent valence out-
come as though nothing happened, Eqs. (12.10) and (12.11), outcomet ≤ 0 or out-
comet ≥ 0, respectively).

Before the P and N systems’ estimates of appetitive and aversive value can be 
used to direct action, they must be integrated in some manner such that a policy can 
use these estimates to direct choice. A simple approach is to contrast them (though 
other schemes are possible):

 
Q s a Q s a Q s at t

P
t t

N
t t, , ,( ) ← ( ) − ( )  

(12.12)

Now the output of the integrated Q-value (Eq. 12.12) can be input in to the soft-
max policy equation (Eq. 12.6; or some other specified policy) and a decision about 
the best action can be made.

Temporal Difference Reinforcement Learning with valence partitioning serves 
three purposes here. One, as a hypothetical account for how a system that is an 
opponent, yet complementary, to dopaminergic reward prediction error signals 
might behave (Daw et al., 2002; Dayan & Huys, 2008; Montague et al., 2016). Two, 
to serve as a hypothesis to account for observed serotonergic signals in humans 
(Moran et al., 2018; Bang et al., 2020). And three, as a hypothetical example of how 
one might extend the concept of optimal control and explore the idea that temporal 
difference learning algorithms are a functional motif used by multiple systems in 
the nervous systems of organisms that express complex adaptive behavior and 
behavioral control. For example, one could extend this framework such that expec-
tations about the frequency of common versus rare signals could be optimally 
tracked and signaled as an ‘entropy’ prediction error that would alert the system to 
novel or rare signals or surprising changes in context that ought to be attended to 
and investigated (or avoided depending on the agent’s estimated value of new 
information).

Simultaneously recorded measurements of serotonin and dopamine release at 
sub-second temporal resolution in humans during decision-making is consistent 
with serotonin and dopamine acting as opponent signals (Kishida et  al., 2016; 
Moran et al., 2018; Bang et al., 2020). In each of these reports, the measured sero-
tonin responses are consistent with a temporal difference aversive prediction error 
signal and, in the case of Moran et al., 2018, are shown to anti-correlate with simul-
taneously measured dopamine prediction error signals that integrate reward predic-
tion errors and counterfactual prediction errors (Kishida et al., 2016; Moran et al., 
2018). Sub-second serotonin and dopamine fluctuations are also shown to anticipate 
actions of the participant, which may be interpreted as a signal related to behavioral 
control or a prediction error signal associated with anticipated outcomes—these are 
not necessarily mutually exclusive hypotheses.
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Fig. 12.3 Dynamic affect from valence partitioned reinforcement learning. (a) The international 
affective pictures system (IAPS) provides a widely utilized database of emotionally evocative 
images that have been rated by men and women for dimensions of pleasure and arousal (and domi-
nance) (Lang & Bradley, 2007). (b) Valence Partitioned Reinforcement Learning (VP-RL) largely 
leaves dopamine neurons’ relationship to positive valence (i.e., psychologically rewarding) stimuli 
intact; the main difference is that the inability of this system to track variable magnitude aversive 
outcomes is made explicit. (c) VP-RL posits that an additional independent system that runs in 
parallel but also uses TD-RL to track and estimate the expected value of aversive outcomes; we 
hypothesize that the serotonin system may act to track and signal aversive prediction errors (δt

N), 
but other neuromodulatory systems can be considered as alternative hypotheses. Positive system 
prediction errors (δt

P), hypothesized to be delivered by dopamine are well suited to drive appetitive 
motivational responses as cues (e.g., images) that are predictive of positive outcomes would elicit 
anticipated value driven prediction errors. In a similar manner, negative system prediction errors 
(δt

N) would be suited to drive defensive motivational responses. Interestingly, the independence of 
these systems in the VP-RL framework suggests that these signals can be integrated or contrasted 
by receptive systems that may in turn drive increases in arousal or enhance the discrimination of 
states and actions that result in complex valence superposition, respectively

