
261

Chapter 11
Flexibility and Adaptivity of Emotion 
Regulation: From Contextual Dynamics 
to Adaptation and Control

Nimat Ullah, Jan Treur, and Sander L. Koole

Abstract To effectively regulate their emotions, people have to continually adjust their 
emotion regulation strategies to changes in internal and external demands. Flexibility 
and adaptivity are thus vital to emotion regulation. Flexibility refers to the context-
sensitive deployment of emotion regulation strategies while regulating one’s own emo-
tions. By contrast, adaptivity refers to the changes in such context-sensitive deployment 
of strategies that take place while regulating one’s own emotions over time, and the 
control of such change processes. Flexibility is increased by having larger repertoire of 
strategies as this increases the odds that an appropriate strategy is available. On the 
other hand, having more emotion regulation strategies to choose from creates the need 
for decision. Because this decision- making process occurs in real time, it requires emo-
tional stability and cognitive analysis. Over time, different experiences in choosing 
emotion regulation strategies give rise to learning which is one form of adaptivity. 
Flexibility in emotion regulation is provoked by the fluctuating contexts, whereas adap-
tations are induced by the frequency and intensity of emotion-regulatory activities. 
These adaptations are grounded in changes at a cellular and molecular level. The latter 
adaptations are often referred to by the term plasticity, or first- order adaptation. Often 
some form of control is applied to such adaptation processes, determining when and 
under which circumstances the adaptations should take place; this is often referred to 
by the term meta-plasticity or second-order adaptation. The above concepts are illus-
trated by simulated example scenarios based on different computational network mod-
els. In the first simulated scenario, a varying context shows the flexibility in the choice 
of emotion regulation strategies. In the second and third scenario, plasticity and meta-
plasticity are illustrated based on first- and second-order adaptive network models.
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11.1  Introduction

People use a wide variety of strategies in regulating their emotions (Koole, 2009; 
Gross, 1998; Parkinson & Totterdell, 1999). The efficacy of these emotion- regulation 
strategies employed by a person depends on the (person-specific and external) cir-
cumstances in which the strategies are employed. As such, the question arises how 
people are able to flexibly adapt their use of emotion regulation strategies to shifting 
situational demands; see also (Aldao et al., 2015). Consider, for instance, the follow-
ing scenario: You are an office worker who feels hurt every time his colleagues criti-
cize him. To regulate your emotions, you have various options: Walking away, 
distracting yourself, hiding your reaction, or mentally distancing yourself from your 
colleagues. Which of these options is optimal depends on the situation. For instance, 
if the critical colleague is your manager, then walking away is probably not advis-
able. Alternatively, if the critical colleague is your best friend, then mental distancing 
may hurt your friendship. Each emotion regulation strategy employed by a person 
can thus have different results and implications in different (person-specific and 
external) situations (Aldao, 2013). This is why it is fortunate that people have the 
capability to flexibility choose between various emotion regulation strategies as per 
demands of the (both person-specific and external) situation. This capacity is referred 
to as emotion regulation flexibility (Aldao et al., 2015; Bonanno & Burton, 2013a).

Aside from the flexibility in choice of emotion regulation strategies as per 
demand of the context, another type of change in the choice of emotion regulation 
strategies has now been quite extensively discussed in the cognitive, neuro and 
social sciences (Carstensen et al., 1999). Emotion regulation is a specific form of 
mental process, like any mental process grounded in the underlying neural mecha-
nisms. In a wider context, according to the neurocognitive science literature, synap-
tic plasticity forms the biological basis for many forms of adaptation (Hebb, 1949); 
this actually is a form of first-order adaptation. Furthermore, many studies have 
reported systematic changes in synaptic plasticity that imply a form of control over 
the plasticity; this has been called metaplasticity (Abraham, 2008; Abraham & 
Bear, 1996) and represents a form of second-order adaptation.

Plasticity and metaplasticity in addition to the base dynamics lead to rather com-
plex and usually circular processes, which makes it a challenge to model them com-
putationally. To address such a challenge, recently in the field of Network Science 
and Artificial Intelligence a suitable Network-Oriented Modeling method based on 
self-modeling networks has been introduced (Treur, 2019, 2020a). Using this model-
ing approach a base network is can be extended into a multi-level adaptive network 
model by adding self-models to it for some of its network characteristics. A first-
order self-model can be used to represents first-order adaptation or plasticity and a 
second-order self-model to represent second-order adaptation or metaplasticity. This 
has been applied in particular to emotion regulation in (Ullah et al., 2020a). These 
levels or orders of adaptation can still go higher if the phenomenon itself needs it, for 
instance (Ullah & Treur, 2020a) presents a fourth-order adaptive network model.

In the remainder of this chapter, we develop computational models of flexibility 
and adaptivity in emotion regulation. In Sect. 11.2, we start by analyzing the 
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dynamics for contextual flexibility in emotion regulation, In Sect. 11.3, we take a 
closer look at first-order adaptation in emotion regulation, In Sect. 11.4, we turn to 
higher- order adaptation and metaplasticity in emotion regulation. Finally, we sum-
marize our main conclusion in Sect. 11.5, and provide references and appendices 
respectively.

11.2  Dynamics for Contextual Flexibility 
in Emotion Regulation

11.2.1  Contextual Flexibility in Emotion Regulation

Emotion regulation theorists have distinguished between five families (or broad cat-
egories) of emotion regulation strategy (Gross, 1998, 2015; Richards & Gross, 2000). 
The first family of emotion regulation strategies is to change the kind of situation one 
is in. For instance, the office worker from Sect. 11.1 can choose to walk outside the 
office. The second family of emotion regulation strategies focuses on modifying 
aspects of the situation. For instance, our office worker could hang a ‘do not disturb’ 
sign by his door to keep the critical colleague at bay. The third family of emotion 
regulation strategies focuses on changing where one attends. For instance, our office 
worker could distract himself by mentally planning dinner. The fourth family of emo-
tion regulation strategies consists of changing the interpretation of the situation. For 
instance, our office worker could tell himself that the critical colleague really means 
well. Finally, the fifth family of emotion regulation strategies consists of modulating 
one’s outward emotional responses. For instance, our office worker could actively try 
to smile to the critical colleague, even while stewing with anger inside.

