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Chapter 10
Computational Models for Affect 
Dynamics

Niels Vanhasbroeck , Sigert Ariens , Francis Tuerlinckx, and Tim Loossens 

Abstract Computational models of affect dynamics are ubiquitous. These models 
are appropriate for either exploring intensive longitudinal data or testing theories 
about affect dynamics. In this chapter, we give a brief overview of some of the com-
putational models that have been applied in the field of affect dynamics, focusing on 
both discrete-time and continuous- time models. The emphasis of this chapter lies on 
describing the core ideas of the models and how they can be interpreted. At the end, 
we provide references to other important topics for the interested reader.

10.1  Introduction

Studying emotion dynamics, or how emotions change over time, implies that one 
has to collect intensive longitudinal data (ILD; i.e., longitudinal data with many 
measurements over time; Y. Chen & Zhang, 2020). Advances in technology have 
greatly facilitated the collection of such data (Hamaker et al., 2015), both in daily 
life (Bolger et al., 2003; Larson & Csikszentmihalyi, 1983; Myin-Germeys et al., 
2018) and the laboratory (Seeley et al., 2015). When ILD have been collected, the 
challenge remains to analyze them and interpret the results. For this, we make use 
of computational models, that is, statistical or mathematical models that formalize 
how we believe a system works. In the case of emotion dynamics, these models 
formalize properties of ever-evolving emotions, so that they may change in their 
presence, intensity, and frequency over time.

However, formalizing the operation of the affective system is easier said than 
done. Luckily, the increased use of ILD has led to an increased interest in models 
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that quantify time-dependent changes in a whole range of psychological processes. 
Knowing what models exist and when it is appropriate to use them is thus tanta-
mount for any researcher who wants to understand how emotions change over time.

In this chapter, some of the available computational models for temporal pro-
cesses will be considered, with a focus on those models that have been used to study 
affect dynamics. The chapter will focus on computational models for the flow of 
emotional experiences, rather than models that zoom in on one specific emotional 
experience and how it unfolds over time (Kuppens & Verduyn, 2015; Verduyn 
et al., 2009).

10.1.1  Why Computational Models?

Why should we bother with these often complicated models of affect dynamics? To 
appreciate the role models may play in advancing research, we discern two general 
goals of their application and refer the interested reader to Breiman (2001) and 
Koopmans (2011) for a more elaborate discussion.

First, computational models can be used as data analysis tools. In this sense, they 
enable the researcher to study complex patterns of change in empirical data and 
validate hypotheses concerning these patterns (Hamaker et al., 2015). The way such 
computational models are being used is no different than ANOVA: It is a generic 
model that can be applied to a wide range of data without presuming that the model 
provides a complete account of the data generating process. The usefulness of such 
models is determined by whether they can account for some of the features observed 
in empirical data. For example, it is widely believed that the intensity of an emo-
tional or mood state is in some way related to its past intensity (i.e., when one feels 
bad now, this will likely continue for some time; Kuppens & Verduyn, 2017). 
Models that do not take such relation into account, may be less appropriate for ana-
lyzing affective time series.

Secondly, computational models can be formulated as theories of affect dynam-
ics (Farrell & Lewandowsky, 2010; Hamaker et al., 2015; Luce, 1995). Like verbal 
theories, they may describe how emotions behave over time and what underlies their 
fluctuations. Each model has its own focus or emphasis, as well as its own set of 
assumptions. Furthermore, it is possible to derive hypotheses and test them to pro-
vide either evidence for or against the model (Jekel, 2019).

There are some advantages to using these theoretical computational models 
compared to verbal theories (see Farrell & Lewandowsky, 2010 and Smaldino, 2017 
for a more elaborate discussion). Firstly, defining a computational model forces us 
to specify all aspects of a theory in an explicit and detailed manner. Secondly, when 
multiple computational models describe the same process, comparison of model 
performance (i.e., how well a model describes empirical data) may guide us towards 
better theories of affect dynamics. Lastly, discussion about the theory does not rest 
upon the interpretation of others, but rather on the set of mathematical properties of 
the model. This limits misinterpretation of the theory and moves the literature away 
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from communication of theories to the testing of them. However, here also lies a 
disadvantage of these models: They may be too technical to understand straight-
away, which may still lead to misunderstanding of what these models can, and per-
haps more importantly, cannot explain.

The boundary between a computational model that is used as an analysis tool and 
a computational model that is considered a theory is often fuzzy—the same model 
may be used as a data analysis tool by some and as a theoretical model by others. 
Therefore, we will use the term “computational model” in a general sense, referring 
to both instances.

10.1.2  Characteristics of Affective Time Series

As mentioned before, a minimal requirement for computational models of affect 
dynamics is that they take into account at least some features of emotional change. 
Here, we shortly discuss the most general characteristics of an affective time series 
that are accounted for by most computational models of affect, namely the baseline, 
variability, and regulation of the process.

Figure 10.1 provides an illustration of an affective time series in which the hap-
piness of a single individual has been measured at 25 different time points. A first 
thing one may notice is that measured happiness fluctuates around the dotted line in 
the figure. This dotted line is called the baseline and represents the affective state 
that comes naturally to the individual, or the affective state in which the individual 
is most likely to find him-/herself. If happiness increases or decreases relative to this 
baseline, one would feel more or less happy than usual (Brickman & Campbell, 
1971; Kuppens et al., 2010). The fact that happiness does not stick to the baseline, 
but shows some variability over time, is a second characteristic of the time series. 
This variability indicates that happiness is not a stable construct, but that it changes 
over time. Finally, when a grave change in happiness has occurred, it tends to move 

Fig. 10.1 Illustration of an affective time series
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back towards the baseline (e.g., timepoint 21–25 in Fig. 10.1). In other words, affect 
is regulated back to the baseline: a third characteristic of affective time series (Gross, 
2015; Kuppens & Verduyn, 2017).

In the subsequent parts of this chapter, we will introduce the reader to some com-
putational models of affect dynamics. We make a distinction between discrete-time 
and continuous-time models—two classes of models that differ in how they treat 
time, which we will discuss later. In our discussion, we will not shy away from 
showing the mathematical equations of these models, as we deem it important to 
expose the interested reader to them before they might delve into the, often techni-
cal, literature around them. We follow some conventions for mathematical notation. 
Lowercase letters are used for scalars or single values. When they are in bold, how-
ever, they represent a collection of such scalars called vectors. Uppercase letters are 
used for matrices. Greek letters are used for parameters that should be estimated, 
while Roman letters describe observed values.

10.2  Discrete-Time Models

The class of discrete-time models enjoys a wide popularity in psychological 
research. These models relate measurements at a given time point to measurements 
at previous time points, usually by means of difference equations or maps (Strogatz, 
2018). As such, discrete-time models describe changes in the affective time series in 
discrete steps, from one measurement to another.

First, we will introduce the autoregressive models, which are among the most 
prominent in the affect dynamics literature (Hamaker et al., 2015) and often serve 
as a building block for more complicated models. Afterwards, we will focus on 
reinforcement learning models as a more recently proposed class of models for 
affect dynamics.

10.2.1  Autoregressive Models

10.2.1.1  The Autoregressive Model

Imagine that we track someone’s happiness across time, using a continuous slider 
ranging from 0 (not happy) to 100 (extremely happy). Let yj (with j ∈ {0,1,…,N}) 
denote the ratings obtained at time points t0 < ⋯ < tj < ⋯ < tN. The lag-1 autoregres-
sive or AR(1) model relates the rating yj at time tj to the rating yj − 1 at time tj − 1 (i.e., 
the immediate predecessor) by means of a linear regression:

 
y yj j j= + +−δ ϕ ε1  
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Fig. 10.2 Emotional fluctuations as captured by a standard AR model (without random noise). In 
the left plot, the autoregressive coefficient φ is positive, lying in the interval ]0, 1[. This leads to an 
exponential decay, which becomes more gradual as  φ approaches 1. In the right plot, φ is negative, 
lying in the interval ]−1, 0[. This leads to emotional switching, in which the emotional state crosses 
the baseline at each future time point. The strength of this overshoot dies out over time, and is 
related to the size of φ, so that values of φ closer to −1 lead to longer dying-out time. In the plots, 
the solid line is always generated by a small autoregressive effect (φ = −0.2 or φ = 0.2), while the 
dashed line is generated by a large autoregressive effect (φ = −0.8 or φ = 0.8)

The parameter δ is a constant referred to as the intercept. This intercept can take 
any value and is related (but not equal) to the baseline (see Appendix 1).

The parameter φ (∈ [−1,1]) is called the autoregressive coefficient; it describes 
the temporal dependence of the variable y with itself at lag 1. In other words, it sum-
marizes how strongly happiness scores depend on previous happiness scores. Values 
closer to −1 or 1 imply a strong temporal dependence, whereas values closer to zero 
imply that there is little to no carry-over effect. When this effect is positive, an initial 
happiness score is expected to be regulated towards the baseline exponentially fast. 
When it is negative, however, we expect happiness to overshoot the baseline with 
each additional measurement. This overshoot is damped, so that it dies out over 
time. These autoregressive effects are visualized in Fig. 10.2.

The stochastic variables εj are often referred to as the innovations. These are used 
to describe unpredictable effects due to internal and external processes, capturing 
the variability in the dependent variable. They are typically assumed to be uncorre-
lated over time, independent of past values of the variable y, and normally distrib-
uted with mean 0 and variance σε

2
:

 
ε σεj N∼ ( )0 2,

 

Order The AR(1) model is a model of order 1 or lag 1. This means that the rat-
ings yj at times tj are regressed on the ratings yj − 1 at times tj − 1. However, the AR(1) 

10 Computational Models for Affect Dynamics



218

model is generalizable to higher orders, so that emotional states further in the past 
may also contribute to an emotional state at present.