Partitioning incoming appetitive (positive, P) and aversive (negative, N) signals 
would not be a challenge for biological systems and doing so would increase the 
dynamic range of the spectrum of valence interpretations. Behavioral results from 
human participants subjectively rating pictures for valence and arousal suggest that 
appetitive and aversive stimuli may not be unidimensional but rather independent 
dimensions that may be integrated in the behavioral report (Fig. 12.3, Lang et al. 
2007). For example, separate P and N systems may send prediction error signals 
that are integrated downstream (P + N) or contrasted (P − N) depending on the 
neurotransmitters and receptors that carry and receive these signals, respectively 
(Montague et al., 2016). The neuroanatomy of the ascending valuation systems that 
include dopamine, serotonin, and norepinephrine neurons are prime candidates for 
this kind of diverse signaling (Fig. 12.4, Schiff & Plum, 2000; Doya, 2000).
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Fig. 12.4 Dynamic Affective Core. The original dynamic core hypothesis (Edelman & Tononi, 
2000), similar to other neuroscientific theories of consciousness, is largely (a) corticothalamic 
centric. We propose the dynamic affective core, which explicitly incorporates the (b) ascending 
valuation systems (e.g., dopamine, serotonin, norepinephrine, and histamine)). Input from all over 
the brain is able to drive and modulate these systems wherein they provide critical neuromodula-
tory feedback. For example, (c) In the mouse, where detailed neuroanatomical tracing can be per-
formed with the help of viral and sophisticated genetic tools, dopamine and serotonin neurons are 
observed to receive monosynaptic input from and send directly back signals to the amygdala, 
hypothalamus, thalamus, insula, cingulate cortex, striatum and many other cortical and subcortical 
structures (Ogawa et al., 2014). (a) Schematic of corticocortical and thalamocortical connections 
that comprise the core structures that dynamically encode and represent the contents and spatio-
temporal context of conscious experience (images adapted from Edelman & Tononi, 2000). (b) 
Schematic of ascending projections of dopamine, serotonin, norepinephrine, and histamine neu-
rons from the midbrain and brainstem (images adapted from Fuchs & Flügge, 2004). (c) Schematic 
of monosynaptic inputs to dopamine (ventral tegmental area, VTA and substantia pars compacta. 
SNc) and serotonin (median raphe, MR and dorsal raphe, DR) neurons in the mouse brain (images 
adapted from Ogawa et al., 2014). Neural structures that project to the dopamine and serotonin 
neurons in their respective nuclei are color coded according to their projection target. VTA blue; 
SNc red; MR yellow; and DR green. Pie charts indicate the proportion of neurons in that region that 
project to each of the respective nuclei

12.4  Subjective Experience and the ‘Dynamic Affective 
Core’ Hypothesis

“Subjective feelings” are at the core of what humans try to describe when we com-
municate our experience. The contents (i.e., objects and spatio-temporal context) of 
our experience are part of the description, but it is the subjective feeling bound to 
those elements that drive our descriptions. Fundamentally, these phenomenal expe-
riences are integral to how we perceive, navigate, and communicate about the world 
and consist not only of the informative content of the environmental context we find 
ourselves in, but critically the subjective feelings associated with it. “How we feel” 
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from moment to moment impacts our mood and behavior (and vice versa) and likely 
involves an extensive network of dynamically interacting neural structures. Edelman 
and Tononi proposed the dynamic core as a hypothesis about how neural activity 
may generate conscious experiences (Tononi & Edelman, 1998; Edelman & Tononi, 
2000). The dynamic core hypothesis, as originally stated (Edelman & Tononi, 2000), 
has two fundamental parts:

 1. “A group of neurons can contribute directly to conscious experience only if it is 
part of a distributed functional cluster that, through reentrant interactions in the 
thalamocortical system, achieves high integration in hundreds of milliseconds.”

 2. “To sustain conscious experience, it is essential that this functional cluster be 
highly differentiated, as indicated by high values of complexity.”

In this hypothesis, cortical-cortical and thalamo-cortical loops are fundamental 
to the ‘dynamic core’; timing is key, as is reverberant activity such that there is 
wide- spread activity (throughout the cortex) that is tightly coupled in a brief win-
dow of time. Further, not just any coupled activity will do: they propose a complex-
ity metric that is aimed at identifying specific levels of information integration and 
differentiation. This notion has evolved into the Integrated Information Theory of 
consciousness with phi (Φ), a measure of information integration, central to the 
theory (Tononi et al., 2016 for a recent review). In the original formulation of the 
dynamic core hypothesis, the ascending valuation systems that include dopaminer-
gic, serotonergic, norepinephrinergic, and cholinergic neurons (Schiff & Plum, 
2000) is noted for their likely role in dynamically modulating behavior in response 
to “external stimuli, learning and memory, emotion, and cognition” and in coupling 
“value and emotions” to conscious experience (Edelman & Tononi, 2000). Within 
the framework of the dynamic core hypothesis, it seems that the role of the ascend-
ing valuation systems is simply to shape the cortical networks based on the organ-
ism’s life experience (learning) and to drive behavioral dynamics in response to 
subjective emotional experience.