Initially, emotion regulation researchers assumed that some families of emotion 
regulation strategies are generally more effective than others. For instance, cognitive 
change strategies were believed to be more effective than response modulation strat-
egies (Gross, 2001). However, subsequent research revealed that general differences 
in effectiveness between emotion regulation strategies are small (Aldao & Nolen-
Hoeksema, 2012). Moreover, even cognitive change strategies like reappraisal, that 
are generally effective, may have disadvantages in certain situations (Ford & Troy, 
2019). Conversely, there are situations where the use of a response modulation strat-
egy like expressive suppression can prove quite adaptive (Dworkin et  al., 2019). 
Effective emotion regulation thus appears to be not so much a matter of using some 
strategies and avoiding others. Instead, effective emotion regulation is a matter of 
finding the right strategy for the situation. This means that flexibly adapting emotion 
regulation to situational demands plays a vital role in emotion regulation (Aldao, 
2013; Gross, 2015; Bonanno & Burton, 2013b; Sheppes, 2014; Webb et al., 2012a).

Empirical research on emotion regulation flexibility has so far been limited. This 
is one of the reasons why previous work (Sheppes et al., 2011) and our own previ-
ous computational model of emotion regulation flexibility (Ullah et al., 2018) that 
was mainly based on that, only focused on the choice between attention deployment 
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and reappraisal. Going beyond this work, however, this section of the chapter illus-
trates flexibility by a simulated scenario that involves flexibility among four emo-
tion regulation strategies as per demand of the context.

11.2.2  Simulated Scenarios for Contextual Flexibility 
in Emotion Regulation

The simulated scenarios presented in this section illustrate the ability to respond to 
four different situations with different regulation strategies. First, in Sect. 11.2.2.1 
the computational network used is briefly explained, next, in Sect. 11.2.2.2 the four 
simulated scenarios are shown.

11.2.2.1  The Computational Network Model for Contextual Flexibility

Figure 11.1 presents the connectivity of the network model used, with its nomencla-
ture in Table 11.1.

Fig. 11.1 Connectivity of the computational network model used for flexibility; here the red con-
nections are suppressing connections: they have a negative weight (see also Table  11.7 in 
Appendix 1)

N. Ullah et al.
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Table 11.1 Nomenclature of the states of the network model used

States Informal name Description

wss World state for stimulus s The situation in the real world that triggers emotion
wsc.p World state for context pressure A real-world situation which decides expression of 

emotion
sss Sensor state for stimulus s Sensor state for the stimulus s in the real world
ssc.p Sensor state for context pressure Senses state for context pressure
ssb Sensor state for body Sensor state for body state b relating to a negative 

emotion
srss Sensory representation state for 

stimulus s
Internal representation of the emotion triggering 
situation

srsc.p Sensory rep: state for context 
pressure

Internal representation of the context pressure in the 
real world

srsb Sensory representation state for 
body

Internal body representation state for b relating to a 
negative emotion

bs− Negative believe state The negative believe that the person has about 
something/someone

bs+ Positive believe state The positive believe that the person has about 
something/someone

ms1 Monitoring state for low emotion 
level

Monitors for low emotions

ms2 Monitoring state for high 
emotion level

Monitors for high emotions

bs(+)c.p Belief state for context pressure Believing that expression of emotion will matter in 
the environment

bs(−)c.p Belief state for context pressure Believing that expression of emotion won’t matter 
in the environment

csreapp Control state for reappraisal Controlling negative beliefs about something/
someone

css,a.d Control state for attention 
deployment

Control state for Attention Deployment

css,s.m Control state for situation 
modification

Control state for situation modification as a result of 
context

cssup Control state for suppression Control state for Suppression of Expression
fsb Feeling state for body state b Feeling associated to body state b; this is a negative 

feeling
psa Preparation state for action a Preparing for action a
psb Preparation for body state b Preparation state for body state b relating to a 

negative emotion
psad Preparation state for attention 

deployment
Preparation for the Attention deployment action

esa Execution state for action a Execution station for action a
esb Execution state for body state b Execution state for body state b, bodily expressing a 

negative emotion
esad Execution state for attention 

deployment
Execution state for the Attentional Deployment 
action

11 Flexibility and Adaptivity of Emotion Regulation: From Contextual Dynamics…
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Table 11.2 Choice of strategies under high/low intensity of emotions and +/− belief about context 
pressure

Flexibility parameters Repertoire of strategies

Emotion 
strength

Context 
pressure 
(CP)

Situation 
modification

Attention 
deployment

Cognitive 
reappraisal

Expressive 
suppression

+ + ✓
+ − ✓
− + ✓
− − ✓

The computational network model used here inherits flexibility in emotion regu-
lation strategies from (Ullah et  al., 2018) and decision-making from (Manzoor 
et al., 2017). In this model, the phenomenon of emotional arousal and its regulation 
has been modeled. The emotion eliciting stimulus is taking place as the world state 
wss which activates sensor state sss and sensor representation state srss. Based on the 
internal valuation and prior beliefs about the stimulus, the person’s feelings gets 
activated and keeps increasing as a result of internal as-if-body-loop as explained by 
Damasio (Bechara et al., 2003). On the basis of the intensity of emotions monitored 
by the monitoring state ms1 and ms2, i.e., low and high intensity of emotions, respec-
tively, are activated which then activates the respective control state cs for strategy 
(csreapp, css. a. d, css. s. m, and cssup) as represented in Table 11.2 below. Empirically, 
these models can be verified against the literature as described above, representing 
how specific areas in the brain are casually activated and involved in the generation 
and regulation of emotions. For instance, the amygdala and prefrontal cortex are the 
main brain regions involved in this process of emotion generation, valuation of 
stimulus and regulation of emotions. However, without extensively going into all 
technical details of the model, the connectivity picture in Fig. 11.1 can be under-
stood as a causal diagram where it is indicated which state is causally affected by 
which other states. The considered model presented in Fig. 11.1, has the capability 
to switch between four different strategies (with control states csreapp, css. a. d, css. s. m, 
and cssup), depending on the situational aspect combinations as shown in Table 11.2. 
An extensive overview of the modeling approach from (Treur, 2020a, 2016), used 
for the network model can be found in Appendix 1.

The first column, in Table 11.2, represents the intensity of the emotions: high (+) 
or low (−). The second column represents the belief about the context pressure dur-
ing the emotion eliciting situation. This is a kind of prediction for the environment 
where the (+) means presence of a context factor due to which the expression of 
emotions can have negative consequences and (−) refers to a context where expres-
sion of emotions doesn’t matter.

N. Ullah et al.
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11.2.2.2  Four Simulated Example Scenarios Addressed 
for Contextual Flexibility

For the four simulated scenarios, the following basic setup is considered

“An employee A feels angry every time a particular obnoxious coworker B starts talking. 
Next week the organization has a monthly meeting where presence of all employees is 
mandatory unless emergency, and where the boss may or may not show up. Employee A 
doesn’t want anyone, especially his boss to come to know about his attitude towards 
employee B. Employee A has four options to handle the situation, all depending upon the 
combination of his intensity of emotions and the chances of presences or absence of their 
boss at the working place as shown in Table 11.2.”