The AR(p) model of order p is defined as:

 
y yj

p

k

k j k j= + ∑ +
=

−δ ϕ ε
1

,
 

where an autoregressive effect is assigned to each lagged variable yj − k. In this chap-
ter, we will confine ourselves to the discussion of models of order 1, although results 
may be generalized to models of order p. Because of this restriction, we will also 
simplify our notation from AR(1) to AR.

10.2.1.2  The Vector Autoregressive Model

In the context of affect dynamics researchers are usually interested in the change 
and interactions of multiple emotions or affective components over time. To accom-
modate this need, the AR model can be extended to take multiple variables into 
account—an extension also known as the vector autoregressive (VAR) model.

A VAR model with d variables is defined as:

 

y yj j j

j N

= + +

∼ ( )
−δδ εε

εε

Φ

Σ
1

0, ε  
(10.1)
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The values of the variables at time tj are contained in the d × 1 vector yj. The 
intercepts and innovations of each variable are contained in the d × 1 vectors δ and 
εj. The autoregressive effects reside in the d × d transition matrix Φ—more specifi-
cally on its diagonal (i.e., φii represents the autoregressive effect of variable yi). The 
off-diagonal elements are called crossregressive effects and represent the temporal 
relations between the different variables. This means that a variable at time tj − 1 may 
be related to another variable at time tj. As an example, fatigue early in the day may 
be associated to irritability later in the day. Or being relaxed in the morning may be 
associated to feeling happier in the afternoon (if you did not miss any deadlines 
because you were a bit too relaxed, that is).

The (co)variances of the innovations are captured in the d × d innovation covari-
ance matrix Σε. The diagonal contains the variances of the variables and the off- 
diagonal elements coincide with the covariances between the variables. Allowing 
innovations to covary means that, on average, random perturbations to the first pro-
cess at time tj are not independent from perturbations to a different process at time 
tj. Innovation covariance is therefore usually assumed to reflect common responses 
to external stimuli. Note that such innovation covariances are different from the 
direct lagged effects in that they do not make specific which of the two processes 
drives the other.

The VAR model has several interesting properties, such as regulation to a base-
line, growing uncertainty of predictions further away in the future, and the possibil-
ity to derive the autocorrelation from the transition matrix (see Appendices A and 
B). Furthermore, it allows researchers to study complex patterns of affect dynamics 
without the requirement to make a priori decisions on parameter structure (see 
Fig. 10.3), so it can be applied to a wide range of problems. Because of its simplic-
ity, its versatility, and its usefulness in describing basic properties of affect dynam-
ics, it is no surprise that VAR models have received much attention in the field, both 
in the empirical (e.g., Congard et al., 2011; Kuppens et al., 2012a; Kuranova et al., 
2020; Wichers et  al., 2020) and statistical literature (e.g., Adolf et  al., 2017; 
Bringmann et al., 2018; Bulteel et al., 2016). However, these advantages come at a 
price, as the large number of parameters requires a large amount of data to be esti-
mated adequately (Loossens, Dejonckheere, Tuerlinckx, & Verdonck, 2021).

Fig. 10.3 Simulated trajectories for five variables of a VAR model. The VAR can capture many 
complicated, and often realistic patterns of emotional fluctuation that can be found in data
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Fig. 10.4 Example of a 
directed network with three 
nodes and six 
unidirectional edges. The 
nodes of the network 
consist of three variables 
y1, y2, and y3. The strength 
of the lagged associations 
between these variables is 
estimated by using the 
auto- and cross-regressive 
effects that reside in the 
transition matrix Φ of a 
VAR model

10.2.1.3  Network Models

A network model is a representation of how different observed variables are related 
to each other. In Fig. 10.4, an example of such as network is given, where different 
variables or nodes are associated to each other through their edges. These edges 
may be weighted and unweighted, such that in the former case, you estimate the 
strength of the association, while in the latter case you remain agnostic of the asso-
ciation strength. Edges can furthermore be directed or undirected, such that directed 
edges describe the unidirectional influence of node i on node i′, while undirected 
edges describe the bidirectional influence between these two nodes (i.e., both nodes 
exert an equal influence on each other; Smith et al., 2018).

There are many ways to build network models, depending on the association 
measures used as the edges and the values of the variables. In affect dynamics, a 
VAR model is often used as a basis of network,1 presenting results in a more 
approachable way, easing interpretation (Borsboom & Cramer, 2013; Bringmann 
et al., 2013; Bulteel et al., 2016; Epskamp, 2020a). Building a network model from 
an individual’s affective time series can then be accomplished with a few basic 
steps. First, you define the nodes to be equal to the variables y. Then, you estimate 
the parameters of the VAR model and equate the (directed) edges to the auto- and 
crossregressive effect in the transition matrix Φ (see Fig. 10.4). Finally, the network 
is visualized and interpreted. These steps can be accomplished by using several R 
packages, such as graphicalVAR (Epskamp, 2020b; see also Epskamp et al., 2018) 
and qgraph (Epskamp et al., 2012). A network built on the transition matrix of a 
VAR model is temporal in nature, as the lagged association between the variables is 

1 Because of this, we present network models in the section on autoregressive models. This was a 
practical choice, and we do not mean to imply that network models are always autoregressive in 
nature. In fact, most networks are not (e.g., Ising models; Kruis & Maris, 2016).
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used as an association measure. Such a network therefore shows how variables are 
expected to change over time.

The network approach has several advantages. First, it allows researchers to 
make graphs of the estimated network, which may aid interpretation of the results. 
Furthermore, network models allow the use of several measures that define charac-
teristics of the network, such as centrality of nodes (i.e., how interconnected a spe-
cific node is) and clustering between different nodes (Borsboom & Cramer, 2013; 
Watts & Strogatz, 1998). Such measures have been used to define several character-
istics of emotional networks. For example, it has been found that in patients, several 
symptoms cluster together and that these clusters are only connected to each other 
through bridge symptoms (e.g., Borsboom et al., 2011; Fried et al., 2017; Greene 
et al., 2020; but see Groen et al., 2020). Similarly, it has been found that positive and 
negative emotions cluster together (Bringmann et al., 2013).

Despite these advantages, there are also several interpretational issues with net-
work models. First, network models are often conceptualized as complex systems 
consisting of causal agents (Epskamp, 2020a). In other words, the relation of one 
node to another is usually interpreted as a causal one, meaning that changes in one 
node cause changes in another node. However, research in affect dynamics is gener-
ally correlational in nature and therefore not amenable to causal analysis in the first 
place. As succinctly put by Box (1966), “To find out what happens to a system when 
you interfere with it you have to interfere with it (not just passively observe it)” 
(p. 629).

Another hazard is specific to networks built on VAR models. The use of a net-
work approach may obscure some known sources of bias in the parameters of VAR 
models. Two sources of bias have been identified by Bulteel et al. (2016). Firstly, 
differences in the variability of the variables may lead to inflated or deflated associa-
tion estimates. Secondly, auto- and crossregressive coefficients reflect unique direct 
effects, which means that when the variables are interrelated, a portion of the tem-
poral relations between variables is ignored. This can be seen by calculating the 
autocorrelation ρt   t − 1 for variable y1 in VAR model with two variables and with δ = 
[0,0]’, which is equal to (see Appendix 2):

 

ρ
ϕ σ ϕ σ

σ

ϕ
ϕ σ
σ

t t, − =
+

= +

1
11 1

2
12 12

1
2

11
12 12

1
2

 

The autocorrelation calculated here represents the temporal relation of the vari-
able to itself, and does not only depend on the autoregressive effect, but also on the 
crossregressive effect of y2 on y1, scaled (in part) by how much the two variables 
relate contemporaneously (captured by σ12). Using only φ11 as a measure of autore-
lation in a network model may thus not capture the full relation, which can lead to 
erroneous conclusions. Only in a few situations can the autoregressive effect 
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capture the full relation, namely when there is no covariance between the process 
variables (Bulteel et al., 2016).

10.2.1.4  Extensions

Many extensions to the AR and VAR models exist, and they are often introduced for 
one of two reasons. Firstly, they can be introduced to deal with some of the limita-
tions of classical autoregressive models, such as the issue of nonstationarity. 
Secondly, extensions have been introduced to take the influence of contextual fac-
tors into account. Both reasons and their related extensions are discussed in 
detail below.

Nonstationarity. Stationary processes are processes that display constant statis-
tical properties over time (Scargle, 1981). In other words, while emotions change 
over time, their means and (co)variances remain the same over time (see Appendix 
1). For example, one’s happiness will regulate back to the same baseline over and 
over again (e.g., Brickman & Campbell, 1971).

The AR-based models discussed in this section assume that the processes they 
model are stationary. However, that assumption may be overly restrictive. There 
may be situations in which we expect meaningful changes in the dynamical proper-
ties of a time series, for instance due to interventions, experimental manipulations, 
or major life events. Indeed, nonstationary time series have been observed in affect 
dynamics in clinical populations (Bonsall et al., 2012; Nelson et al., 2017; van de 
Leemput et al., 2014) and in situations where the environment has a meaningful 
(and possibly enduring) influence on an individuals’ affect dynamics (Dunn et al., 
2018). Studying nonstationarity and its origins may therefore be relevant, since it 
could, for instance, signal an individual’s transition from a healthy state to mood 
disorders (van de Leemput et al., 2014).