While we find the dynamic core hypothesis useful in depicting the notion of a 
momentary, widely distributed functional cluster of neural activity that is necessary 
for representing the contents of a conscious experience, we believe it lacks a critical 
component of subjective phenomenal experience—the emotional subjective affect 
that colors what would otherwise simply be a dry representation of integrated infor-
mation collected by the sensory systems.

The original dynamic core hypothesis (Edelman & Tononi, 2000) does not 
include an account for the central role dopaminergic signals likely play in driving 
dynamic changes in subjective experience. Though the role dopamine neurons play 
in signaling reward prediction errors was demonstrated at the time (Montague et al., 
1996; Edelman & Tononi, 2000), those findings were not discussed. Since then, the 
dynamic core hypothesis seems to have evolved into Integrated Information Theory 
where the main focus has been on developing a theoretic model that quantifies the 
structure of information integration that would support consciousness—whether it 
be biological or otherwise—and less emphasis has been placed on determining how 
any such a dynamic core may generate conscious experience.
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12.4.1  The Dynamic Affective Core Hypothesis

We propose to update the dynamic core hypothesis to include the ascending valuation 
systems and suggest that emotional circuitry and ascending neuromodulatory systems 
are critical components of a dynamic affective core. We hypothesize that this dynamic 
affective core (Fig. 12.4) is necessary for human subjective experience. In contrast to 
the dynamic core hypothesis, we view the neuromodulatory systems (i.e., dopaminer-
gic, serotoninergic, adrenergic, cholinergic, and histaminergic neurons) as a necessary 
component that was excluded from the original dynamic core description. Also, in 
contrast to the dynamic core, we hypothesize that emotional circuitry is a necessary 
element of the dynamic affective core that generates human subjective experience, 
and that together the emotional circuitry and ascending neuromodulatory systems 
engenders the dynamic core content with the “what it is like…” aspects of subjective 
feelings and qualitative conscious experience. We believe that to make progress in 
understanding the nature of the dynamic affective core and how it generates con-
sciousness, computationally constrained hypotheses will be necessary and will include 
the foundational work connecting temporal difference learning algorithms to dopa-
mine neurons and their cortical and subcortical targets.

12.4.2  Experimental Support for the Dynamic Affective 
Core Hypothesis

Much research has been done to elucidate neural structures that support neural rep-
resentations of emotion-related behavior and subjective phenomenal experience 
(LeDoux, 2000; Lang & Bradley, 2010). These structures (e.g., amygdala, insula, 
striatum, and orbital frontal/ventromedial prefrontal cortex) and their dynamic 
interaction are hypothesized to be critical elements in a dynamic affective core that 
supports a dynamically evolving representation of continuously evolving emotional 
states that are in turn bound to dynamically evolving contextual sensory states. To 
determine the composition of these dynamic systems and their behavior in regard to 
affective dynamics, we turn again to computational approaches to human 
neuroscience.

Above, we reviewed recent research that connects reward prediction errors (puta-
tively encoded by dopamine neuron activity) with dynamic changes in subjective 
feelings about social gestures (Xiang et al., 2013), subjective well-being (Rutledge 
et al., 2014) and mood (Eldar & Niv, 2015). It has also been shown that reward 
prediction errors are associated with sub-second fluctuations in dopamine release 
(Kishida et al., 2016; Moran et al., 2018) and aversive prediction errors are associ-
ated with sub-second serotonin release (Moran et al., 2018) in the striatum, both of 
which are consistent with the VPRL hypothesis described above. In both of these 
studies, dopamine and serotonin fluctuated in ways that were consistent with how 
participants’ feelings ought to have been modulated given the reward prediction 
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error and counterfactual error signals present in the game. All together, these results 
are consistent with the dynamic affective core hypothesis, though significant gaps 
remain. Direct dopamine and serotonin measurements with the temporal resolution 
required are currently restricted to the striatum, though technology appears to be on 
the horizon that may overcome this challenge and permit real-time neurochemical 
detection throughout the human brain (Montague & Kishida, 2018). Dopamine and 
serotonin (and norepinephrine) neurons project from the midbrain and brainstem 
throughout the human brain (Fig. 12.4), and whole-brain connections to the dopa-
mine and serotonin neurons have been demonstrated (Watabe-Uchida et al., 2012; 
Ogawa et al., 2014). Thus, through direct and indirect pathways, dopamine neurons 
likely broadcast prediction error signals throughout the brain. Consistent with this 
idea, one ought to see evidence of reward prediction errors modulating whole net-
works, which would be consistent with dopamine neurons providing distributed 
parallel signals capable of shaping and also driving the synchronous activity of a 
dynamic affective core.