All values for the network characteristics used for the model are given in Table 11.6 
and 11.7 in Appendix 2; they qualitatively validate the model used against the find-
ings from empirically founded literature that serve as qualitative evaluation indica-
tors. These values are essential for the reproduction of the model; they provide the 
simulation results as shown in Figs. 11.2, 11.3, 11.4, and 11.5. All simulation graphs 
only display the most essential states for the explanation of the scenario.

Figure 11.2 depicts a scenario for low (−) intensity of emotions and positive (+) 
belief about CP; this combination triggers the negative belief state bs− and (poten-
tially) in turn the negative emotional response preparation psb and by the as-if body 
loop also the negative feeling state fsb  and due to that the control state for reap-
praisal csreapp. The figure also demonstrates the way reappraisal works. As reap-
praisal alters the interpretation of the stimuli, this can be seen in the figure where 
initially the negative belief bs− gets quite high but it starts decreasing as soon as the 
control state for reappraisal csreapp gets activated. This control state csreapp takes care 
of altering the interpretation of the stimuli: by suppressing the negative belief bs−, 
in turn the positive belief bs+ increases which (cyclically) again additionally 
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Fig. 11.2 Reappraisal: low intensity negative emotions with context pressure
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Fig. 11.3 Situation modification: high intensity negative emotions with context pressure
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Fig. 11.4 Expressive suppression: low intensity negative emotions with no context pressure

suppresses the negative belief bs−, as a result of which the preparation for the nega-
tive emotional response psb and in turn (by the as-if body loop) the negative feeling 
state fsb also decrease.

In Fig. 11.3, a context with high (+) intensity of emotions and positive (+) belief 
about CP is shown which activates situation modification css. m as an emotion regula-
tion strategy. Here the context pressure motivates the person to hide his emotions. 
In case of a development of a high intensity of negative emotions, the emotion level 
starts from 0 after which it gradually goes to low and to high. Therefore, in Fig. 11.3 
initially the regulation starts for a combination with low emotion as demonstrated in 
Fig. 11.2. Later on, as the negative emotions get higher than the low emotions range, 
the control state for situation modification css. m gets activated. Situation 
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Fig. 11.5 Attention deployment: high intensity negative emotions with no context pressure

modification as a strategy means modifying/leaving the emotional situation, i.e., the 
world state wss for the stimulus. Therefore, it can be observed in the figure that the 
world state wss starts decreasing as soon as the preparation psa for the appropriate 
physical action a (e.g., changing position or walking away) and execution esa of this 
physical action takes place. This means the person has somehow left the emotional 
situation and, therefore, his negative emotions also decrease. While emotions of the 
person are decreasing, this gets into the low emotional zone once again. Therefore, 
in the figure it can be seen that in that situation reappraisal gets activated accord-
ingly, like in the scenario of Fig. 11.2.

As highlighted in Table 11.2, the combination of low (−) intensity of emotion 
and negative (−) belief about CP which means no context pressure, activates expres-
sive suppression cssup. In Fig. 11.4 it can be observed that initially negative feeling 
state fsb increases as the negative belief bs− increases. The increase stops as soon as 
the control state for suppression cssup gets activated which suppresses the negative 
emotional response preparation psb and execution esb which in turn (by the as-if 
body loop) induces less negative feelings.

As suppression only suppresses the preparation and expression of the emotions 
and does not affect the causes of the emotional response, the sensor representation 
state srss and negative belief state bs− for the negative interpretation still remain 
high, which by many is considered an unhealthy and stressful internal state.

Figure 11.5 represents a context with high (+) intensity of emotions and negative 
(−) belief about CP, which means that the person can afford it if his emotions are 
seen by others. This activates attention deployment csa. d as a main strategy for emo-
tion regulation. This context also has two strategies to deal with just as described in 
Fig. 11.3. Initially, when the emotions are yet to get high, the person tries to sup-
press his emoting by using expressive suppression cssup. Later on, as the emotions 
get high enough, the person tries to downregulate his emotions by using attention 
deployment csa. d where he distracts his attention.

11 Flexibility and Adaptivity of Emotion Regulation: From Contextual Dynamics…
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11.3  Plasticity in Emotion Regulation

11.3.1  Adapting how to regulate emotions over time

By flexibly regulating their emotions, people adapt their emotion regulation to dif-
ferent situations. Given that recurring situations are likely to give rise to similar 
emotion regulation strategies, the person is likely to display certain predictable pat-
terns in emotion regulation patterns. These patterns, in turn, may give rise to long- 
term adaptations in emotion regulation. These long-term adaptations are captured 
by the notion of synaptic plasticity.

Synaptic plasticity provides a main neurochemical foundation to learning and 
memory formation. It refers to the ability of the connections between neurons to get 
stronger or weaker over time. A synapse refers to the structure that enables an elec-
trical or chemical signal to pass from one neuron to another neuron or a target effec-
tor cell. This increase or decrease in the strength of synapse depends upon the 
neurons’ current or recent activation. This has been formulated by Donald Hebb 
(Hebb, 1949), p. 62, as:

‘When an axon of cell A is near enough to excite a cell B and repeatedly or persistently 
takes part in firing it, some growth process or metabolic change takes place in one or both 
cells such that A’s efficiency, as one of the cells firing B, is increased’.

This process, which has become widely known as Hebbian learning. But note that 
in the above quote Hebb does not call it learning; it only describes changes in ‘one 
or both cells’ over time. Sometimes it is summarized in a simplified form as ‘neu-
rons that fire together, wire together’. Hebbian learning entails that simultaneous 
activation of the neurons/cells strengthens the synapses between those two neurons/
cells. This is a biological basis for learning. In terms of emotions and specifically 
emotion regulation, (Giuliani et  al., 2011) has studied excessive employment of 
expressive suppression and brain structures such as in the anterior insula and has 
come up with positive relation between them. It has been found, for example, that 
the volume of anterior insula increases as a result of more use of expressive suppres-
sion for emotion regulation. Similarly, (Ostroumov & Dani, 2018) provides an 
extensive review on neuronal plasticity and metaplasticity as a result of stress, nico-
tine and alcohol. Moreover, reward-driven and prediction-driven synaptic plasticity 
and hence learning has been explained in (Schultz et al., 1997). In terms of compu-
tational modeling, various examples of adaptive computational models can also be 
found, for instance in (Ullah & Treur, 2019) reward based learning has been dem-
onstrated based on a Hebbian learning process. Similarly, (Zegerius & Treur, 2020) 
models the working of Eye Movement Desensitization and Reprocessing (EMDR) 
therapy for persons affected by a Post-Traumatic Stress Disorder (PTSD) by a 
therapy- induced Hebbian learning process.