Nonstationarity is a broad concept: Changes in mean, covariance, and higher 
order statistical moments can occur suddenly or gradually, or even display recurring 
patterns over time (e.g., Chow et al., 2005; Larsen et al., 2009). Sometimes research-
ers may have explicit hypotheses about likely sources of nonstationarity. Other 
times researchers may instead wish to treat nonstationarity as a nuisance that should 
be taken care of prior to the actual analysis. Each of these distinctions has implica-
tions for how one should deal with nonstationarity (see also Hamaker & Wichers, 
2017). The topic is thus vast, and many approaches to modeling nonstationary series 
have been suggested. Here, we will only consider model-based solutions. For data- 
driven ways of handling nonstationarity prior to analysis (such as differencing and 
detrending), we refer the reader to Box and Jenkins (1970), Dickey and Fuller 
(1979), Hamilton (1994b), Lütkepohl and Xu (2012), and Velicer and 
Molenaar (2012).

Time-Varying VAR An intuitive extension of the typical VAR model is to allow 
some of its parameters to change over time, which is exactly what the time-varying 
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VAR (tvVAR) does (Bringmann et  al., 2018). The general model for order 1 
would be:

 

y yj j j j j

j N

= + +

∼ ( )
−δδ εε

εε

Φ

Σ
1

0, ε  

with

 

δδ j j

j j

t

g t

= ( )
= ( )
f

Φ
 

where the index j in δj and Φj indicates that these components change over time. The 
functions f(tj) and g(tj) are smooth functions of time and are estimated using regres-
sion splines (for more details and an empirical application, see Bringmann 
et al., 2018).

Despite its intuitive appeal and applicability for exploratory analyses, this model 
typically needs a lot of data in order to be estimated accurately. Furthermore, the 
multivariate version of this model fixes the innovation covariances to zero, indicat-
ing that it cannot—at present—capture contemporaneous relations between 
variables.

Regime-Switching Models An alternative method is applicable to situations in 
which dynamical features change abruptly. One type of models that incorporates 
these abrupt changes are the regime-switching models (Cabrieto et  al., 2018; 
Hamilton, 2010). These regimes consist of separately estimated VAR models, thus 
allowing regimes to be different on all kinds of dynamical features. The way in 
which one switches regimes depends on assumptions made by the researcher. For 
example, Markov regime-switching models determine these shifts by a hidden 
Markov model (Hamilton, 2010). Another possibility is to formalize an hypothe-
sized relationship between the probability of switching and an observed covariate. 
These models are typically called threshold autoregressive models (Tong, 2011).

In general, regime-switching models can be formalized as:

 

y yj r r j r j

j

j j j

N

= + +

∼ ( )
−δδ εε

εε

Φ Ψ

Σ
1

0, ε  

where the model coefficients depend on the value of rj, denoting the regime r at time 
tj. The matrix Ψ allows for regime-dependent innovations without explicitly chang-
ing the innovation matrix in a specific regime. To determine switching, a latent 
estimate of the probability pkl of switching from regime k to regime l is made:

 
p P r l r kkl j j= = =( )−| 1  
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While these models have been successfully used in the context of affect dynam-
ics (e.g., switching between depressive and manic states in bipolar disorder; Bonsall 
et al., 2012; transitioning from healthy to depressive state; Albers & Bringmann, 
2020), they suffer from the limitation that they require more than one model to cap-
ture the complete time series (Hamilton, 2010). As a consequence, the number of 
parameters to be estimated substantially increases with each additional regime. To 
be able to estimate such a model reliably, sufficiently long time series are required.

Context. Until now, the models have assumed that the emotional system evolves 
in a contextual vacuum. We have often referred to the dependent variables as reflect-
ing affect, without including any external contextual information in the model. 
Nonetheless, the inclusion of contextual information in computational models may 
greatly enhance our understanding of how events may elicit emotions, which aspects 
of the emotional process are influenced, what the emotional system does when it 
anticipates them, and how long these emotions last (Daros et  al., 2019; Voelkle 
et al., 2013).

Fixed Moderated VAR One way in which such information can be included is fixed 
moderated VAR (fmVAR, Adolf et al., 2017), an extension of the VAR framework 
which allows parameters to change depending on the value of a lagged external 
variable, by including it as a moderator variable. The general model can be formu-
lated as:

 

y yj j j j j

j jN

= + +

∼ ( )

∗ ∗
−

∗

δδ εε

εε

Φ

Σ

1

0, ε  

with

 

δδ j j

j j

j j

g

h

∗
−

∗
−

∗
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= ( )
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x

x

1

1

1

Φ

Σ
 

where x is a vector of values of the moderator at each time point.
The functions f, g, and h are link functions which define the functional form of 

how the moderator influences the process. For example, a linear link function for 
δ j

∗
 would assume a linear relationship between the moderator and the intercept of 

the process δ. This is a relatively straightforward way of accommodating changes in 
the level of the series, for instance by tying a dummy-coded moderator signaling a 
major life event to the process intercept.

Note that the moderator is assumed to be observed and measured without error. 
As such, fmVAR models are in particular applicable to situations in which contex-
tual factors are controlled by the researcher like, most notably, in lab studies. 
Missing moderator values cannot be handled within the model, which need to be 
imputed a priori (Adolf et al., 2017).
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10.2.2  Reinforcement Learning

Where autoregressive models (and most other models in this chapter) mainly 
describe relations between variables, reinforcement learning models go a step fur-
ther and link environment with emotions in a more explicit way.2 Reinforcement 
learning is a computational framework that describes how an agent or individual 
uses its experience to update its behavior, often with the goal of maximizing future 
rewards (Bennett et al., 2020; Sutton & Barto, 2018). Central to this framework is 
the notion that we get feedback on our actions, which is then used to change our 
behavior. To make this more concrete: imagine a child that gets caught taking candy 
from the cupboard without asking first. The parents may be very angry with the 
child, an outcome he/she probably does not like. In light of this feedback, the child 
may then change his/her future behavior and ask the parents for candy first (or per-
haps steal the candy more stealthily). Reinforcement learning thus provides a way 
to integrate emotional states with environmental cues, goals, and behavior, bringing 
action tendencies to computational modeling (Frijda, 2007).

We discuss two reinforcement learning-based models, one that is only concerned 
with explaining emotional states (Rutledge et al., 2014; Villano et al., 2020) and 
another that links these emotional states to behavior and learning biases (Bennett 
et al., 2020). These are, however, not the only models in this rich field (see e.g., Doll 
et al., 2012; Eldar & Niv, 2015; Eldar et al., 2015; Sutton & Barto, 2018).

10.2.2.1  Computational Model of Happiness

This unnamed model was originally proposed by Rutledge et  al. (2014) and has 
been used by several other authors (e.g., Villano et al., 2020; Vinckier et al., 2018). 
It was proposed within the context of a study on the influence of gambling outcomes 
on fluctuations in happiness. For this, Rutledge et al. (2014) used a gambling experi-
ment in which participants had to choose between a certain reward (value c) or a 
gamble. When participants choose a gamble, they had a 50/50 probability of receiv-
ing a higher (denoted as h) or lower outcome (denoted as l) than the certain reward. 
The reward given at the end of the trial can be denoted as o. Based on this experi-
ment, the model was formulated as3:

2 Note that we specifically talk about reinforcement learning in the context of emotion dynamics: 
This class of model is applicable to many more subjects, like decision-making, conditioning, and 
learned behavior (see Sutton & Barto, 2018).
3 To remain in line with the mathematical notations of this chapter, we changed the notation of this 
model (see Rutledge et al., 2014).
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where δ is the intercept, and the variables c, v ( =
+( )h l

2
), and p (= o − v) represent 

the value of the certain reward, the expected value of the gamble, and the reward 
prediction error (i.e., the difference between the obtained reward and the expected 
value). Note that for trials in which the gamble is chosen, c is zero, and for trials in 
which the certain reward is chosen, v and p are zero. Importantly, past outcomes also 
play a role, although their influence decays over time. This decay is captured by the 
value of γ (∈ [0,1[), which is called the forgetting factor (see Rutledge et al., 2014). 
The greater the value of γ, the longer the rewards linger and the greater their influ-
ence on current happiness. The influence of all rewards (both at the current time 
point as well as the previous ones) is scaled by the ω’s. With this model, Rutledge 
et al. (2014) found that prediction errors are an important driver of fluctuations in 
happiness, a result that has subsequently been confirmed by Rutledge et al. (2017) 
and Vanhasbroeck et al. (2021).

A limitation of the model is that it can only be applied to situations in which 
there is a certain and uncertain outcome. However, in reality, rewards may always 
be uncertain. To accommodate this limitation, Villano et al. (2020) made a small 
adjustment to the model:
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where p represents the prediction error and o the uncertain outcome. With this 
adjusted model, Villano et al. (2020) also found that prediction error is an important 
driver of fluctuations in affect in daily life.

10.2.2.2  Integrated Advantage Model of Mood

While the previous models were able to establish the role of prediction error in 
affect dynamics, they do not specify how happiness or affect may guide behaviors. 
The Integrated Advantage Model of Mood (IAMM) goes a step further and explic-
itly links behavior to mood, and mood biases to behavior (see Bennett et al., 2020). 
In this chapter, we limit our discussion to the basics of the IAMM, leaving out some 
of the details of the model. We refer the interested reader to the preprint of Bennett 
et al. (2020) for a more thorough discussion of the model.