12.4.3  Reward Prediction Errors Modulate Task Specific 
Dynamic Cores

A few studies have begun to look for evidence that reward prediction errors modu-
late whole functional networks. These studies were performed investigating the role 
of reward prediction errors in instrumental reinforcement learning or associative 
learning tasks and did not probe associated subjective experiences. Nonetheless, 
these studies do demonstrate evidence that reward prediction errors modulate net-
work-level dynamics consistent with task specific dynamic cores.

Using an associative learning task with BOLD imaging, den Ouden and col-
leagues demonstrated that prediction errors in the striatum modulate cortical cou-
pling (den Ouden et al., 2010). In this task, participants were required to generate 
motor responses indicating whether an auditory tone (high or low) was followed by 
one of two visual stimuli (human faces or houses). The probability of each tone 
being followed by each visual stimulus was changed over time. Using a Bayesian 
learner model, expectations (i.e., probability that a visual stimulus would occur) 
were estimated throughout the task, and violations of those expectations generated 
prediction errors that parametrically modulated brain activity measured using 
fMRI. Visual stimulus non-specific prediction error signals were observed in the 
putamen and premotor cortex, whereas activity in the fusiform face area (FFA) was 
found to correlate with the probability of observing human face stimuli, and activity 
in the parahippocampal place area (PPA) correlated with the probability of observ-
ing houses. As such, responses in the FFA and PPA to faces and houses, respec-
tively, appeared to be a function of how surprising each stimulus was, indicating 
that FFA and PPA regional activity is modulated by prediction errors over expecta-
tions of stimulus occurrence. Notably, nonlinear dynamic causal modeling was 
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consistent with the hypothesis that prediction error signals in the putamen (a site of 
significant dopaminergic innervation) served to modulate functional connections 
from FFA and PPA to the dorsal premotor cortex. In all, these results demonstrated 
that regional activity in visual cortex is modulated by learning-relevant prediction 
error signals and that inter-regional functional connectivity within a visuomotor 
network (i.e., a task specific dynamic core) is modulated by prediction error signals 
emanating from human striatum. These findings are in line with a previous report 
(den Ouden et al., 2009) which used dynamic causal modeling to determine that 
learning- induced activity in visual cortex reflecting prediction error signals was 
mirrored by alterations in inter-regional functional connectivity between auditory 
and visual cortices, with auditory-to-visual top-down connectivity positively corre-
lating with the prediction error-dependent regional activity in visual cortex.

BOLD activity in human striatum has also been shown to dynamically correlate 
with distributed brain regions in visual, motor, and prefrontal cortices in a manner 
consistent with orchestrating valence-processing mechanisms required for rein-
forcement learning (Gerrarty et al., 2018). In an fMRI-scanned instrumental condi-
tioning task, participants learned which of two cues was paired with a visual 
stimulus. The pairings were associated probabilistically, and participants were given 
feedback (i.e., showing the words “correct” or “incorrect”) at the end of each trial. 
Choice behavior on this task was modeled such that reward prediction errors could 
be calculated during learning and these parametric responses could then be used to 
investigate changes in dynamic network connectivity using sophisticated computa-
tional tools for quantifying network dynamics (Medaglia et al., 2015). In particular, 
Gerrarty and colleagues were interested in investigating how a measure of “striatal 
flexibility” changes during reinforcement learning. Here, flexibility is a measure of 
dynamic network activity that indicates the degree to which a brain region function-
ally interacts with different brain networks over time (Bassett et  al., 2011). The 
results demonstrated that striatal flexibility was associated with learning of cue- 
stimulus associations throughout the task, negatively correlated with model- derived 
individual-differences in learning rates, and positively correlated with individual 
choice temperature parameter values. Moreover, the increased striatal flexibility 
association with learning was determined to be implemented by increased func-
tional coupling between nucleus accumbens and putamen with regions of visual 
cortex and by functional coupling between putamen and orbitofrontal and ventro-
medial prefrontal cortices. Together, these results suggest that regions that are 
highly innervated by dopaminergic inputs (e.g., nucleus accumbens, putamen, and 
orbitofrontal and ventromedial prefrontal cortices) are co-driven during instrumen-
tal tasks with positively- and negatively-valent feedback. This kind of dynamic net-
work activity is consistent with our dynamic affective core hypothesis.