Particularly relevant to plasticity of emotion regulation are (Zimmermann & 
Iwanski, 2014) differences in emotion regulation strategies between young and 
older adults. The ‘Strength and vulnerability integration theory’ (Charles, 2010) 
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provides a reason for this shift by stating that it becomes more difficult for an older 
person to apply response-focused strategies due to less physiological flexibility for 
higher age. Some other studies agree to these finding and come up with strategies 
focused findings, for instance, (John & Gross, 2004; Charles & Carstensen, 2007) 
associate more use of reappraisal at an older age. Moreover, studies like (Lawton 
et al., 1992; Phillips et al., 2006), also consider older people to be better in control-
ling emotional situations and quicker in regaining positive mood as compared to the 
younger adults (Carstensen et al., 2000; Larcom & Isaacowitz, 2009). Furthermore, 
(Yeung et  al., 2011) attributes this retention of positive mood in older people to 
reappraisal being used as an adaptive emotion regulation strategy. In contrast to sup-
pression, some studies also consider reappraisal more helpful in decreasing psycho-
logical distress (Haga et  al., 2009; John & Gross, 2004). In case of expressive 
suppression, even successful suppression doesn’t ensure decrease in distress (Gross 
et al., 1997) but younger adults still would use suppression, maybe because they 
prefer confrontational coping (Folkman et al., 1987). Similarly, there are various 
studies which support the notion of increased use of reappraisal by older people and 
more use of suppression by younger people subject to various possible reasons like 
the availability of physiological resources, motivational goals, priority given to the 
emotional wellbeing (Nakagawa et al., 2017; Scheibe & Blanchard-Fields, 2009; 
Scheibe & Carstensen, 2010; Cutuli, 2014).

Although individual differences do matter for all these changes (Rothbart et al., 
2000), there appear to be developmental changes in regulatory capabilities in the 
later half of adult life. In line with these concepts, according to plasticity (Labouvie- 
Vief et al., 1989), improvement in cognitive reappraisal as a strategy is essential for 
maturity in cognition and, therefore, as compared to younger people, older people 
display more cognitive maturity (Labouvie-Vief & Blanchard-Fields, 1982). 
Similarly, goal adjustment flexibility is stronger in older persons (Heckhausen & 
Schulz, 1995; Brandtstädter & Renner, 1990).

Note that all these phenomena that seem to have correlations to age, do not have 
any causal relation to a notion of age, as age by itself does not cause anything. Such 
correlations are an emerging result of adaptive processes based on underlying 
mechanisms where the actual causal relations and pathways can be found. These 
mechanisms will be discussed in some detail in the current and next section.

11.3.2  Simulated Scenarios for Plasticity 
in Emotion Regulation

The simulated scenarios presented in this section illustrate the ability to adapt the 
choice of emotion regulation strategies over time. The differences in emotion regu-
lation strategies for different ages as discussed above will be used for this. First, in 
Sect. 11.3.2.1 the first-order adaptive computational network used is briefly 
explained, next, in Sect. 11.3.2.2 a simulated scenario is shown.
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11.3.2.1  A First-Order Adaptive Network Model for Plasticity 
in Emotion Regulation

This section introduces the first-order adaptive network model used for the simu-
lated scenario. The connectivity of the adaptive network model is shown in Fig. 11.6 
with an overview of its states in Table 11.3. This first-order adaptive network model, 
models plasticity of the choice of emotion regulation strategies. Here, the base net-
work models the basic functioning of two well-known emotion regulation strate-
gies: cognitive reappraisal and expressive suppression.

In the base model, as in the model in the previous section, the world state wss 
represent the stimulus in the world that triggers some kind of emotions after the 
basic processing of the stimulus, i.e., through sensor sss, sensor representation state 
srss, and valuation of the stimulus that is the belief of the person about the stimulus. 
On the basis of beliefs, i.e., bs− or bs+ about the stimulus the internal as-if-body-loop 
of the person gets activated which slowly and gradually increases the feelings of the 
person that can be positive as well as negative, but here the focus is on negative feel-
ings represented by fsb. The control state for reappraisal csreapp represents cognitive 
reappraisal which regulates emotions by changing one’s belief or interpretation for 
the stimulus. Control state cssup represents expressive suppression which suppres-
sion expression of emotions.

State msdstrss represents the monitoring state for distress, which according to the 
literature should remain high if a person is suppressing his/her emotions and should 
remain low if a person is reappraising his/her emotions.

The self-model modeled in the upper (blue) plane addressing the first-order 
adaptation, represents the Hebbian learning principle described in Sect. 11.3.1. This 
adaptation process takes place over the entire life span of an individual. The person 
uses suppression during the first phase of his life and then switches to reappraisal in 
the later phase of his life, based on his activations of strategies. This is an emergent 
effect of the mechanism of Hebbian learning: simultaneous activations of the 

Fig. 11.6 First-order adaptive network model for emotion regulation strategy choice adapting 
over a longer time
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Table 11.3 Overview of the states of the first-order adaptive network model

State Explanation Level

X1 wss World state for stimulus s Base states
X2 sss Sensor state for stimulus s
X3 srss Sensory representation state for stimulus s
X4 psa Preparation state for action a
X5 esa Execution state for action a
X6 ssb Sensor state for body state b
X7 srsb Sensory representation state for body sate b
X8 fsb Feeling state for body state b
X9 psb Preparation state for body state b
X10 esb Expression execution state for body state b
X11 bs− Belief state for negative belief −
X12 bs+ Belief state for positive belief +
X13 csreapp Control state for reappraisal
X14 cssup Control state for suppression
X15 msdstrss Monitoring state for distress
X16 Wfsb

,csreapp
First-order self-model state for connection weight 
ωfsb

,csreapp

First-order self-model 
states

X17 Wfsb
,cssup

First-order self-model state for connection weight 
ωfsb

,cssup

connected nodes automatically lead to strengthening of the connection. This form of 
mental plasticity or adaptation is represented by the self-model states WX,Y repre-
senting the relevant connection weights used at the base level. The Hebbian learn-
ing, in this model, is taking place for the (monitoring) connections from fsb to csreapp 
and fsb to cssup in the base model, as these are the connections that activate the con-
trol states for the regulation strategies, which are assumed to relate to the PFC, and 
poor emotion regulation is often reported as relating to low activation levels within 
the PFC.  The weights of these connections are represented by self-model states 
Wfs csb reapp

,  and Wfs csb sup
,  respectively.

Note that, in this section, the adaptation itself is not adaptive; e.g., the speed fac-
tor of the adaptation (the adaptation rate) is constant. The type of adaptive learning 
which is based on metaplasticity is addressed in the next section through a second- 
order adaptive network model.