Central to the IAMM is the notion of advantage, which can be defined as the 
difference between the outcome of a chosen action and the value of the state within 
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which this action has been taken (Bennett et al., 2020). More concretely, advantage 
tells you something about how well you are doing now compared to before. Let’s 
return to the example of the child: the child craved some candy (a low-valued state), 
so he/she decided to look in the cupboard and take some candy (an action), after 
which the craving is satiated (a high-valued state). The advantage of the child’s 
action is thus positive, as he/she moves from a low- to a high-valued state. This 
advantage may lead to a strengthening of this behavior, i.e., the child may choose to 
act this way again in the future. If, however, at some point the parents catch him/her, 
the child suddenly find him/herself in a low-valued state again, decreasing the 
advantage of this same action. As such, the overall advantage of the action “taking 
candy” may depend on how many times the child was able to take candy without 
being caught, and on how the child values angering the parents (e.g., if a child does 
not really care that the parents are angry, then he/she will probably continue acting 
the same way).

Based on this notion of advantage, the IAMM defines mood that results from an 
action as:

 
y y s a yj j j j j= + ( ) −( )− − − −1 1 1 1η απˆ ,

 
(10.2)

where η plays a similar role as the parameter γ in the model of Rutledge et al. (2014), 
and where α̂ π s a,( )  is the estimated advantage of doing action a (taking candy) in 
situation s (craving candy) under a certain behavioral policy π. The behavioral pol-
icy can be seen as a rulebook that links actions to situations. For example, in the 
situation “craving candy”, the action “taking candy” may be more likely taken than 
the action “asking parents first”. However, based on the new experience of the child, 
and the associated negative advantage of performing this action, its probability may 
decrease. As such, α̂ π s a,( )  plays a crucial role in updating the policy π. The IAMM 
thus goes further than just describing mood states: It also describes how advantage 
can change behavioral tendencies over time (Bennett et al., 2020).

This is, however, only part of the story. Bennett et al. (2020) suggest that behav-
ioral updating—based on advantage of an action—may be influenced by mood in 
the form of momentum. Momentum is a term from machine learning that describes 
an optimization algorithm for estimating parameters in which information of past 
updates is integrated with information on newly proposed ones (Rojas, 1996).

In terms of behavior, this comes down to the following: Suppose we act in a way 
that leads to positive advantage, then this advantage will lead to elevated mood and 
behavioral updating. Because of our elevated mood, we will also be more likely to 
update our behavior in the future (in combination with advantage, that is). In math-
ematical terms, this comes down to the updating of the parameters θ of the behav-
ioral policy π, the details of which can be found in the preprint of Bennett et 
al. (2020).
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where υ represents the update in the parameters θ of the behavioral policy, thus 
updating behavioral tendencies. Without going into detail, we will note that ε is the 
eligibility trace of the model, which determines the sensitivity with which certain 
action tendencies will update, depending on whether they were important in gener-
ating the taken action.

The question remains how one estimates the advantage of an action. Bennett 
et al. (2020) propose several estimators that may be used, one of which is the predic-
tion error. A full description of these estimators is, however, beyond the scope of 
this chapter. If one is interested in knowing more about the model, we encourage the 
reader to read the preprint of Bennett et al. (2020).

10.2.2.3  Limitations

Reinforcement learning models have the clear advantage that they combine indi-
vidual and environment in a more explicit way than is typically done by using 
autoregressive models. They can take into account the learning history of an indi-
vidual (e.g., learned regulation strategies; Gross, 2015; learned action tendencies; 
Frijda, 2007) and biased reward perception (Mason et al., 2017). As such, it is no 
surprise that reinforcement learning-based models have been suggested as theoreti-
cal models of mood disorders (Bennett & Niv, 2018, June 7; Eldar et al., 2015).

A disadvantage of these models, however, is their reliance on known rewards: In 
order for the models to be estimated accurately, you should have reliable informa-
tion about rewards received after performing given actions and the value that is 
attached to them by the individual. This information may not always be available 
(e.g., rewards may be intrinsic), which may influence the estimation of the param-
eters of the models. This makes reinforcement learning models ideal to analyze 
experimental data, but more difficult to apply to data from more naturalistic studies 
(e.g., daily life studies).

10.3  Continuous-Time Models

Why do we refer to discrete-time models as discrete-time models? A discrete-time 
model relates (or maps) observations at the discrete time points tj − 1 to observations 
at the discrete time points tj. In other words, discrete-time models are only 
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concerned with how the process changes from one measurement to the next. With 
such mapping comes the assumption that all observations are separated by precisely 
the same time interval. A failure to meet this assumption has been found to bias 
parameter estimates (de Haan-Rietdijk et al., 2017; Hamaker & Wichers, 2017). The 
problem is that this requirement is nigh impossible to achieve in practice, so we may 
assume that most (if not all) applications of these models will lead to biased esti-
mates. While some methods have been proposed to limit this bias, no perfect solu-
tions exist within the discrete-time approach (de Haan-Rietdijk et  al., 2017; 
Rindskopf, 1984).

Continuous-time models constitute another solution to this problem. These mod-
els attempt to estimate the function of the continuously-evolving variables with the 
use of differential equations, which have the advantage of incorporating change at 
any time interval by explicitly accounting for time (Deboeck, 2013; Strogatz, 2018). 
This mindset makes for an arguably more natural way of thinking about affective 
processes, which do not stop and wait for a next observation to express themselves, 
but evolve continuously over time (Cunningham et al., 2013; Ekman, 1992; Feldman 
Barrett, 2009; Frijda, 2007; Moors & Fischer, 2019; Scherer, 2005). Because of this 
continuity-assumption, emotions may inherently be better off being studied in con-
tinuous time (Boker, 2002). Furthermore, continuous-time models can deal with 
unequal time intervals between measurements, which may be better for ecological 
validity (Hektner et  al., 2006) and for capturing relevant information about the 
underlying process (Voelkle & Oud, 2013).

10.3.1  Differential Equations

Continuous-time models are often differential equations, which relate the current 
value of a variable to the speed with which this same variable is regulated towards 
its baseline. In the context of affect dynamics, this implies that the strength with 
which a certain affective state is regulated, depends on the severity of the disruption 
of affect.

Because we provide mathematical formula for the models in this section, it is 
important to have a notion of what differential equations look like and how they can 
be interpreted. Our introduction is not exhaustive. We refer the interested reader to 
Deboeck (2013) for a low-level treatment of differential equations, and to Strogatz 
(2018) for a more thorough introduction to differential equations.

Differential equations can be written in a few, analogous ways, namely:
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f y t

dy t f y t dt

y t f y t
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where f is a function of the variable, which may be linear or nonlinear (see later), 
and deterministic or stochastic (i.e., with or without a random component). In these 
equations, we can think of dy(t) as being a change in value of the variable y(t), and 
dt as a change in time. Hence, in the first notation, the left side represents the speed 
with which the variable y(t) changes (change in the variable divided by a change in 
time), which is then related to the current value of the variable on the right side. In 
the second notation, the change in time dt is moved to the right side of the equation, 
so that you now relate the change in the variable y(t) directly to the current state of 
the variable and the amount of time that has passed. The third notation is equivalent 
to the first one, so that y t

dy t
dt( ) = ( ) .  Personally, we prefer the second notation, 

and will try to use it where possible. In case the differential equations would become 
too complicated, however, we will use the first, standard notation.

10.3.1.1  Interpretation

The interpretation of differential equations may seem more alien than that of 
discrete- time models. However, there are several methods that make interpretation 
of continuous-time models easier. Besides directly interpreting the parameters 
(when they have clear-cut meanings), we will focus on one other method, namely 
considering the vector fields. For additional methods, we refer the reader to Ryan 
et al. (2018) and Strogatz (2018).

Plotting the vector field of a differential equation probably constitutes the most 
straightforward way for their interpretation (Strogatz, 2018). Vector fields represent 
the expected trajectories of emotional change, given specific initial conditions.4 
Plotting them thus provides us with some interesting characteristics of emotional 
change, such as the location of the baseline, the expected evolution of emotions, and 
the strength of regulation. Consider Fig. 10.5 in which different one- (top) and two- 
dimensional (bottom) vector fields are plotted. In panels (A) and (B), the derivative 
y t( )  is plotted against the value of y(t). In panel (A), it can be seen that when y(t) 

is greater than 0, the derivative is lower than 0 (and vice-versa when y(t) is lower 
than 0). This means that if y(t) is greater than 0, it will move towards lower values 
of y(t) with a speed that is determined by y t( ) . This movement stops when y t( )  is 
equal to 0. The value of y(t) in which this occurs is called a fixed point, and in this 
case the attractor, as values of y(t) are regulated towards it (see the arrows). In panel 
(B), we see an opposite pattern, such y(t) moves away from the fixed point, making 
it a repellor (note that if y(t) = 0, it stays put and does not move away from this fixed 
point). In panels (C) and (D), two equivalent vector fields for two-dimensional sys-
tems are shown with either arrows (size of the arrow indicates velocity of regula-
tion) or trajectories.