These studies demonstrate how the influence of putative dopaminergic reward 
prediction error signals may be investigated in non-invasive studies. However, direct 
measurement will be needed to determine whether these changes in network level 
representations are driven directly by dopaminergic fluctuations at key nodes or indi-
rectly through the influence of nodes one or more synapses away within the dynamic 
affect core. These studies also did not investigate associated subjective experiences 
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throughout these tasks, and future work will require experiments aimed at directly 
investigating the interaction of these network level dynamics and moment-to-moment 
changes in affect. One would expect, in these studies, that insula, amygdala, orbital 
frontal/ventromedial prefrontal cortex, and the striatum would be engaged as specific 
components of the dynamic affective core based on their previously demonstrated 
role in emotion and value-based decision-making behavior.

Other aspects of the dynamic affective core hypothesis that are not addressed in 
these studies is the relative lack in temporal precision and electrochemical specific-
ity that constrains interpretation of BOLD imaging data. These studies clearly 
implicate regions of interest for further investigation, but BOLD imaging does not 
provide the temporal resolution required to observe the hypothesized affective core 
temporal dynamics of hundreds of milliseconds or less. Nor does fMRI provide the 
electrochemical specificity to discriminate the sources of neural activity that drive 
the blood-oxygen-level-dependent response (e.g., synaptic field potentials, somatic 
action potentials, or fast synaptic neurochemical signals). Studies utilizing MEG or 
intracranial measurements of human brain activity during conscious subjective 
experience may provide data with the requisite spatiotemporal resolution and, in the 
case of intracranial human electrochemical measurements (Montague & Kishida, 
2018), the requisite neurochemical specificity to determine the necessary and suf-
ficient components and behavior of the dynamic affective core.