11.3.2.2  A Simulated Example Scenario Addressing Plasticity 
in Emotion Regulation

A simulated scenario obtained from the above first-order self-modeling network 
model is presented in this section. Figure 11.7 displays a number of most relevant 
base states for the simulated scenario and Fig.  11.8 displays the first-order self- 
model states, i.e., the W-states used for the adaptation.
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Fig. 11.7 Demonstration of the effective states of the base model over time
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Fig. 11.8 First-order reified representation states over time

In Fig.  11.7 it can be seen that initially the negative belief bs− gets activated 
which suppresses the positive belief bs+. In the meanwhile, the negative feeling 
states fsb also gets higher. The first half of the time scale represents the younger age 
of a person; therefore, he/she uses suppression. In case of activation of suppression, 
it can be observed that although the person suppresses the negative feelings, the 
negative belief bs− still remains high. This reflects how suppression works: nothing 
changes for the belief. The fluctuation in the simulation results indicate the phenom-
enon that the regulation only takes place when there is a high level of emotion and 
as soon the emotion level is getting low, the regulation will stop so that the emotion 
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may get higher again, and so on; this leads to emerging fluctuations. Another issue 
to be noted here is the monitoring state for distress msdstrss, which remains high, 
exactly as found in the literature in case of suppression. But this should decrease in 
case of reappraisal as per literature.

From the very beginning, it can be observed that the control state for reappraisal 
csreapp starts getting higher which represents a gradual shift in the choice of emotion 
regulation strategies based on underlying mechaisms that generate an emerging pat-
tern over long time periods, so that from a correlational (but not causal) perspective 
it looks like an increase with age. Control state csreapp changes the beliefs which 
means increase in positive belief bs+ and decrease of negative belief bs−. This grad-
ual increase finally enables the person to completely switch to reappraisal for the 
regulation of his emotions. An interesting thing here is the monitoring state for 
distress msdstrss, which remains very low exactly as relevant literature suggests in 
case of reappraisal.

Figure 11.8 gives insight into the states in the first-order self-model: Wfs csb sup
,  

and Wfs csb reapp
, . In Fig. 11.8, initially Wfs csb sup

,  is high which represents the use of 

expressive suppression in the younger age. Over time, Wfs csb reapp
,  increases slowly 

and gradually until it reaches 1. It can be seen that as Wfs csb reapp
,  increases, Wfs csb sup

,  

decreases until it reaches 0. This represents the shift taking place in choice of emo-
tion regulation strategies that emerges over time while age is increasing.

11.4  Higher-Order Adaptation in Emotion Regulation

11.4.1  Metaplasticity in Emotion Regulation

Whether and to what extent plasticity as described above actually takes place is 
controlled by a form of metaplasticity; e.g., (Abraham & Bear, 1996; Garcia, 2002; 
Magerl et  al., 2018; Robinson et  al., 2016; Sehgal et  al., 2013; Sjöström et  al., 
2008). For example, according to Robinson and his collogues ((Robinson et  al., 
2016), p. 2) the following compact quote indicates that due to stimulus exposure, 
the adaptation speed will increase:

‘Adaptation accelerates with increasing stimulus exposure’

Similarly, a principle for modulation of persistence of learnt effects can be obtained:

‘Stimulus exposure modulates persistence of adaptation’

Depending on further context factors, this can be applied in different ways. Reduced 
persistence can be used in order to be able to get rid of earlier learnt connections that 
are not effective anymore. However, enhanced persistence can be used to keep what 
has been learnt. In a similar direction ((Sjöström et al., 2008), p. 773) it is more 
generally discussed how it depends on the circumstances when the extent of plastic-
ity is or should be high and when it is or should be low in favour of stability:

‘The Plasticity Versus Stability Conundrum’
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All the above are examples of principles describing metaplasticity, which can be 
considered adaptation of adaptation or second-order adaptation.

Within the cognitive neuroscience literature, Long-Term Potentiation (LTP) is a 
term used for activity-dependent persistent strengthening of a synapse which plays 
very important role in long term memory formation and cognitive processing. These 
patterns produce long lasting increase in signal transmission between two neurons. 
Opposite of LTP is LTD i.e. long-term depression which causes long lasting decrease 
in the synaptic strength (Vose & Stanton, 2017). According to (Vose & Stanton, 2017):

‘Metaplasticity can be thought of as dynamic shifts in the set point for the amount of syn-
aptic activation needed to produce the neurochemical events that induce either LTP or LTD, 
much like a climate set point determines the mean temperature fluctuations day-to-day.’

This can be seen as a higher-order form of synaptic plasticity. As also illustrated 
above, it can take place in various forms involving different mechanisms (Abraham 
& Bear, 1996).

Various examples of metaplasticity in terms of emotions can be found, for instance 
(Garcia, 2002; Vose & Stanton, 2017). Understanding of this plasticity regulation, 
has not only provided opportunities for better understanding of some of the mental 
processes and problems but also opened new vistas for treating those mental prob-
lems. According to Garcia (Garcia, 2002), due to high stress levels, a person’s cogni-
tive functioning gets poor, and as a result of that the person is no more able to adapt 
the emotion regulation in order to downregulate his stress: high stress levels slow 
down or block plasticity. He calls that the negative impact of metaplasticity or nega-
tive metaplasticity. Similarly, (Cibrian-Llanderal et al., 2018) also acknowledges the 
negative role of prolonged stress in cognitive functioning through high level of cor-
tisol in the prefrontal cortex. In contrast, low levels of stress up- regulate this con-
nectivity in the hippocampus which is called positive metaplasticity.

11.4.2  Simulated Scenarios for Metaplasticity 
in Emotion Regulation

The computational model and simulated scenario presented in this section illustrate 
the role of metaplasticity in emotion regulation. Again, the above case study will be 
used for this. First, in Sect. 11.4.2.1 the second-order adaptive computational net-
work used is briefly explained, next, in Sect. 11.4.2.2 a simulated scenario is shown.

11.4.2.1  A Second-Order Adaptive Network Model for Metaplasticity 
in Emotion Regulation

The second-order adaptive network model used here is an extension of the first- 
order adaptive network model described in Sect. 11.3.2.1. The current section 
explains how this model can be extended by adding second-order self-model for the 
adaptation speed and for the persistence of the adaptation. In the first-order adaptive 
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model, the learning speed and persistence both were constant. In the second-order 
adaptive network model, the characteristics of the learning are also adaptive, i.e., the 
speed and persistence characteristic of the learning can change. To achieve this, a 
second-order self-model is added covering states for these speed and persistence 
characteristics. The states in the second-order then represent these characteristics of 
the dynamics of the states in the first-order self-model. For instance, in our case, the 
newly added second-order self-model states will be responsible for the characteris-
tics of the dynamics of Wfs csb sup

,  and Wfs csb reapp
, . This is achieved by adding a third 

plane on top of the model displayed in Fig. 11.6 with second-order self-model states 
such as HWfs csb reapp

,  and MWfs csb reapp
, , as shown in the upper plane in Fig. 11.9. Within 

the obtained second-order adaptive model Fig. 11.9, this upper plane represents the 
concept of metaplasticity where plasticity i.e. learning in our case (as modeled by 
the middle plane), itself is plastic to changes over time. The nomenclature of the 
states in the second-order self-model is given in Table 11.4.