4 Importantly, this implies that vector fields are deterministic—they show what the model would 
expect if there were no perturbations to the system.
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Fig. 10.5 Examples of vector fields for one- and two-dimensional systems. In plot (A), the deriva-
tive y t( )  is plotted against the variable y(t), resulting in a one-dimensional vector field. This vec-
tor field is specific to the simple system y t( )  = −y(t), in which speed of regulation is linearly 
related to the emotional state. Arrows indicate the value to which the emotional state is regulated 
(here, the origin). This value is known as an attractor. In plot (B), another one-dimensional vector 
field is shown, this time for the system y t( )  = y(t). Now, there is no regulation, but rather explo-
sion of the emotional system, as indicated by the arrows. The origin takes on the role of repellor, 
which repels, rather than attracts values of y(t). Plots (C) and (D) show two-dimensional vector 
fields with an attractor. In plot (C), direction and strength of regulation is shown through the use of 
arrows that differ in size. In plot (D), the deterministic trajectories towards the attractor are shown 
as solid lines

Constructing one- to two-dimensional vector fields can be achieved by following 
the following steps: (a) specify the parameters of the model to plot, (b) specify the 
initial condition of y(t), (c) compute a trajectory from this initial condition for a 
specific amount of time, and (d) compute other trajectories and plotting them 
together. To approximate a trajectory, one can make use of the Euler method 
(Strogatz, 2018):
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∆ = ∆
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t t t

t t t1  

where ∆yt represents the discretized change in the variable y(t), and ∆t represents 
the discretized change in time. In practice, you should choose ∆t to be small enough 
so that the system does not fully return to baseline from the first go, but also not too 
small so that you can barely see any regulation. Other approximation methods exist 
as well, but will not be reviewed here (see Strogatz, 2018). Some software allows 
you to create such vector fields through the use of a function (e.g., dynr; Ou 
et al., 2019).

We will begin our discussion with linear continuous-time models of affect 
dynamics. These models are of the form (Strogatz, 2018):

 d t A t dt cy y( ) ( )= +  (10.3)

where c denotes a collection of terms that does not depend on the state vector y(t) 
and A is a d × d matrix.

10.3.2  Linear models

10.3.2.1  Continuous-Time VAR

In the psychological literature, the term continuous-time VAR model is sometimes 
used as a synonym for the Ornstein-Uhlenbeck (OU) model, named after Ornstein 
and Uhlenbeck who formalized the properties of this continuous-time model 
(Uhlenbeck & Ornstein, 1930). This is because the OU model and the discrete-time 
VAR(1) model are closely related: if y(t) is a continuous-time OU process (e.g., 
happiness) and you take equally-spaced measurements of it, then the resulting 
observations behave according to a discrete-time VAR(1) model (for more details 
on the relation between the OU and discrete-time VAR(1), we refer the interested 
reader to Bergstrom, 1984; Oud, 2007; Oud & Jansen, 2000; see also Fig. 10.6). 
Because of this simple relationship, the OU model has been proposed as an alterna-
tive analysis tool for emotion data (Driver & Voelkle, 2018a; Voelkle & Oud, 2013), 
and is slowly being used by researchers (e.g., Booij et al., 2020; Guthier et al., 2020; 
Kuppens et  al., 2010; Steele et  al., 2018). For brevity, we will use the term OU 
model to denote the continuous-time VAR model and we will keep on using the 
term VAR model to denote the discrete-time VAR model.

The OU model is defined as (following Oravecz et al., 2011; related formulations 
by Deboeck & Preacher, 2016; Driver & Voelkle, 2018b; Oud & Jansen, 2000; 
Voelkle & Oud, 2013):

 
d t t dt d ty y w( ) ( ) ( )= −( ) +Θ Γµµ

 (10.4)
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Fig. 10.6 Simulated data 
of an OU model (top) and 
associated equidistant 
measurements (bottom). 
These measurements can 
be described by a VAR 
model

with
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The vector μ is a constant vector that represents the baseline or attractor. 
Regulation of y(t) towards μ is determined by the d × d matrix Θ, also known as the 
drift matrix. It fulfills a similar role as the matrix Φ for the VAR model (see Eq. 
(10.1)), but they are not the same: Θ is a nonlinear transformation of Φ that describes 
regulation on an infinitesimal time scale (see e.g., Oud, 2007).

Equation (10.4) is a stochastic differential equation. It does not only include a 
deterministic part (also known as drift term), but also a stochastic part (also known 
as diffusion term). This stochasticity comes about through the time-dependent fluc-
tuations generated by d independent Wiener processes contained within the vector 
w(t). These fluctuations are scaled by the d  ×  d lower-triangular matrix Γ. This 
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matrix is not the continuous-time extension of the innovation matrix of the VAR 
model, but the latter can be computed from the former as Σ = ΓΓT.

The OU model, like the VAR model, is very general, which means that it can be 
a good exploratory tool, but in itself it says little about what the emotional system 
looks like. Nevertheless, we know of two theoretical applications of the OU model, 
one of which we turn to next.5

DynAffect. DynAffect is a theoretical OU model that assumes that fluctuations 
in affect occur within a two-dimensional valence-arousal affective structure 
(Kuppens et  al., 2010; Oravecz et  al., 2011). As a theoretical model for affect 
dynamics, it assumes that (a) there is a baseline to which individuals regulate their 
emotions, (b) the strength of regulation depends on the distance from the current 
affective state to this baseline, and (c) there are individual differences to be found in 
the baseline and regulation strength.

Evidence from a number of studies supports each of these assumptions (Kuppens 
et al., 2010; Oravecz et al., 2018; Oravecz & Brick, 2019; Wood et al., 2018). But, 
these assumptions are also very general. As such, their a priori probability of being 
true may be great, and the lack of falsification is thus less informative than one may 
have initially anticipated (Popper, 1959). Even so, DynAffect is a useful model of 
affect dynamics, as it provides a structural framework that can be used by other 
researchers (e.g., Pellert et al., 2020; Schweitzer & Garcia, 2010) and allows the 
investigation of individual differences in affect dynamics (e.g., Santangelo et al., 
2016; Wood et al., 2018).

10.3.2.2  Damped Linear Oscillator

The damped linear oscillator is a linear model that has been specifically proposed 
to capture regulatory processes (Boker & Nesselroade, 2002; Chow et al., 2005; Hu 
et al., 2014; Steele & Ferrer, 2011). In physics, the damped linear oscillator is a 
well-known model for a pendulum that slows down due to friction (and of the move-
ments of a spring in a viscous fluid, but we believe the pendulum speaks more to the 
imagination). When we instigate the movement of a pendulum, we can see its mass 
swing down to a central position, and then back up to the other side, only to swing 
down on a following turn. Each oscillation, i.e. each time the pendulum swings 
back, the amplitude of the swing will decrease, until at some point, the mass reaches 
a resting state (Boker & Graham, 1998). Another analogy is that of a thermostat: If 
we increase the temperature of the room, the room will heat up and slightly over-
shoot the specified temperature. It will then cool down until it overshoots the same 
temperature, after which it will heat up again (and vice-versa for decreasing the 
temperature of the room; Boker & Nesselroade, 2002; Chow et al., 2005). These 
movements are visualized in Fig. 10.7.

5 In the application that we do not discuss, the OU model was only part of a series of equations (see 
Pellert et al., 2020; Schweitzer & Garcia, 2010).
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Fig. 10.7 Examples of regulation patterns to be expected by the damped linear oscillator (for one- 
dimensional systems). The trajectories were generated for a same initial condition and a same 
amount of time. When we decrease the value of η, we create a greater frequency of oscillations, 
visible in the number of times y(t) overshoots the baseline (compare this for values η = −10 and 
η = −25). When we decrease the value of ζ, we increase damping, meaning that the overshoot will 
die out sooner (compare this for values ζ = −0.6 and ζ = −1.5). Note that these expected trajecto-
ries resemble the ones for negative autoregressive effects in the AR model (see Fig. 10.2)

Based on these examples, one may start to see why this model has been proposed 
as a model of regulation: When an event happens, we tend to regulate our ensuing 
emotions to return to our baseline (although upregulation may also occur; Gross, 
2015). However, we may initially overregulate our emotions, such that we over-
shoot the baseline. After some time, this overshoot dies out and we eventually reach 
our resting state.

The (multivariate) damped linear oscillator is defined as follows6:

6 The damped linear oscillator is an example of a second-order differential equation, where speed 
and location of a variable y at time t are both related to changes in speed over time (i.e., accelera-
tion; speeding up or slowing down over time).
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In these equations, the matrix E determines the frequency of the oscillations, i.e. 
how fast one regulates their emotions. Importantly, its diagonal elements capture the 
self-regulation of the variables (i.e., how fast the variables y(t) are regulated on their 
own), while the off-diagonal elements capture co-regulation of variables (i.e., how 
does the regulation of one variable relate to regulation of another). The matrix Z 
determines the amount of damping on the process, thus controlling how much one 
overshoots the baseline. In Fig.  10.7, one can see the impact of E and Z on the 
expected process for a one-dimensional system.

This model has been applied in a number of studies, often in the context of emo-
tion dynamics in couples (e.g., Boker & Laurenceau, 2006; Reed et al., 2015; Steele 
& Ferrer, 2011), but also in the context of the relation between affective states and 
psychopathological symptoms (e.g., Hu et al., 2014). It can account for some inter-
esting patterns in the data (although these are not unique, see Strogatz, 2018; Voelkle 
& Oud, 2013) and allows the estimation of theoretically meaningful parameters. 
Nevertheless, the model also has its downside. In its current form, it assumes that 
emotions die out over time. While this is no problematic assumption when examin-
ing specific emotional experiences, it may be more difficult to maintain when exam-
ining affect dynamics in real life, where a succession of affect-eliciting events may 
obscure such an (idealized) pattern. In practice, this issue is accounted for by includ-
ing a measurement model that accounts for different types of noise (see e.g., Boker 
& Nesselroade, 2002) or by including terms that model perturbations to the system 
(e.g., Boker & Laurenceau, 2006; Butner et al., 2005).