12.5  Summary and Future Directions

Approaches using computational neuroscience to investigate affective dynamics are 
beginning to suggest methods that will enable objective investigations about the 
hardest problem in consciousness research. The subjective phenomenal experience 
of “what it is like…” to be human is not just about the contents (i.e., the objects and 
spatiotemporal context) of our experience. Rather, the subjective feelings or values 
that are also bound to these contents are what make qualitative phenomenal experi-
ence (i.e., qualia) unique to the experiencing individual. These values are likely 
learned (or at least modulated) through experience, become associated with states 
and actions that result from past states and actions, and become associated with 
states and actions that are predictive of future experiences as we move through 
space and time. Dynamic algorithms derived from artificial intelligence research 
(i.e., temporal difference reinforcement learning) that learn and change based on 
experience appear to be embodied by key neurobiological substrates and have begun 
to provide critical insight into how human nervous systems may encode subjective 
value. These models, in combination with computational approaches to characterize 
complex dynamic network structure, are beginning to permit the expression of 
quantitative hypotheses about the neural architecture that supports conscious sub-
jective experience in humans. This, in turn, provides guidance regarding the kinds 
of experiments required for advances in consciousness and affective dynamics 
research.
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We introduce the dynamic affective core hypothesis. It is different from the origi-
nal ‘dynamic core’ hypothesis as stated by Edelman and Tononi (2000) and previ-
ous notions of a psychological affective core, which are not necessarily tied to the 
neural structure and dynamics that are central to the dynamic affective core that we 
describe. The dynamic affective core departs from the original notion of the dynamic 
core by specifically requiring the ascending valuation systems (i.e., dopaminergic, 
serotonergic, noradrenergic, and histaminergic neurons) and emotional circuitry 
(e.g., amygdala, insula, anterior cingulate cortex, and orbital frontal cortex) as nec-
essary elements. The interaction of these systems is hypothesized to be fundamental 
to the binding of subjective feeling and affective value to the contents (i.e., objects 
and spatiotemporal context) represented in the cortico-thalamic systems of focus in 
the original dynamic core hypothesis. In this way, the dynamic affective core 
hypothesis may serve as a bridge connecting cognition, emotion, and the impact of 
‘surprises’ on individuals emotional experience (Mellers et  al., 2013). In the 
dynamic affective core hypothesis, we retain the notion of the functional cluster and 
timing aspects of the original dynamic core hypothesis; however, we posit that the 
role of the ascending valuation systems (like the distributed dopaminergic signal) is 
necessary for not only the selection of which functional clusters are active but also 
for creating and maintaining functional clusters that bind subjective value and emo-
tion to the contents and context that activity in the cortico-thalamocortical networks 
encode. The timing of dopamine neuron activity (Fig.  12.1) and modulations in 
extracellular dopamine levels (Fig. 12.2) are consistent with the requisite timing to 
achieve “high integration in hundreds of milliseconds”. Also, the anatomical projec-
tions of dopamine (and other ascending valuation systems) neurons (Fig.  12.4) 
make plausible parallel simultaneous signaling to cortical, thalamic, and sub- 
cortical structures which would allow adaptive formation of new functional clusters 
or dynamic modulation of existing ones. The dynamic affective core hypothesis is 
also significantly different from IIT (Tononi et al., 2016), which is primarily con-
cerned with quantifying dynamic network structure (the amount of information 
integration and differentiation in a dynamic network) that might support conscious 
experience. The dynamic affective core is also distinct from a global workspace 
theory (Baars, 1997) or a global neuronal workspace as proposed by Dehaene and 
Naccache, 2001. Chiefly, like the dynamic core and the global neuronal workspace 
hypotheses, the dynamic affective core is grounded by neurobiological data; how-
ever, unlike the dynamic affective core hypothesis, both the dynamic core and the 
global neuronal workspace hypotheses appear to be extremely cortical- 
thalamocortical centric. Some of the functional attributes of the ‘workspace neu-
rons’ in the global neuronal workspace appear consistent with the long range and 
diffuse projections of dopamine, serotonin, and norepinephrine neurons, but to our 
knowledge these neurons are not explicitly discussed as likely candidates (Dehaene 
and Naccache, 2001); further, dopamine, serotonin and norepinephrine neurons 
appear to have functional attributes that either go beyond the role of ‘workspace 
neurons’ to the point that they may be inconsistent with this notion. Our dynamic 
affective core hypothesis does not reject the critical role of cortical-thalamocortical 
networks and reentrant activity but adds the requirement that the dopaminergic 
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system (and other valuation systems) be considered as critical components that co-
activate, shape, and coordinate network activity underlying affective dynamics and 
associated subjective feelings.

The role (specifically) of the dopaminergic system in the dynamic affective core 
implies a role for temporal difference learning algorithms and dynamic modulation 
of the dynamic affective core though the delivery and representation of the compu-
tational signals described in this framework. We want to make explicit this connec-
tion in our hypothesis. The dynamic affective core hypothesis requires computational 
depictions of dynamic network structure in order to move the work forward. We 
propose a first step in extending the dynamic affective computational framework 
with our valence-partitioned reinforcement learning (VPRL) model. VPRL 
describes one way that the dynamic affective core may be modulated independently 
by positive and negative input, which are expected to be able to also occur indepen-
dently in nature. VPRL prediction error signals about reward and punishment are 
consistent with simultaneously recorded sub-second data of dopamine and sero-
tonin in humans (Kishida et al., 2016; Moran et al., 2018) and with the non-linear 
relationship of pleasure and arousal in consciously rated IAPS images (Fig. 12.3). 
The neurocomputational framework put forward in the dynamic affective core 
hypothesis may also be used to investigate the neurobiology underlying emotion 
behavior observed in reaction to ‘surprising’ information in real world settings 
(Mellers et al., 1997, 2013; Bhatia et al., 2019). At the behavioral level, errors in 
predicted outcomes seem to drive the strongest emotional reactions (Mellers et al., 
1997; Villano et al., 2020). Other ideas that are likely to inform models about sub-
jective experience and the neurobiological dynamics that support it are likely to 
come from research exploring the role of various reinforcement learning model 
elements like variations in model-based implementations or off-policy learning 
strategies (Doya, 2000; Montague et al., 2006, 2016; Bach & Dayan, 2017; Huys & 
Renz, 2017) and how they interact with dynamic functional networks. To the latter, 
we argue for the use of computational models and descriptions of network architec-
ture (Bassett et al., 2011; Medaglia et al., 2015). As research connecting these areas 
emerges, we speculate the need for mathematically depicted network structures to 
describe the details of the structure and function of the dynamic affective core and 
its relationship to conscious subjective experience.