Fig. 11.9 Second-order adaptive network model for emotion regulation strategies over time

Table 11.4 Overview of the states of the second-order self-model

State Explanation Level

X18 MWfs csb reapp
,

Second-order self-model state for persistence factor μ 

for Wfs csb reapp
,

Second-order 
self-model

X19 HWfs csb reapp
,

Second-order self-model state for speed factor η for 

Wfs csb reapp
,

X20 HWfs csb sup
,

Second-order self-model state for speed factor η for 

Wfs csb sup
,

X21 MWfs csb sup
,

Second-order self-model state for persistence factor μ 

for Wfs csb sup
,
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Now, as this learning itself can change over time, for instance, increase or 
decrease, or maybe some of the learned experiences are retained for longer time and 
some are retained for shorter time. This indeed realizes forms of metaplasticity and 
is represented in the second-order self-model taking care of second-order adapta-
tion. The speed factor is represented by the H-states and the persistence factor is 
represented by the M-states. For instance, the speed and persistence factor adapta-
tion for Wfs csb reapp

,  are represented by HWfs csb reapp
,  and MWfs csb reapp

, , and HWfs csb sup
,  and 

MWfs csb sup
, , respectively.

An overview of this second-order adaptive network and a full specification is 
given in Appendixes 2 and 3. This specification is essential for reproducibility of the 
results shown in this section. For a more detailed study, the concepts can be accessed 
at (Treur, 2020a, b).

11.4.2.2  A Simulated Example Scenario for Metaplasticity 
in Emotion Regulation

Inspiration for what is presented in the current section mainly comes from (Gao 
et al., 2019; Ullah et al., 2020a). The model presented here focuses on shifts for the 
choice in emotion regulation strategies that emerge over time. Table  11.8 in 
Appendix 2 provides the initial values of the states of the model.

Figure 11.10 depicts the entire simulated scenario showing all base states 
involved in the process. This shows a scenario where a person initially uses expres-
sive suppression for his emotion regulation in young age andcognitive reappraisal 
when older. As mentioned above, the regularity of oscillation in the graphs indicates 
the fact that the emotion regulation strategies only get activated when the person 
experiences some negative emotions. Once the emotion levels have been regulated, 
the strategy gets deactivated. This arousal and regulation of negative emotions and 
the activation and deactivation of the strategies generate this emerging fluctuation in 
the graphs. For better analysis of this phenomenon, Fig. 11.11 presents only the key 
base states involved in this process.

Figures 11.7 and 11.11 display a similar scenario where in the latter there is no 
metaplasticity: the only difference is that the speed and persistence factors are con-
stant in the latter case while it’s adaptive in the former case. When compared to each 
other, it is clearly visible that in case of adaptive speed factor we have an extra 
handle to control the speed of the learning/first-order adaptation. This is also closer 
to the real-world examples.

As above, Figs. 11.8 and 11.12 also display the same states i.e. the W-states for 
the first-order adaptation. The difference here again is that in case of adaptive speed 
and persistence factors, we can change the characteristics of the first-order adapta-
tion easily and therefore the simulation outcomes are more in our control and 
realistic.

Figure 11.13 is the representation of the second-order self-model states. These 
states are HWfs csb reapp

,
, MWfs csb reapp

,
and HWfs csb sup

,
, MWfs csb sup

,
 which represent the speed 
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Fig. 11.10 Base states showing switching from Suppression to Reappraisal over time using 
metaplasticity
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Fig. 11.11 The effective base states over time using metaplasticity

and the persistence factors of Wfs csb reapp
,  and Wfs csb sup

, , respectively. It can be 

observed that initially the speed and persistence factors of Wfs csb sup
,  are quite high 

but this starts decreasing and hits zero once the speed and persistence factor of 

Wfs csb reapp
,  reaches 1. This happens because of the shift that’s taking place from sup-

pression to reappraisal as a person grows. This phenomenon represents metaplastic-
ity as defined in the relevant literature.
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Fig. 11.12 First-order self-model states over time using metaplasticity
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Fig. 11.13 Second-order self-model states for adaptation speed and persistence factors

11.5  Summary

In this chapter, the focus was on the computational analysis of emotion regulation 
specifically concerning flexibility and adaptivity. The concept of flexibility in emo-
tion regulation strategies has recently gained momentum, with various studies 
yielding findings that support this notion. It is clear that specific strategies are not 
inherently adaptive or maladaptive, given that research has found that each strategy 
has the capacity to outclass other strategies in various situations. An important ques-
tion is which strategy is used for which situation.
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The answer to this question may lie in a broader repertoire with capabilities of 
decision making and analysis. A person with a broader repertoire of strategies has 
edge over a person using just a few strategies irrespective of the situation. For this 
purpose, the right decisions need to be taken for which strategy to use. This continu-
ous adaptation of regulation and decision making also enables the person to know 
which strategy to use in which situation over longer period of time. This process of 
plasticity is taking place from very early life. In addition, plasticity of plasticity, also 
called metaplasticity, occurs, which adds control to the adaptation process.

These highly dynamic concepts have been modeled using a network-oriented 
modeling approach based on self-modeling temporal-causal networks (Treur, 
2020a). This approach can easily be used for modeling any temporal phenomenon, 
such as the dynamics of emotions, desires and any other mental states. Moreover, 
the concepts of plasticity and metaplasticity can very easily and efficiently be mod-
eled by using this approach. Apart from giving deep insight into complex phenom-
enon through the simulation results, this approach can model a very wide variety of 
complex problems.

The models presented in this chapter focus on the choice for using a certain emo-
tion regulation strategy depending on specific circumstances, in line with studies 
like (Sheppes, 2014; Sheppes et al., 2011) where flexibility in emotion regulation 
strategies is the main concern. However, besides the question which strategy to use 
in which situation, in many cases, simply choosing an emotion regulation strategy 
is not enough to ensure its implementation. A chosen strategy can run into difficul-
ties. Therefore, as a next challenge for future research, we aim to consider recent 
findings on maintaining a strategy, for instance, as addressed in (Gallo et al., 2009; 
Webb et  al., 2012b). This has further been explored in (Pruessner et  al., 2020) 
wherein selection and maintenance of a strategy has been differentiated. This means 
that a strategy, once chosen, has to be shielded against interference from other strat-
egies and difficulties.