10.3.2.3  Reservoir Model

Based on the damped linear oscillator, Deboeck and Bergeman (2013) defined the 
Reservoir Model. It captures the same fluctuations as the damped linear oscillator, 
but, unlike the latter, takes ceiling and floor effects of measurements into account. 
The model is based on fluctuations of the water level in a reservoir that is constantly 
being filled with water (subsequently called the input) while some of the water 
escapes (subsequently called the output). Depending on the input and output, the 
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water level in the reservoir may change from being high (when input is greater than 
output) to low (when output is greater than input) to maintaining a stable value in 
between (when input and output are relatively equal for a certain amount of time). 
Based on this physical example, the Reservoir Model is defined as (Deboeck & 
Bergeman, 2013):

 
dy t y t dt t dt( ) = ( ) + ( )β ε

 

where β < 0 and ε(t) ≥ 0. The constraints put on the parameters follow from the 
derivation of the model, such that β represents the pressure-dependent outflow and 
ε(t) represents the inflow. The bigger the outflow, the more easily a buildup of inflow 
is regulated. To give an example: imagine that during a specific day, stress builds up 
due to a number of events (i.e., ε(t) is large). The parameter β then marks the differ-
ence between being able to regulate this stress (β is sufficiently large) or having a 
stress overload (β is too small). Importantly, ε(t) is itself a function of time, so that 
the input may change over time: sometimes there is more input (more stressful 
days) or less input (more relaxing days).

While the model seems promising, it has not yet been applied frequently.

10.3.3  Nonlinear Models

Linear models are a useful tool for investigating affect dynamics. However, evi-
dence suggests that they may fail to capture some fundamental characteristics of 
affective data, such as V-shaped relationships between variables (e.g., PA-NA; 
Diener & Iran-Nejad, 1986; Schimmack, 2001; valence-arousal; Kuppens et  al., 
2012b) and abrupt changes in the temporal dynamics of affect (i.e., phase transi-
tions; Bonsall et al., 2012; Scherer, 2000; Thagard & Nerb, 2002; van de Leemput 
et al., 2014).

There are several ways to accommodate phenomena that deviate from linear 
dynamics. First, one may choose to tweak the linear model so that it may be used in 
specific applications. For example, one may choose to incorporate abrupt changes 
in the dynamical system by making one or several parameters time- or context- 
dependent (Boker et al., 2016; Driver & Voelkle, 2018b). These tweaks may seem 
familiar, as they have also been discussed in the context of nonstationarity (see 
Extensions of Autoregressive Models).

Another option is to use nonlinear models of affect dynamics. Nonlinear models 
are models that cannot be rewritten to the form specified in Eq. (10.3). What the 
nonlinearity looks like, is left to the researcher to decide, and may go from the non-
linear transformation of variables to the inclusion of an interaction term between 
them. Examples of nonlinear models are
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and, to pick the concrete example of a damped nonlinear oscillator (Boker & 
Graham, 1998):

 

d y t

dt
Ey t Z

dy t

dt
y t

2

2
3( )

= ( ) + ( )
+ ( )Θ

 

The difficulty thus lies not in recognizing what nonlinear models are, but in how 
these models can be used and interpreted, as they often produce very complex 
behavior with very few parameters. Despite their great appeal, we caution the inter-
ested reader in applying nonlinear models to data without considering (a) what 
behavior the model produces, (b) whether this behavior is interesting with regards 
to affect dynamics, and (c) whether other, simpler models can be used instead. This 
is not to say that nonlinear models cannot be applied to affect dynamics; On the 
contrary, given that nonlinear tendencies are observed in the affective time series of 
individuals, this calls to the use of these models. However, researchers should also 
consider the difficulty in identifying a model that produces much of the behavior we 
see in the literature, a point to which we will return later (Brown et  al., 2013; 
Sussmann & Zahler, 1978).

10.3.3.1  Catastrophe Theory

Originally conceived of by Thom (1975) and then popularized by Zeeman (e.g., 
Zeeman, 1976), catastrophe theory quickly gained traction in psychology due to the 
perceived range of problems that it can deal with (e.g., Flay, 1978; Hartelman et al., 
1998). In the domain of emotions, it has been explicitly used by Allen and Carifio 
(1995), included in theory by Scherer (2000) (albeit speculatively, but see also 
Sacharin et al., 2012; Sander et al., 2005), and alluded to by Frijda (2007).

In its most basic form, catastrophe theory defines a potential function that binds 
together the variables in which one is interested. Then, the model defines the move-
ment in this potential as (Chow et al., 2015):

 
d t

V t
dty

y

y
( )

( );
=

( )∂
∂

θθ

 

where V(y(t);θ) is the potential function of y(t), given the parameters inside the 
parameter vector θ. The symbol ∂ denotes the partial derivative. In this context, this 
means that for the potential function, the derivative is taken with respect to the vari-
ables y(t), so that the parameters θ are considered to be constant. Because of this, the 
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y(t) are often taken as the dependent variables (or behavioral variables). The values 
to which the y(t) are regulated then depend on the values of the control parameters 
in θ. In practice, these control parameters can themselves be functions of some 
independent variables, so that

 θ = Ωx  

where Ω is a diagonal matrix consisting of the different weights of the predic-
tors in x.

The challenge of catastrophe theory then lies in the construction of the potential 
function. Luckily, many such models already exist, the most popular one being the 
cusp catastrophe model (Chow et al., 2015; Hartelman et al., 1998; Scherer, 2000; 
Zeeman, 1976). Its potential function and partial derivative are:

 

V y t y t y t y t

V y t

y t
y

( )( ) = ( ) − ( ) − ( )

∂ ( )( )
∂ ( )

=

;, ;,
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α β α β

α β
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4

1

2
4 2

3 tt y t( ) − − ( )α β
 

It includes one behavioral variable y(t) and two control parameters α and β. To 
understand how the control parameters work, we refer the reader to Fig. 10.8—for 
a visualization on what it implies for the potential function, we refer to Fig. 10.9. 
The black lines represent lines of attractors, meaning that values of y(t) below or 
above this line are regulated towards it. Once on the line, the system reaches equi-
librium and stops moving. Given that there are no sources of stochasticity, the only 
way to elicit movements in the behavioral variable y(t) is through changes in the 

Fig. 10.8 The cusp catastrophe model for different values of α and β. Values of y(t) are regulated 
towards the solid lines, as indicated by the arrows. Keeping β constant, increasing the value of α 
goes together with increased values of y(t). When we keep β ≤ 0, increasing the value of α leads to 
continuous increases in the value to which y(t) is regulated (i.e., the attractor value). When β is 
greater than 0, a discrete jump in the attractor value can be seen when a certain threshold value of 
α is exceeded. The emotional state remains on this plane until one decreases the value of α beyond 
another, separate threshold, a characteristic of the cusp catastrophe model called hysteresis. The 
dotted part in this plot is a line of repellors that can never be reached by the emotional state
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Fig. 10.9 The potential function of the cusp catastrophe model for different values of β, keeping 
α constant. The affective state y(t) moves towards the local minima of this potential function (i.e., 
towards the bottom of the wells, which are the attractors), as captured by the differential equation. 
When β increases, the system goes from having one well or attractor to having two, corresponding 
to the bifurcation seen in Fig. 10.8

control parameters, which amounts to changes in the predictor variables x. Looking 
back at the left plot of Fig. 10.8, we can see that increasing the value of α leads to 
increased values of y(t). But what happens when we increase the value of β? As you 
can see in the middle and right plot, the potential function creates a fold (a process 
also known as bifurcation; Strogatz, 2018), with a lower region (lower values of 
y(t)), an upper region (higher values of y(t), and a middle region that connects the 
former two (the dotted line). Note that the middle region consists of repellors, so 
that y(t) can never be regulated towards it. This implies that y(t) can only be regu-
lated towards the lower and upper region, which produces some interesting behavior.

Imagine that we manipulate α for the higher values of β. Starting out at the lower 
region and slowly increasing the value of α, we see that y(t) only gradually increases, 
until suddenly, y(t) shows a discrete jump from the edge of the lower region to the 
upper region. This behavior is at the heart of why catastrophe theory is popular: 
Continuous increases in the predictor variables may elicit sudden phase transitions 
in the dependent variable. Interestingly, decreasing the value of α does not imply a 
jump back to the lower region at the same threshold as the upwards jump, a charac-
teristic known as hysteresis.

To make this a bit more concrete, consider the following example. Take the 
behavioral variable y(t) to be perceived stress during the day, take the value of α to 
be dependent on physiological and/or emotional arousal, and the value of β to be 
dependent on suppression. When an individual does not suppress feelings of arousal, 
then the cusp catastrophe model would predict that with increases of arousal come 
continuous increases of perceived stress. With this comes the assumption that when 
arousal decreases, perceived stress will also decrease in a continuous fashion (as 
shown in the left plot of Fig. 10.8). Now consider the case when an individual sup-
presses much of the arousal he/she feels (right plot of Fig. 10.8), then one may ini-
tially perceive less stress, up until a critical value at which arousal becomes too high 
and perceived stress abruptly increases (i.e., suddenly the stress becomes over-
whelming). Importantly, due to hysteresis, it will not be easy for the individual to 
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recover from this sudden burst of stress: falling back into the “normal” pattern of 
stress requires arousal to decrease beyond the previous transition point.