We focus much of our review on the neurobiology of dopaminergic signals and 
their connection to temporal difference reward prediction errors. These neurons and 
their impact on behavioral control and learning have a rich literature that is grounded 
on the initial discovery of Montague, Dayan, and Sejkowski (1996) that dopamine 
neurons encode temporal difference reward prediction errors. Other systems that are 
certainly involved in dynamic affective processing and consciousness include the 
serotonergic, noradrenergic, and cholinergic and histaminergic systems (Schiff & 
Plum, 2000). Attempts to model these other systems has yet to yield a clear picture, 
but current evidence strongly suggests a role for serotonin in aversive processing 
(Dayan & Huys, 2008; Cools et al., 2011; Rygula et al., 2015; Moran et al., 2018; 
Bang et al., 2020; Doya et al., 2021) and norepinephrine and cholinergic signals in 
arousal and attention (Schiff & Plum, 2000). Our valence-partitioned reinforcement 

K. T. Kishida and L. P. Sands



323

learning model is consistent with dopamine and serotonin acting as opponent 
(orthogonal) systems that signal appetitive and aversive prediction errors, respec-
tively and independently (also see Montague et al., 2016). Moran and colleagues 
observed that dopamine and serotonin release appear to encode these signals in the 
striatum simultaneously and in a colocalized manner in humans, which suggests 
that downstream dopamine and serotonin receptors may integrate or contrast these 
signals to give rise to a spectrum of neural interpretations. Notably, an integration of 
appetitive and aversive prediction errors is consistent with a saliency signal that may 
directly or indirectly engage arousal systems and direct attention towards relevant 
environmental features; contrasting these signals would increase the signal to noise 
in systems gauging whether to increase or decrease appetitive versus aversive repre-
sentations (Montague et al., 2016). Clearly, more work is needed to elucidate what 
dopamine, serotonin, norepinephrine, acetylcholine, and histamine release encode 
in the human brain and what role these signals play in affecting the hypothesized 
dynamic affective core.

We hope it is apparent that we should no longer ignore the investigation of 
behavior directly associated with subjective human experience (i.e., self-report). 
Quantifying subjective experience is challenging. Combining questions like, “How 
much pain do you feel?” with a visual analogue scale is the gold standard for assess-
ing pain in clinical settings and really the only way to directly capture how a person 
feels in the moment. What is good about the visual analogue scale (and related 
measures) is that it reliably assesses subjective feeling and is a semi-quantitative 
and reproducible choice behavior. The latter points allow researchers to integrate 
subjective self-report ratings with the computational models (e.g., reinforcement 
learning framework) and model the answers as value-based decisions dependent on 
states and available actions. This approach, in combination with computational 
depictions of network structure and dynamics, will allow the field to translate 
reports about subjective feelings into an empirical and mathematical framework 
capable of precise hypothesis testing (i.e., computational modeling) analogous to 
what several groups have begun to do (Xiang et al., 2013; Rutledge et al., 2014; 
Eldar & Niv, 2015).

We propose the dynamic affective core hypothesis to be tested within the domain 
of computational human neuroscience to tackle the ‘hard problem’ of conscious-
ness. The ‘hard problem’ of consciousness originally stated by Chalmers (1996) has 
stood as a major barrier in scientific progress in consciousness research and the 
subjective aspect of affective dynamics. We take the position that prescientific 
descriptions of phenomena always appear as ‘hard problems’ given that the state of 
scientific knowledge at the time of such distinctions are not up to the task of making 
the problem appear ‘easy’ (Churchland, 2005). We are in a time where there is so 
much neuroscientific knowledge that it may seem inconceivable that there are natu-
ral neural phenomena yet to be unraveled, but human consciousness stands as a 
definitive example. Our challenge is to convert consciousness research from a philo-
sophically hard problem as it seems to be to one that has some scientific traction. 
This can only be achieved if we tackle it as an ‘observable’ phenomenon even if 
such observations are initially reliant on simple behavioral reports. The way through 
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will be to constrain our hypotheses with mathematical models that relate brain and 
behavior such that errors and assumptions can be clearly observed and corrected. 
We introduce the dynamic affective core hypothesis as an idea that can take us fur-
ther down this path and look to an integration of the computational neuroscience of 
decision-making and network dynamics to lead the way forward.
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