11.6  Further Reading

A preliminary version of part of this work was published in (Ullah & Treur, 
2020b; Ullah et al., 2020b). Moreover, for more study about computational mod-
eling of emotion regulation see, (Ullah & Treur, 2020c, d). For further literature 
on flexibility in emotion regulation, see, for example, (Cheng, 2001; Cheng et al., 
2014; Troy et al., 2013). Also literature such as this can provide inspiration for 
further development of computational models for emotion regulation by address-
ing other factors that for the sake of simplicity have been left out of consideration 
in this chapter.
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 Appendix 1: Network-Oriented Modeling

 Network-Oriented Modeling Based 
on Temporal-Causal Networks

All the modeling concepts used in this chapter are based on Network-Oriented 
Modeling by self-modeling temporal-causal networks (Treur, 2020a), see also 
(Treur, 2016). An overview of the basis for this modeling approach are the net-
work characteristics for connectivity, aggregation and timing presented in 
Table 11.1. A phenomenon is represented in a network form which consists of 
nodes with activation levels that vary over time. Each node Y, also called state, has 
incoming connections from some other states X through connections with weights, 
which defines the causal impact of such a state X on state Y over time. A temporal-
network model can be represented as a labelled graph for its network characteris-
tics in which:

• Connectivity characteristics
• Each connection carries some connection weight from one state to another called 

impact represent by ωX,Y.

• Aggregation characteristics
• There’s some way to aggregate multiple impacts ωX,YX(t) from some states X on 

a state Y by a combination function cY(..).

• Timing characteristics
• There’s a notion of speed of change of each state to define how faster a state 

changes because of the incoming impact (speed factor ηY).

A temporal-causal network is fully defined by these three types of characteris-
tics, which in a canonical manner define the numerical representation of the model; 
see Table 11.1 for more explanation of the terms and for these numerical representa-
tions. A dedicated software environment takes as input the above network character-
istics and automatically (and hidden for the modeler) generates a numerical 
representation as described in the lower part of Table 11.5.

This approach provides a library of currently 40 combination functions for the 
aggregation of multiple (incoming) causal impacts. Apart from the available com-
bination functions, an option is provided to easily create any function composi-
tions of any of the available functions, and if that is still not enough, any 
own-defined functions can also be added to the library. This makes the technique 
even more flexible and user friendly. All software components, including the 
library, can be freely downloaded from URL https://www.researchgate.net/proj-
ect/Network- Oriented- Modeling- Software.
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Table 11.5 Basics of a temporal-causal network model

Concept Conceptual representation Explanation

States and 
connections

X, Y, X→Y Describes the nodes and links of a 
network structure (e.g., in graphical or 
matrix form)

Connection weight ωX,Y The connection weight ωX,Y usually in 
[−1, 1] represents the strength of the 
causal impact of state X on state Y 
through connection X→Y

Aggregating 
multiple impacts 
on a state

cY(..) For each state Y a combination function 
cY(..) is chosen to combine the causal 
impacts of other states on state Y

Timing of the 
effect of causal 
impact

ηY For each state Y a speed factor ηY ≥ 0 is 
used to represent how fast a state is 
changing upon causal impact

Concept Numerical representation Explanation
State values over 
time t

Y(t) At each time point t each state Y in the 
model has a real number value, usually 
in [0, 1]

Single causal 
impact

impactX,Y(t) = ωX,Y X(t) At t state X with a connection to state Y 
has impact on Y, using connection 
weight ωX,Y

Aggregating 
multiple causal 
impacts

aggimpactY(t)
= cY(impactX1,Y(t),…, 
impactXk,Y(t))
= cY(ωX1,YX1

(t), …, ωXk,YXk(t))

The aggregated causal impact of 
multiple states Xi on Y at t, is determind 
using combination function cY(..)

Timing of the 
causal effect

Y(t + Δt) = Y(t) +  
ηY [aggimpactY(t) − Y(t)] Δt
= Y(t) +  
ηY [cY(ωX1,YX1(t), …, 
ωXk,YXk(t)) − Y(t)] Δt

The causal impact on Y is exerted over 
time gradually, using speed factor ηY; 
here the Xi are all states with outgoing 
connections to state Y

Note that the numerical representation in the lower part of Table  11.1 fully 
describes the dynamics of the temporal-causal network in terms of the network 
structure characteristics. This formal numerical representation associates detailed 
mathematically defined semantics to any temporal-causal network and also allows 
to mathematically analyze how emergent network behaviour depends on network 
structure, as has been done in (Treur, 2020a), Chaps. 11–14.

 Self-Models Representing Network Characteristics by 
Network States

As indicated above, ‘network characteristics’ and ‘network states’ are two distinct 
concepts for a network. Self-modeling or reification as described in detail in (Treur, 
2020a) is a way to relate these distinct concepts to each other in an interesting and 
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useful way. A self-model is making the implicit network characteristics (such as 
connection weights) explicit in the form of adding states for these characteristics 
and connections for these states; thus, the network gets an internal self-model of 
part of the network structure itself. In this way, by iteration different self-modeling 
levels can be created where network characteristics from one level relate to explicit 
states at a next level. Thus, an arbitrary number of self-modeling levels can be mod-
eled, covering second-order or higher-order effects. More specifically, adding a 
self-model for a temporal-causal base network is done in the way that for some of 
the states Y of the base network and some of the network structure characteristics for 
connectivity, aggregation and timing (i.e., some from ωX,Y, γj,Y, πi,j,Y, ηY), additional 
network states WX,Y, Cj,Y, Pi,j,Y, HY (called self-model states or reification states) are 
introduced and connected to other states:

 (a) Connectivity self-model

• Self-model states WX,Y are added representing connectivity characteristics, 
in particular connection weights ωX,Y

 (b) Aggregation self-model

• Self-model states Cj,Y are added representing aggregation characteristics, in 
particular combination function weights γj,Y

• Self-model states Pi,j,Y are added representing aggregation characteristics, in 
particular combination function parameters πi,j,Y

 (c) Timing self-model

• Self-model states HY are added representing timing characteristics, in par-
ticular speed factors ηY