Given our explanation, we hope that the potential of this model is clear. It makes 
explicit what factors contribute to the creation of the fold (β) and the abrupt change 
in affect dynamics (α), and how we may attempt to alleviate this state. The model is, 
however, deterministic in nature, leaving no place to stochastic noise in the system, 
be it due to internal and external perturbations or due to measurement error. To alle-
viate this limitation, stochastic versions of catastrophe models have been proposed 
(see Cobb & Watson, 1980; Wagenmakers et al., 2005).

Despite the frequent use of catastrophe-related terminology in theories of emo-
tion and emotion dynamics, the models themselves have not, to the knowledge of 
the authors, been directly applied to affect dynamics. It is, however, related to a 
recently proposed nonlinear model of affect dynamics, to which we turn next.

10.3.3.2  Affective Ising Model

The Affective Ising Model (AIM) is capable of modeling phase transitions, which 
may occur either due to contextual stimuli or due to random fluctuations (Fig. 
10.10). The AIM is a theoretical nonlinear diffusion model that assumes that the 
emotional life of individuals consists of two pools of binary neurons (i.e., neurons 
which only have an on- or off-state; Loossens et al., 2020). The state of these two 
pools determines the amount of PA and NA a person experiences at a given point 
in time.

Activation in the pools is subject to several forces. More specifically, (a) each 
neuron has a pool-specific threshold of activation (θi) that may be lowered or 
increased by environmental factors (βi), and (b) neurons of a given pool that are 
activated will excite the other neurons of the same pool and inhibit the ones in the 
other pool (λi and λ12 respectively).

Instead of describing the time evolution of the binary neurons themselves, the 
AIM describes the dynamics of the overall activation in the pools. Let y1 and y2 
denote the average activation of pool 1 (PA) and pool 2 (NA) respectively, then the 
dynamical equations are given by:
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where F(y1,y2) is defined as:
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Fig. 10.10 Simulated data of an AIM with two modes. In this figure, it is shown that the AIM can 
account for discrete shifts in affect dynamics. In this case, the AIM transitions from a high PA-low 
NA state to a low PA-high NA state
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where νi relates to the number of neurons in a specific pool and δ determines the 
speed with which the system diffuses towards an equilibrium state (see Loossens 
et al., 2020 for more on this). The function F(y1,y2) is called the free energy function 
and it plays a similar role to the potential function in catastrophe theory models. It 
can be interpreted as an individual’s emotional landscape, through which a the 
affective state moves. This state will tend towards minima in the landscape (the 
attractors), but may move upwards due to stochastic fluctuations, so that affect is 
always evolving.

The AIM induces nonlinearity in two ways. First, it includes logarithmic terms in 
Eq. (5), making the drift of the AIM nonlinear. Furthermore, the states y1 and y2 of 
the AIM are constrained to fall between 0 (all neurons are inactive) and 1 (all neu-
rons are active), which introduces some boundary effects that are absent in most of 
the discussed models. As a consequence, the AIM can reproduce some complex 
phenomena often found in affect dynamics (for some results, see Loossens 
et al., 2020).

While certainly promising, one clear disadvantage of the model is its limitation 
to two dimensions (PA and NA), without current alternative to incorporate more 
than these two dimensions.
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10.3.3.3  Chaos

Our discussion of nonlinear models would not be complete without at least braising 
the topic of chaos. Yet, this discussion will stay limited, as chaos has not found its 
way in affect dynamics despite being used in emotion-related research (e.g., Chow 
et al., 2016; Fredrickson & Losada, 2005; Losada, 1999).

Chaos refers to deterministic nonlinear systems that are extremely sensitive to 
initial conditions. With this, we mean that very small differences in a beginning 
state may lead to large differences in the long run. With this comes another defining 
feature of chaos, its unpredictable character: Even if there is only small measure-
ment error, your predictions will deviate strongly from the actual behavior of the 
system. This implies that we can only begin to predict emotional behavior when we 
are able to measure emotions with no error at all.7 Consequently, if one decides to 
use chaotic systems to model affect dynamics, one should also assume that predict-
ing future affect is impossible.

The use of chaotic models in emotion research is limited, and when it has been 
used, was severely criticized (e.g., Brown et al., 2013; Guastello, 2014 on the stud-
ies by Fredrickson & Losada, 2005; Losada, 1999; see also Kellert, 2001). This 
criticism is primarily directed at the blind use of fancy models on data that do not 
really call for it. For example, Brown et al. (2013) and Guastello (2014) criticized 
the use of the chaotic Lorenz equations in the studies of Losada (1999) and 
Fredrickson and Losada (2005), mostly because the latter had no theoretical reasons 
to use this model in the first place. A same case has also been made for catastrophe 
theory models, where Sussmann and Zahler (1978) stressed that these models can-
not be used on all data that show discrete jumps.

The blind use of such models not only pertains to their predictions, but also to the 
assumptions that one makes about the underlying process. Chaotic models are 
deterministic in nature, meaning that no stochasticity is involved at all—neither 
from inherent randomness of the process nor from unknown internal or external 
influences on the process. This means that if one is ready to assume such a model is 
a trustworthy reflection of the emotional system, one also assumes that a select 
number of variables can be used to describe this system. It seems unlikely that a 
complex system such as emotions can be described by such a select set of variables, 
and even if we are ready to assume this, then the question remains whether emotion 
theorists are comfortable with the notion that emotions evolve in a completely 
deterministic fashion. We believe few researchers would like to go that far.

7 If this is the case, we are able to predict the emotional behavior of an individual for eternity, as the 
system is deterministic.
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10.3.4  Limitations

Although continuous-time models may provide some solutions to the problems of 
discrete-time models, they still suffer from a number of limitations. First, many 
continuous-time models have no closed-form parametric solutions, meaning that 
they rely on approximate, numerical methods for their estimation. Unfortunately, 
these methods are very susceptible to local minima in the parameter space, so that 
the optimal parameter set is not necessarily identified (Myung, 2003). Matters 
become even worse for nonlinear models, as they often do not even have an analytic 
solution to their differential equations (e.g., the AIM; Loossens et al., 2020). This 
means that the solution of the differential equation has to be approximated with 
numerical integration methods, which may be difficult to implement and very time- 
consuming (Strogatz, 2018). Given this limitation, it may become clear why their 
application to psychological research remains limited (Ryan et al., 2018). Often, 
continuous-time models require the researcher to use specialized software, or con-
struct it themselves, although attempts have been made to make such software more 
widely available through e.g. R packages that aid in parameter estimation (ctsem; 
Driver et al., 2017; dynr; Ou et al., 2019; OpenMx; Boker et al., 2020; Hunter, 2018).

Another limitation pertains to the fact that many of the models that were dis-
cussed in this section have originally been created to model the behavior of physical 
systems (Kellert, 2001). Metaphors like “emotions as a thermostat” or “as a reser-
voir filling with water” may seem to convey some characteristics of emotions, but 
this may not necessarily be the case. One should realize that these equations have 
been designed to model a specific, often simple physical system, and may not 
always be applicable to the complex systems we try to model with them. This is not 
to say that these models cannot be used for affect dynamics: Instead, it is a reminder 
that each model may capture a specific aspect of the emotional system, and that at 
some point, an integration of such models may be needed.

10.4  Conclusion

In this chapter, we provided the reader with a general overview of some of the com-
putational models that try to capture (and explain) affective fluctuations in individu-
als. Within the scope of this chapter, we discussed discrete-time and continuous-time 
models, each with their own strengths and limitations. More than providing a gen-
eral overview of some computational models, we tried to provide the reader with the 
means to evaluate the use of these models and interpret their results in a more 
clear- cut way.

As the focus of our chapter was on describing different models of affect dynam-
ics, some of the topics central to computational modeling have been left undis-
cussed. We will mention some of these topics and refer the reader to the literature to 
learn more.
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10.4.1  Undiscussed Topics

A first undiscussed topic is the one of parameter estimation. While on some occa-
sions we have commented on the reliability or the difficulty of estimation, we have 
not touched upon the topic of estimation itself. It is, however, an important topic that 
has led to a rich literature that evaluates different estimation techniques and their 
reliability. For the discrete-time topics, some interesting references are Lütkepohl 
(2005), Rojas (1996), and Sutton and Barto (2018), and for continuous-time mod-
els, some examples of how they can be estimated come from Driver and Voelkle 
(2018a), M. Chen et al. (2018), Chow et al. (2015), Chow et al. (2016), Hu et al. 
(2014), Oravecz et al. (2011), and Oud and Jansen (2000).

Related to this is the topic of state space models (SSM; Hamilton, 1994a; Harvey, 
1989). SSM are models that make a distinction between measurements and process, 
similar to what structural equation models do. However, the former are more appro-
priate for use in design with ILD, and we therefore leave the latter undiscussed (see 
Chow et al., 2010 for a comparison between the two). This way, a set of two equa-
tions jointly provide a model for the evolution of a dynamical system over time: A 
measurement equation to model the observations of the variables and a transition 
equation to model the latent processes. In the context of the models discussed here, 
the general SSM for a discrete-time model may be formulated as:

 

yt t t

t t tB

= + +
= + +−

ττ ηη εε
ηη αα ηη ζζ

Λ

1  

where the observations and latent process are contained within yt and ηt resp. 
Importantly, the factor loading matrix Λ relates the observed variables to the under-
lying latent processes. τ and α represent the intercepts of measurement and process, 
and ε and ζ are the measurement error and process noise.