The notations WX,Y, Cj,Y, Pi,j,Y, HY for the self-model states indicate the referencing 
relation with respect to the characteristics ωX,Y, γj,Y, πi,j,Y, ηY: here W refers to ω, C 
refers to γ, P refers to π, and H refers to η, respectively. For the processing, these 
self-model states define the dynamics of any state Y in a canonical manner accord-
ing to the equations in the bottom row of Table 11.5 whereby the values of ωX,Y, γj,Y, 
πi,j,Y, ηY are replaced by the state values of WX,Y, Cj,Y, Pi,j,Y, HY at time t, respectively. 
To model certain adaptation principles by a self-modeling network, the dynamics of 
each self-model state itself and it effect on another state are specified for one of the 
three general types of network structure characteristics connectivity (a), aggregation 
(b), and timing (c), also mentioned above:

 (a) Connectivity for the self-model states in a self-modeling network
For the self-model states their connectivity in terms of their incoming and 

outgoing connections has two different functions:

• Effectuating its special effect from its specific role

• The outgoing downward causal connections from the self-model states WX,Y, 
Cj,Y, Pi,j,Y, HY to state Y represent the specific causal impact (its special effect 
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from its specific role) each of these self-model states has on Y. These downward 
causal impacts are standard per role, and make that the adaptive values WX,Y(t), 
Cj,Y(t), Pi,j,Y(t), HY(t) are used for the adaptive characteristics of the base net-
work in (9).
• Indicating the input for the adaptation principle as specified in (b)

• The incoming upward or leveled connections to a self-model state are used to 
specify the input needed for the particular adaptation principle that is 
addressed.

 (b) Aggregation for the self-model states in a self-modeling network
For the self-model states their aggregation characteristics have one main aim:

• Expressing the aggregation adaptation principle by a mathematical 
function

• For the aggregation of the incoming causal impacts for a self-model state, pro-
vided as indicated in (a), a specific combination function is chosen to express the 
adaptation principle in a declarative mathematical manner.

 (c) Timing for the self-model states in a self-modeling network
For the self-model states their timing characteristics have one main aim:

• Expressing the timing adaptation principle by a number

• Finally, like any other state self-model states have their own timing in terms of 
speed factors. These speed factors are used as the means to express the adapta-
tion speed.

An example of an aggregation self-model state Pi,j,Y for a combination function 
parameter πi,j,Y is for the excitability threshold τY of state Y, which is the second 
parameter of a logistic sum combination function; then Pi,j,Y is usually indicated by 
TY, where T refers to τ. The network constructed by the addition of a self-model to 
a base network is called a self-modeling network or a reified network for this base 
network. This constructed network is also a temporal-causal network model itself, 
as has been shown in (Treur, 2020a), Ch 10; for this reason, this construction can 
easily be applied iteratively to obtain multiple levels or orders of self-models, in 
which case the resulting network is called a multi-level or multi-order or higher- 
order self-modeling network or reified network.

 Appendix 2: Tables

In Table 11.6 a state can either have value of scaling factor (λ) for which scale sum 
function has been used or it can have values for steepness (σ) and threshold (τ) for 
which alogistic combination function has been used.
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Table 11.6 Values used for alogistic, scaled-sum combination functions and speed factor

state λ τ σ η state τ σ η
wss 0.94 0 0 0.1 ms2 0.5 50 0.5
sss 0 0 0 0.5 bs(−)c.p 0.1 50 0.5
ssb 0 0 0 0.5 bs(+)c.p 0.5 17 0.5
srss 1 0 0 0.5 csreapp 0.5 8 0.15
srsb 1.4 0 0 0.5 csa.d 0.85 12 0.2

bs− 0.91 0 0 0.5 css.m 0.85 12 0.3
bs+ 0 0.1 10 0.5 cssup 0.5 6 0.15
psb 1.8 0 0 0.5 psa 0.6 5 0.5
esb 0.98 0 0 0.5 psa.d 0 0 0.3
fsb 1 0 0 0.5 esa 0.5 3 0.5
ms1 0 0.1 5 0.5 esa.d 0 0 0.3
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Table 11.7 Values used for connection weights

Connection Weight Connection Weight Connection Weight Connection Weight

ωwss, wss 0.95 ωbs+, bs- −0.4 ωcsreapp, css.m −1 ωfsb, ms1 0.5
ωwss, sss 1 ωms1, csreapp 0.2 ωcsreapp, cssup −1 ωfsb, ms2 0.8
ωsss, srss 1 ωms1, cssup 0.4 ωcsa.d, psa.d 1 ωfsb, bs(−)c.p 0.5
ωssb, srsb 0.7 ωms2, ms1 −1 ωcsa.d, css.m −1 ωfsb, bs(+)c.p 0.5
ωsrss, bsc- 0.9 ωms2, csa.d 0.35 ωcsa.d, cssup −1 ωfsb, psb 0.9
ωsrss, bsc+ 0.4 ωms2, css.m 0.5 ωcss.m, psa 0.8 ωpsa, esa 0.5
ωsrss, psa 0.3 ωbs(−)c.p, bs(+)c.p −1 ωcss.m, esa 0.8 ωpsb, srsb 0.75
ωsrsc.p, bs(−)c.p −1 ωbs(−)c.p, cssup 0.3 ωcss.m, csreapp −1 ωpsb, esb 1
ωsrsc.p, bs(+)c.p 1 ωbs(−)c.p, csa.d 0.6 ωcss.m, csa.d −1 ωpsa.d, esa.d 1
ωsrsb, fsb 1 ωbs(+)c.p, bs(−)c.p −1 ωcssup, psb −1 ωesa, wss −0.5
ωbs-, bs+ −0.4 ωbs(+)c.p, css.m 0.5 ωcssup, esb −0.2 ωesb, ssb 1
ωbs-, csreapp 0.05 ωbs(+)c.p, csreapp 0.33 ωcssup, csreapp −1 ωesa.d, srss 0.63
ωbs-, psb 1 ωcsreapp, bs- −0.35 ωcssup, csa.d −1

Table 11.8 Initial values of the states

State wss

All other 
base states

W
fs csb reapp

, W
fs csb sup

,
HW

fs csb reapp
,

HW
fs csb sup

, MW
fs csb reapp

,
MW

fs csb sup
,

Initial 
value

1 0 0.3 0.9 0.5 0.5 0.9 0.9

N. Ullah et al.
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Box 1  Role matrices for connectivity

11.7  Appendix 3: Role Matrices

The red cells with Xi in them represent the adaptive dynamics of that connections 
in matrices mcw,mcfp and ms. For instance, X16 in the red cell in mcw refers to 
Wfs csb reapp

,  and this state represent the adaptivity taking place at connection from fsb 

to csreapp. Similarly, the X18 and X19 in mcfp and ms represents the persistence and 
speed factor of Wfs csb reapp

, , respectively (Figs. 11.14 and 11.15).

11 Flexibility and Adaptivity of Emotion Regulation: From Contextual Dynamics…
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Box 2 Role matrices for aggregation and timing
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