Many of the models that have been discussed in this chapter have originally been 
formulated within the SSM framework (e.g., fmVAR; Adolf et al., 2017), and SSM 
techniques are often used to aid in parameter estimation (e.g., Kalman filters; 
M. Chen et al., 2018; Driver & Voelkle, 2018a). We refer the interested reader to 
Hamilton (1994a) and Harvey (1989) for a more detailed discussion of this 
framework.

Another important undiscussed topic is that of model selection. In the introduc-
tion, we briefly mentioned that computational models could be compared to each 
other regarding model performance, providing evidence for a given model com-
pared to other models. This is an important analytic step, and often says more than 
just a simple application of one such models to the data. For example, if we use a 
VAR model to analyze data, we might get small estimates for the crossregressive 
effects. If we leave it at this, we cannot infer whether these effects contribute much 
to the model’s fit (i.e., whether they are important enough to interpret). To be able 
to make such an inference, we can analyze the data using a modified VAR model in 
which all cross-regressive effects are set to zero. If we then find that this second 
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model performs better than the first, we have evidence that no temporal relations 
between the variables exist (at least not for these data).

Many model selection tools exist, of which we mention only a few. A first popu-
lar tool of model selection is cross-validation. In cross-validation you use your data 
to assess the predictive performance of your models (Arlot & Celisse, 2010; 
Bergmeir et al., 2018; Roberts et al., 2017). In time series research, some related 
techniques are referred to as forecasting methods, in which only past data is used to 
predict future data, which is not the case for cross-validation (Hyndman et al., 2011; 
Hyndman & Koehler, 2006; Tashman, 2000). A second, a computationally less 
expensive model comparison tool is the relative measure of fit, which assesses how 
well a model fits the data while accounting for the complexity of the model (e.g., 
AIC and BIC; Bengtsson & Cavanaugh, 2006; Masson, 2011; Schwarz, 1978; 
Vandekerckhove et al., 2015; Wagenmakers & Farrell, 2004). Third, the parametric 
bootstrap can be used to simulate data and compare these to the real data with the 
use of some data- driven statistics (Wehrens et al., 2000). Another interesting way to 
use the parametric bootstrap is to simulate data starting from different models and 
check whether the data-generating model is also the model that fits these data best. 
Using this method, the distinguishability and mimicry of different models can be 
assessed (Navarro et al., 2004; Wagenmakers et al., 2004).

A final undiscussed topic is the one of individual differences in affect dynamics. 
All models in this chapter have been formulated to be only applicable to one sub-
ject. However, computational models need not be limited to this one case, but may 
be transformed into a multilevel structure to take into account individual differences 
(Gelman, 2006; Gelman & Hill, 2006). Some models have already been extended to 
such a multilevel structure, such as the VAR model (Ariens et al., 2020), the OU 
model (Driver & Voelkle, 2018a; Oravecz et al., 2011), and the damped linear oscil-
lator (Hu et  al., 2014). While very useful, multilevel extensions are not always 
straightforward and require some additional thought on the modeler’s side, often 
making them difficult to implement.

10.4.2  Final Note

We would like to end this chapter on a final note. While computational models may 
certainly help progress the affect dynamics field, it is clear that each model suffers 
from its own limitations. Moreover, computational models are often simplifications 
of the processes in which we are interested. In light of these limitations, one may 
become skeptic about their use. To battle this skepticism, we want to remind the 
reader of another quote of the late Box (1979) (see also Box, 1976, p. 202): “All 
models are wrong but some are useful.”
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 Appendix 1: Properties of the VAR

 Properties of the AR Model

Given the AR model (repeated here):

 
y yj j j= + +−δ ϕ ε1 .

 

we can define some properties of the process. These properties are defined and 
mathematically derived below.

Predictions. Given a first observation y0 collected at time t0, we are able to pre-
dict the next measurement y1, as:
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where  denotes the time-dependent expected value (i.e., E[.]). Note that the inno-
vations do not play a role in the expectation of y1, given that their expected value is 
equal to 0.

Using the same principle, we can also make predictions about observations fur-
ther in the future. For instance, the expectation of y2 conditional on the observation 
y0 is given by:
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In general, the prediction of a future observation yj conditional on y0 is:
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(10.7)

Baseline. Since the magnitude of φj shrinks as j increases, in the long-time limit, 
it holds that:
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As a result, the predictions ⟨yj| y0⟩ converge towards a fixed point:
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(10.8)

This fixed point μ can be considered the emotional baseline (i.e., the dotted line 
in Fig.  10.1) and represents the emotional state to which the emotional state is 
expected to evolve to. As such coincides with the end state of a regulation process 
(provided nothing happens to disrupt the regulation process).

It also represents the state that will be visited the most by the individual over 
longer periods of time. For that reason, it coincides with the mean of the distribution 
of observations {yj | j,…,N} for sufficiently large N. Because of this, the baseline is 
also referred to as the stationary mean. The term stationary is used to stress that the 
baseline is independent of time.

When an AR(1) process is only observed during a short period of time during 
which the emotional state is still relaxing (i.e., converging) towards the baseline, 
then the mean of the observations will differ from the stationary mean. Only when 
measurements have been collected for a sufficiently long period of time will the 
mean of the data distribution coincide with the stationary mean.

Uncertainty. Until now, we were only concerned with point-predictions of 
future observations. However, we can also compute the uncertainty that is associ-
ated with these predictions. For this, we realize that the observation y1 is normally 
distributed with mean δ + φy0 (the prediction) and variance σε2:

 
y y N y1 0 0

2| ,∼ +( )δ ϕ σε  

Because of stochasticity, uncertainty about predictions typically grows the fur-
ther in the future you go. It can be shown that the future observation yj, given obser-
vation y0, is normally distributed with the mean being the point-prediction in Eq. 
(10.7) and variance given by:
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where in the long-time limit:
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so that the variance of the uncertainty distribution in the long-time limit converges to

 
σ

σ
ϕ
ε2
2

21
=

−  
(10.10)

Like the stationary mean, this variance is time-independent and thus called the 
stationary variance.

Autocovariance. An AR model relies on the assumption that measurements yj at 
time tj are related to measurements yj −  1 at time tj −  1, i.e. that there is a time- 
dependence between measurements. The extent to which this relationship holds is 
expressed by the autocovariance. The autocovariance at lag-p σp is defined as:

 
σ µ µp j p jy y= −( ) −( )+  

To compute the autocovariance of the AR process, we first reformulate the model 
in terms of the baseline μ. To do so, we substitute δ for (1 − φ)μ (see Eq. (10.8)) 
to obtain:

 

y y

y

j j j

j j
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= − + +
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1 1

1

ϕ µ ϕ ε

µ ϕµ ϕ ε
 

Then, by rearranging the terms, we can write

 
y yj j j− = −( ) +−µ ϕ µ ε1 .

 

Setting the innovations to zero (they do not correlate with anything), we find (see 
Eq. (10.7))
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(10.11)

Here we have used the fact that the centered variable yj − μ have the same station-
ary variance (Eq. (10.10)) as the variable yj themselves. If we standardize the mea-
surements so that σ2 = 1, we obtain the autocorrelation:

 
ρ ϕp p( ) =  
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From this expression, it can be seen that the autoregressive coefficient φ of the 
AR model corresponds to the autocorrelation between measurements at lag 1.

 Properties of the VAR Model

We can generalize the properties of the AR model to fit the d-dimensional VAR 
model (repeated here):

 

y yj j j

j N

= + +

∼ ( )
−δδ εε

εε

Φ

Σ
1

0, ε  

Predictions. Just like for the AR model, the prediction of a future observation 
conditional on the observation y0 is given by (see Eq. (10.7))

 

yj
k

j
k jy0

0

1

0=








 +

=

−

∑Φ Φδδ y
 

(10.12)

Importantly, this equation results in a vector that contains all expectation values 
for all d variables of the model.

Baseline. Using a similar reasoning as for the AR model (see Eq. (10.8)), but this 
time using matrices instead of scalars, it can be shown that the predictions of the 
VAR model Eq. (10.12) converge to the baseline:

 
µµ δδ= −( )−Id Φ

1

 

where Id is the d-dimensional identity matrix.
Uncertainty. An expression similar to Eq. (10.9) can be obtained for the growing 

uncertainty of the VAR model:

 
Σ Φ Σ Φj

j

k
k k T
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−

=
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0

ε
 

For stable transition matrices Φ, this covariance matrix becomes constant in the 
long-time limit. This stationary covariance is given by

 
Σ Φ Σ Φ= ∑ ( )

∞

=k
k k T0

ε
 

and is a solution of the discrete-time Lyapunov equation

 Σ ΦΣΦ Σ− =T
ε  
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Given the transition matrix Φ and the covariance Σε of the innovations, this 
Lyapunov equation enables us to compute the stationary covariance without having 
to compute an infinite sum.

Autocovariance. The autocovariance of the VAR model is similar to the autoco-
variance of the AR (see Eq. (10.11), namely

 

Σ

Φ Σ

p j p j

T

p

y y= −( ) −( )
=

+ µ µ

 

 Appendix 2: Autocorrelation of Bivariate VAR

If we take a bivariate VAR model with the intercepts δ = 0, then we can compute the 
autocovariance as:
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We can compute the autocorrelation as:
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More generally, it holds that for a variable yi:
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